
Time Warp, an Approach for Reasoning over System
Histories

Verónica Uquillas Gómez
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussels
vuquilla@vub.ac.be

Andy Kellens
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussels
akellens@vub.ac.be

Johan Brichau
Université catholique de

Louvain
Place Sainte Barbe 2

B-1348 Louvain-la-Neuve
johan.brichau@uclouvain.be

Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussels
tjdhondt@vub.ac.be

ABSTRACT
The version history of a software system contains a wealth
of information that can assist developers in their daily im-
plementation and maintenance tasks. By reasoning over the
role of certain code entities in previous versions of the sys-
tem, developers can better understand their current state,
assess the required maintenance and avoid making the same
mistakes over and over again. Unfortunately, current ap-
proaches do not offer a means to easily extract specific in-
formation about the source code from such a version history.
In this paper we present Time Warp, a library of logic predi-
cates that builds on the SOUL language and the FAMIX and
Hismo meta-models and that allows writing queries about
the history of a system. By means of a number of concrete
examples, we demonstrate how our approach can be used
to express interesting queries over the version history of a
system.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification

General Terms
Verification

Keywords
Program Querying, Source-code history

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE-Evol’09, August 24–25, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-678-6/09/08 ...$10.00.

1. INTRODUCTION
Various tools have been created both in academia and

industry that, by extracting information from the source
code of a system, support developers in their everyday tasks
such as debugging, writing tests, or assessing the impact of
changes on the underlying design of a system.

One particular source of useful information is the his-
tory of a software system. During the development of a
system, it is common practice to commit subsequent ver-
sions of that system into a versioning system. Consequently,
such versioning systems contain a wealth of information con-
cerning the implementation and the evolution of the system
which can be leveraged by various tools. There exists a vast
amount of work on the mining of software repositories that
largely focusses on the extraction of interesting trends and
patterns from the version history that is contained within a
versioning repository using data mining and statistical tech-
niques. One example of such approaches is the work of Has-
san [14], who applies complexity metrics to the changes in a
system in order to predict faults in that system. Another ex-
ample is Zimmerman et al. [1], who by analysing the history
of bug reports of a system were able to empirically demon-
strate that duplicated reports provide valuable feedback to
developers. While mining the repository of a software sys-
tem is able to provide developers interesting feedback on
their systems, such approaches are ill-suited to address spe-
cific, custom enquiries that a developer wants to make about
the history of the source code of a system, such as “Find me
all classes that at one point in the history of the system
referenced classes related to logging functionality”.

Source-code query languages such as SOUL [26],
JQuery [18] and CodeQuest [13] have been proposed as a
means to write custom queries that extract information from
the source code of a system. Such query languages offer
developers a set of language constructs in order to express
custom queries in a declarative way. While these approaches
provide a relatively straight-forward way for developers to
implement queries, they only allow for reasoning about a
single snapshot, i.e. a single version of a system.

In this paper, we propose Time Warp, a research proto-
type that allows developers to query the history of the source

code of a system. Time Warp is implemented as a dedicated
library of logic predicates for SOUL [26], the Smalltalk Open
Unification Language, which is a PROLOG implementation
in Smalltalk that in the past has been proposed as a query
language for reasoning about Smalltalk, Java, C(++) and
Cobol programs. Time Warp builds upon this work by
making it possible to write queries that take the available
history of a software system into account. Since we are rea-
soning about multiple versions of a system it is necessary to
integrate the notion of time into the reasoning process (e.g.
when we want to write a query that retrieves all classes that
have been present in all versions of the system except for
the last). We achieve this by integrating temporal opera-
tions — similar to those found in temporal logic program-
ming — into our library of logic predicates. To represent an
object-oriented program, and for representing multiple ver-
sions of such a program, Time Warp respectively leverages
the FAMIX [26] and the Hismo [10] meta-models.

This paper is structured as follows. In Section 2 we
present the FAMIX and Hismo models on top of which our
tool is built. Section 3 introduces logic program querying
(i.e. the use of a logic programming language to reason
about software) and the SOUL language. Afterwards, we
describe Time Warp and the library of logic predicates for
reasoning about multiple versions of a system in Section 4.
We illustrate the use of our approach in Section 5 by explain-
ing three example queries for retrieving interesting informa-
tion from the history of a system. We provide some avenues
of future research in Section 7 after discussing related work
in Section 6.

The contributions of this paper are: (1) the proposal of the
use of dedicated querying facilities to reason over the history
of a system and (2) the definition and implementation of
Time Warp, a library of logic predicates for reasoning over
FAMIX and Hismo models.

2. FAMIX AND HISMO
To represent object-oriented programs and the history of

such programs, our approach leverages the work concerning
respectively FAMIX [26] and Hismo [10], two models which
have been developed in the context of the MOOSE analysis
platform [24].

FAMIX [5] is a language independent meta-model that
provides a generic representation of the static structure of
programs written in several object-oriented programming
languages (such as Smalltalk, Java and Python). The
FAMIX meta-model consists of a set of classes that represent
source code at the program entity level. Such classes are a
mapping of the different elements in a program (e.g. classes,
methods, attributes, comments), and of the associations be-
tween these elements (inheritance definitions, invocations of
methods, and accesses to attributes by methods). Figure 1
shows the core of the FAMIX meta-model. While the meta-
model is fairly complete, it can be easily extended in order
to incorporate other language extensions. In Time Warp, we
make use of the FAMIX meta-model in order to represent
the object-oriented programs we are querying.

