
FACULTEIT WETENSCHAPPEN

Vakgroep Computerwetenschappen

Software Languages Lab

A Logic Meta Programming Foundation

for Example-Driven Pattern Detection

in Object-Oriented Programs

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Coen De Roover

Academiejaar 2008 - 2009

Promotoren: Prof. Dr. Wolfgang De Meuter en Dr. Johan Brichau

ABSTRACT

The growing number of tools for detecting user-specified software patterns is testa-
ment to their valuable applications throughout the development process. In these ap-
plications, user-specified software patterns describe code that exhibits characteristics
of interest. For instance, violations of the protocol an API expects to be adhered to.

Logic formulas can be used as expressive and descriptive pattern specifications.
This merely requires reifying the program under investigation such that variables can
range over its elements. Executing a proof procedure will establish whether program
elements exhibit the characteristics specified in a formula. However, we have observed
that such formulas become convoluted and operational in nature when developers
attempt to ensure all instances of a pattern are recalled.

As the behavioral characteristics of a pattern can be implemented in different ways,
the corresponding formula either has to enumerate each implementation variant or
describe the machine-verifiable behavior shared by these variants. The former for-
mulas are relatively descriptive, but only recall the implementation variants that are
enumerated. The latter formulas recall all implementations of the specified behavior,
but do so by quantifying over information about the program’s behavior. This exposes
developers to the intricate details of the program analyses that compute this informa-
tion.

We have reconciled both approaches by embedding source code excerpts in lo-
gic formulas. These excerpts exemplify the prototypical implementation of a pattern’s
characteristics —thus ensuring the resulting specifications are descriptive. They are
specified in the concrete syntax of the base program augmented with logic variables.
To ensure that all implementation variants are recalled, these excerpts are matched
against behavioral program information according to multiple matching strategies that
vary in leniency. Each match is quantified by the extent to which it exhibits the speci-
fied characteristics. The smaller this extent, the more likely the match is a false posi-
tive. This establishes a ranking which facilitates assessing a large amount of matches.
A logic of quantified truth provides the theoretical foundation for this ranking.

Unique to our matching process is that it incorporates whole-program analyses
in its comparison of individual program elements. A semantic analysis ensures cor-
rectness. To compare an unqualified and fully qualified type, for instance, a semantic
analysis takes the import declarations into account of the compilation units in which
they reside. A points-to analysis increases the amount of implementation variants that
are recalled. When expressions are compared, for instance, syntactic deviations are
allowed as long as they may evaluate to the same object at run-time.

The resulting example-driven approach to pattern detection recalls the implicit im-
plementation variants (i.e. those that are implied by the semantics of the programming
language) of a machine-verifiable characteristic specified as a code excerpt that exem-
plifies its prototypical implementation.

iii

SAMENVATTING

Het groeiend aantal tools voor het detecteren van door ontwikkelaars gespecifi-
ceerde software-patronen getuigt van de waardevolle toepassingen van patroondetec-
tie doorheen het ontwikkelingsproces. In deze toepassingen beschrijft een software-
patroon telkens code die aan bepaalde eigenschappen voldoet. Een patroon kan bij-
voorbeeld schendingen beschrijven van het protocol dat gevolgd moet worden bij het
aanroepen van een API.

Logische formules lenen zich tot descriptieve specificaties van zulke patronen.
Hiertoe is slechts een reïficatie van het programma vereist zodat formules over de
elementen van het programma kunnen kwantificeren. Het uitvoeren van een bewijs-
procedure bepaalt dan of elementen van het programma voldoen aan de geformu-
leerde eigenschappen. We hebben echter vastgesteld dat zulke formules eerder ope-
rationeel en verre van descriptief dreigen te worden wanneer ontwikkelaars ervoor
trachten te zorgen dat alle instanties van het patroon gedetecteerd worden.

Aangezien de eigenschappen van een patroon op verschillende manieren ge-
ïmplementeerd kunnen worden, moet de corresponderende formule ofwel elke im-
plementatievariant opsommen ofwel het gemeenschappelijke gedrag van deze vari-
anten beschrijven. De eerstgenoemde formules zijn relatief descriptief, maar kunnen
slechts de opgesomde implementatievarianten detecteren. De laatstgenoemde for-
mules kunnen verschillende implementaties van het gespecificeerde gedrag detecte-
ren, maar moeten hiervoor kwantificeren over informatie die het eigenlijk gedrag van
het programma beschrijft. Hierdoor worden ontwikkelaars blootgesteld aan verre van
eenvoudige programma-analyses die deze informatie berekenen.

Door broncodemallen te integreren in logische formules hebben we beide opties
met elkaar verzoend. Deze van logische variabelen voorziene fragmenten broncode
fungeren als een voorbeeld van de prototypische implementatie van de eigenschap-
pen van een patroon. Als voorbeelden van een implementatie waarborgen zij de de-
scriptiviteit van de resulterende patroonspecificaties. Opdat implementatievarianten
gedetecteerd zouden worden, vergelijken we zulke broncodemallen met informatie
over het gedrag van het programma volgens meerdere strategieën die verschillen in
striktheid. Een zogenaamde match bestaat uit bindingen voor de logische variabelen
die de broncodemal vervolledigen. Voor elke match kwantificeren we de mate waarin
deze aan de gespecificeerde eigenschappen voldoet. Geringe mates zijn indicatoren
van valse positieven. De op deze manier verwezenlijkte rangschikking vergemakkelijkt
het inspecteren van een groot aantal matchen. Een logica van gekwantificeerde waar-
heid ondersteunt deze rangschikking theoretisch.

