
A Leasing Model to Deal with Partial Failures in
Mobile Ad hoc Networks

Elisa Gonzalez Boix ?, Tom Van Cutsem ??, Jorge Vallejos ???, Wolfgang De
Meuter, and Theo D’Hondt

Programming Technology Lab - Vrije Universiteit Brussel - Belgium
{egonzale,tvcutsem,jvallejo,wdmeuter,tjdhondt}@vub.ac.be

Abstract. In mobile ad hoc networks (MANETs) many partial failures
are the result of temporary network partitions due to the intermittent
connectivity of mobile devices. Some of these failures will be permanent
and require application-level failure handling. However, it is impossible to
distinguish a permanent from a transient failure. Leasing provides a solu-
tion to this problem based on the temporal restriction of resources. But to
date no leasing model has been designed specifically for MANETs. In this
paper, we identify three characteristics required for a leasing model to be
usable in a MANET, discuss the issues with existing leasing models and
then propose the leased object references model, which integrates leasing
with remote object references. In addition, we describe an implementa-
tion of the model in the programming language AmbientTalk. Leased
object references provide an extensible framework that allows program-
mers to express their own leasing patterns and enables both lease holders
(clients) and lease grantors (services) to deal with permanent failures.

Key words: mobile ad hoc networks, partial failures, leasing, remote
object references, language design

1 Introduction

The recent progress in the field of wireless technology has proliferated a growing
body of research that deals with mobile ad hoc networks (MANETs): networks
composed of mobile devices connected by wireless communication links with a
limited communication range. Such networks have two discriminating properties,
which clearly set them apart from traditional, fixed computer networks [13]: in-
termittent connectivity of the devices in the network (called the volatile connec-
tions phenomenon) and lack of any centralized coordination facility (called the
zero infrastructure phenomenon). The volatile connections phenomenon states

? Author funded by Prospective Research for Brussels program of the Institute for the
encouragement of Scientific Research and Innovation of Brussels (IWOIB-IRSIB).

?? Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
??? Author supported by the VariBru project of the ICT Impulse Programme of IWOIB-

ISRIB and the MoVES project of the Interuniversity Attraction Poles Programme
of the Belgian State, Belgian Science Policy.

2 Gonzalez Boix Elisa et al.

that a disconnection should not be treated as a “failure” by default: due to the
limited communication range of wireless technology, devices may move out of
earshot unannounced. The resulting disconnections are usually transient : the de-
vices may meet again requiring their connection to be re-established and allowing
their collaboration to be continued where they left off. The zero infrastructure
phenomenon states that it is more difficult to rely on server infrastructure (e.g.
a name server for service discovery) since devices spontaneously join and disjoin
the network due to their physical mobility.

Our research focuses on distributed programming language support for mo-
bile ad hoc networks. In this paper, we explore support to deal with the effects
engendered by partial failures. Due to the above mentioned phenomena, it can
be expected that many partial failures in MANETs are the result of tempo-
rary network partitions. However, not all network partitions are transient, e.g.
a remote device has crashed or has moved out of the wireless communication
range and does not return. Such permanent failures should also be dealt with
by means of compensating actions, e.g. application-level failure handling code.
Because it is impossible to distinguish a transient from a permanent failure [15],
some arbitrary criteria should be agreed upon so that a device can determine
when the logical communication with another remote device has terminated.

Leasing [5] provides a solution to this problem based on the temporal restric-
tion of resources [15]. A lease denotes the right to access a resource for a specific
duration that is negotiated by the owner of a resource and a resource claimant
(called the lease grantor and lease holder, respectively) when the access is first
requested. The advantage of leasing is that allow both lease grantor and holder
to distinguish a transient from a permanent failure by approximating perma-
nent failures as disconnections that exceed the agreed time interval. However, to
date no leasing model has been designed to operate in a mobile ad hoc network
setting where leasing needs to (1) be combined with computational models that
deal with transient failures, (2) provide different leasing patterns for the different
kinds of collaboration that can be set up in MANETs, and (3) allow both lease
holders and grantors to deal with permanent failures.

This paper proposes a leasing model specially designed for MANETs. Our
contribution lies in integrating leasing as a special kind of remote object refe-
rence, called leased object references, which tolerate both transient and perma-
nent failures. The leased object references model incorporates different leasing
patterns at its heart and allows programmers to schedule clean-up actions at
both client and server side of a leased reference upon expiration. In addition, we
describe a concrete instantiation of such a model in a distributed programming
language, called AmbientTalk [13], as an extensible framework in which many
leasing patterns can be expressed.

2 Leasing in Mobile Ad hoc Networks

In this section, we discern a number of criteria that need to be exhibited by a
leasing model for dealing with partial failures in MANETs and describe how ex-

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 3

isting leasing models for distributed computing fail to deal with them. We derive
these criteria from the analysis of an illustrative ad hoc networking application.

Throughout this paper, we assume an object-oriented system where devices
can be abstracted as a container for a set of objects implementing some function-
ality. Objects can be exported in the network either explicitly or implicitly by
passing them as parameter or return value in a message sent to a remote object.
We denote such remotely accessible objects as service objects. Service objects
can be referenced from other machines by means of remote object references.

2.1 Running example: the Mobile Music Player

Consider a music player running on mobile devices. The music player contains a
library of songs. When two people using the music player enter one another’s per-
sonal area network (defined by for example the bluetooth communication range
of their cellular phones), the music players set up a so-called ad hoc network and
exchange their music library’s list (not necessarily the songs themselves). After
the exchange, the music player can calculate the percentage of songs both users
have in common. If this percentage exceeds a certain threshold, the music player
can e.g. warn the user that someone with a similar musical taste is nearby.