Since it is our goal to reason about the history of pro-
grams, we also need a representation of said history. For
Time Warp, we use the Hismo model as such a represen-
tation. Hismo [10, 9] is a transformation of a structural
meta-model into a history-aware meta-model for modelling
the history of object-oriented languages. Key to this model

Figure 1: FAMIX core

Figure 2: Part of the Hismo meta-model

is that the history is a first-class entity that can be accessed
and manipulated by other tools. For example, this has been
used in [11] to assess the evolution of class hierarchies.

Similar to FAMIX, Hismo uses a class hierarchy to model
the different entities and relations in the version history.
It offers a means to represent the versions of a subset of
the entities that can be found in the FAMIX meta-model.
More precisely, it models the history of packages, names-
paces, classes, methods and attributes, along with the in-
heritance associations that are defined between the classes
in the FAMIX meta-model.

Figure 2 (adopted from [10]) illustrates part of the Hismo
meta-model. In a Hismo model, the history of each entity
(e.g. class, method, inheritance relationship) is represented
by a single history object, that contains a representation of
all the versions of this entity. For example, in the figure we
can see a class ClassHistory that is a representation of the
history of one particular class. Within such a class history,
each version of the class is represented by a Version object
(for the version of a class, this object is the ClassVersion).
Finally, each of these version objects contains a reference to
the actual FAMIX entity it represents.

Note that the Hismo model is dual to the FAMIX meta-
model. In other words, if there exists a relationship between
two entities (e.g. an inheritance relationship between two
classes), this also implies that there will be a relationship
between the versions of these classes in the Hismo model (see
Figure 3). Hismo models are constructed by transforming

Figure 3: Transforming a FAMIX model into a
Hismo model

snapshot meta-models, in our case FAMIX models, where
each FAMIX model represents a single version of the system.

3. THE SOUL PROGRAM QUERY LAN-
GUAGE

Time Warp is devised as a dedicated library for the
Smalltalk Open Unification Language (SOUL). SOUL is a
PROLOG implementation in Smalltalk for reasoning about
the structure of software systems. This particular use of a
logic programming language has been dubbed logic program
querying. Before explaining our approach, we briefly discuss
logic program querying and the SOUL language.

Logic program querying is the use of a logic programming
language to write meta-programs, i.e. programs that reason
about other programs. In other words, logic programs are
used to manipulate and reason about programs written in
some underlying programming language.

Logic programming languages are very suitable for writ-
ing meta-programs that reason over software [6, 20] because
they focus on what the base language does by means of en-
tities and their relations, instead of how the computations
are executed. The logic program describes knowledge about
programs written in the same or another language. In previ-
ous research, logic meta-programming has successfully been
applied in software engineering to support problems such as
the co-evolution of design and implementation [6, 20], or as
a basis for aspect-oriented programming languages [12].

SOUL [26] is a logic program querying language designed
for the reasoning of object-oriented systems, independent of
their implementation language. SOUL is written in, and ex-
ists in symbiosis with Smalltalk. Therefore, it creates a sym-
biosis between the declarative and object-oriented paradigm.
While the SOUL language is very similar to PROLOG, it
provides a number of specialised features (such as linguistic
symbiosis) that facilitate reasoning over software systems,
as well a set of logic libraries that offer dedicated predicates
for reasoning about programs written in Smalltalk, Java,
C(++) and Cobol.

These libraries of predicates are divided over a number of
predicate layers, as depicted in Figure 4.

Each layer contains a set of predicates oriented to spe-
cific reasoning tasks. The logic layer contains predicates
that implement basic logic functionality (e.g. equals, findall,
number). The representational layer reifies concepts of
the base language in order to reason about them (e.g. class,
instanceVariable, superclassOf, methodInPackage). The ba-

Figure 4: The layers of SOUL predicates

sic layer adds auxiliary predicates that facilitate reasoning
about the implementation, and raises the level of abstrac-
tion significantly (e.g. abstractClass, methodCallsMethod,
instanceVariableWithName). The design layer provides a
number of predicates that can be used to detect bad smells,
design patterns (e.g. compositePattern), and so on.

We illustrate the use and syntax of SOUL by means of a
small example, namely the identification of accessor meth-
ods in Smalltalk programs. Below shows a prototypical im-
plementation of an accessor method for an instance variable
(field) named amount.

amount
^amount

Generally in Smalltalk, accessors are implemented by a
method whose name corresponds to the instance variable
that is being accessed and that consists of a single state-
ment returning (indicated by the caret symbol) the value of
the variable. Figure 5 presents the SOUL rule that we can
write in order to retrieve all methods that follow this con-
vention. Note that this query makes use of the logic library
to reason about Smalltalk programs.

