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Abstract

Interpreters have always been popular because they allow for a rapid edit-run-debug cycle, support
advanced language features, and promote exploratory programming through the Read-Eval-Print loop
(REPL). In an interpreter implementation, there are two conceptual levels: a base level (the language
being interpreted) and the host level (the language the interpreter is written in). Features present in
both levels can often be “lifted” from the host level to the base level without much effort. For example,
garbage collection is easy to implement on an interpreter written in a language that is already garbage
collected. If a feature is missing in the host level we have no choice but to implement it ourself; if a
feature is present in the host level we can still choose to write our own implementation, often to get
more control or better efficiency. If we want to implement support for eg. first-class continuations in a
language that doesn't have them, we have to manage an explicit stack to model the evaluation process
instead of using the function call mechanism our host level provides. This leads to issues like “stack
ripping” where functions are split up to fit with this explicit stack management.

In this dissertation we propose a transformation that takes a recursive interpreter and produces an
interpreter that uses an explicit stack. We introduce a variant of the well-known CPS transformation,
which is often used in compilers. Our transformation differs from the standard CPS transformation
because it only transforms function calls related to the evaluation process. As a proof of concept
we apply this transformation on a part of an interpreter for the Pico language (a small, Scheme-like
language). Benchmarks show that the performance of our altered interpreter is comparable to the
original, hand-written interpreter.

Samenvatting

todo

Interpreters hebben altijd een hoge populariteit genoten omdat ze onder meer een snelle edit-run-debug
cyclus toelaten, ondersteuning hebben voor geavanceerde taalfeatures, en zogeheten “verkennend
programmeren” toelaten door middel van hun Read-Eval-Print loop (REPL). In elke interpreter zijn
twee niveau's aan het werk: een “base” niveau (de taal die geinterpreteerd wordt) en een “host” niveau
(de interpreter zelf). De taalfeatures die in beide levels aanwezig zijn hebben een grote invloed op de
resulterende interpreter: als een feature in de twee niveau's aanwezig is kunnen we deze van het host
niveau naar het base niveau liften, zonder veel extra werk te doen. Als er echter een taalfeature ontbreekt
of als we een taalfeature niet zonder meer willen hergebruiken (om bijvoorbeeld meer controle uit te
oefenen en een efficiëntere implementatie te krijgen) moeten we deze zelf implementeren. Dit kan soms
leiden tot een verandering in de globale structuur van de interpreter: als we bijvoorbeeld ondersteuning
voor first-class continuations willen, moeten we een expliciete stack van closures gebruiken om het
evaluatieproces te modelleren, wat betekent dat we niet langer het functie-aanroep mechanisme van
het host niveau kunnen hergebruiken. Omdat we het evaluatieproces aan de hand van deze expliciete
stack moeten schrijven, krijgen we problemen zoals “stack ripping”, wat betekent dat één conceptuele
functie verspreid wordt over verscheidene functies in ons bronbestand. In dit document stellen we een
transformatie voor die een gewone recursieve interpreter binnenneemt en een interpreter teruggeeft
die gebruik maakt van een expliciete stack. Om dit te verwezenlijken gebruiken we een variant van
de welbekende CPS-transformatie die enkel bepaalde functies transformeert en de anderen laat zoals
ze zijn. Om te bewijzen dat onze transformatie werkt zullen we deze toepassen op een deel van de
interpreter voor Pico (een kleine dynamische taal geinspireerd door Scheme). Benchmarks tonen aan dat
deze aangepaste interpreter een klein performantieverlies toont vergeleken met de originele interpreter.



i

Acknowledgements
bleh



ii

Table of Contents
1. Introduction ....................................................................................................... 1
2. Structure of interpreters ..................................................................................  3

2.1. A grasp of language features ............................................................... 4
2.1.1. Recursion ......................................................................................  4
2.1.2. Tail-call elimination  ................................................................... 4
2.1.3. Garbage collection ......................................................................  5
2.1.4. Closures ........................................................................................ 6
2.1.5. Exceptions ....................................................................................  7
2.1.6. First-class continuations ........................................................... 10

2.2. Two levels in interpreters ..................................................................  11
2.3. Interpreter structure ............................................................................ 12

2.3.1. Metacircular interpreters .........................................................  12
2.3.2. Recursive interpreters ..............................................................  13
2.3.3. Interpreters in continuation passing style ............................  13
2.3.4. Iterative interpreters with explicit stack management. .......  14

2.4. Summary ..............................................................................................  15
3. Stack ripping and explicit stack management ...........................................  16

3.1. Properties & limitations of a continuation-based interpreter ......... 17
3.2. Stack ripping ........................................................................................  19
3.3. Criteria for a solution .........................................................................  21
3.4. Related work ........................................................................................ 22

3.4.1. Pre-Scheme ................................................................................  22
3.4.2. Vmgen ........................................................................................  23
3.4.3. PyPy ...........................................................................................  25

3.5. Summary ..............................................................................................  26
4. Selective CPS transformation .......................................................................  28

4.1. Algorithm .............................................................................................. 28
4.1.1. Overview ....................................................................................  29
4.1.2. Finding special functions ......................................................... 30
4.1.3. Continuation passing style ......................................................  31
4.1.4. Closure conversion ...................................................................  33
4.1.5. Lambda-lifting ........................................................................... 34
4.1.6. Make stack management explicit ...........................................  35

4.2. Comparison with criteria ...................................................................  36
4.3. Summary ..............................................................................................  37

5. Case study: Pico .............................................................................................  38
5.1. The Pico Language ..............................................................................  38

5.1.1. Language overview ................................................................... 39
5.1.2. Pico implementations ............................................................... 40

5.2. ThunkMaster ........................................................................................ 41
5.3. Pico transformed .................................................................................  42

5.3.1. Methods ...................................................................................... 43
5.3.2. Timing results ...........................................................................  43
5.3.3. Discussion .................................................................................. 45

5.4. Implementation details ....................................................................... 46
5.5. Summary ..............................................................................................  49



Eliminating Stack Ripping in Interpreter
Implementations through Selective CPS Transformation

iii

6. Conclusion ....................................................................................................... 51
Bibliography ........................................................................................................  53



1

Chapter 1. Introduction
Interpreted languages have always been very popular both in academia and
the industry because they are very versatile, allow for a rapid write-run-
debug cycle, and provide direct interaction with the programmer thanks
to a Read-Eval-Print loop (REPL). Examples of such languages include
Scheme, Python, Smalltalk, etc. Because these languages are interpreted
instead of compiled, new features can be prototyped quickly by changing the
interpreter. Some languages even allow such extensions at runtime!

Interpreted languages often have support for interesting advanced features
like garbage collection or first-class continuations, which are part of the
reason why they are so attractive.

In an interpreter implementation, there are two conceptual levels: a base
level (the language being interpreted) and the host level (the language the
interpreter is written in). If a feature is present in both the base and host
levels it is often possible to “lift” the feature from host to base level. We still
have to allow access to the feature from the base level, but we do not have to
implement it from scratch. For example, an interpreter for a garbage collected
language which is implemented in a garbage collected language can reuse
the garbage collection from the host level.

Sometimes it is not possible to reuse features: if the host language does not
support a certain feature we have to implement that feature ourself. Even
if the host language does support a feature, we can still choose to avoid it
and write our own implementation of that feature, often because we want
more control or if we want more efficiency. A decision to implement a feature
can have an effect on the global interpreter structure though. For example, if
we add garbage collection to an existing interpreter, we have to ensure the
garbage collector knows where to find the roots of the object graph. If we
forget this, memory corruption might occur.

A good example of such a feature which affects the global interpreter
structure is support for first-class continuations: they require that the state
of the evaluation process is made explicit. This is commonly done by
maintaining an explicit stack of functions which model the evaluation
process, rather than relying on the recursion facilities of the host level.
Whenever the interpreter is asked to capture the current continuation, it
can copy this stack to memory in order to restore it some time later. The
disadvantage of this implementation strategy is that we can no longer use
the standard function calling mechanism from our host language for the
evaluation process. Interpreters that manage their run-time stack in this way
are often called continuation-passing interpreters.

Because performance is often the primary concern when writing interpreters,
people usually write interpreters in C. The C programming language was
designed for writing systems software, which means it sacrifices interesting
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features for the sake of performance. If we use C as host level for an
interpreter there will not be a lot of overlap, meaning we have to implement
a lot of features ourself. Interpreters in C often do not even use libraries
like the Boehm-Weiser garbage collection library [9] but instead implement
it themselves.

We propose a transformation that takes an interpreter written in a simple
recursive style and transforms it into an interpreter that uses explicit stack
management instead of recursion. It is based on a the continuation passing
style (CPS) transformation which is well-known and often used in compilers.
Our transformation differs from the standard CPS transformation because it
is selective: it only transforms functions that are involved in the evaluation
process. Once the CPS transformation has made the continuations explicit,
we can split them up into functions and add stack manipulation functions at
the appropriate places. The final step of the process generates C code.

To verify our approach we have taken an interpreter for Pico (a small,
dynamic language) and replaced the evaluator part with the code we
generated from a simple, recursive interpreter. We then ran a set of tests
against both the altered and the original interpreter and compared. That
is not all, however: we also ran small-scale versions of these tests on the
metacircular interpreter for Pico, running on our interpreter. Because the
metacircular interpreter uses most features in the Pico language, we know
our comparison is representative. Benchmarks show thatt the performance
of the generated interpreter is comparable to the original interpreter.

In this dissertation, we will do the following:

• We identify the two levels present in an interpreter and illustrate how their
feature sets affect the global interpreter structure (Chapter 2, Structure of
interpreters).

• Given a particular combination of host and base levels, we run into
a problem known as “stack ripping”. We describe stack ripping and
demonstrate how it affects interpreters (Chapter 3, Stack ripping and explicit
stack management).

• We formulate an algorithm based on CPS transformation that takes
recursive a recursive interpreter and turns it into an interpreter with
explicit stack management, thus eliminating stack ripping (Chapter 4,
Selective CPS transformation).

• Finally, we test our algorithm by applying it on a recursive interpreter for
the programming language Pico. We compare the interpreter generated by
our algorithm with the original interpreter (Chapter 5, Case study: Pico).
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Chapter 2. Structure of interpreters
When implementing an interpreter, we must always be aware of the two
levels that are present: a base level and a host level. The first represents the
language that is being interpreted, the second represents the language used
to build it. It should be obvious that the more features are shared by the
base and host level, the easier writing an interpreter will be. For example, if
we write a Scheme [1] interpreter using Scheme, we can reuse most of the
features available in the host level Scheme. Among others, we can use the host
Scheme's garbage collection to make the base Scheme also garbage collected.
We can similarly reuse features like tail-recursion elimination and first-class
continuations (which we will discuss in this chapter) to add support for them
to the base Scheme.

Interpreters where the languages for the base and host level are the same
are quite rare however. Often different languages are used, which means
that the shared feature set shrinks and that we will have to emulate these
features in the host level or leave them out of the base level. This becomes
obvious if we try to implement that same Scheme interpreter in the Java
programming language [7]: we can still reuse Java's garbage collection
infrastructure to manage Scheme memory, but we cannot do the same for tail-
recursion elimination or first-class continuations. If we want to emulate these
features, we find we can no longer use Java's recursion and function calling
mechanisms; we have to implement our own system for keeping track of
control flow. Our Scheme interpreter in Java will thus have to use a different
structure.

When writing an interpreter where a feature is supported by both levels, we
can also choose not to reuse the host level implementation but implement it
ourself. Often the reason for this is more control, but performance is often
the real motivation for deliberately not using features of the host level. For
example, we can write a Scheme interpreter in Scheme but manage memory
ourself using a custom garbage collector, thus giving us more control.
Because we no longer use the Scheme garbage collector this interpreter will be
structured differently from the simple Scheme interpreter in Scheme (which
strives for maximum reuse).

Since control and performance are very often important for the host level,
interpreters are primarily written in C [28]. C co-evolved with the UNIX
operating system and the main concern for its designers was performance.
This concern for performance reflects itself in the feature set: C is a very
minimalist language. Garbage collection is available, thanks to the Boehm-
Weiser garbage collection library [9], but not many people use it because it is
very general and thus not always the most efficient. People often write their
own garbage collector because they can use application-specific knowledge.