MusicPlayerServiceObject@
device A

MusicPlayerServiceObject@
device B

session@
device B

openSession()

session

uploadSong(song)

'ok

endExchange()

Fig. 1. The music library exchange protocol

Figure 1 gives a graphical overview of the music library exchange protocol
modeled via a distributed object-oriented system where communication between
devices is asynchronous. The figure depicts the stages of the protocol from the
point of view of the music player on the device A. In fact, this protocol is executed
simultaneously on both devices. Once both devices have discovered each other,
the music player running on A asks the remote peer B to start a session to
exchange its library index by sending an openSession message. In response to
it, the remote peer returns a new session object which implements methods
that allow the remote music player to send song information (uploadSong) and
to signal the end of the library exchange (endExchange).

4 Gonzalez Boix Elisa et al.

2.2 Analysis

This section describes a set of criteria that need to be exhibited by a leasing
model to be used for dealing with partial failures in MANETs. While some
of the above described criteria can be observed in different leasing models for
distributed computing platforms and frameworks, to the best of our knowledge,
no single leasing model exhibits all of the criteria presented in this section.

Leasing an Intermittent Connection. A lease denotes a time restriction on
the logical connection between lease holder and grantor. At the software
level, a logical connection is represented by a communication link. Because of
the volatile connections phenomenon in MANETs, communication links are
often intermittent: devices often disconnect for an unknown period of time
and then reconnect. However, that does not imply that the logical connection
should be terminated. In our running example, once the service objects that
represent the music player application have discovered one another, they
need to set up a session to exchange their music libraries. Such a session is
leased, such that both music players can gracefully terminate the exchange
process in the face of a persistent disconnection. However, if a user moves
temporarily out of range, the resulting transient disconnection should not
cause the exchange to fail immediately as the user may reconnect. A leasing
model for MANETs must take this into account: the disconnection of a device
does not indicate that resources associated with the logical connection can
already be cleared, since the communication link may be restored later.

Leasing Patterns. Mobile ad hoc networking applications are conceived as a
collection of several devices setting up a collaboration. As different kinds
of collaboration can be set up, different kinds of leasing patterns are also
possible. In our running example, devices collaborate in the exchange of
their music library indexes. As long as the exchange is active, i.e. uploadSong
messages are received, the session should remain active. The session could
be thus exported using a lease which is automatically renewed each time it
receives a message. The lease should be then revoked either explicitly when
a client sends the endExchange message to indicate the end of the library
exchange, or implicitly if the lease time has elapsed. Other collaborations
may involve objects adhering to a single call pattern such as callback objects.
For example, in asynchronous message passing schemes, callback objects are
often passed along with a message in order for service objects to be able to
return values. These callback objects are typically remotely accessed only
once by service objects with the computed return value. In this case, a lease
which is automatically revoked upon a method call is more suitable. A leasing
model for MANETs should be flexible enough to allow developers to specify
different leasing patterns to manage the lifetime of leases.

Symmetric Expiration Handling. Leasing allows lease grantors to remain
in control of the resource by maintaining the right to free the resource once
the lease expires. In MANETs, both communicating parties should be aware
of a lease expiration since it allows them to detect a permanent disconnec-
tion. Once a lease expires, both lease holder and grantor should be able to

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 5

properly react and do some clean-up actions in order to gracefully terminate
their collaboration. In our running example, the session object is clearly
only relevant within the context of a single music library exchange. If the
exchange cannot be completed (e.g. due to a persistent network partition),
the session object and the resources allocated during the session, e.g the
partially uploaded library index, should be eventually reclaimed. A leasing
mechanism for MANETs should allow both lease holder and lease grantor
to deal with the termination of their logical connection.

2.3 Related Work

Leases were originally introduced as a fault-tolerant technique in the context of
distributed file cache consistency [5]. Jain and Kircher introduced the concept of
leasing as a software design pattern to simplify resource management in [6]. In
distributed object-oriented systems, leasing has been used to describe the lifetime
of remote objects in frameworks like Java RMI and .NET Remoting [10], and
as a general abstraction for resource management in platforms like CORBA [2]
and Jini [14]. In this section, we further evaluate these leasing mechanisms in
the light of the criteria for a leasing model in MANETs.

Java RMI In Java RMI leases are tightly coupled to the distributed garbage
collector (DGC) and are used as a way to manage the lifetime of remote objects
in a fault-tolerant fashion. Although Java RMI integrates leasing with remote
references, leases are only used to reclaim unused connected remote references.
In fact, its leasing model is combined with a synchronous communication model
(RPC) which does not decouple objects in time or synchronization [3], which
makes it unsuitable for MANETs. Leases are transparent to the programmer as
a part of the DGC and the lease duration is controlled by means of a system
property. If developers need to deviate from the default leasing behaviour, the
system provides an interface to the DGC based on so-called dirty and clean
calls. Leasing patterns need to be built on top of these low-level operations. For
example, automatic renewal of leases can be only accomplished by making low-
level dirty calls on the remote references. Expiration handling is not provided
upon lease expiration in Java RMI. If a client attempts to access a service object
whose lease expired, an exception is raised. This allows clients to schedule some
clean-up actions in the exception handler, but forces them to install exception
handlers on every remote call.

.NET Remoting framework The .NET Remoting framework incorporates
leasing in combination with the concept of sponsorship for managing the life-
time of remote objects [9]. Sponsors are third-party objects which are contacted
by the framework when a lease expires to check if that party is willing to re-
new the lease. Clients can register a sponsor on a lease and thus decide on the
lifetime of server objects. Similar to JavaRMI, the .NET Remoting framework
leases are used to reclaim unused connected remote references. In contrast to the
simplicity of the language constructs offered in JavaRMI, the .NET Remoting

6 Gonzalez Boix Elisa et al.

framework incorporates a leasing pattern at the heart of its design. Leases are
automatically extended on every call on the remote object by the time specified
in the RenewOnCallTime property. If that property is not set, lease renewal can
be achieved by registering a sponsor. Variations on the integrated pattern need
to be built on top of sponsor and lease interface abstractions. The lease interface
provides methods for overriding some leasing properties (e.g. RenewOnCallTime),
renewing the lease, and the registration of sponsors. However, no means are pro-
vided for explicit revocation of a lease. Expiration handling is not provided
either in the .NET Remoting framework. Although the system does indeed con-
tact sponsors upon lease expiration, there are no guarantees that the system will
contact the sponsor of a specific client as it may ask several sponsors until it
finds one willing to renew the lease.