Uniek aan bovenstaand vergelijkingsproces is dat analyses die informatie over het
gedrag van het volledige programma berekenen, geconsulteerd worden bij het ver-
gelijken van individuele programma-elementen. De correctheid van matches wordt
gevrijwaard door een semantische analyse. Bij het vergelijken van een ongekwalifi-

iv

ceerd type met een volledig gekwalificeerd type, houdt de semantische analyse bij-
voorbeeld rekening met de import-declaraties van de compilatie-eenheden waarin
beiden zich bevinden. Een points-to analyse verhoogt het aantal implementatie-
varianten dat gedetecteerd wordt. Bij het vergelijken van expressies zijn syntactische
afwijkingen bijvoorbeeld toegestaan, op voorwaarde dat de expressies kunnen evalu-
eren naar eenzelfde object tijdens een uitvoering van het programma.

De resulterende voorbeeldgedreven patroondetectietechniek detecteert impliciete
implementatievarianten (deze die volgen uit de semantiek van de programmeertaal)
van een patrooneigenschap die gespecificeerd is als een fragment broncode dat fun-
geert als voorbeeld van de prototypische implementatie van de eigenschap.

v

ACKNOWLEDGEMENTS

I am greatly indebted to my promotor Prof. Wolfgang De Meuter (Vrije Universiteit
Brussel) and co-promotor Dr. Johan Brichau (Université catholique de Louvain).
Johan has been my partner in crime from the moment I was ready to dive into his
implementation of the SOUL interpreter. I have truly enjoyed our joint work on
logic meta programming and I am looking forward to continuing this fruitful col-
laboration. Despite my stubbornness, Wolfgang never ceased to offer indispens-
able advise —from the years that preceded my first keystrokes in “thesis.tex” to
mere hours before I was presenting “private_defense.keynote”. Over the years,
his interventions have been crucial to my evolution from a student to a researcher.
It is impossible to thank both Wolfgang and Johan properly for their tremendous
support, patience and the countless hours they have spent proofreading each chap-
ter. I have not only come to appreciate them as outstanding advisors, but also as
friends.

I sincerely thank the members of my jury for their insightful comments and the
significant time they have invested: Prof. Michael W. Godfrey (University of Water-
loo), Prof. Ralf Lämmel (Universität Koblenz-Landau), Prof. Viviane Jonckers (Vrije
Universiteit Brussel), Prof. Dirk Vermeir (Vrije Universiteit Brussel) and Prof. Theo
D’Hondt (Vrije Universiteit Brussel). Next time, I will try to be more concise. During
my years as an undergraduate student, I had the pleasure of experiencing the inter-
nal jury members as gifted teachers who sparked my interests in software engineer-
ing, logic programming and language engineering respectively —the confluence of
which my research is situated in.

I wish to extend my sincerest gratitude to Prof. Theo D’Hondt in particular, for
welcoming me in the intellectually stimulating environment he has founded and
fostered in his own intriguing style. Working at his laboratory has been an unpar-
alleled and extremely gratifying experience. The amounts of trust and freedom to
explore that are granted by Theo makes teaching practical sessions for his classes a
joy. Moreover, I can only dream of ever mastering all of the clever insights that are
delightfully tucked away in the corners of his virtual machines.

Space restrictions prohibit enumerating all of the present and former colleagues
in the department with whom I have shared tear jearking laughs and the occasional
drink in the KultuurKaffee. A generic, but sincere “Thanks guys!” will have to do.
However, sharing a drink with our secretaries Lydie Seghers, Simonne De Schrijver
and Brigitte Beyens is long overdue. They have helped me out with administrative
issues on countless occasions.

My colleagues Charlotte Herzeel and Carlos Noguera deserve a special men-
tion. I had the pleasure of co-authoring a paper on template terms with Carlos
before he joined the lab. Now that we have become office mates, I am looking for-
ward to similar endeavors. Charlotte meticulously proofread large chunks of my

vi

dissertation —a huge favor that I hope to return soon. I am equally indebted to
Christophe Scholliers, Yves Vandriessche and Frederik Vanden Berghe for sharing
and eventually taking over my teaching duties while I was writing.

I would also like to thank those I have collaborated with on logic meta program-
ming in one form or another: Johan Brichau, Roel Wuyts, Johan Fabry, Andy Kel-
lens, Kim Mens, Sofie Goderis, Isabel Michiels, Charlotte Herzeel and Kris Gybels.
It is Kris’ diligent guidance of my master’s thesis that got me interested in research
in the first place. My gratitude extends to Tom Van Cutsem, Bruno Defraine, Andy
Kellens and Peter Ebraert for not leaving my e-mails which ranged from “how did
you get your dissertation printed?” to “which caterer did you order?” unanswered.

Thanks also go to everyone who helped me move to a new apartment while I
was writing: Elisa Gonzalez Boix, Christophe Scholliers, Wolfgang De Meuter, Sven
Casteleyn, Pascal Costanza, Alfredo Cádiz and Kris Gybels. Never before had I seen
a truckload of Swedish furniture being carried up three floors and being assembled
on the same evening! My apologies for the thumbs that suffered in the process.

