
Cognac: a framework for documenting and verifying the design of Cobol systems

Andy Kellens
Vrije Universiteit Brussel

akellens@vub.ac.be

Kris De Schutter
Vrije Universiteit Brussel

kdeschut@vub.ac.be

Theo D’Hondt
Vrije Universiteit Brussel

tjdhondt@vub.ac.be

Luc Jorissen
inno.com

Luc.Jorissen@inno.com

Bart Van Passel
inno.com

Bart.VanPassel@inno.com

Abstract

For any non-trivial software project, architectural drift
is a well-known problem. Over time, the design rules and
guidelines governing the software project are no longer
obeyed, resulting in that the software becomes more diffi-
cult to maintain. While there exist numerous tools — such as
code checkers, architecture and design checkers, and source
code query languages — that aid in alleviating this prob-
lem none of these approaches are tailored towards support-
ing one of the main languages still in use today in industry,
namely Cobol. In this paper we present Cognac, an exten-
sion of the IntensiVE tool that allows for documenting and
verifying design rules in Cobol systems. Next to discussing
the architecture of Cognac, we present a validation of our
tool on an industrial, large-scale Cobol system.

1. Introduction

An intrinsic property of large-scale software systems is
that they are intended to be used and maintained over a long
period of time. One of the key factors that influences the
maintainability of such systems is whether or not develop-
ers respect the rules and guidelines that are imposed by the
system’s design and architecture. Such design rules, which
can range from simple naming conventions over the use of
particular idioms to a description of how the different mod-
ules of the system work together, aid in ensuring the correct
functioning of the system as well as making the system’s
implementation consistent and easier to understand.

Unfortunately, these design rules are often only de-
scribed in an informal, implicit way by means of, for ex-
ample, UML diagrams, architectural description languages
or natural language. Moreover, the task of manually ensur-
ing that the design rules are obeyed in the source code is
tedious and time consuming. Due to the lack of of auto-

mated support, it is not guaranteed that during development
and maintenance of the system the design rules in the source
code are not violated. Over time this can lead to source code
that becomes more difficult to comprehend and that gradu-
ally deviates from the original design and architecture, thus
hampering the maintainability of the system.

Testimony to this problem is the large amount of effort
(both in industry and academia) that has been invested in
creating tools that aid developers in verifying the source
code of a system either to a set of common rules and bad
smells (e.g. Lint [9], CheckStyle [1]) or that allow for
the verification of a description of (part of) the design of
a system with respect to the implementation (e.g. Reflex-
ion Models [19], Ptidej [6], FEAT [20]). While these tools
alleviate the above problem, they are mostly targeted to
modern-day object-oriented languages such as Java. As
such, they neglect a large segment of systems written in
languages such as Cobol. Especially since a large portion
of the systems in use and maintained today in a business
setting are still written in Cobol (and even new systems are
developed in this language), support for verifying and main-
taining the design of such systems with respect to the source
code is necessary.

In this paper we present Cognac, a framework for doc-
umenting design rules in Cobol programs and for verifying
the validity of these design rules with respect to the actual
source code of the Cobol programs. Cognac is based on
our previous work on declarative meta programming and is
implemented as an extension to the Soul language [23] and
our IntensiVE tool suite [13]. Cognac provides more than a
mere extension of our tools for the Cobol language, taking
some peculiarities of the language and the kinds of systems
that are reasoned over into account as well. As a validation,
we demonstrate the applicability of our approach by doc-
umenting a number of design rules taken from a real-life,
industrial Cobol application.



2. IntensiVE

We start this paper by describing IntensiVE, which
Cognac is an extension of. IntensiVE1 is a tool suite, written
in VisualWorks Smalltalk, that offers software developers a
general framework for documenting and verifying design
rules. To this end, IntensiVE proposes to group together
source-code entities (such as classes, methods, functions,
programs, and so on) that, according to a particular prop-
erty, belong together in a so-called intensional view. For
example, if we document particular design rules in an OO
system concerning “getter” methods, we would create an
intensional view that contains all getter methods in the sys-
tem. Rather than specifying this set by means of enumerat-
ing its elements, an intensional view is defined by means of
an intension. An intension is an executable meta program
that, upon evaluation, yields a set of tuples representing the
source-code entities belonging to the intensional view. For
example, one possible intension for the intensional view
that groups all getter methods in a Java program is:

1 ?class isClassDeclaration,
?class definesMethod: ?method,

3 ?method methodDeclarationHasName: {get*}

In order to express intensions, the IntensiVE tool uses the
Soul language. Soul is a logic programming language in-
spired by Prolog, using a Smalltalk-like keyword-based
syntax. Soul is complemented with a number of libraries
offering predicates that make it possible to reason over
Smalltalk and Java programs. The above intension consists
of three logic conditions. The first condition binds the logic
variable ?class2 to all classes in the system. In condition
2, the variable ?method is bound to all methods imple-
mented by the class bound to the variable class. The third
condition restricts the bindings of the ?method variable to
those methods whose name starts with the prefix “get”. This
intension will thus group all getter methods in the system
into an intensional view based on the naming convention
that all such methods must start with “get”.

