
Faculty of Sciences
Computer Science Department
Programming Technology Lab

A bottom-up approach to program variation

A dissertation submitted in partial fulfillment of the requirements for the degree of

“Doctor in de Wetenschappen” by

Peter Ebraert

March 2009

Promoter: Prof. Dr. Theo D’Hondt
Co-promotors: Prof. Dr. Patrick Heymans, Dr. Pascal Costanza

To my father
whose passions for football, computer-

games and economy resulted in
many exciting discussions

To my wife
whose endless patience and

support made this dissertation possible

To my mother
whose belief in her children’s capacities
is so high that it makes things
like a PhD just happen

Acknowledgements

The foundations of this dissertation were established in 2002, when Theo D’Hondt
proposed me to enroll for the European Master in Object-Oriented Software En-
gineering (EMOOSE). In this master-after-master formation, I was given the op-
portunity to meet and learn from expert researchers in the domain of software
engineering, and more specifically in the field of the separation of programming
concerns. Under the guidance of Eric Tanter, I realised that research on the sep-
aration of programming concerns was really interesting in a context of software
evolution. Thanks Theo and Eric!

With the help of Tom Tourwé and other colleagues from the programming
technology lab, I assembled an application for obtaining a grant from the Institute
for the Promotion of Innovation by Science and Technology in Flanders (IWT). I
was one of the lucky students that were awarded a four year grant for conducting
the research described in the application. I would like to express my gratitude to
Tom and the IWT!

Of course, a phd student needs a good promotor. According to our university, a
good promotor provides the necessary infrastructure you need to do your research,
helps you to find the necessary funding, guides and supervises your research, mak-
ing sure that your plans are realistic, evaluates and gives feedback on what you
have done, puts your ideas in a broader context, pointing out links with other re-
search, suggests methods and approaches to tackle the questions you raise, brings
you in contact with other people or publications that are relevant for your work,
stimulates you to present and publish your work and will promote and support
your work towards the rest of the academic community. I can formally state that
Theo complies with all these characteristics and can consequently be classified as
a good promotor!

According to our university, however, the promotor cannot guarantee funding,
does not always have time to see you or help you, expects you to study and work
largely on your own, cannot do the research or write a paper for you, has many
other responsibilities and expects you to share the burden by assisting in some of
these non-research tasks. While Theo always found funding, he was indeed a busy
man who had many other responsibilities wearing ties and suspenders. Luckily,
Pascal Costanza and Patrick Heymans managed to bridge those moments and
acted as perfect co-promotors.

I wish to thank the other members of my reading committee, Prof. Serge

Demeyer and dr. Yves Vandewoude for their numerous suggestions which have
considerably improved the quality of this text. Further thanks go to the other
members of my jury for taking an interest in my work: Prof. Stéphane Ducasse,
Prof. Viviane Jonckers and Prof. Ann Nowé.

I thank Jorge Vallejos for the many discussions we had when sharing the office.
It were these discussions that form the corner stones of this dissertation. I thank
Andy Kellens, Johan Brichau and Kris Gybels for helping me resolve Smalltalk and
SOUL issues. I also would like to thank my other colleagues at the Programming
Technology Lab for our co-operation over the years. Also many thanks to our
secretaries, Lydie Seghers, Brigitte Beyens and Simonne De Schrijver, for their
support in helping me deal with the university administration.

Special thanks also go out to Tom Mens and Kim Mens, whose dedication
and effort in the software evolution research field resulted in numerous scientific
symposia which form the basis of a research network in software evolution. It was
on those events that I got to know Patrick Heymans, Serge Demeyer, Stéphane
Ducasse and Yves Vandewoude. Without Kim and Tom, it would have been a lot
harder to establish this network.

I also want to thank my friends (in random order) Ellen, Inge, Nele, Ellen,
Kaat, Michael, Bart, Kris, Jan, Dave, Eric, Olivier, Hilde, Stijn, Stefaan, Lies,
Katrijn, Kenny, Peter and the members of the scuba diving club for constantly
enquiring how this dissertation was progressing and for occasionally providing me
with a welcome distraction from my work.

Last but certainly not least, I wish to thank my parents for allowing me to
obtain a higher education and my wife Sabine for unconditionally supporting me.
I dedicate this work to the three of you.

Peter Ebraert
March 2009

Abstract

A growing trend in software construction advocates the encapsulation of software
building blocks as features which better match the specification of requirements.
As a result, programmers find it easier to design and compose different variations
of their systems. Feature-oriented programming (FOP) is the research domain
that targets this trend.

The thesis of this research is that the software development environment should
provide support for recording modularisation information that results from devel-
opment actions, so that software can automatically be restructured in recompos-
able feature modules.

This dissertation proposes to model features as transitions that have to be
applied to a software system in order to add the corresponding feature’s function-
ality to the system. This model matches the development operations, which are
also transitions of a software system. Concretely, this approach enables bottom-up
feature-oriented programming and consists of three phases. First, the change oper-
ations are captured into first-class entities. Second, these operations are classified
into separate sets that each implement one functionality. Finally, those modules
are recomposed in order to form software variations that provide different function-
alities. Capturing change in frist-class objects can be done in three ways: logging,
differentiating or change-oriented programming (a novel programming style that
centralises change as the main development entity). Several classification strate-
gies are conceivable. In this work, three classification strategies are used to group
the change objects: manual classification, classification based on common char-
acteristics and automatic classification through development operation tagging.
The recomposition of the separated modules is performed by producing a totally
ordered set of changes that can subsequently be applied in order to produce the
desired software variation.

The viability of the proposed concepts, methods and tools is demonstrated by
a proof-of-concept implementation that is tested on a text editor that is developed
in a standard object-oriented way and reconfigured afterwards to form different
program variations.

Keywords: software variability, feature-oriented programming, software clas-
sification, software evolution, reverse engineering, object-oriented software devel-
opment, development environments.

Samenvatting

In het domein van software constructie wordt er meer en meer gebruik gemaakt
van een software modularisatie op basis van de functionaliteit. Zulke modular-
isatie groepeert de bouwstenen van een software applicatie volgens de functie die
ze samen implementeren. Het voordeel van die modularisatie in funcionalteitsmod-
ules, is dat ze beter aanleunt bij de specificate van de wensen van de gebruikers,
aangezien elke funcionalteitsmodule slechts één functionaliteit implementeert. Het
resultaat is dat software ontwikkelaars het gemakkelijker vinden om variaties van
de software te ontwerpen en te implementeren. Feature-oriented programming
(FOP) is het wetenschapsdomein dat deze trend onderzoekt.

De thesis van dit onderzoek is dat een software ontwikkelingsomgeving de
nodige ondersteuning moet bieden om modularisatie-informatie te extraheren va-
nuit de acties van de software ontwikkelaars, zodat de ontwikkelde software au-
tomatisch geherstructureerd kan worden in hersamenstelbare funcionalteitsmod-
ules.

Deze verhandeling stelt voor om funcionalteitsmodules te modeleren als tran-
sities die op een software systeem moeten toegepast worden om de functionaliteit
toe te voegen aan dat systeem. Dit model stemt overeen met de ontwikkelings-
acties, die ook transformaties zijn om software systemen. Meer concreet stellen
we een nieuwe benadering van FOP voor die bestaat uit drie fasen. Eerst moeten
de ontwikkelingsacties geëncapsuleerd worden in entiteiten. Vervolgens worden
deze entiteiten geklasseerd in verschillende verzamelingen die elk één function-
aliteit implementeren. Nadien kunnen deze modules dan samengevoegd worden
om software variaties te procuren met verschillende combinaties van function-
aliteiten. Het encapsuleren van ontwikkelingsacties kan gebeuren op drie manieren:
loggen, differentiatie of change-oriented programming (een nieuwe programmeer-
stijl die ontwikkelingsoperaties centraliseert). Er bestaan verschillende classifi-
catiestrategiën, waarvan wij er drie bespreken: de manuele classificatie, de half-
automatische strategie die gebaseerd is op gemeenschappelijke karakteristieken en
de automatische classificatie op basis van annotaties. De hersamenstelling van de
modules gebeurt door de verzameling van ontwikkelingsacties te ordenen en toe te
passen en heeft als doel een variatie te produceren van het software systeem die
overeenstemt met de noden van de software gebruiker.

De naar voren geschoven concepten, benaderingen en werktuigen worden
gevalideerd door middel van een bewijs-van-concept implementatie die getest

viii Samenvatting

wordt op een text editor die ontwikkeld wordt in een standaard object-gerichte
manier en achteraf geconfigureerd wordt om versies te bekomen met verschillende
combinaties van functionaliteit.

Kernwoorden: software variabiliteit, feature-oriented programming, software
classificatie, software evolutie, reverse engineering, object-geörienteerde software
ontwikkeling, ontwikkelingsomgevingen.

Contents

Abstract v

Samenvatting vii

Table of Contents ix

List of Figures xiii

List of Listings xv

List of Algorithms xvii

List of Tables xix

1 Introduction 1
1.1 Software modularisation . 3

1.1.1 Object-oriented programming 3
1.1.2 Component-based software engineering 4
1.1.3 Aspect-oriented software development 4

1.2 Modularisation for variation . 5
1.2.1 Feature-oriented programming 5
1.2.2 Change-oriented feature-oriented programming 6

1.3 Bottom-up approach to feature-oriented programming 7
1.4 Scope of the dissertation . 8
1.5 Structure of the dissertation . 9

2 Background 11
2.1 Program variability . 12
2.2 Feature-oriented programming . 14

2.2.1 FODA diagrams . 14
2.2.2 Extra-functional features 15
2.2.3 Generic feature-based composition 17
2.2.4 Mixin-layers . 19
2.2.5 FeatureC++ . 21
2.2.6 Lifting functions . 23

x CONTENTS

2.2.7 AHEAD . 24
2.2.8 Discussion . 27

2.3 First-class changes . 29
2.3.1 Principles . 29
2.3.2 VisualWorks: change list . 30
2.3.3 SpyWare . 31
2.3.4 CatchUp! . 32
2.3.5 Changeboxes . 33
2.3.6 Change-impact analysis . 34
2.3.7 Discussion . 35

2.4 Aspect-oriented software development 36
2.4.1 AspectJ . 38
2.4.2 EAOP . 40
2.4.3 Logical meta programming 41
2.4.4 Discussion . 41

2.5 Conclusions . 43

3 Change-oriented programming 45
3.1 Context . 46

3.1.1 Evolution Scenario . 46
3.2 Change as the central development action 50
3.3 Requirements for ChOP . 51

3.3.1 First-class changes . 51
3.3.2 Change management . 54

3.4 Advantages of ChOP . 56
3.4.1 Incremental change management 56
3.4.2 Combination with other paradigms 57

3.5 Tool Support . 58
3.6 Discussion . 63
3.7 Conclusions . 66

4 Model of first-class change objects 67
4.1 The FAMIX model . 68

4.1.1 Basic data types . 69
4.1.2 Object . 70
4.1.3 Entity . 71
4.1.4 Association . 75
4.1.5 Argument . 76

4.2 Code statements in FAMIX . 76
4.3 A model of changes . 77

4.3.1 Atomic changes . 79
4.3.2 Composite changes . 83

4.4 Dependencies between change objects 86
4.4.1 Structural dependencies . 87
4.4.2 Semantical dependencies . 90

4.5 Conclusion . 90

CONTENTS xi

5 Change-oriented feature-oriented programming 93
5.1 Principles . 94

5.1.1 Features as functions . 94
5.1.2 Changes as feature building blocks 94
5.1.3 Dependencies . 95

5.2 Mathematical properties . 96
5.2.1 The dependency relation . 96
5.2.2 Dependency graphs . 99

5.3 Advantages . 101
5.4 Bottom-up approach to FOP . 102

5.4.1 Obtaining the changes . 102
5.4.2 Classification of Changes 104
5.4.3 Change composition . 108

5.5 Conclusion . 113

6 Formalism for feature composition 115
6.1 Feature Diagrams . 115
6.2 A formal model for ChOP . 118

6.2.1 Fundamental concepts . 118
6.2.2 Properties . 121

6.3 From change specification to feature diagram 125
6.3.1 Translating the formalism 128
6.3.2 Applications . 130

6.4 Conclusion . 132

7 Expressing crosscutting concerns 135
7.1 Crosscutting functionality in feature-oriented programming 135

7.1.1 Flexible features . 136
7.1.2 Composing flexible features 137
7.1.3 Other uses for flexible features 139

7.2 Extensional changes . 139
7.3 Intensional changes . 140

7.3.1 Language for specifying intensional changes 142
7.3.2 Intensional change evaluation 147
7.3.3 Implementation . 149
7.3.4 Formalising intensional changes 151
7.3.5 Advantages and drawbacks 156

7.4 Conclusion . 156

8 Validation 159
8.1 Proof-of-concept implementation 159

8.1.1 VisualWorks for Smalltalk 160
8.1.2 Model of first-class change objects 160
8.1.3 Obtaining changes . 161
8.1.4 Change classification . 164
8.1.5 Feature composition . 168

xii CONTENTS

8.1.6 ChEOPS supports the formal model 170
8.1.7 Intensional changes in ChEOPS 171

8.2 Validation: FOText . 173
8.2.1 FOText design . 174
8.2.2 FOText implementation . 175
8.2.3 Feature composition . 177

8.3 Conclusion . 184

9 Future Work 187
9.1 Overcoming restrictions . 187

9.1.1 Parellel development . 187
9.1.2 True scalability . 188
9.1.3 The meta-model . 188

9.2 Classification strategies . 189
9.3 Applications of first-class changes 189
9.4 Formalism . 190
9.5 Deriving intensional changes . 191
9.6 Feature refactoring . 192
9.7 Ensuring design contracts . 192

10 Conclusions 195
10.1 Summary . 195
10.2 Contributions . 197

Bibliography 201

List of Publications 211

Biography 215

List of Figures

2.1 FODA diagram of the buffer application 15
2.2 Extended feature diagram including extra-functional features . . . 16
2.3 Mapping between Feature Diagram and Dependency Graph 18
2.4 Collaboration diagram of the graph traversal application 20
2.5 Composition by Mixin-layers . 21
2.6 Composing Objects by means of lifting functions 24
2.7 Application described by features B and H 25
2.8 Changebox implementation class diagram 33
2.9 The UML diagram of a simple figure editor. 37
2.10 E.g. weaver: composing an application using Aspects and base

program. 38
2.11 The AspectJ model . 39

3.1 Class diagram of the chat application 47
3.2 First change: differentiating users 47
3.3 Second change: ensuring user privacy 49
3.4 Merging the changes . 49
3.5 New way of merging the changes 50
3.6 Composable First-Class Changes Design 52
3.7 ChEOPS view on change list (ordered by time) 61
3.8 ChEOPS view on change list (ordered by affected entity) 62
3.9 ChEOPS view on change list (ordered by composition) 62
3.10 ChEOPS view on change list (ordered by intention) 63
3.11 ChEOPS change browser . 64

4.1 Conception of the FAMIX model (based on [27]) 68
4.2 FAMIX model - Object . 70
4.3 FAMIX model - Entity . 71
4.4 FAMIX model - BehaviouralEntity 72
4.5 FAMIX model - StructuralEntity 73
4.6 FAMIX model - Association . 75
4.7 FAMIX model - Argument . 76
4.8 FAMIX model - Statement . 77
4.9 Change Model Core . 78

xiv LIST OF FIGURES

4.10 Composable First-Class Changes Design 84
4.11 Push-down field in employee example 86

5.1 Source code (left) and change objects (right) of the Buffer 94
5.2 Source code of adding Restore (left), Logging (middle), Multiple

Restore (right) . 96
5.3 Change objects of Restore (left), Logging (middle), Multiple Re-

store (right) . 97
5.4 Reconstruction of the change sets by means of the differentiation

technique . 103
5.5 Change model . 104
5.6 Classification model . 105
5.7 Manual classification . 105
5.8 Semi-automatic classification . 106
5.9 Automatic classification . 107
5.10 Change specification of the buffer example 109

6.1 Buffer feature diagram . 116
6.2 Change specification of the buffer example 126
6.3 Mapping optional changes to optional features 126
6.4 Tentative feature diagram representing the Buffer change specifica-

tion. 127
6.5 Buffer feature diagram resulting from the translation algorithm . . 130

7.1 Change specification of the buffer example (copy of Figure 5.10) . 137
7.2 Compositions based on first-class changes 138
7.3 A buffer with a functionality for maintaining statistics 140
7.4 Extended buffer code after adding the statistics feature 141
7.5 Extended logging changes after adding the statistic code 142
7.6 Extended change model . 149
7.7 SOUL core . 150

8.1 Differentiation to obtain change objects 162
8.2 Change-oriented programming to obtain change objects 163
8.3 Change-oriented programming to obtain change objects (view 2) . 163
8.4 FODA diagram of FOText . 174
8.5 Class diagram of FOText . 175
8.6 FOText: List of logged changes . 176
8.7 Composition of all features except for Logging 178
8.8 Composition of Base and Save . 179
8.9 Composition of Base, SaveAs and Compress 180
8.10 Composition of Base, Open and Compress 182
8.11 Composition of Base, Open and Logging 183
8.12 Composition of all features and Logging 184

Listings

2.1 AHEAD Base feature . 26
2.2 AHEAD Restore feature . 26
2.3 AHEAD Logging feature . 26
2.4 AOSD Base feature . 42
2.5 AOSD Restore feature . 42
3.1 Evolution Scenario user privacy : Change list by ChangeList 48
3.2 Change method body: extension 54
3.3 Change method body: intension 54
3.4 Chat Application: change list by ChEOPS 59
3.5 Adding Different Users: change list by ChEOPS 59
3.6 Adding user privacy: change list by ChEOPS 60
3.7 Adding user privacy correctly: change list by ChEOPS 61
3.8 Adding user privacy correctly: (compositional) change list by

ChEOPS . 61
4.1 Change instantiation . 83
4.2 Change instantiation example . 83
4.3 Change definition example 1 . 85
4.4 Change definition example 2 . 85
4.5 Invocative dependency example . 89
4.6 Accesive dependency example . 90
7.1 Extension of Logging on {Buffer,Restore, Statistics} 148
7.2 Extension of Logging on {Buffer,Restore} 148

List of Algorithms

1 validateComposition(F,CS) function 111
2 minimal feature set(F,CS) subroutine 111
3 minimal change set(Fmin, CS) subroutine 112
4 unwanted change set(Fmin, Cmin, CS) subroutine 112
5 transitive closure(Cunw, CS) subroutine 112
6 Constructing a maximal feature set 125
7 addCandidates subroutine . 125
8 Transforming a Cs to a feature diagram 129
9 validateComposition(F,CS) function 153
10 minimal feature set(F,CS) subroutine 154
11 minimal change set(Fmin, CS) subroutine 154
12 find intensional dependencies(CS) subroutine 154
13 unwanted change set(Fmin, Cmin, CS) subroutine 155
14 transitive closure(Cunw, CS) subroutine 155
15 Clustering change instances based on their timestamp 166

List of Tables

2.1 Analysis of the FOP approaches based on our criteria 28
2.2 Categories of changes . 34
2.3 Analysis of the approaches based on our criteria 36
2.4 Aspect composition operators in EAOP 40

3.1 Problems handled by properties of change-oriented programming . 64

4.1 Relations between changes and meta-model entities 81

6.1 Cardinality as a way to describe feature decomposition 116

8.1 Statistics of the size of FOText . 176

Chapter 1

Introduction

The subject of this dissertation is the construction of variations of object-oriented
software systems. Concretely, we aim at a bottom-up approach in which individual
building blocks of the system are first specified in an object-oriented way. These
building blocks are then linked together to form larger subsystems, which then
in turn are composed to form a complete system. This reflects the sub-domain
of software engineering to which this research makes a contribution: the cross-
section of object-oriented systems, feature-orientated systems and reengineering.
The research behind this dissertation was driven by three observations. Together,
these observations show that there is an opportunity to contribute in the research
domain of the aforementioned cross-section.

One, feature-oriented programming (FOP) is crucial to the development of
software product families. A growing trend in software construction advocates
the encapsulation of software building blocks as features which better match the
specification of requirements. As a result, programmers find it easier to design
and compose different variations of their systems. FOP is the research domain
that targets this trend.

Two, the state-of-the-art approaches to FOP are (a) top-down, (b) provide
limited expressiveness and (c) require a specific development process. All these
characteristics make FOP less easy to use. In a top-down application development
method, the designer has to foresee feature modularisation from the start, which
is not always possible in practice. The limited expressiveness of the state-of-the
art approaches to FOP often requires more effort from the developers to express
certain feature modularisations. As feature modularisation is not mainstream,
most developers have a development process that is different from the development
process required to do feature-oriented software development. Moreover, in order
to apply one of the state-of-the-art approaches to FOP, a specific development
environment is usually required that is different from the standard one. The use
of such environment enforces developers to alter their development habits. Usually,
developers are reluctant to change development environment and habits.

Three, the application of FOP to non-feature-oriented systems is a tedious task.
In order to restructure a legacy system – that was not developed with the separa-

2 Introduction

tion of functionality in mind – reengineering techniques are needed. Few popular
software development environments for object-oriented languages support auto-
mated techniques for reengineering to feature modularisation. Therefore, software
engineers reengineer manually by browsing the source code. Reengineering code
into modularised features involves a huge intellectual effort. Reading and under-
standing source code of object-oriented programs requires many context switches
and a high concentration to keep a mental record of the recovered software ar-
chitecture: the interrelationships between the architectural components and the
rationale behind the software design.

The three observations reveal the need for an alternative approach to FOP
for making this simpler: We propose one that captures modularisation informa-
tion and uses that information to automatically restructure the application into
feature-oriented modules. Although the solution to this problem seems obvious –
let the developer record modularisation information that results from development
actions – this is not easily achieved. First, the lack of proper notation and mod-
els for development actions is an impediment to capture the information hidden
behind development actions. The prevalent notation and models for describing,
building and reasoning about development actions deal with change in an implicit
manner only. Second, the modularisation information extracted from development
actions should be complemented with domain knowledge from the developer in or-
der to be able to modularise the application correctly. Third, the intrusiveness of
the extraction of the modularisation information in the development environment
should be minimized. The thesis of this dissertation is that:

Software can be automatically restructured in feature modules if it is
developed in a development environment that records fine-grained
modularisation information resulting from development actions.

This dissertation introduces a bottom-up method for feature-orientated pro-
gramming that consists of three phases. First, the change operations are captured
into first-class entities. Second, these operations are classified into separate sets
that each implement one functionality. Finally, those modules are recomposed
in order to form software variations that provide different combinations of func-
tionality. We identify three strategies for capturing change in first-class objects:
This can be done by logging developers, by change-oriented programming or by
differentiating source code versions. Several classification strategies are conceiv-
able. In this work, three classification strategies are used to group the change
objects: manual classification, classification based on common characteristics and
automatic classification through development operation tagging. The recomposi-
tion of the separated modules is performed by producing a totally ordered set of
changes that can subsequently be applied in order to produce the desired software
variation.

1.1 Software modularisation 3

1.1 Software modularisation

A “software module” is the basic unit of software development, maintenance and
management. The main activity of the software design process is the partitioning
of the software specification into a number of software modules that together sat-
isfy the problem statement. To do this, programmers need criteria for defining the
organization of modules. Major criteria for software modularization include cohe-
sion, coupling and information hiding. All these criteria, however, are difficult to
quantify as they mostly depend on specific requirements which are often contradic-
tory (code reusability, code maintainability, system security, system performance,
etcetera).

Modular programming is a software design technique that increases the extent
to which software is composed from separate entities – software modules. De-
composing software into modules allows a separation of concerns, and improves
maintainability by enforcing logical boundaries between modules. Modular pro-
gramming can be performed even where the language lacks explicit syntax or
semantics to support modules. In fact, all programming paradigms support some
level of grouping and encapsulation of concerns into separate, independent entities
by providing new abstractions (e.g. functions, procedures, libraries, etc.) that can
be used to represent these concerns.

It was only in the mid seventies, however, that programming languages started
to isolate modularisation and incorporate specific language constructs for modular
programming. Languages like Modula, Ada, and ML allowed the organisation of
large-scale systems into software modules, or large-scale organizational units of
code. In essence, module systems from the eighties were mostly based on generic
programming constructs – generics being, in essence, parameterized modules.

1.1.1 Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm in which pro-
grammers not only define the data type of a data structure, but also the types of
operations (functions) that can be applied to the data structure. That way, data
structures become “objects” that include both data and functions. Moreover, pro-
grammers can create relationships between one object and another. For example,
objects can inherit characteristics from other objects.

Modularity in OOP is also provided by separating the interface from the im-
plementation. A module interface expresses the elements that are provided and
required by the module. Elements defined in the interface are visible to other
modules. The implementation, on the contrary, is typically not visible to other
modules. It contains the working code that corresponds to the elements declared
in the interface.

Simula is the oldest language that has the primary features of an object-
oriented programming language. It was created for making simulation programs,
in which what came to be called objects were the most important information
representation. The first language that really talked about objects was Smalltalk,
which was developed in the mid seventies.

4 Introduction

One of the principal advantages of object-oriented programming techniques
over procedural programming techniques is that they enable programmers to create
modules that do not need to be changed when a new type of object is added. A
programmer can simply create a new object that inherits many of its functionality
from existing objects. This makes object-oriented programs easier to modify.

The biggest inconvenience OOP has with respect to modularisation, is that
it inherently suffers from the Tyranny of the Dominant Decomposition [100]: the
program can be modularized in only one way at a time, and the many kinds of
concerns that do not align with that modularization end up scattered across many
modules and tangled with one another.

1.1.2 Component-based software engineering

Component-based software engineering puts the emphasis on the decomposition of
software systems into functional or logical components with well-defined interfaces
used for communication across the software components.

The basic building block of a component-oriented application is a component.
Perhaps the best-known definition of a component is the one given by Szyperski
in [99]. It states that “A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third
parties”. This definition stresses that the components are subject to the black-
box principle, that they are subject to (third party) composition and that they
are subject to strict and contractually specified interfaces [107].

The biggest inconvenience of component-based software engineering with re-
spect to modularisation, is that it also inherently suffers from the Tyranny of the
Dominant Decomposition [100].

1.1.3 Aspect-oriented software development

Aspect-oriented software development (AOSD) is a research domain that inves-
tigates the increase of modularity by allowing a multi-dimensional separation of
concerns. Some concerns defy the forms of encapsulation that are allowed by
object-orientation and are called crosscutting concerns because they “cut across”
multiple modules of a program. The identification, specification and representa-
tion of those concerns and their modularization into separate functional units as
well as their automated composition into a working system is the subject of AOSD.

AOSD technology started with aspect-oriented programming (AOP) languages.
The term AOP was introduced in 1997 by Gregor Kiczales and his team in [60].
As a follow-up on that paper, they introduced AspectJ: the first AOP language. It
has gained a lot of acceptance and popularity from the Java developer community.
AOP concepts are based on related research on software modularization, such as
composition filters [1], adaptive programming [66] and subject-oriented program-
ming [81] and appear as well in other research domains, such as context-oriented
programming [50].

1.2 Modularisation for variation 5

The main strength of AOSD and related approaches is that they all support a
multi-dimensional separation of concerns which overcomes the problems that the
tyranny of the dominant decomposition brings along. As such, those approaches
support a clean modularisation of all the programming concerns.

A fundamental problem with many approaches to software modularisation is
that they view systems from the perspective of producers, rather than consumers.
Producers tend to specify their systems in terms of software building blocks while
the consumers tend to specify requirements primarily in terms of functionality.
This mismatch complicates variability, since there is no direct mapping between a
composition of functionality and the software modules that implement that compo-
sition, even by using AOSD techniques. Recent research in software construction
increasingly reflects a common theme: the need to realign modules around features
rather than software building blocks [62].

1.2 Modularisation for variation

A software product family is a set of variations of the same software system.
Developing all variations of a software product family can be addressed in an
ad-hoc way by implementing one big system that contains all possible variations
and which behaves differently depending on its configuration. In a procedural or
functional programming style, the resulting code, however, would contain an IF-
THEN control statement at every place where the program chooses which variant
to produce. This kind of implementation lacks modularity and reusability [78]. An
object-oriented implementation would use polymorphism to implement the varia-
tion points. Then, each IF-THEN control statement is replaced by instantiating
different subclasses of a class which model the specification of each variation. This
approach would still require a significant amount of manual labor [35]. The most
important drawback of such approach, however, is that it suffers from a combi-
natorial explosion [71], as for every new funtionality, the number of variations
of the product family is multiplied by two (the variations that include the new
functionality and the ones that do not include the functionality).

1.2.1 Feature-oriented programming

A better alternative is to modularize a software system based on the functional-
ity it provides. Modules which add functionality to the system are called feature
modules, further abbreviated as features. Feature-Oriented Programming (FOP) is
the discipline that centralises features as the main development module. The idea
of FOP is to produce software variations by composing feature modules. We find
that the state-of-the-art approaches to FOP (E.g. Mixin-layers [96], AHEAD [10],
Lifting Functions [87], Composition Filters [12], FeatureC++ [4] and approaches
that stem from the AOSD community [60]) all suffer from three common inconve-
niences.

First, they all start from a top-down approach to FOP, in which the software
system has to be designed upfront before the implementation is started. In such a

6 Introduction

method, the designer has to foresee feature modularisation from the start, which is
not always possible in practice. This problem is even more apparent in a context of
a development method that stresses a highly iterative and incremental development
cycle. Such methodologies, such as agile software development [20], are often used
in order to support change during the different phases of software engineering.
As they encourage programmers to frequently inspect and adapt their software
products, they appear incompatible with a top-down to FOP.

Second, in order to apply one of the state-of-the-art approaches to FOP, a
specific development process is required that is different from the one exerted by
developers. In FOP, code has to be modularised in features: a specific kind of
software module. Since feature modularisation is not mainstream, most developers
have a development process that does not include modularisation of code into
features. Consequently, developers are obliged to alter their development process
for applying FOP. As most developers are reluctant to change their development
process, they avoid using the FOP programming technique, making it even less
mainstream.

Third, we find that all approaches lack expressiveness. None of them allow
the specification of feature building blocks with a granularity below method level.
Next to that, none of them allow to express the removal of building blocks from a
base. Examples of where such expressiveness is desirable include anti-features (a
functionality that a developer will charge users not to include 1), the creation of a
demo-application which consists of all features but only to a certain extent, or the
customisation of certain features so that the software system copes with specific
hardware requirements (e.g. limited memory or computation power).

In some situations, these characteristics of the top-down approaches to FOP
are undesirable as they make it less easy to use. We propose a novel approach to
FOP, which is based on a programming style we call change-oriented programming.
In the following section, we briefly introduce this style and show how it can be used
to do bottom-up FOP. Afterwards we elaborate on this novel approach to FOP
and hint at how it does not suffer from the three above-mentioned inconveniences.

1.2.2 Change-oriented feature-oriented programming

In [28] and [89], the authors propose to centralise change as the main development
entity. We name this programming style change-oriented programming (ChOP).
In order to develop a program in the ChOP style, the programmer applies changes
which are automatically instantiated in first-class change objects. In order to
do FOP by means of ChOP, we first provide the reader with a definition for a
feature given by Batory et al. In [7], they define a feature as a function that is
applicable to a base (a set of building blocks), rather than a set of building blocks
itself (which is how features are specified by the majority of the state-of-the-art
approaches to FOP). According to that definition, a programmer can specify a
feature by grouping first-class change objects into one function. The composition

1E.g. While it may seem more difficult to produce a trial version of a software system that
includes publicity, the producers will charge more for a version that does not include the publicity.

1.3 Bottom-up approach to feature-oriented programming 7

of features then boils down to the nested application of the functions that represent
the features from the composition.

We see three advantages in the specification of features in terms of fine-grained
first-class change objects which overcome to the three inconveniences we found in
existing approaches to FOP: increased expressiveness, a novel bottom-up approach
to FOP which is non-intrusive in the development process and environment.

In comparison with state-of-the-art approaches to FOP, which allow the speci-
fication of features as a set of program building blocks that might extend or modify
existing building blocks, our approach allows to specify features as sets of changes
that add, modify or delete software building blocks. This approach increases the
expressiveness of how features can be specified in two ways. (a) Features can
express changes down to the statement level, which is more fine-grained than the
state-of-the-art (only allowing the expression down to the method level). (b) Fea-
tures can include the deletion of certain building blocks, which is not supported
by the state-of-the-art.

The second advantage of specifying features by change objects is that it enables
a method for a bottom-up approach to FOP. Instead of having to specify a com-
plete design of a feature-oriented application before implementing it (top-down),
our approach allows the development of such an application in an incremental
way. Also top-down development or a combination of top-down and bottom-up
approaches – in which the coarse-grained software structure is made in a top-down
way and the detailed parts are constructed in a bottom-up way – is supported by
our approach.

Thirdly, this approach is not intrusive in the development process and the
development environment that has to be used. In ChOP, a programmer applies
changes in his favorite programming language and environment. An external tool
instantiates those changes behind the scenes and subsequently groups them in
change sets that specify the different features. Moreover, by specifying features
as sets of fine-grained change objects, features are not only aware of the build-
ing blocks they consist of. They also know how they can be added to a software
composition (by applying the changes they consist of). This ensures that a pro-
grammer does not have to deviate from his development process in order to do
FOP.

1.3 Bottom-up approach to feature-oriented pro-
gramming

We propose to model features as transitions that have to be applied to a software
system in order to add that feature’s functionality to the system. This model
matches development operations, which are also transitions of a software system.
Concretely, this enables a bottom-up approach to feature-oriented programming
and consists of three phases.

First, the development operations have to be captured into first-class entities
that represent the changes applied for developing the software system. We distin-

8 Introduction

guish between three ways of doing that: by developing the software in a change-
oriented way, by logging the programmer when development is taking place or by
differentiating two text files that contain the specification (for instance the source
code or a UML class diagram) of two different versions of the software system.

Second, these operations are to be classified in separate sets that each im-
plement one functionality. Several classification strategies are conceivable. In
this work, three classification strategies are used to group the change objects. A
manual classification requires a developer to classify the changes by hand. A semi-
automatic classification technique is based on the principle of clustering changes
together based on their common characteristics. The automatic classification strat-
egy is capable of automatically grouping changes together based on the extra in-
formation that is provided when the system is developed.

Finally, those modules can be recomposed in order to form software variations
that provide different combinations of functionality. The recomposition of the
separate modules is done by producing a totally ordered set of change objects that
can subsequently be applied in order to produce the desired software variation.

1.4 Scope of the dissertation

The main limitation of our approach is that it only scales up if all three phases
are automated. In order to support the automatic classification, we require in-
formation that denotes which feature the development actions belong to. That
information is usually in the developers head when he is producing the software
system and is often lost as it is not made explicit. In case change-oriented program-
ming or logging are used to capture the development actions in first-class changes,
the IDE can be instrumented with a dialog that requests that information from
the developer. That way, the modularisation information is made explicit and an
automatic classification is possible.

In order to simplify the approach, throughout this dissertation we limit our-
selves to a development setting in which we do not have parallel development : We
do not allow more than one developer to work on the production of the same soft-
ware system simultaneously. This restriction brings along two premises: (a) All the
first-class change objects are part of a set that can be ordered by the time stamp
of the changes. In other words, every change object has a unique time stamp.
(b) The IDE can make sure that no conflicting changes are produced. Changes
conflict if their application violates an invariant of the programming language or
environment.

A final restriction of this dissertation is that it particularly targets feature-
oriented modularisation of software systems that are developed by means of class-
based object-oriented programming. While the concepts of our approach to FOP
might be applicable to software systems that are implemented by means of other
software development paradigms, we restrict ourselves to this paradigm for proving
their applicability. We choose the class-based object-oriented paradigm because
many mainstream programming languages (like Java, C++ or Smalltalk) adhere

1.5 Structure of the dissertation 9

to it. We feel confident, however, that tall three restrictions may be dropped in
the future and come back to this issue in Chapter 9.

1.5 Structure of the dissertation

The remainder of this text is structured in the following nine Chapters:

Chapter 2: Background In Chapter 2, we present the background material on
the three research domains directly related to this work. First we elabo-
rate on software variability (the ability of a software system to be changed,
customized or configured for use in a particular context). Afterwards, we
discuss software modularisation for variation and subsequently explain how
this can be done in object-oriented, aspect-oriented, context-oriented and
feature-oriented programming. Finally we present an overview of the related
work on the instantiation of change into first-class change objects.

Chapter 3: Change-oriented programming In order to facilitate the record-
ing of modularisation information, we propose a new style of programming, a
new programming style which we call change-oriented programming (ChOP).
ChOP centralises change as the main development entity. ChOP developers
have to instantiate and apply changes in order to develop their software sys-
tems. A software system in its turn, is specified by the sequence of changes
that was applied to produce it.

Chapter 4: Model of first-class change objects While a model is an ab-
straction of phenomena in the real world, a metamodel is yet another abstrac-
tion, highlighting properties of the model itself. A model is said to conform
to its metamodel comparable to a program conforms to the grammar of the
programming language in which it is written. The goal of Chapter 4 is to
establish a metamodel that allows expressing the evolution of a computer
application as first-class objects. We start out from Famix: a metamodel
which captures the common features of different object-oriented program-
ming languages needed for software re-engineering activities [27, 31, 103].
We create a model of first-class change classes which is based on the Famix
metamodel and incorporate the notion of dependencies between different
change operations in the model.

Chapter 5: Feature-oriented programming through ChOP ChOP allows
for a bottom-up approach to feature-oriented programming (FOP). In Chap-
ter 5, we explain the details of this approach and clarify it with a small
example: a Buffer. We present three techniques for capturing changes, a
classification model, three classification techniques of classifying changes and
an algorithm for composing and validating change compositions. We intro-
duce the concept of a change specification: a definition of a software product
family based on our model of first-class changes. Throughout the chapter,
we use the Buffer case to illustrate all aspects of the approach.

10 Introduction

Chapter 6: Formalism for feature composition In Chapter 6, we present a
formalism of the model behind ChOP. The formalism is based on basic set
theory and presents the fundamental concepts and some properties that
hold in the context of ChOP. Afterwards, we show that this formalism can
be mapped to the better known formalism of feature diagrams (FDs) and
present an algorithm that is capable of translating a change specification to
an FD. This formal mapping opens up a broad range of applications that
were verified in the FD research domain.

Chapter 7: Expressing crosscutting concerns This chapter explains the ex-
tension of ChOP with the notion of flexible features, which consist of at
least one optional change that does not have to be included in a composi-
tion in order to make it valid. We show that flexible features provide more
flexibility with respect to compositions and that they allow more than one
composition strategy. We expose a weakness of our change model which is
caused by the fact that features always contain extensional descriptions of
change objects. We present a solution for that issue, and call it intensional
changes: a descriptive change which can evaluate to an extensional set of
changes. We explain how such changes can be used to model crosscutting
concerns and show how they increase the robustness to variability.

Chapter 8: Validation In order to validate our work, we implemented the meta-
model for expressing ChOP. We instrument an interactive programming en-
vironment in such a way that first-class change objects can be instantiated
by computer programmers. The tool suite ChEOPS, includes a graphical
user interface which allows the visualisation and reasoning over the created
change objects. The chapter includes a discussion of the implementation of
a text editor called FOText, which we developed using our approach.

Chapter 9: Future work There exist many lines of future research with respect
to this dissertation. In this chapter, we suggest a handfull. We start by sug-
gesting how the restrictions made to the research setting can be left out
and on how that would probably affect the results of this work. Other lines
of future work include the study of other classification strategies, other ap-
plication domains for first-class changes, extensions to the formalism, the
automatic deduction of intensional changes (which is similar to aspect min-
ing), the restructuring of feature modules and the enforcement of design
contracts.

Chapter 10: Conclusions In the final Chapter we summarize our contributions
and make a critical assessment of its advantages over existing work. We
identify the strengths and the weaknesses of our approach and recapitulate
our contributions.

Chapter 2

Background

As the title of this thesis already suggests, our work is tightly coupled with the
research domain of program variation. Program variations are different versions of
one program which provide different combinations of functionality. Constructing
program variations is mostly a programming and programming language issue.
Program variability itself, however, is also touched upon in the research domain
of software evolution.

Starting with an overview of important literature, we summarize the key-
characteristics of program variation and discuss how it is achieved by the different
state of the art in programming styles. We subsequently discuss feature-oriented
programming (FOP) and explain why we consider that programming style in the
context of program variation. Afterwards, we evaluate the state-of-the-art ap-
proaches to FOP with respect to characteristics that are desired in a context of
program variation. This evaluation exposes deficiencies in the current state of the
art. We conclude with our own contributions in addressing these deficiencies.

The third part of this chapter briefly describes software evolution. As our
contributions are based on expressing features as sets of first-class changes, we
present an overview of the state of the art in first-class changes and discuss how
those approaches satisfy the desiderata that emerge from the context of program
variability. We observe that the changes of one feature module often affect the
software building blocks of many other software modules and that their application
is similar to the weaving process from aspect-oriented software development. These
observations show that change objects exhibit a flavor of crosscutting concerns
that is explicitly targeted by the research on aspect-oriented software development
(AOSD).

This chapter concludes with a presentation of the state of the art approaches
to AOSD. We compare those approaches to our approach in a context of program
variation and discuss the similarities and differences. In Chapter 7, we exploit
some of the concepts of the AOSD technology for introducing a new kind of change
object that uses quantification to denote its impact.

12 Background

2.1 Program variability

Software users are becoming more and more demanding and cost-conscious. They
want specific products that exactly cope with their needs at the lowest cost pos-
sible. From the producers point of view, these two requirements are usually con-
flicting. The development of a specific product for every client takes a lot of time
and will consequently be more expensive. The development of a more generic
product is cheaper but usually does not exactly cope with the specific needs of the
customer.

In order to find the good balance of both requirements, producers tend to use a
business strategy called product lining : offering for sale several related products of
various sizes, types, qualities or prices. The more variations the product line offers,
the more specific and expensive its products tend to get. The fewer variations the
product line contains, the cheaper and less specific its products become. Adopting
this business strategy, the producer’s goal boils down to cover the entire scope of
the product line, at the lowest possible production cost.

Software companies are the producers of either pure software products or prod-
ucts with an important software component (embedded systems). Driven by users’
demand, they are also forced to increase variability of their products. Over the
last decade, the management of this variability has become a major bottleneck in
the development, maintenance and evolution of software products. Next to that,
many companies do not even reach the desired level of variability or fail to do so
in a cost efficient manner. An explanation of this can be found in the development
approaches used by those companies.

A fundamental problem with many current development approaches is that
they view systems from the perspective of producers, rather than consumers. Pro-
ducers tend to specify their systems in terms of software building blocks while
the consumers tend to specify requirements primarily in terms of features. This
mismatch complicates variability, since there is no direct mapping between a com-
position of features and the software building blocks that implement that com-
position. Recent research in software construction increasingly reflects a common
theme: the desire to realign modules around features rather than software building
blocks [62].

Realigning modules around features requires programming constructs that can
express the modularization of features. Moreover, this realignation often suffers
from the tyranny of the dominant decomposition [100] as the program can be mod-
ularized in only one way at a time, and the many kinds of functionality that do not
align with that modularization end up scattered across many modules and tan-
gled with one another. For coping with that problem, we require a programming
language that offers a multi-dimensional separation of concerns. In the following
section, we elaborate how the state of the art programming paradigms cope with
these two desiderata. We focus on FOP, as it claims to target multi-dimensional
separation of concerns and feature modularisation at the same time [87].

Now let us present some state-of-the-art approaches related to FOP. While
some of them explicitly target both problems, others provide helpful means that
can help tackling one of them. We first present a set of criteria for analyzing these

2.1 Program variability 13

approaches. This list presents the qualitative properties that we aim to find in
an approach to program variability. They are motivated by the goals of our work
(Chapter 1). Throughout this chapter, we will use these criteria to evaluate the
state-of-the-art approaches to FOP.

1. Granularity : The granularity provided to express modules establishes the
smallest/biggest unit of information that composes a module. Some ap-
proaches use native OOP entities, such as classes, instance variables, and
methods, as the building blocks of a module. In that case, many of them
establish the granularity at the level of methods. This implies that a module
would not be capable of introducing a modification within a method, but it
would be able to replace the entire method. The granularity establishes the
kind of specifications that a feature can declare. For instance, an approach
that sets its granularity at the level of methods is not capable of modeling
a modification within the body of a method. It will consequently have to
model such modification as a modification on the method level, which brings
along a loss of detail.

2. Supported operations: The purpose of this criterium is to evaluate if the ap-
proach allows one to express modules by additions, modifications and dele-
tions of program building blocks. Usually, the building blocks that compose
a feature module are described in term of additions and modifications. In
this dissertation, we also realise that deletion is a proper way for describing
certain features such as anti-features [40]. Anti-features are features that re-
move a functionality from the system. Sometimes, the functionality affected
by anti-features is scattered among several feature modules. Consequently, it
should be possible to express the deletion of functionality that might be scat-
tered over different feature modules for defining anti-features (and features
in general).

3. Dependency management : In some settings one module might depend on
other modules. Such dependency means that the former module can only
be included in a composition that includes the latter modules. While some
approaches do manage the dependencies between modules, others don’t. De-
pending on the purpose of the approach, dependencies are managed. In a
context of software variability, however, dependency management is desirable
as it can be used to validate compositions.

4. Customized deployment : In a composition sometimes a feature cannot be
deployed since some of its own building blocks have at least one unsatisfied
dependency. Some modularisation approaches support a customised deploy-
ment of modules, which tackles this situation. Doing so, those approaches
allow for compositions that otherwise would be invalid.

5. Specific language support : This criterium checks whether the modularisation
approach requires the addition of new constructs to a programming language
or whether it just uses the capabilities of a main-stream programming lan-
guage.

14 Background

2.2 Feature-oriented programming

Feature-Oriented programming (FOP) is a discipline that proposes to produce
software instances by composing features. Features are well-delimited building
blocks that encapsulate the code needed to add a functionality to a base program.
Since a software instance provides functionality to its users, it can be specified by
the list of functionalities that it provides. The required software instance can then
be constructed by composing the features that map to the specified functionality.

FOP takes modularization as a central concern, hence several aspects of soft-
ware quality are improved. FOP increases software maintainability [2] by mod-
ularizing software. Reusability is defined as the ease with which software can be
reused in developing other software, which in fact is the way how FOP proposes to
develop software at all [22]. FOP proposes to create software variants by adding
features to a composition and reusing the features that already exist. However,
composing features is not free from issues, since there are interactions between
features. These interactions make a feature depend on other features. These
dependencies must be satisfied otherwise the composition is invalid.

2.2.1 FODA diagrams

Feature-Oriented Domain Analysis [55] (FODA) provides three mechanisms to
describe applications in a feature-oriented way. It introduces feature diagrams
to describe all possible combinations of features; composition rules to express
constraints that can occur among features; and a rationale to provide annotations
for reasoning on the convenience of selecting a feature. We discuss FODA diagrams
because they provide common ground for describing the design of feature-oriented
software systems and we use them throughout this dissertation when cases are
presented.

We illustrate FODA with an example of a Buffer application as shown in
Figure 2.1. It shows that a Buffer must have a Base functionality which optionally
can be enhanced by Logging capabilities. The Buffer can optionally include a
Restore functionality which can be a Basic Restore or Multiple Restore. The
description is completed adding a rationale denoting that Logging is useful for
debugging purposes, and a composition rule which states that Logging requires
Restore and Base.

The composition rules of FODA allows us to establish the interaction that can
happen between features. Figure 2.1 shows that the Base and Restore features
are required when a the Logging feature is included in a composition. This means
that the Logging feature depends on the Base and Restore features. Although
the number of combinations from a FODA diagram can lead to a combinatorial
explosion, the number of the instances that in fact can be instantiated is a minor
proportion of them as shown in [29] by Van Deursen et al. In a FODA diagram,
we declare the constraints that occur between features. These constraints restrict
some combinations.

2.2 Feature-oriented programming 15

Buffer

RestoreLogging

Mul. Res Bas. Res

Rationale

Composition Rules

Logging is useful for debugging

Logging requires Restore

Figure 2.1: FODA diagram of the buffer application

1. Granularity : This is a general purpose model that does not address granu-
larity below the level of features.

2. Supported operations: Features can be added to or removed from the FODA
diagrams. Some properties, such as features names or relations amongst
features can be modified. The building blocks of the features are not relevant
in this approach, what makes this criterium not applicable for this appraoch.

3. Dependency management : Dependencies between features can be declared
in three ways: by imposing the structure of the feature hierarchy (a son
depends on its parent), by the composition rules or by the rationale.

4. Customized deployment : It does not support a customized deployment of
features. Features are fixed and can only be applied or omitted as a whole.

5. Specific language support : This criterium is not applicable as this approach
only works on the level of feature diagrams.

Let us now explain a FOP approach that extends FODA diagrams with a
notion of extra-functional features.

2.2.2 Extra-functional features

The number of program variations in a software product line (SPL) potentially
grows exponentially with the number of different features. Benavides et al. [11]
propose a model for SPL using constraint programming that tackles that issue.
There are two reasons for which we elaborate on this approach: First, this approach
presents an extension to FODA diagrams that allows for the expression of relations
between feature modules that are based on the properties of those features, as we
will explain below. Second, this approach proposes to transform a FODA diagram
to a constraint satisfaction problem, which allows for an automatic calculation of
all the possible software variations denoted by the diagram. Our approach to FOP
uses the concepts of both techniques.

The nature of a SPL is to create instance product variations by reusing features.
Feature models are used to model SPL in terms of features and relations amongst

16 Background

Figure 2.2: Extended feature diagram including extra-functional features

them. The graphical description of a feature model is a FODA diagram. SPL with
a large number of features leads to a large number of potential products. Most
models only address functional features and lack modeling artifacts that deal with
extra-functional features. The model of Benavides et al. addresses this issue by
providing an extra-functional feature management.

A feature attribute is any characteristic of a feature that can be measured. An
extra-functional feature is a relation between one or more feature attributes. This
model proposes an extension to FODA diagrams in which several extra-functional
features can be attached to each feature. We illustrate the extra-functional fea-
tures with the example presented in the Figure 2.2. It shows a feature diagram
stating that Services can be a composed by Video on Demand or an Internet
Connection, in the case of the latter, it can be a Power Line xor ADSL xor
Wireless. Although the or operand is true if at least one of the operands is
true, an xor operator is true whenever at most one of the operands is true.

Resolving a constraint satisfaction problem (CSP) is about finding the optimal
value for a set of variables which satisfies a set of constraints. This approach pro-
poses an algorithm to provide this set of values which resolves the CSP. Thus, the
extended feature model is transformed into a CSP. By using constraint program-
ming to reason about extended feature models, this model provides information
about the following four aspects of program variations. Firstly, by interpreting
the extended feature model, it is capable of retrieving the exact number of poten-
tial program variations. Secondly, it can list all possible product instances for a
specific set of characteristics. Thirdly, it can use the extended feature model to
produce the variations that stem from a specific set of functionalities. Fourthly it
possesses information about whether the extended feature model can produce at
least one product – which means that it is a valid model and finally the selection
of a product based on a criteria for producing optimum products.