Words alone will not suffice to express my gratitude towards my parents and
family. My mom is a saint —it is odd that my little sisters Jolien and Liesbeth are
such endearing devils.

Finally, my sincerest thanks go to Elisa Gonzalez Boix and Rolando Romero
Mendíburi. It is their support and listening ear that got me through the difficult,
questioning moments.

Coen De Roover
August 2009

vii

CONTENTS

Contents viii

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Research Context . 1
1.2 Problem Statement . 4
1.3 An LMP Foundation for Example-Driven Pattern Detection 6
1.4 Dissertation Outline . 9
1.5 Supporting Publications . 11

2 Detection of User-Specified Software Patterns 13
2.1 Software Patterns . 13
2.2 Machine-Verifiable Pattern Characteristics 15
2.3 Applications of Pattern Detection in Software Engineering 17
2.4 Design Dimensions of a Pattern Detection Tool 19
2.5 Supporting Machine-Verifiable Pattern Characteristics 24
2.6 Criteria for a General-Purpose Pattern Detection Tool 35
2.7 Conclusion . 39

3 State of the Art in Pattern Detection 41
3.1 Overview of the Surveyed Tools . 41
3.2 Tools Tailored to Syntactic Characteristics 42
3.3 Tools Tailored to Structural Characteristics 50
3.4 Tools Tailored to Control Flow Characteristics 53
3.5 Tools Tailored to Data Flow Characteristics 59
3.6 Concluding Evaluation of the Surveyed Tools 67

4 An Example-Driven Approach to Pattern Detection 77
4.1 Cornerstones of the Approach . 77
4.2 Cornerstone: Logic Meta Programming 79
4.3 Cornerstone: Example-Based Specification 86
4.4 Cornerstone: Domain-Specific Unification 91
4.5 Cornerstone: Fuzzy Logic . 97
4.6 Cornerstone: Open Implementation 104
4.7 Conclusion . 107

viii

Contents

5 Instantiating the Logic Meta Programming Cornerstone 111
5.1 The SOUL Logic Meta Programming Language 111
5.2 CAVA: Predicates for Reasoning about Java Programs 116
5.3 LMP Support for Pattern Characteristics 122
5.4 Open Implementation . 136
5.5 Limitations of the Instantiation . 137
5.6 Conclusion . 139

6 Instantiating the Fuzzy Logic and Domain-Specific Unification Corner-
stones 141
6.1 Fuzzy Variant of SOUL . 141
6.2 Fuzzified Standard Library . 147
6.3 Logic Meta Programming with Fuzzy Logic 150
6.4 Domain-Specific Unification Procedure for Java 152
6.5 Logic Meta Programming with Domain-Specific Unification 162
6.6 Revisiting LMP Support for Pattern Characteristics 166
6.7 Open Implementation . 171
6.8 Limitations of the Instantiation . 174
6.9 Conclusion . 176

7 Instantiating the Example-Based Specification Cornerstone 177
7.1 Extending SOUL with Template Terms 177
7.2 Predefined Example-Based Interpretations 186
7.3 Composing Template Terms . 193
7.4 Revisiting LMP Support for Pattern Characteristics 194
7.5 Open Implementation . 206
7.6 Limitations of the Instantiation . 206
7.7 Conclusion . 207

8 Validation: Detecting Patterns using Example-Based Queries 209
8.1 Detecting Design Patterns . 209
8.2 Detecting micro-patterns . 223
8.3 Detecting Bug Patterns . 229
8.4 Guidelines for Exemplifying a Software Pattern 235
8.5 Concluding Evaluation . 235

9 Conclusion and Future Work 239
9.1 Problem Statement Revisited . 239
9.2 Conclusion . 240
9.3 Contributions Restated . 241
9.4 Future Work . 242

Appendices 246

A Sources of Base Program Information 247
A.1 Obtaining Syntactic Information . 247
A.2 Obtaining Structural Information . 248
A.3 Obtaining Control Flow Information 248
A.4 Obtaining Data Flow Information . 250

B Additional Validation-Related Information 251

ix

CONTENTS

B.1 Base Program Statistics . 251
B.2 Undiscussed µ-Pattern Specifications 251

Bibliography 259

x

LIST OF FIGURES

2.1 Concrete syntax of the Java method insertElement(Object). 24
2.2 JDT DOM abstract syntax tree for method insertElement(Object). . 25
2.3 JDT Model structural representation of Java program. 27
2.4 JIMPLE intermediate representation for insertElement(Object). . . . 28
2.5 JIMPLE control flow graph for method insertElement(Object). . . . 29
2.6 SPARK points-to analysis results for JIMPLE locals. 31

3.1 A SCRUPLE specification pairing function calls with the function defini-
tion they occur in lexically. 42

3.2 ASTLOG definition of a general-purpose tree traversal predicate. 44
3.3 An abstract syntax tree consulting FUJABA specification for a one-to-

many delegation pattern [NSW+02]. 45
3.4 A TAWK expression pairing function calls with the function definition

they occur in lexically. 47
3.5 A LogicAJ2 pointcut predicate definition identifying expressions that syn-

tactically reference a field. 48
3.6 Canonicalizing ASF term rewriting equations from Sellink et al. [SV98]’s

native COBOL patterns. 49
3.7 Claire extract defining the domain variables involved in a PTIDEJ con-

straint satisfaction problem for the Composite design pattern. 51
3.8 Claire extract posting inheritance and composition constraints on the

variables involved in a PTIDEJ constraint satisfaction problem for the
Composite design pattern. 51