Choosing to implement our own garbage collection already has a profound
effect on the structure of an interpreter, because we have to take care not
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to reference any variables outside of the garbage collector's knowledge.
The other two features we mentioned above (first-class continuations and
tail-recursion elimination) require even more serious changes in interpreter
structure. Whenever a function calls another function, it stores a return
address on a data structure known as the call stack so the computer knows
where to go after the function has finished. But if the last thing a function
does is call another function (a tail-call), it can skip storing the return
address and let that function return to its own caller. This is what tail-
recursion elimination means. If we have to implement our own tail-recursion
elimination we have to either gain access to the call stack of the host level or
avoid using its call stack and implement our own. If we choose to make our
own we gain a lot more control, but we pay a hefty price: we can no longer
use the function call mechanism host level for most of our evaluation process.
This means that we will have to adopt a different interpreter structure.

In this section, we will first discuss some language features, of which most
need access to the call stack (Section 2.1, “A grasp of language features”).
Then we will show how the two levels in an interpreter interact (Section 2.2,
“Two levels in interpreters”). Finally, we will take a look at the different
interpreter structures that we have to use if we want to emulate certain
features (Section 2.3, “Interpreter structure”), discussing the impacts of each
structure on the resulting interpreter.

2.1. A grasp of language features
The features we present in this section are all associated with the call stack
and all have an influence on the way our interpreter is structured. We
include these features specifically because they are often available in dynamic
programming languages, which are nearly always interpreted.

2.1.1. Recursion
A language is said to support recursion if it allows functions to call
themselves. While this is a feature we nowadays take for granted, not all
languages support recursion. Among those are the FORTRAN [39] and
ALGOL 68 [45] programming languages.

2.1.2. Tail-call elimination
A special case of recursion manifests itself as tail recursion: functions that call
themselves (or others) in “tail-call position”. This is best seen intuitively as
"the very last thing a function does". For example, in the following example
all functions are tail recursive.
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Example 2.1. Examples of tail recursive function

(define (fac-iter n k)
  (if (< n 2)
    k
    (fac-iter (- n 1) (* n k))))

(define (even? x)
  (if (zero? x)
    #t
    (odd? (- x 1))))

(define (odd? x)
  (if (zero? x)
    #f
    (even? (- x 1))))

Note that the following function is NOT tail recursive:

Example 2.2. Function that looks tail recursive but isn't

(define (fac x)
  (if (< x 2)
    x
    (* x (fac (- x 1)))))

This is so because the (fac x) subexpression is not in tail-call position
whereas the call to * is.

If a language supports recursion it also supports tail-calls, but the feature
we are interested in is tail-call elimination. Elimination means that instead of
producing an extra stack frame when calling a tail recursive function, the
current stack frame is reused. This means that no matter how deep the tail
recursion goes, the stack never grows. Tail recursive functions are often used
instead of iteration constructs (while, for, etc.) in certain languages, like
Scheme [1], where they are guaranteed to be eliminated.

We must make a distinction between “hard” and “soft” tail-call elimination.
Scheme was the first language to demand that implementations do tail-call
elimination everywhere (hard) whereas languages like LISP and C offer tail-
call elimination simply as an optimization but do not guarantee it (soft). This
means that using tail recursion instead of loop constructs can cause stack
overflows.

One disadvantage of tail-call elimination are confusing stack traces when
debugging: if a function A calls B and B calls C, all in tail-call position, a stack
trace will only show C. Although this might not be a problem in a production
system, it makes debugging code in development a lot harder.

2.1.3. Garbage collection
Garbage collection was pioneered by the LISP programming language [34]
to solve the issues with manual memory management, which was the only
option available to programmers before then. Instead of manually allocating
memory for each data structure the programmer needs, he just asks the
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memory manager to allocate a chunk for him and letting the memory
manager keep track of any possible references to it. When there is no longer
enough memory to allocate, the system pauses and the garbage collector fires
up. It then does two things: first it traverses the memory and finds out which
data structures are no longer referenced by others (garbage) and then those
chunks of memory are made available for use again.

Early garbage collectors were very slow and people avoided triggering a
garbage collect for as long as possible. Over the years garbage collection
technology improved and so did processor speeds. For example, instead
of traversing all the memory, generational garbage collectors divide up
allocated memory into a set of “nurseries” according to age. The nursery
with the youngest objects is traversed first because they are more likely
to contain garbage [31]. On multiprocessor systems it is possible to run
garbage collection concurrently with the main program, without pausing
the world or simply to parallellize the garbage collector itself. As [6] claims,
concurrent garbage collection could even run while a uniprocessor system
is waiting for an I/O event. Finally, instead of doing all garbage collection
work at once it is possible to do a bit of work every time memory is needed.
Incremental garbage collection, as this technique is called, makes garbage
collection predictable and thus usable in a real-time setting [15].

Among all the programming languages available today, an increasingly
larger fraction of them is moving towards garbage collection. In dynamic
languages (Scheme, Smalltalk, etc.) garbage collection has always been a very
popular technique but only with the advent of Java did garbage collection
really become acceptable for statically typed languages. There have been
libraries for garbage collecting other statically typed languages, of course, but
they are the exception rather than the norm [9].

2.1.4. Closures
Before we explain closures, we must explain the difference between lexical
and dynamic scoping. For a long time, dynamic scoping was the default
way of looking up variables. Whenever a variable was required, the program
started walking the call stack, searching for an environment frame that
contained that variable. However, ALGOL introduced a different way of
looking up variables: lexical scoping. This meant that the interpreter would
look at the place where a variable was at the time the function was defined. An
example will show the difference:

Example 2.3. The difference between dynamic scoping and lexical scoping.

(define +PI+ 3.1415926535)

(define (area r)
  (* r r +PI+))

(let ((+PI+ 3))
  (format t "The area of a circle with radius 5 is: ~s~%" (area
 5)))
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In a language with dynamic scoping (like early version of LISP), this code
would print The area of a circle with radius 5 is: 45. Because
the function area looks up the value of the variable +PI+ using the stack, it
first encounters the let binding which assigns 3 before the global definition.
Using lexical scoping the let binding is ignored and the global definition is
used instead, because that was visible when area was defined.

With the advent of Scheme [40], which used lexical scoping instead of
dynamic scoping by default, the idea of closures grew naturally: if a
programming language has first-class functions, closures are functions that
contain references to the variables that were in scope when they were defined.
This allows interesting applications like currying, partial function application
and information hiding.

Lexical scoping is a very powerful feature: it allows for encapsulating values
in lambdas, even allowing them to maintain state visible only to them. A
good example of this is the gensym function, which generates unique symbol
names. It is very important that the names it generates are globally unique, so
the canonical implementation of gensym uses a globally unique prefix and a
counter which increments with every call. If other code can see this counter, it
is possible to forge names which will clash with ones gensym can generate so
it is important to hide it. An implementation of the gensym function which
uses closures to hide this counter from other code, is shown below.

Example 2.4. The gensym function in Scheme

(define gensym
  (let ((counter 1))
    (lambda ()
      (set! counter (+ counter 1))
      (string->symbol
        (string-append ":GENSYM"
          (number->string counter))))))

Here, an anonymous function is defined that has access to the counter
variable. Because this variable is not visible anywhere else, the anonymous
function is said to “close” over counter.

Despite the obvious benefits of functions using values visible to them at
compile time, dynamic scoping continued to be a default for a long time.
Even after Scheme, which featured lexical closures and showed the world
their benefits, was announced, dynamic scoping continued to be the default.
The reason for this was that a lot of time and effort had been put to
optimize dynamic scoping whereas lexical scoping was viewed as “slower”.
This changed with the release of the compiler for T Scheme and later the
ORBIT optimizing compiler for Scheme [29], which demonstrated how lexical
closures could be implemented efficiently.

2.1.5. Exceptions
Before exceptions, status codes were used to indicate if an operation went
well or if it encountered some error along the way. There are some drawbacks
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to using return codes for this purpose however: first of all, a return code
by itself does not contain any information beyond "something went wrong
because of <reason>". Secondly, checking for error return codes all the time
and handling the errors becomes extremely tedious and involves a lot of
runtime overhead. Finally, with return code checking and manual memory
management, programmers have to free resources at the end of a block of
code, even if there was an error along the way. This leads to excessive code
duplication and all these drawbacks combine to dwarf the actual code that
does the work in a function.

An example will make these drawbacks a bit clearer:

Example 2.5. Reading a file, with status codes

int read_file(char * filename, char ** buf) {
  int status = 0;
 char * tempbuf = NULL:
  int fd = open(filename, O_RDONLY);
  if (fd < 0) {
    perror("Cannot open file");
    return -1;
  }

  struct stat sb;
  int res = fstat(fd, &sb);
  if (res < 0) {
    perror("Cannot stat file");
    goto cleanup;
  }

  tempbuf = malloc(sb.st_size + 1);
  if (tempbuf == NULL) {
    perror("Cannot allocate memory");
    goto cleanup;
  }

  int size = read(fd, tempbuf, sb.st_size);
  if (size < 0) {
    perror("Cannot read file");
    goto cleanup2;
  }

  tempbuf[size] = '\0';
  *buf = tempbuf;

  close(fd);
  return size;

  cleanup:
 close(fd);
 if (tempbuf) free(tempbuf);
  return -1;
}

The return code of every call to a library function (open, fstat, malloc,
read) must be checked. If any of those return codes is -1 (or NULL in case of
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malloc), an error occurred. The actual type of error that occurred is stored
in a global variable called errno which is only changed if an error happens.
Note also the jumps to the cleanup label to close the file handle and free
possible allocated memory.

In 1975, John B. Goodenough introduced exceptions [21]: they represent a way
of allowing failing code to raise an error which contains information about
the type of error that happened and more importantly some extra information
about what went wrong. Exceptions that are raised can be caught either by
a handler installed at the top-level or more frequently, by a more recently
installed exception handler which can then handle the failure in an intelligent
manner.

Exceptions separate the handling of errors from the main body of code, which
makes it a lot clearer and easier to maintain. To solve the problem of resource
management, many languages have a “try..catch..finally” construct which
allows the programmer to execute some code to free up resources which is
executed regardless of any errors that occurred.

The example above looks like this in a language that has exceptions:

Example 2.6. Reading a file, with exceptions

int read_file(char * filename, char ** buf) {
 try {
  int status = 0;
  char * tempbuf = NULL:
  int fd = open(filename, O_RDONLY);

  struct stat sb;
  int res = fstat(fd, &sb);

  tempbuf = malloc(sb.st_size + 1);

  int size = read(fd, tempbuf, sb.st_size);

  tempbuf[size] = '\0';
  *buf = tempbuf;

  return size;
 } catch (Exception e) {
  if (tempbuf)
   free(tempbuf);
  cerr << "An exception occurred: " << e.getMessage() << endl;
  throw;
 } finally {
  close(fd);
 }
}

The task of closing the file has been relegated to the “finally” part of the
“try..catch..finally” construct and in case an error occurs, the exception is
printed and passed upwards.
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Some languages (like LISP and Smalltalk) take exceptions even further
and separate handling exceptions from acting on them [41]. These so
called condition handlers allow the programmer to “restart” exceptions.
For example, when a program tries to open a file which doesn't exists,
the programmer can register a restart which allows the user to supply a
new filename or tell the system to try again. Another example of this kind
of “resumable exceptions” was developed in the Smalltalk language [48].
Since exceptions were already objects and methods and instance variables
could be defined on them, they could also store the location where the error
occurred and allow the programmer to resume execution. These kind of
exceptions aren't widespread because the run-time system needs to support
resumable continuations, which requires much of the same infrastructure as
continuations.

2.1.6. First-class continuations
We already introduced both normal and restarting exceptions, and
continuations are a generalization of those concepts. We will start with
normal exceptions: whenever an exception is thrown, execution is rolled back
to the stack frame that contains the appropriate exception handler. If we
put a value in that exception, we can take it out and use it. This suggests
what is called an “escape continuation”: a continuation that aborts the current
computation when invoked and immediately returns the value it received.
Below is a small example that shows how escaping continuations work:

Example 2.7. Escaping continuations

(define (product numbers)
  (call-with-current-continuation
    (lambda (exit) (go exit numbers))))

(define (go exit numbers)
  (if (null? numbers)
    1
    (let ((first (car numbers))
          (rest  (cdr numbers)))
    (if (= first 0)
      (exit 0)
      (* first (go exit rest))))))

A bit of explanation is necessary: the product function first captures the
current continuation, which immediately returns its argument to the caller
of product. It passes that continuation to go which recursively computes
the product of the list it receives. If it encounters a zero anywhere in the
list it invokes the escape continuation. This aborts the computation and
deletes all invocations of * waiting for a second parameter. Finally, the
escape continuation in product returns zero to its caller. If go does not
encounter zero, it returns the value it computed the usuall way and the escape
continuation is not used.