1. Granularity : This is a general purpose model. It does not address granularity
below the level of features since that is not its main concern.

2.2 Feature-oriented programming 17

2. Supported operations: This model enhances the expressivity of feature di-
agrams by adding the notion of extra-functional features as the interaction
between the attributes that compose a feature. It does not address the build-
ing blocks that compose a feature, but enhances the graphical description
that FODA diagrams provides. Consequently, this criterium is not applicable
for this appraoch.

3. Dependency management : This model introduces a notion of dependency
between features and their attributes. It provides extra-functional features
as the relation between attributes. Feature dependency between features
themselves is addressed by the underlying FODA diagrams.

4. Customized deployment : It does not support a customized deployment of
features. Features are fixed and can only be applied or omitted as a whole.

5. Specific language support : This criterium is not applicable as this approach
only works on the level of feature diagrams.

In [55] Kang defines a FODA diagram as a specification by comprehension of a
software product-line. It allows for the description of the relations between features
and by that it can be used to derive product instances. However, dependencies
between the building blocks that compose each feature are not covered by the
feature diagram. We now recall the approach of Van Der Storm, in which he
proposes to map feature diagrams to artifact dependency graphs, making explicit
the dependencies between features and their building blocks.

2.2.3 Generic feature-based composition

In feature-oriented development, the problem space of a software product-line is
represented by a FODA diagram which maintains all possible combinations that
can be produced by a set of features, while the solution space is described by
the dependency graph of the software building blocks that compose each feature.
An artifact dependency graph is a directed acyclic graph, where nodes represent
software artifacts while edges represent dependencies between them. Those depen-
dencies can be derived by the abstract syntax tree of the language or introduced
explicitly by the developer.

Van Der Storm [106] proposes a model where product instances are derived
from a set of features within a software product-line. A feature captures elements of
the problem domain while a product configuration consists in choosing features for
instantiating a product. A product configuration maps features from the problem
domain to the software artifacts that compose the features in the solution domain.
We are particularly interested in this approach as it aims at filling the gap between
the problem and solution space by linking artefacts in both domains.

The proposed model contains information about the validity of a feature com-
position, such as whether a feature is incompatible with another feature that is in
the same composition. The proposed model is independent of the programming
language used, as well as the software development method and the architecture.

18 Background

Buffer

RestoreLogging

Mul. Res Bas. Res
logit()

logit()

void set(int x) int get()

Buffer

back = buf

int back = 0
restore()

int buf = 0

logit()
void logit()

Figure 2.3: Mapping between Feature Diagram and Dependency Graph

Filling the gap between problem and solution space model can be achieved by
mapping the problem space modeled by feature diagrams and the solution space
modeled by dependency graphs.

The composition of those two representations is proposed as a solution for pro-
gram variability. By mapping every node of the feature diagram to one or several
nodes of the dependency graph a general description of all possible variations is
obtained. Figure 2.3 depicts a mapping between the features in a feature diagram
– at the top of the picture – and the building blocks that compose features in the
dependency graph – at the bottom of the picture. Besides the classic dependencies
of the FODA diagrams, a diagram like in Figure 2.3 contains two other kinds of
dependencies that are denoted by the arrows.

The dashed arrows denote the mapping between features (from the problem
space) and their building blocks (in the solution space). The Logging feature for
instance, maps to the addition of several logit() statements and an addition of the
logit() method. The full arrows denote the dependencies in the solution domain.
The logit() method for instance, depends on the Buffer class (that contains the
method). Those dependencies can all be used to validate compositions declared
within the problem domain.

1. Granularity : This is a general purpose model which addresses the gap be-
tween the problem space and solution space. The main concern of this ap-
proach is to specify the building blocks features consist of. This approach
supports granularity down to the level of statements.

2. Supported operations: This model describes features by the addition of soft-
ware artifacts. This addition is addressed by mapping a set of software

2.2 Feature-oriented programming 19

artifacts to the corresponding features.

3. Dependency management : This model explicitly targets the problem of com-
position validity. As such, dependencies between software artifacts are main-
tained and managed in a dependency graph (such as the one in Figure 2.3).

4. Customized deployment : In this model, features cannot be customized in
such a way that they are deployed differently depending on the context.

5. Specific language support : This model does not require any specific language
support. It uses feature diagrams and dependency graphs to describe depen-
dencies between the different software artifacts.

Now we elaborated on two FOP approaches that target the problem space,
and one that provides a mapping between the problem and solution space, we dive
into the state of the art to FOP that targets the solution space. We start by an
approach that targets the modularisation of software building blocks by means
of code refinements. It is of particular interest for us, as it provides a basis for
feature-oriented software development in a setting of object-oriented programming.

2.2.4 Mixin-layers

The approach proposed by Smaragdakis et al. [96] uses a collaboration-based
technique for examining large-scale refinements. A refinement adds units of func-
tionality to a software system. It can affect many implementation entities such
as classes, functions, etc. Software components are described by fragments of
multiple classes which encapsulate fragments of multiple functions. They pursue
reusability by using these kinds of components as building blocks of large-scale
applications. Large-scale refinements exhibit a crosscutting behavior, since they
normally impact on many classes at the same time.

A collaboration is a set of objects and protocol – which specifies allowed behav-
ior – that defines how objects must interact. The object’s role in a collaboration
is the part of it enforcing the protocol. Usually, objects of an application can
participate in many collaborations. A role can be seen as the part of an object
that takes place within a collaboration. Thus, collaboration-based design describes
applications by composing collaborations. Furthermore, a refinement of an object-
oriented class is encapsulated by a subclass, hence it can add new methods and
attributes, as well as override methods of the superclass. Class inheritance is not
enough, however, to cope with large-scale refinements of a collaboration-based de-
sign. A mechanism for grouping behaviour that crosscuts the inheritance hierarchy
is required. Traits, multiple inheritance and mixins are three such mechanisms.

In object-oriented programming languages, a mixin is a class that provides
a certain functionality to be inherited by a subclass, but is not meant to stand
alone. A trait is an abstract type that is used as a simple conceptual model for
structuring object-oriented programs [94]. Essentially, both traits and mixins are
parameterized sets of methods. They both allow classes to be organized in a single

20 Background

Figure 2.4: Collaboration diagram of the graph traversal application

inheritance hierarchy, while they can specify the incremental difference in behav-
ior of classes with respect to their superclass. Unlike mixins, traits do not employ
inheritance as the composition operator. Instead, trait composition is based on a
set of composition operators that are complementary to single inheritance. Multi-
ple inheritance allows a class to inherit behaviour from more than one superclass.
Mixin-based inheritance is a technique based on multiple inheritance that allows
a class to inherit behavior from many mixin classes and from only one superclass.

In [96], Smaragdakis proposes to use the concepts of mixins and mixin-based
inheritance [16] to support feature-oriented programming. Because a mixin only
copes with one class while a collaboration contains many classes at a time, he
introduces mixin-layers. These scale-up mixins so they can handle multiple smaller
mixins that are collaborating.

Mixin-layers is a way for expressing large-scale refinements in a collaboration-
based collaboration-based design. Since mixin-layers encapsulate refinements
which can be applied to produce a program variation, it is a fertile field for
software product-lines. Different product line instances might be produced by
applying a sole mixin to different layers. Figure 2.4 shows an example taken
from [49]. It presents a collaboration diagram which models a graph traversal ap-
plication that defines three different algorithms on an undirected graph: Vertex
Numbering, Cycle Checking and Connected Regions. The application has three
classes: Graph, Vertex and Workspace and is decomposed into five collaborations.

Figure 2.5 (which was copied from [49]) shows a composition which expresses
the development of a vertex numbering application as a series of refinements.
Mixin-layers are represented as ovals and contain several mixins that refine the
classes.

1. Granularity : A mixin-layer is able to introduce modifications down to the
level of statements. However, is not possible to introduce a statement in the

2.2 Feature-oriented programming 21

Figure 2.5: Composition by Mixin-layers

middle of the body of a method. This model addresses method modification
by overriding the method with a new definition. Even though this definition
is able to invoke the old one (allowing one to maintain the old behavior in
an encapsulated way), it does not cover all the possible modifications on the
level of statements. A statement, for example, cannot be added somewhere
in the middle of a method body.

2. Supported operations: This model provides mixin-layers as building blocks
for building software. Since mixin-layers are based on refinements, they only
allow for the addition and a specific kind of modification – the introduction
of a statement in the middle of the body of a method, is for instance not
allowed. It also does not support deletion.

3. Dependency management : Dependencies between mixin-layers are addressed
explicitly.

4. Customized deployment : This model does not support a customized deploy-
ment of features.

5. Specific language support : They introduce mixin-layers as a way to encap-
sulate features. Mixin-layers extend an object-oriented language with a con-
struct that models mixins and mixin-layers.

None of the approaches discussed above support customized feature deploy-
ment. Now let us discuss an extension to mixin-layers that uses notions of aspect-
oriented software development (AOSD) in order to support that.

2.2.5 FeatureC++

Feature C++ is a language extension – proposed by Apel et al. in [4] – to support
FOP and AOP. FeatureC++ implements features by means of mixin-layers. Apel
et al. define a mixin-layer as a set of mixins that together implement a crosscutting
concern. Mixins consist of constants or refinements. Constants are new software

22 Background

entities and refinements are increments on existing ones. In FeatureC++, mixin-
layers are represented as file system directories. Mixins found inside a directory
collaborate in the mixin-layer. FeatureC++ improves FOP in two ways: Firstly
it enhances refinements with multiple inheritance to introduce new behavior to a
class by making the class inherit from multiple classes; Secondly it improves re-
finements to produce generic transformations into classes. Using class and method
templates, refinements can be parameterized improving variability. FeatureC++
addresses FOP issues related with crosscutting modularity by means of AOP. The
following three concepts are introduced to that extent: multi mixins, aspect mixin
layers and aspectual mixins.

Multi mixins: Traditionally, a mixin is able to modify only one mixin. This
latter mixin is called the parent mixin. A multi mixin is a mixin able to refine a
whole set of parent mixins. This is accomplished by introducing a wildcard % in
the class or method name where the mixin is specified.

Aspect mixin-layers. The basic idea boils down to embed aspects into a mixin-
layer. A mixin-layer contains a set of mixins and a set of aspects, allowing mix-
ins to implement static/dynamic, homogeneus/heterogeneus and hierarchy/non-
hierarchy-conform crosscutting behavior.

Aspectual mixins provide mixin with the power of AOSD. Aspectual mixins
can contain pointcuts and pieces of advice, as well as common refinements and
constants. We refer the reader to Section 2.4 for a detailed explanation of those
concepts. The analysis of FeatureC++ with our criteria produced the following
results:

1. Granularity : The level of granularity provided by mixin-layers allows one
to manipulate source code at the level of a statement. Although a single
statement can only be added to a method by redefining the method in a
mixin, invoking the original method in the new method and adding the new
statement before or after that invocation. Statements can only be removed
from a method by redefining the method and including all statements from
the original method except for the one that has to be removed.

2. Supported operations: Features are represented as mixin-layers in the form
of multi mixins, aspect mixin layers or aspectual mixins. Thus, a feature is
able to introduce new attributes and methods and to modify methods in a
limited way. This approach is not able to describe features that delete some
building blocks. Consequently, deletion is not supported.

3. Dependency management : Feature dependency is addressed by the interac-
tion between mixin-layers which is explicit.

4. Customized deployment : Aspectual mixin-layers and aspectual mixins are
variants of mixin-layers which introduce notions of AOSD in feature modules.
How a feature is deployed, can be addressed by AOSD. It permits deploying
a feature in a different manner depending on the context. For instance, a
mixin-layer that adds an invocation to all classes where its name starts with

2.2 Feature-oriented programming 23

set would add a different number of invocations depending on the features
that are being composed.

5. Specific language support : This model introduces the concept of a feature as
a language extension for C++.

Software modularisation is not the end goal of feature-oriented programming.
After a software system is modularised into feature modules, those modules need
to be recomposed in order to construct variations of the software system that
provide different combinations of functionality. As such, recomposition is a crucial
part of modularisation. Before we conclude the state of the art on FOP, we discuss
two approaches that target the problems related to the recomposition of feature
modules. While the lifting functions approach opts for a pragmatic approach, the
AHEAD approach pursues a formal track.

2.2.6 Lifting functions

In [87], Prehofer introduces a model for flexible object composition from a set
of features. He proposes a modular architecture for composing features with the
required interaction handling, yielding a full object. Inspired by inheritance, the
model resolves problems related to feature interactions by lifting functions of one
feature to the context of the other using method overriding. Features are de-
scribed as a language extension of Java, maintaining the same expressivity as
classes. Feature composition is achieved by composing two features at a time,
using its previously defined lifter which knows how each feature must be adapted
for composing with another one. The process can be executed many times for
composing several features. This model is presented as an extension to Java and
provides two translations to Java, one via inheritance and another via aggregation.

Figure 2.6 was taken from [87]. It shows four features (F 1, F 2, F 3 and F 4)
and three compositions of these features (F 1 - F 3, F 1 - F 2 - F 3 and F 1 -
F 3 - F 4). To accomplish these compositions, five lifting functions are provided
that handle the interactions between two features. In this example, they are:
(F 1,F 2), (F 1,F 3), (F 2,F 3), (F 2,F 4) and (F 1,F 4).

This approach requires intensive human intervention since lifters need to be
written for every pair of features which might be composed. Although it increases
the accuracy of the resulting composition, the extra work required to construct a
lifting functions to address every possible feature interaction seems awkward. With
respect to our criteria, the lifting functions approach is summarised as follows:

1. Granularity : In this model the smallest entity that a feature can express is
a statement. However, the ways in which a feature can add a statement to
a method is very restricted. It is addressed by overriding the method with a
new version and calling the old version of the method at a certain point. In
general this model modifies entities by adding classes, methods and instance
variables.

24 Background

Figure 2.6: Composing Objects by means of lifting functions

2. Supported operations: This model expresses features using the same building
blocks as the OOP languages. Moreover, by overriding methods, it allows
for the introduction of new behavior. It does not allow for the modification
of a specific statement or deletion of any entity.

3. Dependency management : Lifters are defined for all pairs of features in a
composition. In those lifters, dependencies are covered explicitly since they
know which features are adapting the context of the others.

4. Customized deployment : This approach does not support the customized
deployment of features. However, it offers to adapt the deployment of a
feature manually by means of lifters.

5. Specific language support : This model extends Java by adding the notion
of a feature. A feature introduces a lifting function which addresses the
interaction of features.

Feature interactions are a key issue in feature-oriented designs. A feature inter-
action occurs when one or more features modify or influence other features. Liu,
Batory and Nedunuri [68] presented a model which improves FOP by proposing an
algebraic theory of structural feature interactions that models feature interactions
as derivatives. The following section elaborates on that model.

2.2.7 AHEAD

Algebraic hierarchical equations for application design (AHEAD) is a unified for-
mulation for FOP that integrates step-wise development, generative programming,
and algebras [7, 10, 101]. This is based on step-wise development which proposes
that a complex program can be built from a simple program (called a base pro-
gram) by incrementally adding features. AHEAD models product-lines with a

2.2 Feature-oriented programming 25

bB

H ∂b / ∂h h

base
modules

derivative
module

Figure 2.7: Application described by features B and H

simple algebraic structure. A base module contains the definition of classes, mem-
bers, and methods while a derivative module extends programs adding fragments
of methods, classes, and packages. Thus, a feature is modeled by a composition
of one base module and a set of derivative modules. Figure 2.7 (which was based
on a figure of [68]) shows two features B and H. B consists of a base module b and
feature H consists of a base module h and a derivative module ∂b/∂h which extends
the base module b.

GenVoca is a methodology for creating application families and architecturally
extensible software by expressing programs as sets of equations. It provides the
same information that can be described by a feature diagram but adding cross-
tree relations for denoting relations between features that are not expressed by
the diagram. Since it provides a grammar, it can be used by applications in an
automatic way.

The function • weaves a derivative into a base module. An introduction sum +
is a binary operation that aggregates base modules by a disjoint set union. Thus,
an application composed by features B and H is expressed by:

[H(B)] = h + ∂b/∂h • b (2.1)

A derivative module which refines software artifacts – classes, members, and
methods – is able to change the behavior of a method defining a new body for
the method. This new body can call the execution of the original method at any
point of the new method execution. A derivative module which extends fragments
introduced by a derivative module – affecting many features – is called a second
derivative module. If a feature J has a second derivative module which extends
the module ∂b/∂h from H, it is denoted by ∂2b/∂J∂h.

Listings 2.1, 2.2 and 2.3 show a product-line example with three features: Base,
Restore, and Logging. Base implements the base functionality that include the
definition of a Buffer class with a buf instance variable, a get and set method
for getting and setting the value of buf; Restore adds an instance variable back
to store the old value of buf any time it is set and adds a method to do the
restoration. Logging adds a method which prints the value stored in buf and
back and adds invocations in the methods get and set.

The expression [L(R(B))] = Logging•Restore•Base represents an application
with the three functionalities. It could be desirable to compose an application
with Base and Logging features. This is not possible, however, since the Logging

26 Background

�
1class Buf f e r {
2int buf = 0 ;
3int get (){
4return buf ;
5}
6void s e t (int x){
7buf = x ;
8}
9}
� �

Listing 2.1: AHEAD Base feature

�
1r e f i n e s class Buf f e r {
2int back = 0 ;
3void s e t (int x){
4back = buf ;
5buf = x ;
6}
7void r e s t o r e (){
8buf = back ;
9}
10}
� �

Listing 2.2: AHEAD Restore feature

�
1r e f i n e s class Buf f e r {
2void l o g i t (){
3System . out . p r i n t l n (buf) ;
4System . out . p r i n t l n (back) ;
5}
6int s e t (int x){
7l o g i t () ;
8super . s e t (x) ;
9}
10void get (){
11l o g i t () ;
12super . get () ;
13}
14void r e s t o r e (){
15l o g i t () ;
16super . r e s t o r e () ;
17}
18}
� �

Listing 2.3: AHEAD Logging feature

2.2 Feature-oriented programming 27

feature would be making changes to the method restore() which would not
exist since the Restore feature would be not included in the composition. This
issue is called the Feature Optionality Problem [68]. It can be addressed by
restructuring the features in such a way that the feature involved in the interaction
is put in a separate feature. This solution allows one to produce an application with
Base and Logging functionality, but has some limitations: Firstly decoupling of
interactions requires a deep understanding of the feature implementation which in
realistic cases could be difficult to address, secondly a feature can have interactions
with many features at the same time.

1. Granularity : Features can modify previous software entities by refinements.
The most fine-grained modification features can introduce by means of
AHEAD is at the statement level. It is not possible, however, to modify
the body of a method by introducing a statement in the middle. The only
way of modifying method bodies, is by creating a new version of the method
body and by calling the old body at some point in the new one.

2. Supported operations: Features can be described by base modules and deriva-
tive modules. The former allows us to introduce new software entities, the
latter allows us to modify a previous entity.

3. Dependency management : A feature consists of a base module and a set of
derivative modules. The latter can be empty in case that the feature only
introduces new entities and does not modify any previous entity. Dependen-
cies are made explicit by derivative modules. A derivative module knows
which other module it is modifying and by that introduces a dependency.

4. Customized deployment : Although AHEAD can denote the part of a feature
which makes a composition invalid and by that restructuring the feature and
encapsulating that part into a new one the adaptation must be addressed
with human intervention. This makes it less useful for using in software
product-lines.

5. Specific language support : AHEAD is a tool for implementing features which
extends Java with some extra language constructs (e.g. refinements).

2.2.8 Discussion

Table 2.2.8 summarizes the analysis of all the presented approaches with respect
to the provided criteria. It shows that, to the best of our knowledge, there is
no approach that fulfills all criteria at the time of writing. Although, most of the
approaches support operations such as addition and a specific kind of modification,
none of them allow for deletion. Note that this might be desirable when adding an
anti-feature to a system that is already modularised into feature modules. Since
the anti-feature might require the deletion of building blocks that were introduced
by different feature modules, it must be able to express the deletion of building
blocks, rather than the “not inclusion” of certain feature modules in a composition.

28 Background

We conclude that a new approach to FOP should be established that does address
the delete operation.

Next to that, most of approaches set the granularity of the supported oper-
ations at statement level, but only support it in a restricted way (denoted by
“Statement–” in Table 2.2.8). For instance, in AHEAD a programmer is not al-
lowed to insert a statement between two statements of an existing method. With
respect to the dependency management, we may conclude that the vast majority
of the approaches to FOP, do provide a mechanism for maintaining dependencies
between the feature modules. The two final criteria, however, are not covered in an
adequate way, as only FeatureC++ supports a customized deployment of feature
modules, and only the generic composition approach does not require additional
language support.

Granularity Allowed Depend. Custom. Specific
operations mgmt. deploy- language

ment support
FODA
diagrams Feature n.a. Yes No n.a.

Extra-
functional Feature n.a. Yes No n.a.
features
Generic Statement– Addition Yes No n.a.
composition
Mixin-layers Statement– Addition & Yes No Yes

modification
FeatureC++ Statement– Addition & Yes Yes Yes

modification
Lifting Statement– Addition & Yes No Yes
functions modification
AHEAD Statement– Addition & Yes No Yes

modification

Table 2.1: Analysis of the FOP approaches based on our criteria

After inspecting the state-of-the-art in feature-oriented programming we ac-
knowledge that all approaches we encoutered intend to encapsulate features in
separated modules, but that most of the approaches do it in different ways. There
is an awareness that features are not sufficiently described by object-oriented lan-
guage constructs – classes, methods, etc. That is why all approaches make lan-
guage extensions. They need new means for expressing the concepts they intro-
duce. It is difficult to imagine writing a program in a feature-oriented way where
each feature is perfectly enclosed in a class. We realized a feature normally im-
pacts many software entities at a time. A popular technique that addresses this
issue is a refinement which is able to introduce modifications to previous language

2.3 First-class changes 29

entities. However, refinements lack expressivity, since they cannot describe par-
ticular modifications of a software entity. For instance, refinements do not allow
for the deletion of a class, method or statement. They only allow for a particular
kind of modification of methods based on calling the original method before or
after certain statements of the new one.

A common trend in feature-oriented programming is step-wise development.
That means creating a program by adding features in an incremental way. It has
the benefit that all the dependencies of each feature are satisfied, since it will
always be applied after the entities which it depends on. In case features are
also allowed to include the deletion of building blocks, however, this premise is no
longer guaranteed.

Nowadays, software is created by many developers at a time, all of them work-
ing in parallel and developing software artifacts that can depend on entities which
will be implemented in the feature or in parallel by others co-workers. As such,
we advocate that an approach to FOP needs to make such dependencies explicit
and that it should manage them from within the features themselves. A feature
must know on which other features it depends. Note that in this dissertation,
we do not consider a setting of parallel development, but still propose to manage
the dependencies in this way in order to allow for the approach to FOP to be
applicable in a parallel development setting in the future (see Chapter 9).

In this dissertation, we propose a novel approach to FOP, in which features
are specified by first-class change objects that model the development actions
taken to implement the features’ functionality. This allows features to express
refinements that delete building blocks on a fine-grained level of granularity (the
statement level). Next to that, this way of expressing features also supports a
dependency management, a customized feature deployment without the need of
introducing specific language constructs. In the following section, we elaborate on
the approaches that also model development operations as first-class entities.

2.3 First-class changes

The goal of our research is to use first-class change objects as the building blocks of
the features. For that, we need a model of first-class changes. This section analyzes
the state-of-the-art approaches that successfully used first-class change objects in
other research domains. As the goal of this section is to find an appropriate model
of those first-class changes, we first establish a set of criteria to which we compare
the state-of-the art on first-class changes.

2.3.1 Principles

A change is a record that captures the information about an adaptation of a soft-
ware system. A change can be generated by monitoring the developer producing
a software system. Such change can be encapsulated in a first-class entity, that
can afterwards be used as a value in programs without restriction. Some charac-
teristics of a first-class object are: being storable in variables, having an intrinsic

30 Background

identity, being passable as a parameter, being returnable as the result, being in-
stantiatable at runtime, being printable, being readable and being transmissible
among distributed processes [18]. Approaches modeling changes as first-class en-
tities exploit these properties to ease the manipulation of changes and the storage
of information related to them. A field where this kind of model of changes would
be useful is Software Generators [8, 53, 5, 6]. Software generators are programs
that build other programs.

In this chapter, we present the state-of-the-art approaches we found to model
changes as first-class objects. We developed a set of criteria with the aim of an-
alyzing and situating these approaches. These criteria emerge from the context
in which our model of first-class changes is used. In a context of change-oriented
feature-oriented programming, changes must be able to capture information about
adding, removing or modifying the building blocks of a software system at the most
fine-grained level possible. As we have seen in the related work on feature-oriented
programming, it is also important to maintain dependencies in and between the
problem and solution spaces in order to support the automatic validation of pro-
gram variations. In order to be useable in our approach, the model must conse-
quently be capable of expressing development operations (addition, deletion and
modification) on software building blocks (down to the level of granularity of code
statements) while maintaining the dependencies amongst those changes.

1. Supported operations. A change may consist of additions, modifications or
deletions of entities. The aim of this criterium is to establish which opera-
tions can be captured by changes.

2. Granularity . The subject of a change is the entity that is affected by this
change. This criterium analyzes which is the level of the granularity of sub-
jects hat is provided by the approach. While a fine-grained approach allows
changes to be expressed till the level of statements, a coarse-grained approach
might only permit the expression of changes on classes and methods.

3. Dependency management . Changes are modeled as first-class entities, thus
they can encapsulate information. This criterium verifies if the approach
stores information about the dependencies.

2.3.2 VisualWorks: change list

Smalltalk VisualWorks records and maintains all changes which are applied to the
system in a Change List [95]. The Change List tool provides a wide variety of
operations for reading change files, comparing the contents of a change file, to
reorder, remove and replay the changes to the system. This process could end
in an error since one operation might require that another operation is applied
before it is applied. Some uses are: recovering from a crash, reverting to a prior
version and merging several developments into a single environment. Change List
provides a conflicts view to merge changes applied in different collections, and to
construct a single file containing only the desired changes. It can also be an aid
in crash recovery, by filtering older changes from a changes file. The Change List

2.3 First-class changes 31

tool makes it easy to see the evolution of – and to examine the details of – the code
at any stage of its development history. It is particularly useful when we need to
see a prior version in order to restore the code.

This approach is of particular interest for us as it is the most basic approach
we found to model change as first-class entities that is also integrated in a stan-
dard software development environment. In Change List, development actions are
monitored and logged into change objects: instances of the Change class. That
class has many subclasses each modeling a specific kind of development action.

1. Supported operations: Changes can represent additions, modifications and
deletions depending on which entity is affected. For instance, if a statement
is removed, the change produced would describe that a method has been
changed.

2. Granularity : Changes in the Change List can represent modifications at
the level of methods. Although, it does not provide facilities for detecting
changes at the statement level, that kind of changes can be detected by
comparing the method before and after the change is applied.

3. Dependency management : This approach does not provide dependency man-
agement. The developer is responsible for establishing the dependencies by
setting the correct order of the changes in the list.

2.3.3 SpyWare

Robbes and Lanza [89] propose a change-based approach to software evolution. In
their approach, the interactive development environment (IDE) is instrumented
with hooks that enable an IDE plug-in to monitor the developer and to create first-
class entities that represent the actions taken by the developer. In their approach,
the first-class change entities are objects that capture the history of a system in
an incremental way. They are able to reproduce the software which they represent
the history of. When executed, they yield a representation of the program at a
certain point in time. They contain additional information interesting for evolution
researchers, such as when and who performed the change operation.

The main advantage of this approach in comparison to Change List is that it
supports capturing development actions on the level of granularity of code state-
ments. We study this approach as we require that level of granularity in our
approach to feature-oriented programming.

As a proof-of-concept they developed SpyWare. Spyware is a Squeak1 imple-
mentation which monitors developer activity by using event handlers located at
IDE hooks and generates change operations – as first-class entities – from them.
Doing so, it is able to provide graphical information for analyzing the evolution of
a program.

1. Supported operations: Changes can represent additions, modifications and
deletions of software entities.

1See http://www.squeak.org/ for more information about Squeak

32 Background

2. Granularity : Spyware is a tool that allows for capturing the changes that a
developer produces down to the level of statements.

3. Dependency management : This approach does not take into consideration
change dependencies. It stores the entire evolution history of a program –
while it is written – in an incremental way. Thus, the application of a change
requires the application of all the previous changes in time. Changes are not
intended to be used as modular units that can be applied.

2.3.4 CatchUp!

Henkel and Diwan [47] propose a model for capturing the changes that a devel-
oper produces while evolving software libraries. These changes can afterwards be
replayed on the software libraries on the client’s side reacting accordingly to the
corresponding library evolution. In [74] the authors claim that most changes that
a developer produces in the evolution of a library are refactorings. Moreover, they
state that any change to a software program that preserves behavior can be under-
stood as a refactoring. Using IDE hooks to catch the refactorings introduced to a
library, they store that information within changes modeled as first-class entities.

The process starts with the recording phase which occurs when the developer
is evolving the library. He introduces refactorings that produce changes which are
logged in an incremental way. Then the developer can annotate the changes with
semantic information. For instance, a change specifying it has been produced for
Renaming to avoid name clashes. That is particularly interesting with respect
to our approach, as we require an IDE that records such fine-grained modulari-
sation information for validating our thesis. The outcome of this phase is a new
version of the library and a file containing a list with all executed changes. In
case a refactoring does not affect client code, the change which represents that
refactoring can be removed from the list of changes. In order to integrate the new
library version into client code, the list of changes needs to be replayed on the
client code.

CatchUp! is presented as a proof-of-concept. CatchUp! is an Eclipse plug-in
written in Java. It provides a means for recording library refactorings which are
stored as a list of first-class change objects. It allows one to replay the list of
changes to a client code updating it for using a new library version.

1. Supported operations: This model records changes that produce additions
and several kinds of modifications, such as: renaming classes, moving Java
elements, etc. It is also capable of capturing deletions such as remove
parameters or remove exception types.

2. Granularity : CatchUp! maintains a list with the kinds of refactorings that
it is capable of capturing. It is able to record changes at the refactoring level
which can be set at the method level depending on the implementation.

3. Dependency management : This approach does not take change dependency
into consideration since library evolution is produced in a step-wise way. The
list of changes is always replayed in the same way that it constructed.

2.3 First-class changes 33

Figure 2.8: Changebox implementation class diagram

2.3.5 Changeboxes

Denker et al. propose Changeboxes [28] as a general-purpose mechanism that en-
capsulates change as first-class entities in a running software system. Figure 2.8
was taken from [28] and shows how Changeboxes are modeled. A ChangeBox
may specify three kinds of changes: definition, renaming or deletion. Elements
are the target of a ChangeSpecification and model classes, methods or fields.
A ChangeSpecification of a ChangeBox defines how one version of an Element
may be transformed into another version of that Element.

In the context of our research, the most interesting property of the Changeboxe
approach is that it has a change model in which the dependencies between change
objects are maintained. As those dependencies provide a source of fine-grained
modularisation information, we are interested in Changebox’ model of changes.

Changeboxes capture the incremental evolution of a software system. They can
be linked to ancestors ChangeBoxes, that represent prior ChangeBoxes to the
same system. A MergeStrategy defines how two ChangeBoxes can be merged. A
ChangeBox is defined within a Scope which allows one to execute multiple versions
of a same entity at a time. The system is changed by introducing new Changeboxes
which encapsulate a change specification. CompiledMethod and Class represent
specific versions of classes and methods, that later can be used by the virtual
machine to instantiate new objects.

A Changebox is an immutable entity that defines a snapshot of a system by en-
capsulating a set of change specifications, specifying a set of ancestor Changeboxes
which these changes apply to and by providing a scope for dynamic execution. A
Smalltalk implementation of Changeboxes was successfully evaluated [28]. It il-
lustrates that bug fixes, new features and refactorings can be safely incorporated

34 Background

into a running system without impacting active sessions.

1. Supported operations: This model allows one to define, rename and delete
software elements.

2. Granularity : The granularity of this model goes down to the level of fields,
methods and classes, as we can see in the model diagram of Figure 2.8.

3. Dependency management : Dependency is not modeled at the level of the
elements that configure a Changebox, but at the level of a Changebox itself.
Changeboxes can be related to other Changeboxes by the ancestor relation-
ship.

2.3.6 Change-impact analysis

Ryder and Tip [92] elaborate on a collection of techniques for determining the
impact that a set of source code changes has on the software system. Source edits
are transformed into a set of changes. Table 2.2 presents the kinds of changes
that are defined by this approach. For instance, an LC change is produced by
any kind of source code change that affects dynamic dispatch behavior. A source
change may trigger many changes, e.g., the addition of an empty method may
imply several changes, of types AM and LC. They formalized the method dispatch
process defining a Lookup function. The impact of edit actions on lookup can be
monitored.

Just like Changeboxes, this approach also has a model of changes that supports
the management of dependencies between change objects. While both models of
changes seem very similar, the way changes to the method lookup are handled by
this approach is different and the main reason why we present this approach. In
contrast to Changeboxes, here, the changes to the method lookup can be detected
by means of dynamic analysis – as we explain below. This allows for the recovery
of more accurate information [80] with respect to the dependencies between change
objects.

Type Description
AC Add an empty class
DC Delete an empty class
AM Add an empty method
DM Delete an empty method
CM Change body of method
LC Change Virtual method lookup
AF Add a field
DF Delete a field

Table 2.2: Categories of changes

In this model, dependency is defined as the interaction between changes that
make a change need another one to ensure the compilation success. The introduc-

2.3 First-class changes 35

tion of categories for changes establishes a partial ordering between them. This
computation is produced automatically.

A set of test drivers T is associated with a program P. For each test driver
ti in the set T , a call graph is produced. Each node is a method of the program
P called from the test. Each edge corresponds to the calling relationship between
the methods of P. The same description applies for an edited program P ′. The
model is completed with the definition of AffectedTests which is a function that
returns the test drivers that are affected by a set of changes, and AffectingChanges
for computing the changes that affect a specific test driver. These functions detect
the impact of the changes by traversing call graphs P and P ′.

Although this approach does not state that it models changes as first-class
entities, we believe it can be appropriate for maintaining all the information related
with changes and to manipulate changes.

1. Supported operations: This model supports the addition, modification and
deletion of entities.

2. Granularity : This approach capture changes related with classes, methods,
fields and any modification that affects method lookup.

3. Dependency management : This approach takes into consideration the de-
pendency between changes that ensure a correct compilation of the resulting
program.

2.3.7 Discussion

The list of related work shows many approaches which successfully modeled
changes as first-class entities. All acknowledge that there is a necessity for cap-
turing the operations that are applied when a program is written. Doing so,
the construction of programs can be provided automatically by software genera-
tors [8, 53, 5, 6].

A first-class change must store information such as: when it was created, who
created it, what dependencies it has and specific data related to its nature. It
seems very useful to store that information within the change itself. Moreover,
the first-class change object can be manipulated, assigned to variables, passed as
argument to methods, returned as a result of operations, and so on. A convenient
way for doing so is modeling changes as first-class entities.

Table 2.3 summarizes the analysis of each approach presented in this chapter
based on the criteria we established for a model of first-class changes. In gen-
eral, most approaches provide a fine granularity at the level of a statement. They
also provide means to characterize changes as additions, modifications and dele-
tions. However, only Change-impact analysis and Changeboxes provide an explicit
dependency management model. To the best of our knowledge, we do not find
any approach to match all the criteria. Consequently, we choose to develop our
own model of first-class changes in which we support the expression of additions,
modifications and deletions at the statement level and in which we manage the
dependencies between the changes. This model is the subject of Chapter 4.

36 Background

Operations Granularity Dependency
management

addition,
Change List modification, method No

deletion
addition,

SpyWare modification, statement No
deletion
addition,

CatchUp! specific statement No
modification

addition, class,
Changeboxes modification, method, Yes

deletion field
Change addition, method,
-impact modification, field, Yes
Analysis deletion method lookup

Table 2.3: Analysis of the approaches based on our criteria

We observe that, in order to add one functionality to a software application, of-
ten changes have to be applied to different object-oriented modules. For instance,
when a logging functionality is added to an object-oriented application, changes
that add an invocation to a dedicated log method have to be applied to many
methods that are scattered over the entire application. This observation shows
that the changes of one feature often crosscut the standard object-oriented mod-
ularisation of an application, and that their application is similar to the weaving
process. As the aspect-oriented software development research explicitly targets
the modularisation of crosscutting concerns, we now elaborate on the state-of-the-
art on aspect-oriented software development.

2.4 Aspect-oriented software development

Some aspects of system implementation, such as logging, error handling, stan-
dards enforcement and feature variations are notoriously difficult to implement in
a modular way. The result is that code is tangled across a system and leads to
quality, productivity and maintenance problems.

Aspect-oriented software development (AOSD) is the research domain that tar-
gets this problem, providing ways for a clean separation of crosscutting concerns.
A concern is said to be crosscutting if it cannot be cleanly separated into a sepa-
rate module because it is affecting several modules [38]. As such, AOP aims at a
multi-dimensional separation of concerns, which entails breaking down a program
into distinct parts called aspects.

2.4 Aspect-oriented software development 37

getX
getY
setX:
setY:

Point
getX
getY
setX:
setY:

Line

FigureDisplay FigureElement

2 *

*1

DisplayUpdating

Figure 2.9: The UML diagram of a simple figure editor.

Consider the UML class diagram for a simple figure editor described in [38]
(see Figure 2.9). There are two concerns for the editor: keep track of the position
of each figure element (data concern) and update the display whenever an element
has moved (feature concern). The object-oriented design nicely decomposes the
graphical element so that the data concern is neatly localized. However, the feature
concern must appear in every movement method, crosscutting the data concern.
The software could be designed around the feature concern; but then the data
concern would crosscut the display update concern.

AOP aims at separating these different concerns into single units called aspects.
An aspect is a modular unit with a crosscutting implementation. It encapsulates
into reusable modules some behavior that affects multiple classes. Aspectual re-
quirements are concerns that introduce crosscutting in the implementation. Error
checking and handling, synchronization, context-sensitive behavior, performance
optimizations, monitoring and logging, debugging support are all aspects.

Aspect-oriented programming (AOP) is the programming approach that cor-
responds to the ideas of AOSD. With AOP, each aspect can be expressed in a
separate and natural form. After all aspects are declared, a weaver combines
the aspects set and base-program files into the tangled application code (see Fig-
ure 2.10). As a result of this principle, a single aspect can contribute to the imple-
mentation of a number of procedures, modules, or objects, increasing reusability
of the source code.

In order to enable automatic weaving of aspect code and base-program code,
we need some extra entities. Every AOP language has three critical elements for
coping with this matter: a join point model, a means of identifying join points,
and a way of affecting the implementation at join points [38, 58]. A join point is
a particular point in the program structure or the execution of the program.

The join point model provides the means to describe the joint points – the
points where enhancements should be made. It also provides a mechanism to
express sets and subsets of join points, to express common behavior. For that,
each AOP language must have a join point definition syntax. After the join points
are defined, we need to alter the implementation at those point in order to insert

38 Background

Appliation Code

Aspect 3

Aspect 1 Aspect 2

Aspect
Weaver

Tangled
Application Code

Figure 2.10: E.g. weaver: composing an application using Aspects and base pro-
gram.

the crosscutting behavior. As we said above, this is also done by a weaver. We now
present the best-known implementations of AOSD and discuss them in a context
of software variability.

2.4.1 AspectJ

Currently AspectJ [59] is the most widely used AOP language. AspectJ is an
aspect-oriented extension to Java that enables the modular implementation of
a wide range of crosscutting concerns. Each of those crosscutting concerns is
modularized by an aspect.

AspectJ adds to Java just one new concept, a join point – and that’s really
just a name for an existing Java concept (an event that occurs at runtime). It
also adds to a few new constructs: point cuts, advices, inter-type declarations and
aspects. Join points state the points in the base program where we want aspects
to take control. They can be declared on operations like a method call, a class
boundary, a method execution, an access or modification of member variable,
exception handlers or on static and dynamic initialization.

Many join points can be assembled into a set of joint points – point cuts. To
each of the point cuts, we then attach a piece of advice, which states the actions to
take when one of the point cuts is reached. The body of the advice is specified in
ordinary Java code. The inter-type declarations allow the programmer to modify a
program’s static structure, namely, the members of its classes and the relationship
between classes. Aspects are the unit of modularity for crosscutting concerns.
They behave somewhat like Java classes, but may also include point cuts, advice
and inter-type declarations.

In AspectJ, aspect composition – or weaving – is done at load-time. Whenever a
class is loaded into the VM memory, its byte is first adapted in order to incorporate
the applicable pieces of advice. This results in modified bytecode that contains
both the class behaviour and the pieces of advice that impact on that behaviour.
This modified byte code is actually loaded into the memory of the Jave VM. At

2.4 Aspect-oriented software development 39

AspectJ

Java Program

Advice

advice body
pointcut

joinpoint

Figure 2.11: The AspectJ model

runtime, when at a certain point in the execution, a pointcut holds, the attached
piece of advice is executed, as we can see in Figure 2.11.

The base code and the aspect code must be written using an external Java
editor. The AspectJ development tools for Eclipse (AJDT) is an editor that is
written as a plugin for the Eclipse IDE and which supports the developer in doing
AOSD in AspectJ. Instantiations of the AspectJ model where conceived for many
other programming languages. AspectR 2, AspectC 3, AspectC++ [42], AspectS
4 and AspectS 5 are AspectJ-like implementations of AOP for respectively Ruby,
C, C++, Common Lisp / CLOS and Smalltalk. Apostle 6 is another AspectJ-like
aspect-oriented extension to Smalltalk.

As we have stated before, implementations of aspect-oriented programming al-
ways incorporate two steps. The first is the decomposition of crosscutting concerns
in aspects. The second is the recomposition of those aspects into one application.
Though problems may rise doing this recomposition, as conflicts between the sep-
arate aspects may occur. When two or more aspects are impacting on the same
point of the base program, an aspect composition should be defined in order to
avoid conflicts. This composition states the way in which the aspects and the base
program are supposed to work together in order to form an application with the
desired behavior.

Support for such compositions is particularly interesting in the context of soft-
ware variability, as program variations are to be produced by recomposing sev-
eral separated aspect and class modules. This is where AspectJ falls short, as
aspect reuse is limited, woven programs can have hard to predict behavior, mod-
ular reasoning using aspects is difficult, and step-wise development of programs is
error-prone [69]. An AOSD approach with better support for aspect composition
is discussed below.

2AspectR: http://aspectr.sourceforge.net/
3AspectC: http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
4http://common-lisp.net/project/aspectl/
5AspectS: http://www.prakinf.tu-ilmenau.de/ hirsch/Projects
6Apostle: http://www.cs.ubc.ca/labs/spl/projects/apostle/

40 Background

2.4.2 EAOP

Event-based aspect-oriented programming (EAOP) [30] is another AOSD ap-
proach. In EAOP, a global monitor keeps track of all base-level events. That
way, the monitor is always able to execute something extra when a certain event –
operation – occurred. In such approach, it is also very easy to keep track of control
flows because all information is centralized. The monitor can in that way be seen
as one big metaobject which is responsible for managing the execution of the base
program and the aspects. An aspect can be seen as an event transformer. In fact
– in EAOP – an aspect is a Java object which takes an event as a parameter,
performs some computation or action (which may modify the argument event),
and waits for the next event.

In [30], the authors describe how a developer can resolve aspect composition
conflicts. This is done using a three phase model. The first step is to write all
the base and aspect code. The second phase holds the conflict detection. The last
phase includes the conflict resolution. The second and third phase can be iterated
on, till composition rules are specified that handle all composition conflicts.

A conflict occurs when two (or more) aspects interact with each other, i.e.
if at least one of their crosscuts match the same join points. But in fact, this
definition is too strong, because it is possible that there is no conflict at all, and
that the aspects could be executed one after another without affecting each other.
Therefore the authors distinguish between two kinds of dependence: strong and
weak independence. Two aspects are said to be strongly independent if none
of their crosscuts have common join points. Two aspects are said to be weakly
independent if they have crosscuts with common join points but if the aspects
themselves can be composed to a single aspect. This composition can be done
using one of the composers presented in Table 2.4.

Composition Semantics
A1 seq A2 When both aspects have a common cross point, first

A1’s actions and then A2’s actions will be applied.
A1 fst A2 Propagates the execution control to A1, and, if and only if A1

did not detect a crosscut, the execution control is given to A2.
A1 any A2 Propagates the execution control to A1 and A2

in an arbitrary order.
A1 cond A2 Propagates the execution control to A1, and, if and only if

A1 detects a crosscut, the event is forwarded to A2.

Table 2.4: Aspect composition operators in EAOP

Another problem which is apparent in AOSD approaches like AspectJ and
EAOP is that they suffer from pointcut languages where pointcut declarations
result in a high coupling between aspect and base system. Additionally, these
pointcuts are fragile, as non-local changes easily may break pointcut semantics.
These properties are often described in literature ([98, 97, 61, 57]) and form an
obstacle in the context of change-oriented feature-oriented programming, in which

2.4 Aspect-oriented software development 41

such changes are continuously applied to develop software products. This problem
can be tackled by means of logical meta programming.

2.4.3 Logical meta programming

In [23, 26, 25, 24] a logical metalanguage (SOUL or TyRuBa) is presented that
can be used to specify aspects. Logical rules are defined in order to detect the
affected join points. When a join point is found, the code of the piece of advice of
the aspect is inserted in the base code. When all rules have been applied on the
base program, the new source code (extended with all aspects code) is available to
be ran. Using this idea, one can express aspects as logical rules and compose them
by producing new rules that call some of the logical rules in a certain sequence.

CARMA [46] is a language for AOP which makes use of logic meta program-
ming for the specification of crosscuts. The use of a crosscut language based on
logic meta programming provides CARMA with several advanced features. From
logic programming it gets the use of unification as a more advanced wildcard mech-
anism than what is supported in other crosscut languages, the use of logic rules
for writing reusable crosscut specifications, and the use of defining multiple rules
for the same predicate for writing variants of a crosscut specification. From logic
meta programming it inherits capabilities for writing crosscut specifications based
on structural properties of the program being crosscut.

Intensive [57] is another AOP approach that uses logical meta programming.
Intensive targets the documentation of software programs with design contracts
and allows one to express model-based pointcuts. This model-based pointcut
mechanism strives to decouple the actual pointcut definition from the implemen-
tation structure of the concepts in the source code which the pointcut relies on
as well as to render the causal link between these concepts and the implementa-
tion structure explicit and verifiable. The mechanism allows for the expression of
pointcuts in terms of a conceptual model: a first-class reification of the different
concepts in the source code which a pointcut relies on. As such, design contracts
can be imposed on the conceptual model, aiding in keeping this conceptual model
synchronised with the source code.

2.4.4 Discussion

Of course there are many more implementations and technologies related to AOSD,
but it is not our purpose to list all implementations, but just to give the reader an
idea of the current success of AOSD and on its integration in different programming
languages. Precisely that will be the challenge for all AOSD languages despite the
fact that its solutions are likely to be platform specific. Figuring out how best
to build usable and extensible tools is a problem that any serious programming
language project faces – it is impossible to judge the usefulness of a programming
language in the absence of real developers using it, and it is impossible to convince
real developers to use a language without high quality tools [52].

AOSD introduces the concept of a pointcut as way to match the places of
program code where the concern occurs. It also introduces pieces of advice as an

42 Background

�
1class Buf f e r {
2int buf = 0 ;
3int get (){
4return buf ;
5}
6void s e t (int x){
7buf = x ;
8}
9}
� �

Listing 2.4: AOSD Base feature

�
1public aspect Restore {
2int back = 0 ;
3void r e s t o r e (){
4buf = back ;
5}
6public po intcut s e t (int x) : t a r g e t (x)
7&& execut ion (void Buf f e r . s e t (∗)) ;
8void be f o r e (int x) ; s e t (x){
9back = buf ;
10}
11}
� �

Listing 2.5: AOSD Restore feature

artifact that specifies code to introduce behavior at the places matched by the
pointcut. Advices are woven into the program at the point of the pointcut. Doing
so, a crosscutting concern can be stored in a modular way making the program’s
code easier to understand and to maintain.

Listings 2.4 and 2.5 show an example of a Buffer, which is implemented with
AspectJ [59]. It introduces a Buffer class that specifies a buf instance variable
and methods set and get; and an aspect that adds a back instance variable,
a method restore to restore the value of buf and that introduces a statement
before the execution of method set. Note that the advise corresponds to the set
of changes that needs to be applied in order to add the aspect to the base code
and that the pointcut refers to where those changes have to be applied.

Although AOSD is a general purpose approach, we believe it is an appropriate
technique to modularise features. Aspects can implement features and the weaving
phase implements the composition of the features to the base program. Moreover,
the composition language and framework of the EAOP approach, show that it is
possible to generate program variations by composing class and aspect modules.

When applying AOSD to do feature-oriented programming (FOP), programs
end up consisting of aspect-oriented programming artifacts such as classes and
aspects. Doing so, a set of classes and aspects can specify a feature. FOP requires

2.5 Conclusions 43

composing features to produce a software instance. Although AOP provides means
to weave aspects with classes and by that produce a valid application, it does not
provide means to specify the set of features that is desired to be composed. From
a FOP point of view, we realize that AOSD always composes all features that
are specified in the environment, not allowing one to select a subset from them.
This hinders variability, which is required in the context of our research. Now
we discuss our findings with respect to the desiderata that we identified in the
beginning of this chapter.

1. Granularity : In general AOP is able to introduce modifications at any level
of program entity. However, there are AOP implementations, such as As-
pectJ [59], that do not provide a granularity beyond the level of methods.

2. Supported operations: Features implemented by means of aspects can express
addition and restricted modification to a base program. Only very few AOP
approaches (like CARMA) allow for the specification of aspects that modify
the body of a method. Most approaches, however, only support modifications
before, after or around a method and not within a method.

3. Dependency management : The feature dependency in terms of dependency
between aspects and the base program is addressed by the pre-compiler which
weaves aspects into the base program. Consequently, not all approaches
provide a dependency management.

4. Customized deployment : Pointcuts allow for the matching of places of a
program by pattern matching and quantification. Doing so, the places where
an aspect may introduce behavior depend on the elements present in the
program at the moment that the aspect is woven. Thus, features by means
of aspects provide a customized deployment.

5. Specific language support : AOP enhances OOP by introducing new concepts.
Many implementations provide AOP capabilities for existing OOP languages.

2.5 Conclusions

We started this chapter by explaining that the context of this dissertation is pro-
gram variation. We advocate feature-oriented programming (FOP) as the right
development technique for modularising software in recomposable modules as it
aims at modularising software systems in modules that each implement a different
functionality [87].

We elaborate on what features we require from approaches in order to sup-
port program variability. From our analysis of related work in previous sections,
three important deficiencies were found in current systems for providing program
variability:

• Strictly top-down approach: None of the existing approaches supports the
development of software systems that are modularised in a bottom-up way.

44 Background

In other words, all approaches require a developer to design the system in a
modular way before the implementation is actually started.

