
Reusable building blocks

for software transactional memory

Charlotte Herzeel, Pascal Costanza and Theo D’Hondt
(Programming Technology Lab, Vrije Universiteit Brussel, Belgium
{charlotte.herzeel — pascal.costanza — tjdhondt } @vub.ac.be)

Abstract: Software transactional memory (STM) is a promising approach for coor-
dinating concurrent threads, for which many different implementation strategies are
currently being researched. In this paper we show that if a language implementation
provides reflective access to explicit memory locations, it becomes straightforward to
both (a) build a STM framework for this language and (b) to implement STM al-
gorithms using this framework. A proof-of-concept implementation in the form of a
Scheme interpreter (written in Common Lisp) is presented.

1 Introduction

Software transactional memory (STM) [10] is a promising approach for coor-
dinating concurrent threads. It proposes the use of a transactional model for
coordinating reads and writes of shared data in a multithreaded system. With-
out such a mechanism, the (relative) order of these reads and writes is undefined,
during the execution of which a program can cause problems if two threads try
to write the same memory location. Such problems are known as data races
and are traditionally dealt with by the programmer by using low-level mecha-
nisms such as locks for controlling the progress of threads. Programming with
locks is known to be difficult because the programmer can easily write code that
introduces mistakes such as deadlocks or code that does not easily compose.
STM alleviates many of these problems by offering a well-defined protocol for
managing reads and writes of shared data automatically.

An efficient implementation of STM is however hard, and numerous strategies
have been proposed, but there is no definitive winner [8]. For example, a STM’s
transaction granularity determines the unit of storage over which the system
operates (object or word/pointer-based). Other design decisions include the use
of pessimistic or optimistic concurrency control, early or late conflict detection,
direct or deferred memory updates, and so on. For a detailed taxonomy we refer
to Larus and Rajwar’s work [8]. Each of these options results in a STM that
performs better for different applications.

A number of benchmark suites have been developed for assessing the different
variations of STM algorithms [1, 7]. Benchmark suites focus on getting compa-
rable benchmark results, by providing sets of dedicated test applications that
can be run without change for different STM algorithms. To make this work,



a benchmark suite defines a so-called “generic” STM interface that is used in
those test applications, so that the implementations of the STM algorithm can
silently vary underneath. However, such benchmark suites typically don’t pro-
vide reusable building blocks for implementing the actual STM algorithms, but
leave the programmers of such algorithms on their own. The latter is the focus
of a STM framework that provides common STM functionality and hooks. In
this paper we propose such a STM framework.

Herlihy et al. previously proposed a framework for STM [5], but their ap-
proach differs greatly from ours. Their framework, in line with other STM im-
plementations we know of [6, 3, 8, 9], is built on top of an existing compiler
that was not designed for supporting STM. In contrast, we start by designing a
language architecture from scratch that exposes the hooks for supporting STM
as a plugin. This simplifies both the implementation of the framework itself as
well as the use of the framework for plugging in different STM algorithms.

The contributions of this paper are:

– an analysis of the hooks a language implementation needs to provide for
implementing STMs as plugins, and our solution that proposes to provide
reflective access to memory locations for this purpose;

– an interpreter framework with such explicit memory locations as a proof of
concept, here implemented for Scheme, but transferable to other languages;

– an implementation of two example STM algorithms as extensions of this
framework to validate our approach.

2 Concepts of Software Transactional Memory

2.1 Multiprocessing with shared memory

In multithreaded programs, the execution of threads is typically synchronized
using locks, which is a mechanism for temporarily granting threads exclusive
access to shared resources, for example shared memory locations. Though locks
can be used to avoid data races, programming with locks is notoriously difficult
and alternative synchronization strategies are still an important research topic[3].
Recently, software transactional memory was proposed.

The idea behind software transactional memory (STM) is to use transactions
for coordinating the execution of concurrent threads [8]. “Software” transactions
inherit the atomicity and isolation properties from database transactions. Atom-
icity requires a transactional piece of code to execute completely or, in case of
failure, to pretend to never have been executed at all (i.e. any side effects are un-
done). Isolation requires the result of executing a transaction not to influence the



result of other concurrently executing transactions. A correct implementation of
these properties assures that transactions do not lead to data races.

