
TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH SMALL FUNCTIONAL LANGUAGES 1

Towards a Product Line of Interpreters:
An Experiment with Small Functional Languages

Thomas Cleenewerck, Rodolfo Toledo, Éric Tanter

Index Terms—D.3.4.e Programming Languages, Processors, Interpreters

F

1 INTRODUCTION

A S software is subjected to a continuing rate of
evolution, the programming languages that were

used to construct it evolve as well. This is not only
apparent from a historical perspective, where we see
that all mainstream languages continue to evolve. It
is even more so apparent in our continuous effort to
construct languages which are designed with a particular
application domain in mind. Examples of this range from
computational domains like object-orientation, aspects,
over hardware domains like distribution or parallelism,
to end-user application domains like business process
engineering.

In this paper we focus on the evolution of the se-
mantics of a programming language. Ideally, languages
should be extensible using modular extensions. This
implies that the impact of change to an existing language
as well as the changes to the already applied extensions
should be minimal.

A wealth of techniques has been proposed and investi-
gated to facilitate language implementations. However,
we observe that in these techniques semantics are still
intertwined with a particular implementation strategy
that is shared among many if not all the language
features. The experiments in this paper show that the
semantics of features are often too coarse grained. This
cripples the ability to easily combine them, and thus
hinders evolution. The semantics of features that contain
boilerplate specifications can be made modular. How-
ever, dependencies on a shared interaction among dif-
ferent language features are harder to tackle and require
specific abstractions. Lastly, entirely new mechanisms are
needed to capture the subtle changes in semantic spec-
ifications in order to yield a coherent overall language
semantics.

• T. Cleenewerck works at the PROG Lab of Computer Science Department,
Vrije Universiteit Brussel, Belgium
E-mail: tcleenew@vub.ac.be

• R. Toledo works at the PLEID Lab of Computer Science Department
(DCC), University of Chile, Chile
E-mail: rtoledo@dcc.uchile.cl

• É. Tanter works at the PLEID Lab of Computer Science Department
(DCC), University of Chile, Chile
E-mail: etanter@dcc.uchile.cl

In order to better support the evolution of languages,
we first require a better understanding of how languages
evolve. More precisely, in the first part of the paper,
we investigate how the different features of languages
affect one another. We turn a series of language evo-
lutions into a product family [PBvdL05] by studying
their commonalities and variabilities. We then analyze
the current implementations from this point of view. In
the second part, we determine how we can decouple
shared implementation strategies from the language fea-
tures and ultimately present some indications as to how
we can specify the semantics as modular composable
extensions by increasing the abstraction level of se-
mantical specifications. We start from a straightforward
implementation in Scheme as presented in [Kri97] and
improve it with the implementation techniques found in
the Linglet Transformation System (LTS) [Cle07].

2 MOTIVATING PROBLEM: EVOLUTION
GRAPH OF INTERPRETERS

In the text book by Krishnamurthi [Kri97], programming
languages are taught by means of interpretation and
application. Programming language concepts are gradu-
ally introduced to students by incrementally adding new
language features. The author starts with a language for
simple arithmetics called AE consisting of addition and
substraction that operate on numbers. He then creates
the language WAE where he adds the with construct
(also known as let) with explicit1 semantics. He further
evolves the WAE language with first-order functions with
explicit and then later with a deferred semantics2 to
attain the languages called F1WAE and F1WAE (env3) re-
spectively. This process continues with language features
such as first class functions, conditional expressions, lazy
evaluation, mutable identifier values.

The language evolutions follow a particular pedagog-
ical scenario. Because of this, no attention is paid on
separating the impact on the interpreter when chang-
ing from one version to another. In other words, lan-
guage evolution is basically handled by copy-pasting

1. Semantics is expressed using substitution.
2. Semantics is expressed using an environment
3. The term “env” stands for environment.



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH SMALL FUNCTIONAL LANGUAGES 2

a previous version of an interpreter and subsequently
modifying it. Hence, the various concepts are not clearly
separately defined. Changes to previous semantics are
easily overlooked, especially the subtle ones. There are
several drawbacks of this approach.

• First, concepts are harder to understand and reason
about. For example, it is hard to understand what
the semantics of a function application are, irrespec-
tive of using explicit or deferred semantics.

• Second, it is harder to understand the impact of a
concept on other language features. For example,
it is hard to understand the impact of adding the
feature with (with explicit semantics) on a language
implementation.