• Specific development process: All of the existing approaches require a spe-
cific development process in which the program is first designed in an aspect-
oriented or feature-oriented way, after which it is modularised into base enti-
ties, aspects and features. As such, the developers are required to alter their
development habits. Moreover, most of the approaches enforce the use of a
specific development environment in order to be able to use it.

• Limited expressiveness: None of the existing approaches supports the ex-
pression of a feature that deletes some building bocks from an application.
Also most of the approaches only allow a feature to contain building blocks
at the level of classes and methods and do not allow a feature to express
building blocks at the level of statements.

In this dissertation, we propose an alternative approach to program variation,
which aims at overcoming the deficiencies we found in the state of the art in
approaches to feature-oriented programming. It is based on expressing features as
sets of first-class change objects. For that, the second part of this chapter contains
an overview of approaches that already provide models of first-class changes. We
compare those approaches and discuss the granularity at which they allow changes
to be expressed, which operations they provide and whether or not they maintain
the dependencies between the change objects. We conclude that none of the state
of the art approaches that propose first-class changes satisfy all three criteria. For
that, we decide to work out our own model of first-class changes. This model is
presented in Chapter 4.

We observe that the first-class changes of which features consist often impact
the building blocks of multiple other software modules. Hence, our features mod-
ules exhibit a crosscutting behaviour. We elaborate on the state of the art on
aspect-oriented software development (AOSD) as that is the research domain that
explicitly targets the problem of modularising crosscutting concerns. We conclude
that – just like the AOSD approaches – our approach provides a mechanism for
modularising crosscutting behaviour and that the application of features corre-
sponds to the AOSD weaving process. One difference between our approach and
AOSD is that the vast majority of AOSD approaches supports quantification for
declaring impact points for the pieces of advice, while the expression of features
as change sets does not include quantification. In Chapter 7 we expand our ap-
proach with quantification, and as such allow for the specification of a change that
quantifies its impact points.

Chapter 3

Change-oriented
programming

The thesis of this dissertation is that the software development environment should
provide support for recording modularisation information that results from devel-
opment actions, so that software can be automatically restructured into recom-
posable feature modules. In order to facilitate the recording of modularisation
information, we propose a new style of computer programming, a new program-
ming paradigm: change-oriented programming (ChOP).

ChOP targets software evolution and centralises changes as the main entities in
the software development and evolution process. In ChOP, software programs are
developed by applying changes and can afterwards be evolved in the same way:
by applying changes to them. Some examples of developing code in a change-
oriented way can be found in most interactive development environments (IDE):
the creation of a class though interactive dialogs or the modification of the code
by means of an automated refactoring. ChOP goes further, however, as it requires
all building blocks to be created, modified and deleted in a change-oriented way
(e.g. adding a method to a class, removing a statement from a method, etc).

This chapter is structured as follows. Section 3.1 presents in what setting
ChOP should be considered and what its main benefits and drawbacks are. In
Section 3.2, we present the programming paradigm and show what we mean by
centralising change as the main development entity. Section 3.3 shows that we need
both a model of first-class changes and a change management system in order to
enable ChOP. Change- and Evolution-Oriented Programming Support (ChEOPS)
is a proof-of-concept implementation of ChOP and is presented in Section 3.5. A
discussion of ChOP and its related work can be found in Section 3.6. We conclude
this chapjter in 3.7.

46 Change-oriented programming

3.1 Context

Some interactive development environments (IDEs) include a tool to manage the
changes applied to a software system. VisualWorks for Smalltalk, for instance,
contains ChangeList [51, 105]. Using this tool, programmers can inspect, compare,
edit and merge changes applied to classes or methods. Each Smalltalk image1 holds
one single change list which records all the performed changes on that image.
Hence the user may recover from a crash by backtracking to the most recent non-
erroneous state of the image and reapplying changes listed by the ChangeList
tool.

Throughout this section, we consider the ChangeList tool as a case to demon-
strate the need for change-oriented programming. In ChangeList, changes are
modelled as standard Smalltalk objects and as such they can be referenced, queried
and passed along. Every time a system is modified, the Smalltalk IDE logs this
modification by creating a change object for it, linking this object to the project,
and adding the object to the list handled by ChangeList.

Change objects of the ChangeList tool properly satisfy the notion of first-
class changes for software evolution defined by Robes and Lanza [89]. According
to them, change objects provide more accurate information about the history
of a program than file-based and snapshot-based versioning change management
systems. Timestamps or instance, are more precise as they are not reduced to
commit times. Change objects also better represent the incremental and entity-
based way in which the evolution of a program occurs (changes are expressed in
terms of system entities and not over text). However, change objects still suffer
from a number of shortcomings which we illustrate in the following scenario.

3.1.1 Evolution Scenario

Consider the scenario of software evolution for the chat application depicted in
Figure 3.1. This application originally consists of two classes, User and Chatroom,
which respectively maintain a reference cr and users to one another. A user can
subscribe to a chatroom using the register method and exchange messages with
the rest of users of the chatroom using the send and receive methods. Messages
sent to the chatroom are propagated to all the registered users.

Assume that there are two developers working on new features for this appli-
cation. The first developer is responsible for introducing types of users so that it
can be possible, for instance, to differentiate between registered and guest users.
The second developer is responsible for ensuring the privacy of the users, which
in this case corresponds to encrypting and decrypting the messages when they are
sent or received.

For the first change the developer adds two subclasses of User to the applica-
tion program, RegisteredUser and Guest. In this example, the only difference
between these two types of users is that the registered users can be identified by

1Most Smalltalk systems represent the application code (for example classes) together with the
application state (objects) in a single memory region called the image. Images can be saved and
loaded by the Smalltalk environment as a snapshot of the current code and state of a program.

3.1 Context 47

send:(m: String)
receive:from:(m: String, s: User)
name()

username
User

users
get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

Chatroom

cr

cr get: m from: self

Transcript show:
(s name + ': ' + m)

^ username
∀ u ∈ users:

u receive: m from: s

Figure 3.1: Class diagram of the chat application

their name in the chat room whereas the guests cannot: Accordingly, the username
attribute of User class is moved to the RegisteredUser class. Figure 3.2 shows
this first feature added to the application.

users

send:(m: String)
receive:from:(m: String, s: User)

User

get:from:(m: String, u: User)
register(u: User)
unregister(u: User)

Chatroom

cr

name()
username
RegisteredUser

name()

Guest

^ 'guest'

cr get: m from: self

Transcript show:
(s name + ': ' + m)

^ username

∀ u ∈ users:
u receive: m from: s

Figure 3.2: First change: differentiating users

To ensure user privacy, the second developer adds two methods to the User
class, encrypt and decrypt, which are called from the send and receive methods
respectively. Figure 3.3 shows this second feature added to the application.

After implementing these two new features in the application, the developers
merge their changes, resulting in the class diagram showed in Figure 3.4.

Listing 3.1 illustrates how these three steps are registered by the ChangeList
tool in Smalltalk. Each line in this list corresponds to a change required for the
implementation and merging of the two new features described above. Each of
these changes is stored in a change object. We observe a series of problems in this
representation of the evolution of the chat application:

Restricted level of granularity The entities contained in the change list are
restricted to a granularity of classes and methods. Additions or removals of
attributes or statements within method bodies are not captured by dedicated
change objects. A changes within a method body result in a change that
redefines the complete method. This is what happens, for instance, with
the send: method which is first defined and then modified. As changes
within methods are not logged by dedicated changes on the statement level,

48 Change-oriented programming

�
1Created package ChatApp
2de f i n e User
3doIt User o r gan i s a t i on addCategory :#messaging
4User r e c e i v e : from : (change)
5de f i n e User
6de f i n e User
7User send : (change)
8doIt User o r gan i s a t i on addCategory :# ac c e s s i n g
9User name (change)
10de f i n e Chatroom
11de f i n e Chatroom
12doIt Chatroom organ i s a t i on addCategory :#messaging
13Chatroom get : from : (change)
14do i t Chatroom organ i s a t i on addCataegory :# r e g i s t e r i n g
15Chatroom r e g i s t e r : (change)
16Chatroom un r e g i s t e r : (change)
17

18de f i n e Guest
19doIt Guest o r gan i s a t i on addCategory :#messaging
20Guest name (change)
21de f i n e Reg i s te redUser
22Regi s te redUser name (change)
23User name (remove)
24de f i n e User
25de f i n e Reg i s te redUser
26

27doIt User o r gan i s a t i on addCategory :#encrypt ion
28User encrypt : (change)
29User decrypt : (change)
30User send : (change)
31User r e c e i v e : from : (change)
� �

Listing 3.1: Evolution Scenario user privacy : Change list by ChangeList

3.1 Context 49

send:(m: String)
receive:from:(m: String, s: User)
name()
encrypt:(m: String)
decrypt:(m: String)

username
User

users
get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

Chatroom

∀ u ∈ users:
u receive: m from: s

cr

f (m)

f −1 (m)

cr get: (self encrypt: m)
from: self

Transcript show:
(s name + ': ' +
s decrypt: m)

^ username

Figure 3.3: Second change: ensuring user privacy

send:(m: String)
receive:from:(m: String, s: User)
encrypt:(m: String)
decrypt:(m: String)

User

users
get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

Chatroom

cr

name()
username
RegisteredUser

name()

Guest

cr get: (self encrypt: m)
from: self

Transcript show:
(s name + ': ' +
s decrypt: m) ∀ u ∈ users:

u receive: m from: s

^ 'guest'^ username

f (m)
f −1 (m)

Figure 3.4: Merging the changes

these two different kinds of changes result in two occurrences of User send:
(change) on lines 7 and 30.

Term overloading The definition of a change object is in some cases ad hoc and
inconsistent. The same kind of Smalltalk change object can represent several
kinds of modifications. For instance, a ClassDefinitionChange object is
required to add a class to the program (for example to add the User class)
but also to add or remove attributes (for example to add the username
attribute in the User class). As a result of this term overloading, the change
define User appears four times in the change list (lines 2, 5, 6 and 24).
This hinders the understanding of the changes in the list.

Lack of high-level changes The ChangeList tool does not allow the explicit
monitoring of high-level changes which better represent the intention of the
developers. In this evolution scenario, the two intentions of the developers
(introducing user kinds on lines 18-25 and ensuring user privacy on lines 27-
31) are concatenated in the final change list. This may become a problem if

50 Change-oriented programming

the developers need to change the way in which the two features are merged,
for instance, to only enable registered users benefit from encrypted commu-
nication (see Figure 3.5). The developers have to manually recompose their
implementations from the change list.

No exploration facilities The three shortcomings described above illustrate
how difficult the change management can become. After making several
modifications to a program, the change list can contain large amounts of
change objects. In such a case, the exploration of the change lists is cum-
bersome and error-prone.

name()
send:(m: String)
receive:from:(m: String, s: User)
encrypt:(m: String)
decrypt:(m: String)

username
RegisteredUser

users

get:from:(m: String, s: User)
register(u: User)
unregister(u: User)

Chatroom

cr
send:(m: String)
receive:from:(m: String, s: User)

User
∀ u ∈ users:

u receive: m from: s

^ f (m)

^ f −1 (m)

cr get: (self encrypt:
m) from: self

Transcript show:
(s name + ": " +
s decrypt: m)

^ m

^ m

^ 'guest'^ username

name()
send:(m: String)
receive:from:(m: String, s: User)
encrypt:(m: String)
decrypt:(m: String)

Guest

cr get: (self encrypt:
m) from: self

Transcript show:
(s name + ": " +
s decrypt: m)

cr get: m from: self

Transcript show: m

Figure 3.5: New way of merging the changes

In summary, the first-class change objects featured by the Smalltalk Change-
List tool provide information about the history of each entity of a program. How-
ever, this information has a restricted level of granularity, overloads terminology,
lacks high-level changes and does not facilitate exploration. We claim that these
inconveniences result from the fact that change is treated as a side-effect from de-
velopment actions rather than the main development entity. In the next section,
we propose to centralise change as the central development entity and call this
style of programming, change-oriented programming.

3.2 Change as the central development action

We first introduced change-oriented programming (ChOP) in [32]. ChOP is a style
of programming (a programming paradigm) which centralises change. In order to
create a piece of software in the ChOP style, a programmer does not need to
write large streams of source code, but rather uses the interactive development
environment (IDE) to apply changes to his source code.

Most mainstream IDE’s already partially support ChOP. An example of this
support can be found in the creation of a new class in Eclipse, where the pro-
grammer can create a class by right-clicking a package in order to add a new class

3.3 Requirements for ChOP 51

to that package. The IDE then provides the necessary dialogs to interact with
the programmer in order to obtain all parameters of the class. Finally, it is the
IDE that produces the source code of the newly created class and that inserts this
code in the correct locations. Another example is the refactoring2 [17] support of
the VisualWorks IDE. When a programmer decides to pull up a method (move it
to the superclass), he right-clicks the method and selects the ’pull-up’ menu item
after which the IDE performs the actual modifications to the source code in order
to execute the method pull up.

The idea of ChOP is that the entire software system is developed as illustrated
above: by making the IDE execute changes. It is clear that the IDE should
support all possible kinds of changes to source code and provide the dialogs to
collect the information it needs to perform them. Next to that, the evolution
scenario of Section 3.1.1 revealed a need to support user-defined changes. The
following section elaborates more on those and other requirements for ChOP.

3.3 Requirements for ChOP

ChOP centralises change in order to overcome the issues presented in the evolution
scenario of Section 3.1.1. ChOP has two axes: the change model and the change
management. The change model represents the various kinds of changes that can
be applied by the programmer. Change management consists of the creation,
application and storage of changes. In this section, we subsequently present some
desired properties for the change model and management system behind ChOP.

3.3.1 First-class changes

First-class changes are objects that represent change and can be referenced, queried
and passed along [34]. They were shown to provide useful information about the
evolution history of software programs (see Section 2.3). As we want to pass
changes around and reference them from within change lists, they need to be
first-class. As an example of a model for first-class changes, we take the model
behind the ChangeList tool. We now present four additional properties of first-
class changes, which are desirable in order to overcome issues with the ChangeList
model (presented in Section 3.1.1).

Fine-grained changes

The different kinds of changes in the ChangeList tool are structured in a hierarchy
of change classes. This hierarchy eases extending the set of changes, stimulates
reuse and improves maintainability. We support all these principles and therefore
propose to preserve the idea of structuring the types of changes in a hierarchy in
which subtypes inherit commun functionality from their super types.

2In software engineering, refactoring source code means improving it without changing its
overall results, and is sometimes informally referred to as ”cleaning it up”[41].

52 Change-oriented programming

The first-class changes of the ChangeList tool express changes about packages,
classes, attributes or methods. The statements of a method body are not explicitly
considered as a subject of change. The decomposition of a method body, however,
always reveals more detailed information that can be used to study the evolution of
the concerned program. The fact that a method statement includes an invocation
of another method, implies that there is a relationship between both methods, and
that the former method could be affected when the latter is changed.

Another example of such a restriction of granularity can be found in the modifi-
cation of attributes. Changes to method parameters are also not explicitly modeled
by the the ChangeList tool. Assume a method call that has a complex expression
as an argument. This expression can contain method invocations which reveal
links between the caller and the callee.

In our model, we propose to introduce dedicated change objects for all possible
associations between program entities. An AddInvocation change, for instance,
describes the addition of an invocation of a specific method and maintains a ref-
erence to the method it invokes. Keeping this reference avoids the need to recover
it later, which is even not always possible due to programming language features
such as polymorphism, dynamic binding or especially behavioral and structural
re- ective capabilities [67].

Enabling changes at this level of granularity allows the change list to contain
information which can be used to recover the invocations of a method.

Composable changes

A programmer usually needs to apply several changes in order to introduce a
new functionality into a software system. For example, ensuring privacy for users
requires four changes (lines 28-31 in Listing 3.1). Every one of those four changes
has the same raison d’être: ensuring user privacy. As such, they could be grouped
together based on their common raison d’être. We propose to distinguish between
two kinds of changes: atomic and composite changes, as depicted in Figure 3.6.

. . .

. . .
Change

. . .

. . .
AtomicChange

. . .

. . .
CompositeChange

changes

Hierarchy of Atomic
Change Classes

RefactoringsHigh-level
changes

Figure 3.6: Composable First-Class Changes Design

3.3 Requirements for ChOP 53

Atomic changes are operations that directly manipulate the abstract syntax
tree of a particular program. These operations consist of adding or removing an
entity (for instance a class) as well as changing the properties of an entity (for
instance the name of a class). Like all changes, atomic change operations are
captured in first-class entities that are (re)applicable. By reapplying the changes
of the complete change list, a developer can reproduce each development stage a
program went through during its evolution.

Composite changes consist of multiple changes which can in turn be composite
or atomic changes and which are all carried whenever the composite change is ex-
ecuted. They group some changes in a composition, which can be more expressive
than the atomic changes on their own. A ChangeMethod, for instance, could be
expressed by a composition of a RemoveMethod and an AddMethod change. In some
cases, if one of them is undone, the other should be undone as well. The infor-
mation that represents this relationship is captured in the ChangeMethod change
that surrounds both the RemoveMethod and an AddMethod change.

Composing changes also improves comprehension of the change list. A system
history consisting of only atomic operations leads to an enormous and poorly
organized amount of information. Therefore atomic operations are composable:
They can be grouped into higher-level operations with a more abstract meaning.

A final application of composite changes can be found in domain-specific
changes. Imagine that we envision the addition of lots of new kinds of users
to our Chat application. In that case, it probably would be better to define a ded-
icated change type AddUserClass, which in its turn adds a subclass to the User
hierarchy and add methods for instanciating that new class. As such change types
are targeting a specific a specific problem domain, we call them domain-specific.
By means of such domain-specific changes, the level of abstraction of changes is
raised, which leads to better readable (and more understandable) change lists.

Dependent changes

In our model, every change has a set of preconditions that should be satisfied
before a change is applied. Such preconditions are related to system invariants
imposed by the programming language (usually defined by the meta-model of the
language). For example, methods can only be added to existing classes. Pre-
conditions enable expressing dependency relationships between changes. In the
scenario of Section 3.1.1, for instance, the change that adds the method name to
the RegisteredUser class depends on the change that added the RegisteredUser
class to the system, as the latter is the creational change for the subject of the
former.

There are many kinds of dependencies between changes. In Section 4.4, we
classify the dependencies based on their origin. An example is the creational
dependency.

A change is always applied to a building block, which we refer to as the subject
of change. Creational changes are changes which have as subject a new entity that
they produce. In general, a change c1 is said to depend on a change c2 if that is
the creational change of the subject of c1

54 Change-oriented programming

�
1Change the name o f method "name" in class Regi s te redUser
2to "username"

3Change the name o f method "name" in class Guest to "username"

4Change the invoca t i on "s name" in method r e c e i v e : from : from
5User to "s username"
� �

Listing 3.2: Change method body: extension

�
1Change the name o f method name in a l l s ub c l a s s e s o f the class
2User to "username"

3Change every invoca t i on o f method "name" to an invoca t i on o f
4method "username"
� �

Listing 3.3: Change method body: intension

Intensional changes

A set of changes can be specified extensionally – by listing them – or intensionally
– by expressing them declaratively. Assume a change in which we rename the
name method of the users of Figure 3.5 to username. This evolution step can be
implemented by the following two algorithms which are depicted in Listings 3.2
and 3.3.

Both algorithms 3.2 and 3.3 represent the same modification to the system:
a “change name refactoring” [41] to the method name. There is an important
difference between both, however. Combining this change with the addition of
another invocation of method name would result in an inconsistency when the
extensional list is applied – the other invocation of name would not be changed.
As the intensional change finds every invocation of name by definition (Listing 3.3),
such conflicts are avoided. We name the changes that use an intensional description
intensional changes. Note that we need a way for expressing qualifiers like every or
exists for specifying intensional changes. A logic-based declarative language was
already used in the passed for such matters [73].

3.3.2 Change management

The second axis of requirements for change-oriented programming lies in the man-
agement of the first-class changes. A change first needs to be produced, then
maintained and finally used. We identify two ways of producing changes: by in-
stantiating the change kind by means of an interactive dialog provided by the IDE,
or by monitoring the programmers actions in the IDE and producing the change
objects that correspond to those actions. The maintenance of changes consists of
a book keeping of all changes that were produced, in such a way that they can
easily be retrieved and queried later on. In order to support ChOP, specific IDE
support is necessary which allows developers to develop (and evolve) their software
by means of changes. In fact, from this point of view, developing is not different

3.3 Requirements for ChOP 55

from evolving software. The following sections subsequently present how the IDE
should support the production, the management and the use of changes.

Extensible change hierarchy

An IDE which enables change-oriented programming should incorporate a change
taxonomy, which represents all kinds of changes that can be executed by a pro-
grammer in order to develop a software system. For every change in the hierarchy,
the IDE should provide the adequate dialogs it can use to obtain extra infor-
mation from the programmer in order to execute the concerned change. The
change hierarchy should be extensible, so that a programmer can add self-defined
(domain-specific or general composite) kinds of changes.

Verification of pre-conditions

A change has pre-conditions which must hold before it can be executed. Those
pre-conditions can be of a semantic or a structural kind and are introduced by
the meta-model of the concerned programming language. In a class-based object-
oriented programming language, for instance, a method can only be added to a
class, if that class already exists. The IDE should enforce that the pre-conditions
of the changes are verified before they can be carried out. A good starting point to
do that, is to enable only the kinds of changes that can be performed in a certain
context of the IDE. For instance, when a class is already added and selected, a
programmer can execute a change to add a method to that class.

Composition of changes

As we have explained in the previous section, changes can be composed in order to
form new change types. The IDE should include the functionality to support this
process. Concretely, the programmer should be able to compose scripts of existing
changes and capture them in new change types. User dialogs must be generated
that can query the developer for the information that specifies those changes.

Another aspect about the composition of changes is the grouping of change
instances based on a common property (the user that produced those changes,
their raison d’être (= their reason of existence), the time on which they were
applied, etc). Such grouping can be used to classify changes in change groups,
which can afterwards be used to reason about the changes on a more abstract
level.

Declaration of intensional changes

In the previous section, we explained that some changes might require an inten-
sional description. The IDE should support the programmer in the declaration of
intensional changes. For that, two things are needed. First a specific language is
needed, which can be used to express the intentional descriptions of the changes.

56 Change-oriented programming

Second, an evaluator is required, which is able to interpret the intensional specifi-
cations of changes and which can evaluate them to the extension that corresponds
to that intension. Both these matters are addressed in Chapter 7.

Maintenance of changes and references

The maintenance of changes requires three separate tasks. First, the different kinds
of changes have to be maintained in order to allow the programmer to instantiate
them for developing software in a change-oriented programming style. Second,
the change instances have to be maintained in a repository in order to be able
to use them afterwards. Finally, change management also consists of maintaining
the link between the program building blocks (like classes, methods, etc.) and the
changes that created and affect them. This link can be used to reveal the raison
d’être of the concerned program building block.

Development support

The idea behind ChOP is that a developer does not write code himself, but rather
that the code is generated for him when changes are executed. The IDE should
provide support for executing those changes. Concretely, all kinds of change should
be invokable from within the IDE. Moreover, the IDE should provide dialogs to
interact with the programmer in order to obtain the information required to specify
the change. In fact, some IDE’s already provide some support to that regard.
Eclipse [102] and VisualWorks [51] for instance, both provide an interactive way
of adding a new class to a system. Both do this by means of graphical dialogs which
request the desired information from the developers. Such interactive support to
apply other kinds of changes, like adding methods or more fine-grained changes,
however, is not included in those IDE’s.

In practice, though, pure ChOP does not seem realistic. We do not believe
a programmer will actually execute a dialog for adding a statement to a method
body. For that, we propose that the IDE is instrumented with a logging mechanism
which is capable of monitoring the actions of a programmer and which instantiates
the changes that correspond to those actions. While this does not correspond to
pure ChOP, we believe it makes ChOP more applicable and useable, while it does
not take away the main benefits of ChOP, which we discuss in the following section.

3.4 Advantages of ChOP

This section presents the advantages of the ChOP paradigm. In this dissertation,
we highlight the two main advantages of ChOP and subsequently discuss them
below.

3.4.1 Incremental change management

Change management is a technique for storing and managing the changes of evolv-
ing software systems. An incremental change management – in contrast to a

3.4 Advantages of ChOP 57

snapshot-based change management – consists of continuously storing changes to
software systems in a central repository. A snapshot-based change management
stores snapshots of the software system in a repository. Consequently, the lat-
ter only records the evolutionary information at the explicit request of develop-
ers [89] while the former implicitly records the evolutionary information: changes
are recorded as they happen.

Such a change management system is integrated into the Interactive Develop-
ment Environment (IDE) and continuously captures changes as they are applied
by the developer(s). Hence developers do not carry the responsibility of commit-
ting versions. Each captured change increments the system history stored in the
repository enabling to reconstruct a software version at any point of time.

In [89], Robbes et al show that incremental change management provides a lot
of useful information about the evolution of the software systems. Hence, such
change management is a valuable source for software evolution researchers. An-
other advantage of incremental change management is that it allows a bottom-up
approach for feature-oriented programming (as we will elaborate on in Chapter 5).

3.4.2 Combination with other paradigms

In order to explain the fact that ChOP can be combined with any other program-
ming paradigm, we first explain the difference between a model and a meta-model.
A model is an abstraction of real world phenomena, while a meta-model is an-
other abstraction, highlighting properties of the model itself. A model conforms
to its metamodel in the way that a computer program conforms to the program-
ming language in which it is written. Following these definitions, a programming
paradigm is specified by a meta-model, which can be used to produce software
programs which are models (instances of the meta-model).

In one point of view, ChOP is not different from other programming paradigms
(like object-oriented or aspect-oriented programming) as it is also specified by
a meta-model. From another point of view, ChOP is different as it is always
applied to the meta-model of another programming paradigm. ChOP is specified
by a meta-model which consists of the addition, modification and deletion of the
building blocks of the programming paradigm which it is applied to 3. ChOP
can consequently be seen as an extension of the meta-model of the programming
paradigm which it is applied to.

An advantage of ChOP is that a programmer can develop software in a change-
oriented way using his favorite programming style and programming language. In-
deed, from the moment the IDE supports the above defined criteria for ChOP, the
programmer is able to program in a change-oriented way in his favorite program-
ming language. While the concepts of ChOP are applicable to any programming
language and programming paradigm, we chose to apply it to the class-based
object-oriented programming paradigm to which languages such as Ada, C++,

3The building blocks of class-based object-oriented programming, for example, are packages,
classes, methods, etc. For aspect-oriented programming, on the contrary, the building blocks
also contain aspects, pointcuts, etc.

58 Change-oriented programming

Java and C# adhere. Consequently, in the remainder of this dissertation, ChOP
is considered in combination with class-based object-oriented programming.

3.5 Tool Support

ChEOPS (the change- and evolution-oriented programming support) is an IDE
plugin for VisualWorks, which we created as a proof-of-concept implementation
of ChOP. ChEOPS implements a model of changes that is compliant with all
requirements described above and does not fall back on ChangeList [105] – a
change management tool included in most Smalltalk IDEs. Reasons for this are
elaborated on in Section 3.1.

ChEOPS fully supports change-oriented programming but also has the capa-
bility of logging developers producing code in the standard OO way. Therefore,
ChEOPS instruments the IDE with hooks and uses them to produce fine-grained
first-class change objects that represent the actions taken by the developer. Those
objects can later be grouped into a change set that specifies a transition which
might be applied to a base in order to extend the base with the feature expressed
by that change set.

The following goes back to the evolution scenario from Section 3.1.1 and shows
how the support provided by ChEOPS overcomes the four identified issues. List-
ing 3.4 shows the list of changes of the basic 2-class chat application, as they are
logged by ChEOPS. Listing 3.5 and 3.6 respectively show the changes of adding
different user kinds and ensuring user privacy in the way that ChEOPS logged
them.

Contrary to Listing 3.1, the ChEOPS change list allows a clear separation
between an addition of a new class (line 2 of Listing 3.4) and the addition or
removal of instance variables to a class (lines 5 and 6 of Listing 3.4). This is a
consequence of not overloading the AddClass change, but separating every change
into a different kind of change class. This improves the understandability of the
change list.

In the ChEOPS change list, every modification at the method level is rep-
resented not only by a statement such as User send:(change) (lines 7, 30 of
Listing 3.1). Instead, ChEOPS distinguishes between the addition (line 7 of List-
ing 3.4) and the removal of a method (line 10 of Listing 3.6). Next to that,
ChEOPS does not log changes only at the level of methods, but also logs more
fine-grained changes at the statement level of the method bodies. This overcomes
the problem of the restricted granularity which was identified in Section 3.1.

When both extensions need to be merged in order to allow only registered
users to send and receive encrypted messages, we actually want to obtain a change
list similar to Listing 3.7. This shows that just concatenating the changes of
both programmers does not do the job. In fact, the four changes of the second
programmer, which were originally applied to the single class User now need to
be applied to the RegisteredUser class and the Guest class both. As such, we
want to group these changes by their intention and parameterize them with the
class which they need to be applied to. Additionally, the two classes differ in what

3.5 Tool Support 59

�
1Changes to ChatApp package :
2Add new class "User"

3Add new i n s t ance method "receive: m from: s" to class "User"

4−> Invocat ion t r e e added
5Add new i n s t ance va r i ab l e "cr" to class "User"

6Add new i n s t ance va r i ab l e "username" to class "User"

7Add new i n s t ance method "send: m" to class "User"

8−> Invocat ion t r e e added
9Add new i n s t ance method "name" to class "User"

10−> Add Read Access
11Add new class "ChatRoom"

12Add new i n s t ance va r i ab l e "users" to class "ChatRoom"

13Add new i n s t ance method "get: m from: s" to class "ChatRoom"

14−> Invocat ion t r e e added
15Add new i n s t ance method "register: u" to class "ChatRoom"

16−> Invocat ion t r e e added
17Add new i n s t ance method "unregister: u" to class "ChatRoom"

18Add invoca t i on "users remove: u"
� �
Listing 3.4: Chat Application: change list by ChEOPS

�
1Changes to ChatApp package :
2Add new class "Guest"

3Add new i n s t ance method "name" to class "Guest"

4−> Invocat ion t r e e Added
5Add new class "RegisteredUser"

6Add new empty in s t ance method "name" to class "RegisteredUser"

7Add read ac c e s s to behav io ra l e n t i t y "name" >> return value
8o f v a r i ab l e "username"

9Remove in s t ance method "name" from class "User"

10−> Invocat ion t r e e Removed
� �
Listing 3.5: Adding Different Users: change list by ChEOPS

60 Change-oriented programming

�
1Changes to ChatApp package :
2Add new i n s t ance method "encrypt: m" to class "User"

3−> Invocat ion t r e e Added
4Add new i n s t ance method "decrypt: m" to class "User"

5−> Invocat ion t r e e Added
6Remove in s t ance method "receive: m from: s" from class "User"

7−> Invocat ion t r e e Removed
8Add new i n s t ance method "receive: m from: s" to class "User"

9−> Invocat ion t r e e Added
10Remove in s t ance method "send: m" from class "User"

11−> Invocat ion t r e e Removed
12Add new i n s t ance method "send: m" to class "User"

13−> Invocat ion t r e e Added
� �
Listing 3.6: Adding user privacy: change list by ChEOPS

kind of encryption and decryption functions are required. Consequently, these
functions have to be expressed as additional parameters to this composition of
changes. The change list of Listing 3.8 shows the same ChEOPS change list as
Listing 3.7, but in stead of listing all atomic composite changes, it contains two
high-level composite changes of the type AddEncryptionChange. Such a change
is a composite change that adds encryption to a class.

This does not only solve the merging problem of the evolution scenario, but
also brings along improved support for reusing changes. This high-level change
can now be applied on all kinds of classes that understand the name message and
have access to an instance variable cr which behaves like a Chatroom. Next to
that, it also improves the readability of the change list, as the extensive list of
composite changes is abstracted away behind the high-level change.

Exploring the change list of ChEOPS is easier and more user-friendly than
in the traditional ChangeList tool. This is a consequence of exploiting the im-
proved exploration support brought by the first-class change model behind COSE.
In ChEOPS, changes can be looked at from four perspectives: ordered on time,
grouped by affected entity, grouped by composition and grouped by intension.

• The first view (depicted in Figure 3.7) is similar to the traditional ChangeList
approach, with the difference that ChEOPS organises the changes in a tree
structure where the fine-grained changes beyond the method-level are hidden
in the branches of the method-changes.

• Figure 3.8 shows how the second view groups the changes by the entity they
affect. This entity can be any of the building blocks of the chosen meta-model
For ChEOPS supports ChOP for class-based object-oriented programming it
supports changes on building blocks such as classes, methods, attributes, etc.
This view also contains a tree of changes, where the dependent changes are
hidden in the branches of the creational change of their subject. For example,

3.5 Tool Support 61

�
1Changes to ChatApp package :
2Add new i n s t ance method "encrypt: m" to class "RegisteredUser"

3−> Invocat ion t r e e Added
4Add new i n s t ance method "decrypt: m" to class "RegisteredUser"

5−> Invocat ion t r e e Added
6Remove in s t ance method "send: m" from class "RegisteredUser"

7−> Invocat ion t r e e Removed
8Add new i n s t ance method "send: m" to class "RegisteredUser"

9−> Invocat ion t r e e Added
10Add new i n s t ance method "encrypt: m" to class "Guest"

11−> Invocat ion t r e e Added
12Add new i n s t ance method "decrypt: m" to class "Guest"

13−> Invocat ion t r e e Added
14Add new i n s t ance method "send: m" to class "Guest"

15−> Invocat ion t r e e Added
16Add new i n s t ance method "receive: m" to class "Guest"

17−> Invocat ion t r e e Added
� �
Listing 3.7: Adding user privacy correctly: change list by ChEOPS

�
1Changes to ChatApp package :
2Add encrypt ion for class "RegisteredUser" with func t i on
3"f(x)= encrypt(x)" and "f(x)= decrypt(x)"

4−> composite changes
5Add encrypt ion for class "Guest" with func t i on "f(x)=x" and
6"f(x)=x"

7−> composite changes
� �
Listing 3.8: Adding user privacy correctly: (compositional) change list by ChEOPS

Figure 3.7: ChEOPS view on change list (ordered by time)

62 Change-oriented programming

the dependent changes of the creational change of User, are structured in a
branch below that change.

Figure 3.8: ChEOPS view on change list (ordered by affected entity)

• A third view which is included in ChEOPS groups the changes by their
composition. Figure 3.9 shows the composite AddAncryptionChange, and
the atomic changes it contains. This view dramatically decreases the number
of changes to be displayed.

Figure 3.9: ChEOPS view on change list (ordered by composition)

• Yet another ChEOPS view can present the changes grouped by their common
raison d’être. An intent of a change is the reason of existence of that change;
the reason why that change was instantiated (a bug fix, the introduction of
a functionality, a refactoring, etc). The nodes of this tree view contain all

3.6 Discussion 63

the intentions that are detected amongst the complete change set. Those
nodes can be expanded to present all the change objects in the same way as
the second ChEOPS view.

Figure 3.10: ChEOPS view on change list (ordered by intention)

Figures 3.7 to 3.10 present the different views on changes that ChEOPS can
produce. In ChEOPS, those views are actually part of the change browser, hat
we implemented in ChEOPS. Figure 3.11 depicts a complete view of the change
browser. The left pane contains the Smalltalk packages on which the developer is
working. In the upper right pane, we find the views we just elaborated on. In the
bottom right pane, a hierarchy is presented with all the change kinds ChEOPS
supports. The developer can execute those changes by expanding the tree and
selecting the type needed. ChEOPS then presents a dialog that interacts with the
programmer in order to obtain all the required information for instantiating that
change.

3.6 Discussion

Table 3.1 shows an overview of the four problems we identified in Section 3.1.
The vertical axis shows the requirements that we propose for ChOP (Section 3.3).
Cells containing an x denote that the property of the cell’s row helps to overcome
the problem of the cell’s column. The rest of this section discusses how this is
achieved:

Restricted level of granularity The restricted level of granularity is notice-
able by the lack of both very fine-grained and very coarse-grained changes. Our
model includes not only coarse-grained changes (such as the addition of classes
or methods), but also more fine-grained changes such as method invocations and
accessors. The possibility to compose changes into composite changes allows the

64 Change-oriented programming

Figure 3.11: ChEOPS change browser

Property Restricted Term Lack of high- No exploration
granularity overloading level changes support

Fine-grained x x
changes
Composable x x x
changes
Dependent x
changes
Intensional x x
changes
Extensible x x x
change hierarchy
Verication of x
pre-conditions
Maintenance of
changes and x
references
Development x
support

Table 3.1: Problems handled by properties of change-oriented programming

3.6 Discussion 65

definition of more coarse-grained changes, which can be used to abstract away
from the fine-grained level. These extensions provide the granularity required to
reason about and understand the evolution history of programs. These extensions
are supported by the IDE in the form of an extensible change hierarchy. As pro-
grammers can define their own kinds of changes, they can broaden or tighten the
granularity spectrum.

Term overloading Our model provides a different change for every building
block of the chosen meta-model. As such, every change to such a building block is
captured by a specific change. This avoids overloading change classes to capture
different kinds of changes. We can conclude that in our model, the definition of a
change is unique. The fact that the programmer can define his own change types
and incorporate them into the extensible change hierarchy, also assists in avoiding
term overloading.

Lack of high-level changes Our model enables defining high-level changes
that better represent the developers’ intentions. The model is extensible so that
developers can define their own domain-specific changes. This is achieved (1) by
the use of an extensible change hierarchy in which all the change types reside and
(2) by the composite design pattern (distinguishing between atomic changes and
composite changes). High-level changes can also be defined as intensional changes,
which describe a pattern of change. The application of high-level changes is con-
ditioned by the fulfillment of their preconditions. This is supported by an IDE,
which guides the programmers in defining new kinds of changes, applying their
changes, undoing changes and verifying the preconditions to ensure the applica-
tion consistency.

No exploration facilities All the notions of first-class change described in
this work are implemented in ChEOPS, which supports program exploration by
providing different views on the changes. The views structure the changes based
on the dependencies between them, on their composition, on their intension or
on the time on which the changes were made. Different views on changes can
be used for different goals. While the dependency view seems interesting as a
means to undo and redo changes, the intentional view seems more interesting for
understanding the changes. Exploration of changes in these views is only possible
if the IDE supports the development in a change-oriented way and if the changes,
their references and their pre-conditions are maintained by the IDE

Other researchers pointed out the use of encapsulating change as first-class en-
tities as wel. In [89], Robbes shows that the information from the change objects
provides a lot more information about the evolution of a software system than the
central code repositories. In [28] Denker shows that first-class changes can be used
to define a scope for dynamic execution and that they can consequently be used
to adapt running software systems. We refer to Section 2.3 for a more complete
overview of related approaches.

66 Change-oriented programming

3.7 Conclusions

In this chapter, we presented change-oriented programming (ChOP): a program-
ming paradigm that targets software evolution and that centralises changes as
the main entity in the development process. The subject of the change refers to
the building block of the programming language in which the program is being
developed. As such, ChOP builds on top of another programming paradigm in
which those building blocks are written. In this dissertation, we build on class-
based object-oriented programming and take the chosen meta-model as a model
for describing the programs that are to be changed.

By means of an evolution scenario, we show the need for the centralisation of
change. We then introduce ChOP and explain that it has two dimensions: the
model of first-class changes and the management of the change instances. We first
show why first-class changes are desired to program in a change-oriented way. We
identify four issues with respect to the model of first-class changes, as it is presented
in a related approach. The restricted level of granularity in the different types of
changes, the overloading of change types, the lack of high-level changes and the
lack of program exploration facilities hinder good software evolution support. This
explains the need to extend the model of first-class changes in such a way that
these problems are overcome. With respect to the management of changes, we
present six requirements for a change management system that can enable ChOP.

Advantages of ChOP include the fact that it enables an incremental change
management, which has been proven to be beneficial over a snapshot-based change
management system with respect to the amount of evolutionary information it con-
tains. In the context of this dissertation, which also includes software variability,
ChOP enables a bottom-up approach to feature-oriented programming (presented
in Chapter 5). Another advantage of ChOP is that it is actually applied to another
programming paradigm and that it consequently must – but also can – be used in
combination with any other programming paradigm and programming language.

We briefly present ChEOPS, a proof-of-concept implementation of ChOP which
is implemented as a plugin of the VisualWorks for Smalltalk IDE. It is based on the
existing implementation of first-class changes, but extended with solutions for the
requirements that were identified. The implementation of the evolution scenario
in ChEOPS shows that an implementation of ChOP – that takes into account all
requirements identified above – indeed overcomes the four problems we identified.

Chapter 4

Model of first-class change
objects

In the context of software evolution, many researchers have provided their view
on how evolution could be interpreted. Mittermeir for instance, believes that
software evolution should only be considered as the changes that were applied to
an existing software system [77]. In [65], Lehman studies different interpretations
of software evolution and elaborates on the theory and practice behind them. He
defines software evolution as

“the dynamic behaviour of programming systems as they are main-
tained and enhanced over their life time.” [64, 91]

In this chapter, we aim to establish and describe an evolution model : a model
that is capable of representing the evolution of software systems. We show that
an evolution model depends on a meta-model : a model that describes the build-
ing blocks of the software systems model. As an example, consider the software
system of Section 3.1.1. The model of that software system consists of users
and chatrooms. The corresponding meta-model is composed of classes, methods,
instancevariables, etc.

In this chapter, we develop an evolution model for an object-oriented class-
based meta-model which captures the evolution of such systems in first-class
change objects. The term first-class refers to the property that changes are entities
which can be queried, adapted and passed along. The resulting evolution model
can then be used to express the evolution of any software system developed in a
programming language that adheres to that model.

As a meta-object model for software systems, we consider the Unified Model-
ing Language (UML) [15], the Common Object Requesting Broker Architecture
(CORBA) [48] and the FAMOOS Information Exchange model (FAMIX) [27]. All
were created to support the information exchange about software systems that
are implemented in different programming languages. They all provide a meta-
model for class-based object-oriented programming which can be used to write

68 Model of first-class change objects

a system’s blueprints. UML or CORBA, however, do not provide ways to spec-
ify intra-method dependencies (such as method invocations or variable accesses).
Since that information is required to express the evolution of software systems, we
chose the FAMIX model.

FAMIX is a meta-model which Java, Ada, C++ and Smalltalk adhere to. This
means that the FAMIX model can be used to express the models of software
programs written in one of those languages. FAMIX, however, also provides ex-
tension hooks that can be used to cover other programming languages. In the
following section, we discuss the FAMIX model and expose its extension hooks.
In Section 4.2, we discuss an extension to the FAMIX model that captures code
statements. In Section 4.3 we elaborate on another extension to FAMIX, which
consists of the addition of entities that model the changes of the building blocks
specified by FAMIX. As such, we provide the necessary facilities to model the evo-
lution of software systems that are developed in a programming language adhering
to the FAMIX meta-model.

4.1 The FAMIX model

FAMIX stands for FAMOOS Information Exchange Model and was created to sup-
port information exchange between interacting software analysis tools. FAMIX
captures the common features of different class-based object-oriented program-
ming languages and models the ones that are needed for software re-engineering
activities [27, 31, 103].

FAMIX Model
C++
Java
Ada

Smalltalk

Grouping
Metrics

Heuristics
Reorganisation

Figure 4.1: Conception of the FAMIX model (based on [27])

Figure 4.1 shows a conceptual view of the FAMIX model. On the left hand side
we find different programming languages that were used to implement several case
studies of the FAMOOS project. The right hand side of the figure lists various
experiments conducted by several software analysis tools on the provided case
studies. In the middle, there is the information exchange model that only captures
the common features of class-based object-oriented programming languages such
as classes, methods or the inheritance relation. To cope with language specific
features, the FAMIX meta-model can be extended by using the provided hooks.

4.1 The FAMIX model 69

Those are represented by the grey bars at the bottom of the figure. The extended
meta-model takes as input the source code of the different case studies which in
its turn is provided as input to several software analysis tools.

• Support for multiple languages: the FAMIX meta-model is designed to model
software systems at the level of source code independent of the implemen-
tation language. To achieve the support for multiple languages, the FAMIX
model only captures common features of all different class-based object-
oriented class-based programming languages and omits language specific fea-
tures. For instance, FAMIX models inheritance in a very generic way, so that
both multiple inheritance and single inheritance can be expressed. This is
necessary, since both kinds of inheritance are asserted by the programming
languages targeted by FAMIX (e.g. multiple inheritance of C++, single
inheritance of Smalltalk).

• Extensibility : the FAMIX model provides three extensibility mechanisms.
First, users have the possibility to define new concepts (new meta-model
elements). Second, users may add new attributes to existing concepts in order
to store additional information. Third, just like in UML, FAMIX allows the
user to annotate any model element by attaching extra information.

• System invariants: The FAMIX specification can be used to derive system
invariants: clauses that must hold for an instantiation of the FAMIX meta-
model, for that instantiation to be valid. A method, for instance, must
always belong to a class.

• Information exchange: the FAMIX meta-model was created to support in-
formation exchange between tools.

We now discuss the complete FAMIX meta-model, subsequently its basic data
types, classes, attributes and relationships.

4.1.1 Basic data types

The data types of FAMIX for variables and return types can be split up in two
categories: primitive and non-primitive data-types.

• Primitive data types: There exist two primitive data types in FAMIX
(String and Integer).

• Non-primitive data types: FAMIX defines three extra data types that may
be used in the model:

– Name is a String that gets its semantics from the model of the developed
software system. A uniqueName, for instance, may be used to refer to
an object from within the model.

70 Model of first-class change objects

– Qualifier is a String that also has semantics outside the model of
the developed software system. The sourceAnchor of an object, for
example, contains the location of the source code of that object. This
location can be used by any software application to retrieve the source
code of the object.

– Index is an Integer that represents the position in some sequence. As
a parameter is used in a sequence, it has a position in that list. This
position is of type index.

The naming conventions used in FAMIX are very compliant with UML [15, 45].
For more information about the FAMIX naming conventions, we refer the reader
to [27]. We subsequently discuss all the building blocks of FAMIX and illustrate
their structure by means of UML class diagrams. We see that all the building
blocks are classified in an inheritance hierarchy with a root called Object.

4.1.2 Object

SourceAnchor : Qualifier
CommentsAt : String

Object

position : Index
isReceiver : Boolean

Argument

name : Qualifier
value : String

Property

name : Name
uniqueName : Name

Entity

Model

Association

belongsToObject

Figure 4.2: FAMIX model - Object

The Object class is the root class of the FAMIX model. As shown in Figure 4.2,
Object is an abstract class 1 that does not inherit from any superclass but which
acts itself as a superclass for all other classes presented in the model (except for
the Property class). An Object holds a sourceAnchor determining the location
of the source code of the concerned object. A typical example of a source anchor
consists of the filename and start and stop indices where a class is physically stored.
Developers have the possibility of commenting model elements, these comments
are stored in the commentsAt attribute.

The Property of an object holds annotations that can be made to the FAMIX
objects. As such, properties provide an extension hook that can be used to extend
the FAMIX model. A Model represents information concerning the particular soft-
ware system being modeled (e.g. name of the publisher or the used programming

1An abstract class is a class that cannot be instantiated. It is typically used to group the
shared behaviour of all its subclasses.

4.1 The FAMIX model 71

language). In the FAMOOS project, the models were used by software analysis
tools when investigating the provided case studies. The remaining three subclasses
(Entity, Association and Argument) are explored in the following three subsec-
tions.

4.1.3 Entity

name : Name
uniqueName : Name

Entity

accessControlQualifier : Qualifier
signature : Qualifier
isPureAccessor : Boolean
declaredReturnType : Qualifier

BehaviouralEntity

declaredType : Qualifier

StructuralEntity

isAbstract : Boolean

Class

Package

be
lon

gs
To

Pac
ka

ge

belongsToPackage

declaredClass

declaredReturnClass

Figure 4.3: FAMIX model - Entity

Figure 4.3 shows the Entity class which represents the different mechanisms
that can be used in an object-oriented programming language to manipulate the
static structure, behaviour and state of the implemented system. As shown in
Figure 4.2, Entity is an abstract class inheriting from the Object class. An
Entity stores a name and a uniqueName, which must be unique for all entities in
the model of the software system. This is usually ensured by development tools
such as an IDE or a compiler.

The Class and Package classes inherit from the Entity class and form the
static structure of a software system. Class and Package respectively model
a class and a package in the context of object-oriented programming. A class
defines the structure and behavior of all the instances of that class. A Package is
a container that can be used to group source code. As such, packages organise the
software system in smaller subsystems. It is the belongsToPackage relationship
that denotes this decomposition. The following two subsections elaborate on the
BahaviouralEntity and StructuralEntity classes.

Behavioural entity

Figure 4.4 shows the BehaviouralEntity class which represents the definition
of a behavioural abstraction in a software system. When invoked, a behavioural
abstraction executes one or more actions defined in its body (e.g. calling other

72 Model of first-class change objects

accessControlQualifier : Qualifier
signature : Qualifier
isPureAccessor : Boolean
declaredReturnType : Qualifier

BehaviouralEntity

hasClassScope : Boolean
isAbstract : Boolean
isConstructor : Boolean

Method

Function

Package

isAbstract : Boolean

Class

be
lon

gs
To

Pac
ka

ge

declaredReturnClass

belongsToClass
belongsToPackage belongsToPackage

Figure 4.4: FAMIX model - BehaviouralEntity

behavioural entities or instantiating classes). Typical examples of behavioural ab-
stractions are methods and functions. As shown in Figure 4.3 BehaviouralEntity
is an abstract class inheriting from the Entity class.

Every behavioural entity has a signature which consists of a name, the num-
ber and possibly the type of its parameters. While the signature has to be unique
within a class, it does not need to be unique within the complete model because
many object-oriented programming languages allow for the definition of different
behavioural entities in different classes for the same signature (method overrid-
ing). A method lookup mechanism determines at runtime which of the overridden
methods has to be invoked.

By setting an access control qualifier (accessControlQualifier), one can de-
fine who is allowed to invoke the behavioural entity. In case the behavioural entity
returns an object, the information concerning the returned object is maintained
by the declaredReturnType and the declaredReturnClass. While the former
contains the type of the returned object2, the latter contains a reference to the
class implicitly held in declaredReturnType. Note that in some programming
languages, the return type of a behavioural entity is not statically declared and
both those empty. Note that in some programming languages, the return type of
a behavioural entity does not need to be statically declared and that in some pro-
gramming languages, some behavioural entities do not return anything. In such
situation, both the declaredReturnType and the declaredReturnClass are left
empty.

Each subclass of the BehaviouralEntity class represents a mechanism for
defining a specific behavioural entity. FAMIX provides two such mechanisms:

• Method: a class used to represent the definition of some behaviour specified
within a certain Class (as expressed by the belongsToClass relationship).

2The return type is typically a class, a reference to an object (pointer) or a primitive type.

4.1 The FAMIX model 73

The hasClassScope attribute denotes wether the method is a class method
(static methods in Java) or an instance method. The isAbstract attribute
is true for abstract methods (= methods without a body).