STM has been realized both as libraries [6, 5, 8] and language extensions [3,
9]. STM libraries offer programmers APIs for making transactions, while lan-
guage support for STM typically consist of a keyword atomic for delimiting a
block of code that needs to execute transactionally. For example, if Scheme had
an atomic construct, then a thread-safe implementation of the insert opera-
tion for a double linked list could look like the code below. The underlying STM
implementation assures the code inside atomic executes transactionally.

(define insert (node new-node)
(atomic (set-previous new-node node)

(set-next new-node (next node))
(when (has-previous-p (next node))

(set-previous (next node) new-node))
(set-next node new-node)))

2.2 Structure of a STM implementation

A STM algorithm monitors the reads and writes of memory executed within
transactions, and implements an algorithm for checking whether any of these
accesses causes a data race. In case there is a data race, the STM makes sure
the conflicting execution is undone by rolling back one of the transactions.

Larus and Rajwar divide STM implementations into two categories: Deferred-
update and direct-update STMs [8]. They differ strongly in the general imple-
mentation strategy. Deferred-update STM systems are implemented following a
nonblocking synchronization strategy. When transactions access a memory loca-
tion, they acquire a copy of its content and proceed execution in terms of the
copy. Only when a transaction commits, the STM system replaces the content
of the accessed memory locations with such copies. In case the STM detects a
data race, transactions are cheaply rolled back, since their side effects are not
yet global and hence do not need to be undone.

Conversely, direct-update systems rely on a blocking synchronization strat-
egy. Transactions can temporarily get exclusive access to a memory location and
side effects are performed instantly. A more expensive rollback mechanism than
for deferred-update systems is needed, as the STM system needs to store old
content of memory locations to be able to restore them on a rollback. However,
in case there are few data race conflicts, such systems can be very efficient.

We claim that if a language implementation provides an explicit representa-
tion for memory locations, the implementation of both kinds of STMs is much
easier to realize than when this is not the case. Consequently, we also claim
that explicit memory locations are a key ingredient for a framework in which to
express different kinds of STM. In what follows we sketch a design of a Scheme
interpreter with explicit memory locations, and discuss the implementation of
both a direct-update and a deferred-update STM on top of the memory location



abstraction. Afterwards, we discuss the inherent complexity of a STM implemen-
tation on top of a language implementation without an explicit representation
for memory locations.

3 STM for a Scheme implemented in CLOS

Our experiment consists of extending a Scheme interpreter written in CLOS
with explicit memory locations. The interpreter implements a non-trivial subset
of Scheme. Additionally, it supports parallel variants of familiar constructs like
parallel-do, parallel-let, etc as found in QLisp [2]. It also implements the
atomic construct for executing a piece of code transactionally [3]. Our inter-
preter is written using LispWorks1 and relies on its multiprocessing package for
threading and locking functionality. Our implementation is primarily meant to
illustrate our claims, but does not focus on efficiency. We will discuss efficiency
concerns in the discussion section.

3.1 Transactional execution

Our interpreter extends the prototypical Lisp interpreter with a clause for eval-
uating atomic expressions. The code for eval-atomic is listed below. Note that
mp:*current-process* is part of the LispWorks API for getting hold of the
current active thread.

For evaluating an atomic expression, we put the current active thread
into a transactional state (see push-transactional-mode) and let it eval-
uate the expression. Afterwards, commit is called for finalizing the transac-
tion and restoring the thread to a non-transactional state for the rest of
the execution (see pop-transactional-mode). For this, we made it possi-
ble to add a transactional state to LispWorks threads, which is accessible
through the methods push-transactional-mode, pop-transactional-mode

and peek-transactional-mode. The transactional state of a thread itself is
modeled as a stack of transaction objects, for supporting the evaluation of nested
atomic expressions.