Aside from the concept of intensional views, IntensiVE
makes it possible to impose verifiable constraints over in-
tensional views. In its current incarnation the model offers
two types of constraints: multiple alternative intensions for
a particular intensional view, and intensional constraints.
The idea of multiple alternatives is based upon the obser-
vation that the entities belonging to an intensional view
can often be described by multiple, equivalent intensions.
The concept of a getter method is not only — as illustrated
above — defined as all the methods starting with the prefix
“get”, but can also be defined as the set of all methods that
return the value for a field. We could write this down using
the following intension:

1http://www.intensive.be
2Note that variables in Soul are indicated with a question mark.

1 ?class isClassDeclaration,
?class definesMethod: ?method,

3 ?field isFieldInClass: ?class,
?method methodReturns: ?field

When specifying multiple, alternative intensions for the
same intensional view, the constraint lies in the fact that,
upon evaluation, all intensions should yield the exact same
set of source-code entities. If in the above example for in-
stance a method would exist that returns the value of a field,
but that does not start with the prefix “get”, it will be consid-
ered a violation of the constraint. Conversely, any method
named “get” that does not return the value of a field will
also be considered a violation of the constraint.

Furthermore, intensional relations can be used for im-
posing a constraint over the elements belonging to one in-
tensional view (so-called unary relations), or between the
elements of two intensional views (binary intensional re-
lations). For example, suppose we want to document the
relation that all methods that change the state in the sys-
tem should contain an invocation to the persistence mech-
anism. After having created two intensional views respec-
tively grouping all state changing methods and all methods
implementing the persistence mechanism, the above design
dependency can be expressed using the following binary in-
tensional relation:
∀ ?statechange ∈ State Changing :

∃ ?persistence ∈ Persistence :

?statechange.method methodCalls:

?persistence.method

A developer can specify an intensional relation by speci-
fying the intensional views involved in the relation, the re-
lation quantifiers (in this case ∀ and ∃), and a Soul pred-
icate (in the example above: methodCalls:) that in-
dicates how the entities in the intensional views are re-
lated. Note that the elements belonging to an inten-
sional view are tuples. In the above intensional rela-
tion we specified that the value of the ?method vari-
able from the intension of the State Changing intensional
view (?statechange.method) must contain a call
to the method implementing the persistence mechanism
(?persistence.method).

IntensiVE also offers support to deal with explicit excep-
tions to a constraint. A user of the tool suite can declare that
particular source-code entities should be explicitly included
or excluded from an intensional view, or that a relation ex-
plicitly holds for a particular source-code entity.

Although IntensiVE offers a simple model for docu-
menting design rules, in the past it has proven to provide
ample facilities for documenting a wide range of different
kinds of rules in object-oriented systems [10, 13, 14]. More-
over, in addition to specifying intensional views and con-
straints over these views, the tool suite offers a number of
sub-tools that offer developers detailed feedback concern-
ing violations of rules and that make it possible to integrate

2



the verification of the design rules with the standard unit
testing process. The integration with the Mondrian [15] vi-
sualisation framework also makes it possible to create visu-
alisations based on intensional views.

3. Cognac

Cognac is our extension to the IntensiVE tool suite that
makes it possible to document design rules in Cobol pro-
grams. Although IntensiVE was conceived with language-
independence in mind, providing support for Cobol did pose
a number of challenges:

• Due to the complexity of the Cobol language, our ap-
proach needs to cope with a large variety of language
constructs and possible Cobol dialects;

• Since it is our goal to apply Cognac to large systems,
it needs to be scalable both in terms of memory con-
sumption as well as a reasonable execution time;

• In order to express some interesting design rules, the
information obtained from parsing the Cobol code
does not suffice. Therefore, a number of additional
static analyses are provided.

In the next sections, we take a look at the mechanics behind
Cognac and how they tackle the above challenges. More
particularly, we discuss the island-based parsing technique
that lies at the root of Cognac and that makes it possible for
us to deal with the various language constructs of Cobol on
a by-need basis. Furthermore, this island-based parsing aids
in managing the memory consumption of our tool as only
the information that is needed for expressing the desired de-
sign rules is extracted from the source code. Furthermore,
we take a look at the library of logic predicates that we pro-
vide the Soul language with such that intensional views and
relations can be written over Cobol programs. We finish
this section by discussing the static analyses that we have
incorporated in our tool.

3.1. Island-based parsing

Cognac takes as input the source code of a software sys-
tem. While this source code contains all relevant data, ex-
tracting this data from it poses a major challenge.

Cobol is, by now, a 50 year old language which predates
the structured programming approach. It knows of no func-
tions3, has no support for local data, and allows for some
very peculiar control flow. Extensions to functionality (e.g.
XML processing) are not offered by means of APIs, but are
provided through extensions of the Cobol language itself.
Its syntax, which is as close to natural language (English) as

3Functions have been added to later revisions, but their use is not
mandatory nor common.

its designers could get it, cannot be described by means of a
context-free grammar. It requires pre-processing (which is
a smaller annoyance), and in real-life applications mixes in
for example SQL and CICS code which have grammars of
their own.