3.9 A METAL finite state machine specification identifying possible null pointer
dereferences. 54

3.10 CONDATE constrained reachability queries identifying reads from a closed
file, potential null pointer dereferences and large variable declarations
respectively. 55

3.11 JTL specification for the state machine µ-pattern [GM05]. 60
3.12 Definitions for the data flow incorporating JTL predicates that identify

instances of the data manager µ-pattern. 61
3.13 GRASPR flow graph grammar rule encoding the equality-within-ε idiom

[Wil94]. 61
3.14 Datalog rule that identifies straightforward SQL injections using the pred-

icates from PQL’s program representation. 64
3.15 A more complete specification of the SQL injection bug pattern in PQL’s

specialized syntax. 65
3.16 DeepWeaver pointcut conditions identifying expensive database queries. 66

xi

LIST OF FIGURES

3.17 Definition of the DeepWeaver columnUsed predicate that selects the
names of those columns in the result of a database query that are ac-
tually used by the querying program. 67

4.1 Architectural overview of a concrete instantiation of our approach. . . . 78
4.2 Prototypical implementations of the getter and setter method best prac-

tice patterns. 79
4.3 SOUL rule for the prototypical implementation of the getter method in

Java. 80
4.4 SOUL rules describing the ancestor relation between two Smalltalk classes. 83
4.5 SOUL traversal of the AST for a Smalltalk method to search for assign-

ments. 84
4.6 Example-based specifications embedded in SOUL queries. 86
4.7 Example-based specification for the prototypical implementation of the

getter method. 87
4.8 Implementation variants of the getter and setter method best practice

patterns in Java. 91
4.9 SOUL queries quantifying over all types defined by compilation units in

the package named examples. 94
4.10 SOUL queries illustrating domain-specific unification in the detection of

the getter method. 96
4.11 A fuzzy SOUL program illustrating quantified resolution. 99
4.12 Quantified results for the example-based specification of the getter method

in Figure 4.7 matched against the implementations in Figure 4.8. 101
4.13 Quantified results for a fuzzy SOUL query and the fuzzy rule defining the

predicate used in the query. 103
4.14 Open implementation of the translational semantics for a template re-

turn statement. 106

5.1 Linguistic symbiosis with Java in the implementation of contains:/2. 113
5.2 The vanilla meta-interpreter for SOUL. 115
5.3 AST node meta-information enables generating reification predicates. . 117
5.4 Illustrating reification predicates for control flow information. 119
5.5 Classes with an immediate super-type for which no AST is available. . . 122
5.6 LMP specification for syntactic char. of enhanceable for-statements. . 124
5.7 LMP specification for structural characteristics of a coding convention. 126
5.8 LMP specification for the structural char. of violations of a convention. 127
5.9 Results for the queries that check protocol conformance depicted in Fig-

ure 5.10. 129
5.10 LMP specifications for protocol-related control flow characteristics. . . 130
5.11 Results for Figure 5.6’s query extended with ad-hoc data flow char. 133
5.12 CAVA’s basic reasoning predicates rely on semantic analysis results. . . . 134
5.13 How not to quantify over the may-alias relation of local variables. 137

6.1 The meta-interpreter corresponding to the fuzzy variant of SOUL. 144
6.2 Meta-interpreter excerpt clarifying handling of unification degrees. . . . 146
6.3 Illustrating fuzzy isEqualToOrGreaterThanButRelativelyCloseTo:/2. . 148
6.4 Interfaces in a hierarchy quantified by how close they are to the root. . . 151
6.5 Quantified instances of the “many primitive public static final fields” bad smell. 152
6.6 Quantifying over overriding methods through dom.-spec. unification. . 163

xii

6.7 Quantified double dispatching implementations of Figure 5.4. 164

6.8 Syntactic char. of enhanceable fors with dom. -spec. unification. . . . 167

6.9 Data flow char. of enhanceable fors with dom. -spec. unification. . . . 168

6.10 Quantified solutions for data flow char. of complying methods. 170

6.11 A domain-specific unification extension (top) and a method mapping
Eclipse AST nodes to instructions in the JIMPLE intermediate represen-
tation (bottom). 173