(defmethod eval-atomic (exp env cont)
(let ((transaction (make-transaction exp env cont)))

(push-transactional-mode mp:*current-process* transaction)
(eval expression environment #’commit)))

(defmethod commit (result)
(funcall (cont (pop-transactional-mode mp:*current-process*)) result))

Transactions are modeled as objects that store a reference to their thread of
execution, and the interpreter’s state at the time the transaction is created. The
latter is needed for rolling back a transaction:
1 For LispWorks R©, see http://www.lispworks.com/.



(defmethod roll-back ()
(let ((transaction (pop-transactional-mode mp:*current-process*)))

(eval-atomic (atomic-block transaction) (env transaction) (cont transaction))))

The methods for commit and roll-back shown here provide the default im-
plementations for these operations. They do not by themselves deviate from
normal execution without transactions. However, by defining them as methods,
we have established a protocol for transactional execution: Client code that ex-
tends our interpreter with STM can override these two methods to include the
extra functionality required for committing or rolling back a transaction.

3.2 Memory locations as objects

Memory locations are modeled as instances of the class memory-location, which
defines a slot for storing a memory location’s content. The class can be extended
to hold additional information necessary for implementing a particular STM.

A method make-memory-location is the constructor for making new mem-
ory location objects. It takes the content of the memory location as an argument.
The methods memory-location-value and (setf memory-location-value)

are used to respectively read and write the content of a memory location object.
The methods registered-read and registered-write implement a read or
write of a memory location that is registered by the STM. Both registered and
non-registered accesses to memory locations are necessary because some internal
memory accesses must not be registered to implement STM correctly.

4 Explicit memory allocation and access in Scheme

For implementing STM, it must be possible to advise all possible reads and
writes of memory. For Scheme, this means it should be possible to extend reads
and writes of variables, cons cells and vectors, that is, there are no other primi-
tive means for allocating and accessing memory. Fig. 1 gives an overview of the
constructs in Scheme for manipulating variables, cons cells and vectors. We next
identify the methods in the interpreter that implement these operations and
open them up for extension. An overview of these methods is shown in Fig. 2.

4.1 Variable allocation and access

Variable bindings are stored in an environment structure, a dictionary-like struc-
ture allocated on the Common Lisp heap that maps variable names onto values.
Internally, the latter mappings are represented using a structure mapping.

Creating a new variable/value mapping (for interpreting a define) is handled
by a method add-binding: It creates a new instance of the structure mapping

and stores it into the global environment. Updating a variable/value mapping



Allocation Reading Writing

Variables (define x obj ) x (set! x obj )
Cons cells (cons obj obj ) (car cons-cell ) (set-car! cons-cell obj )

(cdr cons-cell ) (set-cdr! cons-cell obj )
Vectors (vector size ) (vector-ref vector idx ) (vector-set! vector idx obj )

Figure 1: Allocating and accessing memory in Scheme

Allocation Reading Writing

Variables add-binding binding set-binding
make-mapping

Cons cells make-cl-cons cl-list-car cl-list-cdr
cl-list-set-car cl-list-set-cdr

Vectors make-cl-vector cl-vector-ref cl-vector-set!

Figure 2: Methods implementing memory allocation and access

(for interpreting a set!) is done by a method set-binding. Finally, looking up
a variable (for interpreting a variable reference) is done by a method binding.

In a next step, we can now override these methods to make the memory
locations referenced by variables explicit, by inserting explicit memory location
objects in the mappings. The code for creating and accessing a mapping is ap-
propriately changed:

(defmethod make-mapping :around ((atom atom) value)
(list atom (make-memory-location value) ’mapping))

(defmethod memory-location-of-value (mapping) (second mapping)) ; new

(defmethod mapping-value :around (mapping)
(memory-location-value (memory-location-of-value mapping)))

(defmethod (setf mapping-value) :around (value mapping)
(setf (memory-location-value (memory-location-of-value mapping)) value))

Next, we override the methods binding and set-binding, which respectively
implement variable lookup and update, to work on the new mappings. Variable
lookup and update are operations that need to be monitored by the STM algo-
rithm, hence the use of registered-read and registered-write, the methods
we previously defined for monitored accesses.