“Full continuations” go beyond this simple mechanism and allow the
programmer to restart computations at an arbitrary point in time with an
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arbitrary value. The "amb evaluator", as proposed by John McCarthy in
[33], can be implemented with just a handful of lines of Scheme using
continuations [2]. Another interesting use of continuations is implementing
coroutines: processes which share a processor and transfer execution to each
other explicitly [23].

2.2. Two levels in interpreters
When implementing an interpreter, the programmer is constantly juggling
two levels in his head. The base level is the language being interpreted
and the host level is the interpreter itself. As we have already noted in
the introduction the interplay between these two strongly influences the
structure of the interpreter.

Let us take the example of a Scheme [43] interpreter written in C: in this
case we shall call Scheme the base level and C the host level. C and Scheme
do not share a lot of features: if we look at the list above, the only one
both support is recursion. C has some features Scheme doesn't have, like a
static type system, pointer arithmetic and structures, while Scheme has tail-
call elimination, support for garbage collection, closures and others. We can
illustrate this distribution of features as follows:

Host
(C)

Base
(Scheme)

Static type
system

Garbage
collection

Continuations

Closures

Recu
rsi

on Tail-call
elimination

Figure 2.1. Visualizing distribution of features between Scheme and C

Logicaly, the features only present in C do not impose a constraint. The other
parts of this diagram pose a more interesting situation: there are features
which are only present in Scheme and features that are in both languages.
An interpreter will have to emulate the first kind of features (mismatches
between C and Scheme), either by writing code or using the features that are
present in C. For example, to emulate tail-call elimination our C interpreter
could use trampolines [20].

Another example of emulating features would be to use the Boehm-Weiser
garbage collection library (which we already discussed in the introduction
[9]) to manage Scheme values. While using this library would save us from
implementing our own garbage collection, it imposes a set of constraints and
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inefficiencies because it is a general library. For example, it has no way of
knowing where on the stack we keep possible pointers to memory it manages,
so it has to be conservative and treat each value (even numbers) on the C
stack as a possible pointer to a Scheme value.

Alternatively, we can opt to not use the Boehm-Weiser GC library and
implement our own. This means that we have to put in a lot of extra work and
debugging effort to make sure our garbage collector behaves correctly, but we
get the benefit of a garbage collector tailored to our Scheme interpreter. So if
we use a local variable tagging mechanism to tell the garbage collector which
addresses contain pointers to Scheme values, it can safely ignore the rest. This
garbage collector can then be a bit more aggressive in garbage collecting, but
again there is a cost: if we forget to tag a local variable somewhere, we can
end up with dangling pointers.

As we briefly touched on in the introduction, implementing tail-recursion
elimination in C is not easily doable because we need an explicit call stack,
which C does not have. Therefore we need to manage our own. Unfortunately
this also means we cannot use the standard function call / return mechanism
for our evaluation process and thus need to go from an interpreter in a
recursive style to another structure, which we will discuss in the following
section.

2.3. Interpreter structure
As we mentioned above, we can use (or not use) any combination of features
of the host level to implement features of the base level. If we choose to not use
some features or have to implement them ourself, the way we have to write
an interpreter drastically changes. Furthermore, there are different structures
to emulate different features. We will look at a few structures that can be
used to emulate the features we listed above, with the exception of recursion,
garbage collection and closures since these do not affect the structure of an
interpreter a lot.

2.3.1. Metacircular interpreters
Metacircular interpreters provide the best possible mapping between
features of the host and the base level languages, because they are in fact the
same. Still, it is up to the programmer to choose how much of an overlap
to allow. Because the languages used in the base and host levels are the
same in a metacircular interpreter, people refer to them as “meta” and “base”
respectively.

The simplest possible metacircular interpreter for Scheme would be
something along the lines of (display (eval (read))). This does
not make all metacircular interpreters useless, however. A programmer can
slowly evolve a metacircular interpreter to use less and less of the features
of the “meta” language until the feature set is equal to some other language
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(eg. ML or C) and then port the interpreter to that language. A metacircular
interpreter can also serve to prototype language extensions to see how they
interact with the features already present before applying the change to an
interpreter written in another language.

2.3.2. Recursive interpreters
The second simplest structure for an interpreter is a recursive interpreter:
usually it is structured around a central “evaluate” function, which examines
its argument and passes control to code specific for that argument. This
kind of interpreters usually works directly on the Abstract Syntax Tree (AST)
which was generated by the parser.

Barring the case of a metacircular interpreter, recursive interpreters also try to
take maximal advantage of the feature overlap between base and host levels.
For example, an interpreter written in a language that has garbage collection
can re-use this garbage collection to offer support for it to the base level.
Another example is tail-call elimination:

Example 2.8. Tail-call elimination in a recursive interpreter

(define (evaluate-sequence stmts)
  (if (null? (cdr stmts))
    (evaluate (car stmts))
    (begin (evaluate (car stmts))
           (evaluate-sequence (cdr stmts)))))

A naïve way of writing this function would be to use the native map function:
(last (map evaluate stmts)) This code evaluates every element of
stmts and return the last element of this list. This is however not the same
as tail-call elimination, because the last evaluate is not called in tail-call
position.

2.3.3. Interpreters in continuation passing style
Whenever the base level needs some advanced control flow constructs (like
exceptions, tail-call elimination or first-class continuations) but the host
level does not have it, continuation passing style can be used to implement
them. Continuation passing style literally involves constructing and passing
around continuations which direct the flow of execution.

For example, here is a CPS version of the evaluate-sequence function
from above:

Example 2.9. evaluate-sequence in CPS

(define (evaluate-sequence stmts continuation)
  (if (null? (cdr stmts))
    (evaluate (car stmts) continuation)
    (evaluate (car stmts)
      (lambda (ignore)
        (evaluate-sequence (cdr stmts) continuation)))))
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In continuation passing interpreters, every evaluation function receives an
extra argument, continuation. This continuation expresses a computation
that expects a value and runs the rest of the evaluation process. As we can
see, expressing tail-call elimination is now possible without the host language
supporting tail-call elimination. The original Scheme interpreter [43] used
this technique together with a variable denoting "the current expression to
be evaluated".

2.3.4. Iterative interpreters with explicit stack
management.

Finally, we arrive at a form that can be used to implement almost all features
of an interpreter in almost any language in existence. The programmer
starts the evaluation process as before but instead of calling “evaluate”
recursively, puts a continuation on a stack and then transfers control over to
“evaluate”, which does whatever it needs to do (which includes putting more
continuations on the stack) and eventually the evaluation process returns,
leaving behind a value which can be passed into this continuation.

To illustrate this last style, we will adapt the evaluate-sequence snippet
to this kind of interpreter. This is code for an iterative interpreter with two
stacks: cnt-stack, which contains functions to execute, and exp-stack,
which contains values:

Example 2.10. Iterative interpreter for evaluate-sequence

(define (evaluate-sequence)
  (POP cnt-stack)
  (let ((stmts (POP exp-stack)))
    (if (null? (cdr stmts))
      (begin (PUSH cnt-stack evaluate)
             (PUSH exp-stack (car stmts)))
      (begin (PUSH cnt-stack evaluate-sequence)
             (PUSH exp-stack (cdr stmts))
             (PUSH cnt-stack ignore-value)
             (PUSH cnt-stack evaluate)
             (PUSH exp-stack (car stmts))))))

Note that none of these functions have arguments! Because they are not
supposed to be called explicitly and do not have formal argument lists they
are sometimes called thunks. It is very hard to follow what this snippet of code
does, not in the least because the order in which thunks are pushed on the
stack is the reverse of the way they are executed. Also note that each thunk
can alter the stack however it wants, meaning the programmer has to very
carefully document the stack effects of each thunk in turn.

As the code example shows, writing this kind of interpreter is very hard
and the programmer must juggle thunks and data around while simulating
a recursive process using stack manipulations. There is also a complete lack
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of type safety: because the values on the stack are no longer associated with
their types it is very easily to accidentally cast a pointer to the wrong type.

However, there are a number of advantages of this style: first of all, the
C stack is not touched because all data is stored in managed memory;
thunks that allocate memory can invoke the garbage collector before they
load values in memory. Secondly, there is no reliance on recursion anymore,
meaning we can support any control flow model we want. For example, to
support continuations we simply have to copy the two stacks to somewhere
in memory and restore them when the continuation is called. Finally, because
this style requires very little from the host level in terms of features, this style
is nearly universally applicable.

2.4. Summary
The starting point for this chapter was programming language features
which affect the call stack in some way: we have described several features,
and looked at the impact they have on a programming language. We
identified the two levels involved in writing an interpreter: the base level (the
language being interpreted) and the host level (in which the interpreter is
implemented). The feature overlap between the base and host levels turned
out to be very important for the resulting interpreter: the greater this overlap,
the less work we are forced to do. However, we can choose not to use certain
features in the host language or implement them differently. This gives us
greater control and more efficiency, but it means we have to do more work
and sometimes even change interpreter structure.

We have seen that there are different structures we can use when writing
interpreters, each with an associated burden for the programmer. We have
looked at metacircular and recursive interpreters, which rely a great deal on
the host language but are not much work to implement. If we need to support
advanced control flow features but the host level does not have them, we
can always fall back to a continuation passing style interpreter. This structure
no longer uses the function calling mechanism of the host level but manages
control flow through explicit continuations.

Finally, the very last structure we looked at was a kind of "fall-back" structure,
which does not require much from the host level but is a very cumbersome
style to write in. Instead of using closures to represent continuations we
can use an explicit stack which contains function pointers and arguments
associated with each. One of the consequences of adopting this structure: the
control flow of a function is no longer quasi-linearly represented in the source
code but scattered across a number of functions which pass control to each
other through explicit pushes and pops that operate on this explicit stack. We
will explore this further in the next chapter.
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Chapter 3. Stack ripping and explicit
stack management

In the previous chapter we described language features which was related to
the call stack and discussed how the choice of languages for the base and host
level factors into the design of an interpreter: each of those languages has a
set of features associated with it and features that are present in both levels
can often be reused. For example, if we are implementing Scheme in Scheme,
we can use this overlap to get most of the features Scheme offers without
doing much effort. We can also opt not to use the features offered by the host
level: this makes our job harder because we have to implement the missing
features ourself, but gives us more control over how these features behave at
runtime. The main reason for wanting control is often performance.

If a feature is present in the base level which the host level does not support
we need to implement this feature ourself. If we want to implement a Scheme
interpreter in C for example, we have to this a lot because it has relatively little
overlap with Scheme. One of these advanced features C does not support
are first-class continuations. We can use functions like setjmp and longjmp
to emulate escaping continuations, but that does not suffice for a Scheme
interpreter. If we want to offer full first-class continuations to our base level
we can make the evaluation process explicit by constructing closures and
passing them around. C does not have closures however, so we have to
supplant these with an external stack of function pointers and associated
data.

As one can imagine, writing code for such an interpreter with an external
stack is radically different from how we are used to programming: first of
all there is now a need for explicit stack manipulation. Because the external
stack contains the “future” associated with the current computation we can
no longer rely on the normal call/return mechanism. Secondly, the compiler
can no longer control the scope of local variables in functions for us. Since we
have to split up each function into several functions that call each other, any
variable we want to share between those functions has to be explicitly passed
around. We can also no longer trust loop constructs in our host level, because
the continuation stack does not get updated.

In this chapter, we take a deeper look at all the issues mentioned above,
starting from the basic premise of explicit stack management and identifying
what consequences this has. We start at the basic structure of an iterative
interpreter with explicit stack management and deduce necessary constraints
that such an interpreter must fulfill (Section 3.1, “Properties & limitations of a
continuation-based interpreter”). We then zoom in on a couple of issues that
are prohibitive to writing code the way we would like to (Section 3.2, “Stack
ripping”). We set up a number of criteria a solution to these problems should
fulfill (Section 3.3, “Criteria for a solution”) and finally we look at work done
by others, given those criteria (Section 3.4, “Related work”).
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3.1. Properties & limitations of a
continuation-based interpreter

In this section, we define a set of properties and limitations inherent in a
continuation-based interpreter. To do this we must keep in mind the features
unavailable because of either the language chosen or the feature set we
restrict ourself to: because we want to offer continuations and other advanced
flow constructs to the base level, we need to explicitly manage the way our
interpretation process evolved. We can do this with an external stack that
contains continuations. However, this external stack is not tied in any way
to the conventional call stack, so we must be very wary of using recursion
in our evaluation.