7.1 Four equivalent template terms illustrating non-native syntax. 182

7.2 Meta-interpreter excerpt clarifying fuzzy resolution of template terms. . 184

7.3 DCG rules parsing code excerpt of term jtStatement(?s){return ?e;}. 184

7.4 Method declaration template term illustrating translational semantics. 186

7.5 Syntactic interpretation of the template term in Figure 7.4. 187

7.6 Lexical interpretation of the template term in Figure 7.4. 189

7.7 Control flow interpretation of the template term in Figure 7.4. 191

7.8 Fine-grained control over matches through template composition. . . . 194

7.9 Example-based spec. for syntactic char. of enhanceable fors. 195

7.10 Example-based equivalent for the rule in Figure 5.7. 197

7.11 Example-based equivalent for the query in Figure 5.8. 198

7.12 Example-based spec. for the control flow char. of complying methods. 202

7.13 Quantified solutions to example-based spec. for enhanceable fors. . . 204

7.14 Quantified solutions to example-based spec. for complying methods. . 205

8.1 Example-based specifications for the Singleton, Template Method and
Observer design patterns. 213

8.2 Example-based specifications for Decorator, Prototype, Composite and
Factory Method design patterns. 214

8.3 Design patterns detected in the academic program [HK02]. 215

8.4 Design patterns detected in JHOTDRAW 5.1 [jHo07] (1). 219

8.5 Design patterns detected in JHOTDRAW 5.1 [jHo07] (2). 224

8.6 SOUL (left) and JTL (right) specifications for select µ-patterns (1). 227

8.7 SOUL (left) and JTL (right) specifications for select µ-patterns (2). 228

8.8 The Function Object µ-pattern in the AMBIENTTALK interpreter. 229

8.9 Detecting inadvertent invocations on null. 230

8.10 Detecting an implementation pitfall of the Singleton design pattern. . . 232

8.11 Detecting an implementation pitfall of the Observer design pattern. . . 233

8.12 Detecting instances of Composite participants that are not visited by a
Visitor instance. 233

9.1 Exploring example-based diagrams for Composite and Visitor. 244

xiii

LIST OF TABLES

LIST OF TABLES

2.1 Overview of the criteria for a general-purpose pattern detection tool. . . 35

3.1 Overview of declarative pattern specification languages employed by
surveyed tools. 72

3.2 Overview of detection mechanisms employed by surveyed tools. 73
3.3 Overview of program representations employed by surveyed tools. . . . 74
3.4 Evaluation of surveyed tools on general-purpose pattern detection cri-

teria. 75

4.1 Overview of the pattern detection criteria that each cornerstone of our
example-driven approach helps to fulfill. 79

8.1 Precision and recall of design patterns in the academic program [HK02]. 216
8.2 Precision and recall of design patterns in JHOTDRAW 5.1 [jHo07]. 218

B.1 Comparison of µ-patterns identified by SOUL and JTL. 252
B.2 Informal µ-pattern descriptions . 253

xiv

C
H

A
P

T
E

R

1
INTRODUCTION

He said: “We’ve figured out a way to make the document creation program look
like the punched card reader to the computer. We need to make a copy of your
source code deck and store it just like the report you are working on, and then
you can use the Selectric typewriter to make your program changes. We need
you because you already know how to use the typewriter. I’ll help you get
everything organized the way you will need it.” The next several days were
hectic. All the programmers were learning how to use the document creation
program, and there was always a line of people waiting to use the Selectric
typewriter down the hall. A few of the programmers were reluctant to make
the change. Giving up their punched cards was a big leap; being able to hold
their source deck in our hands was important. Also, the ability to hand a
coding sheet to Maria in the keypunch room had always been heavily used by
those without typing skills. But soon even the non-typists were converted,
however reluctantly, to the typewriter. The increased productivity, even for a
hunt-and-peck typist, was just too great to ignore.

Programming with Punched Cards
DALE FISK [Fis05]

1.1 Research Context

The era in which a text editor, operated through a typewriter computer terminal,
could cause such a stir among programmers has long since passed. Source code is
still written in text editors (e.g. EMACS and VIM), but the editors have become aware
of the language in which the text is written. The well-defined syntax of a program-
ming language allows them to inspect the source code and assist the programmer
in the creative process. Source code is formatted automatically, highlighting key-
words and syntax errors. Outlines are presented that ease navigation to a specific
section in the code. Completions for expressions are suggested as they are entered.
Even the find and replace functionality has become syntax-aware.

1

1. INTRODUCTION

Tool Support for the Development Process

At the same time, the development process itself has become more systematic.
Tools assist in version management of source code (e.g. SVN and DARCS) and check
whether the coding conventions for a programming language are adhered to (e.g.
CHECKSTYLE for Java) . Tools are also able to instantiate design patterns [GHJV94]
to an implementation (e.g. ARGOUML) or recognize bug patterns [All02] in exist-
ing implementations (e.g. PMD and FINDBUGS for Java). The former document
proven solutions to recurring design problems, while the latter document imple-
mentations that often lead to bugs. All of these tools offer support for the develop-
ment process.

Integration of Tools within Development Environments

Editors have grown into integrated development environments (IDEs, e.g. VISUAL

STUDIO), integrating functionality from various source code manipulating tools.
Developers can edit, compile and debug their programs in a single environment
with a uniform interface. Time freed by not having to switch continuously between
separate tools can be spend on the creative process.

More importantly, the environment relates the heterogeneous information of-
fered by the tools it integrates. Implicit links, which would only become apparent
after intensive manual comparisons, are explicated. For instance, the origin of a
compilation error is highlighted in the source code where it can be corrected. By
integrating semantic information about the program, the environment is able to
make intelligent suggestions to the developer. The same information allows the
code to be navigated swiftly through semantic perspectives. For instance, a decla-
ration can be found for each use of a variable and the overrides of a method can be
browsed.

By adopting extensible architectures, integrated development environments
have embraced the increase in tool support. Their functionality can be extended
by loading a plug-in that integrates the tool within the environment. As a result, all
tools can be operated through a relatively uniform interface within a single envi-
ronment.