(defmethod binding :around ((atom atom) (environment environment))
(let ((mapping (binding-mapping atom environment)))

(registered-read (memory-location-of-value mapping))))

(defmethod set-binding :around ((environment environment) (atom atom) (handle handle))
(let ((mapping (binding-mapping atom environment)))

(if mapping (registered-write (memory-location-of-value mapping) handle)
(error "Cannot assign to an undefined variable"))

mapping))



4.2 Vector allocation and access

Vectors are implemented using Common Lisp arrays, allocated on the Com-
mon Lisp heap. We represent vectors using a wrapper class cl-vector whose
instances hold references to such Common Lisp arrays. A method called
make-cl-vector is responsible for creating new vectors (for interpreting a
make-vector). Methods cl-vector-ref and cl-vector-set implement reading
and updating vector entries (for interpreting a vector-ref and vector-set!).

To allow advising of vector allocation and access, we now make the memory
locations vectors reference explicit. In the code listed below, we override the
constructor for vector objects. As previously discussed, vectors are represented
by a class cl-vector that wraps a Common Lisp array. Here, we initialize the
entries of the array with a memory location object:
(defmethod make-cl-vector :around (nr &optional initial-content)

(if initial-content
(make-instance ’cl-vector :cl-array (make-array nr :initial-contents

(mapcar #’make-memory-location initial-content)))
(make-instance ’cl-vector :cl-array (let ((new-array (make-array nr)))

(dotimes (i nr)
(setf (aref new-array i) (make-memory-location)))

new-array))))

Next, we override cl-vector-ref and cl-vector-set to operate on the
explicit memory locations:
(defmethod cl-vector-ref :around ((cl-vector cl-vector) nr)

(let ((memory-location (aref (cl-array cl-vector) nr)))
(registered-read memory-location)))

(defmethod cl-vector-set :around ((cl-vector cl-vector) nr val)
(let ((memory-location (aref (cl-array cl-vector) nr)))

(registered-write memory-location val)))

4.2.1 Cons cells and other data structures

Cons cells are essentially vectors of fixed length two, so they are implemented
in a similar fashion as cl-vector, namely by providing a Common Lisp class
for wrapping Common Lisp cons cells and providing corresponding methods for
the respective operations on pairs. Similarly to what we did for vectors and
variables, memory locations are introduced into the cons cell implementation, so
that cons cell accesses can be advised to implement STM. Other data structures,
like classes, can be supported in a similar fashion as extensions of the interpreter,
or can be built on top of vectors and closures as user code in Scheme itself.

5 Plugging in STM implementations

5.1 Implementing a direct-update STM

Our first example STM is based on 2-phase locking with optimistic reads (as for
example used in BSTM [4]). When a transaction reads a memory location, the



transaction takes a note of this. For writing a memory location, a transaction
needs to acquire an exclusive lock. On acquiring the lock, the transaction first
records a copy of the memory location’s content and only then updates its con-
tent with the new value. The lock is released when the transaction successfully
finishes. The STM checks for data races at well-defined times. Write-after-read
conflicts are checked on reading a memory location by verifying that no other
transaction has a lock on it. Additionally, when a transaction finishes, the STM
checks for read-after-write conflicts by checking that none of the memory lo-
cations read by the transaction were updated afterwards. When there are no
conflicts, the transaction finishes (commits) and releases all of its locks. Con-
versely, when a conflict is detected, the transaction rolls back, undoes any of
the writes it performed, releases its locks and restarts. Write-after-write data
races are avoided as transactions have to acquire an exclusive lock for writing a
memory location, and these locks are only released when a transaction commits.

5.1.1 Memory location and transaction extensions

From the description above we derive the following extensions to our interpreter.
We extend memory locations with a version for making it possible to check on
commit whether a read memory location was updated by comparing its current
version with the version on read. A memory location’s version consists of a
counter and a reference to the transaction that performed the last write.