• Function: A Function represents a closure (= a piece of behaviour that is
evaluated in an environment containing one or more bound variables). When
called, the function can access these variables by using its scope. The scope
is an enclosing context in which values and expressions are associated. The
scope of a function can be global or local to the place where the function
is defined. If provided, the value of the belongsToPackage attribute denotes
the local scope of the function. Smalltalk blocks are well-known examples of
a Function.

Structural entity

declaredType : Qualifier
declaredClass : Name

StructuralEntity

isAbstract : Boolean

Class

Package

GlobalVariable

belongsToContext : Name

ImplicitVariable

accessControlQualifier : Qualifier
hasClassScope : Boolean

Attibute

LocalVariable

position : Index
FormalParameter

BehaviouralEntity

belongsToPackage

belongsToClass

declaredClass

belongsToBehaviour

belongsToBehaviour

Figure 4.5: FAMIX model - StructuralEntity

Figure 4.5 shows the StructuralEntity and the relations it has to other
FAMIX entities. A StructuralEntity class represents the definition of an entity
that concerns the structure of a system (e.g. an attribute specified in a certain
class to which a particular value can be assigned). Structural entities are charac-
terized by their scope: Some are visible only within the entity in which they are
defined (e.g. attributes are only accessible from within the class). Others have a
scope equal to that of the entire running system (e.g. global variables).

Every structural entity is of a certain kind, which is denoted by its type. The
declaredType Is a qualifier that refers to the declared type of the structural entity.
Typically this will be a class, a pointer or a primitive type (e.g., int in Java).
declaredType is empty if the static type is not known or the empty string (i.e.,
“”) if the StructuralEntity does not have a static type. Note that this is the
case in programming languages which are not statically typed (such as Smalltalk).

74 Model of first-class change objects

The declared class is stored in the declaredClass attribute, which indicates
the unique name of the class that is implicit in the declaredType, with the goal
of capturing the dependency to the corresponding Class instance in a model. The
declaredClass contains the name of a class, or null if it is unknown if there is an
implicit class in the declaredType, and the empty string(i.e., “”) if it is known
that there is no implicit class in the declaredType. The declaredClass attribute
holds a pointer to the class implicitly held in declaredType. What exactly is the
relationship between declaredClass and declaredType is a language-dependent
issue. Each subclass of the StructuralEntity class represents a possible variable
definition, Figure 4.5 reveals five such mechanisms:

• Attribute: a variable declared within a class. The hasClassScope attribute
indicates whether the attribute is defined at instance-level or at class-level.
Instances of a class have their own copy of instance-level attributes so that
they can maintain a separate state. The scope of a class-level attribute is
bound to the class in which it is specified. That class is represented by the
belongsToClass relationship.

• GlobalVariable: a variable with a scope equal to that of the entire running
system. The belongsToPackage association determines which package the
global variable is defined in. Consequently, it can be used to limit the scope
of a variable to that package. An empty belongsToPackage means that the
variable has a global and public scope.

• ImplicitVariable: a context-dependent reference to an entity which can
only be bound at runtime (e.g. this in C++/Java or self in Smalltalk).
The result of that reference depends on the behavioural entity in which it
is invoked. The scope of the variable is denoted by the belongsToContext
attribute. An empty belongsToPackage means that the variable has a global
scope.

• LocalVariable: a variable defined locally within a behavioural entity, rep-
resented by the belongsToBehaviour attribute. Another widespread term
for referring to a local variable, is the term temporary variable. A closure
can be used to associate a behavioural entity with a set of local variables,
which persist over several invocations of that behavioural entity. The scope
of a local variable is bound to the behavioural entity in which it is defined.

• FormalParameter: is the declaration of the parameter(s) expected by a be-
havioural entity. The belongsToBehaviour attribute keeps a reference to
the behavioural entity the parameter belongs to. What exactly constitutes
such a definition is a language-dependent issue. In the absence of static typ-
ing for instance, it does not make sense to declare the formal parameters.
The behavioural entity stores the formal parameters that belong to its sig-
nature. The formal parameters maintain their position in the behavioural
entity’s parameter list. Formal parameters have a scope equal to the scope
of the method or function in which they are defined.

4.1 The FAMIX model 75

4.1.4 Association

Association

accessControlQualifier : Qualifier
index : Index

InheritanceDefinition

Invocation

BehaviouralEntity

Class

ba
se

subclass
accesses

accessedIn

superclass

isAccessLValue : Boolean

Access

Entity

StructuralEntity

in
vo

ke
dB

y

candidate

Figure 4.6: FAMIX model - Association

An Association defines a relationship involving two entities. As expressed by
Figure 4.2, the Association class is an abstract class inheriting from the Object
class. Figure 4.6 shows the Association class and its subclasses. Each subclass
denotes a different type of relationship, FAMIX provides three such types:

• InheritanceDefinition is a representation of the inheritance relation be-
tween two classes: a subclass which inherits from a superclass. The
InheritanceDefinition class keeps a reference to both subclass and su-
perclass. By setting accessControlQualifier, one can define how sub-
classes access their superclasses. In order to support multiple inheritance,
one subclass is able to have more than one superclass. For that, a subclass
might maintain a list that contains its superclasses. The index attribute of
InheritanceDefinition refers to the position of the superclass in such a
list.

• Invocation denotes the invocation of a behavioural entity by another entity
(the invokedBy relation). An Invocation maintains a list of behavioural
entities that are possibly called (candidate). Static typing information can
be used to reduce the size of the candidates at compile time. It is the method
lookup mechanism, however, which reduces these candidates to one actual
behavioural entity at runtime. The base relationship refers to the entity
that defines the invoked behavioural entity.

• Access is used to represent the access of a structural entity. It is always
a behavioural entity (the accessedIn attribute) that accesses a structural
entity (the accesses attribute). The isAccessLValue attribute indicates

76 Model of first-class change objects

whether the concerned access corresponds to a getter action (which returns
the value of a certain structural entity) or a setter action (which assigns a
value to a certain structural entity). When true, it denotes a setter action.

4.1.5 Argument

AccessArgument

position : Index
isReceiver : Boolean

Argument

ExpressionArgument

Access

Invocation

hasAccess

hasArgumentshasArguments

Figure 4.7: FAMIX model - Argument

An argument expresses the entity that is passed when invoking a behavioural
entity (e.g. function or method) or when accessing a structural entity. As shown
in Figure 4.2, the Argument class is an abstract class inheriting from the Object
class. Figure 4.7 shows the Argument class and its subclasses. Every Argument
holds its position in the argument list which it belongs to. This list is maintained
by the invocation or access by its hasArgument attribute. The isReceiver is a
a predicate that tells whether this argument plays the role of the receiver in the
enclosing invocation.

An ExpressionArgument models an argument that is an expression. In the
main-stream object-oriented programming languages, every argument is an ex-
pression: a sequence of variables and constants (the receivers) separated by the
messages that are sent to them. How these are structured is a language-dependent
issue. In FAMIX, the expressions themselves are not modeled. The invocations
and accesses the expression consists of, however, are modeled in FAMIX. An
AccessArgument models an argument that is a reference to a structural entity.
This is only used by certain programming languages (such as C++) to support
call by reference. The hasAccess attribute denotes the Access instance that
models the access of a StructuralEntity made by the argument.

4.2 Code statements in FAMIX

In Section 3.3, we have seen that it is desirable to express changes at a very
fine-grained level of detail. In order to support the modeling of such changes the
meta-model has to model entities at the same level of detail. The current version
of FAMIX, however, does not model code statements, which we need if we want to
express changes at the level of code statements. In this section, we extend FAMIX

4.3 A model of changes 77

with a new entity called Statement, which models a code statement. A code
statement is a sequence of expressions and keywords (such as return). We model
the contents of a code statement as a String. In order to make this extension to
FAMIX, we use the extension hooks that are provided by its inheritance hierarchy.

contents : String
position : Index

Statement

declaredType : Qualifier
declaredClass : Name

StructuralEntity

isAbstract : Boolean

Class

Package

GlobalVariable

belongsToContext : Name

ImplicitVariable

accessControlQualifier : Qualifier
hasClassScope : Boolean

Attibute

LocalVariable

position : Index
FormalParameter

BehaviouralEntity

belongsToPackage

belongsToClass

declaredClass

belongsToBehaviour

belongsToBehaviour

belongsToBehaviour

Figure 4.8: FAMIX model - Statement

Figure 4.8, shows how we subclass the FAMIX StructuralEntity class in
order to introduce a dedicated entity modelling a code statement. Every instance
of the Statement class is a code statement of which the source code is maintained
in its contents attribute. Every statement is included in a behavioural entity
(hence the belongsToBehaviour relation to BehaviouralEntity). In fact, every
behavioural entity is an ordered collection of statements. The position attribute
maintains at what index the statement is located in that collection.

4.3 A model of changes

Now we have established a fine-grained meta-model that can be used to model
class-based object-oriented software systems, we establish an evolution model : a
model that can represent the evolution of software systems that are implemented
in a programming language that adheres to that model. Our theory starts from the
premise that every evolution of a software system can be expressed as a sequence
of changes to the building blocks of that software system. Other research, such
as [89], confirms that this premise holds.

An evolution model consists of the building blocks that are subject of the
evolution and the actions that can be taken to evolve those building blocks. As

78 Model of first-class change objects

the building blocks are modeled by the meta-model (like the one described in
the previous two sections), that meta-model is part of the evolution model. The
central entity of the evolution model is Change: A class that represents an evolution
action. The FAMIX building blocks (all inheriting from the FamixObject) form
the Subject of the change. We identify three kinds of evolution actions that can
be applied to those subjects: addition, removal and modification. We model those
actions with the classes Add, Remove and Modify respectively. Together, they
form the concrete commands of the Command design pattern [43]. The Atomic
Change class plays the role of the abstract command class in the Command design
pattern. Next to that, it also fullfils the responsibilities of the leaf participant in
the Composite design pattern [43]. A Composite Change is composed of Changes
(which can in turn be of any change kind). Note that the inclusion of those design
patterns in the evolution model provides an extension hook that can be used to
introduce new kinds of evolution actions. We elaborate on the difference between
atomic and composite changes in subsection 4.3.2.

apply
undo

Add

apply
undo

Modify

apply
undo

Remove

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

apply
undo

Composite
Change

apply
undo

timeStamp
isApplied
intent
user

Change

changeSubject

parent
affectingChangescomposites

apply
undo

Atomic
Change

Dstr Dsem

Figure 4.9: Change Model Core

The UML class diagram of the core of the evolution model is presented in Fig-
ure 4.9. The diagram also shows two dependency relationships between the change
objects: Dstr and Dsem. The details of the dependencies amongst the changes are
discussed in Section 4.4. Notice also that a subject maintains a reference to all
of the changes that affect it (expressed by the affectingChanges relation). This
information is redundant but allows for optimisation.

Figure 4.9 shows that we distinguish between two kinds of changes: atomic and
composite changes. Atomic changes are operations that manipulate the building
blocks of a particular program. As was stipulated in the previous section, these
operations consist of adding or removing an entity (for instance a class) as well as
modifying the properties of an entity (for instance the name of a class). By calling
the apply method to an atomic change, the change will be applied. By iterating

4.3 A model of changes 79

over the changes and re-applying them, one can reproduce each development stage
that a program went through during its development or evolution.

Composite changes consist of an ordered sequence of changes (which can in turn
be composite or atomic changes). They group changes in a composition, which
can be more powerful than the atomic changes on their own. The RenameMethod
refactoring, for instance, can be expressed as a composition of a Modify change of
a method m and a Modify-Invocation change for every invocation of the original
method m.

The following two subsections discuss the atomic (subsection 4.3.1) and com-
posite changes (subsection 4.3.2) respectively. Subsection 4.4 explains the depen-
dency relations between change objects.

4.3.1 Atomic changes

In order to explain the atomic changes, we first introduce the different kinds of
relations between atomic changes and subjects (building blocks of the software
meta-model). From the point of view of the building blocks of the software system,
we can say that every building block is created by exactly one change, which we
call the creational change (C) of that subject. After its creation, every subject can
be modified by a variable number of changes. The changes that modify an existing
subject are called the adaptive changes (A) of that subject. Finally, a subject can
be destroyed by exactly one change: the destructive change (D) of the subject.

Every subject in the change model maintains an affectingChanges attribute:
an ordered collection of changes that affect it. Such a list consequently starts with
the subject’s creational change, possibly followed by a number of adaptive changes,
possibly concluded by one destructive change. Note that if there is a destructive
change in the ordered collection, it is always the last change. The re-creation of a
subject, leads to a new subject with its own affectingChanges list.

We identify two kinds of atomic changes: changes to the entities (entity
changes) and changes to the relation between those entities (association changes).
We subsequently explain both.

Entity changes

From the point of view of changes we identify four different kinds of relations:
Changes can be creational, adaptive, destructive or invariant with respect to a
certain subject. A change c is said to be creational w.r.t. a building block b if the
application of c adds b to the software system. A change c is said to be adaptive
w.r.t. a building block b if the application of c adapts one of the attributes of b in
the software system. A change c is said to be destructive w.r.t. a building block b
if the application of c removes b from the software system. A change c is said to
be invariant w.r.t. a building block b if the application of c does not affect b.

Consequently, one change can be one of four kinds, depending on the building
block we relate it to. A change that adds a class C to a package P for example, is a
creational change w.r.t. class C, is an adaptive change w.r.t. package P and is invari-
ant w.r.t. another (unrelated) package Q. It is the meta-model of the programming

80 Model of first-class change objects

language that specifies the relations between the different building blocks. FAMIX
defines packages to contain classes that contain methods and attributes. Methods
in turn contain statements, which consist of invocations or accesses.

The horizontal axis of Table 4.1 lists the different entities which we identified
on the extended FAMIX model: Package, Class, Method, Function, Statement and
all the structural entities. The vertical axis contains the different kinds of changes
that can be applied to those entities. Note that each of these change kinds is
actually a combination of a change and its subject. An AddMethod change for
instance, corresponds to an instance of the Add class with a Method as its subject.
For the remainder of this text, we use this notation for change kinds. 3

The table shows that an Add change is creational (C) at the level of granularity
of its subject and adaptive (A) at all more coarse-grained FAMIX entities that
contain the subject of that change. A Remove change is destructive (D) at the
level of granularity of its subject and adaptive (A) at all more coarse-grained
FAMIX entities that contain the subject of that change. A Modify change is
adaptive (A) at the level of granularity of its subject and also adaptive (A) at all
more coarse-grained FAMIX entities that contain the subject of that change. All
voids in the table consist of invariant relationships, as the corresponding change
is invariant w.r.t. the corresponding entity.

Association changes

As a side effect of applying an atomic change to one of the software system’s
entities, there might be a modification of the relation between those entities. Such
modifications are modeled by the association changes and are categorised in three
groups: changes to the inheritance definition, changes to the method invocation
and changes to the entity access. We subsequently discuss all three groups.

Changes to the inheritance definition: A FAMIX class needs to have at
least one superclass and might have one or more subclasses. Consequently, when a
class is created, an AddInheritanceDefinition change has to be created for every
subclass of the new class. Every AddInheritanceDefinition instance models the
inheritance association between the new class and its superclass. When one of the
superclasses or subclasses of a class is modified, the Modify class is instantiated,
resulting in a change that models the adaptation of the corresponding modification
in the InheritanceDefinition subject. Similarly, when a class is removed, a
Remove change is created for each inheritance relation that class was a part of.
Note that in C++, it is allowed for a class not to have a superclass. FAMIX
supports these classes by means of a dummy super class.

Changes to the method invocation: A FAMIX entity might invoke a be-
havioural entity. When such an invocation is added to an entity of the software

3Currently, we do not support changes regarding special language constructs such as for loops
of while loops. Note that it is not necessary to model such special constructs in Smalltalk, as in
that language such constructs are implemented by ordinary messages sent to a Boolean instance.

4.3 A model of changes 81

P
ac

ka
ge

C
la

ss

M
et

ho
d

Fu
nc

ti
on

St
at

em
en

t

A
tt

ri
bu

te

Im
pl

ic
it

V
ar

ia
bl

e

L
oc

al
V

ar
ia

bl
e

G
lo

ba
l
V

ar
ia

bl
e

Fo
rm

al
P
ar

am
et

er

AddPackage C
ModifyPackage A
RemovePackage D
AddClass A C
ModifyClass A A
RemoveClass A D
AddMethod A A C
ModifyMethod A A A
RemoveMethod A A D
AddFunction A C
ModifyFunction A A
RemoveFunction A D
AddStatement A A A A C
ModifyStatement A A A A A
RemoveStatement A A A A D
AddAttribute A A C
ModifyAttribute A A A
RemoveAttribute A A D
AddLocalVariable A A A A A C
ModifyLocalVariable A A A A A A
RemoveLocalVariable A A A A A D
AddImplicitVariable A A A A A C
ModifyImplicitVariable A A A A A A
RemoveImplicitVariable A A A A A D
AddGlobalVariable A C
ModifyGlobalVariable A A
RemoveGlobalVariable A D
AddFormalParameter A A A A A C
ModifyFormalParameter A A A A A A
RemoveFormalParameter A A A A A D

Table 4.1: Relations between changes and meta-model entities

82 Model of first-class change objects

system, the AddInvocation change is instantiated. It models the addition of an
invocation relation. Certain language features (e.g. polymorphism, the absence of
static typing or the presence of reflection) increase the calculation effort for retriev-
ing the correct invocation subjects. That is why in FAMIX Invocation instances
maintain a candidates attribute, that models a list of all possible targets. This
is an overestimation, but can be narrowed down by static and dynamic analysis
techniques [110, 19]. As that is not the core of this dissertation, we do not elabo-
rate on this topic. The corresponding ModifyInvocation and RemoveInvocation
changes respectively model the modification and removal of an invocation relation.
They are instantiated when an invocation is respectively modified or removed.

Changes to the entity access: A FAMIX behavioural entity might access a
structural entity. Assignments are instances of such accesses that modify a struc-
tural entity. When such an access is added to an entity of the software system, the
AddAccess change is instantiated. In contrast to the invocation, FAMIX presumes
that the specification of an access always reveals exactly one candidate entity that
is accessed. This, however, is not always the case (for instance in Java). The same
technique as with the method invocations can be used to cover this situation, but
is not considered for the sake of simplification. The modification and deletion of
accesses are modeled by ModifyAccess and RemoveAccess changes respectively.

All the associations between FAMIX entities model relations between those
changes. They will form the basis of the dependencies that exist between changes.
We elaborate on this issue in Section 4.4 but first finish the discussion of all change
types by explaining the composite changes.

Change instantiation

In order to develop or evolve a software system, the above explained atomic changes
need to be created and carried out. The creation of a change is done by instantiat-
ing the corresponding concrete operation class from the core model (Figure 4.9).
Instantiating an AddMethod for instance, is done by instantiating the Add class
with a Method as its subject. In order to carry out a change, it is sent the apply
message. The change itself is responsable of carrying itself out. For that, it needs
to contain all the information that specifies it. More concretely, in our model, a
change is specified by:

• what its kind (Add, Modify or Remove) and subject (the affected FAMIX
building block) are

• when it gets instantiated (time)

• who instantiated it (user)

• why it got instantiated (intent)

Throughout this dissertation, we use the declarative notation of Listing 4.1
to reference a change instance. ChangeName is the name of the change kind
(e.g. AddClass), parameter list is a list of the information that specifies the

4.3 A model of changes 83

�
1ChangeName(pa rame t e r l i s t , time , user , i n t en t)
� �

Listing 4.1: Change instantiation

�
1AddClass ((Buf fer , Object , BufferPackage) ,
2122233565.554 ,
3"Peter" ,
4"BufferBaseCode")
� �

Listing 4.2: Change instantiation example

change subject (e.g. name, superclass, package), time is an object that represents
the time, user is an object that represents the user who created the change and
intent is an object that denotes the raison d’être of the change. In a simple
variation of this model, both the intent and user contain a String that describe
the intent and the user respectively. In Chapter 5 we present a more powerful
variation of this model in which these values are more abstract data types.

Listing 4.2 presents an example of a change instance. It can be read as follows:
the change stands for the creation of the class Buffer as a subclass of Object in
the BufferPackage and is instantiated on 122233565.554 by Peter in order to
produce the BufferBaseCode.

4.3.2 Composite changes

In some cases, developers need to apply the same pattern of changes over and over.
Examples of such reoccurring change patterns include code refactorings [41]. A
“push-down field” refactoring, for instance, pushes down a attribute of a superclass
to one of its subclasses. The change pattern that corresponds to this refactoring
consists of first adding the attribute to the subclass and afterwards removing it
from the superclass. In order to automate the application of this code refactoring,
one can composite changes.

A composite change consists of an ordered collection of component changes
which can in turn be a composite or atomic change. The component changes
of a composite change are carried out as a transaction whenever the composite
change is applied. Figure 4.10 presents two possible uses of composite changes.
We now discuss those uses and afterwards explain how such changes are defined
and instantiated.

Uses and advantages

Composite changes can be used to model domain-specific changes, which are spec-
ified by the developers in order to facilitate a domain-specific task. Consider that
one envisions the addition of lots of new kinds of users to the chat application (from
Chapter 3). In that case, it probably would be better to define an AddUserClass

84 Model of first-class change objects

apply
. . .

. . .
Change

apply
. . .

. . .
AtomicChange

apply
. . .

. . .
CompositeChange

changes

new
apply
. . .

. . .
PushDownField

AddField(field, type, sub, timestamp.1, user, intent)
RemoveField(fied ,sup, timestamp.2, user, intent)

apply
. . .

. . .
AddUserClass

AddClass((name, User, User package) timestamp.1, user, intent)
AddMethod((User, true, new), timestamp.2, user, intent)
AddStatement((User, true, new, "^super new initialize"), timestamp.3, user, intent)
AddMethod((User, false, initialise), timestamp.4, user, intent)
AddStatement((User, false, new, "^super initialize"), timestamp.5, user, intent)

forall c in changes
 c apply

. . .

Figure 4.10: Composable First-Class Changes Design

change, which will in turn add a subclass to the User hierarchy and add methods
for instantiating that new class. Another well-known example of domain-specific
changes are the code refactorings [41] which are used to increase the maintainabil-
ity and evolvability of software systems. Every refactoring can be modeled by a
composite change, that evaluates to a sequence of atomic changes whenever ap-
plied. In fact, composite changes are higher-order changes: changes that evaluate
to a sequence of changes, whenever evaluated.

Advantages of the composite changes include that they raise the level of ab-
stractness, and stimulate the reuse of changes. The composition of changes into
composites, however, also improves the comprehensibility of the change list. A sys-
tem history consisting of only atomic operations leads to an enormous and poorly
organized amount of information.

Change definition

Developers can define their own domain-specific changes for the domain in which
they are working. This is done by producing a subclass of the CompositeChange
class. Figure 4.10 already depicts two examples of such definitions. The
PushDownField is a refactoring that relocates a attribute that is only used by

4.3 A model of changes 85

�
1PushDownField ((a t t r i bu t e , sup , sub) , timestamp , user , i n t en t) i f
2AddAttribute ((a t t r i bu t e , a t t r i b u t e declaredType , sub) ,
3timestamp . 1 , user , i n t en t)
4RemoveAttribute ((f i ed , sup) , timestamp . 2 , user , i n t en t)
� �

Listing 4.3: Change definition example 1

�
1AddUserClass ((name) , timestamp , user , i n t en t) i f
2AddClass ((name , User , User package) , timestamp . 1 , user , i n t en t)
3AddMethod((User , true ,new) , timestamp . 2 , user , i n t en t)
4AddStatement ((User , true ,new, "^super new initialize") ,
5timestamp . 3 , user , i n t en t)
6AddMethod((User , false , i n i t i a l i s e) , timestamp . 4 , user , i n t en t)
7AddStatement ((User , false ,new, "^super initialize") ,
8timestamp . 5 , user , i n t en t)
� �

Listing 4.4: Change definition example 2

some subclass to that subclass. It consists of two atomic changes: one that re-
moves the attribute from the super class and one that adds it to the subclass.

Listing 4.3 presents the definition of a new change kind which models a push-
down field refactoring [41]. The listing shows that, in order to create a new in-
stance of the PushDownField change, one needs to specify the concerned attribute
attribute, super class sup and subclass sub. The composite change consists of
two atomic changes, that are responsible for removing the attribute from the su-
perclass and adding it to the subclass. The declarative definition of composite
changes describes what the change should accomplish, rather than describing how
it should accomplish it.

Listing 4.4 presents the definition of a new change kind which models a domain-
specific change that is responsible of adding a new kind of user to the chat appli-
cation of Figure 3.2. The listing shows that, in order to create a new instance of
the AddUserClass change, one only needs to specify the name of the new kind of
user. The composite change consists of five atomic changes, that are responsible
of creating the new class representing the new kind of user as a subclass of User
and by producing the methods for initialising that class 4.

Change instantiation

A composite change can be instantiated in the same way as atomic changes. If a
PushDownField change is instantiated, the model ensures that an AddAttribute
and a RemoveAttribute change are instantiated according to the definition.

4The second parameter in the AddMethod change is a predicate that denotes wether the
method is added as a class method or as an instance method of the class. If the predicate is true,
the change is adding a class method.

86 Model of first-class change objects

quota
Employee

Salesman

Engineer

Employee

quota
Salesman

Engineer

Figure 4.11: Push-down field in employee example

The PushDownField composte change is instantiated on the software system
behind the class diagram on the left-hand side of Figure 4.11 in the following way:

PushDownField((quota, Employee, Salesman), 554453, P eter, ”CleanUp”)

It results in the two change instances:

AddAttribute((quota, String, Salesman), 554453.1, P eter, ”CleanUp”)

and

RemoveAttribute((quota, Employee), 554453.2, P eter, ”CleanUp”)

which, when applied, produce a software system as in the right-hand side of Fig-
ure 4.11.

When those changes are produced, they receive a time stamp. Every time
stamp must be unique. In order to accomplish that, we make the time stamps of
the changes follow a recursive model of nested numbers. If a change has a time
stamp x and a new change is created that should receive the same time stamp x,
we instead give it a time stamp x.1. The semantics of a time stamp x.y are as
follows. A change c with time stamp xc.yc happens after all changes with a time
stamp where x < xc, but before all changes with a time stamp where x > xc. The
change happens before changes that have a time stamp where x = xc and where
yc < y and after changes with yc > y. The same principle is applied recursively in
order to ensure that the uniqueness of the time stamps is also preserved for nested
time stamps. In case a change would be assigned an already given time stamp x.y,
it is assigned x.y.1 in stead.

4.4 Dependencies between change objects

In our model, every change has a set of preconditions that should be satisfied
before a change is applied. Such preconditions are related to system invariants

4.4 Dependencies between change objects 87

imposed by the programming language (usually defined by the meta-model of the
language). For example, methods can only be added to existing classes. Pre-
conditions enable expressing dependency relationships between changes. In the
scenario of Section 3.1.1, for instance, the change that adds the method name to
the RegisteredUser class depends on the change that added the RegisteredUser
class to the system, as the latter is the creational change for the subject of the
former.

More generally, a change object c1 is said to depend on another change ob-
ject c2 (c1 → c2) if the application of c1 without c2 would violate the system
invariants. In this dissertation we distinguish between structural and semantical
dependencies between changes depending on the reason why the dependency holds.
Structural dependencies are implied by the meta-model and can consequently be
logged automatically when the changes are instantiated.

Semantical dependencies can only be derived from semantical information.
This consists of programming knowledge and domain knowledge. Programming
knowledge is the knowledge an expert programmer uses when writing, interpreting
or debugging programs [14]. Domain knowledge is knowledge about the environ-
ment which the target system operates in. Domain knowledge is important but
more difficult to obtain, because it usually must be acquainted from software users
in the domain (as domain specialists/experts), rather than from software devel-
opers. An example of a semantical dependency can be found in Figure 3.3 of
Chapter 3. The changes that add an encrypt: an decrypt: method to the User
class are semantically dependent on each other as they have to be the inverse
of one another. The modification of one of them, implies that the other has to
be adapted as well. Semantical information is more difficult to derive and more
difficult to verify. In software testing, debugging and maintenance, one is often
interested in the following question to find ripple effects:

“When can a change in the semantics of a program statement impact
the execution behaviour of another statement?”

This question is undecidable in general [83]. Dependency analysis, like data
flow analysis, avoids problems of undecidability by trading precision for decidabil-
ity. During dependency analysis, programs are represented by defines/uses graphs,
which contain limited semantical information but are easily analyzed. Dependency
analysis allows semantical questions to be answered approximately, because a pro-
grams dependencies partially determine its semantical properties. Semantical and
structural dependencies also provide such information, and can consequently assist
in recovering semantical properties.

4.4.1 Structural dependencies

A structural dependency is a dependency that is needed to ensure the compilation
of a program. Examples of a structural dependency are: a change that adds a
method depends on the change that created the class where the method is added,
or the change that adds an invocation to a method depends on the change that

88 Model of first-class change objects

added the invoked method. Dependencies are relations between changes and are
consequently implied by the relations between the entities of the evolution model.
In this subsection, we explain the seven kinds of structural dependencies we iden-
tified in our FAMIX-based evolution model.

Five kinds of structural dependencies can be derived from the FAMIX model.
We name them: hierarchical dependencies, accessive dependencies, invocative de-
pendencies, genetic dependencies and typological dependencies. Two kinds of de-
pendencies can be derived from the relations between the entities in the change
model itself. We call those: transactional dependencies and creational dependen-
cies. We now itemize the seven kinds of structural dependencies that can exist
between the change instances of our evolution model and illustrate them.

• A change c1 is said to creationally depend on a change c2 if c2 is the creational
change of the subject of c1.

• A change c1 is said to transactionally depend on a change c2 if c2 is contained
in a transaction before c1. Note that transactions of changes are specified
by composite changes (see Subsection 4.3.2) in our evolution model.

• A change c1 is said to hierarchically depend on a change c2 if the subject
of c1 is in a belongsTo relation with the subject of c2. FAMIX specifies
this by means of a belongsToObject, belongsToPackage, belongsToClass,
belongsToBehaviour or hasArguments relationship. If, for instance, c1 adds
a method to a class that was added by c2, c1 is said to hierarchically depend
on c2.

• A change c1 is said to accessively depend on a change c2 if c2 is the creational
change of the structural entity accessed by the subject of c1. Note that in-
stances of the FAMIX Access class can be used to model such dependencies.
Take for instance a change c1 that adds an access to an attribute that was
added by a change c2. In that case, c1 is said to accessively depend on c2.

• A change c1 is said to invocatively depend on a change c2 if c2 is the creational
change of the behavioural entity invoked by the subject of c1. Note that
instances of the FAMIX Invocation class can be used to model this kind
of dependency. Consider for instance a change c1 that adds an invocation
to a method that was added by a change c2. In that case, c1 is said to
invocatively depend on c2.

• A change c1 is said to genetically depend on a change c2 if c2 is the creational
change of the superclass of the subject of c1. Note that such dependency can
be modeled by an instance of the FAMIX InheritanceDefinition class.
As an example, consider that c2 adds a class A and c1 adds a class B that
is a subclass of A. Than, c1 is said to genetically depend on c2.

• A change c1 is said to typologically depend on a change c2 if c2 is the creational
change of the type of the subject of c1. FAMIX specifies this by means of
a declaredClass and declaredReturnClass relationship between entities

4.4 Dependencies between change objects 89

�
1AddClass ((A, Object ,P) , 1 , Peter , "InvocationTest")
2AddMethod((A, false , bar) , 2 , Peter , "InvocationTest")
3AddClass ((B,A,P) , 3 , Peter , "InvocationTest")
4AddMethod((B, false , bar) , 4 , Peter , "InvocationTest")
5AddClass ((C, Object ,P) , 5 , Peter , "InvocationTest")
6AddMethod((C, false , f oo : b) , 6 , Peter , "InvocationTest")
7AddStatement ((C, false , f oo : b , "b bar") , 7 , Peter , "InvocationTest")
� �

Listing 4.5: Invocative dependency example

and classes. As an example, consider that c1 adds the class A and c2 adds
a global variable a of type A. Than, c2 is said to typologically depend on
c1. Note that this kind of dependency only gets instantiated in case entities
have a declared type. In Smalltalk, for instance, that is not the case.

Hierarchical, creational, genetical, typological and transactional dependencies
between changes can be established with an absolute certainty from the moment
the changes are instantiated. For example, a change that adds a method m to class
C certainly depends on the change that added class C to a package. Invocative de-
pendencies cannot always be established with a complete certainty due to language
features (like polymorphism – a basic property of Object oriented programing).
This is illustrated by the change history of Listing 4.5. It introduces class A with
a method bar, a subclass B, with another implementation of the method bar and
a class C with a method foo, that has a statement in which it invokes bar.

The actual method that is invoked depends on the type of b, the object that
is passed to the foo method at runtime. The exact type of that object is only
known at runtime. Consequently, at compile time, we cannot be 100% sure that
the AddStatement change of line 7 invocatively depends on the AddMethod of line
2 or the one on line 6. Static type information can be used to narrow down the
set of possibile candidates, since all candidates should be of the static type of b or
of a type that inherits from or implements the type of b. Recent work shows that
even in the absence of static type information a similar optimisation is possible
[110].

In our evolution model, we start from the premise that accessive dependencies
can be established at compile time with an absolute certainty. Note, however, that
the FAMIX meta-model does not forbid the redefinition of an instance variable.
Consequently, an existing accessive dependency between two changes can cease to
exist because a new change object is introduced. This is illustrated by the example
in Listing 4.6

Listing 4.6 first introduces a class A with an instance variable x, then adds a
subclass of A, called B with a method foo that accesses the instance variable x of
the A (the superclass of B). This change history contains an accessive dependency:
the AddStatement of line 5 accessively depends on the AddAttibute of line 2 since
the latter is the creational change of the attribute accessed by the former. Now
imagine we add a new instance variable x to the class B (line 7), the accessive

90 Model of first-class change objects

�
1AddClass ((A, Object ,P) , 1 , Peter , "AccessTest")
2AddAttribute ((A, x) , 2 , Peter , "AccessTest")
3AddClass ((B,A,P) , 3 , Peter , "AccessTest")
4AddMethod((B, foo) , 4 , Peter , "AccessTest")
5AddStatement ((B, false , foo , "^x") , 5 , Peter , "AccessTest")
6AddAttribute ((B, x) , 2 , Peter , "AccessTest")
� �

Listing 4.6: Accesive dependency example

dependency between the AddStatement of line 5 and the AddAttibute of line 2
ceases to exist, as the attribute added by the AddAttibute of line 7 will be accessed
from now on by the statement that is added by the AddStatement of line 5.

4.4.2 Semantical dependencies

Semantical dependencies come from the domain knowledge. Hence, the developer
is responsible for establishing these dependencies between the changes that se-
mantically depend on one another. A semantical dependency is a relation between
changes where the software application does not exhibit the desired behaviour
whenever the the depending change is applied without the change it depends on.
An example of a semantical dependency is when the addition of an invocation to
method m only exhibits correct behaviour if the body of method m is modified in
a specific way. A semantic dependency exists, for instance, between the changes
that add the functionality of viewing the contents of a log le and the changes that
output the logging results to that log le. If the latter changes are not applied, the
former do not make sense, as they would only allow to view an empty log le.

The dependentChanges relation from Figure 4.9 is used to model the seman-
tical dependencies between the changes. While the non-violation of structural
dependencies ensures a compilable software product, the non-violation of semanti-
calal dependencies has to ensure a correctly behaving system. As it is impossible to
automatically ensure the correct behaviour of an application (Rice’s theorem [88]),
we start from the premise that in case all semantical dependencies are satisfied,
the program does behave correctly. It is up to the developer, however, to ensure
that all semantic dependencies are made explicit in a software system.

4.5 Conclusion

In this chapter, we established a model that is capable of expressing the evolu-
tion of software systems to a certain extent. The model centralises change as a
first-class entity. Although our evolution model is not language-specific, it tar-
gets a specific set of programming languages. More precisely, it can be used to
model the evolution of all building blocks of programming languages that adhere
to the FAMIX meta-model: class-based object-oriented programming languages
(e.g. Java, Smalltalk, C++, Ada, etc.).

4.5 Conclusion 91

The FAMIX model, however, is not capable of modelling code statements.
We extend the FAMIX model with this notion in order to obtain a finer-grained
model. The FAMIX model and the extension that we applied to it are the subject
of Sections 4.1 and 4.2. The evolution model itself is presented in Section 4.3. It is
a generic model that is capable of modeling the evolution of any software system
written in a language adhering to FAMIX.

In Section 4.4, we discuss the different kinds of dependency relations between
change objects. We distinguish between structural and semantical dependencies
and explain how structural dependencies can be discovered automatically as they
are derived from the meta-model. Based on the relations between the entities of our
evolution model, we identify seven kinds of structural dependencies. Hierarchical,
creational, genetical, typological and transactional dependencies between changes
can be established with an absolute certainty from the moment the changes are
instantiated. Invocative and accessive dependencies cannot always be established
with a complete certainty due to language features like polymorphism, late binding
or reflection. Semantical dependencies can only be derived with the help of domain
experts and software developers. While structural dependencies can be asserted
to ensure program compilation, semantical dependencies are a help in establishing
correctly behaving software products.

The evolution model is capable of modeling the addition, modification and
deletion of software building blocks at a level of granularity down to the level
of statements. Dependencies between the change objects are also modeled in our
evolution model. We conclude that our evolution model is the first state-of-the-art
model of first-class changes that has all characteristics required for it to be usable
as a basis for feature-oriented programming (Table 2.3 on page 36). The following
chapter elaborates on how this is done.

Chapter 5

Feature-oriented
programming through
change-oriented
programming

In Chapter 2 we already elaborated on what feature-oriented programming (FOP)
is. An interesting observation is that different researchers have been proposing
different views of what a feature is or should be. Most state-of-the-art approaches
to FOP specify a feature as a set of building blocks. An alternative, already
pointed out by Batory in [10], is to see a feature as a function that modifies a
program, so that feature composition becomes function composition. Indeed, a
feature would be seen as a function prog → prog that takes a program, modifies
it by adding the functionality that implements the feature’s requirements, and
returns the modified program. The application of a feature to a program yields a
new program, extended by that feature, which in turn some other feature can be
applied to. In that view, a system is obtained by applying a sequence of features to
a base program. The AHEAD toolchain [10] was recently formalised this way [3].

In this chapter we work towards a novel approach to FOP, which overcomes
three issues we identified in the related work: the lack of expressivity, the undesired
side-effect that FOP requires a developer to alter the development process and the
non-existance of a bottom-up approach to FOP. The approach is based on change-
oriented programming (ChOP) that we presented in Chapter 3. We first illustrate
the principles of our approach by means of an example and introduce the concept
of a change specification. Afterwards, we show how this approach overcomes the
flaws we identified in the related work to FOP.

94 Change-oriented feature-oriented programming

5.1 Principles

5.1.1 Features as functions

In this dissertation, we follow the intuition of Batory and see a feature as a function
that modifies a program in order to increase the functionality of that program with
the functionality modeled by that feature. We define a feature as a structure that
has to be applied to a given program in order to satisfy a stake-holder’s requirement,
to implement and encapsulate a design decision or to offer a configuration option
and we show how ChOP enables a bottom-up approach to FOP that is more
expressive. In the following subsections, we use a Buffer base program in order
to present the building blocks of the approach: the changes and the dependencies
between them.

5.1.2 Changes as feature building blocks

In ChOP, software systems are developed and evolved by instantiating changes
of a change model (illustrated in Chapter 4). Those instances actually represent
all the development operations that were carried out to implement the complete
software system. Consequently, the application of all those changes, results in a
complete version of the software system. However, one can also apply only a part
of those changes in order to get another version of the same software system. Such
software system is actually a variation of the original software system – one with
less functionality. This technique is the core of our approach to FOP.

Consider a Buffer program that follows the value object pattern [43] in order
to provide the functionality of a buffer. The left hand side of Figure 5.1 presents
the Java code of the that buffer software application. It does not show what devel-
opment actions were performed in order to actually produce that code. Actually,
first the Buffer class was added by an AddClass change (B1). Afterwards, an
instance variable called buf was added by an AddAttribute change (B2). Finally,
the methods get (B3) with body (B4) and set (B5) with body (B6) were added by
twice respectively instantiating and applying an AddMethod and an AddStatement
change.

class Buffer {
 int buf = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 buf = x;
 }
}

B1

B2

B3

B5

B4

B6

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(back);
 print(buf);
 }
}

L1

L5

L6

L2

L3

L4

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

M4

M6

M1

M2 M3

M5

Logging
R1

R2

R3 R4

Restore

B1

B2B3

B1

B2 B3

L1

L6L5 L4L2 L3

R1 R2 B5

B3

B1

B2 B5

B4 B6

Mul. Res

M4 M6

M1

M2

M3M5

R1

R3R4 L5

Buffer

Buffer

B2
B1

B4

B3

B6

B5

RestoreLogging

R1

R2

R4R3

Mul. Res

M4M6

M1

M2
M3

M5

InvokeLog

LogMethod

PrintInstVars

L1

L6L5 L4L2 L3

Log

Method

PrintInstVars InvokeLog

Figure 5.1: Source code (left) and change objects (right) of the Buffer

5.1 Principles 95

The right part of Figure 5.1 presents all the first-class change objects that re-
sulted from the development operations taken to produce the buffer. Next to that,
the figure also shows that all these changes are grouped into a set of changes that
represent that buffer. Conceptually, the drawing in the right part of Figure 5.1,
presents a feature as a set of all the development actions that were taken in order
to add the functionality of that feature (denoted by a name and a line surrounding
all the concerned change objects).

The edges between the change objects represent the dependencies between
the change objects that were introduced in Section 4.4. The following subsection
explains in more detail how these dependencies are modeled and used in the context
of FOP.

5.1.3 Dependencies

In our model of ChOP, a change object c1 is said to depend on another change ob-
ject c2 (c1 → c2) if the application of c1 without c2 would violate one of the system
invariants. We differentiate between structural dependencies (ensuring structural
invariants) and semantical dependencies (ensuring behavioural invariants). While
the former are automatically derived from the meta-model, the latter depend on
domain knowledge and must be instantiated manually. Both kinds, however, are
represented in the same way in Figure 5.1: A dependency between a change c1

and a change c2 is represented by an edge from c1 to c2.

A software system often consists of more than one functionality. In ChOP,
a software system is always implemented incrementally. Consequently, the fea-
tures of a software system are added one after the other. We extend the buffer
application with a Restore, a Logging and a Multiple Restore feature which
respectively add the functionality of restoring the value of the buffer, logging the
values of all instance variables whenever a method of the buffer is executed and
allowing the buffer to restore more than one value. Figure 5.2 presents the code of
the adapted application. From left to right, the features Restore, Logging and Mul-
tiple Restore are implemented. The corresponding change objects are presented
in Figure 5.3.

The dependencies between changes are not always confined to a single feature,
but can reach changes of other features as well. For example, in Figure 5.3,
changes within the Restore feature depend on changes inside the Buffer feature.
Based on those dependencies one can state that the Restore feature depends on
the Buffer feature. Indeed, the dependencies that hold between certain of these
change objects can be propagated to the feature level. The dependency of a change
R1 of a feature Restore on another change B1 from a feature Buffer implies that
Restore is dependent on Buffer. Hence, feature dependencies are modeled by
means of fine-grained dependencies between change objects.

96 Change-oriented feature-oriented programming

class Buffer {
 int buf = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 buf = x;
 }
}

B1

B2

B3

B5

B4

B6

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(back);
 print(buf);
 }
}

L1

L5

L6

L2

L3

L4

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

M4

M6

M1

M2 M3

M5

class Buffer {
 int buf = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 buf = x;
 }
}

B1

B2

B3

B5

B4

B6

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(back);
 print(buf);
 }
}

L1

L5

L6

L2

L3

L4

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

M4

M6

M1

M2 M3

M5

class Buffer {
 int buf = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 buf = x;
 }
}

B1

B2

B3

B5

B4

B6

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 return(buf);
 }
 void set(int x) {
 back = buf;
 buf = x;
 }
 void restore() {
 buf = back;
 }
}

R1

R2

R3

R4

class Buffer {
 int buf = 0;
 int back = 0;
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back = buf;
 buf = x;
 }
 void restore() {
 logit();
 buf = back;
 }
 void logit() {
 print(back);
 print(buf);
 }
}

L1

L5

L6

L2

L3

L4

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

M4

M6

M1

M2 M3

M5

Figure 5.2: Source code of adding Restore (left), Logging (middle), Multiple Re-
store (right)

5.2 Mathematical properties

We now discuss the mathematical properties of the dependency relation between
change objects. We define the structural dependency relation to be irreflexive,
asymmetric and transitive and define the semantical dependency relation to be
reflexive, symmetric and transitive. We wrap up this section by introducing a
dependency graph: a mathematical graph consisting of change objects (as the
nodes) and dependencies (as the relation).

5.2.1 The dependency relation

We differentiate between the two kinds of dependency relations and elaborate
on their mathematical properties. For that, we first introduce the dependency
operator, c1

str→ c2, meaning that the change c1 depends structurally on c2. This
means that c1 needs c2 to be applied first in order not to violate the structure of
the resulting software system.

Structural dependencies

In Section 4.4.1, we already elaborate on the different kinds of structural depen-
dencies. All these structural dependencies have similar properties, which we now
explain in detail. Given the changes c1, c2, c3 which belong to the set of change

5.2 Mathematical properties 97

Logging
R1

R2

R3 R4

Restore
B1

B2B5

B1

B2 B3

L1

L6L5 L4L2 L3

R1 B5

Mul. Res

M4 M6

M1

M2

M3M5

R1

R3R4 L5R2

Figure 5.3: Change objects of Restore (left), Logging (middle), Multiple Restore
(right)

objects C and the relation Dstr ⊂ C×C with (c1, c2) ∈ Dstr modeling the relation
c1

str→ c2. Then, we can say that Dstr is a homogeneous, binary endorelation over
C. An endorelation is a binary relation where the domain and codomain are the
same. The relation Dstr has the following properties:

• Dstr is irreflexive:

∀c1 ∈ C • (c1, c1) 6∈ Dstr (5.1)

In our change model, a change can only be applied if the changes which
it depends on have already been applied. A change can never structurally
depend on itself. In case a change c1 would hierarchically depend on itself
for instance, c1 would have to affect a subject that is in a belongsTo rela-
tion with itself. The evolution model from Chapter 4 ensures that that is
never the case. In fact, it is the FAMIX core that ensures the irreflexive
property for hierarchical, accessive, invocational, genetical and typological
dependencies, while the change model ensures it for transactional and cre-
ational dependencies. Expressed by means of the dependency operator, this
property is c1 6

str→ c1.

• Dstr is asymmetric:

∀c1, c2 ∈ C ∧ (c1, c2) ∈ Dstr ⇒ (c2, c1) 6∈ Dstr (5.2)

If a change c1 structurally depends on a change c2, c2 may never structurally
depend on c1. This is enforced by the FAMIX and change model. Take for
instance that the dependency from above is a genetical one, that implies
that the subject of c1 is a subclass of the subject of c2. FAMIX ensures that
the subject of c2 can not be a subclass of the subject of c1. In fact, FAMIX

98 Change-oriented feature-oriented programming

ensures that this property holds for the four first kinds of dependency, while
the change model ensures this for the latter two kinds. A shorter notation
of this property is: c1

str→ c2 ⇒ c2 6
str→ c1.

• Dstr is transitive:

∀c1, c2, c3 ∈ C ∧ (c1, c2) ∈ Dstr ∧ (c2, c3) ∈ Dstr ⇒ (c1, c3) ∈ Dstr (5.3)

It means that if c1 structurally depends on c2 and c2 structurally depends
on c3, then c1 structurally depends on c3. In other words, if c1 requires
c2 to be applied and c2 requires c3 to be applied, c1 also requires c3 to be
applied. As an example, take a change c3, that adds a attribute buf to a class
Buffer, a change c2, that modifies the name of that attribute to buff and
a change c1, that adds a statement which accesses the attribute buff . The
FAMIX and change model ensure that c1 accessively depends on c2 and c2

creationally depends on c3. Consequently, c1 is said to depend structurally
on c3 since buff cannot be accessed if buf was not first added to the class
(and afterwards renamed to buff). By means of the dependency operator,
this property is expressed as: c1

str→ c2 ∧ c2
str→ c3 ⇒ c1

str→ c3.

Consequently, we can state that the structural dependency relation Dstr, as
defined above, is a strict partial order (a binary relation that is irreflexive, transi-
tive, and asymmetric). Since C is a set with a strict partial order relation defined
on it, C is said to be a strictly partially ordered set. Strictly partially ordered sets
are useful because they can be easily mapped to directed acyclic graphs (DAGs):
Every strict partial ordered set is a DAG, and the transitive closure of a DAG is
both a strict partial ordered set and also a DAG itself. This property is exploited
in Section 5.2.2, in which we introduce dependency graphs over change objects.
Let us first describe the mathematical properties of the semantical dependencies.

Semantical dependencies

A semantical dependency is a relation between changes where the software ap-
plication does not exhibit the desired behaviour whenever the depending change
is applied without the change it depends on. Consider for instance, the changes
R1 and R2 from the Restore feature. Each of those changes can be applied inde-
pendently from the other without the resulting software application violating the
meta-model. The resulting software application, however, would not contain the
restore functionality if either of the changes would not be applied. Consequently,
there is a semantical dependency between R1 and R2. In fact, there is a semantical
dependency between every two changes of the restore feature, since omitting one
of the changes would result in an application with an undesired behaviour.

A semantical dependency also exists between the changes that add the func-
tionality of viewing the contents of a log file and the changes of our Logging
feature, which output the results of the logging to a log file. If the latter changes

5.2 Mathematical properties 99

are not applied, the former do not make sense, as they would only allow viewing
an empty log file. It still makes sense, however, to include the changes of the
Logging feature without including the changes to view the log file.

Given the changes c1, c2, c3 which belong to the set of change objects C and the
relation Dsem ⊂ C ×C with (c1, c2) ∈ Dsem modeling the semantical dependency
relation ”c1 needs c2 to be applied together”. Then, we can say that Dsem is an
homogeneous, binary endorelation over C with the following properties:

• Dstr is irreflexive:

∀c1 ∈ C • (c1, c1) 6∈ Dsem (5.4)

A change can never semantically depend on itself as that would imply that
the change would have to be applied before itself in order to obtain a cor-
rectly behaving software application. Expressed by means of the dependency
operator, this property is c1 6

sem→ c1.

• D is transitive:

∀c1, c2, c3 ∈ C ∧ (c1, c2) ∈ Dsem ∧ (c2, c3) ∈ Dsem ⇒ (c1, c3) ∈ Dsem (5.5)

This means that if c1 depends on c2 and c2 depends on c3, then c1 depends
on c3 or in other words, if c1 requires c2 to be applied and c2 requires c3 to
be applied, c1 also requires c3 to be applied. By means of the dependency
operator, this property is expressed as: c1

sem→ c2 ∧ c2
sem→ c3 ⇒ c1

sem→ c3.