In the internet age, developers can browse and install plug-ins from on-line
plug-in repositories. In fact, a recent survey by Forrester research on IDE us-
age [HSD08] found that 39% of 703 surveyed developers use three to five plug-ins
regularly. Of the developers using the ECLIPSE IDE for Java, 81% even cited using
three or more plug-ins regularly. Factors holding back plug-in adoption were sur-
veyed as well. For 61% of the correspondents, lack of documentation and training
was cited as the biggest factor. At 28%, poor integration was cited 6th as the biggest
discouraging factor. Although the tools that support the development process are
diverse, their integration within the host environment encourages their use.

Application-Specific Support for the Development Process

Application-specific support for the development process is of special interest. It
is, for instance, needed by a development team that has agreed upon a common
programming style and desires tool support to enforce it. It is also needed by a
developer who, upon discovering suboptimal code, wants to verify automatically
whether or not its effects are more widespread throughout an application. It is

2

1.1. Research Context

needed as well by developers who want to detect violations against the protocol an
in-house application programmer interface (API) expects to be adhered to. It is fur-
thermore indispensable whenever code has to be navigated through application-
specific perspectives. For instance, to inspect the methods that cross architectural
application layer boundaries (e.g. by invoking the persistency layer from the pre-
sentation layer) or break the desired abstraction into layers (e.g. by querying the
database directly rather than going through the persistency layer). The boundaries
of these layers are inherently application specific.

Application-Specific Support through Pattern Detection

The need to identify program elements that exhibit particular characteristics is
common to the development support desired above. Following the liberal defini-
tion of a pattern by Riehle et al. [RZ96], we will refer to a tool that offers this func-
tionality as a pattern detection tool1.

The kind of characteristics supported by a pattern detection tool varies with
the use it is intended for. Characteristics concerning the execution order of in-
structions, for instance, are essential to tools intended for checking protocol con-
formance. Characteristics concerning the relations among object-oriented entities
(e.g. ancestorship and overriding) are, in contrast, essential to tools intended for
program navigation.

To support application-specific uses, however, pattern detection tools cannot
be limited to a fixed catalogue of predefined patterns.

Many tools have therefore adopted an open architecture. The popular bug pat-
tern detection tools PMD, FINDBUGS and CHECKSTYLE support custom traversals
of a program’s code to search for user-specified patterns. However, this approach to
extensibility comes at a high price. Users of the aforementioned tools are required
to extend a low-level implementation of the Visitor design pattern that traverses
the program’s code.2 This means users end up implementing the search for a bug
rather than specifying the bug they are looking for. Moreover, they are exposed to
the tool’s internal representation of the program under investigation.

Such problems are, in contrast, not associated with pattern detection tools that
accept a descriptive specification of the characteristics of interest and report all
program elements that match this specification. In addition to a program repre-
sentation, these tools feature a specification language and a detection mechanism.
Each configuration in this design space is tailored to the intended use of the tool.

To support characteristics concerning the execution order of instructions, for
instance, a pattern detection tool needs a specification language in which key in-
structions and their sequencing can be described. Its detection mechanism has to
determine whether a specified instruction sequence may be observed during an
execution of the program. To this end, it has to analyze a representation of the pos-
sible executions of the program under investigation (e.g. a control flow graph).

Apart from the more conventional ones enumerated in the previous section,
some very original applications of user-specified pattern detection have been
identified following the shift towards declarative specification languages. Exam-
ples include co-evolving the design and documentation of object-oriented pro-
grams [Wuy01], improving the coverage of program analyses by resolving idiomatic

1Precise definitions of software patterns and their machine-verifiable characteristics follow in
Chapter 2.

2PMD also supports XPath queries over an XML representation of the program’s code.

3

1. INTRODUCTION

uses of reflection [LWL05b] and semantic patching of applications [PLM06]. With
every new application that is identified, the use of pattern detection tools will be-
come more widespread among developers.

1.2 Problem Statement

Program analyses [NNH05] that compute precise information about run-time val-
ues are, in particular, costly for object-oriented programs due to polymorphism
and late binding. Recent advances in performance and scalability have enabled
tools to support behavioral pattern characteristics without incurring a computa-
tional cost that hinders their integration with an interactive development environ-
ment.3 This opens up new application areas to pattern detection tools. 4

In spite of their applications, developer adoption of tools that detect user-
specified behavioral characteristics is not widespread. Specifying and subse-
quently assessing the results returned for behavioral characteristics is hard.

Specifying Behavioral Characteristics is Hard

Specifying behavioral characteristics poses problems. Such characteristics not only
concern the execution order of instructions, but also the flow of run-time values
operated on by instructions. The problems are related to the numerous ways in
which a behavioral characteristic can be implemented. For example, an instance
field author in Java can be referenced through the expression author or through
the expression this.author. In addition, either variable person or artist may
be used to refer to its value after the assignments person = this.author and
artist = getAuthor() respectively5.

If detecting implementation variants of a behavioral characteristic is not sup-
ported, users have to resort to enumerating each variant in a specification. This re-
sults in convoluted specifications. Moreover, enumerating all possible variants is
impossible in practice. Many program elements that exhibit the desired character-
istics will not be recognized. Finally, program elements might even be identified er-
roneously if the user fails to consider the semantics of the programming language.6

Existing pattern detection tools focus on the implementation variants of one
kind of behavioral characteristics. Just one of the surveyed tools that support ex-
ecution order characteristics (i.e. DEEPWEAVER [FKI+07]), for instance, offers sup-
port for the implementation variants of the characteristics concerning run-time
values. However, its users must relate the results from different program analyses
manually. Each analysis supports a different behavioral characteristic. As a result,
its users are exposed to the intricate details of each analysis.