• Third, implementation techniques are not made
fully explicit and cannot thus be reused as such.
For example, it is not possible to reuse the mech-
anism that threads an environment used for first
order functions to thread a store in a language with
mutable identifier values.

• Fourth, experimenting with combinations of lan-
guage features that deviate from the standard ped-
agogical scenario is complicated, as such imple-
mentations require to cut and paste from different
language versions. For example, it is not possible
to easily construct a variant of WAE that uses an
environment.

In order to accommodate these needs, we analyzed the
commonalities and variabilities for a couple of language
evolutions of this series of language evolutions so as to
turn them into a product family of languages.

3 COMMONALITIES & VARIABILITIES
As the language evolutions of the interpreters are steered
by a pedagogical scenario, features are piled up so as to
gradually expose students to more complicated seman-
tics and features. In order to attain a product family, we
have conducted a communality and variability analysis
using FODA [KCH+90], [Cza98], augmented with some
constraints to capture dependencies among features.

The resulting model reveals that many more combi-
nations can be explored. For example, each language
feature is hierarchically subdivided into subfeatures. The
feature identifier has three subfeatures: referencing exist-
ing identifiers, defining new identifiers and mutating the
value associated to identifiers. A specific language is the
result of selecting the features of interest. For example,
the language called F1WAE can be defined by selecting
the following features: all arithmetic expressions, identi-
fier references and definitions and function application.

The model also exposes the choices that have to be
made when implementing a language. Languages are
not solely determined by their features, also the imple-
mentation techniques that are used to implement the
features and their interactions are made explicit in the
model. Amongst others, these are threading and substi-
tution. Threading transports bindings from language fea-
tures that define or set values (e.g. identifier definitions

or identifier value mutations) to language features that
refer to the bindings (e.g. identifier references), whereas
substitution replaces the bindings in expressions of these
language features.

In addition, the model captures explicitly the depen-
dencies among the features. The hierarchical nature of
the model already entails some dependencies e.g. identi-
fiers, when chosen, must at least be referentiable. Using
constraints, dependencies among features can be defined
which cannot be captured hierarchically e.g. arithmetic
operators must be defined with respect to the available
datatypes.

4 COARSE-GRAINED SEMANTICS

When analyzing the straightforward implementations
of our series of language interpreters in Scheme we
found that language features are too coarse grained.
The result is that language evolutions cannot simply
reuse and extend the semantics of previous versions, but
have a significant impact. More precisely, we observe
that the semantics suffer from reuse of boilerplate code
or contain dependencies on shared interactions and on
other language features.

4.1 Boilerplate code
The semantics encoded in the interpreters suffer from
quite a lot of boilerplate code. Consider for example
the implementation of with using explicit semantics in
the WAE language. with introduces an identifier which
names, or identifies, an expression and allows to use
this name in a larger computation. We refer to the later
computation as a body. Upon evaluation, the semantics
of with substitute the identifier by the expression bound
to the identifier within the body of the with. Substitution
has to traverse the whole body in order to find all
occurrences of a identifier. Hence, for each language
feature which can be used as (a part of) an expression,
code has to be written. However, only a couple language
features are worthwhile to consider, the rest is merely
boilerplate code. In the WAE language these are identifier
reference and with itself. In case of constructs such as
addition, substitution passes through, and even in case
of constructs such as a number nothing has to happen at
all.

4.2 Dependencies on shared interactions
Semantics of features encoded in the interpreters are
polluted with specifications that depend on a shared
interaction among different language features. Consider
for example an identifier reference of a WAE language
using explicit and deferred semantics. Its implementa-
tion is polluted by the kind of semantics that are used by
other language features. In an explicit semantics, identi-
fier references are substituted away. Hence, the semantics
of a (unsubstituted) identifier reference produce an error.
In case of deferred semantics (using an environment),



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH SMALL FUNCTIONAL LANGUAGES 3

references are looked up in a given environment. Despite
these differences, in fact, both implementations return
the value which is associated to identifiers: in the former
case, it is an error and in the latter case a value from the
environment.

We encounter the same problem in function applica-
tions. Irrespective of an explicit or deferred semantics,
a function application in essence binds the parameters
of a function to its arguments, evaluates the body of a
function, and removes the created bindings. However,
the explicit semantics of function application substitute
the formal parameter in the body of the function whereas
in the deferred semantics of function application extend
the environment, create a new binding and afterwards
restore the environment again.