With respect to symmetry, we cannot say the semantical dependency relation
is symmetric or asymmetric. While some instances of the semantical dependency
relation are symmetric (the dependencies from the first example above), others
are not (the dependencies from the second example above). As semantical depen-
dencies only depend on domain knowledge, they cannot automatically be derived
by the meta-model. Developers should be allowed, however, to make those de-
pendencies explicit. For that, tool support must be provided by the development
environment.

5.2.2 Dependency graphs

In this section, we first establish a model that allows expressing software products
as graphs that contain changes as the nodes and structural dependencies as the
edges. Afterwards, we explain the mathematical properties of such graphs. We do
not consider semantical dependencies in those graphs. At the end of the section,
we explain why.

Given a set of change objects C and the relation Dstr ⊆ C ×C with (c1, c2) ∈
Dstr, we can establish a graph G = (C,Dstr). The nodes of the graph are the
elements of the change set C. The edges of the graph (denoted by tuples (c1, c2))

100 Change-oriented feature-oriented programming

are the structural dependency relations between the change objects. Together,
they form the set of edges of G, called Dstr.

We now express a program p as a graph with the changes that represent p as
its nodes (Cp) and the structural dependencies between those changes as its edges
(Dstrp) and define this graph as a tuple:

p = (Cp, Dstrp) (5.6)

An edge v1 = (c1, c2) is considered to be directed from c1 to c2; c1 is called the
head and c2 is called the tail of the edge; c2 is said to be a direct successor of c1,
and c1 is said to be a direct predecessor of c2. A path p is a sequence of nodes
{c1, c2, c3} such that from each of its nodes there is an edge to the next node in
the sequence ((c1, c2), (c2, c3) ∈ Dstr). If a path leads from c1 to c3, then c3 is said
to be a successor of c1, and c1 is said to be a predecessor of c3. The dependency
graph of a program G = (C,Dstr) of a change set is a graph with the following
properties:

• G is directed

∀c1, c2 ∈ C ∧ (c1, c2), (c2, c1) ∈ Dstr ⇒ (c1, c2) 6= (c2, c1) (5.7)

A graph is directed if it has directed edges only. Consider any edge (c1, c2) of
a dependency graph. Such an edge is always directed, as it denotes that the
change object c1 depends on c2 structurally and not vice versa. Consequently,
the dependency graphs are directed.

• G is oriented

∀c1, c2 ∈ C ∧ (c1, c2) ∈ Dstr ⇒ (c2, c1) 6∈ Dstr (5.8)

An oriented graph is a directed graph with an orientation or direction as-
signed to each of its edges. A distinction between a directed graph and an
oriented graph is that if c1 and c2 are nodes, a directed graph allows both
(c1, c2) and (c2, c1) as edges, while only one is permitted in an oriented graph.
Due to the fact that the dependency relation Dstr is binary and asymmetric,
this is the case for Dstr. Consequently G = (C,Dstr) is oriented.

• G is acyclic

∀c1 ∈ C ⇒ @ path p = {c1, ..., c1} (5.9)

An acyclic graph is a graph that does not contain any cycles. Consequently
there can never exist a path that starts and ends in the same node of the
graph. The transitive and asymmetric properties of the structural depen-
dency relation guarantee that the dependency graphs will never contain cy-
cles.

5.3 Advantages 101

We can conclude that a dependency graph based on the changes and the struc-
tural dependency relation is a directed acyclic graph which is oriented (a DAG).
Each DAG gives rise to at least a partial order R on its edges, where uRv holds
when there exists a directed path from u to v in the DAG. Informally speaking,
such graphs flow in a single direction and can be used as an input of a topological
sorting algorithm. This property is used below to sort the changes of a change set
in order of applicability.

The inclusion of semantical dependencies between changes in the graph would
result in a graph G = (C,Dsem ∪Dstr) which is directed, not oriented and maybe
cyclic. Such graphs cannot always be fully topologically sorted. As the reason of
the graphs is to ease the sorting of changes (as we will see below), we chose to
omit those dependencies from the dependency graphs. Semantical dependencies
do not affect the order of applicability of changes anyway, as that order is only
enforced by the invariants of the meta-model. Semantical dependencies will be
used in Section 5.4.3, however, in order to validate software compositions.

5.3 Advantages

In the previous sections we worked towards a novel approach to FOP, which is
based on change-oriented programming. We now explain the four advantages this
approach to FOP has with respect to the state-of-the-art approaches to FOP. This
approach is very expressive, does not require one to adapt his development process,
provides detailed composition support and enables a bottom-up approach to FOP.

None of the state-of-the-art approaches to FOP allow features to express the
deletion of software building blocks, although this is often required. The gran-
ularity the approaches provide rarely reaches the statement level and in case it
does, it is limited. AHEAD, Lifting Functions, Mixin-layers, FeatureC++ and
most AOP approaches do allow the specification of a feature that adds a state-
ment to an existing method by means of the super call. This construct, however,
only allows the expression of a statement addition before and/or after the com-
plete old method behavior. With those approaches, it is not possible to specify
a feature that adds a statement between the statements of an existing method.
With the exception of FeatureC++ and the AOP approaches, none of the above
techniques provide means to specify such features: They require an alternative
implementation of the crosscutting feature depending on the features present in
the composition, hindering reusability.

To the best of the author’s knowledge, all the state-of-the-art approaches to
FOP require a programmer to alter the development process. Most of the ap-
proaches introduce new programming concepts such as features (by FeatureC++),
refinements (by AHEAD), mixins or mixin layers (by the Mixin approach) that the
programmer should use in order to do FOP. Most of the approaches also require
the use of a specific Interactive Development Environment (IDE) or IDE plugin,
which enables the use of those concepts. Consequently, the programmer is required
to adapt his development process. Change-oriented programming enables an ap-
proach to FOP in which the programmer does not need to alter his development

102 Change-oriented feature-oriented programming

process: It does not introduce new concepts nor requires a specific programming
language or IDE. We believe such an approach to FOP increases its usability in an
industrial context, where companies typically do not want to alleviate from their
development methodologies and exerted programming language.

Our approach to FOP ensures that a lot of fine-grained development infor-
mation is available in the entire development process. Whenever a new software
product variation needs to be produced as a composition of feature modules, this
information can be used in order to support the software composition process. In-
consistencies can be presented to the developer on a very detailed level in order to
assist the debugging process. This information is based on what changes cannot
be included in the composition and the reason why they cannot be included: what
dependent change should be included first. Because changes can be topologically
sorted in an automatic way (Section 5.2.2), the automatic production of software
product variations that offer different combinations of functionality is supported.

Finally, none of the existing approaches to FOP support bottom-up FOP : An
approach in which the individual software building blocks are first specified in
great detail and only afterwards grouped in feature modules. As this is the key
contribution of this dissertation, we dedicate a complete section to this advantage.

5.4 Bottom-up approach to FOP

FOP is the study of feature modularity, where features are raised to first-class
entities [7]. In FOP, features are basic building blocks, which satisfy intuitive
user-formulated requirements on the software system. A software product is built
by composing features. In this section, we present a bottom-up approach to FOP
which consists of three phases. First, change operations have to be captured into
first-class entities. Second, these entities have to be classified in features (= sep-
arate change sets that each implement one functionality). Finally, these feature
modules can be recomposed in order to form software variations that provide dif-
ferent functionality. The following subsections discuss every step of the approach.

5.4.1 Obtaining the changes

In this first phase of the bottom-up approach to FOP, the modifications to the
source code resulting from development or evolution actions are to be captured in
first-class objects. We present four different techniques to accomplish this task.

A classic way to obtain changes is by means of the differentiation strategy in
which for instance the Unix diff command is executed on the respective source
code files of two finished versions of a software system [111]. This technique reveals
the changes at a high level of granularity (the version level) of two snap-shots of
the software system. Every snap-shot corresponds to a version that was committed
to a code repository. The technique is applicable when development is over and
can consequently be used on legacy systems. In [89], Robbes shows that such an
approach does not provide a full overview of all the development actions that were
taken to take the first version to the second. Consider for instance the statement

5.4 Bottom-up approach to FOP 103

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int get() {
 logit();
 return(buf);
 }
 void set(int x) {
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
}

Version 0

Version 1

Figure 5.4: Reconstruction of the change sets by means of the differentiation
technique

buf = back.pop(); which was actually first added as buf = back; in order to
implement the restore feature and afterwards modified to buf = back.pop(); in
order to implement the multiple restore. The application of this strategy on the
two versions of Figure 5.4 would, however, result in only one change in which that
statement is added.

A more subtle alternative is to apply ChOP. In ChOP, a developer develops or
evolves software systems in a change-driven way by instantiating change objects.
These change objects are to be maintained in first-class objects, so that they can
be referenced afterwards. We see two drawbacks in this approach. First, it is only
applicable to systems that are being developed. Second, we find the development
of applications by means of pure ChOP not to be realistic. We do not believe
a programmer will actually execute a dialog for adding a statement to a method
body for instance. The third strategy overcomes this problem by supporting a
more pragmatic ChOP.

The third strategy is based on logging the developer when taking development
or evolution actions. In this strategy, the IDE is instrumented with a logging
mechanism responsible to instantiate change objects that represent all the actions
the developers take. The advantage of this approach is that it seems more realistic
than pure ChOP, which would require the development process to be adapted.
The main drawback of this technique is that it still cannot be used on legacy
systems. A secondary drawback might involve privacy issues, as the programmers
are required to allow big brother to watch them.

A final, less important way of obtaining changes is by receiving them from a

104 Change-oriented feature-oriented programming

apply
undo

Add

apply
undo

Modify

apply
undo

Remove

apply
undo

Atomic
Change

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

composites

apply
undo

Composite
Change

apply
undo

timeStamp
isApplied
intent
user

Change

Dstr

changeSubject

affectingChanges
Dsem

Figure 5.5: Change model

source that already captured the changes. That source can be another developer
or a repository that contains the changes that were committed by one or more
developers. In order to support this technique, the change objects need to be
first-class, persistent and already collected by one of these four strategies.

5.4.2 Classification of Changes

In this subsection, we focus on the second phase in the bottom-up approach to
FOP: the classification of changes into modules each representing a feature. Classi-
fication has two aspects: the classification model and the classification technique,
which is embodied in the different software classification strategies. We subse-
quently discuss both.

Classification model

The classification model is a meta-model that consists of two parts: the change
model and the actual classification model. Each part focuses on another level
of granularity. The change model describes how the changes are represented.
Figure 5.5 shows that the change model separates between four kinds of changes,
which can be composed. Atomic changes have a subject: the program building
block affected by the change and defined by the Famix model [27].

The actual classification model defines and describes the entities of the super-
structure, which is a flexible organisational structure based on feature and change
objects. Figure 5.6 shows that the model contains three relations: Dstr/Dsem

(the structural and semantical dependencies that hold between the change ob-
jects), F4C (which changes are grouped together into which feature) and Sub
(which features are contained within another feature). The cardinality of the
F4C and Sub entities is a boolean attribute that specifies whether or not the son
(change and/or feature) has to be included in a composition that includes the
parent (a feature). This information can afterwards be used to validate feature
compositions (as in Feature Diagrams [54]).

5.4 Bottom-up approach to FOP 105

parent
apply
undo

timeStamp
isApplied
intent
user

Change

Dsem

sonsapply
undo

id
Feature

cardinality
F4C

cardinality
Sub

parent

sons Dstr

Figure 5.6: Classification model

Figure 5.7: Manual classification

Classification techniques

A classification strategy is a method for setting up classifications. Many classifi-
cation strategies can be devised ranging from setting up classifications manually
to generating classifications automatically. We present three classification strate-
gies: manual classification, semi-autmatic classification through clustering and
automatic classification through forward tagging.

Manual classification Manual classification is the simplest classification strat-
egy: manually classifying change objects into modules that represent a feature.
The strategy can be used by the software engineer to group changes according to
his wishes. Since our classification model states that a change can only be clas-
sified in one feature, this strategy should be supported by a tool which enforces
that rule.

The advantages of this strategy are twofold. First, it is a very straightforward
technique which can easily be implemented and included in an IDE. Second, it

106 Change-oriented feature-oriented programming

Figure 5.8: Semi-automatic classification

can be successfully applied to change objects that were obtained with all of the
strategies to obtain the changes (differentiation, ChOP, logging or receiving). The
main disadvantage is the tedium that comes with the manual effort of this strategy.
The lower part of Figure 5.7 presents a list of change objects that were produced
in order to create the buffer example. In order to use this technique, the developer
is required to manually go over all the changes in order to classify them by hand
in the categories presented in the upper part of Figure 5.7. This manual effort is
both error-prone and laborious.

Semi-automatic classification Change objects contain information about by
whom, when, why and where the operations they represent were carried out. Using
clustering techniques [90] based on metrics on these properties, change objects can
be grouped in a semi-automatic way. Such classification is always based on an
assumption: for instance “the changes that are performed by the same user in a
limited time interval are all done for the same purpose”. In order for such strategy
to work, it should be used in collaboration with a manual classification strategy.
Based on the the clusters of changes, the developer has the final responsibility on
deciding how the changes must actually be classified.

The main advantage of this strategy is that it can be used to assist the developer
in doing manual classification. The disadvantages of this heuristic strategy are
threefold. First, it is more difficult to implement as it requires the definition
of distance measures, the clustering process and a (graphical) representation of
the results. Second, it always depends on an assumption, which does not hold
by definition. Different parameters in the metrics might give different clustering
results. Extra research is required to find adequate parameters, which might differ

5.4 Bottom-up approach to FOP 107

Figure 5.9: Automatic classification

depending on the domain. Third, the success of this strategy largely depends
on the amount of information available in the change set and within the change
objects. It is consequently not recommended to be used in combination with a
differentiation strategy – in which changes do not contain detailed information and
in which some changes might not be recovered at all.

Automatic classification In many cases, a manual classification strategy is not
a feasible option. For large software systems it would take a long time to classify
all changes by hand. Often classification of a software system is an activity that
cannot be done by one software engineer alone since one software engineer seldom
knows the entire system. When manual classification is not a valid option for the
classification problem at hand, automatic classification may provide a solution.

The automatic strategy is based on the assumption that changes already con-
tain the information on what feature they partially implement. This information is
preserved in information tags that are attached to the change objects. These tags
can be processed automatically to generate tag-based classifications. Figure 5.9
presents the automatic classification results of the changes that were logged while
developing the buffer example.

The advantages of this approach are that it can be applied to the largest of
systems as it does not require manual labour and that it is relatively easy to
implement. The sole inconvenience is that it can only be used in combination

108 Change-oriented feature-oriented programming

with a change collection strategy that is based on ChOP or logging. The reason
for that is it requires every change object to contain the information that denotes
in which module it should be classified. That information should be provided
beforehand by the developer. We propose to use a forward tagging technique in
order to obtain this information. The idea behind forward tagging is that when a
developer carries out a development operation, for example implementing a new
or changed specification or fixing a bug, he usually knows the context in which the
changes are made. When making the changes, he provides that information to the
IDE. Moreover, the IDE knows the exact time, and in what part of the software,
the change is performed. Instead of keeping this knowledge implicit in the heads
of the developers, the IDE tags it to the changes.

Since software developers often do not have sufficient time when source code
documentation is concerned, it is not realistic to rely on discipline for the forward
tagging process. Consequently, the IDE should require that developers provide
the information at development time.

Discussion

We introduced a model and three strategies to classify changes and/or features
in sets that represent features. The model consists of two parts which respec-
tively model the change objects and the actual classification. The first strategy is
straightforward: manual classification is a strategy to put together classifications
manually; Semi-automatic classification is based on clustering changes together
based on properties such as by whom, when, why and where the changes were
applied; Automatic classification is based on forward tagging, and automatically
groups changes together.

Only the automatic strategy is usable in practice, as it is the only strategy
that requires minor manual labour without an increase in error probability. As
this strategy requires forward tagging, it is only applicable in combination with
pure ChOP or logging as a technique to capture changes. In case a software sys-
tem was already developed (e.g a legacy system), the system usually does not
contain the forward tagged information. Consequently, the changes collected from
such systems can only be classified by means of a manual classification strategy,
which might be supported with a semi-automatic technique. We conclude that the
development environment should support logging or ChOP in order to enforce for-
ward tagging, so that the changes can automatically be classified in recomposable
feature modules.

5.4.3 Change composition

In our approach, a software system is specified by all the changes that have been
instantiated in order to implement it. The software system can afterwards be
(re)generated by (re)applying those changes. Consider the buffer example which
we introduced in the beginning of this chapter. Figure 5.10 shows the set of all
change objects that were instantiated in order to produce the buffer of which the
source code is shown in Figure 5.4. It also contains the dependencies between

5.4 Bottom-up approach to FOP 109

those changes and classifications of changes into features. Note that we internally
split up the Logging feature into three subfeatures: LogMethod, PrintInstVars
and InvokeLog. We define the diagram included in Figure 5.10 as the change
specification of the buffer application.

Logging
R1

R2

R3 R4

Restore L1

L6L5 L4L2 L3

B3

B1

B2 B5

B4 B6

Mul. Res

M2 M6

M1

M4

M5M3

Buffer

Log
Method

PrintInstVars InvokeLog

Figure 5.10: Change specification of the buffer example

A change specification is a graph that consists of nodes, edges and groupings.
The nodes are the change objects C that resulted from instantiating the change
classes from the change model (represented by the Change class from Section 4.3).
The edges denote the structural and semantical dependencies between the changes
(modeled by the D relation in the change model of Figure 5.5 of Section 4.4).
Finally, a grouping form is an entity that denotes the concept of a feature and which
groups a set of changes and/or features (modeled by the F4C and Sub relations
respectively in Figure 5.6 of Section 5.4.2). Every change or grouping can be
surrounded by a full or dashed line. A dashed line denotes that the change or
grouping is optional with respect to its parent (the grouping to which it belongs).
A full line specifies that the change or grouping is mandatory with respect to its
parent grouping. This is modeled by the cardinality attribute of the F4C and
Sub relations of Figure 5.6 of Section 5.4.2.

Every subset of the set of changes instantiated when developing a software
system represents a different variation of that system. Since a change specification
holds the complete set of changes C, it contains the specification of more than one
variation of the software system. Moreover, the change specification can be used

110 Change-oriented feature-oriented programming

to check the validity of such a variation. In our approach, a variation Var is valid if
all parent changes of the change objects of Var are part of Var. In FOP, however,
the different software variations are to be expressed in terms of required features.
A composition is a set of features that have to be included in a variation. As every
feature consists of a set of changes, the composition is a variation that consists of
the union of all changes of those features. An invalid composition is the result of
composing features that contain a change c2 of which at least one dependency is
not satisfied: There is a path (c1, ..., c2) in CS for which c1 is not in C.

The composition of features is the mechanism that allows the “easy” creation
of the different software variations that are part of the product’s product line. The
composition has to list all the features that correspond to the desired functionality.
If, for instance, a buffer variation with logging capacities is required, the compo-
sition should state: {Buffer, Logging}. Since LogMethod, PrintInstVars and
InvokeLog are all mandatory with respect to Logging, they all need to be included
in the composition. Since B1, B2, B3, B4, B5, B6, L1 are all mandatory to their
parent, they have to be included as well. Finally, there are some changes that can
be included in the composition: L2, L3, L4, L5 and L6. They are all specified as
optional with respect to their parent. This means that a composition containing
their parent does not need to contain those changes in order to be valid.

Different composition strategies are conceivable. Algorithm 1 on page 111
produces a maximal change composition, in which all changes that can be included
will be included in a composition. This conservative strategy makes sense, since it
produces the system with the most complete implementation of the corresponding
feature set. In this example, this strategy boils down to the inclusion of L2, L4
and L6. The change L3 and L5 are not included in the composition because they
respectively have the parents R2 and R1, which do not reside in the composition.

Other strategies can also be considered. The minimal change composition
for a set of features returns the mandatory changes and the optional ones that
are required to make the composition valid. The composition of a buffer with
logging in this strategy boils down to only including B1, B2, B3, B4, B5, B6,
L1. Note that applying the minimal composition strategy does not make sense
in this setting, as it produces a composition that actually does not include the
logging behaviour. The operations that actually add the logging behaviour are
omitted from the composition, as they are optional and not required to make the
composition valid. Conceptually, however, such a composition strategy might be
interesting in the case where code size needs to be minimised, as it returns the
most basic implementation of a feature set. Yet another strategy could be a mix
of both in which the optional changes that add code are included and the optional
changes that remove code are omitted. This, however, remains a topic for future
work.

Algorithm 1 presents an algorithm that verifies the validity of a composition
and produces the maximal change set in case the composition is valid. It receives
as input a list containing the features of the required composition and the change
specification (which consists of a set of changes C, a set of structural and seman-
tical dependencies D and a set of groupings that denote the relations between the

5.4 Bottom-up approach to FOP 111

features). Note that D being a union of semantical and structural dependencies
might imply that there are dependency cycles in the change specification. The
algorithm takes that into account and when finished, it returns a list that consist
of two lists. The first list contains the changes in the order in which they must
be applied to produce the required composition. The second list consists of the
changes that had to be omitted from the composition because of unsatisfied depen-
dencies. In case the latter is empty, the validation succeeded. In case the latter
is not empty, it can be used by the developer to correct unwanted composition
errors.

Input: A feature set F , a change specification CS
Output: A list consisting of 2 change sets

Fmin ← minimal feature set(F,CS);
Cmin ← minimal change set(Fmin, CS);
Cunw ← unwanted change set(Fmin, Cmin, CS);
C+

unw ← transitive closure(Cunw, CS);
Cerr ← all mandatory changes that are in C+

unw \ Cunw;
return (C \ C+

unw, Cerr)

Algorithm 1: validateComposition(F,CS) function

Input: A feature set F , a change specification CS
Output: A feature set

Fmin ← F foreach f ∈ F do
Fmin add: f ;
Fmin add the transitive closure of the parent features of f ;
Fmin add the transitive closure of the mandatory sub-features of f ;

end
return Fmin

Algorithm 2: minimal feature set(F,CS) subroutine

The order of the time complexity of Algorithm 1 is the sum of the time com-
plexities of all its subroutines. Algorithms 2 and 3 have a time complexity of
respectively O(f + Sub) and O(f) where f is the number of features and Sub the
number of relations between features. Algorithms 4 and 5 have a time complexity
of respectively O(c) and 0(c + d) where c is the number of changes and d the
number of dependencies in the change specification.

In the best case, this total boils down to O(n) where n is the number of changes
in the composition. It occurs when there are no changes with dependencies and
when the subroutine in Algorithm 5 can consequently be calculated in n steps. In
the worst case the order is O(n+ e), which is the result of the depth-first traversal
for calculating the transitive closure of unwanted changes in a graph with n change
nodes and e dependency edges. This also boils down to a complexity of O(n),

112 Change-oriented feature-oriented programming

Input: A feature set Fmin, a change specification CS
Output: A change set

Cmin ← ∅;
foreach c ∈ C do

if c is mandatory ∧ feature of c ∈ Fmin then
Cmin add: c

end
end
return Cmin

Algorithm 3: minimal change set(Fmin, CS) subroutine

Input: A feature set Fmin, a change specification CS
Output: A change set

Cunw ← ∅;
foreach c ∈ C do

if c 6∈ Cmin and feature of c 6∈ Fmin then
Cunw add: c

end
end
return Cunw

Algorithm 4: unwanted change set(Fmin, Cmin, CS) subroutine

Input: A change set Cunw, a change specification CS
Output: A change set C+

unw

S ← Cunw;
D ← edges in the change specification;
C+

unw ← ∅;
while S 6= ∅ do

c← remove a change c from S;
C+

unw add: c;
foreach c2 with d in D from c2 to c do

D remove: d;
S add: c2

end
end
return C+

unw

Algorithm 5: transitive closure(Cunw, CS) subroutine

5.5 Conclusion 113

since the number of dependencies and changes are usually of the same order of
magnitude.

We can conclude that this algorithm calculates the validity of a certain program
variation in an amount of time that grows linearly with the amount of changes
and dependencies that are present in the change specification. Note that some
optimisations can be conceived that reduce the time needed to validate a variation.
These optimisations are not considered in this dissertation and remain topic for
future research. As a tradeoff for this performance, the algorithm needs extra
working memory to do the necessary bookkeeping.

5.5 Conclusion

In this chapter, we introduced a novel approach to Feature-Oriented Programming
(FOP). The approach is based on the view that a feature is a function that has to
be applied to a software system in order to add the corresponding functionality to
that software system. The building blocks of a feature are instances of the different
change kinds (Add, Remove or Modify). In some cases, a change depends on
another change in a structural or semantical way. In our model of ChOP, a change
object c1 is said to depend structurally (resp. semantically) on another change
object c2 if c1 cannot be applied without c1 without breaking one of the system
invariants imposed by the meta-model (resp. obtaining a incorrectly behaving
application).

The structural dependency relation is shown to be a strict partial order (an
irreflexive, asymmetric, transitive binary endorelation) over the set of changes.
The semantical dependency relation is a transitive binary relation over the set
of changes. We introduce dependency graphs as graphs in which the nodes are
changes and the edges are structural dependencies between those changes. We
show that such a graph is directed, acyclic and directed when only structural
dependencies are considered. This is an interesting property as it allows sorting the
changes topologically based on the structural dependency relation. The resulting
sequence of changes is applicable as the syntactic dependencies are always satisfied
whenever a change is applied.

Advantages of describing features as sets of changes that need to be applied
in order to add a functionality to a system are threefold. First, this approach
enables a higher expressiveness, since features can contain the deletion of software
building blocks and this on the fine-grained level of granularity of code statements.
Second, this approach does not require a developer to alter his development pro-
cess. Features can be constructed while programming in an object-oriented way.
Finally, it allows a bottom-up approach to FOP, in which the fine-grained devel-
opment information can be used to enable an automatic composition of software
variations and in which the developer can be supported when debugging software
compostions.

All state-of-the-art approaches to FOP are top-down approaches in which an
overview of the system is first formulated, specifying but not detailing any first-
level subsystems. Each subsystem is then refined in yet greater detail, sometimes in

114 Change-oriented feature-oriented programming

many additional subsystem levels, until the entire specification is reduced to base
elements. We present a bottom-up approach to FOP which adheres more to ad-hoc
development. With a bottom-up approach, the software system can be developed
in a feature-oriented way without having to design it up-front completely.

The approach consists of three phases. First, the change operations have to
be captured into first-class entities. We present three techniques to do that which
we name differentiation, Change-Oriented Programming and logging. Second, the
change entities have to be classified in features (= separate change sets that each
implement one functionality). We present a classification model and three classifi-
cation techniques (manual, semi-automatic and automatic classification). Finally,
these feature modules can be recomposed in order to form software variations
that provide different functionality. We introduce a change specification: a di-
agram that describes the entire product family of a software system and which
can be used to validate different compositions. We end this chapter with a maxi-
mal composition algorithm that produces a software variation for a given feature
composition and change specification.

Chapter 6

Formalism for feature
composition

In this dissertation, we present change-oriented programming (ChOP), a program-
ming paradigm that centralises change and enables a specific approach to FOP.
In ChOP, each feature is represented by a set of changes applied to a base sys-
tem [32, 33]. Feature composition, in this case, becomes change classification and
composition. One of the challenges in ChOP is to make sure that a composition
of several features, viz. changes, will succeed. In this chapter, we present a formal
model for ChOP, that allows us to define this kind of property and which may
serve as a reference for ChOP implementations. First, we formalise its concepts
and properties using basic set theory. Then, we show how our implementation of
ChOP conforms to the formal model. Furthermore, we define properties such as
composability of features that need to be checked before features can be composed.

Software Product Line Engineering is a software engineering paradigm that
institutionalises reuse throughout software development. An interesting observa-
tion is that our model is quite close to feature diagrams, a software product line
engineering notation used to model the variability of an application at an – up to
now – relatively coarse-grained level of granularity [54, 9, 93]. The main purpose
of feature diagrams it to model which combinations of features are allowed and
disallowed in a software product line. By mapping the formal model of ChOP to
feature diagrams, we are able to reuse their well-studied semantics as well as exist-
ing analysis tools. We prove that composability of features in ChOP is equivalent
to checking whether the product they form satisfies the feature diagram. We first
recall the definition of feature diagrams.

6.1 Feature Diagrams

Feature diagrams were introduced by Kang et al. as part of the FODA method [54],
and have become one of the standard modelling languages for variability in Soft-
ware Product Line Engineering [84]. The purpose of a feature diagram is to define

116 Formalism for feature composition

Buffer

RestoreLogging

Mul. ResInvoke
Log

LogMe
thod

PrintInst
Vars

Figure 6.1: Buffer feature diagram

concisely which combinations of features are allowed in a product family. An
example feature diagram, based on the buffer example, is shown in Figure 6.1.

Basically, a feature diagram is a hierarchy of features, where the hierarchy
relation denotes decomposition. The feature diagram represents the set of allowed
feature combinations (called configurations), thus a set of sets of features, and
several types of decomposition operators determine what is allowed and what
not. An and decomposition, for instance, means that all child-features need to be
included in a configuration if their parent is, while an or decomposition requires
at least one child-feature to be included. These two decomposition types can be
represented with a generic cardinality decomposition 〈i..j〉 where i indicates the
minimum number of children required in a configuration and j the maximum.
Table 6.1 lists the classic decomposition types from feature diagrams and shows
how they can all be expressed by means of a generic cardinality decomposition
〈i..j〉.

Decomposition type Cardinality
An optional child 〈0..1〉
xor decomposition 〈1..1〉
or decomposition 〈1..∗〉
and decomposition with s children 〈s..s〉

Table 6.1: Cardinality as a way to describe feature decomposition

Some authors also consider optional features, generally represented in feature
diagrams as a square with a hollow circle above it, which need not be included in
a configuration, even if mandated by the decomposition operator. In addition to
decomposition operators, a feature diagram can be annotated by constraints in a
textual language, such as propositional logic [9], that further restrain the set of
allowed configurations.

6.1 Feature Diagrams 117

A number of feature diagram dialects have appeared in the literature since
their original proposal [93]. In this chapter, we use the visual syntax of Czarnecki
and Eisenecker [21], and the formal semantics of Schobbens et al. [93] which we
recall in the following definitions.

Definition 1 (Feature diagram Abstract Syntax). A feature diagram d is a 6-tuple
(N , P , r, λ, DE, Φ) where:

• N is the (non empty) set of features (or nodes),

• P ⊆ N is the set of primitive features (i.e. those considered relevant by the
modeller),

• r ∈ N is the root,

• DE ⊆ N × N is the decomposition relation between features. For conve-
nience, we will sometimes write n→ n′ instead of (n, n′) ∈ DE, where n is
the parent of n′ and n′ is the child of n.

• λ : N → N×N indicates the decomposition type of a feature, represented as a
cardinality 〈i..j〉 where i indicates the minimum number of children required
in a configuration and j the maximum.

• Φ ∈ B(N) is a set of propositional logic formulae on features, expressing
additional constraints on the diagram.

Furthermore, each d must satisfy the following well-formedness rules:

• Only r has no parent: ∀n ∈ N(@n′ ∈ N • n′ → n)⇔ n = r,

• DE is acyclic: @n1, .., nk ∈ N • n1 → ..→ nk → n1,

• Every minimum of a decomposition is smaller than the corresponding maxi-
mum: ∀〈i..j〉 ∈ λ : i < j

• Terminal nodes are 〈0..0〉 decomposed.

Definition 2 (Feature diagram Semantics). Given a feature diagram d, its seman-
tics [[d]] is the set of all valid feature combinations FC ∈ PPN (= the powerset of
powersets of N) restricted to primitive features: [[d]] = {c ∩ P |c ∈ FC}, where the
valid feature combinations FC of d are those c ∈ PN (= the powerset of N) that:

• contain the root: r ∈ c;

• satisfy the decomposition type:
f ∈ c ∧ λ(f) = 〈m..n〉 ⇒ m ≤ |{g|g ∈ c ∧ f → g}| ≤ n;

• include each selected feature’s parent: g ∈ c ∧ f → g ⇒ f ∈ c;

• satisfy the additional constraints: ∀p ∈ Φ • c |= p.

118 Formalism for feature composition

The semantics of the diagram in Figure 6.1 is the set{
{Buffer},
{Buffer, Logging, PrintInstV ars, LogMethod, InvokeLog},
{Buffer,Restore},
{Buffer,Restore,Mul.Res},
{Buffer, Logging, PrintInstV ars, LogMethod, InvokeLog,

Restore},
{Buffer, Logging, PrintInstV ars, LogMethod, InvokeLog,

Restore,Mul.Res}
}

For the remainder of this chapter, unless otherwise stated, we always assume
d to denote a feature diagram, and (N, r, λ,DE,Φ) to denote the elements of its
abstract syntax.

6.2 A formal model for ChOP

In this section, we first provide a formal model of the intuitive notions of ChOP
presented in Chapter 4 and define some basic properties such as composability.

6.2.1 Fundamental concepts

The principal concept in ChOP is the change object, which encapsulates a devel-
opment step. A change can be applied to a software system in order to execute
the development operation it encapsulates. Let C be the set of all change objects
that make up the system. Another important concept is that of a feature, so let
F denote the set of all features fi in the system. As seen in Chapter 4, features
consist of changes and can have sub-features.

Dependencies between features

Consider the sub-feature relation. A feature fi can consist of sub-features, which
can each be mandatory (man) or optional (opt), as captured by the relation Sub

Sub ⊆ F × F × {man, opt}, (6.1)

where the first element denotes the parent feature and the second the child. For
convenience, we will note

f1
man→ f2 if (f1, f2,man) ∈ Sub

f1
opt→ f2 if (f1, f2, opt) ∈ Sub

f1
?→ f2 if (f1, f2,man) ∈ Sub⊕ (f1, f2, opt) ∈ Sub.

The relation Sub needs to satisfy two well-formedness constraints.

• A sub-feature is either mandatory or optional.

∀f1
?→ f2 ⇒ ¬(f1

man→ f2 ∧ f1
opt→ f2) (6.2)

6.2 A formal model for ChOP 119

• The relation contains no cycles, and each feature has no more than one
parent.

{(f1, f2)|f1
?→ f2} forms a forest1. (6.3)

We define roots(F) as a function that returns the set of all features of F that
do not have a parent feature:

roots(F) = {f ∈ F |@f ′ ∈ F • f ′
?→ f}

Dependencies between features and changes

A feature generally consists of changes c ∈ C which can also be mandatory (man)
or optional (opt). This is formalised with the function F4C

F4C : C → F × {man, opt}, (6.4)

which each change associates with its parent feature. For convenience, we will
note

f
man→ c if F4C(c) = (f,man),

f
opt→ c if F4C(c) = (f, opt), and

f
?→ c if F4C(c) = (f,man)⊕ F4C(c) = (f, opt).

Dependencies between changes

In Chapter 4 we already elaborated on the properties of the structural and se-
mantical dependencies that are respectively imposed by the FAMIX meta-model
and by the problem domain knowledge. We define those relations and recapitu-
late those properties with respect to the formal concepts and properties that we
defined in this chapter.

Given changes c1, c2 which belong to the set of change objects C, change c1 is
said to structurally depend on change c2, if the application of c1 without the ap-
plication of c2 would violate the rules specified by the meta-model. The structural
dependencies between changes are denoted by the relation Dstr,

Dstr ⊆ C × C, (6.5)

which is required to be:

• Dstr is irreflexive:

∀c1 ∈ C • (c1, c1) 6∈ Dstr (6.6)

• Dstr is asymmetric:

∀c1, c2 ∈ C ∧ (c1, c2) ∈ Dstr ⇒ (c2, c1) 6∈ Dstr (6.7)

1A forest is a disjoint union of trees. Trees are graphs in which any two vertices are connected
by exactly one path.

120 Formalism for feature composition

• Dstr is transitive:

∀c1, c2, c3 ∈ C ∧ (c1, c2) ∈ Dstr ∧ (c2, c3) ∈ D ⇒ (c1, c3) ∈ Dstr (6.8)

In other words, Dstr is a strict partial order over C. The semantical dependencies
between changes, are denoted by the relation Dsem,

Dsem ⊆ C × C, (6.9)

which is required to be:

• Dstr is irreflexive:

∀c1 ∈ C • (c1, c1) 6∈ Dsem (6.10)

• Dsem is transitive:

∀c1, c2, c3 ∈ C ∧ (c1, c2) ∈ Dsem ∧ (c2, c3) ∈ Dsem ⇒ (c1, c3) ∈ Dsem (6.11)

In other words, Dsem is a irreflexive and transitive endorelation over C. For the
sake of simplicity, we also define D as the union of the Dstr and Dsem relations.
D actually groups all the dependency relations between change objects,

D = Dstr ∪Dsem, (6.12)

which is only required to be transitive. For convenience, we write that c1 depends
on c2 as c1 → c2 if (c1, c2) ∈ D. For the remainder of this chapter, we do
not differentiate between Dstr and Dsem anymore, but consistently refer to D
if it comes to dependencies between changes. Reasons for this are that (a) this
simplifies the formalism and (b) change specifications are only used to validate
software compositions and the fact wether a dependency is semantical or structural
does not matter to that regard. We refer to Section 5.2.2 on page 99 for more
information on the differences between semantical and structural dependencies.

Change specification

In addition to the well-formedness constraints on Sub, we require that each feature
must have sub-features, changes, or both – as in our approach to FOP, a feature
is always specified by a set of change objects or features.

∀f ∈ F • (∃f ′ ∈ F • f
?→ f ′) ∨ (∃c ∈ C • f

?→ c) (6.13)

Considered together, all these concepts make up a change specification as the
following definition records.

Definition 3 (Change specification). A change specification Cs is a 5-tuple Cs =
(C,F, Sub, F4C,D), where C,F, Sub, F4C and D are as defined above.

6.2 A formal model for ChOP 121

As an example of a change specification, consider the software application from
Figure 6.2 on page 126. With respect to Definition 3, the change specification of
the buffer application is a 5-tuple (C,F, Sub, F4C,D) where,

C = {B1, B2, B3, B4, B5, B6, R1, R2, R3, R4,M1,M2,
M3,M4,M5,M6, L1, L2, L3, L4, L5, L6},

F = {Buffer,Restore,Mul.Res, Logging, LogMethod,
PrintInstV ar, InvokeLog},

Sub = {Buffer
opt→ Restore,Restore

opt→ Mul.Res,Buffer
opt→ Logging,

Logging
man→ LogMethod, Logging

man→ PrintInstV ar,

Logging
man→ InvokeLog},

F4C = {Buffer
man→ B1, Buffer

man→ B2, Buffer
man→ B3,

Buffer
man→ B4, Buffer

man→ B5, Buffer
man→ B6,

Restore
man→ R1, Restore

man→ R2, Restore
man→ R3,

Restore
man→ R4,Mul.Res

man→ M1,Mul.Res
man→ M2,

Mul.Res
man→ M3,Mul.Res

man→ M4,Mul.Res
man→ M5,

Mul.Res
opt→ M6, LogMethod

man→ L1, P rintInstV ars
opt→ L5,

P rintInstV ars
opt→ L6, InvokeLog

opt→ L2, InvokeLog
opt→ L3,

InvokeLog
opt→ L4}, and

D = {B2→ B1, R1→ B1, L1→ B1,M1→ R1, B3→ B1, R2→ B1,
L2→ L1,M2→ R3, B5→ B1, R3→ R1, L2→ B3,M3→M2,
B4→ B3, R3→ B3, L3→ L1,M4→ R4, B4→ B2, R3→ B2,
L3→ R2,M5→M4, B6→ B2, R4→ R1, L4→ L1,M6→ L5,
B6→ B5, R4→ R2, L4→ B5, R4→ B2, L5→ L1, L5→ R1,
L6→ L1, L6→ B2}.

6.2.2 Properties

From the fundamental concepts, we can now define properties of change specifica-
tions, such as the property of composability mentioned earlier. Let us first define
what change compositions and legal change compositions are.

Definition 4 (Change composition). A change composition is a set of changes
H ⊆ C (with H 6= ∅) that can be applied together to construct a software system.

For the remainder of this text, we use H to refer to a change composition,
unless explicitly mentioned otherwise.

Definition 5 (Legal change composition, legal feature set). A legal change com-
position H is a change composition such that there exists a legal feature set G ⊆ F ,
which satisfies the following constraints

• If a feature is selected, its parent feature must be selected, too:

∀f ∈ G • r
?→ f =⇒ r ∈ G (6.14)

122 Formalism for feature composition

• If a feature with mandatory sub-features is selected, the latter need to be
selected, too:

∀r ∈ G • r
man→ f =⇒ f ∈ G (6.15)

• Let M = {c|f ∈ G∧ f
man→ c}, the set of mandatory changes and O = {c|f ∈

G∧ f
opt→ c}, the set of optional changes. From Definition 6.4, we know that

O ∪M = F and that O ∩M = ∅. We need that:

– all changes that are mandatory with respect to the selected features are
in:

M ⊆ H (6.16)

– all changes stem from selected features:

H \M ⊆ O (6.17)

• All dependencies are satisfied

∀c ∈ H • ∃(c, c′) ∈ D =⇒ c′ ∈ H (6.18)

By extension, we will say that such a G is a legal feature set for H with respect
to Cs; or that the changes H are composable. H is the set of features in which
the changes of G are contained (through F4C). For the remainder of this text, we
always assume G to be a feature set, unless otherwise stated. In order to prove that
there is at least one legal change composition and feature set for a given change
specification (Theorem 7), we first define the semantics of a change specification.

Definition 6 (Semantics of a change specification). The semantics of a change
specification Cs, noted [[Cs]], is defined as the set of pairs (H,G) such that H is
a legal change composition of Cs and G is a legal feature set for H with respect to
Cs according to the above definition.

Note that this definition does not imply that there is only one legal change
composition for a single legal feature set and vice versa. The following theorem
establishes that every change specification has at least one legal change composi-
tion, i.e. [[Cs]] 6= ∅ for every change specification Cs.

Theorem 7 (Legal composition existence). For each change specification Cs,
there is at least one legal change composition and feature set:

[[Cs]] 6= ∅

Proof. We prove this theorem by constructing a legal composition: (C,F) is a
valid change composition ((C,F) ∈ [[Cs]]) because it complies to the constraints of
Definition 5. Constraints 6.14, 6.15 and 6.18 are satisfied trivially by the equations
6.1 and 6.12. Given M and O as defined in Definition 4, we need to show that
M ⊆ H and that H \M ⊆ O. Because a change is either optional or mandatory
to a feature, we know that F = O ∪M and that O ∩M = ∅. From that we know
that both properties hold.

6.2 A formal model for ChOP 123

Given a legal feature set G, there might be several legal change compositions.
And similarly, given a legal change composition H, there can be several legal fea-
ture sets such that (H,G) ∈ [[Cs]]. For proving this, simply consider the following
example. Let us assume we have a Cs with only f

opt→ f ′, f
man→ c and f ′

opt→ c′. In
this case, we have [[Cs]] = {({c}, {f}), ({c}, {f, f ′}), ({c, c′}, {f, f ′})}.

Consequently, we will define the notions of minimal and maximal change com-
positions and prove their unicity in Theorem 10.

Definition 8 (Minimal change composition). Given H, G and Cs such that
(H,G) ∈ [[Cs]], H is said to be minimal if @H ′ ·H ′ ⊂ H ∧ (H ′, G) ∈ [[Cs]].

Definition 9 (Maximal change composition). Given H, G and Cs such that
(H,G) ∈ [[Cs]], H is said to be maximal if @H ′ ·H ′ ⊃ H ∧ (H ′, G) ∈ [[Cs]].

In the small example we gave above, {c} is both the minimal and maximal
change composition with respect to {f}, whereas with respect to {f, f ′}, we have
a minimal change composition {c} and a maximal change composition {c, c′}.
The following theorem proves the unicity of the minimal and maximal change
composition in the general case.

Theorem 10 (Uniqueness of minimal and maximal change compositions). A min-
imal change composition is unique. And so is a maximal change composition.

Proof. Let us consider building a change composition as follows. We include in H
all mandatory changes with respect to G and only those optional changes required
to satisfy the dependencies steming from mandatory changes. Wrt Definition 5,
this means we build:

H = M ∪ (O ∩ {c | c′ ∈M ∧ (c′, c) ∈ D+})

where D+ is the transitive closure of D. Such an H is legal, unique and minimal
since we cannot remove any optional change from it without violating a depen-
dency. The unicity of the maximal change composition is proved by considering
H = M ∪O which makes H legal, unique and maximal.

Similarly, we can define the notions of minimal and maximal feature set and
prove their unicity in Theorems 13 and 14.

Definition 11 (Minimal feature set). Given H, G and Cs such that (H,G) ∈
[[Cs]], G is said to be minimal if @G′ ·G′ ⊂ G ∧ (H,G′) ∈ [[Cs]].

Definition 12 (Maximal feature set). Given H, G and Cs such that (H,G) ∈
[[Cs]], G is said to be maximal if @G′ ·G′ ⊃ G ∧ (H,G′) ∈ [[Cs]].

Theorem 13 (Uniqueness of minimal feature sets). A minimal feature set is
unique.

Proof. Let us assume we have a legal change composition H. All legal G associated
to it satisfies ∀c ∈ H ·G ⊆ {f | f ?→ c} since all changes need to be justified by a

124 Formalism for feature composition

feature. Since H is fixed, one can only add features to G that do not require more
changes being added to H.

Minimally, to make G legal, only those features that help satisfy Sub should be
added. This means that for each c ∈ H with f

?→ c, we need to include in G (1)
the feature f , (2) the set Ancf of all its ancestors, (3) the mandatory descendants
of f , noted Descman

f , and (4) the mandatory descendants of the features in Ancf .
Because the resulting feature set should be legal with respect to H, those features
do not require more changes. We now define this formally.

In what follows, we will use the notation f
man+→ f ′ to mean:

∃f1, f2 . . . fn · f
man→ f1 ∧ f1

man→ f2 ∧ . . . ∧ fn−1
man→ fn ∧ fn

man→ f ′

and the notation f
?+→ f ′ to mean:

∃f1, f2 . . . fn · f
?→ f1 ∧ f1

?→ f2 ∧ . . . ∧ fn−1
?→ fn ∧ fn

?→ f ′.

If we define Ancf = {f ′ | f ′ ?+→ f} and Descman
f = {f ′ | f man+→ f ′} then the

unique, legal and minimal feature set G2 can be constructed as follows:

• G0 = {f | f ?→ c ∧ c ∈ H}

• G1 = G0 ∪
⋃

f∈G0
Ancf

• G2 = G1 ∪
⋃

f∈G1
Descman

f

Theorem 14 (Uniqueness of maximal feature sets). A maximal feature set is
unique.

Proof. Let us again prove this theorem by means of construction. Starting from G2

built according to the previous proof, we can now possibly add (1) root features
that were not already in G2 plus some of their descendants, and (2) optional
descendants of features already in G2. If we want to keep a change composition
that is legal with respect to H, the selected additional features cannot require to
add any change that is not already in H. Those requirements are fulfilled by the
algorithms 6 and 7 which provide a unique legal and maximal set G3.

6.3 From change specification to feature diagram 125

Input: A minimal feature set G2

Output: A maximal feature set G3

candidates← roots(F) \G2 ∪ {f | f ′
opt→ f ∧ f ′ ∈ G2};

added← addCandidates(candidates);
G3 ← G2;
while added 6= ∅ do

G3 ← G3 ∪ added;
candidates← {f | f ′ opt→ f ∧ f ′ ∈ added} ;
added← addCandidates(candidates);

end

Algorithm 6: Constructing a maximal feature set

added← ∅;
foreach f ∈ candidates do

if ∀f ′ ∈ Descman(f) • ∃c ∈ C • f ′
man→ c then

added← added ∪ {f} ∪Descman(f)
end
return added;

end

Algorithm 7: addCandidates subroutine

6.3 From change specification to feature diagram

The goal of this section is to define a way to systematically translate a change
specification into a feature diagram (like the one in Figure 6.1), so that the re-
sulting feature diagram has the same meaning as the change specification. Such
a procedure has two main benefits. First, generating and then visualising a fea-
ture diagram can provide an alternative representation of the change specification,
which is in many cases more readable. Second, and more importantly, having a for-
mal feature diagram opens the way for automated queries and reasoning about the
change specification through the use of a feature diagram tool such as FAMA [11]
or the one described in [75]. In particular, since ChEOPS is a valid implementation
of our formal ChOP model, this allows a safe and efficient integration of ChEOPS
with those tools. Let us first give an intuition of what such a translation might
look like and what ‘the same meaning’ means.

Figure 6.1 shows a feature diagram inspired by the buffer example. Even
though this diagram is based on the description of the buffer example rather
than the corresponding change specification (Figure 6.2), it illustrates part of the
translation. Indeed, the change specification is made up of features and changes,
as well as the relations between them. The feature hierarchy of ChOP translates
almost immediately into a feature diagram (like Figure 6.1).

126 Formalism for feature composition

Logging
R1

R2

R3 R4

Restore L1

L6L5 L4L2 L3

B3

B1

B2 B5

B4 B6

Mul. Res

M2 M6

M1

M4

M5M3

Buffer

Log
Method

PrintInstVars InvokeLog

Figure 6.2: Change specification of the buffer example

The decomposition type of each feature in the feature diagram will be an and.
This means that, in the resulting feature diagram, all children are mandatory
with respect to their parent. In order to represent the optionality of a child with
respect to its parent in the feature diagram, a dummy feature node is inserted
between the parent and the optional child. That dummy node is mandatory to
its parent and has itself a decomposition type of 〈0..1〉 for its son: the optional
child from the change specification. Figure 6.3 presents the change specification
of the Mul.Res. feature (on the left) and shows how a dummy node is inserted
between the optional M6 node and its parent feature Mul.Res. (in the middle) in
order to represent the feature diagram of the Mul.Res. (on the right). Note that
other decompositions types like xor and or (Table 6.1 on page 116) are not used
in change specifications.

Mul. Res
M4

M6

M1 M2 M3 M5 λ()=0..1opt_M6

λ()=6..6 Mul. Res

M4 M6M1 M2 M3 M5

Mul. Res

M2 M6

M1

M4

M5M3

Figure 6.3: Mapping optional changes to optional features

6.3 From change specification to feature diagram 127

Buffer

RestoreLogging

Mul. ResInvoke
Log

LogMe
thod

PrintInst
Vars

B2B1 B4B3 B6B5

R1 R2 R4R3

M4 M6M1 M2 M3 M5L6L5 L4L2 L3L1

B2⇒ B1 R1⇒ B1 L1⇒ B1 M1⇒ R1
B3⇒ B1 R2⇒ B1 L2⇒ L1 M2⇒ R3
B5⇒ B1 R3⇒ R1 L2⇒ B3 M3⇒M2
B4⇒ B3 R3⇒ B3 L3⇒ L1 M4⇒ R4
B4⇒ B2 R3⇒ B2 L3⇒ R2 M5⇒M4
B6⇒ B2 R4⇒ R1 L4⇒ L1 M6⇒ L5
B6⇒ B5 R4⇒ R2 L4⇒ B5

R4⇒ B2 L5⇒ L1
L5⇒ R1
L6⇒ L1
L6⇒ B2

Figure 6.4: Tentative feature diagram representing the Buffer change specification.

