
Reactive Queries in Mobile Ad Hoc Networks

Andoni Lombide
Carreton

∗

alombide@vub.ac.be

Tom Van Cutsem
†

tvcutsem@vub.ac.be
Wolfgang De Meuter

wdmeuter@vub.ac.be

Programming Technology Lab
Department of Computer Science
Vrije Universiteit Brussel, Belgium

ABSTRACT
Pervasive computing in mobile ad hoc networks requires that
applications query their network environment for services
and react to a plethora of events fired by other devices in
that network responding to such queries. Current context-
aware and event-driven architectures require the program-
mer to react to these events via a carefully crafted network of
observers and event handlers, while inherently introducing
complex concurrency issues. This paper proposes the inte-
gration of two techniques to solve these problems: ambient
references and reactive programming. Ambient references
are object-oriented communication abstractions that repre-
sent nearby remote objects in the mobile network and that
make it possible to generate the events mentioned above.
The reactive programming paradigm provides an abstrac-
tion over events such that the application can be written
in a conventional programming style with explicit control
flow.

Categories and Subject Descriptors
D1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms
Design, Languages

Keywords
AmbientTalk, mobile ad hoc networks, event-driven pro-
gramming, reactive programming

∗Funded by a doctoral scholarship of the “Institute for the
Promotion of Innovation through Science and Technology in
Flanders” (IWT Vlaanderen).
†Postdoctoral Fellow of the Research Foundation - Flanders
(FWO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC’08, December 1-5, 2008 Leuven, Belgium
Copyright 2008 ACM 978-1-60558-364-8/08/12 ...$5.00.

1. INTRODUCTION
Because of the constant evolution of computing hardware,

mobile computing devices with networking capabilities are
becoming increasingly cheap, small and energy efficient. To
reap the benefits of the resulting mobile networks, appli-
cations must be able to query their network environment
for services and respond to changes in that environment
in a timely fashion. State of the art context-aware ap-
plications are often conceived as event-driven architectures
which consume events fired by a context-aware middleware
framework. The events represent significant context changes
which should percolate through the entire application, re-
quiring a carefully crafted network of observers combined
with complex synchronization code to deal with the inher-
ent concurrency issues. By using these classic event-driven
or publish/subscribe approaches, the application logic has
to be scattered across event handlers which can be indepen-
dently triggered at any point in time. The result is that the
control flow of the application becomes very implicit in the
source code.

When we look at the querying for services in mobile ad
hoc networks, there are three types of network events that
are of interest:

• The discovery of new services,

• the disappearance of services,

• the reception of replies resulting from a query over the
network.

In this paper, we propose the integration of two mechanisms
to allow applications that have to deal with these events to
be written in a conventional programming style instead of
an event-driven style. We will integrate them in the dis-
tributed, object-oriented language AmbientTalk, which is
explained in section 2. The first mechanism consists of am-
bient references. Ambient references allow the broadcasting
of messages to parts of the network represented as objects
of a certain interface. Ambient references allow us to gen-
erate the three types of events mentioned above. They are
discussed in section 3. In section 4, we show how we use
the Reactive Programming facilities of AmbientTalk to hide
the explicit events from the programmer and let the inter-
preter take care of the signalling of and reacting to these
events. Reactive programming and the integration with am-
bient references is explained in section 5. In section 6 the
limitations and assumptions of our implementation are dis-
cussed. Section 7 is our position statement and the last
section concludes this paper.

13

2. AMBIENTTALK
AmbientTalk [11, 10] is a distributed programming lan-

guage embedded in Java1. The language is designed as a
distributed scripting language that can be used to compose
Java components which are distributed across a mobile ad
hoc network. The language is developed on top of the J2ME
platform and runs on handheld devices such as smart phones
and PDAs. Even though AmbientTalk is embedded in Java,
it is a separate programming language. The embedding en-
sures that AmbientTalk applications can access Java objects
running in the same JVM. These Java objects can also call
back on AmbientTalk objects as if these were plain Java
objects.

The most important difference between AmbientTalk and
Java is the way in which they deal with concurrency and
network programming. Java is multithreaded, and provides
either a low-level socket API or a high-level RPC API (i.e.
Java RMI) to enable distributed computing. In contrast,
AmbientTalk is a fully event-driven programming language.
It provides only event loop concurrency [6] and distributed
objects communicate by means of asynchronous message
passing. Event loops deal with concurrency similar to GUI
frameworks (e.g. Java AWT or Swing): all concurrent activ-
ities are represented as events which are handled sequentially
by an event loop thread.