CORBA Leasing has been introduced to CORBA as a technique for resource
management [2]. A broad definition of resource is adopted: a resource can be
practically any CORBA entity. In order to provide reusable leasing functional-
ity for different CORBA-based applications, leasing is modeled as a dedicated
CORBA service [2]. A resource is expected to implement two methods used by
leases to start and stop the use of the resource. A resource claimant has to obtain
a lease from a lessor in order to use such a resource. A lease offers methods to
be renewed and revoked. Two types of leases are granted depending on the type
of claimants. Observed claimants receive a lease which observes the claimant so
that if it terminates, the lease gets cancelled. The object is periodically queried
to detect if it is still alive. Due to the volatile connections phenomenon, such
leases do not seem appropriate for MANETs: the claimants may only be dis-
connected temporarily, causing the lease to be cancelled erroneously. Notified
resource claimants receive a lease which notifies the claimant as soon as it ex-
pires. The lease is then automatically renewed once at server side to give the
claimant sufficient time to renew the lease if necessary. Leasing patterns need to
be built on top of the above mentioned architecture, e.g. automatic renewal of
leases can be accomplished by making explicit renew calls on the lease interface.
Expiration handling can be achieved at client side using notified claimants.

Jini Jini is a framework built on top of Java which allows clients and services
to discover and set up an ad hoc network. Jini provides support to deal with
the fact that clients and services may join and leave the network at any time,
unannounced. Leasing was introduced to allow clients and services to leave the
network gracefully without affecting the rest of the system. However, Jini re-
lies on the communication model of Java RMI [15]. This means that transient
disconnections are not supported, i.e. a disconnection blocks the connection be-
tween objects. Although Jini’s architecture is flexible enough to accommodate a
leasing model which takes into account intermittent connections, to the best of
our knowledge, Jini does not implement this functionality. Jini advocates the use
of leasing to mediate the access to any kind of resource: objects, files, certificates
that grant the lease holder certain capabilities or even the right to request for
some actions to execute while the lease is valid. By default, leases have been

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 7

only integrated in the lookup service. Services get a lease when they advertise
themselves with the lookup service which must be explicitly renewed; if they can-
not, the lookup service will remove the service advertisement such that it does
not provide stale information. Jini provides a data structure for the systematic
renewal of a set of leases. Leasing patterns can be built using a lease renewal
service to implement the protocol to communicate with the remote server. Ex-
piration handling can be achieved at client side by registering an event listener
on a lease renewal set. When the lease is about to expire, an expiration warning
event is generated notifying all registered listeners for that set.

Leasing an Inter- Leasing Patterns Symmetric
mittent Connection Expiration Handling

Java RMI N (RPC) N (need to be built) N (no notification
upon lease expiration)

.NET Remoting N (RPC) Y (integration N (notification
Framework of a leasing pattern) not guaranteed)

CORBA N (RPC) Y (using notified and Y (only at
observer claimants) client side)

Jini N (reliance on JavaRMI) N (need to be built) Y (only at client side)

Table 1. Summary of related work

Table 1 summarizes our related work. We observe that no single approach
adheres to all of the criteria for a leasing model in MANETs. This shortcoming
forms the main motivation for our work. In particular, no approach takes into
account the intermittent connections criterion since they rely on synchronous
communication by RPC, which is not designed for MANETs. However, these
approaches provide a foundation on which we base our leasing model.

3 Leased Object References

To address all the criteria discussed in the previous section, we introduce our
leasing model for MANETs where remote object references play the role of the
lease and the service objects they refer to play the role of the resource, leading
to the concept of leased object references.

A leased object reference is a remote object reference that transparently
grants access to a service object for a limited period of time. When a client

VM BVM A

client object server object

Fig. 2. A leased object reference

8 Gonzalez Boix Elisa et al.

first references a service object, a leased reference is created and associated to
the service object. From that moment on, the client accesses the service object
transparently via the leased reference until it expires. Figure 2 illustrates an
allocated leased reference. Each end point of the leased reference has a timer
initialized with a time period which keeps track of the lease time left. When
the time period has elapsed, the access to the service object is terminated and
the leased reference is said to expire. The lifetime of leased references can be
explicitly controlled by renewing or revoking them before they expire. Once a
leased reference expires, both the client object and service object know that access
to the service object is terminated. Leased object references provide dedicated
parameter-passing semantics to ensure that all remote interactions to a service
object are subject to leasing.

Leasing an Intermittent Connection In order to abstract over the transient
disconnections inherent to MANETs, a leased reference decouples the client ob-
ject and the service object it refers to in time. This means that a client object
can send a message to the service object even if the leased reference is discon-
nected at that time. Client objects can only send messages to service objects
asynchronously : when a client object sends a message to the service object, the
message is transparently buffered in the leased reference and the client does not
wait for the message to be delivered 4. Figure 3 shows a diagram of the different
states of a leased reference. When the leased reference is connected and active,
i.e. there is network connection and the lease has not yet expired, it forwards
the buffered messages to the remote object. While disconnected, messages are
accumulated in order to be transmitted when the reference becomes reconnected
at a later point in time. When the lease expires, the client loses the means of
accessing the service object via the leased reference. Any attempt in using it will
not result in a message transmission since an expired leased reference behaves
as a permanently disconnected remote reference.