The changes with their dependencies, however, also need to be represented as
part of the feature diagram. The most obvious way to do that is to see every
change object as a feature without children, and therefore to consider them as the
leaf features of the feature diagram. The dependencies between changes, however,
crosscut the hierarchy and can therefore not be represented this way. Instead, we
capture them by additional feature diagram constraints (the logic formulae of Φ).
Finally, features and changes can be optional with respect to their parent. This
immediately translates into optional features.

The result of this translation is the diagram of Figure 6.4. Intuitively, its
‘meaning’ is the same as that of the change specification in Figure 6.2 because
it preserves all of its constraints, meaning that if a set of features (consisting of
normal ones and those representing changes) satisfies the feature diagram, it is
also a legal change composition/feature set.

This property, however, needs to be established formally, not only for the one
example here, but for the algorithm that does the translation. Similarly, we need
to formally specify the properties which we want to capture when analysing the
feature diagram, and make clear how they translate back to ChOP. This is the

128 Formalism for feature composition

goal of the next two sections.
The particularity of a feature diagram obtained from a change specification is

that it contains, unlike most feature diagrams obtained from analysts, implemen-
tation details that were recorded as the code was written. The level of granularity
is the statement, which is very fine. In realistic cases, the resulting feature dia-
gram will be enormous, but given the industrial-strength satisfiability solvers on
which most feature diagram implementations are based, this should not be a prob-
lem [37]. On the contrary, it will be an opportunity and allow for a number of
interesting analysis properties.

6.3.1 Translating the formalism

A general procedure for translating a change specification into a feature diagram
is given by Algorithm 8. As can be seen in the Mapping root features part,
one thing that the previous example did not account for is the fact that a change
specification does not necessarily have a root. A feature diagram, however, needs
to have one, which is why the algorithm starts by creating an artificial root r, and
making each of the top level features an optional child of that root.

The result from applying this algorithm to the change specification of Figure 6.2
is presented in Figure 6.5. It is more complex but semantically equivalent to the
feature diagram of Figure 6.4. Actually, the algorithm makes abundant use of
dummy features, not only for the root, but also to express optionality. These
dummy features are, however, not primitive, and will not appear in the semantics
of the resulting feature diagram. Note that dummy features only appear in the
translation; they are thus ‘hidden’ from the user.

The following theorem formalises an important property of this algorithm,
which we intuitively referred to as the resulting feature diagram having the same
meaning as the original change specification. More formally, the algorithm pre-
serves the semantics of the change specification.

Theorem 15 (Correctness of Algorithm 8). Let cs2fd denote the translation func-
tion described by algorithm 8. Then for each change specification Cs,

flatten([[Cs]]) = [[cs2fd(Cs)]]

where
flatten(Set) = {a ∪ b|(a, b) ∈ Set}.

The set returned by [[Cs]] consists of couples (H,G) such that H is a legal
change composition for G and that G is a legal feature set for H with respect
to Cs. Consider for instance calling flatten on ((H1, G1), (H2, G2), (H3, G3)).
This returns the set ((H1 ∪ G1), (H2 ∪ G2), (H3 ∪ G3)). Each element of this
set consists of features and the corresponding changes, which is the same as the
semantics of the result of the feature diagram returned by Algorithm 8. The proof
is straightforward and was omitted from this text.

6.3 From change specification to feature diagram 129

Input: A change specification Cs = (C,F, Sub, F4C,D)
Output: a feature diagram d = (N, P, r, λ, DE, Φ)

% Initialisations

r ← a new fresh node;
P ← C ∪ F ;
N ← P ∪ {r};
(λ, DE, Φ)← (∅, ∅, ∅);
% Mapping root features

Let roots← {f | f ∈ F ∧ ¬∃f ′ · f ′ ?→ f};
Let i← 0;
foreach n ∈ roots do

f ← a new fresh node;
N ← N ∪ {f} ;
λ← λ ∪ {f 7→ card1[0..1]};
DE ← DE ∪ {(r, f), (f, n)} ;
i← i + 1;

end
λ← λ ∪ {r 7→ cardi[i..i]};
%Mapping non-root features & changes

foreach f ∈ F do
i← 0;
foreach n ∈ {f ′ | (f, f ′, x) ∈ Sub} ∪ {c | F4C(c) = (f, x)} do

if x=man then
DE ← DE ∪ {(f, n)} ;

end
else

Let z ← a new fresh node;
N ← N ∪ {z} ;
λ← λ ∪ {z 7→ card1[0..1]};
DE ← DE ∪ {(f, z), (z, n)} ;

end
i← i + 1;

end
λ← λ ∪ {f 7→ cardi[i..i]};

end

% Mapping change dependencies

foreach (c, c′) ∈ D do
Φ← Φ ∪ {“c⇒ c′”} ;

end

Algorithm 8: Transforming a Cs to a feature diagram

130 Formalism for feature composition

LogMethod

Restore!()=5..5

!()=8..8

!()=3..3

Mul. Res

!()=0..1

Buffer

Logging

PrintInstVars

B2B1 B4B3 B6B5

R1 R2 R4R3

M4

M6

M1 M2 M3 M5L1

opt_Buffer

opt_Logging !()=0..1opt_Restore

opt_Mul.Res

!()=0..1opt_L5 !()=0..1opt_L6

L6L5 !()=0..1opt_M6L4L2 L3

!()=0..1opt_L4

Invoke Log

opt_L3!()=0..1opt_L2 !()=6..6

!()=3..3!()=2..2 !()=1..1

!"#$⇒#%&#'⇒#%&((()!

!"#+,,-.&#%&#$&#'&#/�&2344564&.5678697:;.9&20&21&234<-7=3>&2%&
86?3@-234&2$&2'&2/&A-973.-&A%&A$&A'&A/&<+B(A-9&<%&<$&<'&</&<0&<1)

r

!()=0..1

!()=0..1

!()=0..1

Figure 6.5: Buffer feature diagram resulting from the translation algorithm

6.3.2 Applications

Given Algorithm 8 and Theorem 15, it is possible to translate a change specification
Cs into a feature diagram d whose legal products are exactly the legal change
composition/feature set pairs of the change specification. This means that we can
analyse d instead of Cs but interpret the results in terms of Cs. Here we present
several analysis methods for feature diagrams and show how they can be useful in
the context of ChOP.

A first application of feature diagrams was already hinted at in the previous
sections. Indeed, given a change composition/feature set pair, it is legal iff it is
a product of the feature diagram. Which means that we can use feature diagram
tools to check the validity of change composition/feature set pairs. Formally, given
a change specification Cs, H ⊆ C and G ⊆ F , then

(H,G) is legal iff (H ∪G) ∈ [[cs2fd(Cs)]].

Furthermore, we can use the feature diagram to determine the feature compositions
that are legal with respect to a change composition, i.e.

fcomp(H) = {P ∩ F |P ∈ [[cs2fd(Cs)]] ∧H = P ∩ C},

where H ⊆ C, or the other way around, with G ⊆ F

ccomp(G) = {P ∩ C|P ∈ [[cs2fd(Cs)]] ∧G = P ∩ F}.

If fcomp(H) or ccomp(G) return an empty set, we know that H is an illegal
change composition, respectively G an illegal feature set. Otherwise, the results of
fcomp(H) (resp. ccomp(G)) can easily be used to determine the minimal/maximal
feature set (resp. change composition), it suffices to take the element of fcomp(H)
(resp. ccomp(G)) with minimal/maximal cardinality.

A common analysis means for feature diagrams are metrics defined on the fea-
ture diagram [11]. For instance, as feature diagrams are generally used to express

6.3 From change specification to feature diagram 131

the variability of a software product line, the number of valid feature combina-
tions of a feature diagram |[[d]]| is a measure for the variability of the software
product line. If the feature diagram was obtained from a change specification, it
measures the variability of the change specification. This kind of metric is already
implemented in feature diagram tools such as FAMA [11]. Obtaining the same
information based on only the data in Figure 6.2 would require a new algorithm
and would consequently imply more work.

A similar metric would be to determine in how many ways a feature set G ⊆
F can be implemented, and how many changes are needed (at most/least) to
implement it. This can be done by calculating fcomp(H) and determining the
minimal/maximal cardinality of its elements. A configuration tool, i.e. a tool that
lets a user choose which features to include, could then show this kind of statistics
while performing the choices.

If additional information about changes is available, such as the lines of code
added or additional memory consumption, it can be added to the feature diagram
in the form of feature attributes. The configuration tool could then show more
comprehensive statistics about the user’s current feature selection. Instead of
seeing merely how many changes it will require, the user will be able to see to what
extend the resulting application will grow in code size or memory consumption.
Instead of showing metrics to the user, the configuration tool could also choose the
change composition itself, for instance by selecting the one that is optimal with
respect to an objective function (e.g. minimise memory consumption) [11]. The
advantage here is that the attribute values would be automatically derived from
the actual changes in the code without the need for human intervention.

Another application of feature diagrams is determining which features are al-
ways present (called commonality),

comm(d) =
⋂

G∈[[d]]

G,

and which are never present (called dead features),

dead(d) = P \
⋃

G∈[[d]]

G.

If we project these results to the sets of changes comm(cs2fd(Cs)) ∩ C and
dead(cs2fd(Cs))∩C, we obtain the set of changes which are always/never present
in the system. With the current model of ChOP, however, these indicators
are not very useful. As shown in the proof of Theorem 7, the change compo-
sition/feature set consisting of all changes and features is always legal, hence
dead(cs2fd(Cs)) = ∅. Furthermore, through Algorithm 8, each top-level feature of
the change composition becomes optional, hence comm(cs2fd(Cs)) = ∅. A more
subtle and relevant approach would be to consider the number of occurrences of
a change or feature among the set of legal compositions. A change with a high
frequency (‘almost common’, one could say) could suggest a refactoring to make
the corresponding code efficient, whereas no effort should be put in code that is

132 Formalism for feature composition

‘almost dead’. Formally, a tool should indicate, given a change c ∈ C, whether

||{p ∈ [[cs2fd(Cs)]] | c ∈ p}||
||[[cs2fd(Cs)]]||

> k1 (resp. < k2)

where k1 and k2 are some fixed thresholds.

6.4 Conclusion

In Chapter 5 we propose an approach to feature-oriented programming (FOP).
In this approach, changes that encapsulate any developer action (including the
removing of code) are first instantiated. Afterwards, changes can be combined to
form a product. Before that is done, it has to be ensured that the selected changes
actually can be composed.

In this chapter, we make an effort to verify the validity of change compositions.
In order to do that, we first propose a formal model of change-oriented program-
ming and afterwards map it to the well-understood notion of feature diagrams
(feature diagrams), which has become one of the standard modelling languages for
variability in Software Product Line Engineering. In order to take those steps, we
first provide a formal description of feature diagrams.

We propose a formal model of change-oriented programming which is based on
set theory. Properties including the legality of a change and feature composition
are explained subsequently. A composition is valid if the following five properties
hold: if a feature is selected, its parent feature must be selected too, if a fea-
ture with mandatory sub-features is selected the latter need to be selected too,
all changes that are mandatory with respect to the selected features are in the
composition, all changes stem from selected features and all dependencies are sat-
isfied. Afterwards, we prove that at least one legal change composition exists and
that there is always one maximal and one minimal legal change composition for a
given change specification and feature set. Correspondingly, we prove that at least
one legal feature composition exists and that there is always one maximal and one
minimal legal feature composition for a given change specification and change set.

We then map the formal model of ChOP to the well-understood notion of
feature diagrams. The mapping, provided in form of a translation algorithm,
allows us to reuse a number of results in feature diagram research and apply
them to ChOP. The first application consists of the validation of compositions.
A composition is legal if it is a product of the feature diagram. The second
application consists of the calculation of all valid compositions for one change
specification. The final application contains some metrics, which we can easily
measure on feature diagrams and which provide some information about so called
common (resp. dead) features, which must always (resp. never) included in legal
compositions.

The particularity of a feature diagram obtained from a change specification is
that it contains, unlike most feature diagrams obtained from analysts, implemen-
tation details that were recorded as the code was written. The level of granularity
is the statement, which is very fine. This huge amount of information allows for

6.4 Conclusion 133

the calculation of a number of interesting analysis properties, such as the amount
of changes required to construct a certain software variation. Instead of just pre-
senting this metric to the developer, we envision a tool that returns the optimal
change composition, for instance by selecting the one that is optimal with respect
to an objective function (e.g. minimise memory consumption). The advantage of
feature diagram obtained from a change specification is that the attribute values
would be automatically derivable from the actual changes in the code without the
need for human intervention.

Chapter 7

Expressing crosscutting
concerns

Some functionality of system implementation, such as logging or error handling
are notoriously difficult to implement in a modular way. The result is that code
implementing such functionality is scattered over and tangled across a system.
This leads to quality, productivity and maintenance problems. A functionality is
said to be crosscutting if it cannot be cleanly separated into a separate module
because it is affecting several other modules [38]. According to our model, a
crosscutting functionality is represented by a feature that includes changes which
modify software building blocks scattered over the system.

In this chapter, we first explain how crosscutting functionality is modularised
in feature-oriented programming (FOP) and show our change-based approach to
FOP already supports such modularisation. We introduce the concept of flexible
and monolithic features, their semantics and how they can be composed to form
different program variations. Afterwards, we expose a weakness of our approach
which is a consequence from features holding extensional sets of changes. We
elaborate on a solution for that weakness which includes the extension of the
change model with a new change kind: An intensional change is a descriptive
change that can evaluate to an extension of changes.

7.1 Crosscutting functionality in feature-oriented
programming

In our model, crosscutting functionality is represented by a feature that includes
changes which modify software building blocks scattered over the system. The
application of such a feature affects (creates, modifies or removes) building blocks
scattered over the software system. Take, for instance, the logging functionality
of the buffer application that was introduced in Chapter 5. That functionality is
implemented by the Logging feature. It contains changes which introduce code

136 Expressing crosscutting concerns

statements scattered around every method in the Buffer class. Consequently, the
Logging feature depends on more than one feature (Figure 5.3).

A positive property of our approach is that the implementation of crosscut-
ting functionality is actually not scattered over the software application. All the
changes of a feature that implements a crosscutting functionality are grouped in
one change set. It is the application of the changes that actually produces a
software system containing the scattered building blocks of the crosscutting func-
tionality.

A property of features that implement a crosscutting functionality is that their
changes usually depend on more than one feature. As we have seen in the previous
chapter, a change-based software composition is only valid if all the changes on
which the changes of the composition depend are also included in the composition.
Consequently, the inclusion of a crosscutting functionality in a requires all the
features that contain changes on which the changes of the crosscutting functionality
depend to be included in the composition. As that is not always desired, this boils
down to a composition conflict. A quick and dirty solution would be to provide a
feature variation for each combination of the features on which it depends. This
kind of solution would suffer from a combinatorial explosion, increase the coupling
between features and decrease reusability.

7.1.1 Flexible features

We advocate another solution which allows features to be partially deployed in
a composition. A feature that implements a crosscutting functionality can be
implemented as a set of changes that does not have to be applied as a whole for
a composition to be valid. In contrast to a feature that has to be applied as a
whole (monolithic) we call features that can be partially applied flexible features.
In order to be flexible, a feature is required to have at least one optional change.
Figure 5.10 shows that according this definition, PrintInstVars, InvokeLog and
MultipleRestore are all flexible features. When such a flexible feature is included
in a composition, the composition algorithm (like the one presented in Algorithm 1
on page 111) decides which of the optional changes are included in, and which are
omitted from, the composition.

In order to be flexible, a feature has to include at least one optional sub-
entity (which can be a feature or a change). Such a decision depends on domain
knowledge and must be taken by the developer. If a developer classifies a change
or feature as optional with respect to its parent, the parent automatically becomes
flexible. Note that composing a feature that was erroneously specified as flexible
can yield a program that actually does not contain the functionality implemented
by that flexible feature. For example, consider a flexible feature that contains
optional changes only. If all these changes are omitted from the composition,
the feature is actually not included anymore in the composition. Consequently,
programmers should understand the responsibility that comes with the declaration
of flexible features.

In Figure 7.1, one can see that Logging actually consists of three features,
which all have to be included in a composition that contains Logging. The mono-

7.1 Crosscutting functionality in feature-oriented programming 137

Logging
R1

R2

R3 R4

Restore L1

L6L5 L4L2 L3

B3

B1

B2 B5

B4 B6

Mul. Res

M2 M6

M1

M4

M5M3

Buffer

Log
Method

PrintInstVars InvokeLog

Figure 7.1: Change specification of the buffer example (copy of Figure 5.10)

lithic LogMethod feature consists of a mandatory change that adds a logit()
method to the Buffer class. The flexible PrintInstVars feature consists of two
optional changes, which each add a statement printing the value of an instance
variable of Buffer. Finally, the flexible InvokeLog feature contains three optional
changes – which each add a statement that invokes the logit() method – to a
method of Buffer. We argue that in case a flexible feature like InvokeLog is
included in a composition, its AddInvocation changes that have to be added to
methods that do not exist because their creational changes are not part of the
composition, should be omitted from the composition in order to make it valid.
Let us now demonstrate the flexibility brought to the composition of features by
flexible features.

7.1.2 Composing flexible features

A composition is specified by listing all the features that must be included. No
distinction is made between flexible and monolithic features. It is in fact the com-
position algorithm that decides which parts of the flexible features are included
and which are not. Different composition strategies are conceivable. In Chap-
ter 6, we present the definition of a minimal and maximal change composition and
provide an algorithm for obtaining the latter.

138 Expressing crosscutting concerns

The strategy for obtaining the maximal change composition makes sense, since
it produces the system with the most complete implementation of the correspond-
ing feature set. On the other hand, a strategy for obtaining the minimal change
composition can also be interesting in the case where code size needs to be min-
imised, as it returns the most basic implementation of a feature set. Yet another
strategy could be a mix of both in which the optional changes that add code are
included and the optional changes that remove code are omitted.

The structural dependencies are enforced by the meta-model of the asserted
programming language and are used by the composition strategy to ensure compo-
sition validity. The fact whether a feature is monolithic or flexible does not affect
the structural dependencies between the change objects. This means that, if a
change of a flexible feature is omitted from a composition, all of the changes that
depend on it are also omitted from that composition. As long as these changes
are optional, the composition will remain valid. In the case one of these changes
is mandatory the composition is invalid. For more details on this composition
strategy, we refer the reader back to Algorithm 1 on page 111.

B1

B3 B5B2

B6B4

L1

L2L5 L4L6 L3

R1 R2

R3 R4

B1

B3 B5B2

B6B4

L1

L2L5 L4L6 L3

R2R1

Figure 7.2: Compositions based on first-class changes

Figure 7.2 shows an example of a valid maximal composition of Base, Restore
and Logging (on the left) and Base and Logging (on the right). Since in the right
composition the Restore feature is not present, the changes L5 and L3 (which
respectively belong to the flexible InvokeLog and PrintInstVars features) can
be safely omitted from the composition as they are optional. This process produces
a legal composition consisting of B1, B2, B3, B4, B5, B6, L1, L2, L4 and L6.

This example shows that the flexible InvokeLog and PrintInstVars can be
included completely or partially, depending on which other features ar included
in the composition. The decision to include an optional change is specified by
the composition strategy and does not require an additional manual effort. While
monolithic features can only be included in a composition together with all the
features they depend on, flexible features can be automatically customised by
means of a composition strategy in order to include them in a valid composition
that does not necessarily contains all the features they depend on. This brings the
flexibility to cope with features that implement a crosscutting functionality.

7.2 Extensional changes 139

7.1.3 Other uses for flexible features

The applicability of flexible features is not only confined to describing crosscut-
ting functionality. For instance, a feature that implements a facade pattern [43],
would add a class and a method for each complex service. It can be conveniently
described by a flexible feature, allowing for it to be composed with a set of features
which not necessarily include all the services that the facade class references. In a
composition, the facade class will only provide the methods for which functionality
is indeed present in the composition.

While flexible features already help in modeling crosscutting functionality, they
still suffer from some inconveniences. As we have already stated, it is up to the
developer to specify which changes or features are optional and which are not. A
second drawback of flexible features is that they only contain an extensional list of
changes which leads to issues maintaining such features. In the following section,
we elaborate on this issue.

7.2 Extensional changes

In case a feature, which represents a crosscutting functionality, needs to be
adapted, changes representing that adaptation have to be added to the change
set. This process is actually quite cumbersome, as the programmer is required to
instantiate the changes that specify the adaptation. In order to clarify this prob-
lem, we first extend the Buffer example with an extra feature, which is responsible
for maintaining statistics on how many times the buffer is used. Figure 7.3 con-
tains the code of the new buffer software system (on the left hand side) and the
change objects that were instantiated in order to obtain that code (on the right
hand side).

The inclusion of this feature in the buffer application introduces two new in-
stance variables setc and getc which are used to maintain the amount of times
the set() and get() methods have been invoked. It also adds a new method
statistics() to the Buffer class that prints the values of these instance vari-
ables. The introduction of the Statistics feature requires an adaptation of the
logging feature, which is required to print the values of all instance variables
whenever any method of the Buffer class is executed. Consequently, the Logging
feature should be extended with changes that add the printing of the new instance
variables in the logit() method and with a change that adds an invocation of
the logit() method in the statistics() method. Figure 7.4 presents the source
code of the adapted Buffer case.

The modification of the Logging feature involves changes that are scattered
over the application. In case a logging or differentiating technique is used to cap-
ture the changes (see Chapter 5), the developer has to manually recover all the
locations in the source code where changes need to be made. In case change-
oriented programming is used to capture changes, the developer has to filter the
increment in the change set in order to recover what changes need to be added. In
this example, for every AddMethod change, an invocation to the logit() method

140 Expressing crosscutting concerns

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int setc = 0;
 int getc = 0;
 int get() {
 getc = getc + 1;
 logit();
 return(buf);
 }
 void set(int x) {
 setc = setc + 1;
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(back.top());
 print(buf);
 }
 int statistics() {
 print(setc);
 print(getc);
 }
}

S1

S2

S3 S4

S5 S6

S7

S8

S9

S1S2

S3 S4S5 S6

S7

S8S9

B1

B3B5

Stats

Figure 7.3: A buffer with a functionality for maintaining statistics

should be added and for every AddAttribute change, a print statement that prints
that attribute should be added to the logit() method. The changes that corre-
spond to the modification are presented in Figure 7.5.

In order to overcome this tedious task, we propose a new kind of changes –
intensional changes. The following section elaborates on this novel kind of change.

7.3 Intensional changes

Our model defines a feature as a set of changes. There are two ways of specifying
such a set: extensionally or intensionally. A set can be defined extensionally by
explicitly enumerating all elements of the set. For example, we can define the set
E of all even numbers extensionally as follows:

E = {0, 2, 4, 6, 8, ...}

However, the same set can also be specified intensionally by means of a description:

E = {2x | x ∈ N}

7.3 Intensional changes 141

class Buffer {
 int buf = 0;
 Stack back = Stack new();
 int setc = 0;
 int getc = 0;
 int get() {
 getc = getc + 1;
 logit();
 return(buf);
 }
 void set(int x) {
 setc = setc + 1;
 logit();
 back.push(x);
 buf = x;
 }
 void restore() {
 logit();
 buf = back.pop();
 }
 void logit() {
 print(setc);
 print(getc);
 print(back.top());
 print(buf);
 }
 int statistics() {
 logit();
 print(setc);
 print(getc);
 }
}

S1

S2

S3 S4

S5 S6

S7

S8

S9

L9

L7

L8

Figure 7.4: Extended buffer code after adding the statistics feature

The same applies for sets of changes. The Logging feature can be speci-
fied by an extensional set of changes FLogging which is a union of all changes
of LogMethod, PrintInstVars and InvokeLog and which can be applied on any
variation of Buffer in order to add the logging functionality:

FLogging = {L1, L2, L3, L4, L5, L6, L7, L8, L9}

An intensional description of the same Logging feature that is added to a program
p is:

FLogging = {all changes needed to add a logging functionality to p}

This definition can be refined as:

142 Expressing crosscutting concerns

Logging
B1

B2 B3

L1

L6L5 L4L2 L3

R1 R2 B5

Log
Method

PrintInstVars InvokeLog

L9L8L7

S1 S2 S7

Figure 7.5: Extended logging changes after adding the statistic code

FLogging =

0@ {changes ofLogMethod}∪
{changes ofPrintInstV ars}∪
{changes ofInvokeLog}

1A
=

0@ {AddMethod((Buffer, false, logit()), 1235465, “Peter”, “Logging”)}∪
{changes ofPrintInstV ars}∪
{changes ofInvokeLog}

1A
=

0@ {AddMethod((Buffer, false, logit()), 1235465, “Peter”, “Logging”)}∪
{add statement print(var) in logit for every instance variable var in p}∪
{changes ofInvokeLog}

1A
=

0@ {AddMethod((Buffer, false, logit()), 1235465, “Peter”, “Logging”)}∪
{add statement print(var) in logit for every instance variable var in p}∪
{add an invocation to logit in every method of Buffer}

1A

In order to be able to express a change set C in an intensional way, two things
are required: a change-cut language and a change-cut model. A change-cut lan-
guage is a language that can be used to specify change-cuts: a quantification or
query that evaluates to an extensive set of changes. A change-cut model is a model
that defines a change-cut language and a means of specifying new changes that
have to be instantiated for a change cut. The following two subsections subse-
quently describe the language and the model.

7.3.1 Language for specifying intensional changes

When an intensional change c needs to be applied to a program p in order to add to
p the functionality c implements, the specification of c has to be evaluated to find
out the exact changes that are required in the specific situation (the enumeration
of changes described by c). In the above examples, we used a natural language
to describe the intensional specification of a change. It is clear that, in order to
automate the evaluation process, a more formal language is needed. In this section
we establish such a language based on a tuple calculus. We start by explaining
that the building blocks of our approach consist of tuples of changes.

7.3 Intensional changes 143

Building blocks

The population of a change set is represented by means of n-tuples. Each n−tuple
consists of n artifacts which belong together. For instance, a number of examples
of 2-tuples are:

(“B1”, 112)

(“B2”, 123)

(“B3”, 145)

These tuples represent for example an association of the id of a change with the
time stamp of that change. In classic set-theory, the order in which the artifacts
appear in a tuple is important. For instance, the tuple (“B1”, 112) is different
from the tuple (112, “B1”). In order to improve readability of the tuples, we opt
to use named n-tuples which contain tags mapping a certain attribute of a tuple
to a value, similar to the way the population of databases are often described. In
this notation, we can express our example 2-tuples as follows:

(id:“B1′′, timestamp:112)

(id:“B2′′, timestamp:123)

(id:“B3′′, timestamp:145)

where id and timestamp are the attributes of the tuples and B1, B2, B3,
112, 123 and 145 are the values of those tuples. Using this notation, the order
of the artifacts in the tuples is no longer important. For instance, the tuples
(id:B1, timestamp:112) and (timestamp:112, id:B1) are considered to be iden-
tical.

We define Cp to be the set of all changes that produce a program p whenever
they are applied. The changes in this set are 6-tuples that follow the following
pattern:

(id, type, parameterList, timestamp, user, intent)

where id is the attribute specifying the unique identifier of the change object, type
is the attribute denoting the kind of the change, parameterList is the attribute
containing a list of parameters that can be used to apply the change, timestamp
is the attribute that specifies the time at which this change is instantiated, user is
the attribute that contains the information of which user instantiated this change
and intent is the attribute that contains a description of the intent of this change.

Atoms

We assume a finite set Cp of tuples and an infinite set of tuple attributes attrib(Cp),
for the construction of formulas on the set of tuples. Changetypes is the set of all
different types of changes (as described in Section 4.3). We then define the set of
atomic formulas A[Cp]with the following rules:

144 Expressing crosscutting concerns

1. if c1 and c2 in Cp, a and b in attrib(Cp) then the formula “c1.a = c2.b” is in
A[Cp],

2. if c in Cp, a in attrib(Cp) and k denotes a value then the formula “c.a = k”
is in A[Cp], and

3. if c in Cp and r in Changetypes then the formula “r(c)” is in A[Cp].

Examples of atoms include:

(c1.user = c2.user)

(c1.user = “Peter
′′
)

AddMethod(c)

The first example means that tuple c1 has a “user” attribute and c2 has a “user”
attribute with the same value. The second example means that tuple c1 has a
“user” attribute and its value is “Peter”. The last example means that tuple c is
of the AddMethod type. The formal semantics of such atoms is defined given a
change set Cp and a tuple attribute binding val : Cp × attrib(Cp) → Object that
maps tuple attributes to tuple values over the domain in Cp:

1. “c1.a = c2.b” is true if and only if val(c1, a) = val(c2, b)

2. “c.a = k” is true if and only if val(c, a) = k

3. “r(c)” is true if and only if the type atrribute of c is r.

The atomic formulas denote a condition for a change object. The next step
in defining the change cut language is the construction of more complex formulas
which consist of composed and quantified atomic formulas as we explain below.

Formulas

In our change cut language, the atomic formulas defined above can be combined
into formulas, with the logical operators ∧ (and), ∨ (or) and ¬ (not), and we
can use the existential quantifier (∃) and the universal quantifier (∀) to quantify
variables or relations. We define the complete set of formulas F [Cp] inductively
with the following rules:

1. every atom in A[Cp] is also in F [Cp],

2. if f1 and f2 are in F [Cp] then the formula “f1 ∧ f2” is also in F [Cp],

3. if f1 and f2 are in F [Cp] then the formula “f1 ∨ f2” is also in F [Cp],

4. if f is in F [Cp] then the formula “¬f” is also in F [Cp],

5. if c in Cp and f a formula in F [Cp] then the formula “∃c : f” is also in F [Cp],

6. if c in Cp and f a formula in F [Cp] then the formula “∃!c : f” is also in
F [Cp],

7.3 Intensional changes 145

7. if c in Cp and f a formula in F [Cp] then the formula “@c : f” is also in F [Cp],
and

8. if c in Cp and f a formula in F [Cp] then the formula “∀c : f” is also in F [Cp].

Examples of formulas are:

(c.user = “Peter” ∨ c.user = “Sabine”)

(AddMethod(c) ∧ c.user = “Peter”

∀c : (AddMethod(c) ∧ c.user = “Peter” ∧ p.intent = “Buffer”)

The first example binds c to all changes of Cp instantiated by Peter or Sabine.
The second example binds c to all the changes of Cp that are of the AddMethod
type that are instantiated by Peter. The final example returns true if all changes
of Cp are of the AddMethod type, instantiated by Peter in an intent to create
a buffer. Note that we omit brackets if this does not cause ambiguity about the
semantics of the formula. We assume that the quantifiers quantify over the set of
all tuples of the change set Cp. This leads to the following formal semantics for
formulas:

1. see the formal semantics of the atomic formulas,

2. “f1 ∧ f2 ” is true if and only if “f1” is true and “f2” is true,

3. “f1 ∨ f2” is true if and only if “f1” is true or “f2” is true or both are true,

4. “¬f” is true if and only if “f” is not true,

5. “∃c : f” is true if and only if there is a tuple c in Cp for which the formula
“f” is true,

6. “∃!c : f” is true if and only if there is exactly one tuple c in Cp for which
the formula “f” is true,

7. “@c : f” is true if and only if there is no tuple c in Cp for which the formula
“f” is true, and

8. “∀c : f” is true if and only if for all tuples c in Cp the formula “f” is true.

Formulas denote the condition for a change cut and consist of compositions
and/or quantifications of formulas. Let us now explain how a change cut can
actually be defined by means of queries.

Change cuts

Finally, we define a change cut expression (in short a change cut) for a given
change set Cp as:

{c : f(c)}

where c is a tuple in Cp and f(c) a formula in F [Cp]. The result of such a query
for a given change set Cp that specifies a program p is the set of all tuples c of Cp

such that f is true.

146 Expressing crosscutting concerns

Examples of change cut expressions include:
{c : ∀c : (AddMethod(c) ∧ AddClass(d) ∧ c parameterList class = d parameterList class)}

{c : ∀c : (AddAttribute(c) ∧ AddClass(d) ∧ c parameterList class = d parameterList class)}

which returns all the changes that add a method to a class and all changes that
add an attribute to a class respectively. Now that we are capable of expressing
change cuts, all that remains in order to enable expressing intensional changes are
the actions that need to be taken for the tuples of a change cut. This is the subject
of the following paragraph.

Actions

The purpose of intensional changes is to allow a developer to describe which
changes have to be added (in an intensional way) instead of enumerating them
(in an extensional way). As an example, we consider again the Logging feature
which we want to express as:

{AddMethod((Buffer, false, logit()), 1235465, “Peter”, “Logging”)}∪
{add statement print(var) in logit for every instance variable var in p}∪
{add an invocation to logit in every method of Buffer}

Now that we have established a formal language for expressing change cuts like
“for every instance variable var in p” or “in every method of Buffer”. We only
lack a way of specifying the actions that need to be taken for all the tuples of a
change cut (e.g. add statement print(var) in logit or add an invocation to logit).
These actions consist of the addition of a change (or change set) to the change set.

We define an action as the specification of the addition of a new tuple (repre-
senting a change instance) to the tuple set Cp. We differentiate between actions
that add that tuple just before and just after a change:

1. cnew before c

2. cnew after c

where cnew is a 6-tuple (id, type, parameterList, c.timestamp, user, intent) in
which all the attributes except for the id and the timestamp must be bound
to values. Those values can be the value of another attribute of the action, or a
constant. The id is assigned to the change tuple when the action is evaluated. It
is ensured to be a unique identifier. The timestamp of the new change tuples is
determined by the keyword (before or after) and by the timestamp of the change
c. In case the action specifies the new change to come after c, the new timestamp
is set to a timestamp which is just after the one of c. In case the action specifies
the new change to come before c, the new timestamp is set to a timestamp which
is just before the one of c. We elaborate on how the uniqueness of the id is en-
sured and how the timestamps are calculated in the implementation section. As
an example of an action, we present

(?id2, AddStatement, (Buffer, false, get, “logit”), ?timestamp2, “Peter”, “InvokeLog”) after
(B3, AddMethod, (Buffer, false, get), 235935, “Peter”, “InvokeLog”)

which adds a statement to the get method of the Buffer class just after the
method get is added to the Buffer class. We conclude this subsection with the
definition of an intensional change.

7.3 Intensional changes 147

Intensional change definition

An intensional change consists of two parts: a set of actions A and a change cut:

{c : A | f(c)}

where the values of all tuples that are specified in the change cut can be used as
values for the attributes of the tuples in the actions of A. In order to give an
example of intensional changes, we use intensional changes in order to specify the
complete Logging feature by means of intensional changes:

{AddMethod((Buffer, false, logit()), 1235465, “Peter”, “LogMethod”)}∪
{c : {(?id, AddStatement, (Buffer, false, logit, “print(c.parameterList.attribute)”),

?timestamp, “Peter”, “PrintInstV ars”) after c} |
{∀c : (AddAttribute(c) ∧ c.parameterList.class = Buffer)}}∪

{c : {(?id, AddStatement, (Buffer, false, ?m, “logit()”), ?timestamp, “Peter”, “InvokeLog”)
after c} |
{∀c : (AddMetod(c) ∧ c.method =?m ∧ c.parameterList.class = Buffer)}}

The two intensional changes included in the definition of the Logging feature
need to be evaluated with respect to a change set in order to produce the extension
they describe. The following subsection elaborates on the evaluation of intensional
changes.

7.3.2 Intensional change evaluation

An intensional change is a kind of change that can be applied to a software pro-
gram p in order to apply the changes described by that intensional change to p.
This application consists of two phases. First, the intensional change needs to be
evaluated with respect to the change set Cp that specifies p. This step produces
an enumeration of changes which are all applied on p in the second step.

As an example, consider a software composition

{Buffer,Restore,MultipleRestore, Statistics, Logging}

which contains the Buffer, Restore, Multiple Restore, Statistics and
Logging features of the buffer example. The application of the Logging feature
as it is specified by means of intensional changes evaluates to the extension of
Listing 7.1 while the application on the same Logging feature in a composition

{Buffer, Statistics, Logging}

evaluates to the extension of Listing 7.2. The order in which the features are
specified in a composition determines the outcome of the evaluation of intensional
changes. This is due to the growing change set on which the intensional changes
are evaluated.

Listings 7.1 and 7.2 present the outcome of the first step of the evaluation
process. The second step consists of applying the changes that correspond to
the tuples from those listings. In order to do that, a change object is instan-
tiated for every tuple. The first tuple, for instance, results in a change object
AddMethod((Buffer, false, logit), 235465, ”Peter”, ”LogMethod”). Note that

148 Expressing crosscutting concerns

�
1(L1 ,AddMethod, (Buf fer , false , l o g i t) ,235465 , "Peter" ,"LogMethod")
2(L7 ,AddStatement , (Buf fer , false , l o g i t , "print(setc)") , 247537 . 1 ,
3"Peter" ,"PrintInstVars")
4(L8 ,AddStatement , (Buf fer , false , l o g i t , "print(getc)") , 247737 . 1 ,
5"Peter" ,"PrintInstVars")
6(L5 ,AddStatement , (Buf fer , false , l o g i t , "print(back)") , 236537 . 1 ,
7"Peter" ,"PrintInstVars")
8(L6 ,AddStatement , (Buf fer , false , l o g i t , "print(buf)") , 235789 . 1 ,
9"Peter" ,"PrintInstVars")
10(L2 ,AddStatement , (Buf fer , false , get , "logit()") , 235935 . 1 ,
11"Peter" ,"InvokeLog")
12(L3 ,AddStatement , (Buf fer , false , set , "logit()") , 237537 . 1 ,
13"Peter" ,"InvokeLog")
14(L4 ,AddStatement , (Buf fer , false , r e s t o r e , "logit()") , 236137 . 1 ,
15"Peter" ,"InvokeLog")
16(L9 ,AddStatement , (Buf fer , false , s t a t i s t i c s , "logit()") , 247937 . 1 ,
17"Peter" ,"InvokeLog")
� �

Listing 7.1: Extension of Logging on {Buffer,Restore, Statistics}

�
1(L1 ,AddMethod, (Buf fer , false , l o g i t) ,235465 , "Peter" ,"LogMethod")
2(L5 ,AddStatement , (Buf fer , false , l o g i t , "print(back)") , 236537 . 1 ,
3"Peter" ,"PrintInstVars")
4(L6 ,AddStatement , (Buf fer , false , l o g i t , "print(buf)") , 235789 . 1 ,
5"Peter" ,"PrintInstVars")
6(L2 ,AddStatement , (Buf fer , false , get , "logit()") , 235935 . 1 ,
7"Peter" ,"InvokeLog")
8(L3 ,AddStatement , (Buf fer , false , set , "logit()") , 237537 . 1 ,
9"Peter" ,"InvokeLog")
10(L4 ,AddStatement , (Buf fer , false , r e s t o r e , "logit()") , 236137 . 1 ,
11"Peter" ,"InvokeLog")
� �

Listing 7.2: Extension of Logging on {Buffer,Restore}

7.3 Intensional changes 149

all change objects that result from this process are optional with respect to the
feature they belong to.

For the sake of clarity, we specified the Logging feature in a very naive way
as the specification does not consider the possibility that attributes or methods
were modified or removed by other change objects in the change set. Such naive
specification could produce change objects with subjects that no longer exist in the
software product at the time the change is applied. As the composition algorithm
takes into account the structural dependencies between the change objects, this
never produces products with invalid structure. The semantics, however, can
indeed be influenced by this naive specification. It is up to the developer to
alter the intensional change in such a situation. We come back to this issue in
Section 7.3.5 but first discuss the implementation of the change cut language and
model of intensional changes.

7.3.3 Implementation

First, we extend the change model of Chapter 4 with the notion of inten-
sional changes. Figure 7.6 shows the change model which is extended with the
Intensional Change class, which is a subclass of Change that models the new
change kind. This extension shows that the change model we presented in Chap-
ter 4 is easy to extend when new kinds of changes are concerned.

apply
undo

Add

apply
undo

Modify

apply
undo

Remove

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

apply
undo

Composite
Change

apply
undo

timeStamp
isApplied
intent
user

Change

changeSubject

affectingChangescomposites

apply
undo

Atomic
Change

D

apply
undo

Intensional
Change

Figure 7.6: Extended change model

Second, we implement the language we defined for specifying intensional
changes. For this implementation we use SOUL, an implementation of a Prolog-
like declarative language on top of Smalltalk. The strengths of the declarative
programming paradigm have already been demonstrated in [109]. Declarative
programming allows a developer to minimize or eliminate side effects by describ-
ing what the program should accomplish, rather than describing how to go about
accomplishing. Another key feature of SOUL is that it can be used to reason
about software programs specified in different programming languages. A third
key feature of SOUL is that it supports symbiosis with the underlying Smalltalk

150 Expressing crosscutting concerns

or Java environment. The symbiosis allows one to write Smalltalk or Java code
within the declarative language which gets executed whenever that declaration is
asserted. These features make SOUL an ideal candidate for reasoning about and
creating change objects, and thus for specifying intensional changes.

Smalltalk Java

Smalltalk
primitives

Java
primitives

Logic Kernel

Figure 7.7: SOUL core

The SOUL kernel is depicted in Figure 7.7. It consists of a logic kernel to-
gether with an underlying library of basic logic primitives for every programming
language it can reason about. Two such libraries exist, namely the Library for
Code Reasoning (LiCoR) [73] for reasoning about Smalltalk code and Irish [39] for
reasoning about Java code. The logic kernel itself consists of a library of predicates
that serve for basic reasoning. They can, for instance, be used to do parse tree
traversal. The predicates in that library can be used by the developers for creating
new predicates in SOUL. Predicates can be grouped in layers, for the purpose of
classification. We create a basic layer, which contains predicates for every change
kind.

change(?c) if member(?c, [ChangeLoggercurrentComposition changes])

This predicate states that something is a change if it is a member of the collec-
tion of changes. Note that this predicate uses the symbiotic properties of SOUL to
obtain the collection of changes. We come back to this in Chapter 8 when we dis-
cuss the integration of intensional changes into a proof-of-concept-implmentation
of our approach.

The evaluation of the query change(?c) makes sure that every change instance
is bound once to ?c. For every kind of attribute of a change, we include a predicate
of the shape:

user(?u, ?c) if change(?c), equals(?u, [?c user])

This predicate binds to ?u the value of the Smalltalk expression that requests
a change ?c for its user attribute. Now we have explained the building blocks of
the language (tuples of change objects), we elaborate on the atoms. An atom is
a predicate such as equals(?u, ?n) where ?n and ?u can be constants or variables

7.3 Intensional changes 151

that must have the same value whenever the predicate is evaluated. Formulas
are implemented by chaining atoms. A comma represents the ∧, an alternative
definition of a predicate represents the ∨, the not() represents the ¬. As for the ∀
and ∃ quantifiers, they are implemented by means of standard SOUL predicates
forall(?query, ?test) and exists(?query, ?test).

Third, we implement the actions. An action is specified as a SOUL predicate
that includes symbiotic Smalltalk code that is executed to instantiate the con-
cerned changes. An example of an action for adding a method before a change ?c
is presented here:

AddMethodBefore(?ParameterList, ?user, ?intent, ?c, ?cnew) if
equals(?cnew, [AddChange newMethod: ?ParameterList

before:?c by:?user for:?intent])

A predicate like the one above is defined for each combination of change kind
(add, remove or modify), the kind of subject (e.g. class, method, etc) and the time
keyword (before or after). All predicates of this kind are grouped in a separate
SOUL layer called “actions”. The uniqueness of the id of the generated change
is ensured by the Smalltalk virtual machine, which assigns a unique object id to
every object that is instantiated. As we use the object ID as the change ID, it is
also unique. The timestamp is assigned in the same way that we explained in the
section on composite changes of Chapter 4.

Finally, we present the implementation of an intensional change and how its
evaluation is implemented. An intensional change is specified by a SOUL query
that includes a set of predicates (representing the actions) and another set of
predicates (representing the change cut). Take for instance the following SOUL
query:

AddStatementAfter((Buffer, false, ?m, “logit()”),
“Peter”, “InvokeLog”, ?c, ?cnew),

AddMetod(?c),
method(?m, ?c),
class(Buffer, ?c)

the first predicate of which is an action and the three final predicates of which
represent the change cut. This query represents the intensional change of the
InvokeLog feature. It creates an AddStatement change with a timestamp later
than the one of ?c, for each change ?c that adds a method to the Buffer class.

Whenever an intensional change instance needs to be applied, its apply method
needs to be called. That method is implemented by a call to the SOUL engine that
executes the query of that change. This causes an enumeration of the described
change set to be produced and added to the change set.

7.3.4 Formalising intensional changes

The formalisms from Chapter 6 need to be extended in order to include intensional
changes. The fundamental concepts – that consist of the relations Sub, F4C, D

152 Expressing crosscutting concerns

between changes and features – remain the same as intensional changes are changes
that can depend on multiple other changes (D) and that are contained within one
feature (F4C). Also the change specification does not require altering in order to
include intensional changes.

With respect to the properties of our formal model, we need to modify the
definition of a legal change and feature composition. As intensional changes eval-
uate to an enumeration of changes with respect to a change set, the actual change
set has to be considered whenever an intensional change is evaluated. Because of
that, feature compositions must no longer be specified by a set, but rather by an
ordered set – a sequence. On that sequence, we define the

before : F × F × PF → boolean

function, which returns true for (f1, f2, F) if f1 is specified on the left side of f2 in
the sequence F . In order to express the evaluation of intensional change, we first
introduce a function eval:

eval : C × PC → PC ′ (7.1)

which returns the set of changes that corresponds to the enumeration of changes
described by an intensional change c with respect to the change set containing all
the changes that stem from features in the feature composition before the feature
of c. In case eval is called for a change that is not intensional, it is returned
unchanged in a singleton set.

Now that we have a definition of the eval operator, we can redefine the legal
change and feature compositions as:

Definition 16 (Legal change composition, legal feature sequence). A legal change
composition H is a change composition such that there exists a legal feature se-
quence G ⊆ F , which satisfies the following constraints:

• If a feature is selected, all its ancestor features must be selected before that
feature in G:

∀f ∈ G • g
?+→ f ⇒ g ∈ G ∧ before(g, f,G) (7.2)

in which g
?+→ f is the transitive closure of the parent features of f .

• If a feature with mandatory sub-features is selected, these need to be selected,
as well:

∀f ∈ G • f
man→ g =⇒ g ∈ G (7.3)

• Let M = {c|f ∈ G∧ f
man→ c}, the set of mandatory changes and O = {c|f ∈

G ∧ f
opt→ c}, the set of optional changes. We need that

– all changes that are mandatory with respect to the selected features are
included in the change set:

M ⊆ H (7.4)

7.3 Intensional changes 153

– all changes in the change set stem from selected features:

H \M ⊆ O (7.5)

• All dependencies are satisfied

∀c ∈ H • ∃(c, c′) ∈ D =⇒ c′ ∈ H (7.6)

• Let I = {ci|ci ∈ H∧ci is intensional} be the collection of intensional changes
of the composition. Let ki be the parent feature of ci that is included in G:
ki ∈ G•ki

?→ ci. Let Jki = {j|j ∈ H ∧ before(j, ki, F)} be the set of features
that are included in G before ki. Let Cj = {c|c ∈ H ∧ ∃j ∈ Jki • j

?→ c} be
the set of changes that stem from features in Jki that are included in H. We
require all dependencies of intensional changes to be satisfied:

∀ci ∈ I • ∀ce ∈ eval(ci, Cj) • ∃(ce, c
′) ∈ D =⇒ c′ ∈ H (7.7)

In comparison to the previous definition of legal change and feature composi-
tions (Definition 5 on page 121) there are two differences: Constraint 7.2 is more
strict than 6.14 as it incorporates the order and an extra constraint 7.7 was added
to make sure that dependencies of intensional changes are also satisfied.

The other properties of the formal model are not affected by the introduction
of intensional changes and are not elaborated on. Only the algorithms that are ca-
pable of obtaining the maximal or minimal change composition have to be adapted
in order to evaluate the intensional changes when including them in a composi-
tion. We present an adapted version of the maximal composition algorithm in
Algorithm 9 that uses the subroutines of Algorithms 10, 11, 12, 13 and 14.

Input: A feature set F , a change specification CS
Output: A list consisting of 2 change sets

Fmin ← minimal feature set(F,CS);
Cmin ← minimal change set(Fmin, CS);
Cunw ← unwanted change set(Fmin, 6∈ Cmin, CS);
C+

unw ← transitive closure(Cunw, CS);
Cerr ← {c ∈ C+

unw \ Cunw ∧ c is mandatory};
return (C \ C+

unw, Cerr)

Algorithm 9: validateComposition(F,CS) function

The only difference between this algorithm and the one presented in Algo-
rithm 1 on page 111 is that the changes that depend on changes resulting from the
evaluation of intensional changes need to be retrieved in order to calculate the tran-
sitive closure of unwanted changes (Algorithm 14). This is done by Algorithm 12,
which first evaluates all changes of the change specification and afterwards com-
putes the complete set of dependencies among that complete set of changes.

154 Expressing crosscutting concerns

Input: A feature set F , a change specification CS
Output: A feature set

Fmin ← F foreach f ∈ F do
Fmin add: f ;
Fmin addall: {g|g ?+→ f};
Fmin addall: {g|f man+→ g};

end
return Fmin

Algorithm 10: minimal feature set(F,CS) subroutine

Input: A feature set Fmin, a change specification CS
Output: A change set

Cmin ← ∅;
foreach f ∈ Fmin do

foreach c ∈ f do
if c is mandatory then

Cmin add: c;
end

end
end
return Cmin

Algorithm 11: minimal change set(Fmin, CS) subroutine

Input: A change specification CS
Output: A set of dependencies

Call ← ∅;
Dall ← ∅;
foreach c ∈ C do

Call addall: eval(c,Call)
end
foreach c ∈ Call do

Dall addall: c dependencies
end
return Dall

Algorithm 12: find intensional dependencies(CS) subroutine

7.3 Intensional changes 155

Input: A feature set Fmin, a change specification CS
Output: A change set

Cunw ← ∅;
foreach f ∈ Fmin do

foreach c ∈ C do
if c 6∈ Cmin and feature of c 6∈ Fmin then

Cunw add: c;
end

end
end
return Cunw

Algorithm 13: unwanted change set(Fmin, Cmin, CS) subroutine

Input: A change set Cunw, a change specification CS
Output: A change set C+

unw

S ← Cunw;
D ← find intensional dependencies(CS) ;
C+

unw ← ∅;
while S 6= ∅ do

c← remove a change c from S;
C+

unw add: c;
foreach c2 with d in D from c2 to c do

D remove: d;
S add: c2

end
end
return C+

unw

Algorithm 14: transitive closure(Cunw, CS) subroutine

156 Expressing crosscutting concerns

Note that the actual construction of a software variation requires that inten-
sional changes are evaluated before they are carried out. As these algorithms are
only used to validate compositions, they do not evaluate intensional changes for
constructing variations, but rather only output change sets that can be used to
validate and fix erroneous compositions.