AmbientTalk is designed particularly for ad hoc networks:

1. In an ad hoc network, objects must be able to dis-
cover one another without any infrastructure (such as
a shared naming registry). Therefore, AmbientTalk
has a service discovery engine that allows objects to
discover one another in a peer-to-peer manner. Java
interfaces act as the common pieces of information by
means of which objects are discovered.

2. In an ad hoc network, objects may frequently dis-
connect and reconnect because of network partitions.
Therefore, AmbientTalk provides fault-tolerant asyn-
chronous message passing between objects: if a mes-
sage is sent to a disconnected object, the message is
buffered and resent later, when the object becomes
reconnected. Other advantages of asynchronous mes-
sage passing over standard RPC is that the asynchrony
hides latency and that it keeps the application respon-
sive (i.e. the event loop is not blocked during remote
communication and is free to process other events).

The following code snippet illustrates how AmbientTalk
can be used to discover a WeatherService component in the
ad hoc network. Once discovered, the component is sent a
message to retrieve the current weather.

when: WeatherService discovered: { |weatherSvc|
when: weatherSvc<−getWeather(”Leuven”) becomes: { |info|

// update weather information in the user interface
}
}

The above code consists of two event handlers. The first
event handler, declared by means of the when:discovered:

control structure, is invoked when the language runtime
discovers a WeatherService component. Here, WeatherService

refers to a Java interface. The discovered object is accessi-
ble via the weatherSvc variable, which denotes a remote Am-

1The language is available at prog.vub.ac.be/amop

bientTalk object that wraps a Java component implement-
ing the weather service. The syntax obj<−msg() denotes an
asynchronous message send and represents a remote query.

When the query message is received by the remote weatherSvc

object, that object’s getWeather method is invoked. The re-
turn value of this method is used as the reply to the query.
This reply is signalled asynchronously to the caller. The
when:becomes: control structure is used to install an event
handler that can process this reply. The return value is
passed to this event handler (cf. the info variable in the
example).

As can be seen from the above example, service discovery
and replies of remote queries are represented in AmbientTalk
as events that trigger the appropriate event handlers. While
in this simple example the control flow remains apparent
enough to understand, the control flow of large-scale event-
driven applications can quickly become puzzling. In the fol-
lowing section, we show how the events of discovering new
and detecting lost services can be made implicit, by means
of what we call ambient references.

3. AMBIENT REFERENCES
When writing AmbientTalk code to query nearby services

for data (e.g. all nearby temperature sensors in a wireless
sensor network) using the language features discussed in the
previous section, one often writes a recurring pattern of code
to deal with the discovery and loss of nearby services while
a query is executing, and to deal with gathering the replies
from all respondent services. To ease the writing of multicast
queries in AmbientTalk, we have introduced a novel data
type in AmbientTalk, named ambient references [9].

Ambient references represent a collection of nearby ser-
vices of the same type. This collection is constantly kept
up-to-date with the proximate physical environment: newly
discovered services are added to the collection, while unre-
sponsive services are removed from it. This synchronisation
with the environment must no longer be done manually by
the programmer, but is instead done by the ambient refer-
ence itself.

Sending a message to an ambient reference causes this
message to be multicast to all services in the collection. A
message can also be annotated with an expiration period
(in milliseconds). If a message has an expiration period,
it will not only be multicast to all services in the ambient
reference’s collection at the time the message is sent, but
also to any services discovered at a later point in time, until
its expiration period has elapsed. Consider the following
example query:

def sensors := ambient: TemperatureSensor;
whenAll: sensors<−getTemp()@Expires(5∗1000) resolved: {
|temperatures|
// process the sensed temperature values
}

The keyword ambient: allows one to create an ambient ref-
erence given a Java interface. The variable sensors contains
an ambient reference that refers to all nearby TemperatureSensor

services. The message getTemp() is asynchronously multicast
to these services with an expiration period of 5 seconds. This
implies that the message may be received by all proximate
sensors at the time it is sent, as well as to all additional
sensors discovered within the next 5 seconds.

The whenAll:becomes: control structure allows the pro-
grammer to install an event handler that can be used to

14

gather the results of the query. Within this event handler,
temperatures refers to an array containing the readouts of the
sensors that replied. The event handler is triggered when
the message’s expiration period has elapsed. Ambient ref-
erences support only weak delivery guarantees: some sen-
sors may not have received the getTemp() message, and some
replies to the message may have gotten lost or may arrive
too late, in which case they are discarded.