Connected
(messages are

forwarded)

Disconnected
(messages are

buffered)

Expired
(messages are

dropped)

reconnect
expireexpire

disconnect

Fig. 3. States of a leased object reference

4 We are not the first ones on providing buffering of messages, this behaviour can be
also found in the Rover toolkit [7]

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 9

Leasing Patterns Leased object references incorporate two leasing variants
on leased object references which transparently adapt their lease period under
certain circumstances. The first variant is a renew-on-call leased reference which
automatically prolongs the lease upon each method call received by the service
object. This pattern has been inspired by the renewOnCall property of the
.NET Remoting framework [9]. As long as the client uses the service object,
the leased reference is transparently renewed by the interpreter. The second
variant is a single call leased reference which automatically revokes the lease
upon performing a successful method call on the service object. Such leases are
useful for objects adhering to a single call pattern, such as callback objects. As
previously explained, callback objects are often used in asynchronous message
passing schemes in order for service object to be able to return values. These
callback objects are typically remotely accessed only once by service objects
with the computed return value. Other variants are definitely possible and can
be built on top of the leased object reference abstraction as we illustrate later
in the implementation of a concrete instantiation of the leased object references
model.

Symmetric Expiration Handling We adopt a Jini-like solution for expira-
tion handling based on event listeners which can be registered with a leased
reference at both client and server side. When the reference expires, the regis-
tered listeners are notified asynchronously. This allows client and service objects
to treat a failure as permanent (i.e. to detect when the reference is permanently
broken) and to perform appropriate compensating actions. At server side, this
has important benefits for memory management. Once all leased references to
a service object have expired, the object becomes subject to garbage collection
once it is no longer locally referenced.

Because both sides of a leased reference have a timer, no communication with
the server is required in order for a client to detect the expiration of a leased
reference. However, having a client-side and server-side timer introduces issues
of clock synchronisation. Keeping clocks synchronised is a well known problem
in distributed systems [12]. This issue is somewhat more manageable with leases
since they use time intervals rather than absolute time and the degree of pre-
cision is expected to be of the magnitude of seconds, minutes or hours. Once
the leased reference is established, the server side of the reference periodically
sends the current remaining time by piggybacking it onto application-level mes-
sages. At worst, the asynchrony causes a leased reference to be temporarily in
two inconsistent states: either the client-side of the reference expires while the
server-side is still active, or the client-side of the reference is active while the
server-side expired. In the first case, a client will not attempt a lease renewal
and thus, the server-side timer will eventually expire as well. In the second case,
when a client requests a lease renewal, the server will ignore it and the client-
side timer will expire soon thereafter. When the server-side timer is expired, the
client perceives the remote object as disconnected due to a network failure.

10 Gonzalez Boix Elisa et al.

4 Leased Object References in AmbientTalk

We have implemented leased object references in AmbientTalk, an object-
oriented programming language designed for distributed programming in mobile
ad hoc networks [13]. Before describing the concrete instantiation of the leased
object reference model, we first briefly introduce AmbientTalk. We will use the
mobile music player example introduced in Section 2.1 to illustrate the language
and the language support for leased object references.

4.1 AmbientTalk in a Nutshell

AmbientTalk is a prototype-based object-oriented distributed language. The fol-
lowing code excerpt shows the definition of a simple Song object in AmbientTalk:

def Song := object: {
def artist := nil;
def title := nil;
def init(artist, title) {

self.artist := artist; self.title := title;
};
def play() { /* play the song */ };

};
def s := Song.new("Mika", "Relax");

A prototypical song object is assigned to the variable Song. A song object
has two fields; a constructor called init in AmbientTalk, and a method play.
Sending new to an object creates a copy of that object, initialised using its init
method.

Distributed programming AmbientTalk is a concurrent actor-based lan-
guage [1]. AmbientTalk’s actors are based on the communicating event loops
model of the E language [11] in which each actor owns a set of regular objects.
Objects owned by the same actor communicate using sequential message send-
ing (expressed as o.m()), as in Java. Objects owned by different actors can only
send asynchronous messages to one another (expressed as o<-m()). This ensures
by design that all distributed communication is asynchronous.

Additionally, an actor can explicitly export objects which can then be discov-
ered by remote objects. Objects can acquire a remote reference to an object when
the remote object is implicitly parameter-passed as argument or return value in
a asynchronous message sent. Additionally, an actor can explicitly export objects
representing certain services which can then be discovered by remote objects. In
AmbientTalk, a service object is always exported together with a service type, a
descriptor used to categorise which objects export what kinds of services. One
can define event handlers that are triggered whenever a remote object of a certain
service type has become available in the network. AmbientTalk’s remote refe-
rences by default mask partial failures: messages may be sent to a disconnected
reference, where are buffered until the remote reference becomes reconnected.

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 11

4.2 Leasing in AmbientTalk

We now describe a concrete instantiation of the leased object reference model
introduced in Section 3 in the AmbientTalk language. A description of how leased
references have been implemented in AmbientTalk is postponed until Section 5.

Our language support features three different language constructs for creating
leased object references which correspond to basic leased object references and
the two variants described in Section 3. The most basic form of a leased reference
is created by the lease:for: construct which requires two parameters: an object
corresponding to the service object to which the leased reference grants access,
and an initial time period (in milliseconds). In our running example, the session
object that represents the exchange process between two music players should
be subject to leasing in order for both music players to gracefully terminate the
exchange process in the presence of network failures. Such a session object can
be leased as follows:

def leasedRef := lease: minutes(10) for: session

The leased reference created with the lease:for: construct is valid for the
given time period unless a renewal or revocation is explicitly issued. After this
time period, access to the session is terminated and the leased reference expires.
Explicit manipulation of the lifetime of a leased reference is provided by means
of the renew: and revoke: constructs. The renew: construct requests a pro-
longation of the specified leased reference with a new interval of time which can
be different than the initial time while the revoke: construct cancels the given
leased reference. Cancelling a lease is in a sense analogous to a natural expiration
of the lease, but it requires communication between the client and server side of
the leased reference.