If behavioral characteristics cannot be specified at a higher level of abstraction
than the program analyses that enable the detection of their implementation vari-

3 For instance, by adopting clever representations of the computed information [LWL+05a, Lho06]
that save both time and memory. Or by using demand-driven [SR05] (i.e. only computing the re-
sults a tool needs), incremental [SR05] (i.e. computing changes in results given a change in input) and
refinement-based [Sri07](i.e. refining results from a less costly analysis within a time budget) algorithms.

4For instance, a very precise points-to analysis [WL04] has been instrumental in detecting tainted
data problems [MLL05] (i.e. the unchecked passing of user data to sensitive methods such as the infa-
mous SQL injection vulnerabilities).

5In case method getAuthor() is a getter method for the field author.
6Scoping rules, for instance. Within the method m(Object author), the expression author refers

to the parameter of the method rather than the field desired in the enumeration above.

4

1.2. Problem Statement

ants, users are exposed to the program analysis domain. This adds to the already
steep learning curve associated with a pattern detection tool. Distinguishing true
from false references to the author field, for instance, requires the results of a se-
mantic analysis [ASU86]. Such an analysis relates identifiers to their definition
according to scoping rules. An alias analysis [Hin01] is, on the other hand, required
to determine that the expression person evaluates to the value of the field. All of
these analyses stem from the optimizing compiler domain.

Assessing Results for Behavioral Characteristics is Hard

Users have to be aware of the extent to which a tool is able to assert the presence
of a behavioral characteristic. Not only does this extent vary among different tools,
but it may also vary among the program elements identified by a single tool. These
differences originate from differences in the precision of the analyses that are em-
ployed by each tool.

Consider once more the various implementations referring to the value of the
author field. Implementation this.author requires a semantic analysis, while
implementations person and artist require an alias analysis. Without an alias
analysis, the latter will not be detected at all. Moreover, depending on whether a
may-alias or must-alias analysis is used, the aliasing of these variables is asserted
to different extents. A may-alias analysis determines whether they may alias during
an execution of the program. A must-alias analysis determines whether they must
alias during every execution —which is more expensive. Some tools might there-
fore reserve the must-alias analysis for local variables and rely on the less expensive
may-alias analysis for others. As a result, the extents to which reported program el-
ements exhibit a specified behavioral characteristic may vary greatly. Assessing the
extent to which a reported program element exhibits a specified behavioral charac-
teristic requires detailed knowledge about a tool’s enabling analyses.

On a pragmatic note, the results of a tool often include elements from interme-
diate representations employed by its enabling analyses. This is the case for 8 out of
the 10 tools that support behavioral characteristics surveyed in Chapter 3. Exam-
ples include elements from three-address representations in which all instructions
take the form of two operands, an operation and a result.7As a result, users are often
exposed to the implementation details of a tool’s enabling analyses as well. Integra-
tion with development environments is comprised, forcing users to map elements
from intermediate representations to the program’s code.

No Unified Support for Behavioral and Non-Behavioral Characteristics

Most existing pattern detection tools have been designed for a single, specific use.
The specification language, detection mechanism and program representation of
each tool are specialized in the characteristics that are essential to its intended use.
Other characteristics are often not supported at all (see Table 3.3).8

7Figure 2.4 depicts a common variant for Java programs. Such intermediate representations sim-
plify the program analyses that enable detecting behavioral characteristics.

8 None of the tools intended for program navigation [JD03, HVd06], for instance, supports charac-
teristics concerning the execution order of instructions which are important for detecting bugs. Like-
wise, none of the bug pattern detection tools [ECCH00, BE03, Vol06a] supports characteristics concern-
ing the relations among program entities that are essential for program navigation.

5

1. INTRODUCTION

As a result, developers are faced with specification languages that are as diverse
as the intended uses of the pattern detection tools that offer them (see Table 3.1 for
an overview). Consider the tools tailored to characteristics concerning the execu-
tion order of instructions. Their specification languages already include finite state
machines [ECCH00, BE03], regular expressions [DdMS02, LRY+04, VEdM06] and
temporal logic formulae [LdM01] over control flow graphs. Tools tailored to char-
acteristics concerning the syntax of instructions feature completely different speci-
fication languages. Examples include source code fragments [Pau92, SV98, Mos05],
various logic programming languages [BCD+89, Cre97, RKA06, AK07] and regular
expressions over abstract syntax trees [GAM96].

Only a tendency towards logic formalisms (i.e. about 13 out of the 26 declara-
tive specification languages surveyed in Chapter 3 feature logic propositions in the
classical syntax or a custom surface syntax) somewhat lessens the problem which
the diversity among specification languages poses to users.

Currently, users have only two options to detect a heterogeneously character-
ized pattern. The first is to divide its specification over several tools specialized in
a particular characteristic. Users have to relate their results manually. The alterna-
tive is to use a general-purpose tool with a specification language that is an amal-
gamation of languages individually designed to express one kind of characteristic.
A unified specification language for a general-purpose tool has not been investigated
yet.

1.3 A Logic Meta Programming Foundation for
Example-Driven Pattern Detection

We have investigated which configurations of a specification language, detection
mechanism and program representation result in a general-purpose pattern detec-
tion tool that supports the detection of behavioral as well as non-behavioral char-
acteristics using descriptive and declarative specifications in a unified language.