1 accessor(?class,?method,?varName) if
2 class(?class),
3 instanceVariableInClass(?varName,?class),
4 methodWithNameInClass(?method,?varName,?class),
5 methodWithReturnStatement(
6 ?method,variable(?varName))

Figure 5: Query for retrieving the accessor methods

SOUL’s syntax only differs slightly from PROLOG,
namely that SOUL uses the keyword if instead of :-

and logic variables are identified by a question mark (e.g.
?class) instead of being capitalized. The rule in Figure 5
has three logic variables, representing the class ?class of an
accessor method ?method along with the name of the vari-
able ?varName that is being accessed.

The body of the rule (lines 2 to 6) consists of four condi-
tions that make use of the library of predicates that is offered
by SOUL. An entity is considered to be an accessor method
if there exists a class ?class in the system (line 2) that has
an instance variable (line 3) ?varName. Furthermore, line 4
expresses that in this same class ?class there must also be
a method ?method with the same name as the instance vari-
able (?varName). Finally, in lines 5 and 6 we require that

this method ?method has a return statement that returns
the variable ?varName.

We already mentioned that SOUL is tightly integrated
with the underlying Smalltalk language, resulting in a sym-
biosis between both languages. This symbiosis makes it pos-
sible to include Smalltalk code into SOUL queries, either as
a logic condition or as a value that will be used in the compu-
tation. For example, the logic predicate class that we used
in the previous example is implemented using this symbiosis:

1 class(?class) if
2 member(?class, [Smalltalk allClasses])

Smalltalk blocks included into SOUL queries are indicated
by means of square brackets ([]). In the above example,
the set of all classes is computed by means of the Smalltalk
expression Smalltalk allClasses. This expression returns
a collection of all the classes that are present in the Smalltalk
system. The class predicate is defined then as all members
of this collection of classes.

4. Time Warp
In this section we explain Time Warp, our library of logic

predicates for the SOUL language that makes it possible to
reason about the history of the source code of a system.
This library of logic predicates we defined makes it possible
to expressively reason over FAMIX and Hismo models and
offers an intuitive means to query the version history of a
system. Before presenting our library of logic predicates, we
first briefly discuss temporal logic programming, an exten-
sion to logic programming which takes temporal information
into account into queries.

4.1 Temporal logic programming
The term temporal logic programming [21] has been used

to describe extensions to logic programming that integrate
temporal information and reasoning into the logical frame-
work. Temporal logic abstracts the explicit handling of time,
and queries are evaluated with respect to an implicit tem-
poral context. This general definition of temporal logic fits
exactly with our intention of reasoning about the history of
the source code of a software system.

At the level of the programming language, temporal logic
programming adds a number of concepts (meta-predicates)
to the language that can be used to reason about the un-
derlying time model. For example, temporal relationships
between facts such as current, past, previous, later, next
and so on can be used within logic rules in order to reason
over the implicit underlying time model.

In Time Warp, we apply these ideas from temporal logic
programming to reason over the temporal relationships be-
tween entities in Hismo models. As we discuss later, we do
this by implementing a set of dedicated logic predicates that
provide abstractions similar to the ones offered by tempo-
ral logic programming to reason over the time model that
is encoded in the version history as represented by Hismo
models.

4.2 Library of predicates
Time Warp offers a developer a library of logic predicates

that can be used to reason about FAMIX and Hismo models,
while taking the notion of time that is imposed by the ver-
sion history of a system into account. Similar to the design
of the libraries of predicates of SOUL for reasoning about a

single version of a system, our logic library follows a layered
design. Figure 6 shows the five layers that are present in
our system. An overview of a subset of the predicates in our
library can be found in Table 1.

Figure 6: Library of predicates of Time Warp

4.2.1 FAMIX Model layer
At the bottom of our layered architecture, we imple-

mented a layer of predicates for reasoning about FAMIX
models. For the different entities that are present in the
FAMIX meta-model, this layer contains a set of predicates
that can be used to query the corresponding FAMIX entity,
as well as the relationships that are present between the
various entities.

For example, this layer contains predicates for rea-
soning over classes such as isClass and classWith-

Name, methods (methodInClass, isAbstractMethod), fields
(attributeInClass, isPublicAttribute) and so on. Aside
from these predicates, this layer also contains predicates for
querying basic relationships between these FAMIX entities
such as inheritance relations (isSuperclassOf) and invoca-
tions (methodInvokedByMethod).

Note that since the FAMIX meta model is implemented
in Smalltalk, many of the above mentioned predicates have
been implemented by means of the symbiosis that SOUL
offers with the underlying Smalltalk language. For example,
the predicate isSuperclassOf is defined as:

1 isSuperclassOf(?superclass, ?subclass) if
2 isClass(?superclass),
3 isClass(?subclass),
4 [?subclass inheritsFrom: ?superclass]

In line 4 of this rule, the inheritance link between the two
classes is verified by explicitly invoking the inheritsFrom:

method that is defined by the FAMIX model. In other
words, this layer adds a declarative layer on top of the
FAMIX meta-model that makes use of the various abstrac-
tions that are offered by this meta-model.