Note that the lease:for: construct and the other two constructs (described
in the next section) are executed at the server side. The virtual machine hosting
the service object hands out the proper leased object reference to a client object.
In our running example, a music player application asks a remote peer to start a
session to exchange its library index by sending it an openSession message which
returns a new session object. The music player can then send song information
to the remote peer via the obtained leased reference as follows:

session<-uploadSong("Mika", "Relax", ...);

Because we chose to model leasing by means of a special kind of remote
object reference, the client can use the leased reference as if it were the service
object itself. The use of leasing is thus made transparent to the client.

4.3 Language constructs for Leasing Patterns

In order to create renew-on-call and single-call leases explained in Section 3,
we provide the renewOnCallLease:for: and singleCallLease:for: constructs,

12 Gonzalez Boix Elisa et al.

respectively. The renewOnCallLease:for: construct creates a leased reference
which is automatically prolonged on every remote method invocation on the
service object. When no renewal is performed due to a network partition or in
the absence of utilization, the leased reference expires once its lease time elapses.
In the running example, once a music player establishes a session with another
music player to exchange their music library index, the session should remain
active as long as the exchange is active, i.e. uploadSong messages are received.
A renew-on-call lease can be used for the session object to model that kind of
collaboration as follows:

def openSession(sessionCallback) {
def senderLib := Set.new(); // store sender’s music library in a set
def session := renewOnCallLease: minutes(10) for: (object: {
def uploadSong(artist, title, ackCallback) {
senderLib.add(Song.new(artist, title));
ackCallback<-ok(); // tell sender that song was successfully received

};
def endExchange() {
revoke: session;
def matchRatio := calculateMatchRatio(senderLib);
if: (matchRatio >= THRESHOLD) then: { // notify user of match };

};
});
sessionCallback<-receive(session); // return the session object

};

As previously mentioned, the openSession message is sent by a music player
to a remote peer which returns a session object that can be used to start a library
exchange. A session implements the uploadSong method to send song informa-
tion and the endExchange method to signal the end of the library exchange. The
session object is exported using a lease for 10 minutes which is automatically
renewed each time it receives a message. The renewal time applied on every call
is the initial interval of time specified at creation. The leased reference is revoked
either explicitly when a client sends the endExchange message to indicate the
end of the library exchange, or implicitly if the lease time has elapsed. Since the
session object was only referred to by the leased reference, it can be reclaimed
once the lease has expired. Any resources it transitively occupied such as the
partially uploaded library of songs (i.e. senderLib) can be reclaimed as well.

The singleCallLease:for: construct allows developers to create leased refe-
rences that remain valid for only a single call. In other words, the leased reference
expires after the service object receives a single message. However, if no message
has been received within the specified time interval, the leased reference also ex-
pires. As shown in the code above, the sessionCallback is parameter-passed in
the openSession message to asynchronously receive a session object. A single-
call lease can be used for unexporting this callback object upon receipt of the
receive message as follows:

remotePlayer<-openSession(
singleCallLease: minutes(10) for: (object: {

def receive(session) {
/* start to exchange of its library via the session (explained later) */

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 13

}
}));

A lease time of 10 minutes is specified to wait for the reply of the openSession
message. If a disconnection would occur after the message was sent but before
the receive reply was received, the session object could have already been allo-
cated. Since a session’s lease only lasts 10 minutes by default, it does not make
sense to wait any longer for the reply. If the session callback’s lease expires, the
music library exchange terminates before it was actually started, requiring no
additional cleanup code.

4.4 Integrating leasing with future-type message passing

In the previous section, we used an explicit callback object to return the result
of the openSession asynchronous message. This is motivated by the fact that in
AmbientTalk, an asynchronous message send has no return value by default (i.e.
it returns nil). To avoid forcing programmers to rely on explicit, separate call-
back methods to obtain the result of an asynchronous computation, future-type
message passing [16] was introduced in AmbientTalk. Futures are a classic tech-
nique to reconcile asynchronous message sends with return values, by making
an asynchronous send immediately return a future object. A future is a place-
holder for the return value of an asynchronous message send which allows the
sender of an asynchronous message to access the return value of that message at
a later point in time [16]. In our running example, we have used callback objects
to circumvent the lack of return values in asynchronous message sends. With
the introduction of futures, explicit callbacks are no longer necessary: the future
serves as an implicit callback. The asynchronous invocation of openSession can
be rewritten using futures as follows:

def sessionFuture := remotePlayer<-openSession();
when: sessionFuture becomes: { |session|
// open session with remotePlayer

}

We have integrated leasing into futures by parameter-passing a future at-
tached to an asynchronous message via a singe-call lease which either expires
due to a timeout or upon the reception of the computed return value. The time-
out for the implicit single-call lease on a future can be set by annotating the
asynchronous message with a @Due annotation as follows:

def sessionFuture := remotePlayer<-openSession()@Due(minutes(10));
when: sessionFuture becomes: { |session|
// open session with remotePlayer

}catch: TimeoutException using: { |e|
system.println("unable to open a session.");

}

In AmbientTalk, it is possible to register a block of code with a future which
is executed asynchronously when the future becomes resolved with a return value

14 Gonzalez Boix Elisa et al.

by means of the when:becomes:catch: construct. If the future is resolved to
a proper value, the block of code in the becomes: argument is applied. If the
asynchronously invoked method raises an exception, the catch: argument is
applied to the exception. A TimeoutException is raised when the future’s lease
expires. If the future is resolved, the session variable stores a leased object
reference to the remote session object. A music player then sends all of its own
songs one by one to this session object as follows:

def sessionFuture := remotePlayer<-openSession()@Due(minutes(10));
when: sessionFuture becomes: { |session|

def iterator := myLib.iterator(); // iterate over own music library
def sendNextSong() { // auxiliary function to send each song
if: (iterator.hasNext()) then: {
def song := iterator.next();
def ackFut := session<-uploadSong(song.artist,

song.title)@Due(leaseTimeLeft: session);
when: ackFut becomes: { |ack|
sendNextSong(); // recursive call to send next song info

}catch: TimeoutException using: { |e|
notification("stopping exchange: " + e)

};
} else: { session<-endExchange(); };

};
sendNextSong();

};
};

As already observed, the uploadSong method can be directly sent to the
session variable storing the leased reference as if it were the service object itself
since leasing is transparent to the client. The auxiliary function sendNextSong
sends the music player’s songs one by one to the remote session object. This
serial behaviour is guaranteed because each subsequent uploadSong message is
only sent after the previous one returned an acknowledgement. Since the return
value of the uploadSong message is only useful in the context of the current
library exchange session, it only makes sense to wait for the future resolution for
the remaining duration of the session (which can be acquired from a leased refe-
rence by means of the leaseTimeLeft: construct). If the future’s lease expires,
the library exchange is stopped without requiring additional cleanup code.