To make this and later points clearer, we present example code for evaluating
a table assignment (table[index] = value). This code is written with an
iterative interpreter with explicit stack management in mind:

Example 3.1. Table assignment in an iterative interpreter

(define (eval-table-assign tab idx exp)
  (PUSH TA1 idx exp)
  (evaluate tab))

(define (TA1 idx exp TAB)
  (if (is-table? TAB)
    (begin (POP)
           (PUSH TA2 exp TAB)
           (evaluate idx))
    (error "not a table" TAB)))

(define (TA2 exp TAB IDX)
  (if (and (is-number? IDX)
           (>= IDX 1)
           (<= IDX (tab-size TAB)))
    (begin (POP)
           (PUSH TA3 TAB IDX)
           (evaluate exp))
    (error "not a number / index out of range" IDX)))

(define (TA3 TAB IDX VAL)
  (POP)
  (table-set! TAB IDX VAL))

From this example a clear pattern emerges: evaluate is only ever called in
tail-call position, usually after a stack manipulation call. Because evaluate
can perform any action (including going back to a previously stored
continuation or triggering a garbage collect) we must set up an explicit
continuation instead that picks up where the original function called
evaluate. Also note that each PUSH is preceded by a POP, except in eval-
table-assign, which has the effect of replacing the continuation at the top
of the stack (the one currently executing) with a new one.
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Because we do not allow evaluate to be called in anything other than tail-call
position, this must be true for functions that call it. Let's consider a function
that tries to call eval-table-assign in non-tail-call position and uses the
result for another continuation: similar garbage collection issues arise and
any stack operations the call to the inner call to evaluate did are lost.
Therefore, any function that causes a call to evaluate anywhere in its call
graph must also be locked to tail-call position. We will call these types of
functions special functions.

Thinking about the consequences of only being able to call special functions
brings us another worrying conclusion: we can no longer use higher order
functions or common looping constructs. A common trick in interpreters is to
evaluate all arguments to a function at once: (map evaluate arguments).
In an iterative interpreter with explicit stack management we have to call
evaluate on each argument in turn, push the value on to the result list and
evaluate the next argument. The example below shows how much harder this
is:

Example 3.2. Evaluating arguments iteratively

(define (evaluate-arguments fun args)
  (let ((arglen (table-size args)))
    (if (= arglen 0)
      empty-tab
      (e-a-loop args (new-table arglen) 1))))

(define (e-a-loop args res pos)
  (if (> pos (table-size args))
    res
    (begin (PUSH e-a-helper args res pos)
           (evaluate (table-get args pos)))))

(define (e-a-helper args res pos VAL)
  (POP)
  (table-set! res pos VAL)
  (e-a-loop args res (+ pos 1)))

This function receives a table of unevaluated expressions in args and
produces a table of values. If the table is empty it returns immediately
(first removing itself from the continuation stack with POP), otherwise it
passes control to e-a-loop. On the first iteration this function replaces
the current continuation (first a POP, then a PUSH) by e-a-helper and
then asks evaluate to evaluate the first argument. When it returns, e-a-
helper assigns the value in the right position and calls e-a-loop again.
This continues until pos is past the end of the table, at which point the table
of evaluated arguments is returned.

This example also shows how little interaction there is with the garbage
collector: there are no specific calls to garbage-collect or the like. The
only call to the memory management system is the one to new-table.
If there is not enough memory available when new-table is called, the
garbage collector starts up and allocation can proceed. If we were to call
evaluate in the same function and it triggered a garbage collection, there is
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a possibility that memory is moved around. However, the garbage collector
does not know about arglen! This means the table that arglen referenced
might be moved around but the variable might not be updated to reflect this
move. Attempting to use arglen could then result in memory corruption. If
we want to sidestep this issue, we either need to register local variables with
the garbage collector or make sure we have enough memory available before
we start allocating it.

As is clear from the above paragraphs, writing code for an iterative
interpreter is not like normal programs. Program flow is no longer linear
because of all the different continuations that call each other and the intent
of the code is dwarfed by all the pushing and popping going on.

We have now explored the limitations of this kind of interpreter but we have
not fully considered the consequences of these limitations yet. In the next
section we will focus on one of these consequences, which is very similar
to a known problem in the asynchronous I/O and event driven research
communities.

3.2. Stack ripping
The term “stack ripping” was coined by Adya et al. in a paper about
cooperative task management [3]. In that paper, they discuss how
asynchronous I/O requires the programmer to break up his nice sequential
code into a number of separate source-level functions that generates requests
and register other functions as callbacks to processes the responses that come
back. They remark that for every call to an asynchronous function that occurs
within the body of a function, the function has to be split at that place
into a call and a callback. This fragmentation makes the code very hard to
read and follow compared to the sequential code it replaces. They call this
phenomenon “stack ripping”, because of the way the stack is “ripped” and
callbacks are dissociated from their originating stack frame.

call

return

...

call
call

push
cont next

cont

(a) (b)

Figure 3.1. Stack ripping: control flow

Here we see the effects of stack ripping on the control flow: instead of calling
a function and waiting for it to return as in the normal case, a function that
suffers from stack ripping must first set up a continuation, register it, and
then call a function and return. When the other function returns, a value is
produced and passed to the continuation.
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Not only does a function with stack ripping scatter its code across different
functions, it affects functions calling it as well. Take a function that does some
computations before returning a value. If a new software engineering cycle
or bug fix introduces a call to an asynchronous function in the body, it must
be split up. One part of the function will contain the code before this call and
can still be called normally by other functions, but it will not return anything:
the function is responsible for registering a callback with the scheduler, but
this callback can no longer return values to the original calling function. Thus
the calling function must either supply a continuation to the new version of
our function or be split in two itself. This process must go on until there is a
function in the call stack which already supplies a continuation, or the main
function is reached.

Finally, stack ripping transfers the responsibility of managing local variables
back to the programmer. Where a simple function call does not alter the
visibility of local variables afterwards, a function that is the result of stack
ripping must ensure its continuation can still access the values it needs.
This entails that the programmer must turn the continuation into a closure
by wrapping the continuation in a class which contains the necessary local
variables as class members for example.

Let us look back at an example to see how stack ripping manifests itself. This
example was used in the beginning of this chapter but we reproduce it here:

(define (eval-table-assign tab idx exp)
  (PUSH TA1 idx exp)
  (evaluate tab))

(define (TA1 idx exp TAB)
  (if (is-table? TAB)
    (begin (POP)
           (PUSH TA2 exp TAB)
           (evaluate idx))
    (error "not a table" TAB)))

(define (TA2 exp TAB IDX)
  (if (and (is-number? IDX)
           (>= IDX 1)
           (<= IDX (tab-size TAB)))
    (begin (POP)
           (PUSH TA3 TAB IDX)
           (evaluate exp))
    (error "not a number / index out of range" IDX)))

(define (TA3 TAB IDX VAL)
  (POP)
  (table-set! TAB IDX VAL))

As we can see, there is no clear connection between eval-table-assign
and TA3. The programmer must trace through all the intermediate functions
before finding the call to TA3. Also note that the natural order of reading is
disturbed: continuations are set up before they are called and any values they
need must be passed in explicitly.
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It might be disturbing at first to see that the variables TAB, IDX and VAL
seemingly “appear” out of nowhere. The calls to the evaluate function
generate these values and they are passed along with the stored values when
the continuations are activated. If even this simple linear process gets split
up into four source-level functions which call each other indirectly, imagine
what this code must look like for functions that contain nested loops or
mutually recursive functions!

Adya et al. alleviate the problem for asynchronous function calls by
incorporating support for both normal function calls and asynchronous
function calls in their scheduling system, but they do not solve the problem
of stack ripping. Another interesting solution is proposed by [18], which
applies a modified CPS transformation to a formalized dialect of Java to
automate the code rewriting aspect of stack ripping. This is close to what we
propose, but Fischer et al. introduce a tiny state machine into functions that
do asynchronous function calls. The table assignment example would look
something like this:

Example 3.3. Possible solution to our problem, inspired by Fischer et al.

(define (eval-table-assign tab idx exp)
  (PUSH e-t-a-helper tab idx exp 0)
  0)

(define (e-t-a-helper tab idx exp state RES)
  (POP)
  (case state
    ((0) ; set up tab evaluation
     (PUSH e-t-a-helper tab idx exp 1)
     (evaluate tab))
    ((1) ; store tab, evaluate idx
     (PUSH e-t-a-helper RES idx exp 2)
     (evaluate idx))
    ((2) ; store idx, evaluate exp
     (PUSH e-t-a-helper tab RES exp 3)
     (evaluate exp))
    ((3) ; assign and return
     (table-set! tab idx RES))))

While this looks like a rather elegant solution at first sight (note how the
code flows from top to bottom again), there are a number of problems. First
of all, this linearisation only looks nice when the process itself is linear. If
we would adapt the evaluate-arguments example above we would have
to alternate between two states, which is a bit nicer than two source-level
functions calling each other but still reduces our recursive evaluation process
to GOTOs.

3.3. Criteria for a solution
We have now outlined the situation and identified some key issues which a
candidate solution must solve or at least simplify. But we do not have any
information about the shape of such a solution! Because the issues mentioned
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above revolve mostly about human error, a candidate solution should ease
or remove human responsibilities, while maintaining functionality. We can
not change the fact that our interpreter code has to be written in C or that
it is internally an iterative interpreter. We are therefore forced to conclude a
solution should have to take the shape of a source translation utility, which
hides the above issues from the user but generates code that plays well with
them.

Having narrowed down the problem and the shape of a candidate solution,
we can start thinking about criteria we seek in a solution. The most important
ones are outlined below:

• Performance

Although we have not explicitly stated this above, the primary criterion for
most interpreter writers is performance. Since a solution should be widely
applicable it is hard to quantify this, but where possible we will compare
performance against an equivalent implementation in C.

• Control

As stated above, the reason we opt not to use certain features and
implement them ourself is control over their implementation and run-time
behavior. If a solution does not give us the same control we are back where
we started.

• Solves stack ripping

Finally, a solution must actually solve the problem we outlined above! By
this we mean the programmer should be able to keep programming in the
recursive style or at least in continuation passing style, while the resulting
interpreter should use an explicit stack for continuations.

3.4. Related work
Before we go on to describe our solution, we should spend some time looking
at existing implementations to see if we could bend one of them to our
purposes. We will look at languages, libraries and frameworks that simplify
writing an interpreter one way or another, but since interpreters and virtual
machines are very alike, we'll also consider libraries that make writing virtual
machines easier.

3.4.1. Pre-Scheme
The first language we'll look at is Pre-Scheme: a subset of Scheme which
was designed with the specific task in mind of implementing the Scheme48
virtual machine [27]. The author noticed that, although Scheme was much
more expressive, virtual machine writers almost exclusively used C because
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of performance concerns. Because there were only a few features that made
a Scheme program potentially slower than an equivalent C program, he took
out these features. Still, this left quite a few features which make Scheme
more expressive than C. Among others, Pre-Scheme has proper tail recursion,
higher order procedures, Scheme's powerful macro system and a powerful
inferencing polymorphic type system. Because the features left out aren't
often required in a virtual machine implementation, Pre-Scheme can get away
with excluding them.

One of the biggest differences with Scheme is the lack of garbage collection.
This does not impair development because a Pre-Scheme program can
be developed in a more elaborate Scheme implementation with garbage
collection, and explicit memory management can be added once the program
logic is verified. However, as a consequence of this full closures (as are
needed in certain pieces of Scheme code) are not available. The author
notes that they are either not always necessary or can be compiled away
using various compiler tricks. Finally, while the system does not handle
deallocation, it is free to allocate memory when necessary, leaving the
responsibility of freeing it to the programmer.

Pre-Scheme also has a static type system, which means that type checks
do not have to be done at runtime. This is both a blessing and a curse: it
makes the program much faster but disallows some code patterns a Scheme
programmer would consider normal, like checking the type of a value
at runtime to do different things. The type system must also account for
polymorphism in mathematical operators: it has several ways of doing this.
The simplest is to simply ignore polymorphism, which would mean that the
+ operator would only work for either fixed- or floating point numbers, not
both. For some operators this is enough but others require at least some kind
of polymorphism. Depending on the size of all the different types such a
function would process, either one function is generated which uses the tags
on values to execute the correct branch, or many copies of the function are
generated and each one is specialized for a certain type.

The author proves that because of the restrictions imposed, Pre-Scheme can
compile down to very efficient C code while still remaining expressive and
“Scheme-ish”, as demonstrated by the snippets he provides. Can we use Pre-
Scheme to solve our problem? Pre-Scheme certainly gives us the control we
want (since it's a low-level language). Likewise, Pre-Scheme is as efficient as
C so our performance criterion is also fulfilled. However, its likeness to C is
also the reason it is not a good fit for our problem: stack ripping still has to
be resolved manually.