(defclass versioned-memory-location (memory-location)
((lock :initform (mp:make-lock) :accessor memory-location-lock)
(version :initform (make-instance ’version) :accessor memory-location-version)))

The code listed above shows the implementation of the class
versioned-memory-location that extends memory-location with slots
for holding a lock and a version. The slots are initialized with default values,
respectively a new lock and version object. The function mp:make-lock

for creating a lock comes from the LispWorks MP package. The accessor
memory-location-value for accessing a memory location’s content remains
unchanged. The constructor make-memory-location is overridden to create an
instance of the class versioned-memory-location:

(defmethod make-memory-location :around (&optional value)
(make-instance ’versioned-memory-location :value value))

We also extend transactions with a read and a write set. The sets are modeled
as property lists, mapping each accessed memory location object onto a version
object (in case of the read set) or a copy of the memory location’s previous
content (in case of the write set). Acessors get-read-set and get-write-set

are defined for accessing the read or write set of a transaction.



5.1.2 Advising access of memory locations

In this STM, registered-read and registered-write are implemented as fol-
lows. registered-read makes a copy of the memory location’s current version
and, together with the memory location, pushes it onto the transaction’s read
set. Subsequently, it calls locked-by-other-thread-p to check if another thread
holds a lock on the memory location: If so, there is a potential write-after-read
data race, and the transaction is rolled back. Otherwise, the memory location’s
content is returned.
(defmethod registered-read ((memory-location versioned-memory-location))

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(when transaction

(setf (get-read-set transaction)
(list* memory-location (duplicate (memory-location-version memory-location))

(get-read-set transaction)))
(when (locked-by-other-thread-p memory-location)

(roll-back)))
(memory-location-value memory-location)))

registered-write calls obtain-lock for getting an exclusive lock on the
memory location. Subsequently, it pushes the memory location and its current
content on the transaction’s write set. The latter is a sufficient “copy” since we
register all memory writes by default. The next two expressions are responsible
for increasing the version number and updating the “process-that-did-the-last-
write.” Subsequently the memory location’s content is replaced by the new value.
(defmethod registered-write ((memory-location versioned-memory-location) value)

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(if transaction

(obtain-lock memory-location
(lambda ()

(setf (get-write-set transaction)
(list* memory-location (memory-location-value memory-location)

(get-write-set transaction)))
(setf (process-that-did-last-write (memory-location-version memory-location))

transaction)
(incf (version-nr (memory-location-version memory-location)))
(setf (memory-location-value memory-location) value)))

(setf (memory-location-value memory-location) value))))

We also show the code for obtain-lock below, which tries to acquire the lock
(via a call to mp:process-lock), but if that fails – because another transaction
has the lock and waiting to get it takes too long – the transaction rolls back.
roll-back removes the current transaction from the current process, undoes the
writes it performed, releases its locks, removes the recorded read and write sets,
and finally, the transaction is restarted (call-next-method).
(defmethod obtain-lock ((memory-location memory-location) cont)

(let* ((lock (memory-location-lock memory-location))
(lock-is-mine (mp:process-lock lock :timeout 3)))

(if lock-is-mine (funcall cont) (roll-back))))

(defmethod roll-back :around ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(undo-writes-from-process transaction)
(release-locks transaction)
(call-next-method)))



The code for committing a transaction is shown below. It calls verify-reads
to check for data races. Recall that the read set of a transaction is modeled as a
property list: For each pair in that list, consisting of a memory location object
and its version at the time it was read, we check if the current version of the
memory location object is different from the old. If so, there is a data race and
the commit fails.

(defmethod commit :around (result)
(if (verify-reads)

(progn
(release-locks)
(call-next-method))

(roll-back)))

(defmethod verify-reads ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(loop for (memory-location version-on-read) on (get-read-set transaction) by #’cddr
when (version-changed-p memory-location version-on-read) return nil
finally (return T))))

This concludes the implementation of the STM algorithm based on 2-phase
locking. Note that the implementation is purely an extension of our memory
location and transaction abstractions: No other parts of the interpreter need to
be changed to plug in the STM.