The integration of futures and leasing by means of the @Due annotation,
illustrates that low-level memory management concerns (e.g. the callback ob-
jects) can be cleanly incorporated into more high-level abstractions, decreasing
the mental overhead for the developer.

4.5 Supporting Expiration Handling

In order to allow both client and service objects to properly react to the expi-
ration of a leased reference and schedule clean-up actions, the when:expired:
construct is provided. A music player can detect when a session with a remote
music player expires as follows:

when: session expired: {
system.println("session timed out.");

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 15

// clean the partially received music library
}

The construct takes as parameters a leased reference and a block of code
that is asynchronously triggered upon the lease expiration. In the example,
when:expired: is installed at the server side so that if the exchange cannot
be completed the resources a session transitively keeps alive (i.e. the senderLib
set storing incoming songs) can be cleared.

Note that in the integration of leasing with futures, specifying a catch: block
for the TimeoutException is equivalent to install a when:expired: observer
on the future’s (server-side) lease.

5 Implementation

Leased object references have been implemented as part of the AmbientTalk
language5. The language has been implemented as an interpreter written on top
of the Java Virtual Machine which runs on the J2ME platform. The mobile
music player has been implemented and tested on HTCP3650 Touch Cruise
smartphones connected by a WiFi network. In this section, we describe the
necessary features of the implementation of leased object references to show
how custom leasing patterns can be expressed.

Leased references have been built reflectively in the AmbientTalk language
itself. They have been implemented as remote object references whose default
semantics has been altered using the language’s meta-object protocol (MOP) [8].
The implementation of leased references basically applies two changes to this
semantics. First, the lifetime of a remote reference is limited by means of a
timer which is initialized when the remote reference is created and associated to
a service object. Second, any asynchronous message received in a leased reference
is managed as shown in figure 3.

5.1 Leased Object References

A leased object reference is a unidirectional communication link from a client to
a service object as depicted in figure 4 with a dotted line. At the implementation
level, as also shown in figure 4, a leased reference actually consists of an ensemble
of object references and two set of objects at client and server side: a lease object
which implements methods for managing the life cycle of a leased reference, and
an interceptor object which intercepts the messages sent to the server object
and exposes the different variation points of a leased reference.

The Lease Object. A lease object contains a timer and implements methods to
handle the life cycle of a leased object reference. Figure 5 (on the left-hand side)
shows the API of the lease object. The expire method terminates the remote
5 The language is available at http://prog.vub.ac.be/amop/at/download

16 Gonzalez Boix Elisa et al.

VM BVM A

client lease
interceptor

client object server object

server lease
interceptor

Conceptual leased reference Implementation references

lease
obj

lease
obj

Fig. 4. Implementation of a leased object reference

access to the service object by taking offline the leased reference. The revoke
method is analogous to the expire method but it does not notify the expiration
observers. The renew method prolongs the lease timer with a specified renewal
time (by default set to the initial time). The given time is not directly added to
the initial time interval but, a new interval is calculated by taking the maximum
of the current time left and specified the renewal time. Finally, the whenExpired
method registers a block of code to be applied upon lease expiration.

def lease := object: {
def expire();
def revoke();
def renew(renewalTime);
def whenExpired(block);

};

def interceptor := object: {
def receive(msg, lease);
def pass(lease);
def resolve(lease);

};

Fig. 5. The lease object API (left) and the interceptor API (right)

The Interceptor API. Figure 5 (on the right-hand side) shows the API of the
interceptor object. receive is called every time an object receives a message. By
default, the server lease interceptor overrides receive to forward the messages
to the service object to which a leased reference grants access as shown below.

def receive(msg, lease) {
if: !(lease.isExpired) then: { forward(msg, lease.serviceObject) }

}

The pass and resolve methods are called when an object is marshalled and
unmarshalled to another device, respectively. Interceptors override pass and re-
solve methods to modify the parameter-passing semantics of the service object
referenced to ensure a pass-by-lease semantics. More concretely, these methods
are overridden by interceptors to create the client and server side of a leased
object reference when a service is parameter passed.

The client side of a leased reference behaves slightly different than its server
counterpart. The key difference is that it does not grant access to a service object
but to the server side of the leased reference pointing to the actual service object
(as shown in figure 4). Messages intercepted by the client lease interceptor are
forwarded to the server lease interceptor. The client side of a leased reference

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 17

also has a lease object (which maintains its own timer kept in synchronization
with its server counterpart) and its own when:expired: observers (which allow
clients to be notified upon the lease expiration reference without requiring com-
munication with the server). Another difference is that the client side of a leased
reference does not adhere to the described pass-by-lease semantics since they do
not provide access to a service object but to the server side of a leased reference.

Integrated Leasing Patterns A leased object reference created by means of
the lease: construct uses the default interceptors explained above. We now de-
scribe how such default interceptors has been extended to implement the single-
call and renew-on-call variants explained in Section 3. The single-call-lease and
renew-on-call interceptors override pass and resolve with their own specific
strategies to ensure pass-by-single-call-lease and pass-by-renew-on-call-lease se-
mantics, respectively. receive is overridden in single-call and renew-on-call in-
terceptors to provide automatic renewal and revocation of the leased reference
upon message reception, respectively as follows:

// Renew-on-call server interceptor
def receive(msg, lease) {
if: !(lease.isExpired) then: {
lease.renew(lease.renewalTime);

};
super.receive(msg);

};

// Single-call server interceptor
def receive(msg, lease) {

def result := super.receive(msg);
if: !(lease.isExpired) then: {
lease.revoke();

};
result;

};

Both server lease interceptors delegate the forwarding of the message to the
default interceptor by means of a super-send. In the case of a renew-on-call lease,
it renews its timer before delegating the forwarding of the message. In the case
of a single-call lease, it cancels its lease upon receiving a first message by calling
the revoke method, which also sets the isExpired property to true so that
future received messages are dropped.