While there exist some publicly available Cobol parsers
(VS-Cobol-II [12], OpenCobol), they can rarely be applied
to real industrial code as-is. They do not cover enough
of the Cobol specification to parse the entire structure or
gloss over SQL and CICS extensions, and they require pre-
processing passes which are not always possible due to
missing (e.g. proprietary, infrastructural) files. For the pur-
pose of Cognac we have therefore opted for a new parser
with two specific features:

• Incomplete data: The parser should be able to handle
incomplete input. As external partners to a company,
one is often not granted access to the entire system
nor to the development environment. Consequently,
the parser should be able to extract a maximum of in-
formation from the given source code, whether it is
complete or not;

• Customisability: The documentation of different de-
sign rules requires knowledge about different language
constructs. For example, if we want to reason about
program calls, we are mostly interested in CALL state-
ments. Due to the extent of the language, it is un-
feasible to provide a sufficiently detailed parser that
is able to deal with all of Cobol’s language features up
front. Rather, we need a parser that can be adapted (in
a reasonable amount of time) to deal with the language
features that are necessary for the documentation of a
specific set of design rules.

We cover these features by setting up a Cobol parser by
means of island grammars. Moonen [17] defines these as
follows:

An island grammar is a grammar that consists
of detailed productions describing certain con-
structs of interest (the islands) and liberal produc-
tions that catch the remainder (the water).

Figure 1 illustrates how this works in practice. Figure 1 (a)
presents a simple Cobol program (taken from [11]) with all
reserved keywords displayed in bold. It should be clear even
from this simple program that there are many keywords to
cover for parsing it in full. (A full Cobol parser typically
has to deal with over 500 such keywords, many of which are
context dependent.) In contrast, Figure 1 (b) shows the view
taken by an island-based parser where we only care about
reconstructing the control flow. As you can see, most of the
code is now ignored (the water, shown in gray). The parser
mostly scans for the PROCEDURE DIVISION marker, and then
looks out for verbs (e.g. IF, OPEN, SET, MOVE, etc.) and dots

3



IDENTIFICATION DIVISION.
2 PROGRAM-ID. TOOLS/LOGFILE.

ENVIRONMENT DIVISION.
4 INPUT-OUTPUT SECTION.

FILE-CONTROL.
6 SELECT LOGFILE ASSIGN TO "FILES/LOGFILE.TXT",

ORGANIZATION IS SEQUENTIAL.
8 DATA DIVISION.

FILE SECTION.
10 FD LOGFILE DATA RECORD IS LOGFILE-RECORD.

01 LOGFILE-RECORD PIC X(2048).
12 WORKING-STORAGE SECTION.

01 LOGFILE-STATUS PIC 9 VALUE ZERO.
14 88 LOGFILE-IS-OPEN VALUE 1.

LINKAGE SECTION.
16 01 LOGFILE-ENTRY.

05 LOGFILE-VERB PIC X(12).
18 05 LOGFILE-NAME PIC X(32).

05 LOGFILE-DATA PIC X(1024).
20 PROCEDURE DIVISION USING LOGFILE-ENTRY.

IF NOT LOGFILE-IS-OPEN
22 OPEN EXTEND LOGFILE

SET LOGFILE-IS-OPEN TO TRUE.
24 MOVE LOGFILE-ENTRY TO LOGFILE-RECORD.

WRITE LOGFILE-RECORD.
26 GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. TOOLS/LOGFILE.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LOGFILE ASSIGN TO "FILES/LOGFILE.TXT",
ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD LOGFILE DATA RECORD IS LOGFILE-RECORD.
01 LOGFILE-RECORD PIC X(2048).

WORKING-STORAGE SECTION.
01 LOGFILE-STATUS PIC 9 VALUE ZERO.

88 LOGFILE-IS-OPEN VALUE 1.
LINKAGE SECTION.
01 LOGFILE-ENTRY.

05 LOGFILE-VERB PIC X(12).
05 LOGFILE-NAME PIC X(32).
05 LOGFILE-DATA PIC X(1024).

PROCEDURE DIVISION USING LOGFILE-ENTRY.
IF NOT LOGFILE-IS-OPEN

OPEN EXTEND LOGFILE
SET LOGFILE-IS-OPEN TO TRUE.

MOVE LOGFILE-ENTRY TO LOGFILE-RECORD.
WRITE LOGFILE-RECORD.
GOBACK.

Figure 1. (a) Cobol program (taken from [11]) on the left showing all keywords in bold. (b) Same
Cobol program on the right seen through the eyes of an island-based parser with a focus on control
flow. Everything in grey gets ignored. The bold parts are used to reconstruct the control flow.

(shown underlined) from which it can deduce the control
flow (the islands).

The island-based parser forms the front part of the im-
porter for Cognac. It generates an abstract syntax tree, albeit
a partial one due to the setup of the parser. (This counts as
an additional advantage though, as we do not need to store
the entire parse tree of a Cobol program, but only the parts
that are of interest, thereby minimising the memory over-
head of Cognac.) This AST is finally transformed into the
Cognac structure which forms the basis for being queried.