4.2.2 Hismo Model layer
In this second layer we provide predicates to reason about

Hismo meta-models. Similar to the FAMIX layer, this layer
also presents a set of predicates that align with the features

Application layer
latestUseOfAttribute(?attribute,?history,?version) Finds the last version in which an unused attribute was still used
frequentlyChangedMethod(?method, ?history, ?threshold) Finds methods that were changed more than ?threshold times
classChangedBetweenFirstAndCurrentVersion(?class, ?history) Finds classes that were changed in between of the first and

current version
polymorphicMethodAddedAfterAbstractMethod(?method, ?history) Finds polymorphic methods for which the abstract

method was added after the polymorphic method

User layer
methodIsInvoked(?method) Is FAMIX method ?method invoked in one version of the system
attributeIsAccessed(?attribute) Verifies if an attribute ?attribute was used in the code
methodWasChanged(?version1, ?version2) Was a given method changed in between two versions?

Temporal Layer
previousVersionOfEntity(?previous, ?entity) Binds ?previous to the previous version of ?entity

pastVersionOfEntity(?past, ?entity) Binds ?past to a previous version of ?entity

nextVersionOfEntity(?next, ?version) Binds ?next to the next version of ?entity

laterVersionOfEntity(?later, ?entity) Binds ?later to a next version of ?entity

firstVersionOfEntity(?first, ?entity) Binds ?first to the first version of ?entity

anyVersionOfEntity(?version, ?entity) Finds any version of a particular FAMIX entity

Hismo Layer
isHistory(?history) Retrieves/verifies if ?history is a Hismo history model
isClassHistory(?history) Verifies whether ?history is a class history model
methodVersionInSystemVersion(?methodVersion, ?systemVersion) Extracts the method versions from a system version
systemVersionInHistory(?version, ?history) Binds ?version to a system version in history ?history

methodInSystemVersion(?method, ?version) Binds ?method to FAMIX methods in a system version
methodOfMethodVersion(?method, ?version) Extracts the FAMIX method from a method version
systemVersionOfEntity(?version, ?entity) Binds ?version to the system version in which ?entity occurs

FAMIX Layer
isClass(?entity) Predicate holds if ?entity is bound to a FAMIX class
isClassWithName(?class, ?name) Binds ?name to the name of FAMIX class ?class

isPublicAttribute(?attribute) Predicate holds if the field ?attribute is a public field
methodInvokedByMethod(?method, ?caller) Verifies whether method ?method is invoked by method ?caller

methodInvokesSelector(?method, ?selector) Verifies whether method ?method invokes the selector ?selector

numberOfInvocationsOfMethod(?number, ?method) Retrieves the number of times a method
is invoked in a particular FAMIX model

isSuperclassOf(?super, ?subclass) Checks whether a super class relationship holds
between ?super and ?subclass

Table 1: Sub-set of predicates of Time Warp classified by layers

presented in the history models. Remember from earlier
that Hismo contains three major kinds of entities, namely
histories, versions and snapshots of FAMIX entities. This
layer contains predicates to query all these kinds of entities.
A Hismo model consists of a number of histories, that either
represent the history of the entire system, or of a particular
entity (e.g. ClassHistory). To query these entities, this
layer offers predicates such as isHistory and isClassHis-

tory, as well as predicates such as classHistoryInHistory

to extract a class history from a particular history (i.e. a
Hismo model).

Contained within these histories are the various versions
of a particular entity that belongs to the system. For ex-
ample, a ClassHistory contains a number of ClassVersion
objects that represent each of the versions of one particular
class in the system. Predicates such as systemVersionIn-

History make it possible to query the versions of an entire
system, while predicates such as classVersionInHistory

can be used to extract the various versions of a class from a
(class) history.

Finally, each version of an entity keeps an explicit link to
the FAMIX entity for which it represents a version. There-
fore, this layer also contains predicates that query a partic-
ular system version or entity version for the corresponding
FAMIX entity. For example, for this purpose our layer offers
predicates such as classInSystemVersion to retrieve all the
FAMIX classes that are present in one particular version of
a software system, as well as predicates (such as method-

InMethodVersion) that extract the FAMIX entity from a
Version object in the Hismo meta-model. Furthermore,
this layer also contains predicates to retrieve for a partic-
ular FAMIX entity the system version in which it is present
(systemVersionOfEntity).

Similar to the FAMIX layer, most predicates in this layer
are defined by using SOUL’s symbiosis to directly access the
Hismo models that are present in the Smalltalk image.

4.2.3 Temporal layer
The temporal reasoning layer contains predicates that rea-

son over the temporal relationships between Hismo entities.
While the predicates in the Hismo layer provide a means to
reason about the various code entities, versions and histories
that are present in a Hismo model, they do not offer facili-
ties to query the temporal relationships that exist between
these entities.

The predicates in the temporal reasoning layer express the
following temporal relationships over and between Hismo
entities:

• Querying the version directly before or di-
rectly after a particular version of an entity
(previousVersionOfEntity, nextVersionOfEntity);

• Querying any older/younger version of a particular
version of an entity (pastVersionOfEntity, later-

VersionOfEntity);

• Querying the first/latest version in which a particular
entity is present (firstVersionOfEntity, lastVer-

sionOfEntity);

• Querying the current (most recent) version of the sys-
tem, finding the first (oldest) version of the system
(currentSystemVersionInHistory, firstSystemVer-
sionInHistory).