4.3 Dependencies on other language features

Semantics encoded in the interpreters also depend on
other language features in order to yield a coherent
overall language semantics. In a lazy interpreter, for
example, there are some points where the implementa-
tion of a lazy language forces an expression to reduce
to a value (also known as the strictness points of the
language). These strictness points have to be specified in
the semantics of many other language features e.g. upon
the evaluation of an addition, the strictness point ensures
that actual values are produced so that the interpreter
can compute their sum. Hence, when making languages
lazy the original semantics cannot be reused, but have
to be carefully examined and changed.

5 TOWARDS MODULARLY COMPOSABLE EX-
TENSIONS BY INCREASING THE ABSTRACTION
LEVEL

In this section, we analyze how we can decouple the
shared implementation strategy from the language fea-
tures. We change the Scheme implementation using state
of the art language development techniques and postu-
late how we can further improve the implementation in
order to construct the language evolutions as modular
extensions.

For our experiments we use LTS [Cle07]. LTS serves
as an experimental environment as it combines the
strengths of a large amount of language development
techniques and cultivates (and to some extent enforces)
a discipline to modularize the semantics of languages.
First, LTS strictly modularizes the syntax and semantics
of each language construct in a language module, called
a linglet. In LTS, languages are built by composing lin-
glets. As a result, language extensions are defined mod-
ularly by adding and recomposing linglets. Second, LTS
features the unique ability of being customizable such
that developers can adopt the most optimal implemen-
tation for separating the different language features. This
enables developers to use advanced interaction strategies
and composition mechanisms in order to establish the

semantics of a language, while ensuring its modular
construction.

5.1 Abstracting from Boilerplate code

Let us revisit the language extension by the with feature
using explicit semantics. The boilerplate code, which
does not contribute to the semantics, can be removed
in several steps by several techniques.

In a first step, we share common substitution behavior
among different language features. For example, the sub-
stitution of all binary operations can be shared among
features such as addition and substraction i.e. a new AST
node is created where the substitution is applied to the
right and left. Likewise, the substitution of terminals
can be shared among features such as numbers i.e. the
current AST node is returned.

In a second step, we omit substitution for features such
as terminals and binary operations as no specific seman-
tics have to be executed. We defined a separate module
that offers a mechanism that is capable of propagating
the substitution through an expression.

We end up with an implementation of explicit seman-
tics where only the language constructs are involved
which have particular semantics, and with an explicit
mechanism to implement it.

5.2 Dependencies on shared interactions

Sometimes the semantics of language constructs are
too dependent on an interaction that involves other
language constructs. Recall in our example that the
semantics of a function application either have to initiate
the substitution or either has to change the environment.
In turn, this choice completely changes the semantics of
an identifier reference.

What is required here is a way to abstract from the
actual way the semantics are implemented. In case of
an identifier reference, the semantics need to retrieve
its value. LTS’s modularization mechanism provides an
abstraction to deal with missing information. Consider
the following three slightly different implementations
of an identifier reference in the F1WAE languages. The
semantics of an identifier reference can:

• in case of explicit semantics, produce an error indi-
cating that the identifier is not bound;

• alternatively, also indicate that an error value is
necessary by parameterizing its semantics with a
lambda that provides such a value;

• in case of deferred semantics, simply assume that
the value is available (abstract from its definition
site) and lookup the value.

Upon composition of identifier references in a lan-
guage, one does not need to distinguish between those
three implementation variants. LTS provides an abstrac-
tion from these three implementations and can uni-
formly handle them, because in essence in all cases a
value is requested that is not available.



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH SMALL FUNCTIONAL LANGUAGES 4

In some cases semantic dependencies have to be ex-
plicitly dealt with. Let us revisit the semantics of a func-
tion application. The implementation of its semantics is
quite different depending on whether substitution or an
environment is used. Following the strict discipline of
LTS to modularize the semantics, a function application
in the F1WAE language could adopt an operational
semantic style using the abstract notion of a binding.
Hence, the semantics consists of these three steps:

1) extend the evaluation state with a new binding,
2) interpret the body,
3) revert the evaluation state by cancelling the bind-

ing.