3.2. Logic reification

After the Cobol source code has been loaded into
Cognac, a developer can start documenting design rules
by means of intensional views and constraints over these
views. In order to write down the intension of an intensional
view and the predicate of intensional relations, we have
extended the Soul logic query language with a library of
logic predicates that allow for reasoning over the imported
Cobol code. Table 1 shows an excerpt of the library that we
have provided for Cognac. Roughly, these predicates can
be divided into two groups: predicates that reason about
the structural reification of a Cobol program, and predicates
that express more semantic relationships between source-
code entities.

In the first category, we find predicates
such as ?program isProgramWithIdentifier: ?id,
?section isSectionInProgram: ?program, and so on that
reify the various program entities in a Cobol program

and that allow for retrieving the general hierarchical
composition of these entities (e.g. all calls in a program,
all paragraphs in a section, . . . ). These predicates reify
the parse trees obtained by the island-based parser. In
other words, for each Cobol entity that is retrieved by
the parser, we provide a corresponding set of predicates
that allow for querying that kind of Cobol entity and its
basic relationships. Note that, if in the configuration of the
parser particular entities are not parsed, the usage of the
corresponding predicates in logic conditions will result in
that the logic conditions fail.

The second category of predicates make it possible to
retrieve relationships between such source-code entities,
such as calling relationships between programs, the usage
of fields, embedded SQL statements, and so on. Some
of this information can be extracted directly by analysing
the parse tree of the Cobol program. For example, the
predicate ?section sectionPerformsSection: ?callee binds
all sections that are called from within section ?section to
the logic variable ?callee by analysing PERFORM statements.
While the callee of a PERFORM statement is purely a string,
this predicate will traverse the parse tree in order to iden-
tify the actual section that is being called. Other predi-
cates (such as ?exec execStatementUsesTable: ?table) make
use of a separate parser in order to extract the required
information from the SQL code. Finally, predicates such
as ?field mayAliasWith: ?aliasField require a light-weight
static analysis of the program in order to obtain the neces-
sary information. In the next section we will take a more
in-depth look at these predicates.

4



Structural reification Source code relationships
Programs Calling relationships
?program isProgram ?call callWithTarget: ?string

?program isProgramWithIdentifier: ?identifier ?call callsProgram: ?program

?program programIncludesCopybook: ?copybook ?call transitivelyCallsProgram: ?program

Sections ?call callUsingField: ?field

?section isSectionWithName: ?name ?program programUsingField: ?field

?section isSectionInProgram: ?program ?section sectionPerformsSection: ?callee

?section isSectionWithName: ?name inProgram: ?program ?section sectionPerformsParagraph: ?par

Paragraphs Embedded SQL
?paragraph isParagraph ?exec isExecStatementInProgram: ?program

?paragraph isParagraphInProgram: ?program ?exec execStatementUsesTable: ?table

?paragraph isParagraphInSection: ?section ?exec execStatementWritesToTable: ?table

Statements Move information
?move isMoveStatementInProgram: ?program ?field fieldIsSenderOfMove: ?move

?call isCallStatementInSection: ?section ?field fieldIsReceiverOfMove: ?move

?perform isPerformStatementInParagraph: ?par Field aliasing
Fields ?field mayAliasWith: ?aliasField

?field isFieldInProgram: ?program ?field mayTransitivelyAliasWith: ?aliasField

?field isFieldInLinkageSection: ?linkage

?linkage isLinkageSectionInProgram: ?program

Table 1. Excerpt of the library of predicates that is offered by Cognac.

Since we want to maximise the efficiency of the li-
brary of predicates that we defined, our implementation
rigourously makes use of caching. For example, rather than
having to traverse the parse tree multiple times when re-
trieving the various kinds of statements in a Cobol entity,
this information is cached at different levels in the parse
tree. Similarly, relatively expensive computations, such as
finding the transitive call chain of a program, are also com-
puted only once and cached afterwards.

3.3. Extracting static information

Although a Cobol parse tree offers a wealth of informa-
tion, certain kinds of information are not directly accessible
from such parse trees. We implemented the following static
analyses in order to complement the information retrieved
from the parse tree:

Call resolution One interesting source of information in
Cobol programs are the various calling relations between
Cobol programs. In order to retrieve this information from
the source code, we need to analyse the CALL statements. For
example, the statement CALL ’Example’ USING CALL-PARAM in-
dicates a call to the program named Example using the
data field CALL-PARAM as an argument. While the first
argument of the CALL in the simplest case is a string indicat-
ing the program name that gets called, it can also be a data
field (e.g. CALL PROG-SUB USING CALL-PARAM). In this case, it

is not certain which program will get called, since the value
of PROG-SUB can be altered at runtime. Cognac implements
a simple static analysis that, for CALL statements where the
callee is stored in a data field, identifies possible programs
by looking at data field initialisers (e.g. the field PROG-SUB

might be initialised to the value ’Example’) and the allo-
cation of string literals to fields.