Note that we do not extend the SOUL language into a
temporal logic programming language, but rather provide
a layer of predicates that are inspired by the abstractions
offered by temporal logic. This set of predicates is specif-
ically tailored towards temporal reasoning over Hismo and
FAMIX models. Since Time Warp serves as an initial pro-
totype to experiment with the use of querying the history
of the source code of a system, we do not need the full ex-
pressivity of a temporal logic programming language, but
were able to incorporate reasoning about time in the library
of logic predicates. These predicates make the fact that we
reason about the history of a software system explicit.

4.2.4 User layer
The user layer contains a set of predicates that offer ad-

ditional, reusable abstractions on top of the predicates that
can be found in the three layers below this layer. These
predicates extract information that is not directly avail-
able from the underlying predicates, such as the method-

WasChanged predicate that verifies whether a method was
altered between two different versions of that method, or
the attributeIsAccessed predicate that verifies whether an
attribute ?attribute is accessed in the source code.

4.2.5 Applications layer
The final layer contains specific examples of applications

of Time Warp. These predicates implement various queries
for retrieving points of interest to a developer such as:

• Retrieving all classes that were added after a particular
version of the system;

• Finding all the methods/classes that changed between
the first and the current version of the system;

• Finding entities that were created in the first version
of the system and have not been altered since;

• Finding removed/renamed entities;

• Retrieving all entities that were frequently changed;

• Finding methods that are potentially deprecated and
should not be called.

In the following section, we take a look at three examples of
such predicates and how they were implemented using our
approach.

5. EXAMPLES
In this section, we show the use of Time Warp by means

of three examples that query the version history of a system
for points of interest. For each of these predicates, we dis-
cuss how they were implemented by means of the predicates
in our logic library. We applied these examples to a toy
system in order to validate their correctness. It is not our
intent to demonstrate the scalability of our approach using
these examples, but rather to show the expressiveness and
capabilities of Time Warp.

5.1 Finding and tracing back unused at-
tributes

As a first example, we demonstrate how Time Warp can
be used to express a number of rules for finding attributes

1 attributeWithoutAccesses(?attribute,?history) if
2 isHistory(?history),
3 currentSystemVersionInHistory(?version,?history),
4 attributeInSystemVersion(?attribute,?version),
5 not(attributeIsAccessed(?attribute))
6
7 latestUseOfAttribute(?attribute,?history,?version) if
8 attributeWithoutAccesses(?attribute,?history),
9 pastVersionOfEntity(?pastAttr,?attribute),

10 attributeIsAccessed(?pastAttr),
11 not(
12 and(
13 laterVersionOfEntity(?laterAttr,?pastAttr),
14 attributeIsAccessed(?laterAttr))),
15 systemVersionOfEntity(?version,?pastAttr)

Figure 7: Rules for identifying the latest version in
which a particular attribute was used.

(fields) that are no longer being accessed in the current ver-
sion of the system, and to find out the most recent version
in which they were still being used. It is not uncommon dur-
ing the development of a system that particular source-code
entities become redundant: for example, methods that no
longer get called, and so on. For a developer it is not only
interesting to know about these entities, but also to get addi-
tional information about the context in which these entities
became redundant. For example, if developers have informa-
tion about the version in which one particular source-code
entity was used for the last time, they can then further query
this version of the system in order to assess the reasons why
this entity was not used any more later on.

In Figure 7, we demonstrate two rules for retrieving all
attributes that are no longer used in the current version of
the system, along with the most recent version of the system
in which the attribute was still used. Using the predicates
offered by Time Warp, a developer can then further query
that version of the system in order to find out who used the
attribute.

First, we define an auxiliary predicate attributeWith-

outAccesses (lines 1 to 5). This predicate retrieves all the
unused attributes ?attribute that are present in the sys-
tem. This is achieved by asking the system history ?his-

tory for the current version ?version of the system (lines 2
and 3). Within this current version, we query all attributes
?attribute (line 3) that are no longer accessed anywhere in
the source code (line 4).

Lines 7 – 15 show the predicate latestUseOfAttribute

that queries the version history for the most recent version
of the system in which a currently unused variable was still
used. Line 8 uses the predicate attributeWithoutAccesses

we defined above to retrieve attributes ?attribute that are
no longer accessed. We then query the system for any past
versions ?pastAttr of this attribute (line 9), that were ac-
cessed in the version of the system in which they appeared
(line 10). Since we are interested in finding the most recent
version of the system in which the attribute was still used,
we state that there should be no later version (than version
?pastAttr) of the attribute that was still accessed (lines 11 –
14). Line 15 retrieves the system version ?version in which
the attribute ?pastAttr was most recently used.

Note however that the above rules do not retrieve at-
tributes that are not used in any versions of the system.

1 frequentlyChangedMethod(?method,?history,?threshold) if
2 isHistory(?history),
3 currentSystemVersionInHistory(?version,?history),
4 methodInSystemVersion(?method,?version),
5 countall(
6 ?vmethod,
7 and(anyVersionOfEntity(?vmethod,?method),
8 previousVersionOfEntity(?prevmethod,?vmethod),
9 methodWasChanged(?vmethod,?prevmethod)),

10 ?number),
11 [?number >= ?threshold]

Figure 8: Definition of the frequentlyChangedMethod

rule.