The above example shows how ambient references relieve
the programmer from having to deal explicitly with the
events of discovery and loss of nearby services: ambient ref-
erences transform these events into additions to or removals
from their encapsulated collection. However, the program-
mer must still deal with the replies to the query in an event-
driven manner by means of the whenAll:becomes: control
structure. In the following section, we show how this event
handler too can become implicit in the code, by means of
reactive programming techniques.

4. REACTIVE PROGRAMMING
IN AMBIENTTALK

The AmbientTalk interpreter was recently extended with
reactive programming mechanisms to be able to write per-
vasive, context-aware applications more easily [7]. Reactive
programming is a programming paradigm employed for var-
ious purposes such as animation [4], real time systems [12]
and robotics [8], and can be introduced in existing languages
such as Java [3]. A reactive system is built around the notion
of time-varying values (called dataflows or signals). Changes
to the values of these signals are automatically propagated
to a network of dependent computations. Reactive programs
construct this network either by explicitly wiring signals, or
implicitly by calling functions or methods that take signals
rather than ordinary values as arguments. Such functions
or methods are named lifted functions or methods [2].

Whether one can apply a lifted function on a signal de-
pends on whether the signal is continuous, i.e. whether it
has a value at each point in time. Continuous signals (called
behaviors) form the crux of the reactive programming model:
by applying lifted functions on them, a dependent behavior
is constructed transparently. Subsequent changes of the be-
haviors that were passed as arguments to the lifted function
will be propagated transparently to the dependent behavior,
allowing its value to be recomputed.

Signals which only carry events at discrete points in time
are called event sources. Event sources provide a natural
mechanism to interact with the real world, where events
can be generated by input/output devices such as mice or
keyboards.

Consider the following AmbientTalk code:

def minutes := seconds / 60;

system.println(minutes);

Assume that seconds is a behavior that is incremented by 1
every second. A new behavior minutes is implicitly created by
passing seconds to the integer division function. Behind the
scenes, a dependent computation is scheduled by the inter-
preter that will be re-executed every time seconds is updated.
Finally, the minutes behavior is passed to the system.println

function, adding another dependency to the dataflow graph.
The result is that system.println will be recalled each time
minutes signals an update, printing the new value on the

screen every minute. Using this mechanism, one can con-
struct an application that reacts to changes while preserv-
ing a conventional programming style instead of requiring
the adoption of an event-driven style.

5. REACTIVE PROGRAMMING WITH
AMBIENT REFERENCES

As discussed in section 3, using ambient references, event
handlers must be used to collect the results of a broadcasted
message due to the asynchronous execution of that message.
The problem with using explicit event handlers is that the
control flow of the application becomes much more implicit.
In the literature, this phenomenon is also known as “inver-
sion of control” [5]. Control flow is inverted because it is
steered by an event loop, which lies outside of the control of
the application itself. Also, because every event requires a
separate event handler, control flow is often scattered across
multiple event handlers. The order in which these handlers
are triggered is not known. Finally, event-driven code is
not modular: if a module’s interface is event-driven, it often
forces its client modules to have an event-driven interface as
well. We will illustrate these difficulties by example in the
following section.

5.1 Example: Ubiquitous Shopping Cart
Consider the following ubiquitous computing application.

We assume a futuristic supermarket where all products on
the shelves are RFID-tagged. The customers’ shopping carts
are equipped with an RFID-reader and a small computer
screen. This screen is used to show, among others, the list
of products in the customer’s cart and e.g. the total price
of all items in the cart (assuming that the RFID tag of the
product contains a.o. its price). We assume that the screen
updates this information once every three seconds.

In AmbientTalk, we can model the nearby RFID-tagged
products as remote objects (we assume that products are
simple local proxy objects whose attributes are constructed
by physically reading the tag). As such, we can model all
nearby products by means of an ambient reference. Part
of the application running on the customer’s shopping cart
could then look as follows:

def priceModel := createPriceModel(); // create a new model
def pricelistView := createPriceListView();
def statisticsView := createStatisticsView ();
// register views with model
priceModel.addView(pricelistView);
priceModel.addView(statisticsView);

We assume a typical model-view-controller architecture [1]
in which the continuously updated prices of nearby products
are represented as a model, and the two graphical user inter-
face views are registered as views observing this model. Note
that we want to maintain a separation of concerns between
the views on the model and the model itself. In other words,
the model should not know which views are registered on it.
To this end, the PriceModel provides the following method to
keep track of the views on itself in a views collection:

def addView(view) { views.add(view) };