Field aliasing While the call resolution we discussed
above allows us to give a coarse-grained approximation of
the control flow in a Cobol system, Cognac also imple-
ments a field aliasing algorithm that offers a light-weight
analysis of the data fields within the application. This anal-
ysis will collect for each data field in the system a set of
other data fields which may possible alias with that partic-
ular field. For example, the usage of a MOVE THIS TO THAT

statement, which moves the contents of one data field (THIS)
to another data field (THAT) introduces an alias between the
two involved fields. Similarly, the arguments of a call of a
program result in that two different data fields are possibly
pointing to the same piece of memory. Note that we take a
conservative approach to calculating the aliases of a partic-
ular field: if a field is in the alias set of another field, this
does not necessarily mean that at runtime they will get used
for the same data.

5



4. Validation

4.1. Case

In order to demonstrate the applicability of Cognac, we
will use our tool to document a selection of design rules that
originate from a large-scale industrial case study. In par-
ticular, we analyse a banking system consisting of roughly
500KLoc of Cobol code obtained from our industrial part-
ner, the Flemish company inno.com. The system has been
in development since 2005 and is expected to continue to
remain in production for a long period of time (20+ years).
From the point of view of inno.com, the verification of their
design rules can play an important role in the development
process for three reasons:

• From the start, the actual development of the system
has been outsourced to an external partner. Conse-
quently, our industrial partner is interested in verify-
ing to what extent the developers have respected the
design and development guidelines that they were pro-
vided with;

• As the system has to be maintained over a long period
of time, it is important to keep the source code as con-
sistent as possible with respect to the design. In order
to prevent the source code quality from deteriorating
and thereby increasing the effort needed for maintain-
ing the system, automated support for verifying the de-
sign with the implementation is needed;

• Throughout the various iterations of the system —
spread over multiple years — the functionality of the
system will be extended. Our industrial partner wants
to assure that the intended design is respected in the
first iteration and wants to assess violations of this de-
sign during subsequent iterations.

4.2. Design rules

In the subsequent sections we take a look at a number of
design rules that originate from the above case study, relate
their importance to the system, and discuss how we were
able to document them and how well they were respected
in the source code. We obtained these design rules by in-
terviewing the original designers of the system. Although
there exist a number of documents specifying the functional
design of the system, for this first experiment we opted to
express a number of more general design rules that ought to
be respected in the case study.

Section layering In the case study under investigation,
the designers of the system introduced a clear layered struc-
ture in the individual Cobol programs as a means to make

the control flow more explicit. More specifically, the var-
ious sections in each program were divided into separate
layers in which sections in one layer are only allowed to
invoke sections in the same, or a lower layer. This design
rule is reflected in the source code by means of a simple
naming convention: each section’s name is prefixed with a
letter grouping sections at the same level using the same let-
ter. From within each section, only sections may be invoked
with the same starting letter, or with a letter that comes later
in the alphabet.

Although this design rule boils down to a fairly simple
naming convention, due to its importance and since it serves
as a nice illustration of our approach, we documented it us-
ing Cognac. To this end, we created an intensional view
named Sections with callees that groups all sections in the
Cobol system, together with the sections that are called by
each section. The intension for this simple intensional view
is the following:
?section sectionPerformsSection: ?callee

Afterwards, we declare a unary intensional relation on this
intensional view, that states that for all callees, the condition
must hold that the callee’s first letter must come later in the
alphabet (or be the same) than the first letter of the caller.

We express this intensional relation as the following:
∀ ?entity ∈ Sections with callees :

?entity.section isSectionWithName: ?callerName,

?entity.callee isSectionWithName: ?calleeName,

[(?callerName at: 1) <= (?calleeName at: 1)]

The relation states that for all entities belonging to the Sec-
tions with callees intensional view, three conditions must
hold. The first two conditions extract the name of the caller
and the callee sections from the entities in the view (note
that this view contains tuples of sections and callees). The
third condition is a Smalltalk block that extracts the first
letter from both the caller and the callee and that verifies if
the first letter of the caller comes before the first letter of
the callee. When verifying the validity of this relation with
respect to the source code, our tool suite provides develop-
ers with feedback concerning the discrepancies between the
documented design rule and the implementation (see Fig-
ure 2). The top-most pane shows the entities for which the
relation holds; all inconsistencies are shown in the bottom-
left pane. Out of a total of 21653 calls between sections,
98.8362 % respected this design rule. We were able to iden-
tify a total number of 252 violations of this rule.

Copybook - linkage correspondence A Cobol program
that can be called from within another program needs to de-
clare a linkage section that specifies the data definition of
the arguments that it expects as input. In our case study,
one design rule that needs to be obeyed is that, if a program
calls another program, it uses the same data definition for
the argument of both caller as well as callee. In order to

6



Figure 2. Feedback provided by our tool suite

ease this correspondence, a copybook is used that contains
the data definition and that should be included in the link-
age section of the called program as well as in the calling
program. We express the above design rule by means of a
binary intensional relation. First, we create an intensional
view named Called programs with as intension:
?program programCalls: ?call,

2 ?call callCallsProgram: ?calledProgram

The above query retrieves all pairs of ?program and
?calledProgram between which there exists a possible call-
ing relationship ?call. Note that the above predicates make
use of the call resolution analysis that was discussed in Sec-
tion 3.3.