5.2 Frequently changed methods
The second example demonstrates the use of our approach

to implement a simple metric over the history of the source
code. More specifically, we want to retrieve all frequently
changed methods that are present in the current version of
the system. To this end, we have implemented a rule fre-

quentlyChangedMethod that is depicted in Figure 8. This
predicate queries the version history for a method ?method

that is present in the current version of the system (lines
2 to 4). For this method, we count (using the countall

higher-order predicate) the number of times ?number that
the method changed during the version history of the system
(lines 5 – 10). This is achieved by querying from within the
higher-order predicate any version ?vmethod of the method
?method, along with the version ?prevmethod that is pre-
vious to version ?vmethod. With the predicate method-

WasChanged (line 9) we verify that the method was changed
in between version ?vmethod and ?prevmethod. The method
is considered to be frequently changed if the number of
changes ?number is larger than a user-specified threshold
?threshold (line 11).

5.3 Finding possibly undesirable method in-
vocations

As a final example we demonstrate the use of our approach
to query the version history of a system for possibly unde-
sirable invocations to particular methods. Consider the sit-
uation (see Figure 9) where we have a software system with
n different versions. In previous versions of this system (e.g.
versionn−y and version0) a method m was called. In a ver-
sion versionn−x of the system that same method m does not
get called, but it is still present in the system. Afterwards
(for example in the current version of the system versionn)
this method m yet again gets called.

While the above situation does not necessarily indicate
an error in the system, it can however be interesting for a
developer to be warned about such methods that possibly
should not have been called in versionn:

• For instance, a developer might have deprecated
method m in versionn−x of the system, but did not re-
move the method due to compatibility reasons. While
it is considered good practice to indicate that the
method became deprecated (by e.g. annotating it),
the developer might have failed to do so. Any calls to
this method in a later version (versionn) can then be
considered as errors;

• Similarly, method m might have become dead code in

Figure 9: An illustration of possibly undesirable
method invocations.

versionn−x. If this dead code gets invoked afterwards,
this is a point of interest to a developer.

1 possiblyUndesiredInvocation(?method, ?history) if
2 isHistory(?history),
3 currentSystemVersionInHistory(?version,?history),
4 methodInSystemVersion(?method,?version),
5 methodIsInvoked(?method),
6 pastVersionOfEntity(?oldMethod,?method),
7 not(methodIsInvoked(?oldMethod)),
8 pastVersionOfEntity(?olderMethod,?oldMethod),
9 methodIsInvoked(?olderMethod)

Figure 10: The predicate to identify possibly unde-
sirable method invocations.

Figure 10 shows the implementation of the predicate pos-

siblyUndesiredInvocation that queries the history of a
system for the kind of methods we described above. Lines 2
and 3 of the rule retrieve the current version ?version from
a history model ?history. From this version of the system,
we retrieve methods ?method that are (possibly) invoked by
at least one other method (lines 4 and 5). As described
above, for this method ?method to be possibly undesirably
called, there should exist an old version ?oldMethod of the
method that, in the version which it belongs to, was not
invoked (lines 6 and 7). Furthermore, for this old version
?oldMethod, there should be an even older version ?older-

Method that does get invoked (lines 8 and 9).

6. RELATED WORK

Reasoning over Hismo.
In the context of the Moose project, a number of tools have
been proposed such as CodeCity [25] and Van [10] that make
use of the FAMIX and HISMO meta-models. Since the
Hismo meta-model is an object-oriented representation of
the history of a software system, this model can directly be
queried using the Smalltalk language. This however poses
two downsides. First, a user who wants to query the model
needs to be fully aware of the details of the entire model in
order to traverse it and extract the necessary information.
Our approach tries to hide the internal implementation of
Hismo as much as possible by offering a declarative means
to query Hismo models, rather than having to imperatively
traverse a Hismo model. Second, our library of predicates
introduces an explicit time model into the query language.

Logic software query languages.
The idea of using a logic programming language to query
software systems is by no means novel. One direction that
has been investigated in this field is the use of a Turing-
complete logic programming language to query the source
code of a system. For instance, the SOUL language [26] as
well as the TyRuBa language which underlies the JQuery
tool [4] use a PROLOG dialect to offer an expressive means
to query source-code entities and the relationships between
these entities.

The work of Verbaere and De Moor concerning CodeQuest
and SemmleCode [13, 3] provides a different approach that
favours performance over expressivity. Rather than using
a Turing-complete language, these approaches respectively
use Datalog [2] and QL [8], languages that only offer a sub-
set of the PROLOG language by e.g. limiting the possi-
ble forms of recursion and excluding the definition of data
structures. Using these restricted languages, they are able
to provide very efficient query languages for reasoning over
object-oriented systems.

To the best of our knowledge, the existing logic query lan-
guages however only support reasoning over a single version
of the software system. As such, our approach contributes to
this field by providing a logic library that makes it possible
to query the version history of a system.