3.4.2. Vmgen
Another tool that can be useful is Vmgen [17]: given a specification Vmgen
generates source code for a virtual machine with a lot of optimizations built-
in. The authors start from the point of view that most interpreters convert
their input code to bytecode and execute that bytecode in a virtual machine.
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They also point out that in a virtual machine a lot of code is duplicated. For
example, the code that executes an addition opcode will only differ slightly
from code that executes a subtraction opcode. Thus, they propose to abstract
away this repetitive code and automatically generate it from specifications
provided by the programmer.

Let's take a look at such a specification:

Example 3.4. Sample input for Vmgen

iadd ( i1 i2 -- i )
i = i1+i2;

This does not look like much, but it tells Vmgen a lot:

• The stack effect of iadd, namely that it takes two items off the stack and
puts back one.

• The types and order of the values on the stack.

• What names the C code uses for the values on the stack, both input and
output.

• The representation of the opcode in a stack trace.

• The representation of the opcode in a disassembly.

• The C code for this opcode.

It should be obvious that generating all this from the input saves us
from writing a lot of repetitive code. Another time- and space-saver are
“superinstructions”: instructions that combine several smaller ones. This
promotes reuse and allows the compiler to figure out what optimizations are
applicable to the resulting code.

Although Vmgen is primarily geared towards stack-based virtual machines,
it can also generate register-based virtual machines. A programmer can either
make all operations take their arguments from registers or make a hybrid
stack / register machine which is internally stack-based. In that case the
virtual machine loads its inputs from registers onto the stack, does some
work and puts the results of its opcodes back into registers at the end. This
allows Vmgen to use its knowledge and optimizations for stack-based virtual
machines to produce highly efficient operations for register-based virtual
machines, including superinstructions.

One of the optimizations Vmgen can make is caching the value at the
top of the stack in a local variable at the C level, which boils down to a
register at the assembly level. Since most operations will use the top of the
stack, this helps reduce memory access and speeds up the resulting virtual
machine. Another worthwhile optimization is combining multiple sequential
instructions into superinstructions at runtime. Finally, the Vmgen authors
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take care to optimally use the branch prediction capabilities of modern
processors by using a technique called “threaded dispatches” [16].

Does Vmgen meet our criteria? Performance is not an issue here, because
Vmgen essentially takes C code with stack effect annotations and generates
C code. On top of that, the design of the virtual machine and the various
optimizations make a Vmgen-generated a lot faster than a hand-written
one. However, we lose a bit of control because Vmgen generates the stack
manipulation code for us. Also, the stack ripping issue is not resolved: we
still have to write multiple opcodes for what would normally be one function.

3.4.3. PyPy
Finally, we take a look at PyPy, a project to write an efficient Python
interpreter which is itself written in Python. Part of the PyPy project's mission
statement reads as follows:

A common translation and support framework for producing
implementations of dynamic languages, emphasising a clean
separation between language specification and implementation
aspects.

By mechanically generating interpreter code using various backends,
they can change their interpreter implementation independently of any
transformation strategies, thus allowing users to experiment with different
interpreters by changing a setting or using a slightly different transformation.
Changes to the way the interpreter works can also rapidly be propagated to
other implementations.

The basic transformation process is as follows: first they take input code in
RPython and convert it into a flow graph, then perform type inference and
apply some chosen transformations that handle low-level implementation
details. Finally, they run the result through a language backend to generate
code. The interesting part here are those transformations: because of the way
RPython is specified, PyPy is free to choose how to implement low-level
details. This includes features like memory management (change one line and
go from reference counting to full garbage collection) to the Python stackless
transformation, which gives an interpreter the ability to run green threads.

Like Pre-Scheme, RPython programs can also be interpreted by a
Python interpreter, which speeds up debugging enormously. An RPython
interpreter can be tested and debugged using all the normal Python tools
and when development is complete, the whole can be given over to PyPy
to create a binary which can be passed out to clients or be transformed to
an application that runs inside a Java applet in a browser. The usefulness
of this easy cross-platform compatibility can further be illustrated by way
of the Jython project: it is a reimplementation of the Python interpreter and
runtime on the Java Virtual Machine [8]. Because the Jython project started
from scratch, it is still lagging behind the official Python interpreter in terms
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of features and is thus having a hard time attracting users ad developers. Had
the Python developers written Python using PyPy instead, creating Jython
would be a matter of running PyPy with the Java backend and adding some
extra runtime support to the result.

PyPy is perhaps the most interesting technology of these related
implementations we discuss, but it has some pretty serious restrictions too.
Because it is built around an interpreter for a small, dynamic language with
a lot of advanced features, the features already present in Python are already
available, which is good. There are some interesting transformations, like
the stackless transformation which allows the resulting program to trivially
support coroutines and green threads. It was first developed independently
[44] and later picked up by the PyPy project [10].

Is PyPy sufficient for our needs? The performance of their main test case (a
Python interpreter) is in the same range as the official C Python interpreter.
While this is already pretty good, the PyPy project has a mostly functional
JIT compiler that offers significant speedups over the C interpreter [4].
For our purposes stack ripping is still not solved though. But as the
stackless transformation shows, there is the possibility of writing a simple
transformation and leveraging the existing toolchain. Finally, to use PyPy we
have to give up certain freedoms (because the program has to be typeable)
and a bit of control.

3.5. Summary
In this chapter, we singled out a certain combination of language features
(garbage collection, continuations and tail-recursion elimination) and a
certain implementation language (C), constraining us to a certain interpreter
structure which can offer these features (interpreter with explicit stack
management). We then noticed there were a number of problems associated
with this structure because of the limited set of features available in C and
discussed the consequences from a developer's point of view.

The most important consequence was "stack ripping": a consequence of the
need to split up functions into several smaller functions. Because one of the
limitations of this interpreter structure imposes is the fact that evaluate
can only be used in tail-call position, code that relies on the return value
of that call must be shunted to another function. We then saw how code
flow could be reconstructed using a stack of continuations with explicit
stack management operations. We also noted the dangers inherent in these
stack management operators: they must be called in the right order and all
arguments a constructor needs must also be passed explicitly.

Finally, we identified the key problem we want to solve: an elegant way of
writing the code we intend to use with a continuation-based interpreter built
in C for performance without sacrificing the readability we get from writing
an interpreter recursively.
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After identifying the problem we set up some criteria a proposed solution
should fulfill. We also looked at some partial solutions and determined their
viability with regards to these criteria.
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Chapter 4. Selective CPS
transformation

In the previous chapter we identified the main problem associated with
interpreters with explicit stack management: stack ripping. Because of the
way stack ripping affects the structure of an interpreter, writing code for it
is a lot harder than writing recursive code. In that chapter we also looked at
related work but none addressed stack ripping sufficiently for our purposes.

First, let us quickly review the concept of stack ripping as described in the
previous chapter: the term originally comes from the asynchronous I/O
research community and describes what happens when certain operations
are made asynchronous instead of synchronous. The consequences are
largely similar to the issues we face when writing code in iterative style: we
have to split up some of our functions into several different functions which
transfer control to each other by means of an explicit stack. Because of this we
cannot rely on the compiler to process the return value of such functions or to
ensure variables are kept in memory between function calls. We also lose the
ability to use flow control constructs (like while and for) for such functions.

In this chapter we will present an algorithm that attempts to solve all these
issues: a transformation that takes as input a recursive interpreter built
around a central evaluate function and produces an iterative interpreter
with explicit stack manipulation instructions. This transformation is not a
one-step process: we first transform the recursive interpreter into one that
uses explicit continuation passing and then we complete the transformation
by promoting the generated continuations to top-level functions. Finally, we
add in explicit stack manipulation.

This chapter is organised as follows: first we will show the algorithm
(Section 4.1, “Algorithm”) and then we will try to determine if it satisfies the
criteria we set up in the previous chapter (Section 4.2, “Comparison with
criteria”).

4.1. Algorithm
Before we present the algorithm, let's review the properties our final code
must have:

• The evaluate function can only be called in tail-call position.

• Any function that calls evaluate directly or indirectly is also restricted
to tail-call position.

• Chaining functions together is done by putting continuations on an
external stack.
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• Our target language does not have closures, so continuations must consist
of a function pointer and a list of arguments.

4.1.1. Overview
We noted before that we didn't want to write code for interpreters with
explicit stack management, so we will start from a recursive interpreter. We
then need our algorithm to change the code so it has the properties outlined
above. These properties suggest an approach which we will divide in a
number of steps:

1. First we need to find all functions which call the evaluate function either
directly or indirectly. We will call these “special” functions.

2. Then, we need to ensure they are always called in tail-call position.
We achieve this by means of a continuation passing style (CPS)
transformation, which turns normal (non tail-recursive) function calls into
tail-recursive function calls with an explicit continuation.

3. We continue by lifting each continuation closure to the top level. Because
it will almost certainly have free variables, we must pass these along as
arguments.

4. Finally, special function calls with associated continuations must be
replaced by a normal function call plus a number of stack operations.

For each step in this process we will introduce the necessary terminology and
algorithms and detail the output. We will illustrate each step by applying
the transformation to a snippet of code. To keep the examples simple we
will use Scheme notation for input, intermediate and output code. The final
output will not use any features specific to Scheme however, so it should be
straightforward to translate it to C. We will use this example:

Example 4.1. Running example: table-fill

(define (table-fill size exp)
  (let ((size (evaluate size)))
    (if (>= size 1)
      (table-fill-loop (new-table size) exp 1)
      (if (= size 0)
        *empty-table*
        (error "Table size cannot be negative")))))

(define (table-fill-loop tab exp idx)
  (if (> idx (table-size tab))
    tab
    (begin (table-set! tab idx (evaluate exp))
           (table-fill-loop tab exp (+ idx 1)))))

This snippet defines a function table-fill that takes two arguments, size
and exp. It first evaluates the size argument, then creates a table of that size
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(taking into account empty tables and negative sizes) and sets up a loop to fill
it up by evaluating exp and assigning it to each slot in turn. We have chosen
to let the first index of a table be 1 here.

Before we go on to describe the algorithm, we need to discuss alpha-
renaming. Alpha-renaming is a very common technique used in compilers to
ensure a variable name always refers to the same variable. This makes certain
operations, like finding free variables or inlining functions, a lot easier. In
the example above, we call (evaluate size) and bind the result to size.
Assuming : is reserved for use by the compiler, after alpha-renaming this line
would look like (let ((size:2 (evaluate size:0))) ...). Because
alpha-renaming is always done before anything else, we do not consider it a
separate step. In the steps below, we assume our input code is already alpha-
renamed.

4.1.2. Finding special functions
The first step is a simple information-gathering operation: we need to inspect
the call graph and find out which functions call the evaluate function. We
also want to find the functions that call those functions, functions that call
those functions and so on. This set of functions is known as the transitive
closure of functions that call the evaluate function. A formal definition of
the transitive closure over a set and some algorithms for finding it are defined
in [22].

An simple way of determining the transitive closure as defined above is thus:
we construct the call graph in memory and mark the evaluate function as
special. This gives us a subgraph containing one element. We then repeatedly
add all functions that call any function in this subgraph as special until there
are no more edges from non-special functions to special functions.

table-sizetable-set!

table-fill
new-table

table-fill-loop
evaluate

Figure 4.1. Transitive closure of our running example

Let's apply this to our example code: we first mark the evaluate function
as special. Then we inspect the call graph and find all calls to the evaluate
function; we mark those as special as well. After one iteration, both the fill-
table and fill-table-loop functions have been marked. At this point
there are no more calls from non-special functions to special functions, so we
have found the transitive closure of calls to the function evaluate.
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4.1.3. Continuation passing style
Next, we have to ensure calls to special functions are in tail-call position. We
cannot simply move all such calls to tail-call position because our input code
will almost always use the result of, eg. evaluate. Therefore, we must apply
a more sophisticated transformation. As we already noted above we first
want to transform our interpreter from a recursive style into a continuation
passing style. There is already a transformation to do just that: the CPS
transformation.

The CPS algorithm is driven by a sort of abstract interpretation, namely by
the CEK machine [19]. For example, to CPS convert a function call first the
expressions for all arguments are CPS-converted. The CPS transformation is
usually written by defining the function F, which receives an expression to
convert and a continuation (see [5]). We must keep three things in mind when
defining F for a certain kind of expression: the continuation we received (k),
the context of the current expression and the way we want this expression to
be evaluated. Whenever we want a subexpression to be eliminated, we call
function F with a continuation function that expects the “evaluated” value
as an argument.