5.2 Implementing a deferred-update STM

The second example we implement is the DSTM system by Herlihy et al. [6]. It is
a lock-free, deferred-update STM that implements a nonblocking synchronization
strategy. In DSTM, a memory location does not store one content, but two. It
also stores a reference to the transaction that did the last write of the memory
location. Depending on the status of that transaction – “active,” “aborted”
or “committed” – one content takes the role of the memory location’s content
before the last write (the “old” content) and the other plays the role of its current
content (the “new” content).

When a transaction reads a memory location, DSTM checks the status of
the transaction that performed the last write. If its status is “aborted,” then the
memory location’s “old” content is returned. Otherwise, if the status is “com-
mitted,” then the “new” value is returned. In both cases, the read is successful
and recorded in the transaction’s read set. Finally, when the status is “active,”
the memory location is in use by another transaction, and a conflict resolution
is started to see if that transaction can keep using it or hands it over.

Similarly, for writing a memory location, DSTM checks the status of the
transaction that performed the last write. Again, when the status is “active,”
the transactions negotiate for “ownership” of the memory location. Otherwise,
when the status of the transaction that performed the last write is “committed”
(or “aborted”), a new memory location object is created, with as “old” content



a copy of the old memory location’s “new” (or “old”) content and as “new”
content the write value. Additionally, the “transaction that did the last update”
of the new memory location object is set to the transaction performing the write.
Then, using a compare-and-swap operation, the old memory location object is
atomically replaced by the newly created one.2

There are two places where DSTM checks for data races. On reading a mem-
ory location, DSTM checks for write-after-read data races by checking that the
status of the transaction that did the last write is not “active.” Otherwise, that
transaction wrote a value the other transaction still had to read. On committing
a transaction, DSTM checks for read-after-write data races by going through
the transaction’s read set and checking if any of the read memory locations was
updated by another transaction in between. If so, the transaction aborts, setting
its status to “abort.” However, it is not necessary to undo any of the writes
the aborted transaction performed, as the written memory locations still have a
copy of the “old” content, and because the transaction’s status is set to “abort,”
future accesses will return this “old” content. Write-after-write data races are
avoided by DSTM, since a transaction can only obtain write access when no
other transaction is actively using the memory location, and the write access is
only given up when the transaction’s status changes to “commit” or “abort.”

5.2.1 Memory location and transaction extensions

Given the above description, we need to extend memory location objects and
transactions as follows. We create a new class dstm-memory-location for repre-
senting DSTM memory locations. We do not add new slots, but the idea is that
a memory location’s content is an instance of the class content-unit, as shown
in the code below (see the initialization of the slot memory-location-value

in make-memory-location). The class content-unit is a container for holding
the version, the “old” content and the “new” content of a memory location.
For convenience, we define methods version, memory-location-new-content
and memory-location-old-content for accessing the the latter three objects
directly from a memory location object (not shown).

(defmethod make-memory-location :around (&optional value)
(make-instance
’dstm-memory-location
:memory-location-value (make-instance ’content-unit :new-value value)))

(defclass content-unit ()
((version :initarg :version :initform (make-instance ’version) :accessor version)
(new-content :initarg :new-content :initform nil :accessor new-content)
(old-content :initarg :old-content :initform nil :accessor old-content)))

2 compare-and-swap is a known hardware primitive that atomically compares the con-
tent of a memory location to a value, and if they are the same, changes the content
of the memory location to a new, given value.



The memory-location-value reader is overridden as shown below. It dis-
patches on the status of the transaction that performed the last write: If the
status is “committed,” the transaction returns the “new” content. In case it is
“aborted,” it returns the “old content.” Otherwise, when the transaction that
performed the last write is still active, the current transaction negotiates with
that transaction to obtain access to the memory location. In our current imple-
mentation, the negotiation strategy is to simply wait, but any other strategy can
be implemented here. Also note that in case there is no transaction that per-
formed the last write – when a variable was only initialized, but never written
– then memory-location-value also returns the “new” content of the memory
location, which is set when defining a variable.
(defmethod memory-location-value ((memory-location dstm-memory-location))

(let ((last-writer (process-that-did-last-write (version memory-location))))
(cond ((or (null last-writer) (committed-p last-writer))

(memory-location-new-content memory-location))
((aborted-p last-writer)
(memory-location-old-content memory-location))

(t (negotiate-for memory-location last-writer)))))

We extend transactions with a read set and a status flag. A transaction can
be in three states: When a transaction starts, its status is set to “active,” on
roll back it is set to “aborted” and on commit to “committed.” The predicates
aborted-p, committed-p and active-p are defined for querying the status of
a transaction. Additionally, methods are defined for switching the status of a
transaction (change-status-to-aborted, change-status-to-committed and
change-status-to-active).