By using a collection to store its views, the model does
not have to know which views are actually registered on
it. Within the PriceModel, the price of nearby products is
queried periodically by means of an ambient reference:

15

// Assume that Product is a Java interface.
def products := ambient: Product;

def REFRESH RATE := 3∗1000; // in milliseconds

whenever: REFRESH RATE elapsed: {
whenAll: products<−getPrice()@Expires(REFRESH RATE)
resolved: { |prices |

views.each: { |view| view.update(prices) };
}
}

In AmbientTalk, the whenever:elapsed: control structure
can be used to execute a block of code at regular time in-
tervals. Here, we use this control structure to repeatedly
(i.e. every 3 seconds) query the price of nearby products
by sending the getPrice() message to the ambient reference.
Note that the dependent UI views are manually updated
whenever all replies to a query have been gathered (the ex-
pression views.each: is used to iterate over all registered views
of the model). This is done inside of a whenAll:resolved:

event handler because the getPrice() message is broadcasted
asynchronously to all products in range and, as mentioned
in section 2, does not return a result. Instead, to be able to
process the results of the query, one should explicitly regis-
ter an event handler that is triggered by the expiration of
the query. In response to the update message, the price list
view can update its displayed list of prices, and the statistics
view can recompute e.g. the total price of products in the
shopping cart.

The control flow of the example application is determined
by three kinds of event handlers:

1. the whenever:elapsed: control structure repeatedly re-
acts to the fact that 3 seconds have elapsed and in
response performs the remote query,

2. the whenAll:resolved: control structure reacts to the
fact that the query’s expiration period has ended, and
in response updates the UI views,

3. the UI views react to this update (via their update

methods) and in response redraw their UI.

As such, the application suffers from an inversion of con-
trol. For example, the updating of the views by the model
happens only implicitly from the point of view of the first
code snippet. Neither is it apparent from that code which
view is updated first. In this particular application, the or-
der in which views are updated is not so important, but in
general this could become a problem when considering side-
effects. Finally, the fact that the result of a query is updated
asynchronously forces the application to use a Model-View-
Controller pattern where the dependencies between model
and views have to be manually encoded. In the code, the
model is responsible for explicitly updating its dependent
views. In the following section, we show how these depen-
dencies can be managed automatically by the interpreter by
making use of reactive programming techniques.

5.2 Reactive Queries
We now show how the result of queries can be made re-

active by integrating ambient references with the reactive
programming language facilities of AmbientTalk. Using re-
active queries, the shopping cart application looks as follows:

def products := ambient: Product;

def pricelistView := createPriceListView();
def statisticsView := createStatisticsView ();
def REFRESH RATE := 3∗1000; // in milliseconds

def prices := products<−getPrice()@Refresh(REFRESH RATE);

pricelistView .update(prices);
statisticsView .update(prices);

Note that the broadcasted getPrice() message is now an-
notated with @Refresh rather than @Expires. The vari-
able prices which contains the result of the getPrice query
is now a behavior which initially denotes an empty array.
The @Refresh annotation also causes the getPrice() message
to be broadcasted repeatedly every 3 seconds to all nearby
products. This causes the prices behavior to denote a new
array of updated values every 3 seconds. Since prices is a
behavior, it can be passed on to other functions or methods
as a normal value. In the last two lines of code of the above
code snippet, the views are explicitly updated with the prices

behavior which creates a dataflow dependency between the
behavior and the UI views. This means that whenever the
prices array is recomputed, the update methods of the views
are implicitly called as well.

One advantage of reactive queries is that the application
is no longer forced to use an explicit Model-View-Controller
pattern. The task of a Model to update its dependent Views
is now replaced by the implicit dataflow dependencies on
behaviors. As a result, the above code no longer needs to
explicitly update the views every time a new query result
is computed. This is because the dataflow dependencies are
immediately created in the initialization code of the views by
passing a behavior to the update methods of the views. This
causes the interpreter to handle the updating process by re-
acting to the underlying events and invoking the dependent
functions and methods, instead of requiring a Model abstrac-
tion for this purpose. Using reactive queries, there is no in-
version of control: there is one dominant control flow which
establishes dataflow dependencies by creating and passing
behaviors. Also, note that the order in which the views are
updated is immediately apparent from the code.