SCQL.
Hindle and German [17] propose SCQL, a dedicated formal
model and query language for reasoning over source code
repositories. Similar to Time Warp, their approach uses a
logic query language based on first-order logic and temporal
logic to reason about version control repositories. As the
underlying model which they reason about, they propose
a graph representation of a repository containing informa-
tion about the different revisions, files and authors, and also
include information such as the commit message, the times-
tamp of the commit and so on. In contrast, our approach
does not reason about the revision history, but about the
history of the actual source code entities.

Aspect-oriented programming.
Within the field of aspect-oriented programming, the HALO
language [16] has been proposed as a means to express point-
cuts based on temporal logic programming. Using HALO, a
developer can write pointcuts that capture join points (i.e.
execution-time events) based on information that is present
in the history of all already executed join points. In this
approach, the temporal logic primitives are used to reason
about the history of join points and to write pointcut expres-
sions in terms of this history. In contrast to our approach,
HALO does not reason about the version history of the sys-
tem, but rather about the history of an execution of the
system.

Mining software repositories.
A vast amount of related research exists within the min-
ing software repositories community. These approaches use
the information that is available within traditional version-
ing systems such as CVS and Subversion in order to sup-
port several software engineering tasks. For example, data
mining techniques and heuristics/metrics have been applied
in this context as a means to extract valuable information
from software repositories. While a complete overview of

the field of mining software repositories lies outside of the
scope of this paper, we present a couple of interesting ap-
proaches. Hassan [14] proposes a technique to perform fault
prediction in a system by applying complexity metrics on
the changes that are present in the repository. Zimmerman
et al. [1] were able to identify, by studying the history of
bug reports, a positive correlation between duplicated bug
reports and the benefits in terms of additional information
that developers obtain by these duplicated reports. Source
Sticky Notes [15] is an approach that annotates a static
dependency graph of a system with useful information that
is extracted from the history of a system, as a means to
help developers to understand the context of the changes
they are applying. DynaMine [19] is a tool that applies data
mining techniques on version archives to find common usage
patterns by analyzing co-changed methods.

Approaches such as the ones described above provide de-
velopers useful information by mining the software reposi-
tory: they look for interesting/meaningful patterns and in-
formation in a repository in order to support a particular
development task. The goal of our approach is different: we
do not intend to support a particular development task but
rather offer a general platform for querying the history of
the system. Our approach however is limited to querying
the history of the source code of the system. Often, a soft-
ware repository contains other kinds of information (such as
bug reports) that is currently not leveraged by our tool.

Capturing software changes.
While the approaches described above — similar to our ap-
proach — provide an off-line analysis of the development
history, there are approaches such as SpyWare [22, 23] and
CheOPS [7] that do an on-line analysis of the source code’s
history. These approaches are tightly integrated with a de-
veloper’s environment and use this environment to moni-
tor and record the changes that the developer makes to the
source code. Based on these recorded changes, both ap-
proaches present a set of tools to aid a developer in tasks
such as program comprehension and feature composition val-
idation.

The main advantage of these approaches is that they of-
fer a very detailed model of the history of the source code
of a system. Each change that was made to the source
code is logged in the order that it happened. As such, one
can get additional information concerning e.g. the order
in which various classes in one version of the system were
modified/added. In principal, it is possible to use such a
fine-grained history model as the underlying model for our
approach. How this impacts the expressiveness and usability
of our approach is a topic for further investigation.

7. FUTURE WORK AND SUMMARY
In this paper we have presented Time Warp, a tool for

querying the version history of the source code of a system.
Our approach is based on the FAMIX and Hismo meta-
models and offers a library of dedicated predicates to reason
about these meta-models, as well as to express temporal re-
lationships between the entities in both models.

In this paper, we have demonstrated the applicability and
expressiveness of our approach by means of three small ex-
amples. By no means does this serve as a complete valida-
tion of our approach. While we have applied these examples
to a toy system in order to ensure the correctness of our

library of predicates, this does not allow us to make any
claims about the scalability of our approach when applied
to large case studies. Part of our future work therefore is to
perform a complete validation by means of reasoning over
the version history of a large-scale system such as Eclipse.

Time Warp offers a prototype implementation to demon-
strate the use of querying the version history of a system.
While our implementation was conceived as a library of logic
predicates, a further integration with the actual query lan-
guage is possible. One avenue of future research is to extend
the SOUL language itself such that it supports temporal
logic programming to reason about the history of a software
system. The library of logic predicates we presented in this
paper is sufficiently rich to reason about the FAMIX and
Hismo models. However, a full-fledged temporal program
query language would make it easier to integrate other un-
derlying time models, as well as offer a generalised declar-
ative framework for using and composing predicates that
reason about a system’s history.

While not reported in the paper, the implementation of
our approach required us to extend FAMIX and Hismo in
a number of places, in order to e.g. keep a reference to
the actual source code of methods over the entire version
history. Moreover, Hismo is implemented by storing copies
of the entire FAMIX models. We feel that such a scheme
might limit the scalability of our approach, and are planning
to investigate the incremental specification of the history
model: rather than copying the entire FAMIX model in each
of the versions, only keep track of the delta between the
various versions.

Finally, up until now we have only focussed on reasoning
over the history of the source code of the system. As has
been illustrated by the work in mining software repositories,
these repositories often also contain other useful informa-
tion such as bug reports, comments, and so on. A possible
future research track is to incorporate also these kinds of
information in the logic library.