Other Variations on Leased Object References Using the provided APIs
developers can extend the default leasing semantics to encode custom leasing
patterns. For example, in our running example, the session object is leased with
a renew-on-call lease which needs to be explicitly revoked upon the endExchange
message. We have implemented a custom interceptor and lease object to encode
this behaviour. The receive method for the interceptor is shown below:

// server interceptor
def receive(msg, lease) {
if: !(lease.isExpired) then: {

if: (lease.isRevoke(msg)) then: { lease.revoke(); }
else: { lease.renew(lease.renewalTime) };

}
}

The lease object needs has been extended with the isRevoke method which
checks if the received message should automatically revoke the lease (in the case
of the running example: if it is an endExchange message).

18 Gonzalez Boix Elisa et al.

6 Discussion

Now that the leased object references model and its instantiation in AmbientTalk
have been properly described, we evaluate them in the light of the criteria for
leasing in MANETs identified in Section 2.

Leasing an Intermittent Connection. Leased object references combine
leasing with asynchronous communication into one coherent language ab-
straction that deals with both transient and permanent disconnections. A
leased reference defines a connection which supports intermittent discon-
nections by default: client objects can send messages via a leased reference
as long as it is not expired, independently of the state of the connection,
because a leased reference buffers messages while disconnected.

Leasing Patterns. Useful leasing patterns have been made available in the
form of dedicated leased object references, e.g. renew-on-call and single-call
leases. These lease variants illustrate that managing the lifetime of leased
references can be done implicitly by means of message passing reducing the
programming effort for the developer. In addition, the lease object and in-
terceptor API explained in the implementation section form an extensible
framework in which developers can plug in their own custom leasing patterns.

Symmetric Expiration Handling. By means of the registration of dedicated
listeners triggered upon the expiration of a leased object reference, both sides
of the reference can gracefully deal with the termination of their logical
connection and schedule the appropriate compensating actions.

We consider the mobile music player application to be an illustrative example
which exhibits a set of key issues that are typical in collaborative ad hoc net-
working applications. Its implementation, shown in Section 4, demonstrates how
developers can concisely define and manipulate leased references and how the
language support eases the development of mobile applications that deal with
both transient and permanent disconnections and properly reclaim their service
objects. Thanks to the language constructs presented, its implementation counts
merely 90 lines of code. We have implemented a music player application which
exhibits similar semantics in Java RMI which counts no less than 462 lines 6.

Memory man- Concurrency Failure hand- Application Total lines
agement code control code ling code code of code

Java RMI 145 (31,38%) 148 (32,03%) 78 (16,88%) 91 (19,69%) 462

AmbientTalk 7 (7,77%) 7 (7,77%) 6 (6,66%) 70 (77,77%) 90

Table 2. Summary of the lines of code (and %) for the music player application

Table 2 summarizes the lines of code for both implementations according to
four different concerns 7: 1) memory management: includes the code to setup a
6 Both implementations are available at http://code.google.com/p/ambienttalk/downloads
7 The code for service discovery has not been taken into account in this comparison.

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 19

renew-on-call lease for the music session and reclaim the used data structures
upon lease expiration, 2) concurrency control: includes the code to ensure the
responsiveness of the application in the face of transient disconnections, 3) failure
handling: includes the code to have time-based delivery policy guarantees on
remote messages and 4) application-level code. While the application code has a
similar magnitude in both implementations, the Java RMI implementation has
required to manually deal with the following issues:

– First, programmers have to manually deal with the impact of the volatile con-
nections phenomenon on remote references. Upon a disconnection, the thread
executing a remote method call blocks (as Java RMI uses synchronous com-
munications). This makes the application unresponsive to GUI events and to
discovery events notifying new music player peers in the network. To solve
this issue, two different threads need to be spawned: a transmission thread
that sends the remote messages and a callback thread that handles the return
values. These threads need to communicate with each other by means of mes-
sage objects which wraps a remote call. Five message classes were encoded
corresponding to the different remote messages shown in figure 1. In addition,
the transmission thread must ensure that messages are buffered while the refe-
rence is disconnected. This is not required in AmbientTalk as leased references
themselves abstract the connection state.

– Second, the lifetime of Java RMI leases is controlled by the leaseValue prop-
erty which is applied to all remote objects in the entire VM. It is not possible
to specify lease periods on a per-application, per-class or per-object basis to
provide application-specific policies. This needs to be manually encoded with
timers. This property is also associated with the socked connection timeout
which controls when a remote message send fails. Thus, every remote mes-
sage send has the same timeout. In the music player application, uploadSong
and openSession messages have different delivery guarantees (specified by
the @Due annotation in our approach). In order to have similar semantics in
Java RMI, the application needs to implement its own timers and modify the
transmission thread to take into account the message expiration.

– Third, in Java RMI a remote reference is considered in use as long as the
client holds it. When the client stops using the reference, the runtime sends
an “unreferenced” control message to the server side which may be then able
to garbage collect the object (once it is no longer remotely nor locally ref-
erenced). To stop using a remote reference, clients have to explicitly make
sure to clear local references to the remote reference. For example, in the mu-
sic player application, code was added to stop the transmission and callback
threads and to remove the session from the hashmap storing active opened
sessions. If clients do not add this code, the remote object cannot be collected
unless there is a disconnection exceeding the leaseValue timeout. This code
is avoided with renew-on-call or single-call leases in AmbientTalk. Leases cre-
ated by means of lease: construct need to be manually revoked. To revoke a
lease, only one revoke message must be sent rather than having to wait for
the system to detect when the remote reference is no longer used.