To conclude, integrating ambient references with reactive
programming allows the results of queries over the network
to be collected into a behavior that is automatically synchro-
nized with the environment. Ambient references provide an
abstraction over the events of appearance and disappearance
of services in the network, while the reactive programming
system provides an abstraction over the events generated by
the reception of results of asynchronous queries.

5.3 Implementation
There is a working implementation available of the con-

structs proposed in this paper2. In this section, we discuss
some of the features and technical aspects that may be rel-
evant when using the system.

5.3.1 Handle interface
When broadcasting a message using an ambient reference,

the programmer can specify to get a so-called handle object
as the return value, rather than a behavior. A handle object
offers a richer interface to manage the executing query and
the event processing by the reactive programming system.

2The virtual machine with the required libraries can
be downloaded here: http://prog.vub.ac.be/~alombide/
AT2-Reactive.zip

16

It provides a cancel method to cancel the repeated broad-
casting of the message. This can be used to control the
broadcasting behavior of the ambient reference (e.g. stop
broadcasting when the battery power of the host device is
low). Furthermore, handles provide a snapshot method that
returns a collection of results that is a snapshot of the query,
i.e. a static collection that is not updated automatically.
Finally, one can access a special type of value (called a fu-
ture) on which event handlers can be manually registered to
gather the return values of broadcasted messages.

5.3.2 Reactive Programming Interface
In AmbientTalk, a behavior can be created from an event

source. Event sources represent streams of discrete events
over time. An event source can be created as follows:

def [eventSource, notifier] := makeEventSource();

makeEventSource() returns an array of two objects: the eventSource

object is the event source itself and the notifier object is a
special object that can be used to push new events on the
event source. This is done as follows:

notifier <−notify(newValue);

Finally, the hold: primitive can be used to convert an event
source to a behavior. At any point in time, the value of
the behavior is the last value on its associated event source
stream.

5.3.3 Implementing Reactive Queries
We now describe how the behavior returned by an ambi-

ent reference is implemented in terms of the reactive pro-
gramming interface discussed in the previous section. The
code excerpt below is part of the implementation of reactive
ambient references.

def [theResultsEventSource, theNotifier] := makeEventSource();
def theBehavior := hold: theResultsEventSource;

def createResultsBehavior() {
def registerNextObserver() {

whenAll: handle.future resolved: { |returnValues|
theNotifier<−notify(returnValues);
// register observer for the next iteration of the query
registerNextObserver();
};
};
registerNextObserver();
theBehavior;
};

In the underlying implementation, a whenAll:resolved: event
handler (as used in the first example in section 5) is repeat-
edly installed on the future of the broadcasted message. In
this event handler, the notify method of the notifier object
associated with the event source is called with the received
results of the broadcasted message. This causes the behavior
(and any depedent computations) to be updated.

6. LIMITATIONS
In this section, we discuss the limitations of our imple-

mentation and the assumptions on which it relies. First of
all, the system was not designed to respond in real-time to
events. This becomes apparent when a large expiration pe-
riod for a query is used: there is no possibility to react to
individual events before the expiration period has elapsed.
It is the programmer who has to strike the balance between

giving the query enough time to gather the results and re-
freshing the results quickly enough to keep the application
responsive. Related to this issue is the fact that on devices
powered by batteries, the continuous broadcasting of mes-
sages may be too power hungry in situations where frequent
querying of the environment is necessary.

Furthermore, a few assumptions have been made with re-
gard to deployment. Services for instance, must be explicitly
exported as AmbientTalk objects. For this, we assume an
AmbientTalk virtual machine (on top of a Java virtual ma-
chine) on each device. Of course, this is a relatively heavy-
weight setup. In applications making use of RFID technol-
ogy, such as the example of the ubiquitous shopping cart
discussed in section 5.1, one cannot assume that there is
an AmbientTalk virtual machine running on each RFID tag
which is able to respond to messages received by other de-
vices. For applications like this, we use an intermediary
device (a regular PC equipped with an RFID reader in our
case) that scans the RFID tags and returns proxy objects
that represent the scanned tags in response to queries.

Finally, the naming and discovery of services happens via
Java interfaces. We make the underlying assumption that
the name of such Java interfaces represents a unique service
and is known by all participating services. This discovery
mechanism also does not take versioning into account ex-
plicitly. For example, if the WeatherService from the exam-
ple in section 2 is updated, older clients may discover the
updated service, and clients that want to use only the up-
dated service may still discover older versions. Clients and
services are thus themselves responsible to check versioning
constraints.