5.2.2 Advising access of memory locations

For DSTM, registered-read and registered-write are implemented as fol-
lows. The code for registered-read is quite straightforward: It makes an entry
in the current transaction’s read set, checks for (read after write) data races
and if that succeeds, it returns the memory location’s content, otherwise the
transaction is rolled back:
(defmethod registered-read ((memory-location dstm-memory-location))

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(when transaction

(setf (get-read-set transaction)
(list* memory-location (duplicate (version memory-location))

(get-read-set transaction)))
(if (verify-reads) (memory-location-value m)

(roll-back)))
(memory-location-value m)))

The implementation of registered-write is a bit more tricky due the use
of the mp:compare-and-swap operation.3 We first get hold of the memory lo-
cation’s content unit (see content-unit-before-write) and we create a new
3 mp:compare-and-swap is introduced in LispWorks 6.0, which is not yet publicly avail-

able, but accessible to us for testing. An alternative implementation is to use a lock.



content unit by calling make-new-content-unit-from. Subsequently, we try to
replace the memory location’s content with new-content-unit through the call
to mp:compare-and-swap. For this, the latter fetches again what is in the slot
memory-location-value of the memory location object and compares it to the
previously fetched content-unit-before-write. When the compare-and-swap
fails, because these two do not point to the same object anymore, we know
that in between time, the memory location’s content was updated by another
transaction. To resolve this, the current transaction is rolled back and restarted.

(defmethod registered-write ((memory-location dstm-memory-location) new-val)
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(if transaction
(let ((content-unit-before-write (slot-value memory-location ’memory-location-value))

(new-content-unit
(make-new-content-unit-from content-unit-before-write new-val transaction)))

(unless (mp:compare-and-swap (slot-value memory-location ’memory-location-value)
content-unit-before-write new-content-unit)

(roll-back)))
(setf (memory-location-value memory-location) new-val))))

On committing a transaction, we verify if the transaction is involved in a read-
after-write conflict: See the call to verify-reads in the code below. If there is
no conflict, the transaction’s status is changed to “committed”, otherwise the
the transaction is rolled back.

(defmethod commit :around (result)
(if (verify-reads)

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(change-status-to-committed transaction)
(call-next-method))

(roll-back)))

Rolling back a transaction in DSTM is quite cheap: We just change its status
to “aborted.” Then the transaction can safely restart. There is no need to roll
back any of the side effects it performed, since memory locations store a copy
of the content before the transaction performed any update, and that copy will
from then on be accessed by other transactions.

(defun roll-back :around ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(change-status-to-aborted transaction)
(call-next-method)))

That’s it for the implementation of the DSTM algorithm. We stress again
that the implementation is purely an extension of our memory location and
transaction abstractions, and that there is no other parts of the interpreter that
needs to be changed to plug in the STM.

6 Discussion and Related Work

The implementation of the STMs we just discussed shows that it is indeed pos-
sible to use our memory location model for implementing STMs as plugins. We



now address our original claim, that it is much harder to implement STM as part
of a language that doesn’t provide reflective access to explicit memory locations.

Assume we try to implement STM on top of plain Common Lisp. Common
Lisp provides some predefined data structures, like variables, cons cells, vectors,
and arrays, and ways of defining new user-defined data structures using defstruct,
defclass and define-condition. This means that the number of potential datatypes
in Common Lisp is open-ended, which is true for most general-purpose languages.