F constant                  = λk (k constant)
F (if cons cond alt)        = λk [F cons (λt (if t [F cond k] [F alt k]))]
F (let () body)             = λk [F (begin body) k]
F (let ((x exp) ...) body)  = λk [F exp (λt (let ((x t))
                                              [F (let (...) body) k]))]

F (begin exp ...)           = λk [F exp (λt [F (begin ...) k]]
F (begin exp)               = λk [F exp k]
F (fun arg1 arg2 ... argn)  = 
  λk [F fun (λt 
       [F arg1 (λt1 
         [F arg2 (λt2 
           ...
             [F argn (λtn  (t t1 t2 ... tn k))]...)])])]

Figure 4.2. The function F

Other implementations of the function F can be found in a standard reference
like [5] or [19]. As the above definition shows, F takes an arbitrarily complex
expression with recursive function calls and linearizes it so that every
function is called in tail-call position with an explicit continuation argument.
After CPS conversion, compilers often replace such a chain of tail-calls by a
simple sequence of instructions.

One difficulty to the CPS transformation is the way branching expressions
like if and cond are handled. If we look at the definition of F for an if
statement, we see that F is invoked twice with k as argument. Because this
continuation really embodies the rest of the program, a transformation may
duplicate the code that k represents several times! A common way to fix
this difficulty is by capturing the continuation of a branching expression
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in a function and calling that instead. This overhead is often immediately
eliminated by inlining the function if it is small enough. An example of this
technique:

(define (foo x)
  (display
    (if (even? x) "even" "odd")))

becomes

Example 4.2. CPS transformation of an if-expression

(define (foo x k)
  (let ((cont (lambda (z) (display z k))))
    (even? x
      (lambda (res)
        (if res
            (cont "even")
            (cont "odd"))))))

The CPS transformation has been well studied over the years, leading to a
family of transformations which differ mostly in the number of extra code the
transformation introduces. One example of this is the branching issue we just
explained. Another is the treatment of begin forms: some transformations
take a begin block apart and replace it by a chain of tail calls, others try to
preserve the original structure as much as possible. The transformation we
will use is inspired by [5], where the CPS transformation is used as part of a
compiler for Standard ML [35].

For our purposes, we introduce a slight twist in the CPS transformation:
if we transform all function calls, our program is littered with a lot of
overhead which we will later have to eliminate again. Instead, we divide
the CPS transformation of function calls in two cases: normal function calls
and special function calls. Normal function calls are left as is, but special
function calls are transformed as the CPS transformation dictates. This has
the advantage of keeping “normal” code very close to the input form, while
we still attain our goal of making special functions tail recursive. This means
we have to add an extra case to our function F:

Example 4.3. Addition to function F above

-- If F is not special:
F (fun arg1 arg2 ... argn)  = 
  λk [F fun (λt
       [F arg1 (λt1
         [F arg2 (λt2
           ...
             [F argn (λtn (k (t t1 t2 ... tn)))]...)])])]

Although these definitions are very much alike, there is a slight difference in
the way the continuation k is used: for special functions it is simply passed
along as a parameter, whereas for non-special functions it is immediately



Selective CPS transformation

33

invoked with the results of the function application. This has the effect that
the control flow is only disturbed for special functions, which is what we are
aiming for.

Applying this “selective” CPS transformation to our snippet gives the
following:

Example 4.4. The table-fill example after CPS transformation

(define (table-fill size:0 exp:1)
  (evaluate size:0
    (lambda (value:6) 
      (let ((size:2 value:6))
        (if (>= size:2 1)
          (table-fill-loop (new-table size:2) exp:1 1)
          (if (= size:2 0)
            *empty-table*
            (error "Table size cannot be negative")))))))

(define (table-fill-loop tab:3 exp:4 idx:5)
  (if (> idx:5 (table-size tab:3))
    tab:3
    (evaluate exp:4 
      (lambda (value:7) 
        (begin (table-set! tab:3 idx:5 value:7)
               (table-fill-loop tab:3 exp:4 (+ idx:5 1)))))))

Note how in both calls to evaluate the rest of the function has been
captured in a lambda form and is passed explicitly as argument to
evaluate. The return value of evaluate is bound to the variable
value which we immediately alpha-rename.

4.1.4. Closure conversion
The previous step put our code in continuation passing style and introduced
a number of “continuation lambdas”. These lambdas are actually closures
that reference a number of free variables bound outside their bodies. While
this poses no problems for us now, in the next step we will lift these lambdas
to the top level and make them available as regular functions. For this to work
we must ensure that all free variables are made available to the function.
Because we control when and how these functions are called, we are free to
modify the parameter list of these functions to turn the free variables into
bound variables.

The technique used is called “closure conversion” and often follows a CPS
transformation. According to [5] this technique can only be used when every
call site of a function is known, but because we introduced these lambdas
during our CPS transformation, they are only called in one place.

Because we alpha-renamed our input code before we did anything else,
finding the free variables of a function is as simple as finding the set of
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variables it refererences and subtracting from it the set of globally visible
variables and the variables that are defined in its body. If our code was not
yet alpha-renamed, we would have to walk the AST of the function while
keeping in memory the set of defined variables seen so far and looking at
every variable reference.

Once we know which variables are free, we can add them to the argument
list of each closure. After closure conversion, our snippet will look like this:

Example 4.5. The table-fill example after closure conversion

(define (table-fill size:0 exp:1)
  (define (cont:8 exp:1 value:6)
    (let ((size:2 value:6))
      (if (>= size:2 1)
        (table-fill-loop (new-table size:2) exp:1 1)
        (if (= size:2 0)
          *empty-table*
          (error "Table size cannot be negative")))))
  (evaluate size:0 (lambda (value:6) (cont:8 exp value:6))))

(define (table-fill-loop tab:3 exp:4 idx:5)
  (define (cont:9 tab:3 exp:4 idx:5 value:7)
    (begin (table-set! tab:3 idx:5 value:7)
           (table-fill-loop tab:3 exp:4 (+ idx:5 1))))
  (if (> idx:5 (table-size tab:3))
    tab:3
    (evaluate exp:4 (lambda (value:7) (cont:9 tab:3 exp:4 idx:5
 value:7)))))

Aside from adding the set of free variables to the argument list, we have
moved each continuation into a named function and altered the special
function calls to reflect this change. We have again taken care not to introduce
name clashes. Because the continuations are now cleanly separated from the
code that calls them, we can just move them into the top level.

4.1.5. Lambda-lifting
We can take the continuations generated previously and put them at the top
level (this process is called “lambda-lifting” [24]). Because the previous step
took care of free variables and calls to them this stage of the transformation
is straightforward. We must also remember for the next step that these
new top level functions are the result of lambda-lifting generated closures,
we call these “thunks”. It is important to make them distinct from other
functions because they are never called explicitly: they must be invoked via
the continuation stack.

This means our example will look like this:
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Example 4.6. Table-fill example after lambda-lifting

(define (cont:8 exp:1 value:6)
  (let ((size:2 value:6))
    (if (>= size:2 1)
      (table-fill-loop (new-table size:2) exp:1 1)
      (if (= size:2 0)
        *empty-table*
        (error "Table size cannot be negative")))))

(define (table-fill size:0 exp:1)
  (evaluate size:0 (lambda (value:6) (cont:8 exp:1 value:6))))

(define (cont:9 tab:3 exp:4 idx:5 value:7)
  (begin (table-set! tab:3 idx:5 value:7)
         (table-fill-loop tab:3 exp:4 (+ idx:5 1))))

(define (table-fill-loop tab:3 exp:4 idx:5)
  (if (> idx:5 (table-size tab:3))
    tab:3
    (evaluate exp:4 (lambda (value:7) (cont:9 tab:3 exp:4 idx:5
 value:7)))))

4.1.6. Make stack management explicit
When the previous steps are completed, we are left with calls to special
functions which carry around a small continuation which calls a top-level
function. All we have to do now is remove this continuation associated
with special function calls and replace them by explicit stack manipulation.
Because the CPS transformation was selective (meaning it only transformed
special functions) we have two different environments from which a special
function can be called: special functions that were already present in the input
code and thunks generated from the continuations of those special function
calls. Since thunks were introduced by our algorithm, we know they can only
be reached through the continuation of a special function.

Given these observations we can reason about the correct stack
manipulations each case has to do. When a special function is called, a
“useful” continuation is on the top of the stack, so if we call a special function
from a special function, we must PUSH another useful continuation before we
call it. If there is no continuation associated with a special function call (like
a tail-call) we can just call it as normal. If we call a function from within a
thunk we need to ensure the next continuation is a useful one, which means
we have to POP our own continuation away. Last but not least, if evaluation
of a thunk reaches a leaf node in the AST without calling a special function we
need to make sure it removes itself from the continuation stack by inserting
calls to POP before returning.
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Example 4.7. Final output for the table-fill example

(define (cont:8 exp:1 value:6)
  (let ((size:2 value:6))
    (if (>= size:2 1)
      (begin (POP)
             (table-fill-loop (new-table size:2) exp:1 1))
      (if (= size:2 0)
        (begin (POP) *empty-table*)
        (begin (POP) (error "Table size cannot be negative"))))))

(define (table-fill size:0 exp:1)
  (begin (PUSH cont:8 exp:1)
         (evaluate size:0)))

(define (cont:9 tab:3 exp:4 idx:5 value:7)
  (table-set! tab:3 idx:5 value:7)
  (begin (POP)
         (table-fill-loop tab:3 exp:4 (+ idx:5 1))))

(define (table-fill-loop tab:3 exp:4 idx:5)
  (if (> idx:5 (table-size tab:3))
    tab:3
    (begin (PUSH cont:9 tab:3 exp:4 idx:5)
           (evaluate exp:4))))

For our table-fill example, this means we put a begin block around every
call to a special function with the appropriate stack modifier. For example,
table-fill-loop is a special function, so a call to evaluate (another
special function) must be prefaced with a PUSH. When that function returns
control to cont2, all it does is pop its own continuation away before
transferring control back to table-fill-loop.

4.2. Comparison with criteria
If we were to take the output code and interpret it by hand, we could prove it
is equivalent to the input code. It is very clear that the stack ripping problem
is solved because we were able to write simple recursive code, run it through
our transformation and get back code that only calls evaluate in tail-call
position and uses explicit stack manipulation to manage continuations.

The control criterion is also fulfilled: only the last step is specialised for the
kind of iterative interpreter with explicit stack we wanted. If we wanted to use
this algorithm to transform a recursive interpreter to an iterative interpreter
with separate stacks for data and code, we would simply have to change the
implementation of the last step or our algorithm.

We cannot verify right now whether our transformation fulfills the
performance criterion, because we have no target to compare it to. In the
next chapter we will use our transformation to write a piece of another
iterative interpreter with explicit stack in a recursive style and benchmark the
resulting interpreter against a vanilla interpreter.
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4.3. Summary
In the previous chapter we set out to explore the issue of “stack ripping”,
which goes hand in hand with writing code for an iterative interpreter
with explicit stack management. Because such code cannot be written in a
recursive style, we have to explicitly set up continuations and code to make
sure they are called in the right order with the right arguments. We also
have to take over the language's job of managing local variables, since a
single conceptual function gets split up in an original function plus a set
of continuations. This also entails that we can no longer use control flow
constructs like for and while, because the compiler can not maintain the
state of these loops when we “leave” the function. Writing code for this kind
of interpreter is tedious and error prone and so we set out to find a solution
to stack ripping.

We looked around for existing products but none were suitable, so we
had to resort to a custom transformation: a CPS transformation which only
touches a very narrowly defined set of function calls. This transformation
essentially turns a recursive interpreter into an interpreter in continuation
passing style, which we can then further transform into an interpreter that
puts continuations on an external stack instead of wrapping them in other
continuations.

The algorithm is flexible enough to allow the programmer to use variations
of the iterative interpreter and different stack organisations as well. Because
it turns recursive code into stack ripped code suitable for such an interpreter,
we claim it solves the stack ripping issue as well. We could not verify if the
final criterion, performance, is also met because we didn't have an existing
implementation to compare to. This will be the subject of the next chapter.



38

Chapter 5. Case study: Pico
In the previous chapter we detailed an algorithm to transform recursive
interpreters into iterative interpreters with explicit stack manipulation. The
various stages of the algorithm were as follows: first we determine which
functions could possibly cause evaluate to be called and mark them as
“special”. Then we turn it into a continuation passing interpreter using
a modified CPS transformation: one that transforms special function calls
but leaves normal function calls alone. We then use both lambda-lifting
and closure conversion to replace all inline lambda's by named functions.
Finally, we remove the continuation passing and replace it by explicit stack
manipulation.

Then, we checked if our transformation matched the criteria laid out in
chapter 3 and saw everything was okay except performance. We couldn't test
this criterion because we had no suitable iterative interpreter to compare our
transformed interpreter to. Because our transformation is useless if it imposes
too high an overhead, we must verify if this last criterion matches.