7. POSITION STATEMENT
Pervasive applications in mobile ad hoc networks require

the frequent querying of the network environment for nearby
services. The result is that nearby devices generate events,
more specifically the appearance and disappearance of ser-
vices and their responses to the queries, that are deliv-
ered to the application at any point in time. These queries
must somehow be launched by the application and the asyn-
chronous replies have to be somehow gathered and be acted
upon. This calls for an event-driven architecture. State of
the art event-driven middleware allows the application pro-
grammer to specify how to react to these events, but in doing
so requires that the whole application is structured around
event handlers causing an inversion of the control flow.

Our position is that we want to keep the event-driven na-
ture of the middleware and the applications built on top,
but to change the interface between both by replacing an
interface based on event handlers with one based on reac-
tive programming (behaviors). As a result, we can keep
the responsiveness of a traditional event-driven system while
avoiding the detrimental effects of inversion of control. In
other words, reactive programming acts as a layer of ab-
straction over the bare events generated by the middleware
allowing the control flow of applications to remain explicit.

8. CONCLUSION
We have shown that ambient references, which are exist-

ing abstractions in the AmbientTalk language, provide an
object-oriented representation of parts of the network and
provide a means to launch queries over these parts of the

17

network by broadcasting asynchronous messages to groups
of remote objects. Ambient references handle the appear-
ance and disappearance of remote services in the network
transparently, but still require the programmer to manually
implement event handlers for processing the asynchronous
replies.

Reactive programming is a known programming paradigm
supported by the AmbientTalk language that allows to ex-
press programs that have to deal with external events using
a conventional programming style (i.e. with an explicit con-
trol flow managed by the interpreter). In this paper we have
shown how ambient references and reactive programming
can be unified, such that applications having to query the
network using asynchronous communication can be imple-
mented in a reactive programming style with explicit control
flow, as opposed to an event-driven style where control is in-
verted. The advantage of reactive queries is that they keep
the responsiveness of a purely event-driven approach while
preventing an inversion of control of their client code.

9. REFERENCES
[1] S. Burbeck. Application programming in smalltalk-80:

How to use model-view-controller (MVC). University
of Illinois in Urbana-Champaign (UIUC) Smalltalk
Archive. Available at: http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

[2] G. H. Cooper and S. Krishnamurthi. Embedding
dynamic dataflow in a call-by-value language. In
P. Sestoft, editor, ESOP, volume 3924 of Lecture Notes
in Computer Science, pages 294–308. Springer, 2006.

[3] A. Courtney. Frappé: Functional reactive
programming in Java. In Third International
Symposium on Pratical Aspects of Declarative
Languages (PADL), March 2001.

[4] C. Elliott and P. Hudak. Functional reactive
animation. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP ’97), volume 32(8), pages 263–273, 1997.

[5] P. Haller and M. Odersky. Event-based programming
without inversion of control. In Proc. Joint Modular
Languages Conference, volume 4228 of Lecture Notes
in Computer Science, pages 4–22. Springer, 2006.

[6] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan
coordination. In R. D. Nicola and D. Sangiorgi,
editors, Symposium on Trustworthy Global Computing,
volume 3705 of LNCS, pages 195–229. Springer, April
2005.

[7] S. Mostinckx, A. Lombide Carreton, and W. De
Meuter. Reactive context-aware programming. In
Workshop on Context-Aware Adaptation Mechanisms
for Pervasive and Ubiquitous Services (CAMPUS
2008), volume 10 of Electronic Communications of the
EASST. DisCoTec, June 2008.

[8] J. Peterson, P. Hudak, and C. Elliott. Lambda in
motion: Controlling robots with haskell. In First
International Workshop on Practical Aspects of‘
Declarative Languages (PADL), January 1999.

[9] T. Van Cutsem. Ambient References: Object
Designation in Mobile Ad Hoc Networks. PhD thesis,
Vrije Universiteit Brussel, Faculty of Sciences,
Programming Technology Lab, May 2008.

[10] T. Van Cutsem, S. Mostinckx, and W. De Meuter.
Linguistic symbiosis between event loop actors and
threads. Computer Languages Systems & Structures,
2008. To appear.

[11] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk:
object-oriented event-driven programming in mobile
ad hoc networks. In Proceedings of the XXVI
International Conference of the Chilean Computer
Science Society (SCCC 2007), pages 3–12. IEEE
Computer Society, 2007.

[12] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In
International Conference on Functional Programming
(ICFP’01), 2001.

18