7.3.5 Advantages and drawbacks

Now that we have elaborated on how our change model is extended with inten-
sional changes, we evaluate this extension with respect to our approach to feature-
oriented programming.

Intensional changes allow for developers to describe sets of changes in stead
of enumerating them. This is what one wants when implementing a crosscutting
functionality. The description of an intensional change is evaluated with respect
to a change set in order to produce the corresponding extension of the intensional
change. Consequently, an intensional change can be reused in different compo-
sitions, as it will basically evaluate to the right extension anyway. This makes
an intensional change more flexible than an ordinary change collection. Conse-
quently, the intensional changes allow our approach to FOP to be more robust
against changes in the feature composition.

Drawbacks of the intensional changes are fourfold. First they require an ad-
ditional change cut language and evaluation step, making them somewhat more
complex than ordinary changes. A second drawback is that an intensional change
cannot be obtained by logging a developer or differentiating between source code
files, but must always be specified by a developer. Thirdly, intensional changes com-
plicate debugging, as they evaluate differently in different compositions. Finally,
while the order of the features within a composition was not important before the
intensional changes were included in the model, it now has become important as
it influences the way the intensional change is evaluated. In Chapter 9, we hint at
how the second issue could be overcome.

We have implemented both the change cut language and the change cut model
by means of SOUL. We integrated both in ChEOPS – our proof-of-concept imple-
mentation. Some small experiments were conducted to validate the usability of
intensional changes in the context of feature-oriented programming. The following
chapter elaborates on both the integration and the experiments.

7.4 Conclusion

We started this chapter by explaining that some functionality, such as logging
or error handling, are notoriously difficult to implement in a modular way and
that we name such functionality crosscutting, because they include changes which
modify software building blocks scattered over the system. We show that in our
change-based approach to FOP, the implementation of crosscutting functionality
is actually not scattered over the software application because the changes are
grouped in one change set. An inconvenience of our model, however, is that

7.4 Conclusion 157

features that implement a crosscutting functionality usually depend on more than
one feature and that a composition that contains such a feature must consequently
include all the features it depends on.

We advocate a solution based on the concept of flexible features. A feature
is considered flexible if it contains at least one optional change object. That is a
change that does not have to be included in a composition in order to make the
composition valid. This principle allows a flexible feature to be partially included
in a composition that excludes some features on which the flexible feature depends.
We show that this brings about more flexibility with respect to feature composition
and that flexible features can for instance also be used to implement a facade design
pattern.

While flexible features already help in modeling crosscutting functionality, they
still suffer from some conveniences with respect to maintainability as they can only
be specified as extensional lists of changes. In order to overcome these problems,
we introduce an extension to our change model. An intensional change is a kind of
change that can be applied on a software program p in order to apply the changes
described by that intensional change to p. This application consists of two phases.
First, the intensional change needs to be evaluated with respect to the change set
Cp that specifies p. This step produces an enumeration of changes which are all
applied on p in the second step.

We present a formal language that can be used to specify intensional changes.
It is based on a tuple calculus and implemented by means of SOUL, an imple-
mentation of a Prolog-like declarative language on top of Smalltalk. Finally, we
evaluate the extension of our model with intensional changes and present the ad-
vantages and drawbacks. Benefits include that intensional changes make features
more reusable and feature composition more flexible. Drawbacks include an in-
crease in complexity of the change specification and debugging process and the
fact that the order in which the features are specified within a composition be-
came important after the introduction of intensional changes, as those changes are
evaluated with respect to a change set.

Chapter 8

Validation

The main goal of this dissertation is to validate that software can indeed be au-
tomatically restructured in feature modules if it is developed in a development
environment that records fine-grained modularisation information resulting from
development actions. In the previous chapters, we elaborated on a novel devel-
opment approach which enables bottom-up feature-oriented programming (FOP).
That approach consists of three phases: First, the software system is completely
developed in a standard object-oriented way while fine-grained modularisation in-
formation is recorded (change collection). Second, that information is used to
decompose the software system into feature modules (change classification). Fi-
nally, those modules are recomposed in order to construct variations of the software
system (change composition).

In this chapter, we validate this approach in two steps. We first elaborate
on the Change- & Evolution Oriented Programming Support (ChEOPS). It is a
proof-of-concept implementation of a development environment that is capable
of capturing fine-grained modularisation information resulting from development
actions. It is written as a plugin for the Smalltalk VisualWorks development
environment and supports all three phases (change collection, change classification
and change composition) of our approach to FOP. Afterwards, we present a case
study, which we implemented in ChEOPS and show that the resulting software
system can indeed be automatically restructured in feature modules.

8.1 Proof-of-concept implementation

ChEOPS is developed as a plugin for the VisualWorks interactive development
environment (IDE), which we created as a proof-of-concept implementation of our
approach to FOP. ChEOPS is a research vehicle that implements the model of
changes described in Chapter 4 and does not fall back on ChangeList [105] – a
change management tool included in most Smalltalk IDEs. Reasons for this are
elaborated on in Chapter 3.

160 Validation

The goal of this section is to show that ChEOPS is a development environment
that records fine-grained modularisation information resulting from development
actions. In order to do that, we first explain why we chose Smalltalk and Visual-
Works for Smalltalk as the programming language and IDE which we implemented
ChEOPS in. Afterwards, we show how ChEOPS provides support for all three
phases of our change-based approach to FOP (which are described in Chapter 5).
We conclude this section by showing that the implementation supports the for-
mal model that was introduced in Chapter 6 and by an explanation of how the
implementation of intensional changes (from Chapter 7) is linked to ChEOPS.

8.1.1 VisualWorks for Smalltalk

We intend ChEOPS to be a research vehicle that proves the concepts of this
work. Consequently, development speed is more important than execution speed.
That premise is the main driver for choosing Smalltalk as the development lan-
guage for ChEOPS. Concretely, Smalltalk provides three advantages. First, it
is a dynamically-typed programming language, which speeds up the development
of prototype implementations [104]. Second, Smalltalk provides powerful reflec-
tive capabilities to its own meta-model. This enables a programmer to adapt the
Smalltalk language itself from within the language, again benefitting rapid proto-
typing. Finally, Smalltalk is a class-based object-oriented programming language
that adheres to the FAMIX model. As our change model is based on the FAMIX
model, it can be used to express the development and evolution of programs writ-
ten in Smalltalk. Implementing ChEOPS in that same language, allows for a
meta-circular implementation of ChEOPS by means of ChEOPS 1.

The interactive development environment which we implemented ChEOPS in is
VisualWorks for Smalltalk. It is one of the leading commercial implementations of
the Smalltalk programming language and environment. A benefit of VisualWorks,
is that the non-commercial version has all the power and functionality of the
commercial version. In both versions for instance, the user can inspect all the
source code (including the one of the IDE itself). A strength of VisualWorks for
Smalltalk is that it is itself implemented in Smalltalk and that it provides extension
hooks for external plugins. These hooks are used to speed up the integration of
ChEOPS into the VisualWorks IDE.

8.1.2 Model of first-class change objects

ChEOPS focusses on class-based object-oriented development and consequently
implements the model of changes as it was presented in the class diagram of Fig-
ure 7.6. The implementation contains a part that implements all the building
blocks of the FAMIX model. Every FAMIX building block (Figure 4.2) is imple-
mented as a separate class that denotes that particular FAMIX building block. All

1In the end we did not develop ChEOPS by means of ChEOPS due to time constraints.

8.1 Proof-of-concept implementation 161

these classes form the set of subclasses of the Subject class, which is the subject
of MyChange class 2.

The MyChange class is sub-classed by the AtomicChange, the CompositeChange
and the IntensionalChange class which respectively implement the component
and composite roles of a compiste design pattern and the intensional change kind,
that we introduced in Chapter 7. While AtomicChange consists of a single change
object, a CompositeChange consists of a set of changes that need to be applied
together in order to apply the composite change.

Dependencies between changes are implemented by two by two ordered collec-
tions that are maintained within the change object. A change object maintains
the references to changes which it depends on semantically and structurally. In
order to speed up the computation of transitive closures of dependencies, a change
object does not only maintain the list of all change objects that it depends on, but
it also maintains a reference to all change objects that in turn depend on it.

In ChEOPS, it would be impossible to represent the change objects in a non-
first class way, as they are continuously manipulated by the tool. In the Change-
and Evolution-Oriented Programming Support, changes form the main develop-
ment entity. As such, change objects must be continuously referenced, dragged
and dropped, combined, queried, instantiated, etc. In order to do so, we need to
maintain a reference to them.

8.1.3 Obtaining changes

In ChEOPS, a first-class change object is created by instantiating an AddChange,
a ModifyChange, a RemoveChange or an IntensionalChange. The instantiation
of a change requires a subject and some additional information that annotates
the change with some extra information (the intent of the change, the user who
instantiates the change, the time when the change is instantiated and the unique
identifier of the change) that can later be used to modularise the software. After
a change is instantiated, it becomes a first-class object, which can be referenced
an passed along.

In ChEOPS, a reference to every change instance is maintained by the change
logger – a single instance of the ChangeLogger class – that can be queried for
changes. The change logger maintains a reference to all change objects and stores
them ordered according to time. We now describe three different ways of instan-
tiating change objects in ChEOPS.

Differentiation

The first technique to capture changes requires two versions of a (part of a) soft-
ware system and computes the changes between both by executing a command
similar to the Linux diff -command on both versions. This technique is sup-
ported in ChEOPS by means of an already-existing IDE plugin called StORE.

2Note that VisualWorks already contains a class named Change, which is used by the Change-
List tool. So as not to interfere with that tool, we name our Change class MyChange

162 Validation

StORE is the version control system used by the VisualWorks for Smalltalk envi-
ronment. It is based on a client-server architecture and uses a centralized server
with a database acting as the central repository. Developers have the possibility
to publish (commit) packages which will be versioned by StORE. Instead of ver-
sioning files, StORE works on a granularity-level of program entities (e.g. a class
or method) which facilitates for example the merging of source code of different
developers.

Figure 8.1: Differentiation to obtain change objects

StORE also provides the functionality of comparing two versions of the same
software system and is capable of calculating and presenting the differences be-
tween those versions detailed to the method level. This is presented in Figure 8.1.
In the upper left pane of the figure, a list of classes is presented. The upper right
pane contains the methods that were added, removed (crossed out) and /or mod-
ified (crossed out and not crossed out). The lower left and right panes show the
class definition of the class respectively in both versions.

We extended the functionality of StORE in two ways. First we developed a
parser that is capable of parsing method bodies and that can detect the differ-
ences between two method bodies. Second, we implemented the functionality that
instantiates the corresponding change objects for all the differences between two
versions.

The current implementation of ChEOPS calculates the differences between two
method bodies in a very naive way as it sequentially compares all the statements
and produces a RemoveStatement for every statement of the old version and
an AddStatement for every statement in the new version. A more intelligent
comparison within method bodies (such as Envy [108] provides) might be better
suited, but remains a topic of future work as it is not essencial to validate our
work.

Change-oriented programming

Just like in many other IDE’s (such as Squeak or Eclipse), change-oriented pro-
gramming is already partially supported in VisualWorks: A class can be created

8.1 Proof-of-concept implementation 163

though interactive dialogs, or the code can be modified by means of an automated
refactoring. ChOP goes further than that, however, as it requires all building
blocks to be created, modified and deleted in a change-oriented way (e.g. adding
a method to a class, removing a statement from a method, etc).

ChEOPS provides an interactive dialog for every change kind, so that the devel-
oper can instantiate that change to engage in pure change-oriented programming.
An interactive dialog queries the developer for all the information that is required
to instantiate the concerned change object. Some of those dialogs can be triggered
from within the standard IDE. The dialog for the addition of a class, for instance,
can be triggered by right-clicking the package as illustrated in Figure 8.2.

Figure 8.2: Change-oriented programming to obtain change objects

Other dialogs can only be triggered from within the change pane of the
ChEOPS plugin. Figure 8.3 shows different change types and the instantiate
button that can be clicked in order to trigger the dialog.

Figure 8.3: Change-oriented programming to obtain change objects (view 2)

Another functionality of ChEOPS allows developers to specify their own kinds
of changes, by for instance composing atomic changes into a higher order composite

164 Validation

change. ChEOPS only supports this principle in a textual way. A developer who
wants to declare a new change kind, must write the definition of the new change
kind by subclassing the composite change and implement the correct new : and
instantiate : methods for the new change kind.

Logging

ChEOPS has the capability of logging developers producing code in the standard
object-oriented way. To that regard, ChEOPS instruments the VisualWorks IDE
with hooks and uses them to instantiate first-class change objects that represent
the software development or evolution actions taken by the developer. In order to
explain how this is done, we first explain how software is developed in a standard
object-oriented way in VisualWorks for Smalltalk.

In VisualWorks for Smalltalk, there only exist three entities that can be defined:
packages, classes and methods. All other building blocks are considered a part
of one of those three. An instance variable for instance, is a part of its class
description. A developer can add or modify one of these entities by typing the
new definition of that entity in the corresponding IDE pane and by afterwards
clicking the accept button. Clicking this button triggers a method of the IDE that
performs the necessary actions for (re)defining that class or method. ChEOPS
overrides that method and adds the code for instantiating a change object for
every change that is detected. Note that here, in fact we are also applying a
differentiation at the level of method bodies and class definitions. In order to
perform that differentiation, ChEOPS uses the same parser that we introduced
earlier.

8.1.4 Change classification

In this section, we focus on the classification of changes into change sets that
represent features. Classification has two aspects: the classification model and the
classification technique, which is embodied in the different software classification
strategies. We subsequently discuss the implementation of the classification model
and three classification techniques.

Classification model

The classification model is a metamodel that consists of two parts: the change
model and the actual classification model. Each part focuses on another level of
granularity. The change model describes how the changes are modeled. We refer
the reader to Section 8.1.2 for an explanation on how that model was implemented.

The actual classification model defines and describes the entities of the super-
structure which is a flexible organisational structure based on feature and change
objects (represented in Figure 5.6 on page 105). A class named Feature was imple-
mented. Instances of that class represent the actual features of a software system.
A feature has a unique id (it’s object id) and a name. While the name has to be

8.1 Proof-of-concept implementation 165

provided by the one instantiating the feature, the id is provided automatically by
the IDE.

The implementation of the D relation was already elaborated on in Sec-
tion 8.1.2. C4F is implemented by means of the intent attribute of the Change
instances. Every change instance has an intent, which contains a reference to the
feature the change is related to in terms of a C4F relation. The cardinality of
the C4F relation is maintained within the change instance. How the intent of a
change instance is specified depends on the classification technique that is used
and is discussed below.

The Sub relation is implemented by a dedicated class Sub. An instance of the
Sub class maintains a reference to the parent and son feature that are in a sub-
feature relationship. The cardinality of the instance, specifies whether the son
feature has to be included in a composition that includes the parent feature. How
the Sub class is instantiated depends on the on the classification strategy that is
used and will be discussed below.

Classification techniques

The implementation of the classification of changes and features boils down to
creating the right instances of the Feature and Sub classes, setting the intent
of change instances to the correct feature instances and setting the cardinality of
the change. There exist different techniques for classifying changes and features,
which each have their own implementation. As in this dissertation we presented
three classification techniques, we now present how ChEOPS supports these three
techniques and how we implemented them.

Manual classification In this technique, a developer must manually create the
features in which the changes have to be classified. In ChEOPS, this can be done
by instantiating the Feature class and by providing the instance with a name that
denotes the functionality of that feature. This classification of change instances
in feature instances by means of manual classification implies that the developer
manually sets the intent of a change to the feature that change should be classified
in. Figure 5.7 on page 105 presents a screenshot of how ChEOPS supports this
process. The developer can drag and drop a change instance from one pane (that
contains the changes) to another pane (that contains the features).

Setting the cardinality of the change with respect to its feature must be done
in a manual way as well. ChEOPS supports this by allowing a developer to select
multiple changes and by giving him the opportunity of right clicking these changes
and setting their cardinality together to 0 (denoting that it is optional) or 1 (de-
noting it is mandatory). Also the cardinality of the relations between features
must be manually set by the developer. ChEOPS supports this process by allow-
ing a developer to inspect the instances of the Sub relation and by setting their
cardinality to 0 (denoting that it is optional) or 1 (denoting it is mandatory).

Semi-automatic classification A semi-automatic classification technique uses
a technique such as clustering in order to propose a classification of change in-

166 Validation

stances to the developer, who has the final word on classifying those instances in
feature instances. The current version of ChEOPS contains one simple clustering
strategy, which uses the timestamp of the change instances as a distance measure.
Algorithm 15 presents the clustering algorithm that we used in our validation. It
is a linear clustering algorithm that groups changes together if they were applied
shortly after one another. Other clustering algorithms are concevable but were
not included in the implementation, as that is beyond the focus of our work.

Input: changes← a set of change instances (ordered by timestamp)
Output: A set of features, that consist of changes

clusters← ∅;
δt← (changes last timestamp - changes first timestamp) / (changes size);
cprev ← changes first;
cluster ← ∅;
clusters add: cluster;
foreach c ∈ changes do

if c timestamp - cprev timestamp > 3.δt then
cluster ← ∅;
clusters add: cluster;
cprev ← c

end
cluster add: c;

end
return clusters;

Algorithm 15: Clustering change instances based on their timestamp

The clustering algorithm first calculates the average time between two changes
in the change set and afterwards loops over all the members of the ordered col-
lection of changes. If the timestamp of a change indicates that it was applied a
long time (the average interval times three – a constant which shows to provide a
good distribution for our example case) after the previous change, a new cluster is
created. In the same loop, all changes are classified in the cluster they belong to.
Although this is a very naive algorithm, it has shown to produces useful results.

The result of the clustering algorithm depends on the actual change set that it
is given as an input and on the constant used to compare change intervals. As this
section is about a proof-of-concept validation of our approach, we do not elaborate
on the qualitative results of this clustering algorithm3 but rather focus on how it
is used and implemented in ChEOPS. Its implementation is done in Smalltalk and
derives directly from the pseudo-code of the algorithm in Algorithm 15. In case it
is required, a developer can modify this clustering algorithm or even create a new
one. This is done by adapting the cluster method of the ChangeLogger class.

After the clustering algorithm has been finished and the clustering results have
been presented, the developer has to manually classify the changes in features.

3Some qualitative results are presented in Section 8.2.

8.1 Proof-of-concept implementation 167

Figure 5.8 on page 106 contains a screenshot of how ChEOPS supports this process.
The developer can drag and drop the change instances – which are clustered based
on their timestamp – from one pane (that contains the changes) to another pane
(that contains the features). Behind the scenes, ChEOPS sets the intent of every
change to the feature it is classified in.

In order to have features in which to classify change instances, a developer must
– just as in the manual classification strategy – first create the features. This can
be done by instantiating the Feature class and by providing the instance with
a name that denotes the functionality of that feature. In order to speed-up the
classification process, a developer can declare a default cardinality of a feature.
All changes that are classified in a feature with cardinality 0 are by default set to
optional, while changes that are classified in a feature with cardinality 1 are by
default set to mandatory. After classifying a change into a feature with a default
mandatory cardinality, the developer can reset the cardinality of the change to
optional if that is required. This is done in the same way as in the manual
classification strategy.

With respect to the Sub relation, this technique is not different from the manual
classification technique. The developer must instantiate the Sub class with the
right relations between parent and son features and set the cardinality.

Automatic classification The automatic classification technique relies heavily
on the information provided at development time. In ChEOPS, we use a forward
tagging technique to capture that information. Before a developer starts the im-
plementation of a new feature, he is required to provide ChEOPS with his name
and the name of that feature. ChEOPS requests the latter by means of an inter-
active dialog, which is triggered by the developer. The dialog presents a list of all
features of the current project. The developer can select one of those features (in
order to extend or adapt a previously created feature) or type a new name (for
initiating a new feature). In case a new feature is specified, ChEOPS creates a new
instance of the Feature class and provides it a name that equals the new name
given by the developer. The relations between the features need to be declared
manually by the developer. This is done and implemented in exactly the same
way as for the two previously explained classification strategies.

Just as in the semi-automatic strategy, a feature has a default cardinality for
its changes, which is specified by the developer, who can override the cardinality of
every change afterwards. This might still be a tedious process, considering the high
numbers of change objects even for small software projects. A conservative – but
less tedious – strategy can be to declare all changes as mandatory with respect to
their parent feature. Such a conservative strategy will obviously more often result
in composition conflicts. Upon the detection of a conflict, the developer can of
course still decide to modify the cardinality of a change in order to resolve that
conflict.

Whenever a change is instantiated, ChEOPS automatically forward tags it with
the information concerning the functionality it implements and who instantiated
it. While in the current ChEOPS implementation, the latter is done by inserting

168 Validation

a string in the user field of the change instance, the former is done by setting
the intent of the change instance to the feature instance, that corresponds to the
functionality which is being developed. At any point in time, a user dan query
ChEOPS for an overview of all changes. Figure 5.9 presents a screenshot of the
result of the automatic classification in ChEOPS.

8.1.5 Feature composition

Our model allows the composition of a program variation by specifying the features
that variation should include. Some compositions, however, are not possible due
to unsatisfied dependencies. Others have multiple possibilities (due to the option-
ality of some changes). Thanks to the fine-grained level of feature specification,
ChEOPS can check wether a composition is valid or not. Moreover, in case it is
not, it can assist in resolving the conflict by providing detailed information about
the conflict. The following elaborates on how ChEOPS deals with composition
strategies, composition views and composition correction.

Change composition strategies

As already mentioned before, different change composition strategies might be
conceivable – depending on what the developer desires. A maximal change com-
position, for instance, represents the most complete implementation of a feature
composition. A minimal change composition stands for the most concise imple-
mentation of a feature composition. Yet another strategy could be a mix of both
in which the optional changes that add code are included and the optional changes
that remove code are omitted. This and other composition strategies, however,
remains a topic for future work.

ChEOPS contains only one change composition strategy: the maximal one. It
is implemented in the generateCompositionFor: method of the ChangeLogger
class. The implementations maps to the algorithm for that strategy presented in
Algorithm 1. In case another change composition strategy is required, another
definition of this method should be provided. In case multiple strategies are re-
quired, this implementation should be refactored in such a way that it includes
a strategy design pattern [43]. This design pattern would make ChEOPS more
easily extensible with new change composition strategies.

The generateCompositionFor: method returns a list that contains two lists.
The first one denotes all the changes of the composition that must be included in
the composition in order to make it valid. The second one contains all the changes
that caused the composition to be invalid (= all the changes with at least one
unsatisfied dependency). Consequently, the composition is only valid in case the
second list is empty. In case the composition is not valid, however, this second list
can be used to point the developer to the problem(s) that cause the invalidity of
that composition. This is further discussed below.

8.1 Proof-of-concept implementation 169

Composition views

ChEOPS includes a tool that can produce a graphical representation of a com-
position. In that graphical view, the changes and the dependencies among them
are depicted as graphs. All the nodes that represent changes of the same feature
are depicted in the same color. The nodes of the graphs can be inspected in order
to obtain all the information of the change they represent. For the sake of easing
debugging, the change objects that cause a composition to fail are colored in black.

As a base for the graphical framework, ChEOPS uses Mondrian [76]. Mondrian
is a plugin for VisualWorks for Smalltalk that provides basic functionality for draw-
ing and coloring graphical objects but also contains more powerful features, such as
a clean distribution of graphical objects over the screen. ChEOPS uses that func-
tionality for representing feature compositions. The analyzeCompositionFor:
method of the ChangeLogger class first checks the validity of a composition by
means of the generateCompositionFor: and afterwards produces the visuali-
sation of the changes. Figures 8.7 to 8.10 contain screenshots of the graphical
representation ChEOPS produced for different compositions. Note that the car-
dinality of a change with respect to its parent feature is also expressed in the
graphical representation (a circle is a mandatory change and a rectangle is an
optional change).

Composition correction

In some cases, the developer requires a software variation that contains incom-
patible features. In such case, ChEOPS can support the developer in taking the
right corrective actions. In order to do that, the developer should provide the
analyzeCompositionFor: method with the desired composition. In case the
composition is invalid because of some unsatisfied dependencies among the change
objects, the resulting graphical representation will contain black nodes. The black
nodes denote the spots that provoke the composition conflict. The developer can
inspect these nodes in order to obtain extra information that can assist in com-
pleting the composition. Examples of such information are which changes should
be included in order to make this composition valid or which changes would have
to be excluded from the composition in order to make it valid. Such information
can afterwards serve as an input for a reclassification of changes in features.

While not included in the actual version of ChEOPS, another functionality
with respect to composition correction, may consist of the production of a fea-
ture diagram from the changes, the features and the relations among them. As
was elaborated on in Chapter 6, a change specification can automatically be trans-
formed into a feature diagram. This feature diagram represents the product family
of the actual implementation of the software product. This might differ from the
product family the designers of the software product had in mind. The compari-
son of the generated feature diagram and the originally designed feature diagram
might reveal discrepancies, that might have to be corrected.

The final support ChEOPS provides with respect to composition correction,
lies in the raison dêtre of the software building blocks of the software system. Every

170 Validation

building block of a software system that was developed with ChEOPS maintains a
reference to the changes that affect it. An inspection of this list reveals why it was
created (and adapted). The list might also reveal which developer(s) “touched”
this building block. Such information can assist a developer in the process of
understanding a software system [44].

8.1.6 ChEOPS supports the formal model

Let us now show how the current version of our proof-of-concept implementation –
ChEOPS – is capable of producing change specifications that adhere to Definition 3
on page 120 of Chapter 6.

The principal functionality of ChEOPS is capturing the development actions
performed within VisualWorks and to represent them into instances of the Change
class. The set of all these instances corresponds to the set C of the formal model.
Once changes are collected, ChEOPS takes changes that belong together and puts
them into an instance of the Feature class. The set of all these instances maps to
the set F of the formal model, and the act of grouping of changes into features to
the F4C function (Equation 6.4 on page 119). The grouping relation is a function,
since ChEOPS ensures that every change belongs to exactly one feature. As F4C
is a function it does not matter that we implement the cardinality of a change
with respect to its feature in the change itself.

ChEOPS has an interface that allows a developer to group features into higher-
level features. The grouping relation actually maps to Sub (Equation 6.1 on
page 118) of the formal model. For technical reasons, however, ChEOPS does
not implement optionality as a property of the relation between two features,
but rather as a property of the parent feature; i.e. the sub-features of a par-
ent are either all optional or all mandatory. Consequently, ChEOPS allows only
a subset of Sub as defined in the formal model, namely Sub with the property
∀(fa, fb, x), (fa, fc, y) ∈ Sub ⇒ x = y. The relation implemented by ChEOPS
hence satisfies the formal model, but is more strict. Moreover, it satisfies proper-
ties 6.2 and 6.3 on page 118. Property 6.2 holds since the particular implementa-
tion of Sub implies that every feature will either be optional or mandatory with
respect to its parent. Property 6.3 holds because ChEOPS ensures that the rela-
tion Sub over F only contains trees. In order to do that, it imposes two restrictions
on the grouping of features. First, a feature can never be part of more than one
other feature. Second, a feature can never be included in a feature that it already
consists of.

The structural dependencies between changes are imposed by the meta-object
protocol of the programming language used in the IDE. ChEOPS is capable of
identifying all kinds of dependencies for dynamically typed programming languages
that adhere to the FAMIX model (Section 4.4.1 on page 87), and records them
while changes are applied. The set of all recorded structural dependencies cor-
responds to Dstr (Equation 6.5) of the formal model. It satisfies the properties
required for Dstr, since it is: irreflexive (a change can never structurally depend
on itself as that would mean that it would never be applicable in the IDE), asym-
metric (if a change c1 structurally depends on c2, c2 never structurally depends

8.1 Proof-of-concept implementation 171

on c1 as that would mean that both c1 and c2 would never be applicable from
within the IDE) and transitive (if a change c1 structurally depends on c2 and c2

structurally depends on c3, c1 always structurally depends on c3. If c1 can only be
applied if c2 is applied and c2 can only be applied if c3 is applied, we can indeed
say that c1 can only be applied of c3 is applied).

The semantical dependencies between changes have to be manually instantiated
by the developer as they depend on domain knowledge. ChEOPS supports this
process by allowing the developer to inspect and modify attributes of the change
objects. One of those attributes is Dsem: a collection of changes on which the
owner of the attribute semantically depends. A developer can add or remove
semantic dependencies from a change c by editing the Dsem of c. The union of
the Dsem collections of all changes in C represents Dsem (Equation 6.9) of the
formal model. It satisfies the properties required for Dsem, since it is: irreflexive
(a change never semantically depends on itself as ChEOPS prohibits this) and
transitive (if a change c1 semantically depends on c2 and c2 semantically depends
on c3, c1 always semantically depends on c3. If c1 can only be applied if c2 is
applied and c2 can only be applied if c3 is applied, we can indeed say that c1 can
only be applied of c3 is applied).

Finally, ChEOPS adheres to Equation 6.13 on page 120 as it only allows creat-
ing a feature by grouping changes and/or features, thus every feature in ChEOPS
necessarily consists of sub-features, changes or both. From this, we can conclude
that ChEOPS completely adheres to the formalisms introduced in Section 6.2.1
and that we can safely say that each change specification created with ChEOPS
adheres to Definition 3 of page 120.

As the current implementation of ChEOPS only includes one composition strat-
egy (the one of Algorithm 1), it always produces a maximal change composition.
Using this as a default strategy makes sense, since it produces the system with
the most complete implementation of the corresponding feature set. Other strate-
gies – such as a strategy that produces the minimal composition (as defined in
Definition 8 on page 123) – can be added to ChEOPS. From this, we conclude
that ChEOPS provides an implementation of the formal model that we proposed
in Chapter 6. Let us now take a look at how we integrate the intensional changes
into ChEOPS.

8.1.7 Intensional changes in ChEOPS

This section focusses on the integration of intensional changes – that was already
reported on in Chapter 7 – with ChEOPS. The implementation of this integration
is eased by the fact that SOUL – the language used to specify change cuts – is itself
a plugin for VisualWorks for Smalltalk and that it has a powerful symbiosis with
Smalltalk. We subsequently discuss how the change cut language uses the change
objects of ChEOPS as n-tuples to reason about, how the actions of intensional
changes produce ChEOPS change objects, how ChEOPS allows the specification
of intensional changes and how this extension affects the formal model behind
ChEOPS.

172 Validation

We first remember how a change is defined by the change cut language. The
definition

change(?c)ifmember(?c, [ChangeLogger currentComposition changes])

states that something is a change if it is a member of the the result of the
Smalltalk block [ChangeLogger currentComposition changes]. Upon execution of
the block, the message allChanges is sent to the result of sending the message
currentComposition to ChangeLogger class. This returns set of all the changes
that are already included in the feature current composition. The specification of
this Smalltalk block within SOUL query is already one example where the symbio-
sis between SOUL and Smalltalk proves useful. Another example can be found in
the predicate definitions for retrieving the values of the attributes of the changes
within SOUL. The predicate

user(?u, ?c)ifchange(?c), equals(?u, [?c user])

for instance, returns all the parts where ?c is bound to a change of the ChEOPS
change set and ?u is bound to the value of the smalltalk block [?c user], which
evaluates to the value of the user message that is sent to the object bound to ?c.

Just as the formulas of the change cut language do, the actions of the inten-
sional changes also use the symbiotic capabilities of SOUL. An action needs to
instantiate the ChEOPS change objects denoted by an n-tuple. Remember the
example of an action that has to produce a change object that adds a method just
before another change:

AddMethodBefore(?ParameterList, ?user, ?intent, ?c, ?cnew) if
equals(?cnew, [AddChange newMethod: ?ParameterList

before:?c by:?user for:?intent])

in which a new change object is bound to ?cnew after it is created by the Smalltalk
block [AddChange newMethod: ?ParameterList before:?c by:?user for:?intent].
This block, when evaluated, produces a new change instance and registers it in
the ChangeLogger class.

Now we showed how the symbiosis from SOUL to Smalltalk is used for obtain-
ing and creating ChEOPS change objects from within intensional change speci-
fications, we elaborate on how the symbiosis from Smalltalk to SOUL is used in
order to specify intensional changes from within ChEOPS. Just like all ChEOPS
change kinds, intensional change objects have to be created by instantiating a
concrete subclass of the Change class. In case of an intensional change, the
IntensionalChange class has to be instantiated. This can be done by invok-
ing the new : method on that class. The parameter of the method has to be a
sequence that denotes the actions and change cut of the intensional change. An
example of such sequence is this one:

8.2 Validation: FOText 173

AddStatementAfter((Buffer, false, ?m, “logit()”),
“Peter”, “InvokeLog”, ?c, ?cnew),

AddMetod(?c),
method(?m, ?c),
class(”Buffer”, ?c)

The query is maintained in a dedicated attribute of the intensional change instance.
The apply method of the intensional change consists of two steps. It first calls the
eval method on the intentional change and stores the result – which consists of the
enumeration of changes of this intension – in a local variable. Afterwards, it calls
the apply method of all those changes, in order to apply all of them. The eval
method of an intensional change contains Smalltalk code that causes the SOUL
evaluator to evaluate the query. The set of all new changes (= the values of ?cnew)
is returned by the eval method. Consequently, by sending the eval message to
an intensional change, an enumeration corresponding to that intensional change
can be obtained with respect to all the changes that reside in the current feature
composition.

Thanks to splitting up the eval and apply methods of the intensional changes,
one can evaluate a intensional change without applying it. This comes in handy
for the implementation of a composition algorithm that produces the maximal
change composition of a feature composition containing intensional changes – as
presented in Algorithm 9. That algorithm requires an eval function that evaluates
an intensional change without applying it.

8.2 Validation: FOText

The goal of this section is to demonstrate that an application – developed in an
IDE that captures modularisation information resulting from development actions
(like ChEOPS) – can indeed be automatically restructured in feature modules. We
start out by explaining FOText: a feature-oriented implementation of a word pro-
cessor that has been used in related work on feature-oriented programming [68].
We extend FOText with some crosscutting functionality to demonstrate the power
of flexible features and intensional changes and elaborate on its object-oriented
implementation in ChEOPS. Finally, we show how FOText can then automati-
cally be modularised in feature modules that can be recomposed to form FOText
variations that provide different combinations of functionality.

By implementing FOText, we also validate our approach to FOP. Concretely,
we expect our implementation to allow for the expression of features that consist
of additions, modifications and deletions of building blocks down to the level of a
single code statement (high expressiveness). We expect our model to support the
customised deployment of crosscutting functionality without breaking the validity
of a composition. Finally, we want to confirm that our approach to FOP indeed
does not require an upfront feature-oriented design and as such enables bottom-up
FOP without deviating from the standard object-oriented development process.

174 Validation

8.2.1 FOText design

FOText is an application that provides a graphic user interface in which users may
type and edit texts. It also provides a menu – launched by the right mouse button
– that allows the execution of certain functions to edit the text. FOText adheres
to the Model-View-Controller design pattern [43].

FOText

Print InfoWindowCompress EditFile

Copy-Cut-
PasteSelectAll FindSaveOpen

Help

Save
AsNew Quit

Logging

Composition Rules

Open requires Save
Save requires SaveAs

Rationale
Compress is usefull for low
resource environments

Figure 8.4: FODA diagram of FOText

Figure 8.4 presents the FODA diagram of the FOText application. In its original
form, the FOText application from [68] contains all features but two; the Compress
and the Logging feature, which we explain below. Features such as: New, Quit,
Open, Save, SaveAs, Print, Copy-Cut-Paste, Find, SelectAll and Help are self
explanatory. The File feature is a mandatory feature with respect to FOText,
and must consequently be included in every product variation. The New and Quit
features are also mandatory with respect to their parent feature and will have to
be included in every product variation as well. All other features are optional with
respect to their parent and – if required – can be safely omitted from a composition
that includes the parent.

We extend FOText with two more features (the Compress and the Logging
feature), in order to demonstrate the power of flexible features and intensional
changes. The Compress feature provides the ability to compress text files before
they are saved, and decompresses them before they are opened. The Status Title
feature displays the name of the opened file and the name of the file that is being
saved in the title bar of the FOText window. It also clears the window title bar
when the user starts a new file. We specify the latter two as flexible while the
former nine are specified as monolithic.

The Logging feature is a feature that adds logging behaviour to the text ed-
itor. It is a crosscutting functionality, as involves changes that depend on many
FOText features. The composition rules state two other dependencies. The Open
feature cannot be applied without the Save feature, which in its turn can not be
applied without the SaveAs feature. The rationale of the diagram states that the

8.2 Validation: FOText 175

Compress feature is useful for producing a variation for an environment that has
few resources.

<uses>

<uses>

TextEditor
Controller

Application
Window

Keyboard
Processor

TextEditorView

findWindow
saveNow
setLabel
menu
about
new
open
print
quit
save
saveAs

theFileName
EditorController

<uses><uses>

execute
applicationName

Editor

Figure 8.5: Class diagram of FOText

The UML class diagram of the complete FOText application is presented in Fig-
ure 8.5. The main class Editor has a method execute that produces an instance
of the class ApplicationWindow. It provides the window to display and edit text.
The execute method also creates an instance of the class TextEditorView which
is linked to an instance of the EditorController and KeyboardProcessor classes.
The EditorController class inherits from the TextEditorController class in-
cluded in VisualWorks for Smalltalk and which adds some functionality such as
a method menu which is used to launch the FOText methods that implement the
different features. The KeyboardProcessor captures the events originating from
the keyboard and is linked to an ApplicationWindow to embed the text area into
the window.

8.2.2 FOText implementation

We implemented FOText in a standard object-oriented way in Smalltalk and used
the VisualWorks for Smalltalk IDE that was instrumented with the ChEOPS tool
[32] to capture our development operations as first-class change entities by means
of a logging technique. At the beginning of the development of a new feature,
we inform the IDE of its name and type (flexible or monolithic). By doing that,
our tool is capable of automatically classifying changes in features and by keeping
track of whether changes are optional or mandatory with respect to their parent
feature.

From the moment the changes are captured in first-class objects, they can
be used to validate and compose different variations of the software program.
Table 8.1 shows some statistics about the number of changes and dependencies
ChEOPS captured when we developed FOText. Note that the numbers of changes
and dependencies are about the same.

176 Validation

Feature # changes # dependencies
Base 130 158
SaveAs 88 106
Save 65 74
Open 101 121
Copy Cut Paste 72 82
Find 86 98
SelectAll 89 102
Print 182 226
Help 137 154
Status Title 159 193
Compress 151 147
Total 1260 1362

Table 8.1: Statistics of the size of FOText

For the sake of simplicity, we introduce an artificial feature, Base, which is
the basic feature that needs to be included in every variation of FOText. Base
consists of the changes that should always be included in a composition: FOText,
File, New and Quit. It provides the main functionality: a basic word processor
that provides a window to type text and a menu with two choices: new and quit
– which are respectively introduced by the New and Quit features. Base consists
of the mandatory features File, New and Quit.

We incrementally add the implementation of the other features to this base
program. Most of those features add a new method to the menu of the FOText
application. Some of them, however, also introduce modifications (e.g. the Open
feature modifies the menu method introduced by the Base feature) and removals
(e.g. the Compress feature deletes several statements and introduce new ones
within existing methods).

Figure 8.6: FOText: List of logged changes

8.2 Validation: FOText 177

Figure 8.6 presents a ChEOPS view which hierarchically presents the change
objects captured for implementing the Base feature. It contains additions of
classes, methods, instance variable or statements and and removals of methods
and statements. The figure shows that (a) our model is capable of expressing
features that include deletions of program building blocks, (b) that our model al-
lows features to specify changes up to the level of statements. Finally, we showed
that we were able to do feature-oriented programming in a bottom-up way by
programming in a standard object-oriented way (the Smalltalk way) in a stan-
dard interactive development environment (in VisualWorks for Smalltalk). We
now show how different product variations can be constructed by composing the
modularised feature modules.

8.2.3 Feature composition

Our model allows the composition of a program variation by specifying which func-
tionality that variation should include. As in our approach every functionality is
linked to a set of changes – a feature, the specification of a set of functionalities can
be automatically be translated by a composition algorithm (such as Algorithm 1)
into a change composition that represents the variation. In order to obtain the
variation, the corresponding change composition has to be applied. This is done by
applying all the change objects of the composition. Some compositions, however,
are not possible due to unsatisfied dependencies. Thanks to the fine-grained level
of feature specification, ChEOPS can check whether or not a composition is valid.
In case it is not, it can assist in resolving the conflict by presenting the developer
with fine-grained information about the conflict. In this section we present six
compositions which validate the usability of these ChEOPS capabilities.

A valid composition

In this first scenario, we want a variation of FOText that includes all the features
with the exception of the logging functionality, which we will add later in this
chapter. Our tool informs that this composition is valid (there were no unsatisfied
dependencies) and depicts the change composition graph of Figure 8.7.

This composition involves all features except Logging and is specified by 1260
changes. The time required to display the diagram in Figure 8.7 was 281873
milliseconds (approximately 5 minutes) on a standard PC. A closer inspection
learned us that our composition algorithm validated the composition in only 183
milliseconds and that the remaining time was used for lay-outing all change objects.

A graphical overview of the changes of a valid composition, such as the one
shown in Figure 8.7 hints graphically at the size of all participating features. Other
uses of such a diagram might exist, but do not reside in the scope of this research.
As we “only” want to validate and produce program variations, lay-outing the
changes of a valid composition, does not seem useful and can be avoided in order
to significantly speed up the variation validity checking and composition process.

178 Validation

Figure 8.7: Composition of all features except for Logging

An invalid composition

The second composition involves the Base and Save features. Figure 8.8 depicts
the result of this composition: The changes belonging to the Base and Save fea-
tures are respectively depicted as red and green circles. The black nodes represent
the change objects that belong to the features in the composition which have at
least one unsatisfied dependency.

The graphical view of an invalid composition (such as the one shown in Fig-
ure 8.8) is already more useful than a view on the changes of a valid composition,
as it can be used to assist programmers in debugging their compositions. An in-
spection of the black nodes of the diagram of Figure 8.8, illustrates that there are

8.2 Validation: FOText 179

Figure 8.8: Composition of Base and Save

four changes from the Save feature that depend on changes of the SavesAs fea-
ture. Consequently, in this implementation of FOText, the Save feature cannot be
included in a composition without including at least the SavesAs feature. In case
this dependency is not desired, the developer can use the fine-grained information
of the inspected black first-class change objects to adapt the implementation of
the relevant features.

Note that the fact that Save depends on SaveAs is also included in the second
composition rule of the FODA diagram of Figure 8.4. The reason why these fea-
tures are dependent (the four changes of Save that depend on changes of SaveAs),
however, is not included in the FODA diagram and only becomes apparent in the
view of Figure 8.8. This shows that the problem and solution spaces are connected
in our approach, and that this connection can be used for assisting the developer
in correcting non-valid compositions.

180 Validation

Valid compositions by means of flexible features

ChEOPS allows a developer to declare a feature as flexible. The children of a
flexible feature (the changes and/or features the parent consist of) are optional and
do not have to be included for a composition that contains the parent to be valid.
Consequently, a flexible feature provides a customized functionality depending on
the features that are present in a composition. In the third and fourth scenario,
we demonstrate this by composing the flexible Compress feature with different
features.

Figure 8.9: Composition of Base, SaveAs and Compress

8.2 Validation: FOText 181

We first compose the flexible Compress feature with the monolithic Base and
SaveAs features. Figure 8.9 shows this composition: Changes belonging to Base,
SaveAs and Compress are respectively depicted as green circles, blue circles and
yellow boxes. The composition is valid, but one of the changes of the Compress
feature had to be omitted from the composition as it had an unsatisfied depen-
dency. Since that change was optional with respect to its parent, it was omitted
from the composition in order to make the composition valid.

Note that the composition diagram in Figure 8.9 contains some gray nodes
that belongs to the Compress feature. The gray nodes denote the change objects
that were omitted from the composition due to at least one unsatisfied dependency
they have. The nodes can be inspected by the developer in order to verify why
they were not included. An inspection of the changes shows that they all depend
on changes of the Open feature.

In the fourth composition, we add the flexible Compress feature to a viewer
version of FOText which is composed of the monolithic Base and Open features.
The result of this composition is depicted by the diagram of Figure 8.10. Changes
of Base, Open and Compress are respectively depicted as green circles, blue circles
and yellow boxes. In this composition, several changes of the flexible Compress
feature are grayed out and omitted from the composition (because they depend
on changes that belong to the SaveAs feature).

A closer inspection of the gray entities of both figures 8.9 and 8.10 learns that
different change objects of the Compress feature are omitted from the composition
depending on the composition the Compress feature belongs to: C259 in Figure 8.9
and C363, C365, C372, C373 and C377 in Figure 8.10. Those change objects are
omitted from the composition because they depend on at least one change object
that does not reside within the composition. C259 consists of the addition of a
statement to the open method, which is originally added by O219 in the Open
feature. It is omitted as the Open feature and its changes are not included in the
composition of Figure 8.9.

Similarly, C363, C365, C372, C373 and C377 are changes that respectively de-
pend on S246, S249, S249, S248 and S247, and which are automatically omitted
from the composition as the SaveAs feature is not included in the composition of
Figure 8.10. This demonstrates how our approach and tools automatically cus-
tomize the deployment of flexible features in order to make compositions valid. It
shows how this approach supports the construction of compositions that would not
be permitted by other FOP approaches, but which do make sense. Consequently,
this validates that our model supports the customized feature deployment, which
improves the reusability of feature modules.

Valid compositions including crosscutting functionality

Finally, we demonstrate how we can deal with crosscutting functionality: which
implementation affects many feature modules. Concretely, we present two compo-
sitions in which we include Logging; a feature that modularises the functionality
of printing the value of each instance variables whenever a method in the FOText

182 Validation

Figure 8.10: Composition of Base, Open and Compress

application is invoked. The implementation of this feature includes two intensional
changes, which ensure that the feature is applied correctly in any composition.

The first composition consists of a variation of the viewer version of FOText
(which is composed of the monolithic Base and Open features) and which has
logging capabilities. Our tool informs us that this composition is valid (there
were no unsatisfied dependencies) and depicts the change composition graph of
Figure 8.11. The changes of the Logging feature are represented in purple. Note
that the Logging feature contains 181 change objects.

Now, let us produce a composition that contains all the features of FOText
including Logging. Figure 8.12 presents the change composition produced by
ChEOPS. The change objects of the Logging feature are again represented in
purple. While it is impossible to count all the changes in the figure, please note the

8.2 Validation: FOText 183

Figure 8.11: Composition of Base, Open and Logging

high amount of purple changes. In fact, there is a total of 541 changes representing
the Logging feature. The reason for the higher number of Logging changes is that
it requires more changes to add the Logging functionality to a composition that
contains more instance variables and methods as the Logging feature is supposed
to log the values of all instance variables whenever each method is invoked.

These final two compostions show how features that contain intensional changes
evaluate to different change sets depending on the context without having to adapt
their specification. This principle shows how a combination of flexible features and
intensional changes can be used to modularise crosscutting functionality without
giving up on flexibility when it comes to software composition.

184 Validation

Figure 8.12: Composition of all features and Logging

8.3 Conclusion

The thesis of this dissertation is that software can be automatically restructured
in feature modules if it is developed in a development environment that records
fine-grained modularisation information resulting from development actions. This
chapter consists of two steps for validating that hypothesis. We first discuss a
proof-of-concept implementation of a development environment that records fine-
grained modularisation information and than show how an application developed
in that environment can indeed be automatically restructured in feature modules.

The Change- and Evolution- Oriented Programming Support (ChEOPS) is a

8.3 Conclusion 185

tool-suit which we created in VisualWorks for Smalltalk – an interactive develop-
ment environment for Smalltalk. ChEOPS is a VisualWorks plugin that supports
techniques such as differentiation, change-oriented programming and logging for
obtaining change objects. It supports automatic, semi-automatic and automatic
classification of changes in features and allows to specify features to be flexible or
monolithic. While a flexible feature will by default only have optional children, a
monolithic feature will by default have only mandatory children.

ChEOPS supports the composition of program variations. The developer only
has to specify the desired functionality, after which ChEOPS can automatically
produce the corresponding variation. For that, ChEOPS first composes the set of
change objects that corresponds to the desired variation and afterwards applies
those changes in order to get the desired program variation. The current ChEOPS
implementation includes only one composition algorithm which produces the max-
imal composition of a variation. We explain how the implementation has to be
adapted in order to add other composition algorithms.

ChEOPS provides two kinds of support with respect to debugging faulty com-
positions. First, ChEOPS is capable of producing a change diagram that is based
on the implementation. As we have demonstrated in Chapter 6, this change di-
agram is automatically transformable to a feature diagram, that can possibly be
compared to the feature diagram that was intended for the application. When dis-
crepancies are detected, the appropriate actions can be taken. Second, ChEOPS
provides support for retrieving the reason of a failure when a specification of a soft-
ware variation results in an invalid change composition. It uses the fine-grained
implementation information that is contained within the change objects to assist
the developer in taking appropriate corrective actions.

We show that ChEOPS is coherent with the formal model on which we elab-
orated in Chapter 6. It provides an implementation for changes, features and all
the relations between them and contains an implementation of the maximal com-
position algorithm. Intensional changes are integrated in ChEOPS by linking the
fact base of SOUL to the changes that are collected in ChEOPS and by instanti-
ating the right change classes from within SOUL whenever new changes have to
be added by it.

The second part of the validation introduces FOText: an application which we
developed in order to validate our bottom-up approach to FOP. FOText is a text
editor that consists of 16 features of which three are mandatory and the rest is
optional. We developed it in a standard object-oriented way and used ChEOPS
to log our development actions. The development of the complete application re-
sulted in approximately 1250 changes and 1350 dependencies. The changes show
to be expressive building blocks of features, as they can express additions, modi-
fications or deletions and because they can be specified on the level of granularity
of statements.

Afterwards, we let ChEOPS classify the changes in features and made six
compositions that each represent one product variation of FOText. We use the
graphical views on change compositions to obtain information about the invalid
compositions and show how the fine-grained control over changes entails infor-

186 Validation

mation that can be used to find out why some feature compositions are invalid.
Finally, we show how crosscutting functionality can be modularised and speci-
fied by means of flexible features and intensional changes in order to increase the
reusability of feature modules in different compositions. The findings of this second
part acknowledge that FOText was automatically decomposed in feature modules
which could afterwards be recomposed to form product variations of FOText.

Chapter 9

Future Work

Many enhancements to the bottom-up approach to feature-oriented programming,
the evolution model, the classification model or the implementation are conceiv-
able. A handful is considered below. Moreover, we elaborate on other applications
of first-class changes in the software engineering research domain, on how the map-
ping of our formalism to feature diagrams can be better exploited, on how software
applications can be refactored into modules that denote context layers and on how
we can use rules of changes for ensuring design contracts when implementing the
software.

9.1 Overcoming restrictions

Throughout this dissertation, we made three restrictions with respect to the ap-
plicability of our approach. The first track of future work consists in removing
these restrictions. The following three subsections subsequently elaborate on the
restriction of not allowing parallel development, on true scalability and on the
meta-model which can only be used to model the evolution of software systems
written in a class-based object-oriented programming language.