Next, we create a second intensional view Program with
copybook that groups all programs together with the copy-
book that defines their linkage section data definitions. The
intension for this view is:
?program programWithCopyStatement: ?copy,

2 ?copy copyStatementInLinkageSection,
?copy copyStatementIncludesCopybook: ?copybook

This intension consists of three parts. The first condition
retrieves all the copy statements in Cobol programs (copy
statements are used to include a particular copybook). In
the second condition, this set of copy statements is limited
to those that are contained within the linkage section of the
program. Finally, the third condition binds the logic vari-
able ?copybook to the actual copybook that was included in
the linkage section.

Using the above two intensional views, we can now
express the design rule as the following binary intensional
relation:
∀ ?caller ∈ Called programs :

∃ ?corresponding ∈ Program with copybook :

?caller.calledProgram equals: ?corresponding.program,

?caller.program programIncludesCopybook: ?corresponding.copybook

The above relation verifies that for all called programs,
the corresponding copybook in the linkage section of the
callee is included by the caller. When verifying the above
intensional relation, our tool reported on 42 violations of
documented design rule. By manually inspecting each
of these violations, we saw that they resulted from the
usage of a utility library which the above design rule is
not applicable to. In this library, one big copybook is
used that includes the data definitions of all fields that
are used in the library. Rather than including the specific
corresponding copybook for a called program from the
library, all clients of the library included this big, more
general copybook. Since these invocations are exceptions
rather than violations, we documented them as such by
declaring them an exception to the intensional relation.

Database modularity The case study we investigated is
designed in a component-oriented fashion. In the system,
the various components consist of a top-level program that
serves as the component’s interface, along with a number of
programs to which this top-level program delegates partic-
ular requests. Also associated with each component is a set
of database tables that contain the persistent data which the
module is responsible for. In order not to break this mod-
ularity, only programs from within one particular module
are allowed writing access to the tables associated with that
module. All other programs need to retrieve and manipu-
late data via the interface program of that module. Prefer-
ably also, the number of programs within a module that are
allowed to write to the associated tables is limited.

In order to verify this design rule, we opted to use a more
pragmatic approach in which we use a visualisation as a
means to provide the original designers of the system with
feedback concerning the use of database tables in the cur-

7



Figure 3. Visualisation of table usage

rent implementation. First, we created an intensional view
named Programs writing to tables with as intension:
?stat isExecStatementInProgram: ?program,

2 ?stat isExecSQLStatement,
?stat execSQLStatementWritesToTable:?table

Line 1 of this intension retrieves all Exec statements (this
is the kind of statement in Cobol used for embedding SQL
code). In line 2, these Exec statements are limited to those
that actually contain an SQL query. Finally, line 3 extracts
the names of the tables which the Exec statement writes to.

Rather than imposing constraints over this intensional
view, we created a visualisation using IntensiVE in order
to provide feedback concerning this design rule. An exam-
ple of this feedback can be found in Figure 3. In this graph,
the various programs are represented as rectangles; tables
are represented as circles. An arrow between a table and
a program indicates that the program possibly writes to the
table via an embedded SQL query.

In the bottom part of the figure, we can see a number
of “islands”: isolated groups of programs and a number of
tables that are written to by these programs. These islands
illustrate the modularity of the database access: the tables
that are local to a particular module are only written to from
within the modules, as is also prescribed by the design rule.
The top part of the figure on the other hand illustrates a pos-
sible violation of the intended design rule: in this part we
see a larger cluster of tables and programs. Moreover, we
see that there are a number of tables that are being writ-
ten to from within various programs, possibly indicating a
violation of the design rule. Notice that this visualisation
only gives us an indication of possible violations; in order

to fully assess whether the identified cluster is a violation of
the design rule, an analysis by a developer is necessary.

Online programs In the case study, a distinction is made
between offline programs that are executed in batch, and on-
line programs. All of these online programs, and only these
programs, should be called from somewhere in the system
(if not they are redundant) and should include a linkage sec-
tion (specifying that they take a particular input). In other
words, according to this design rule, if a program is called
and it is not an offline program, it should include a linkage
section. Likewise, if a program includes a linkage section,
then it should be an online program and it should be called
from within the system.

We document this design rule by creating an intensional
view with two alternative intensions:

1. ?program programCalls: ?call,
?call callCallsProgram: ?calledProgram,
?calledProgram isProgramWithIdentifier: ?identifier,
not([’####M*’ match: ?identifier]),
not([’####D*’ match: ?identifier])

2. ?calledProgram isProgram,
?linkage isLinkageSectionInProgram: ?calledProgram

The first intension collects all programs that are called
somewhere from within the case study and that do not con-
tain an M or a D as the fifth character of the program name
(these two letters are used to indicate offline programs). In
the second intension, all programs are gathered that include
a linkage section. Note that the use of multiple alterna-
tives implies that both sets of source-code entities resulting
from evaluating the intensions should be identical. In other
words, if an online program is called but does not include a
linkage section, it is marked as a violation. Conversely, any
program that includes a linkage section should be called at
least once from within the system and should not be an of-
fline program (according to the naming convention). When
verifying the validity of this design rule with respect to the
implementation, we did not encounter any violations.