20 Gonzalez Boix Elisa et al.

– Fourth, Java RMI does not provide a renew-on-call lease pattern as the one
used in the music player application. Rather, the client-side runtime system
renews the lease to a remote object implicitly once the leaseValue reaches half
of its value. This leads to unnecessary network traffic since control messages
are sent to keep a remote object alive which may not be used anymore. To
implement a renew-on-call pattern in Java RMI, the system provides the dgc
interface which is not extensible. The interface is not meant to be used by
application programmers, thus the pattern needs to be implemented explicitly
requiring repetitive renewal code at client and server-side.

– Finally, no notification is performed in Java RMI upon lease expiration. Client
objects are notified of the expiration of a lease only if they issue a remote
method call upon an expired lease (which throws an exception). At server
side, only when all clients disconnect, the unreferenced method is called on
a remote object. In the music player application, the registration of listeners
with leases had to be explicitly encoded. In AmbientTalk, dedicated language
constructs are provided for the registration of expiration listeners at both sides
of the leased reference.

7 Conclusion and Future Work

This paper focuses on the use of leasing for dealing with partial failures in mobile
ad hoc networks. We identify a number of criteria for a leasing model specially
designed for MANETs. We require a leasing model that (1) takes into account
the volatile connections phenomenon, (2) provides different leasing patterns to
manage the lifetime of leases, and (3) allows both lease holder and grantor to
react to and schedule clean-up actions upon lease expiration. We subsequently
propose the leased object reference model which exhibits such criteria. The con-
tributions of leased object references are threefold: we provide leasing as a special
kind of remote reference which tolerates both transient and permanent discon-
nections, we design leased references as an extensible framework which integrates
useful patterns, e.g. renew-on-call and single-call leases, and we provide means
for allowing client and service objects to detect and react to a permanent failure.
The applicability of the language constructs have been assessed by means of the
development of a typical collaborative ad hoc networking application.

By making use of leased references, programmers can distinguish transient
from permanent disconnections and react accordingly. Disconnections that ex-
ceed the lease period are considered permanent requiring the collaboration be-
tween two communicating parties to be for example restarted in the music player
application. However, leasing can only provide an approximation of when a dis-
connection is permanent. The quality of the approximation depends on the accu-
racy of the selected lease period. Selecting a suitable lease period is not straight-
forward and it requires to consider the behaviour of mobile devices in the physical
world and factors such as the frequency of disconnections and reconnections. Any
leasing mechanism has to deal with this issue but it is exacerbated in MANETs
due to the unpredictability of the mobility patterns of the end-users. In future

A Leasing Model to Deal with Partial Failures in Mobile Ad hoc Networks 21

work, we would like to allow the system to choose an appropriate lease timeout
for the developer based on previously observed mobility patterns. Questions also
arise in a leasing system regarding when to renew a lease. This is in a high degree
application-specific. Although renew-on-call and single-call leases alleviate this
problem by providing automatic renewal or revocation of leases, we would like
to explore the use of leasing patterns which dynamically adapt the lease period
under certain circumstances [4], e.g. changes in the observed mobility pattern.

References

1. Agha, G. Actors: a Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. Aleksy, M., Korthaus, A., and Schader, M. Realizing the leasing concept in
corba-based applications. In Proc. of Symp. on Applied Comp. (2005), pp. 706–712.

3. Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. The
many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (2003), 114–131.

4. Gonzalez Boix, E., Vallejos, J., Van Cutsem, T., Dedecker, J., and De
Meuter, W. Context-aware leasing for mobile ad hoc networks. In ECOOP
Workshop on Object-Oriented Technology for AmI and Pervasive Comp. (2007).

5. Gray, C., and Cheriton, D. Leases: an efficient fault-tolerant mechanism for
distributed file cache consistency. In SOSP ’89: Proceedings of the twelfth ACM
symposium on Operating systems principles (NY, USA, 1989), pp. 202–210.

6. Jain, P., and Kircher, M. Leasing. In Proceedings of the 7th Patterns Languages
of Programs Conference (PLoP) (2000).

7. Joseph, A. D., de Lespinasse, A. F., Tauber, J. A., Gifford, D. K., and
Kaashoek, M. F. Rover: a toolkit for mobile information access. In Proc. of the
15th ACM Symposium on Operating Systems Principles (1995), pp. 156–171.

8. Kiczales, G., Rivieres, J. D., and Bobrow, D. G. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.

9. Lowy, J. Managing the lifetime of remote .net objects with leasing and sponsor-
ship. MSDN Library (December 2003).

10. McLean, S., Williams, K., and Naftel, J. Microsoft .Net Remoting. Microsoft
Press, Redmond, WA, USA, 2002.

11. Miller, M., Tribble, E. D., and Shapiro, J. Concurrency among strangers:
Programming in E as plan coordination. In Symp. on Trustworthy Global Com-
puting (2005), Springer, pp. 195–229.

12. Tanenbaum, A. S., and Steen, M. V. Distributed Systems: Principles and
Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

13. Van Cutsem, T., Mostinckx, S., Elisa Gonzalez Boix, Dedecker, J., and
De Meuter, W. Ambienttalk: object-oriented event-driven programming in mo-
bile ad hoc networks. In Int. Conf. of the Chilean Comp. Science Society (2007).

14. Waldo, J. The Jini Architecture for Network-centric Computing. Commun. ACM
42, 7 (1999), 76–82.

15. Waldo, J. Constructing ad hoc networks. In IEEE Inter. Symposium on Network
Computing and Applications (NCA) (2001), p. 9.

16. Yonezawa, A., Briot, J.-P., and Shibayama, E. Object-oriented concurrent
programming in ABCL/1. In Proceedings on OOPSLA (1986), pp. 258–268.