9.1.1 Parellel development

In order to simplify matters, we limited ourselves to a setting in which parallel
development was excluded. This restriction was based on two premises: (a) All
change instances are part of a set that can be completely ordered by the time
stamp of the changes. In other words, every change has a unique time stamp. (b)
The IDE ensures that no conflicting changes are produced1.

In a development setting in which main-stream IDE’s are used and in which
parallel development is allowed, those two premises can be guaranteed only within
every separate development track. From the moment two development tracks

1Changes conflict if their application violates the rules that are specified by the meta-model
of the programming language used

188 Future Work

merge, they cannot be guaranteed anymore. As the results of this dissertation
are based on both premises, we require a mechanism that makes them hold again.
With respect to (a), a distributed clock (such as a Lampart [63] or vector clock [72])
might be used to obtain a global clock in a distributed setting. With respect to
(b), an IDE could be conceived that exchanges development information with
the IDE’s that are used by the other developers and which together avoid that
conflicting changes are instantiated.

9.1.2 True scalability

We took as a premise that a bottom-up approach to FOP, which is based on fully
automated classification and recomposition strategies, does scale up. This, how-
ever, is not always the case, as software composition is often an interactive process
in which the developers’ intervention is required to resolve composition conflicts.
Consequently, both the speed and the memory consumption of the composition
process are of great influence on the scalability of our approach. It is for example
tolerable to wait for some minutes, but it is not acceptable having to wait for days
for a composition to be produced.

Our classification and composition strategies have performance characteristics
that grow linearly with the number of available change instances. The number
of change instances, however, grows very rapidly. Our studies show that even for
small applications (+- 1KLOC), the number of change instances grows to over
2000. In order to speed up the composition of variations, we consider pruning the
compensating changes from the change set before compositions are produced. As
any decrease in the number of changes is directly translated into a decrease in
the time needed to produce a composition, we believe a speed-up of about 20%
belongs to the possibilities – considering that the change set usually contains about
20% change instances that are mutually compensating each other (for instance
the addition and deletion of the same method). Another action we consider for
increasing the scalability is decreasing the level of granularity of the changes. Of
course, such action has a tradeoff: a loss of information.

9.1.3 The meta-model

The evolution-model we introduced and described in Chapter 4 can be used to
model the evolution of any software system developed in a programming language
adhering to the FAMIX model. While many class-based object-oriented program-
ming language (such as Java, C++, Smalltalk or Ada) adhere to this model, others
might not. In this dissertation, we only showed that we can model the evolution
of software programs developed in one of the programming languages adhering to
FAMIX.

This track of future work consists in showing that our evolution model is generic
enough to support the evolution of other software systems. In order to do that,
three actions need to be taken. First, the evolution model should be extended
with a new family of subjects that form the building blocks of the meta-model of
the software systems that are to be evolved. Concretely, all these building blocks

9.2 Classification strategies 189

will be modeled by new kinds of subjects and implemented by subclassing the
Subject class correspondingly. Second, different kinds of syntactical dependencies
between changes have to be reconsidered, as they are enforced by the meta-model.
Finally, the IDE support for change-oriented programming (ChOP) has to be
extended in such a way that changes on the new meta-model can be instantiated
and dependencies are maintained upon change instantiation.

9.2 Classification strategies

In this work three software classification strategies have been presented: man-
ual classification, semi-automatic classification based on clustering techniques and
automatic classification through forward tagging. Further research is necessary
to identify other classification strategies and to evaluate their usefulness in the
context of bottom-up feature-oriented programming.

It is mostly the semi-automatic and automatic techniques that we consider to
be interesting as they improve scalability. The exploitation of more such techniques
promises to produce interesting results. What explicitely seems interesting, is the
role a logic metaprogramming language can play in the classification of change
entities. A language like SOUL (the Smalltalk Open Unification Language which
was developed at the programming technology lab of the VUB) can be used to
classify changes according to a given logic query. Recently, SOUL was successfully
used by Kellens et al. for classifying the code of software systems with respect to
the satisfaction of design contracts [56].

9.3 Applications of first-class changes

The centralisation of change in entities that encapsulate the change operations
(Chapter 3), enables applications that can contribute in other sub-domains of
software evolution. In this section, we elaborate on some of these application
domains and show how they form possible tracks of future work.

In principle, any operation should be undoable if and only if it is meaningful
(e.g. the referred objects still exist) and if users can achieve the same effect
through standard editing, as advocated by many researchers in this area (Dix [70],
Berlage [13], Prakash [85] and Knister [86]). In contrast to a linear history model,
the non-linear history model allows users to undo an operation other than the last
one. The encapsulation of development actions in dedicated objects, enables the
application of the non-linear history model. Moreover, the dependencies amongst
the change operations, can be used to achieve a cascading undo, in which all
change operations that depend on the undone change operation are also undone
in a transitive way. We already implemented cascading undo and included it in
the ChEOPS tool suite.

Every operation that was ever undone, is in principle “redoable”. In some
cases, however, a change operation c can only be redone if that action is preceded
by the redoing of some other changes [36]. The dependencies amongst the change

190 Future Work

operations can be used to recover the transitive closure of change operations that
must be redone before redoing c (cascading redo). We included an implementation
of the cascading redo in ChEOPS.

In some cases, the undoing or redoing of a change, brings along a large cascade
of changes that will also have to be respectively undone or redone. In some cases,
it is desirable to estimate the impact the undoing or redoing of a change operation
might have, before actually carrying it out. The study of impact estimation is
called impact analysis. We strongly believe that the dependencies between the
change operations can be exploited to help predicting the impact of redoing or
undoing a certain change.

In Chapter 7, we elaborated on intensional changes. Those changes can also
be used to express intensional undo statements, which can express requests like:
“undo all changes applied by Peter that were done on or before March 23, 2009”.
While ChEOPS already supports the expression of such queries by means of SOUL,
we did not yet test how they are defined and applied in practice. A more extensive
study might expose more difficulties, that must be investigated in this track of
future work.

This dissertation is about the modularisation of software systems. Concretely,
we modularise a software system in such a way that modules represent a function-
ality and that they can be composed to form variations of the software system
that offer different combinations of functionality. Software systems can also be
modularised in other ways. They can for instance be modularised in such a way
that the degree of coupling between the modules is minimised. This degree can
be measured by the number of dependencies that hold between the changes of
the different modules. Clustering techniques can most probably be used for doing
that.

Runtime evolution is another field in the domain of software evolution in which
we feel confident contributing to with the notion of change objects that encapsulate
development actions. In [34] we introduced the idea of change-oriented advanced
round-trip engineering as a technique to support runtime changes, automated test-
ing and refactorings in the context of Agile Software Development (AgSD). We
propose to represent changes applied to a system under development, as first-class
objects and envision the integration of a change management system into an exist-
ing methodology for AgSD called Advanced Round-Trip Engineering (ARTE) [82].
We explain how Change-Oriented ARTE allows capturing, visualising, replaying
and rewinding changes that have been applied on the modelling, implementa-
tion and runtime views of an ARTE environment, and automatically synchronizes
them with other views. In this setup tests and refactorings can be composed out of
changes, while runtime change propagation is realized with different propagation
strategies.

9.4 Formalism

The elaboration of the formal ChOP model led us to take a high-level look at
ChOP, independently from an implementation. This allowed us to identify new

9.5 Deriving intensional changes 191

interesting properties and to make some generalisations. Therefore, an immediate
topic for future work is to improve ChEOPS based on the feedback gathered while
developing the formal model. For instance, the current version is not expressive
enough to cover the whole formal model, given that the relations between a feature
and its changes (F4C) and between features (Sub) are implemented with the re-
striction that the optionality of a sub-feature (change) with respect to its parent is
an attribute of the parent, and not of the relation. The design and implementation
of ChEOPS will be refactored to overcome this issue.

Another example of future work induced by the formal model are the different
strategies that can be used to produce legal change compositions. At the time of
writing, we only formalised two of them: produce maximal (respective minimal)
legal change compositions. We also sketched other conceivable strategies, which
would also take into account the nature of a change (addition, deletion, modifica-
tion). These strategies need to be formalised and can then also be implemented
in ChEOPS.

Currently, the dependencies between change objects reflect low-level con-
straints only. The new connection between feature diagrams and ChOP also allows
to express dependencies and constraints on the application level. Another track
of future work may consist in how to carry back such high-level dependencies and
constraints to the change object level.

A final track of future work that is fed by the formalism consists in extending
the range of applications of feature diagrams to ChOP. In this dissertation, we
only used feature diagrams to validate change compositions and to express basic
properties of change specifications. The state-of-the-art work on feature diagrams,
however, includes many more applications such as visual modelling support, spec-
ification of metrics, program understanding, etc. which we plan to investigate in
order to find out how they can be helpful in ChOP.

9.5 Deriving intensional changes

In this dissertation, we explained how features are formed by grouping changes that
model related development actions. These groups can be specified in an extensional
way (by explicitly listing them) or in an intensional way (by describing them). In
Chapter 7 we argumented that defining changes in an intensional way is desirable,
as it increases the reusability of flexible features.

In Chapter 7 we also explained how intensional changes can be defined by
means of change-oriented programming. The other change gathering strategies
of Section 5.4.1, however, can not be used to instantiate intensional changes.
Both logging and differentiation strategies inherently result in extensional change
sets. This track of future work, consists of allowing the specification of intensional
changes by means of logging of differentiation.

Consider a development scenario, in which the developer manually adds a
method to all subclasses of a class C. In a first step, we can allow the devel-
oper to replace the extension holding all method additions by an intension that
states that a method is added to all the subclasses of C. In a second step, a

192 Future Work

pattern matcher could be used to detect refactoring opportunities in the set of
changes (suggesting to pull up the method to C).

9.6 Feature refactoring

The research described in this text, is about modularising object-oriented software
systems into modules that encapsulate functionality. From one point of view, this
corresponds to refactoring an object-oriented software application into a feature-
oriented software application. The benefit of such refactoring is that the variation
points (which are usually implemented by if-stataments or by means of object
polymorphism) are not visible in the source code of the application, making it
more understandable, reusable, and maintainable.

Driven by the observation that a software application sometimes behaves dif-
ferently depending on the context in which it is operating, we consider refactor-
ing software applications into context layers. Context layers hold the context-
dependent behaviour: the behaviour a software application should have in a cer-
tain context. The variation points that model the context-dependent behaviour
switches are usually also implemented by if-stataments or polymorphism. The dif-
ference between the if-statements of these variation points and the ones explained
above, is found in the location of those statements. In context-oriented program-
ming, there should not be any variation point code inside the different context
modules.

The goal of this track of future work is to support the refactoring of software
applications in a context-oriented way. Our change objects – which model the
development actions – are aware of which feature they implement. The source code
entities which are affected by those changes can also be grouped and extracted
into another dimension of modules: context layers. This would allow a multi-
dimensional separation of concerns, which increases the reusability of all separated
modules.

9.7 Ensuring design contracts

In some cases, design contracts require two different development actions to be
taken together. Consider the = method, which is implemented by many classes in
the VisualWorks Smalltalk development environment. It is a method that com-
pares an object to receiving object and verifies that they are the same. When
inspecting the source code of the method, a comment is found mentioning that
the hash method should be changed accordingly, in case the = method is modi-
fied. As this design contract is only apparent as a source code comment, many
violations are made against it, resulting in bugs that are hard to detect.

We propose to make design contracts explicit by including them as first-class
rules that denote patterns of change. When a pattern is detected that breaks one of
the rules, the developer can instantly be notified. Concretely, we propose to include
a user-extensible rule base that contains all design contracts in the development

9.7 Ensuring design contracts 193

environment. The rules of the rule base consist of an “IF” (denoting a condition)
and a “THEN” part (denoting an action). Both parts consist of change templates,
to which the change instances may match. Whenever a change is instantiated from
within the development environment (by change-oriented programming, logging
or differentiation), the rule base is checked for possible inconsistencies and the
developer is proposed the action included in the “THEN” part of the violated
design contract rule.

In the scenario from above, the rule would be “IF AddMehod(?class, ?class-
Side, =) THEN AddMehod(?class, ?classSide, hash)”, which states that in case
a method = is added to any class, a method hash should be added to the same
class. Note that an inverse rule should also be included as this particular design
contract is symmetric. In case a developer instantiates a change that adds a =
method to any class, he is suggested to also add a hash method to that same class.
Different suggestion strategies are conceivable. The suggestion can for instance
be made proactively or on demand (being less intrusive). The advantages and
inconveniences of these strategies remain the subject or future work.

In this chapter, we have enumerated some tracks of future work. While some
of them consist of enhancements to the conceptual and technical contributions
that we made, others elaborate on the application of our research results in other
fields of the software engineering research domain. By enumerating some tracks
of future work, I realised that research never ends, but that I will always strive to
find closure.

Chapter 10

Conclusions

The objective of this work has been the bottom-up modularisation of software sys-
tems around the functionality they provide. Since the modularisation of a software
system comprises too many aspects to handle in a dissertation the scope of this
work has been narrowed to the modularisation in a context of program variation.
The roots of this research being the research on change-oriented programming
have driven further scope reduction.

The result is that this work has three foci of attention: First, the recording of
modularisation information – which is lost if it is not made explicit at develop-
ment time; Second, the bottom-up approach to feature-oriented programming –
which provides an alternative for all top-down approaches. This topic includes the
classification of software building blocks into modules that represent the different
functionality a software system provides and which can be used afterwards to con-
struct software variations with different combinations of functionality; Third, the
support for a multi-dimensional separation of concerns – which tackles the tyranny
of the dominant decomposition.

10.1 Summary

The subject of this dissertation is to manage bottom-up program variation in
object-oriented systems. In Chapter 2, we present background material on the
research domains directly related to this work: software modularisation by feature-
oriented or aspect-oriented programming and the reification of change into first-
class change objects. Our thesis is that software can be automatically restructured
in recomposable feature modules if it was developed in a software development
environment that records fine-grained modularisation information resulting from
development actions.

Recording modularisation information In order to facilitate the recording
of modularisation information, we propose a new style of programming, which
we call change-oriented programming (ChOP). ChOP is introduced in Chapter 3.

196 Conclusions

It centralises change as the main development entity and can be applied to pro-
gramming paradigms such as object-oriented programing. When developing in a
ChOP way, developers have to instantiate and apply changes in order to develop
their software systems. A software system in turn, is specified by the sequence of
changes that was applied to produce it.

The goal of Chapter 4 is to establish a model that allows expressing the evolu-
tion of a computer application as first-class objects. We start out from FAMIX: a
model which captures the common features of different object-oriented program-
ming languages needed for software re-engineering activities [27, 31, 103]. We
create a model of first-class change classes which is based on the FAMIX model
and incorporate the notion of dependencies between different change operations in
the model. The result is an evolution model: a model that can be used to express
the evolution of software programs written in one of the programming languages
adhering to FAMIX.

Bottom-up feature-oriented programming ChOP enables a bottom-up ap-
proach to feature-oriented programming (FOP). In Chapter 5, we explain the
details of this approach and clarify it with a small example: a Buffer. We present
three techniques of capturing changes, a classification model, three classification
techniques of classifying changes and an algorithm for composing and validating
change compositions. We introduce the concept of a change specification: a def-
inition of a software product family based on our model of first-class changes.
Throughout the chapter, we use the Buffer case to exemplify all aspects of the
approach.

In Chapter 6, we present a formalism of the model behind ChOP. The for-
malism is based on basic set theory and presents the fundamental concepts and
some properties that hold in the context of ChOP. Afterwards, we show that this
formalism can be mapped to the better known formalism of feature diagrams and
present an algorithm that is capable of translating a change specification to a fea-
ture diagram. This formal mapping opens up a broad range of applications that
were verified in the feature diagram research domain.

Multi-dimensional modularisation Many software systems suffer from a
tyranny of dominant decomposition: they can be modularized in only one way
at a time, and the many kinds of concerns that do not align with that modular-
ization end up scattered across many modules and tangled with one another. We
claim that every program can be modularised in at least two ways: with respect
to the separation of problem domain concerns and with respect to the separation
of solution domain concerns. In many cases, those modularisations do not match,
which makes the tyranny of dominant decomposition problem very apparent.

We target this problem in the context of feature-oriented programming in
Chapter 7. We explain the extension of the ChOP model with the notion of
flexible features, which consist of at least one optional change that does not have
to be included in a composition in order to make it valid. We show that such fea-
tures provide more flexibility with respect to compositions and that they allow for

10.2 Contributions 197

more than one composition strategy. We expose a weakness of our change model
which is caused by the fact that features always consist of explicit enumerations
of change objects. We present a solution for that issue, and call it intensional
changes: descriptive changes which can evaluate to an enumeration of changes.
We explain how such changes can be used to model crosscutting concerns and
show how they increase robustness to variability.

In order to validate our work, Chapter 8 presents a proof-of-concept implemen-
tation of the evolution model and unveils ChEOPS. It is a tool that supports two
techniques of recording modularisation information. First, it allows a developer
to apply ChOP in a context of object-oriented software development. All kinds of
first-class change objects defined by the evolution model can be instantiated from
within ChEOPS. Second, ChEOPS supports logging. For that, we instrumented
an interactive development environment in such a way that change objects are cre-
ated whenever a development action is performed. ChEOPS, includes a graphical
user interface which allows visualising and reasoning over compositions of change
objects. The chapter concludes with an evaluation of the implementation of a text
editor called FOText, which we developed using our bottom-up approach. We
show how ChEOPS can be used to validate and produce variations of FOText and
discuss some benchmarks related to the production of a handfull of variations.

10.2 Contributions

We conclude by listing the contributions we made while doing the research for this
dissertation:

• Evolution model – The dissertation includes a presentation of a generic
model that can be used to encapsulate the information related to the evo-
lution of object-oriented class-based systems. This model encapsulates de-
velopment operations as change objects: first-class entities that each de-
note a development action. The evolution model is based on an extended
FAMIX model and is capable of capturing and reproducing the evolution
of any software program written in a programming language that adheres
to FAMIX (such as Java, Smalltalk or C++). The model is capable of ex-
pressing changes down to the level of statements, allows the declaration of
changes that add, modify or delete program building blocks and supports
the management of dependencies between the change objects.

• Classification model and techniques – The software classification model
provides simple concepts for organising software systems in manageable mod-
ules that can afterwards be recomposed. The software classification tech-
niques provides strategies to set up and recover those modules. Three clas-
sification strategies are presented in this dissertation: manual classification,
semi-automatic classification based on clustering and automatic classification
through development action annotations.

Very important in this work is the integration of software classification in the
software development environment and in the software development process.

198 Conclusions

The results of the classification are tangible in the development environment
and they can be used in subsequent software engineering activities such as the
composition, the validation or the debugging of different program variations.

• Change-oriented programming – Change-oriented programming is a
novel programming style which centralises change as the main development
entity. In pure change-oriented programming, developers use an interac-
tive development environment to instantiate a change for every development
action they want to take. In order to instantiate a change, the interactive
development environment first collects all the required information by means
of interactive dialogs and then instantiates the corresponding change class.
Afterwards, the change instance can be applied in order to carry out the
captured development action. The change instances are maintained and can
be replayed in order to reproduce the developed software system.

As pure change-oriented programming does not seem realistic, we propose a
watered-down alternative in which only the coarse grained actions (such as
the creation of classes) are instantiated by means of interactive dialogs. The
more frequent and fine-grained development actions (such as the addition of
a statement to a method body) are automatically logged by the interactive
development environment without it to fire dialogs that request informa-
tion. Instead, it detects such fine-grained development actions whenever a
developer carries them out and automatically instantiates the corresponding
change objects behind the scenes.

• Bottom-up approach to feature-oriented programming – The main
contribution of this dissertation is the novel approach to bottom-up feature-
oriented programming. It provides developers with an alternative for the
various state of the art top-down approaches to feature-oriented program-
ming that does not suffer from limitations such as the limited expressiveness
or the specific development process required to do feature-oriented program-
ming. Our bottom-up approach to feature-oriented programming is more
expressive than the state of the art as it allows for a feature to express build-
ing block adaptations (including the removal) down to the level of granularity
of code statements. Moreover, it does not require a developer to alter his
development process for doing feature-oriented programming.

The approach is based on capturing relevant modularisation information at
development time. We use that information to automatically modularise
software from a point of view of the problem domain (in feature modules)
and support program variation by automatically validating and generating
software compositions that stem from lists of required functionality. More-
over, it supports a customised feature deployment: a deployment mechanism
that automatically customises features in such a way that they become com-
binable with the other features in a feature composition.

• Change- and evolution-oriented programming support – As a techni-
cal contribution of our dissertation, we implemented the ChEOPS tool suite.

10.2 Contributions 199

This research prototype is a concrete instantiation of the evolution and clas-
sification models. It supports logging and change-oriented programming as
change gathering techniques. It allows a developer to classify changes in an
manual, semi-autoamtic and automatic way and includes an implementation
of an algorithm that computes the maximal change composition. By means
of this algorithm, developers can specify and automatically generate different
program variations.

Our tool suite offers the developer the SOUL logic language and the Smalltalk
language as a means to express intensional changes. This enables ChEOPS
to fully support our bottom-up approach. In ChEOPS, the changes and their
classification are all first-class entities that are accessible by other software
engineering tools.

This dissertation has investigated modularisation of software systems around the
functionality they provide. We have distilled conceptual and gathered experimen-
tal evidence that the state-of-the-art approaches to feature-oriented programming
only provide support for bottom-up modularisation, provide limited expressiveness
and require practitioners to alter their development process. We have developed
a novel bottom-up approach to feature-oriented programming which takes away
those restrictions. We used this approach to show that software can be auto-
matically restructured in feature modules if it is developed in a develop-
ment environment that records fine-grained modularisation information
resulting from development actions.

In order to validate this thesis, we developed ChEOPS: a proof-of-concept
implementation that supports the three phases of our bottom-up approach to
feature-oriented programming: the collection, the classification and composition
of first-class change objects. ChEOPS records fine-grained modularisation infor-
mation resulting from the development actions. By means of this tool, we devel-
oped a text editor in a standard object-oriented way and showed that it could
be automatically modularised into feature modules. Afterwards, we recomposed
those feature modules to construct variations of the text editor that offer differ-
ent combinations of functionality. Finally, we showed that the granularity of the
change objects allows us to validate the compositions and that it provides detailed
information about why some compositions are not allowed.

Bibliography

[1] M. Akşit and B. Tekinerdoğan. Aspect-oriented programming using composi-
tion filters. In S. Demeyer and J. Bosch, editors, Object-Oriented Technology,
ECOOP’98 Workshop Reader, page 435. Springer Verlag, 1998.

[2] Gentzane Aldekoa, Salvador Trujillo, Goiuria Sagardui Mendieta, and Os-
car Dı́az. Quantifying maintainability in feature oriented product lines. In
CSMR, pages 243–247, 2008.

[3] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner. An algebra for
feature-oriented software development. In Proceedings of the International
Conference on Algebraic Methodology and Software Technology (AMAST).
Springer-Verlag, 2007.

[4] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. Fea-
turec++: On the symbiosis of feature-oriented and aspect-oriented program-
ming. In Robert Glück and Michael R. Lowry, editors, GPCE, volume 3676
of Lecture Notes in Computer Science, pages 125–140. Springer, 2005.

[5] Don Batory. Intelligent components and software generators. Technical
report, University of Texas at Austin, Austin, TX, USA, 1997.

[6] Don Batory and Bart J. Geraci. Validating component compositions in soft-
ware system generators. In ICSR ’96: Proceedings of the 4th International
Conference on Software Reuse, page 72, Washington, DC, USA, 1996. IEEE
Computer Society.

[7] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. In Proceedings of the 25th International Conference on Software
Engineering, pages 187–197, Washington, DC, USA, 2003. IEEE Computer
Society.

[8] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. The genvoca model of software-system generators. IEEE
Softw., 11(5):89–94, 1994.

[9] Don S. Batory. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of the 9th Int. Software Product Line Conference (SPLC), pages
7–20, 2005.

202 BIBLIOGRAPHY

[10] Don S. Batory. A tutorial on feature oriented programming and the ahead
tool suite. In GTTSE, pages 3–35, 2006.

[11] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated Reason-
ing on Feature Models. Proceedings of the 17th International Conference
(CAiSE’05) LNCS, Advanced Information Systems Engineering., 3520:491–
503, 2005.

[12] L. Bergmans and M. Akşit. Composing crosscutting concerns using compo-
sition filters. Comm. ACM, 44(10):51–57, 2001.

[13] Thomas Berlage. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Transactions on Computer-Human Inter-
action, 1(3):269 – 294, September 1994.

[14] Koen Bertels, Philip Vanneste, and Carlos De Backer. A cognitive model of
programming knowledge for procedural languages. In ICCAL ’92: Proceed-
ings of the 4th International Conference on Computer Assisted Learning,
pages 124–135, London, UK, 1992. Springer-Verlag.

[15] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1997.

[16] Gilad Bracha and William Cook. Mixin-based inheritance. In OOPSLA/E-
COOP ’90: Proceedings of the European conference on object-oriented pro-
gramming on Object-oriented programming systems, languages, and applica-
tions, pages 303–311, New York, NY, USA, 1990. ACM.

[17] John Brant and Don Roberts. Refactoring browser. Technical report,
http://wiki.cs.uiuc.edu/RefactoringBrowser, 1999.

[18] Rod Burstall. Christopher strachey—understanding programming lan-
guages. Higher Order Symbol. Comput., 13(1-2):51–55, 2000.

[19] P. Centonze, R.J. Flynn, and M. Pistoia. Combining static and dynamic
analysis for automatic identification of precise access-control policies. 23th
Computer Security Applications Conference, 2007.

[20] Alistair Cockburn. Agile software development. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[21] Krzystof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, Boston, 2000.

[22] Krzysztof Czarnecki, Ulrich W. Eisenecker, and Patrick Steyaert. Beyond
objects: Generative programming. In Proceedings of the AOP Workshop
colocated with ECOOP 1997, 1997.

[23] Kris De Volder. Aspect-oriented logic meta programming. In Workshop on
Aspect Oriented Programming, 1998.

BIBLIOGRAPHY 203

[24] Kris De Volder. Type-Oriented Logic Meta Programming. Phd thesis, Pro-
gramming Technology Lab, Vrije Universiteit Brussel, September 1998.

[25] Kris De Volder and Theo D’Hondt. Aspect-oriented logic meta programming.
In P. Cointe, editor, Meta-Level Architectures and Reflection, 2nd Int’l Conf.
Reflection, volume 1616 of LNCS, pages 250–272. Springer Verlag, 1999.

[26] Kris De Volder, Tom Tourwé, and Johan Brichau. Logic meta program-
ming as a tool for separation of concerns. In Workshop on Aspect Oriented
Programming, 2000.

[27] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - the FAMOOS
information exchange model. Technical report, University of Berne, 1999.

[28] Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas
Renggli, and Pascal Zumkehr. Encapsulating and exploiting change with
changeboxes. In ICDL ’07: Proceedings of the 2007 international conference
on Dynamic languages, pages 25–49, New York, NY, USA, 2007. ACM.

[29] Arie Deursen and Paul Klint. Domain-specific language design requires
feature descriptions. Journal of Computing and Information Technology,
10:2002, 2002.

[30] R/’emi Douence, Pascal Fradet, and Mario Südholt. A framework for the
detection and resolution of aspect interactions. In Proceedings of the ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and Compo-
nent Engineering (GPCE’02), pages 173–188, October 2002.

[31] S. Ducasse and S. Demeyer. The FAMOOS Object-Oriented Reengineering
Handbook. University of Bern, 1999.

[32] P. Ebraert, E. Van Paesschen, and T. D’Hondt. Change-oriented round-trip
engineering. Technical report, Vrije Universiteit Brussel, 2007.

[33] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and
Theo D’Hondt. Change-oriented software engineering. In ICDL ’07: Pro-
ceedings of the 2007 international conference on Dynamic languages, pages
3–24, New York, NY, USA, 2007. ACM.

[34] Peter Ebraert, Ellen Van Paesschen, and Theo D’Hondt. Change-oriented
round-trip engineering. In Atelier RIMEL: Rapport de recherche (VAL-
RR2007-01), 2007.

[35] Don Batory Ed Jung, Chetan Kapoor. Automatic code generation for actua-
tor interfacing from a declarative specification. In International Conference
on Intelligent Robots and Systems. (IROS 2005). 2005 IEEE/RSJ, pages
2839 – 2844, 2005.

[36] W. Keith Edwards, Takeo Igarashi, Anthony LaMarca, and Elizabeth D.
Mynatt. A temporal model for multi-level undo and redo. In UIST, 2000.

204 BIBLIOGRAPHY

[37] Niklas Eén and Niklas Sörensson. An extensible sat-solver. Theory and
Applications of Satisfiability Testing, pages 502–518, 2004.

[38] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr, and Harold
Ossher. Discussing aspects of aop. Communications of the ACM, 44(10):33–
38, October 2001.

[39] Johan Fabry and Tom Mens. Language independent detection of object-
oriented design patterns. Computer Languages, Systems and Structures,,
30(1-2):21–33, April 2004.

[40] François Fleuret. Fast binary feature selection with conditional mutual in-
formation. J. Mach. Learn. Res., 5:1531–1555, 2004.

[41] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[42] Andreas Gal, Wolfgang Schroeder-Preikschat, and Olaf Spinczyk. As-
pectC++: Language proposal and prototype implementation. In OOPSLA-
AOP01 [79].

[43] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1994.

[44] Tudor Gı̂rba. Modeling History to Understand Software Evolution. PhD
thesis, University of Bern, 2005.

[45] Object Management Group. Unified modeling language 1.3. Technical re-
port, Rational Software Corporation, June 1999.

[46] Kris Gybels. Aspect-oriented programming using a logic meta programming
language to express cross-cutting through a dynamic joinpoint structure.
Bachelors thesis, Programming Technology Lab, Vrije Universiteit Brussel,
August 2001.

[47] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refac-
torings to support api evolution. In ICSE ’05: Proceedings of the 27th in-
ternational conference on Software engineering, pages 274–283, 2005.

[48] Michi Henning and Steve Vinoski. Advanced CORBA Programming with
C+. Addison-Wesley, 1999.

[49] Michael Van Hilst and David Notkin. Using role components to implement
collaboration-based designs. In Proceedings of the 11th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Appli-
cations, pages 359–369, 1996.

[50] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented
programming. Journal of Object Technology, 7(3), March 2008.

BIBLIOGRAPHY 205

[51] Tim Howard and Adele Goldberg. VisualWorks - Application Developer’s
Guide. Cincom Systems, 1993-2005.

[52] Jim Hugunin. The next steps for aspect-oriented programming languages.
Technical report, Xerox Palo Alto Research Center, 2001.

[53] Guillermo Jiménez-Pérez and Don Batory. Memory simulators and software
generators. In SSR ’97: Proceedings of the 1997 symposium on Software
reusability, pages 136–145, New York, NY, USA, 1997. ACM.

[54] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, SEI, Carnegie Mellon University, November 1990.

[55] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, November 1990.

[56] Andy Kellens. Maintaining the causality between design regularities and
source code. PhD thesis, Vrije Universiteit Brussel, 2007.

[57] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the
evolution of aspect-oriented software with model-based pointcuts. In Dave
Thomas, editor, Proceedings of the 20th European Conference on Object-
Oriented Programming, volume 4067. Springer Verlag, 2006.

[58] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. Getting started with AspectJ. Comm. ACM, 44(10):59–65, 2001.

[59] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and Willian G. Griswold. An overview of aspectJ. In Proceedings of the
European Conference on Object-Oriented Programming, Lecture Notes in
Computer Science,, volume 2072, pages 327 – 353. Springer Verlag, 2001.
http://aspectj.org.

[60] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Proceedings of the European Conference on Object-Oriented Programming.
Springer-Verlag, June 1997.

[61] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modu-
lar reasoning. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 49–58, New York, NY, USA, 2005. ACM.

[62] Milan Kratochv́ıl and Charles Carson. Growing Modular. Mass Customiza-
tion of Complex Products, Services and Software. Springer, March 2005.

[63] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Comm. ACM, 21(7), 1978.

206 BIBLIOGRAPHY

[64] M. M. Lehman and B. Belady. A model of large program development. IBM
Systems Journal, 15(3):225–252, 1976.

[65] M. M. Lehman and J. F. Ramil. Software evolution and software evolution
processes. Annals of Software Engineering, 14(1-4):275–309, 2002.

[66] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-oriented pro-
gramming with adaptive methods. Comm. ACM, 44(10):39–41, 2001.

[67] Adrian Lienhard, Stéphane Ducasse, and Tudor Gı̂rba. Object flow analy-
sis - taking an object-centric view on dynamic analysis. In Proceedings of
International Conference on Dynamic Languages, pages 121 –140, 2007.

[68] Jia Liu, Don Batory, and Srinivas Nedunuri. Modeling interactions in fea-
ture oriented software designs. In Stephan Reiff-Marganiec and Mark Ryan,
editors, FIW, pages 178–197. IOS Press, 2005.

[69] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disciplined
approach to aspect composition. In PEPM ’06: Proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 68–77, New York, NY, USA, 2006. ACM.

[70] Roberta Mancini, Alan Dix, and Stefano Levialdi. Reflections on undo.
Technical report, Dipartimento di Scienze dell’Informazione, Universita degli
Studi di Roma “La Sapienza”, Via Salaria 113, 00198, Rome, Italy, 1996.

[71] Tomi Männistö, Timo Soininen, and Reijo Sulonen. Modeling configurable
products and software product families. In in Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI-2001) - Workshop on Configu-
ration, 2001.

[72] Friedemann Mattern. Virtual time and global states of distributed systems.
In Parallel and Distributed Algorithms, pages 215–226. North-Holland, 1989.

[73] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software devel-
opment through declaratively codified programming patterns. Journal on
Expert Systems with Applications, 23(4):405–413, 2002.

[74] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans.
Softw. Eng., 30(2):126–139, 2004.

[75] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves Schobbens, and
Germain Saval. Disambiguating the documentation of variability in software
product lines: A separation of concerns, formalization and automated analy-
sis. In Proceedings of the 15th IEEE International Requirements Engineering
Conference (RE’07), pages 243–253, New Delhi, India, October 2007.

[76] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: an agile in-
formation visualization framework. In SoftVis ’06: Proceedings of the 2006
ACM symposium on Software visualization, pages 135–144, New York, NY,
USA, 2006. ACM.

BIBLIOGRAPHY 207

[77] R.T. Mittermeir. Facets of software evolution, 2006.

[78] Sathit Nakkrasae and Peraphon Sophatsathit. A formal approach for specifi-
cation and classification of software components. In SEKE ’02: Proceedings
of the 14th international conference on Software engineering and knowledge
engineering, pages 773–780, New York, NY, USA, 2002. ACM.

[79] Workshop on Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA 2001), 2001.

[80] Ro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and
Mary Jean Harrold. An empirical comparison of dynamic impact analysis
algorithms. In In Proceedings of the International Conference on Software
Engineering, pages 491–500, 2004.

[81] Harold Ossher and Peri Tarr. Using subject-oriented programming to over-
come common problems in object-oriented software development/evolution.
In Proc. 21st Int’l Conf. Software Engineering, pages 687–688. IEEE Com-
puter Society Press, 1999.

[82] Ellen Van Paesschen. Advanced Round-Trip Engineering. PhD thesis, Vrije
UNiversiteit Brussel, 2006.

[83] Andy Podgurski and Lori A. Clarke. A formal model of program dependen-
cies and its implications for software testing, debugging, and maintenance.
IEEE Transactions on Software Engineering, 16(9):965 – 979, 1990.

[84] Klaus Pohl, Gunter Bockle, and Frank van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer, July
2005.

[85] Atul Prakash. Undoing actions in collaborative work. Technical Report MI
48109-2122, University Of Michigan, 1992.

[86] Atul Prakash and Michael J. Knister. A framework for undoing actions in
collaborative systems. ACM Transactions on Computer-Human Interaction,
1(4):295 – 330, 1994.

[87] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Ob-
jects. Lecture Notes in Computer Science, 1241:419–434, 1997.

[88] H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Transactions of the American Mathematical Society, 74(2):358 – 366,
March 1953.

[89] Romain Robbes and Michele Lanza. A change-based approach to software
evolution. Electronic Notes in Theoretical Computer Science, pages 93–109,
2007.

[90] Charles Romesburg. Cluster Analysis for Researchers. Wadsworth, 2004.

208 BIBLIOGRAPHY

[91] A. Rosdal. Empirical study of software evolution and architecture in open
source software projects. Technical report, Norwegian University of Science
and Technology, 2005.

[92] Barbara G. Ryder and Frank Tip. Change impact analysis for object-
oriented programs. In PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering,
pages 46–53, New York, NY, USA, 2001. ACM.

[93] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Computer Net-
works (2006), special issue on feature interactions in emerging application
domains, page 38, 2006.

[94] Nathanael Shärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. Technical report, Oregon Graduate
Institute School of Science and Engineering, 2002.

[95] Cincom’s Smalltalk. Tool Guide. Cincom Systems Inc, 2007.

[96] Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented
implementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):215–255, 2002.

[97] Maximilian Stoerzer and Juergen Graf. Using pointcut delta analysis to
support evolution of aspect-oriented software. In ICSM ’05: Proceedings
of the 21st IEEE International Conference on Software Maintenance, pages
653–656, Washington, DC, USA, 2005. IEEE Computer Society.

[98] Maximilian Störzer and Christian Koppen. Pcdiff: Attacking the fragile
pointcut problem, abstract. In European Interactive Workshop on Aspects
in Software, Berlin, Germany, September 2004.

[99] Clemens Szyperski. Component Software : Beyond Object-Oriented Pro-
gramming. Addison-Wesley, January 1998.

[100] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of concerns. In ICSE
’99: Proceedings of the 21st international conference on Software engineer-
ing, pages 107–119, New York, NY, USA, 1999. ACM.

[101] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe compo-
sition of product lines. In GPCE ’07: Proceedings of the 6th international
conference on Generative programming and component engineering, pages
95–104, New York, NY, USA, 2007. ACM.

[102] The Eclipse Corporation. Eclipse. http://eclipse.org, 2007.

http://eclipse.org

BIBLIOGRAPHY 209

[103] S. Tichelaar. Modeling Object-Oriented Software for Reverse Engineering
and Refactoring. PhD thesis, University of Bern, 2001.

[104] Laurence Tratt and Roel Wuyts. Guest editors’ introduction: Dynamically
typed languages. IEEE Software, 24(5):28–30, 2007.

[105] University of Illinois at Urbana-Champaign. Visualworks: Change list tool.
http://wiki.cs.uiuc.edu/VisualWorks/Change+List+Tool, 2007.

[106] Tijs van der Storm. Generic feature-based composition. In Markus Lumpe
and Wim Vanderperren, editors, Proceedings of the Workshop on Software
Composition (SC’07), volume 4829 of LNCS. Springer, 2007.

[107] Yves Vandewoude. Dynamically updating component-oriented systems. PhD
thesis, Katholieke Universiteit Leuven, 2007.

[108] John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors. Pattern
Languages of Program Design 2. Addison–Wesley, Reading, MA, 1996.

[109] Roel Wuyts. A logic meta-programming approach to support the co-evolution
of Object-Oriented design and implementation. Phd thesis, Programming
Technology Lab, Vrije Universiteit Brussel, January 2001.

[110] Roel Wuyts. Roeltyper, a fast type reconstructor for smalltalk. Technical
report, Université Libre de Bruxelles, 2005.

[111] Z. Xing and E. Stroulia. Umldiff: An algorithm for object-oriented design
differencing. In Proceedings of the 20th International Conference on Auto-
mated Software Engineering, 2005.

http://wiki.cs.uiuc.edu/VisualWorks/Change+List+Tool

List of Publications

Articles in international reviewed journals

1. Yves Vandewoude, Peter Ebraert, Yolande Berbers and Theo D’Hondt.
Tranquility: a low disruptive alternative to quiescence for ensuring safe dy-
namic updates. In ”Transactions On Software Engineering”, Volume 33,
number 12 (1), published by IEEE Computer Society, 2007.

Contributions at international conferences, re-
viewed and published in proceedings

1. Peter Ebraert, Andreas Classen, Patrick Heymans and Theo D’Hondt. Fea-
ture Diagrams for Change-Oriented Programming, In the 10th book in the
series on ”Feature Interactions in Software and Communication Systems”,
published by IOS Press, 2009

2. Peter Ebraert, Jorge Antonio Vallejos Vargas, Yves Vandewoude, Yolande
Berbers and Theo D’Hondt. Flexible features: Making feature modules more
reusable, In ”Proceedings of the 24th Annual ACM Symposium on Applied
Computing”, published by ACM, 2009

3. Peter Ebraert. First-class change objects for feature-oriented programming,
In ”Proceedings of the 15th Working Conference on Reverse Engineering”,
published by IEEE Computer Society, 2008

4. Peter Ebraert, Jorge Antonio Vallejos Vargas, Pascal Costanza, Ellen Van
Paesschen and Theo D’Hondt. Change-Oriented Software Engineering, In
”Proceedings of the 2007 International Conference on Dynamic Languages”,
published by ACM, 2007

5. Jorge Antonio Vallejos Vargas, Peter Ebraert, Brecht Desmet, Tom Van Cut-
sem, Stijn Mostinckx and Pascal Costanza. The Context-Dependent Role
Model, In ”Proceedings of the 7th IFIP International Conference on Dis-
tributed Applications and Interoperable Systems”, published by Springer
Verlag, 2007

212 List of Publications

6. Peter Ebraert, Ellen Van Paesschen and Theo D’Hondt. Change-Oriented
Round-Trip Engineering, In ”Proceedings of the RIMEL workshop”, pub-
lished by ACM, 2007

7. Yves Vandewoude, Peter Ebraert, Yolande Berbers and Theo D’Hondt. An
alternative to quiescence: tranquility, In ”Proceedings of the 22th Interna-
tional Conference on Software Maintenance”, published by IEEE Computer
Society, 2006

8. Kris Steenhaut, Peter Ebraert, Jes Fink-jensen and Ann Nowe. Introducing
elements of knowledge management for E-learning, In ”Proceedings of the
IADIS International Conference WWW/Internet 2002, Lisbon.” published
by IADIS, 2002

Workshop papers and local publications

1. Peter Ebraert and Theo D’Hondt. On the classification of first-class changes,
In ”Proceedings of the 7th BElgian-NEtherlands software eVOLution work-
shop”, published digitally, 2008

2. Peter Ebraert, Leonel Merino and Theo D’Hondt. Software variation by
means of first-class change objects, In ”Proceedings of the Software Variabil-
ity: a Programmers’ Perspective symposium”, published digitally, 2008

3. Peter Ebraert and Theo D’Hondt. Feature-oriented programming based on
first-class changes, In ”2nd Workshop on FAMIX and Moose in Reengineer-
ing”, published digitally, 2008

4. Peter Ebraert and Theo D’Hondt. A Meta-model for expressing first-class
changes, In ”Proceedings of the Third International ERCIM Workshop on
Software Evolution”, published by ERCIM, 2007

5. Peter Ebraert and Olivier Le Goar. Evolution styles: change patterns for
Software Evolution, In ”Proceedings of the Third International ERCIM
Workshop on Software Evolution”, published by ERCIM, 2007

6. Peter Ebraert, Theo D’Hondt, Yolande Vandewoude and Yolande Berbers.
User-centric dynamic evolution, In ”Proceedings of the International ERCIM
Workshop on Software Evolution”, published by ERCIM, 2006

7. Jorge Antonio Vallejos Vargas, Peter Ebraert and Brecht Desmet. A Role-
Based Implementation of Context-Dependent Communications Using Split
Objects, In ”Proceedings of the workshop on Revival of Dynamic Languages”,
published digitally, 2006

8. Peter Ebraert and Theo D’Hondt. Dynamic Refactorings: improving the
program structure at runtime, In ”Proceedings of the 3rd Workshop on Re-
flection, AOP and Meta-Data for Software Evolution”, published digitally,
2006

213

9. Peter Ebraert, Yves Vandewoude, Theo D’Hondt and Yolande Berbers. Pit-
falls in unanticipated dynamic software evolution, In ”Proceedings of the
2rd Workshop on Reflection, AOP and Meta-Data for Software Evolution”,
published digitally, 2005

10. Peter Ebraert and Eric Tanter. A Concern-based Approach to Dynamic Soft-
ware Evolution, In ”Proceedings of the Dynamic Aspects Workshop”, pub-
lished digitally, 2004

11. Peter Ebraert and Tom Tourwe. A Reflective Approach to Dynamic Software
Evolution, In ”Proceedings of the 1st Workshop on Reflection, AOP and
Meta-Data for Software Evolution”, published digitally, 2004

12. Peter Ebraert, Tom Mens and Theo D’Hondt. Enabling Dynamic Software
Evolution through Automatic Refactorings, In ”Proceedings of the Workshop
on Software Evolution Transformations”, published digitally, 2004

13. Eric Tanter and Peter Ebraert. A Flexible Approach to Interactive Runtime
Inspection, In ”1st Workshop on Advancing the State-of-the-Art in Runtime
Inspection”, published digitally, 2003

Technical reports and posters

1. Peter Ebraert, Yves Vandewoude, Yolande Berbers and Theo D’Hondt. In-
fluence of type systems on dynamic software evolution. In ”Technical Report
CW410, KULeuven, Belgium”, 2005

2. Yves Vandewoude, Peter Ebraert, Theo D’Hondt and Yolande Berbers. In-
fluence of type systems on dynamic software evolution, In ”Poster proceed-
ings of the International Conference on Software Maintenance”, published
by IEEE Computer Society, 2005

3. Kris Steenhaut, Peter Ebraert, Jes Fink-jensen and Ann Nowe. Introducing
Elements Of Knowledge Management For E-learning, In ”Proceedings of the
IADIS International Conference”, published by IADIS, 2002

Biography

Peter Ebraert was born on January 14, 1980 in Brussels, Belgium. He holds a
licentiate’s degree of Science in Applied Computer Science, a European Master in
Object-Oriented Software Engineering degree and a master in business administra-
tion all from the Vrije Universiteit Brussel. He graduated cum laude in July 2001
with a thesis titled “Program suggestions based on Community-Profiles”, super-
vised by Prof. Theo D’Hondt. The same year, he started working in the IT sector
while pursuing his economics studies in the evening. In July 2002, he obtained
his second diploma. His third diploma was obtained with magna cum laude after
handing in a thesis titled “Tool Support for Partial Behavioral Reflection”, which
was again supervised by Prof. Theo D’Hondt. In January 2004, Peter started
working as a researcher in the PROG (programming technology) research group
at the VUB department of Computer Science and was funded by a grant from the
Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT). From January 2008 and on, he worked as a teaching assistent at the VUB
teaching several courses to first and second bachelor students in computer science.

	Abstract
	Samenvatting
	Table of Contents
	List of Figures
	List of Listings
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Software modularisation
	1.1.1 Object-oriented programming
	1.1.2 Component-based software engineering
	1.1.3 Aspect-oriented software development

	1.2 Modularisation for variation
	1.2.1 Feature-oriented programming
	1.2.2 Change-oriented feature-oriented programming

	1.3 Bottom-up approach to feature-oriented programming
	1.4 Scope of the dissertation
	1.5 Structure of the dissertation

	2 Background
	2.1 Program variability
	2.2 Feature-oriented programming
	2.2.1 FODA diagrams
	2.2.2 Extra-functional features
	2.2.3 Generic feature-based composition
	2.2.4 Mixin-layers
	2.2.5 FeatureC++
	2.2.6 Lifting functions
	2.2.7 AHEAD
	2.2.8 Discussion

	2.3 First-class changes
	2.3.1 Principles
	2.3.2 VisualWorks: change list
	2.3.3 SpyWare
	2.3.4 CatchUp!
	2.3.5 Changeboxes
	2.3.6 Change-impact analysis
	2.3.7 Discussion

	2.4 Aspect-oriented software development
	2.4.1 AspectJ
	2.4.2 EAOP
	2.4.3 Logical meta programming
	2.4.4 Discussion

	2.5 Conclusions

	3 Change-oriented programming
	3.1 Context
	3.1.1 Evolution Scenario

	3.2 Change as the central development action
	3.3 Requirements for ChOP
	3.3.1 First-class changes
	3.3.2 Change management

	3.4 Advantages of ChOP
	3.4.1 Incremental change management
	3.4.2 Combination with other paradigms

	3.5 Tool Support
	3.6 Discussion
	3.7 Conclusions

	4 Model of first-class change objects
	4.1 The FAMIX model
	4.1.1 Basic data types
	4.1.2 Object
	4.1.3 Entity
	4.1.4 Association
	4.1.5 Argument

	4.2 Code statements in FAMIX
	4.3 A model of changes
	4.3.1 Atomic changes
	4.3.2 Composite changes

	4.4 Dependencies between change objects
	4.4.1 Structural dependencies
	4.4.2 Semantical dependencies

	4.5 Conclusion

	5 Change-oriented feature-oriented programming
	5.1 Principles
	5.1.1 Features as functions
	5.1.2 Changes as feature building blocks
	5.1.3 Dependencies

	5.2 Mathematical properties
	5.2.1 The dependency relation
	5.2.2 Dependency graphs

	5.3 Advantages
	5.4 Bottom-up approach to FOP
	5.4.1 Obtaining the changes
	5.4.2 Classification of Changes
	5.4.3 Change composition

	5.5 Conclusion

	6 Formalism for feature composition
	6.1 Feature Diagrams
	6.2 A formal model for ChOP
	6.2.1 Fundamental concepts
	6.2.2 Properties

	6.3 From change specification to feature diagram
	6.3.1 Translating the formalism
	6.3.2 Applications

	6.4 Conclusion

	7 Expressing crosscutting concerns
	7.1 Crosscutting functionality in feature-oriented programming
	7.1.1 Flexible features
	7.1.2 Composing flexible features
	7.1.3 Other uses for flexible features

	7.2 Extensional changes
	7.3 Intensional changes
	7.3.1 Language for specifying intensional changes
	7.3.2 Intensional change evaluation
	7.3.3 Implementation
	7.3.4 Formalising intensional changes
	7.3.5 Advantages and drawbacks

	7.4 Conclusion

	8 Validation
	8.1 Proof-of-concept implementation
	8.1.1 VisualWorks for Smalltalk
	8.1.2 Model of first-class change objects
	8.1.3 Obtaining changes
	8.1.4 Change classification
	8.1.5 Feature composition
	8.1.6 ChEOPS supports the formal model
	8.1.7 Intensional changes in ChEOPS

	8.2 Validation: FOText
	8.2.1 FOText design
	8.2.2 FOText implementation
	8.2.3 Feature composition

	8.3 Conclusion

	9 Future Work
	9.1 Overcoming restrictions
	9.1.1 Parellel development
	9.1.2 True scalability
	9.1.3 The meta-model

	9.2 Classification strategies
	9.3 Applications of first-class changes
	9.4 Formalism
	9.5 Deriving intensional changes
	9.6 Feature refactoring
	9.7 Ensuring design contracts

	10 Conclusions
	10.1 Summary
	10.2 Contributions

	Bibliography
	List of Publications
	Biography