4.3. Performance

One of the goals for Cognac that we decided upon from
the start was that it should be able to reason about large-
scale, industrial systems. To this end, not only the run-
time efficiency of the verification of the documented busi-
ness rules is important, but also the memory consumption.
As input for the case study, we took the entire source code
of the system that we received from our industrial partner,
amounting to 43 megabytes of Cobol code. We configured
the island-based parser to extract the maximum of Cobol
language features that is supported by the current version of
Cognac. After the source code was parsed and loaded into
Cognac, this resulted in a memory usage of 73 megabytes.

8



Cognac operation: Time (in seconds):
Parsing 377s
Running the analyses 155s
Design rule verification
Section layering 20s
Copybook - linkage correspondence 23s
Database modularity 1s
Online programs 3s

Table 2. Runtimes of Cognac operations and
design rule verification.

An overview of the runtime efficiency of Cognac can be
found in Table 2. For the entire case study, parsing and ex-
ecuting the analyses took just under 10 minutes4. For the
verification of the first two design rules we discussed, about
20 seconds was needed. The last two design rules were
computed in a couple of seconds. Although these numbers
do not provide an empirical validation of the scalability of
Cognac, they do provide some initial insights into the extent
to which our tool can be applied on real-life case studies.
While, in general, we do not believe that our tool can be
used to provide developers feedback during the actual de-
velopment process itself, it seems feasible to verify a large
set of design rules overnight.

5. Related work

Parsing Cobol. Van Deursen et al. [21] present a num-
ber of analyses performed on legacy Cobol systems. They
do this by extracting information by means of a Perl script
which outputs comma-separated-value files of the relevant
data. The analyses built on this data include program
call graph reconstruction and database usage. Van Geet et
al. [22] use a similar approach to enable reverse engineer-
ing by means of lightweight visualisation techniques. Again
the necessary data is extracted with the help of a Perl script
which scans the source code for the relevant statements. In
essence, both are applying an island-based parsing tech-
nique much like the one presented in this paper, though
they do so without the help of parser/lexer generators. In
contrast, Moonen [18] applies an island grammar for en-
abling impact analysis in a Cobol banking system, making
use of a parser generator. Similarly, the parser feeding data
in Cognac also makes use of such tools.

Logic queries and Cobol. Lämmel et al. [11] define a
possible aspect-oriented extension to Cobol, where they
make use of logic based queries in the pointcut language.

4On an Apple MacBook Dual-Core 2.16Ghz with 2G of RAM.

The pointcuts themselves are written down in a Cobol-like
syntax, but translate into Prolog queries on the full abstract
syntax tree of whatever Cobol program is being treated. The
focus here is on aspect technology and weaver creation, so
the logic queries are not available for other purposes.

Tools supporting design rules Although they do not sup-
port the Cobol language, there exist numerous tools that
provide support for design rules. We can classify these tools
in three categories:

• Code checkers: These tools, such as Lint [9], Check-
Style [1], P 3 [2], FindBugs [8] and many others pro-
vide a generally fixed set of rules expressing com-
mon mistakes, good coding style, platform-specific
constraints, and so on, and allow for the verification
of these rules with respect to the implementation of
a system. While their strength lies in that they pro-
vide highly optimised and dedicated tools for support-
ing such regularities, often they can not be customised
to support particular design rules that are specific to
the design of one particular system;

• Architectural and design checkers: Tools such as
RevJava [5], Ptidej [6] and Reflexion Models [19] are
dedicated to verifying a high-level description of a sys-
tem (e.g. design patterns, dependencies between com-
ponents, . . . ) with respect to the source code. Similar
to code checkers, these tools provide a dedicated tool
for such kinds of design rules making it possible to
for example automatically correct inconsistencies be-
tween source code and a design pattern implementa-
tion. Note that the advantage of our use of IntensiVE
is that our tool is sufficiently versatile to support both
low-level rules such as naming conventions and bad
smells as well as the verification of more high-level
rules with respect to the source code;

• Meta-programming systems: A final group of tools
such as Law-governed Architecture [16], SCL [7],
CCEL [3] and IRC [4]. Similar to our use of the
Soul language in order to specify the intension of an
intensional view, these tools offer developers a meta-
programming language that makes it possible to write
programs that verify design rules.

6. Future work and Conclusions

In this paper we have presented Cognac, a framework
for documenting and verifying design rules in Cobol sys-
tems. It was our goal to obtain a tool that is versatile enough
to document different kinds of design rules (as we demon-
strated: from low level naming conventions, over database
accesses to inter-module dependencies) in large, real-life
case studies. To this end, we have opted to provide an

9



island-based parsing scheme in order to deal with the in-
tricate complexity of the Cobol language. Furthermore, our
tool provides a number of relatively simple static analyses
that make it possible to extract more detailed call informa-
tion and field aliasing information from the source code.
The contributions of our work are the following:

• A customisable, island-based parser that supports a
subset of the Cobol language and that can easily be
extended;

• A library of Soul predicates that make it possible to
reason about Cobol programs and that make use of the
provided static analyses;

• An integration with the IntensiVE tool suite for docu-
menting and verifying design rules.

