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Abstract. Feature-oriented programming (FOP) is the research domain
that targets the encapsulation of software building blocks as features,
which better match the specification of requirements. Recently, we pro-
posed change-oriented programming, in which features are seen as sets of
changes that can be applied to a base program, as an approach to FOP.
In order to express features as sets of changes, those changes need to be
classified in different sets that each represent a separate feature. Several
classification strategies are conceivable. In this paper we identify three
kinds of classification strategies that can be used to group the change
objects. We compare them with respect to a number of criteria that
emerged from our practical experience.

1 Introduction

Feature-oriented programming (FOP) is the study of feature modularity, where
features are raised to first-class entities [1]. In FOP, features are basic building
blocks, which satisfy intuitive user-formulated requirements on the software sys-
tem. A software product is built by composing features. Recently, we proposed
a bottom-up approach to FOP which consists of three phases [2, 3]. First, the
change operations have to be captured into first-class entities. Second, those
entities have to be classified in features (= separate change sets that each im-
plement one functionality). Finally, those feature modules can be recomposed in
order to form software variations that provide different functionalities.

In previous work, we already elaborated on two techniques to capture change
objects. A classic way is to take two finished versions of a software system and
to execute a Unix diff command on their respective abstract syntax trees [4],
revealing the changes. This approach, however, only works a posteriori, and at
a high level of granularity (the version level). A more subtle alternative is to
log the developer’s actions as he is performing the changes. The latter approach
is based on change-oriented programming (ChOP) and was proven to provide a
more complete overview of the history of development actions [5].

In this paper, we focus on the classification of changes into features. Classifi-
cation has two aspects: the classification model and the classification technique,
which is embodied by the different software classification strategies.
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2 Classification model

The classification model is a metamodel that consists of two parts: the change
model and the actual classification model. Each part focuses on another level of
granularity. The change model describes how the changes are modeled. Figure 1
shows that the change model separates between four kinds of changes, which
can be composed. Atomic changes have a subject: the program building block
affected by the change and defined by the Famix metamodel [6].
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Fig. 1. Change Model

The actual classification model defines and describes the entities of the su-
perstructure which is a flexible organisational structure based on feature and
change objects. Figure 2 shows that the model contains three relations: D (the
structural dependencies between the change objects), CF4 (which changes are
grouped together into which feature) and Sub (which features are contained
within another feature). The cardinality of CF4 and Sub specifies whether or
not the sons (changes and/or features) have to be included in a composition
that includes the parent (a feature). This information can afterwards be used to
validate feature compositions (as in Feature Diagrams [7]).
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Fig. 2. Classification Model

3 Classification techniques

A classification strategy is a method for setting up classifications. Many classifi-
cation strategies can be devised ranging from setting up classifications manually
to generating classifications automatically. We present three classification strate-
gies: manual classification, semi-autmatic classification through clustering and
automatic classification through forward tagging.
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3.1 Manual classification

Manual classification is the simplest classification strategy: manually putting
change objects in features. The strategy can be used by the software engineer to
group changes according to his wishes. Since our classification model states that
a change can only be classified in one feature, this strategy should be supported
by a tool which enforces that rule.

The advantages of this strategy are twofold. First, it is a very straightforward
technique which can easily be implemented. Second, it can be applied on change
objects that were obtained both with a diff and logging strategy. The main
disadvantage is the tediousness that comes with the manual effort of this strategy.

3.2 Semi-automatic classification

Change objects contain information about by whom, when, why and where the
operations they reify were carried out. Using clustering techniques [8] based on
metrics on these properties, change objects can be grouped. This classification is
basically a manual classification strategy. Based on the the clusters of changes,
the developer decides on how the changes must be classified.

The main advantage of this strategy is that it can be used to assist the devel-
oper doing a manual strategy. The disadvantages of this strategy are threefold.
First, it is more difficult to implement (clustering should be supported). Second,
different parameters in the metrics might give different clustering results. Extra
research is required to find adequate parameters. Third, this success of this strat-
egy depends on the amount of information available in the change objects and is
consequently not recommended to be used in combination with a diff strategy.

3.3 Automatic classification

In many cases, a manual classification strategy is not a feasible option. For
large software systems it would take a long time to classify all classes by hand.
Often classification of a software system is an activity that cannot be done by
one software engineer alone since one software engineer seldom knows the whole
system. When manual classification is not a valid option for the classification
problem at hand automatic classification may provide a solution.

The idea behind automatic classification is that when software engineers
carry out a development operation, for example implementing a new or changed
specification or fixing a bug, they usually know the context in which changes
are made. Moreover, the IDE knows the exact time and in what part of the
software, the operation is performed. In stead of keeping this knowledge implicit
in the heads of the developers, it is tagged into the changes partially by the
developer and partially by the IDE. Afterwards, these tags can be processed
automatically to generate tag-based classifications. Since software engineers are
usually lazy when source code documentation is concerned, relying on discipline
is not realistic. It is up to the IDE to make sure that classification knowledge
about the software is recorded.

Advantages of this approach are that it can be used on the biggest of systems
as it does not require manual labour, and that it is relatively easy to implement.
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The sole inconvenience is that it can only be used in combination with a logging
strategy, which enforces developers to do forward tagging.

4 Conclusion

We introduced a model and three strategies to classify changes and/or features
in sets that represent features. The model consists of two parts which respec-
tively model the change objects and the actual classification. The first strategy is
straightforward: manual classification is a strategy to put together classifications
manually. Semi-automatic classification is based on clustering changes together
based on properties such as by whom, when, why and where the changes were
applied. Automatic classification is based on forward tagging, and automatically
groups changes together. Our findings are summarised as follows:

Manual Semi-Auto Automatic
Capturing Changes diff, logging logging logging
Amount of manual labour high average low
Error probability high high low

Only the automatic strategy is usable in a context of large-scale software
systems. As that strategy requires logging as a technique to capture changes,
we conclude that the development environment should support logging and en-
force forward tagging, so that the changes can automatically be classified in
recomposable feature modules.
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