This formulation allows developers to reuse the se-
mantics of function application regardless of explicit or
deferred semantics. In case of explicit semantics:

1) change the evaluation state to a new program
where the identifier is substituted,

2) interpret the body,
3) do nothing, as the evaluation state does not have

to be reverted

In case of deferred semantics:

1) change the evaluation state to an extended new
environment containing the identifier,

2) interpret the body,
3) revert the evaluation state to the environment

where the new binding is removed

To conclude, semantic dependencies on shared inter-
actions can be avoided by raising the abstraction level
of the implementation of the semantics. As we have
demonstrated, for some dependencies LTS provides built
in semantics to implicitly abstract from these depen-
dencies, for other dependencies explicit care is needed.
Future work has to determine whether new abstractions
can be implicitly supported and how.

5.3 Dependencies on other language features

The case where semantics also depend on other language
features to yield a coherent overall language semantics
is the most delicate task. The reason for this is that
subtle differences occur deep inside the semantics of
a feature and possibly many features. The challenging
part is twofold: (a) to specify the correct locations and
(b) to specify the changes in semantics without violating
the modularity of language features. Note that the latter
is not simply a restriction but rather a fundamental
requirement to avoid brittle language extensions.

In the example given in the previous section, lazy
evaluation impacts quite a lot on other language fea-
tures. More so, the places where strictness applies are
difficult to assess. Our goal is to be able to declaratively
specify the locations [CD08], instead of depending on
low-level implementation details by relying on mere
syntactical patterns [GB03]. For the example of strictness,
strictness has to be applied whenever the interpreter

executes a function of the host language4. However,
this definition only covers a subset of all the places in
the interpreter. To complement this definition, we are
increasing the abstraction level of the semantics away
from low-level implementation details so as to better
expose the assumptions taken. In case of strictness, we
could require developers to tag the operations executed
by the interpreter. With these tags we could indeed
declaratively specify all locations where strictness ap-
plies.

5.4 Discussion

Boilerplate code could be removed and dependencies
on shared interactions could be avoided to some de-
gree. However, dependencies on other language features
posed a greater challenge. In fact, concerning the two
kinds of dependencies, we observed in our experiments
that the granularity of semantic specifications should be
decreased. This means that we require smaller units of
semantic behavior for modularizing the interactions and
dependencies on other language features. The question
is how much details must be exposed, without compro-
mising the modularity of the language implementation.
We therefore opt to approach this problem in a bottom
up fashion and commence our search for a suitable level
of granularity by raising the abstraction level of semantic
specifications.

6 CONCLUSION

In our continuing effort to improve programming lan-
guages so as to better suit the need of developers,
languages continuously need to evolve. In this paper, we
focus on the ability to evolve the semantics of languages.
An analysis of the changes of a range of interpreters
showed that changes from one language version to the
next often has a significant impact on the semantics of
the original language. We rewrote the interpreters using
state of the art language development techniques involv-
ing modular language constructs, reflective interpreter
extensions, and complex interaction and composition
techniques. A catalog of changes shows that only parts of
the extensions could be modularized. This is due to the
coarse-grained semantical descriptions using two low-
level semantical abstractions. This paper presents some
indications as to how we can resolve the situation in
order to effectively specify the semantics as modularly
composable extensions.

ACKNOWLEDGMENTS

The authors would like to thank Johan Fabry for his
comments on this work.

4. The host language is the language that executes the interpreter.



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH SMALL FUNCTIONAL LANGUAGES 5

REFERENCES
[CD08] Thomas Cleenewerck and Theo D’Hondt. Modularizing

Invasive Aspect Languages. In DSAL ’08: Proceedings of
the 3rd Workshop on Domain-specific Aspect Languages, New
York, NY, USA, 2008. ACM.

[Cle07] Thomas Cleenewerck. Modularizing Language Constructs: A
Reflective Approach. PhD thesis, Vrije Universiteit Brussel,
2007.

[Cza98] Krzysztof Czarnecki. Generative Programming: Principles
and Techniques of Software Engineering Based on Automated
Configuration and Fragment-Based Component Models. PhD
thesis, Technical University of Ilmenau, 1998.

[GB03] Kris Gybels and Johan Brichau. Arranging language fea-
tures for more robust pattern-based crosscuts. In AOSD
’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 60–69, New York, NY,
USA, 2003. ACM Press.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasi-
bility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[Kri97] Shriram Krishnamurthi. Programming Languages: Appli-
cation and Interpretation. Computer Science Department,
Brown University, Providence, USA, 1997.

[PBvdL05] K. Pohl, G. Böckle, and F. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.