As a validation, we presented the verification of a num-
ber of general design rules we obtained from the original
designers of an industrial case study. A first direction of fu-
ture work consists of the translation of the complete design
of the system into intensional views and constraints over
these views. To this end, we plan to (semi-)automatically
convert the existing design documents (Rational Rose files)
that describe the various modules in the system and the ex-
pected interactions into intensionsal views and constraints.

Furthermore, we plan to extend the functionality of our
tool by enlarging the set of Cobol language constructs that
is supported by our logic predicates, and by extending the
precision of the analyses that we have implemented.

Acknowledgements

The authors would like to thank Kim Mens for his valu-
able feedback earlier drafts of this paper. Andy Kellens is
funded by a research mandate provided by the “Institute for
the Promotion of Innovation through Science and Technol-
ogy in Flanders” (IWT Vlaanderen). Kris De Schutter re-
ceived support from the AspectLab research project, spon-
sored by the IWT Vlaanderen.

References

[1] Checkstyle, December 2006.
http://checkstyle.sourceforge.net.

[2] C. Depradine and P. Chaudhuri. P 3: a code and design con-
ventions preprocessor for java. Software - Practice and Ex-
perience, 33(1):61–76, 2003.

[3] C. Duby, S. Meyers, and S. Reiss. CCEL: A metalanguage
for C++. In USENIX C++ Technical Conference Proceed-
ings, pages 99–115. USENIX Assoc., 10-13 1992.

[4] M. Eichberg, M. Mezini, K. Ostermann, and T. Schäfer.
Xirc: A kernel for cross-artifact information engineering
in software development environments. In Working Con-
ference on Reverse Engineering (WCRE), pages 182–191.
IEEE Computer Society Press, 2004.

[5] G. Florijn. Revjava - design critiques and architectural con-
formance checking for java software. Technical report, Soft-
ware Engineering Research Centre (SERC), 2002.

[6] Y. Guéhéneuc and H. Albin-Amiot. Using design patterns
and constraints to automate the detection and correction of
inter-class design defects. In Technology of Object-Oriented
Languages and Systems (TOOLS), pages 296–305, 2001.

[7] D. Hou and J. Hoover. Using SCL to specify and check de-
sign intent in source code. IEEE Transcactions on Software
Engineering, 32(6):404–423, 2006.

[8] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM
SIGPLAN Notices, 39(12):92–106, 2004.

[9] S. Johnson. Lint, a c program checker. In M. McIIroy
and B. Kemighan, editors, Unix Programmer’s Manual, vol-
ume 2A. AT&T Bell Laboratories, seventh edition, 1979.

[10] A. Kellens. Maintaining causality between design regulari-
ties and source code. PhD thesis, VUB, 2007.

[11] R. Lämmel and K. De Schutter. What does aspect-oriented
programming mean to Cobol? In Aspect-Oriented Software
Development (AOSD), pages 99–110, 2005.

[12] R. Lämmel and C. Verhoef. Semi-automatic Grammar Re-
covery. Software—Practice & Experience, 31(15):1395–
1438, December 2001.

[13] K. Mens and A. Kellens. Intensive, a toolsuite for doc-
umenting and checking structural source-code regularities.
In Conference on Software Maintenance and Reengineering
(CSMR), pages 239–248, 2006.

[14] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views: A case study. Else-
vier Journal on Computer Languages, Systems & Structures,
32(2-3):140–156, 2006.

[15] M. Meyer, T. Girba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization, pages 135–144, 2006.

[16] N. Minsky. Law-governed systems. Software Engineering
Journal, 6(5):285–302, 1991.

[17] L. Moonen. Generating robust parsers using island gram-
mars. In WCRE, page 13, 2001.

[18] L. Moonen. Lightweight impact analysis using island gram-
mars. In Proceedings of the 10th International Workshop
on Program Comprehension (IWPC 2002). IEEE Computer
Society Press, June 2002.

[19] G. Murphy, D. Notkin, and K. Sullivan. Software reflex-
ion models: Bridging the gap between source and high-level
models. In Symposium on the Foundations of Software En-
gineering (SIGSOFT), pages 18–28, 1995.

[20] M. Robillard and G. Murphy. Feat: a tool for locating, de-
scribing, and analyzing concerns in source code. In 25th
International Conference on Software Engineering, pages
822–823, 2003.

[21] A. van Deursen and T. Kuipers. Rapid system understand-
ing: Two COBOL case studies. In IWPC, pages 90–97.
IEEE Computer Society, 1998.

[22] J. Van Geet and S. Demeyer. Lightweight visualisations of
COBOL code for supporting migration to SOA. In 3rd In-
ternational ERCIM Symposium on Software Evolution, oct
2007.

[23] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, January 2001.

10