The goal of this chapter is to test the performance of our generated code.
We will not use an artificial interpreter but a real, tested interpreter. More
specifically, we are going to replace part of an interpreter for the Pico
language (which we briefly show in Section 5.1, “The Pico Language”)
with code generated by us. Because of the way our proof of concept was
written, we do not take Scheme as input but a Scheme-like language called
“ThunkMaster” (Section 5.2, “ThunkMaster”). We will take a representative
part of the original Pico interpreter, port it to ThunkMaster and transform
it (Section 5.3.1, “Methods”). Once the transformed code is in place, we can
run the interpreter through its paces and determine if our transformed code
introduces a significant loss of performance (Section 5.3.2, “Timing results”).
We will finish this section by giving an overview of our implementation
(Section 5.4, “Implementation details”)

5.1. The Pico Language
Pico [14] was originally designed to teach an introductory course in
programming to freshmen science students outside of computer science.
Before then the course was taught using the Pascal language [47] but the
syntax and static type system of Pascal proved to be too confusing to students
and the edit-compile-run cycle did not encourage exploration. To counter
these problems the Pico language was designed: a language with a very
simple and regular syntax, a Read-Eval-Print loop (REPL) that encouraged
exploratory programming and a design that allowed easy extensions.
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5.1.1. Language overview
As we said before, the syntax is extremely simple. At the heart of Pico
is a three by three table that combines actions (read, define and set) and
invocations (variables, functions and tables). We reproduce it here:

variable table function
reference var tab[i] fun(e1,..,en)
definition var: exp tab[i]: exp fun(e1,..,en): exp
assignment var:= exp tab[i]:= exp exp(e1,..,en):= exp

Table 5.1. The three by three table for Pico.

One of the features that sets Pico apart from others is an interesting parameter
binding mechanism known as “call-by-expression” [14]. They allow the
programmer to supplant the normal parameter binding mechanism and
interpret arguments as lambda expressions. A simple example using this
feature:

g(f(a,b),x,y): if( f(x,y) > 0, x , y)

This defines a function g which treats its first argument as a function with two
arguments a and b. This argument can be arbitrarily complex and will only
be evaluated if the function f is called. So if we call the function g as follows:

g(a - b, 1, 2)

The function f is instantiated with a - b as body. The whole expression
returns the value 2.

Call-by-expression can also be used to implement control flow and branching
constructs:

unless(cond, cons(), alt()): if(cond,alt(),cons())

Because the expressions bound to cons and alt are not evaluated unless
their respective functions are called, Pico does not need to use macros for
this. Other control structures, such as while and for were implemented
similarly.

Because Scheme was one of the inspirations of Pico, it also has support for
first-class continuations. A Pico version of the product example we showed
earlier:



Case study: Pico

40

Example 5.1. Escaping continuations in Pico

product@list:call(
  { prod(tab, idx):
      if(idx > length(tab),
         1,
         if(tab[idx] = 0,
            continue(continuation, 0),
            tab[idx] * prod(tab, idx + 1)));
    prod(list, 1)})

We take the opportunity to introduce another bit of syntax: the
product@list definition states all the arguments to product should be
gathered and bound to the variable list. Because Pico does not have
lambda's (programs use call-by-expression or named functions instead), the
continuation for call is instead bound to the continuation variable in
the scope of call's “body”. The continue function is used to invoke the
continuation, which sets it apart from normal function invocation.

5.1.2. Pico implementations
The Pico language does not have a formal specification, but it does have a
number of interpreters that specify Pico's behavior. We will briefly look at
each and the structure each is written in.

• MetaPico

MetaPico is the metacircular evaluator for Pico. It is a complete
implementation of Pico, including support for continuations. Running
MetaPico is also the standard test of every new Pico implementation,
so MetaPico is considered the reference implementation. It is written in
a recursive style because continuations from the meta level are simply
wrapped and passed on to the user, so no explicit continuation stack is
needed.

• C Pico, first generation

The first generation of the C Pico interpreter is an iterative one with
explicit stack. Instead of bundling continuations with their arguments
however, continuations are kept on a continuation stack and data is kept
on a separate stack called the expression stack. This means that besides
setting up continuations and callbacks, the programmer has to move data
on the expression stack around. In this model continuations do not take
arguments the usual way, they take them off the expression stack instead.
In this interpreter the stacks are contiguous which means pushes and pops
are pointer manipulations.

• C Pico, second generation

The second generation of the C Pico interpreter merged the two stacks
into one linked list of activation frames. Each activation frame contains a
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function pointer and a list of variables associated with that continuation.
Also, a value is now passed around explicitly instead of constantly taking
it from the top of the stack, which is reminiscent of Vmgen's top-of-stack
optimization. Because the stack is a linked list, pushes and pops are a
bit more expensive and frames are no longer guaranteed to be close to
eachother in memory

To make the difference between the two generations of C Pico a bit more
clear, here is an example for interpreting begin for both interpreters:

Example 5.2. Evaluate-sequence with separate continuation and expression stacks (pico1)

(define (evaluate-sequence)
  (POP cnt-stack)
  (let ((stmts (POP exp-stack)))
    (if (null? (cdr stmts))
      (begin (PUSH cnt-stack evaluate)
             (PUSH exp-stack (car stmts)))
      (begin (PUSH cnt-stack evaluate-sequence)
             (PUSH exp-stack (cdr stmts))
             (PUSH cnt-stack ignore-value)
             (PUSH cnt-stack evaluate)
             (PUSH exp-stack (car stmts))))))

Example 5.3. Evaluate-sequence with a unified stack for continuations and data (pico2)

(define (evaluate-sequence stmts VAL)
  (POP)
  (if (null? (cdr stmts))
    (evaluate (car stmts))
    (begin (PUSH evaluate-sequence (cdr stmts))
           (evaluate (car stmts)))))

fix up rommel hier

5.2. ThunkMaster
While we have used Scheme for showing code so far, our transformation does
not take all of Scheme's features into account. We are not interested in most
of the features Scheme offers, we just want a decent subset of features that do
not impact runtime performance, much like Pre-Scheme. We call this subset
of Scheme “ThunkMaster”. Instead of inspecting Scheme code for features
we do not support, we choose to not allow them in the first place.

For example, we do not support the use of mutation of local variables
through set!. We also require that the interpreter we get as input does not
use first-class continuations. While it is easy to account for this in the CPS
transformation, it does not play well with the stack manipulation calls we
generate. We also do not support higher order functions at this time. While
this is at first sight a serious detriment, we found we didn't really need them
in our Pico implementation.
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We did add one feature not present in C or Scheme to make writing
interpreters easier, which is pattern matching:

Example 5.4. Pattern matching in ThunkMaster

(defstruct (DEF inv exp))

(define (evaluate_definition def)
  (let (((DEF inv exp) def))
    (case-tag inv
      (REF (define_reference inv exp))
      (TBL (define_tabulation inv exp))
      (APL (define_application inv exp))
      (_   (error "IRQ" inv)))))

Here we can use pattern matching to extract the inv and exp from def in
one go. The defstruct form specifies which field name corresponds to each
position. In this snippet we also show case-tag which extracts the tag of
the specified value and dispatches on it. Patterns are tried from top to bottom
as in a normal case construct and anything which does not match the first
three clauses is caught by the “catch anything” pattern at the bottom. There is
no such provision for the let form though, if pattern matching fails a runtime
error occurs.

ThunkMaster also has a bit of syntactic sugar by way of labels; they are
very similar to the named-let construct in Scheme. To simplify the rest of the
language we decided not to add support for the letrec form, but we needed
a quick way of writing a loop. Labels are not entirely the same as named-let
because the functions they define can only call themselves tail-recursively.
An example:

Example 5.5. Labels in ThunkMaster

(define (bind-parameters vars vals dictionary)
  (labels ((pos 1) (current dictionary))
    (loop
      (if (< pos (table-size vars))
        (let ((var (TAB-get vars pos))
              (val (TAB-get vals pos))
              (altered (bind-parameter var val current)))
          (loop (+ pos 1) altered))
        current))))

The function bind-parameters takes a table of variable names, a table of
evaluated arguments, and a dictionary to extend. It binds each variable name
to an argument in turn and returns an extended dictionary. The labels
construct sets up a recursive function loop with formal arguments pos and
current and implicitly calls it with the values 1 and dictionary.

5.3. Pico transformed
We have now discussed the Pico language, existing implementations and
our own language, ThunkMaster. In this section we will explain how we are
going to set up our experiment and look at some timing results.
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5.3.1. Methods
Our starting point is the second generation of the Pico interpreter: this
interpreter is written in C and divided into a number of files, each responsible
for a subsystem of the Pico interpreter:

Filename Purpose
PicoDCT.cThe file contains the functions for looking up variables and

altering the global dictionary.

PicoEVA.cThis file describes the evaluation process.

PicoMAI.cThis is the interface from and to the application embedding the
Pico interpreter.

PicoMEM.cThe garbage collector and basic memory allocation primitives.

PicoNAT.cAll native functions available in Pico.

PicoPRI.c Functions for printing each data type in Pico.

PicoREA.cThe Pico reader: takes the tokens produces by the scanner (see
next entry) and produces an abstract syntax tree.

PicoSCA.cThe Pico scanner: breaks up an input string into a list of tokens.

PicoTHR.cThis file contains the functions that drive the iteration process.

Table 5.2. Organization of the C Pico interpreter

Of all those files, we are only interested in the evaluation subsystem. If we
replace this part with code we generated, we can reuse all of the other Pico
subsystems. As long as we export the same functions as the hand-written
code does, we can freely mix hand-written code and generated code. Since
a lot of time is spent in the evaluator, we can gauge the impact of our
generated code on the performance of the whole interpreter. When the user
calls PICO_RUN from his application, the reader and scanner are invoked and
then the generated abstract syntax tree is passed to evaluate.

5.3.2. Timing results
Now we come to the final comparison between our generated code and the
hand-written code in the C pico interpreter. The Pico distribution comes with
a few examples written in Pico: we will use a few of them to detect a difference
in performance. We will first test each problem on the regular interpreter and
then we will repeat the test for the metacircular interpreter running on top
of the normal interpreter. The problems we selected have lots of loops which
tests how fast simple expressions are evaluated, whereas running the same
tests using the metacircular interpreter tests all parts of the interpreter.

The examples we will use are a Pico implementation of the quicksort
algorithm, a fast Fourier transform [12] and an implementation of the sieve of
Eratosthenes. The quicksort algorithm and sieve examples are well known,
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but the Fourier transform might require a bit of explanation: the fast Fourier
transform (FFT) is an implementation of the discrete Fourier transformation
which takes as input a signal in the time domain and decomposes it into
a set of frequencies with associated amplitudes. It only takes O(n log n)
time instead of O(n²), which makes many applications of the discrete Fourier
transform viable.

The following results were obtained by running each example 40 times using
our generated code and averaging the timing results, then repeating the
process with the original Pico interpreter. We boosted the main Pico memory
from 16 MB to 128 MB to avoid triggering the garbage collector. These tests
were run on a system with an Intel Core 2 Duo 6600 running at 2.4 Ghz
and 6 GB of main memory. Each test has an associated input size because
the metacircular interpreter running on top of the regular interpreter is a lot
slower.

Figure 5.1. Timing results for normal Pico interpreter (lower is better)

If we compare the timings for our generated code with those of orginal
interpreter, there is next to no difference for the FFT, a 10% slowdown for the
quicksort and a 6% slowdown for the sieve:

Original Generated
FFT(131072) 9.40 ± 0.54 s 9.41 ± 0.43 s
Quicksort(1M) 11.43 ± 0.65 s 12.54 ± 0.91 s
Sieve(10M) 6.87 ± 0.57 s 7.26 ± 0.45 s
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Figure 5.2. Timing results for Pico code on metacircular interpreter (lower is better)

The times for the metacircular interpreter show a much more stable picture,
with very little differences inbetween runs. In every test here our generated
code is about 3% slower than the original code.

Original Generated
meta FFT(64) 11.31 ± 0.44 s 11.70 ± 0.37 s
meta Quicksort(250) 11.36 ± 0.24 s 11.77 ± 0.35 s
meta Sieve(2000) 10.04 ± 0.28 s 10.35 ± 0.37 s

5.3.3. Discussion
Overall, we found that our generated code is at its worst up to 10 percent
slower than equivalent hand-written code. This is a very good sign, because
it means our transformation does not damage performance irrevocably.
However, we should investigate and find out why this slowdown occurred
and what steps we can take to prevent it.