It is possible to implement STM algorithms for Common Lisp by deciding to
support one or more specific kinds of datastructures, for example by using custom
slot accessors in the CLOS MOP4, or by shadowing accessors for cons cells.
However, because of the open-endedness of Common Lisp, such STM libraries
can never provide complete coverage of all possible data structures.

This is also true for DSTM2, which is the only other framework with support
for implementing STM algorithms we are aware of [5]. Their approach is imple-
mented as a library for Java that takes advantage of Java’s reflection capabalities
and its class loader architecture to create new classes at runtime for speciallly
annotated Java interface definitions. These new classes contain pairs of getter
and setter methods with additional behavior as required by the various STM
algorithms, much like the adaptations of accesses to memory locations that we
described above. New STM algorithms can be plugged in that provide templates
for new such getter and setter methods. However, such STM algorithms can
only operate on instance variables of Java classes, but not, for example, on class
variables or array entries. This restriction is due to the fact that Java does not
provide reflective access to its internal representation of memory locations.

Our interpreter framework provides a single abstraction for memory loca-
tions, and guarantees that all memory accesses always go through a handful of
well-defined accessor methods. So it is sufficient to override these accessor meth-
ods once to plug in new STM algorithms, without having to do this for each and
every kind of data structure over and over again.

A current drawback of our approach is that it doesn’t pay a lot of attention to
efficiency concerns: It introduces overhead because of the wrapping of internal
representations of data structures and because each memory location access
goes through a generic function call. This is due to the fact that we focused
on illustrating the essential idea of explicit memory locations as our primary
first goal. It has been shown in the past that reflective architectures like the one
presented in this paper can indeed be implemented efficiently, but it remains to
be shown to what extent we can do this for our approach as well.
4 See for example CL-STM http://common-lisp.net/project/cl-stm/



7 Conclusions and Future Work

In this paper we have shown that if a language implementation provides reflec-
tive access to explicit memory locations, it becomes straightforward to imple-
ment both (a) a framework for software transactional memory, and (b) different
STM algorithms using this framework. We have presented a proof-of-concept
implementation in the form of a Scheme interpreter with such explicit memory
locations and subsequently implemented a deferred-update and a direct-update
STM algorithm in terms of the memory location abstraction to back our claims.

Future work includes more experiments with other STMs, to confirm that
our approach is stable enough for a wide range of such algorithms. We then
intend to investigate efficient implementation techniques, by removing overhead
that is caused (a) by unnecessary wrappers in the internal representation of basic
data types and (b) by unnecessary generic function calls for accessing memory
locations that are never accessed by more than one thread. A final path for future
work is to implement some standard benchmarks for STMs. Even without a more
efficient implementation, we can already gain interesting insights from them, by
counting the number of unnecessary rollbacks under different STM algorithms
and under different, simulated access patterns in competing threads.

References

1. C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. Stamp: Stanford trans-
actional applications for multi-processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization, September 2008.

2. R. P. Gabriel and J. McCarthy. Queue-based multi-processing lisp. In LFP ’84:
Proceedings of the 1984 ACM Symposium on LISP and functional programming,
pages 25–44, New York, NY, USA, 1984. ACM.

3. T. Harris and K. Fraser. Language Support for Lightweight Transactions. OOP-
SLA’03, Proceedings, 2003.

4. T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory Transac-
tions. PLDI’06, Proceedings, 2006.

5. M. Herlihy, V. Luchanco, and M. Moir. A Flexible Framework for Implementing
Software Transactional Memory. In OOPSLA 2006, Proceedings, 2006.

6. M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software Trans-
actional Memory for Dynamic-sized Data Structures. In PODC ’03, Proceedings,
2003.

7. M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.
Optimistic parallelism requires abstractions. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and implementation,
pages 211–222, New York, NY, USA, 2007. ACM.

8. J. R. Larus and R. Rajwar. Transactional Memory. Morgan Claypool Publishers,
USA, 2007.

9. M. F. Ringenburg and D. Grossman. AtomCaml: First-class Atomicity via Roll-
back. ICFP’05, Proceedings, 2005.

10. N. Shavit and D. Touitou. Software Transactional Memory. In PODC ’95, Pro-
ceedings, 1995.