Acknowledgments
Andy Kellens is funded by a research mandate provided by
the “Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders” (IWT Vlaanderen). This
research is supported by the IAP Programme of the Belgian
State. The authors would like to thank Kris De Schutter
and Tudor Girba for their comments on earlier drafts of this
paper.

8. REFERENCES
[1] N. Bettenburg, R. Premraj, T. Zimmerman, and

S. Kim. Duplicated bug reports considered harmful ...
really? In Proceedings of the International Conference
on Software Maintenance (ICSM), pages 337–345,
2008.

[2] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to
ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146–166, 1989.

[3] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov,
T. Ekman, N. Ongkingco, D. Sereni, and J. Tibble.
Keynote address: .ql for source code analysis. In I. C.
Society, editor, Proceedings of the seventh IEEE
International Working Conference on Source Code

Analysis and Manipulation (SCAM), pages 3–16,
Washington, DC, USA, 2007.

[4] K. De Volder. JQuery: A generic code browser with a
declarative configuration language. In Practical
Aspects of Declarative Languages, volume 3819 of
Proceedings of the ERCIM Working Group on
Software Evolution, pages 88–102. Lecture Notes in
Computer Science, 2006.

[5] S. Demeyer, S. Tichelaar, and S. Ducasse. Famix 2.1:
The famoos information exchange model. Technical
report, 2001.

[6] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts.
Co-evolution of object-oriented software design and
implementation. In International symposium on
Software Architectures and Component Technology.
Kluwer Academic Publishers, January 2000.

[7] P. Ebraert, J. Vallejos, P. Constanza, E. Van
Paesschen, and T. D’Hondt. Change-oriented software
engineering. In Proceedings of the international
conference on Dynamic languages: in conjunction with
the 15th International Smalltalk Joint Conference
2007, pages 3–24, 2007.

[8] I. Futó, F. Darvas, and P. Szeredi. The application of
PROLOG to the development of QA and DBM
systems. In H. Gallaire and J. Minker, editors, Logic
and Databases, New York, 1978.

[9] T. Girba. Modeling History to Understand Software
Evolution. PhD thesis, University of Berne,
Switzerland, November 2005.

[10] T. Girba and S. Ducasse. Modeling history to analyze
software evolution. Journal of Software Maintenance
and Evolution: Research and Practice, 18(3):207–236,
May 2006.

[11] T. Girba, M. Lanza, and S. Ducasse. Characterizing
the evolution of class hierarchies. In 9th European
Conference on Software Maintenance and
Reengineering (CSMR), pages 2–11, 2005.

[12] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
Aspect-Oriented Software Development (AOSD), pages
60–69, 2003.

[13] E. Hajiyev, M. Verbaere, O. de Moor, and K. De
Volder. CodeQuest: Querying source code with
DataLog. In Companion to the 20th annual ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 102–103, 2005.

[14] A. Hassan. Predicting faults using the complexity of
code changes. In 31st International Conference on
Software Engineering (ICSE), 2009.

[15] A. Hassan and R. Holt. Using development history
sticky notes to understand software architecture. In
Proceedings of the International Workshop on Program
Comprehension (IWPC), 2004.

[16] C. Herzeel, K. Gybels, P. Costanza, C. De Roover,
and T. D’Hondt. Forward chaining in halo: An
implementation strategy for history-based logic
pointcuts. Elsevier Journal of Computer Languages,
Systems & Structures, 2008.

[17] A. Hindle and D. German. SCQL: A formal model and
a query language for source control repositories. In
Mining Software Repositories, pages 100–105, 2005.

[18] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. In Aspect-oriented software
development, Proceedings of the second international
conference on Aspect-oriented software development
(AOSD), pages 178–187, 2003.

[19] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision
histories. SIGSOFT Software Engineering Notes,
30(5):296–305, September 2005.

[20] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts.
Co-evolving code and design with intensional views: A
case study. Elsevier Journal on Computer Languages,
Systems & Structures, 32(2-3):140–156, 2006.

[21] N. Rescher and A. Urquhart. Temporal Logic.
Springer-Verlag, 1971.

[22] R. Robbes. Mining a change-based software repository.
In Proceedings of the Fourth International Workshop
on Mining Software Repositories ICSE Workshops
MSR ’07, pages 15–15, 2007.

[23] R. Robbes and M. Lanza. Spyware: A change-aware
development toolset. Proceedings of the 30th
International Conference on Software Engineering
2008, pages 847–850, May 2008.

[24] S. Tichelaar. Modeling Object-Oriented Software for
Reverse Engineering and Refactoring. PhD thesis,
University of Berne, Switzerland, December 2001.

[25] R. Wettel and M. Lanza. Visualizing software systems
as cities. In 4th International Workshop on Visualizing
Software For Understanding and Analysis
(VISSOFT), pages 92–99, 2007.

[26] R. Wuyts. A Logic Meta-Programming Approach to
Support Co-Evolution of Object-Oriented Design and
Implementation. PhD thesis, Department of Computer
Science, Vrije Universiteit Brussel, Belgium, January
2001.