One possible cause for this slowdown could be attributed to the way we
implement the distinction between tail evaluation and non-tail evaluation.
When a function is called, the Pico interpreter does one of two possible things
depending if the call happens in tail-call position or not: when it is not in tail-
call position, the interpreter sets up a continuation to reset the environment
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before calling evaluate. If a call is in tail-call position it simply releases the
bindings introduced in the current function before evaluating the function
body.

While our implementation simply carries a flag around which states if
the current evaluation is in tail or non-tail position, the C Pico interpreter
uses extensive code duplication to eliminate this flag. The reason why this
duplication could be more efficient is “branch prediction” [16]. The basic
idea of branch prediction is as follows: when the processor sees a conditional
branch instruction it remembers whether the condition was true or false and
tells the instruction fetching machinery to start loading code from the address
it predicts it will need. If the branch is predicted correctly, execution does
not have to wait for the memory fetch to complete and can just continue
executing. If the branch is predicted incorrectly however, the processor has
to flush its instruction pipeline, set up a memory load and wait for it to
complete, during which the processor can not do anything else.

What does all this have to do with code duplication? Because branch
prediction bases itself on the address of the conditional branch instruction,
it has a better chance of predicting the branch if there are multiple such
addresses. Even better, thanks to the high level of code duplication in the
C Pico interpreter there are no branching instructions present! To verify
whether this is the case, we could add prediction hints to our code and see
if performance differs.

Another possible advantage the code duplication could have over our
approach is the necessity of carrying around the tail/non-tail flag. In some
code paths the interpreter has to call evaluate recursively with the same
setting for the tail/non-tail flag, which means it has to store a continuation
that contains this flag.

Our code is also slightly less efficient where reuse of continuations is
considered: in an evaluation chain the hand-written code can re-use fields
it knows will not be used again, for example by replacing fields referencing
unevaluated expressions with values.

5.4. Implementation details
In this section we will take a look at the tools and implementation strategy
we used1.

We used the Haskell [26] programming language to implement the
transformation, because the language makes it very easy to divide a
transformation into stages. We use monads and monad transformers as much
as possible to keep the intent of the code clear. We used the parser combinator
library Parsec [30] to read in S-expressions and convert them to ASTs in

1The source code can be downloaded with git pull http://wilma.vub.ac.be/~dharnie/tm .
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memory. We would first like to show the data definitions used for the AST
because most are self-explanatory, but not all.

Example 5.6. AST definitions in Haskell

type Ident = String -- [a-z][a-zA-Z0-9]*
type TName = String -- [A-Z][a-zA-Z0-9]*

data LitVal = LitChar   Char
            | LitString String
            | LitInt    Integer
            | LitFloat  Double

data Expr = Lit    LitVal
          | Ref    Ident
          | Appl   Expr [Expr]
          | ApplC  Expr [Expr]
          | Case   Expr [(Pattern, Expr)]
          | CaseT  Expr [([Pattern], Expr)]
          | If     Expr Expr Expr
          | Let    [(Pattern, Expr)] Expr
          | Lambda [Ident] Expr
          | Begin  [Expr]
          | Labels [(Ident, Expr)] [(Ident, Expr)]

data Pattern = PVar Ident
             | PCon Ident [Pattern]
             | PLit LitVal

data Decl = Datatype Ident [Ident]
          | Function Ident [Ident] Expr
          | Variable Ident Expr
          | Thunk    Ident [Ident] Expr

The Labels tag represents a labels construct, which is specific to
ThunkMaster (see Section 5.2, “ThunkMaster”). Its first argument is a list
of variable names and starting values, and the second is a list of function
names with their bodies. The ApplC tag is introduced to mark calls to special
functions. Finally, the CaseT tag differs from the Case tag because it allows
multiple values to trigger the same branch, much like C's switch statement.

There is one more library we used, which is Uniplate [36]. Because we are
going to traverse the AST a lot of times, we do not want to write repetitive
code for taking apart, transforming, and reconstituting every possible value
in it. Uniplate allows us to use pattern matching to select and transform only
the elements we want to touch with a given transformation. Unlike other
generics libraries [32] Uniplate works works bottom-up, instead of top-down,
which ensures transformations are applied in the whole AST.

After parsing, the first step we perform is alpha renaming. We need to walk
down the AST of each function, keeping in mind a mapping of variable names
to unique ones. If we encounter a variable reference we look it up using this
mapping and replace it by its unique name. On the other hand, if we reach a
place where a variable is introduced we need to generate a unique name for
it and update our mapping.
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To make later transformations easier we convert all Case statements to
CaseT statements. If the case statement contains patterns that matched on
constructors, we take the result of get-tag and use it to dispatch on. The
actual deconstruction is pushed into each branch. If there are no patterns in
the branches of the Case, we just change the tag of the statement.

After this preliminary work is done, we can start with the real algorithm.
First, we need to find all special functions. We take the easy approach: we
start with a set containing only evaluate and then grow it by adding all the
functions that call all functions in this set. We repeat this process until the set
doesn't change anymore.

Once we know which functions are special, we can pass that information into
the CPS transformation:

Example 5.7. Implementation of CPS in Haskell

cps :: Expr -> (Expr -> State Int Expr) -> State Int Expr
cps (Lit x) k = k (Lit x)

cps (Ref x) k = k (Ref x)

cps (If cond cons alt) k =
  cps cond $ λcond' ->
    do cons' <- cps cons k
       alt'  <- cps alt k
       return (If cond' cons' alt')

Note that we did not capture the continuation for an if statement here, which
means that the program size will grow a lot if k represents a big chunk of
code. Remember that our CPS transformation differs from the standard CPS
transformation because it transforms special function calls but leaves normal
function calls alone; this can clearly be seen in the code that transforms
function application:

Example 5.8. CPS for function application

cps (Appl (Ref nam) args) k | isSpecial nam =
  do var  <- next "VAR"
     bod  <- k (Ref var) 
     cpsArgs args $ λargs' ->
       return (ApplC (Ref nam) (args' ++ [Lambda [var] bod])) 

cps (Appl fun args) k =
  cps fun $ λfun' ->
    cpsArgs args $ λargs' ->
      k (Appl fun' args') 

For a special function call, the continuation is captured here and bound
to bod.
The captured continuation bod is used as body for a lambda form and
tacked on to the argument list for the ApplC we generate. Note that we
do not invoke k as return value, because we have already captured the
continuation and want to abort further CPS transformation.
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For a normal function call, k is not captured but is used to continue
the CPS transformation with an Appl, meaning that the structure is not
changed.

After CPS conversion we take all the continuation lambdas it introduced
(those marked with ApplC), closure convert them and lambda-lift them
in one go. These new top-level functions are not Functions but Thunks.
This distinction is necessary: Thunks need to destroy or reuse the current
continuation, whereas special functions must conserve it. Instead of directly
inserting POP and PUSH instructions we rewrite special function calls to use
the >>> operator which gives a more human-friendly representation of what
happens.

>>> voorbeeldje ?

There is another detail we skipped over: our CPS transformation generates
a lot of “identity” thunks. Whenever a special function call in tail-call
position is transformed we capture the current continuation, but since this
continuation is simply Haskell's return, an identity thunk is generated. We
turn calls of the form (>>> (special ...) (then-do (id))) into
simply (special ...)

The last step of our ThunkMaster-to-ThunkMaster transformation makes
sure all code paths of Thunks properly remove their continuation if they don't
call a special function.

The transformation process to C is then pretty straightforward, except for two
things: dealing with C's type system and argument-passing for continuations.
Since we did not do type inference, we can only assume all our values have
type EXP_type, which is the most general of all types in the Pico runtime.
Rather than dealing with typing issues we cast every value to the type we
need when we need it. This leads to very cast-heavy code and can surely be
done better. The other issue is also related to the type system: Pico uses structs
to store the function pointer and arguments for continuations, which means
we have to declare these beforehand.

5.5. Summary
In the previous chapter we described our algorithm and found it fulfilled
two of the three criteria we set up. We could not check if the final criterion
matched without actually transforming code and comparing it against hand-
written code. To achieve that we needed to reimplement a part of an existing
interpreter and compare. We chose an interpreter for the Pico language: a
mature language with a lot of features also present in Scheme like first-class
continuations, garbage collection and closures. There are also a number of
implementations for it, among which a metacircular implementation and a
C implementation which uses an explicit stack to represent the state of the
evaluation process.
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We used the ThunkMaster language as input for our transformation.
ThunkMaster, a subset of Scheme, was chosen because we do not yet have the
capacity to fully translate Scheme. The most important difference between
ThunkMaster and Scheme is the lack of first-class continuations, closures
and higher order functions. It shares a lot of goals with the Pre-Scheme
programming language we discussed above, but adds pattern matching to
make handling tagged values easier.

We ported the evaluation system to ThunkMaster and transformed it. We
then replaced the hand-written evaluation subsystem of the Pico interpreter
with our generated code and compared the performance of both. After
comparing the performance of an implementation of quicksort we found that
the evaluation speed of our generated code is often within 10% of the hand-
written C code. Given this, we can conclude that our transformation satisfies
all three criteria we set up earlier.
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Chapter 6. Conclusion
In interpreters, there are always two languages present: the language being
interpreted (base) and the language the interpreter is written in (host). If a
feature is present in both languages, implementing it is often a simple case
of reusing the host language's implementation. However, sometimes this is
not possible or not wanted: a Scheme interpreter written in C can not reuse
C's function calling mechanism because it does not support tail recursion. By
adopting a trampoline style [20] this limitation can be overcome.

A similar thing happens with first-class continuations: standard C does not
have them and so we must implement them by hand. This is often done
by maintaining an explicit stack which contains continuations and values
associated with them. By taking a copy of this stack we can indeed capture
a continuation for later use. However, writing an interpreter in this style
brings along some disadvantages and constraints because the program must
explicitly deal with continuations: we can no longer rely on the compiler
for managing the function calls we make. Where before we had functions
that called evaluate and used the result directly we now have to register a
continuation, transfer control to the evaluate function and use the result in
another function. (Chapter 2, Structure of interpreters)

This breaking up of functions is called “stack ripping” (Chapter 3, Stack
ripping and explicit stack management) and is the root cause for a number of
constraints. For example, functions that call evaluate can no longer be
called normally themselves! This “virality” is what makes stack ripping so
annoying for programmers: one change can force the whole program to be
rewritten.

Needless to say, an interpreter that suffers from stack ripping is harder to
write and maintain than an equivalent recursive one. We would like to keep
writing recursive code but still be able to easily translate it to C should we
need to port it to another platform or should we need the performance boost.
In this dissertation we present a solution based on a selective continuation
passing style (CPS) transformation. This transformation (Chapter 4, Selective
CPS transformation) takes all invocations to evaluate and functions which
call it and makes their “continuation” explicit. We use these explicit
continuations as a stepping stone for converting single functions that call
evaluate a number of times into several smaller ones that set up continuations
and call evaluate at most once. The transformation is called selective because
it does not affect normal function calls: that is, functions that do not call
evaluate directly or indirectly.

To demonstrate our transformation, we took a small part of an existing hand-
written interpreter that uses an explicit stack and rewrote it in a recursive
style (Chapter 5, Case study: Pico). Then we automatically transformed it
to an version with explicit stack manipulation and put it back. The results
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showed our generated code was at worst only 8% slower, which shows our
the overhead introduced by our transformation is not prohibitive.

Of course there are still some improvements to be made to the transformation,
we list a few possibilities below:

• Provide the option for code duplication

During the comparison between our generated code and the hand-written
code, we found that where our code passes a “tail / non-tail” flag around
for every call to evaluate, the hand-written code uses extensive code
duplication to eliminate checks on this flag. We can add an extra step to
our algorithm to automatically specialize functions for each of the two
cases. Although this approximately doubles the size of our generated
code, this can eliminate most branch mispredictions and thus speed
up an interpreter. Specializing interpreters by hand is very tedious and
timeconsuming whereas doing it automatically allows interpreter writers
to easily experiment.

• Add optimizations to the transformation

Our transformation is pretty straightforward and not very smart. For
example, it makes no attempt whatsoever reuse continuation objects across
thunks, instead recreating them for every push instruction it generates. It
also does no attempt at tail recursion optimization, hoping the C compiler
does it instead. If we add this functionality hopefully we can get closer to
a hand-written implementation which does use those tricks.

• Take garbage collection into account

Our transformation is focused on splitting up functions that call evaluate
into smaller functions, but there is no reason we couldn't take garbage
collection into account at the same time. If we know which functions
allocate memory and how much we can insert a call to the garbage collector
to ensure there is at least that much memory free. Alternatively, we could
automatically insert code around such function calls to ensure the data they
reference is not moved around by a garbage collector.
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