The pattern detection tool that corresponds to these configurations is a general-
purpose tool that can be applied throughout the development process. Section 2.6
formulates the criteria for this tool to fulfill. They are summarized in Table 2.1.
Each criterion is motivated in response to the problems identified above. To ease
the problems associated with implementation variants, for instance, we require the
specification language to support expressing explicit points of variation among the
variants and require the detection mechanism to support detecting implicit points
of variation among the variants. The latter represent different implementations of
the same characteristic, while the former represent variations among the charac-
teristics that should be detected.

In this dissertation, we present a logic meta programming foundation for de-
tecting software patterns in an example-driven way. The resulting example-driven
approach to pattern detection fulfills the aforementioned criteria for a general-
purpose pattern detection tool. Its contributions to the state of the art will be de-
tailed in our concluding chapter.

In this section, we aim to give a brief overview of the approach. A detailed
overview is given in Chapter 4 which includes some characteristic examples. To
make the idea of example-driven pattern detection somewhat more tangible, we
invite the reader to briefly examine Figure 4.7. It depicts a specification for the get-
ter method best practice pattern. Figure 4.12 depicts the corresponding methods

6

1.3. An LMP Foundation for Example-Driven Pattern Detection

from Figure 4.8 that are identified as getter methods by our research prototype.
Our example-driven approach has its roots in the logic meta program-

ming [Wuy01] approach to pattern detection. It is widespread in the litera-
ture (e.g. [BCD+89, KP96, Cre97, RD99, Wuy01, JD03, RKA06, AK07, FKI+07] and
[MLL05, HVd06, CGM06b] use variants of Prolog [EK76] and Datalog [CGT89] re-
spectively). In this approach, a machine-executable proof procedure for a logic
is adopted as detection mechanism —giving rise to a programming language. A
pattern specification consists of logic conditions that range over a reified program
representation. Therefore, we can speak of a logic meta program.

The following overview is structured according to the previously identified di-
mensions in the design of pattern detection tools. We limit ourselves to the differ-
ences with respect to the logic meta programming approach.

1.3.1 Specification Language

To support example-based specifications, the specification language of our ap-
proach embeds source code excerpts in logic queries. The source code excerpts
correspond to the prototypical implementation of the essential characteristics of a
pattern. They are specified in the concrete syntax of the program under investiga-
tion, extended with logic variables. Logic variables within a source code excerpt
demarcate points of variation. The resulting specifications are highly descriptive,
while their syntax is already familiar to developers.

Source code excerpts can be combined with other excerpts and logic condi-
tions using logic connectives. Multiple occurrences of a variable are supported,
within excerpts as well as conditions (e.g. variable ?expression on lines 3 and 4 of
Figure 4.6). This facilitate expressing the explicit variation points of a pattern (i.e.
variations in its characteristics).

1.3.2 Detection Mechanism

Following the logic meta programming approach, the detection mechanism of our
approach is based on the machine-executable proof procedure for Prolog [EK76]:
resolution [Rob65]. The differences are described below.

It Realizes the Example-Based Semantics of Source Code Excerpts

The detection mechanism of our approach realizes the example-based semantics
of the source code excerpts in a query. The same excerpt can exemplify both non-
behavioral as well as behavioral characteristics of the prototypical implementation
of a pattern. The detection mechanism has to account for all possibilities. Sev-
eral example-based interpretations are therefore considered for each source code
excerpt.

In essence, each example-based interpretation transforms a source code ex-
cerpt into a logic query. To support behavioral characteristics concerning the ex-
ecution order of instructions, for instance, one interpretation transforms excerpts
into queries over control flow graphs. Each transformation is specified as a logic
rule. This allows users to define additional example-based interpretations.

7

1. INTRODUCTION

It Quantifies Results through Fuzzy Logic

The results reported by the detection mechanism of our approach consist of a pro-
gram element and a quantification of the extent to which it exhibits the specified
characteristics. The reported quantifications are intended to facilitate assessing a
large amount of results.9 To this end, it employs a resolution procedure for a fuzzy
logic. This is a logic of quantified truth based on fuzzy set theory [Zad65]. The truth
of logic propositions, between absolutely falsity and absolute truth, is quantified.

In fuzzy logic programming, a truth degree is associated with each logic rule.
They express the confidence in its conclusion given the absolute truth of the con-
ditions in its body. We use this feature to establish a ranking among the example-
based interpretations of source code excerpts. The right column in the upper left
window in Figure 4.12, for instance, lists the truth degrees for each solution to the
specification in the bottom left window —solutions stem from Figure 4.8.

The actual quantification of a logic goal (e.g. a condition in a query) varies with
each fuzzy Prolog. The particular variant used in our approach is similar to the one
of F-PROLOG [LL90], with the exception that it also quantifies unification (see next
section). This allows us to establish a ranking among the results reported by a single
example-based interpretation of a source code excerpt.

It Employs a Domain-Specific Unification Procedure

The detection mechanism of our approach employs a domain-specific unification
procedure. It differs from the general-purpose unification procedure on the follow-
ing points.

• To support implicit variation points of a pattern (i.e. different implementa-
tions of the same characteristic), whole-program analyses are incorporated
in the comparison of individual program elements. Users benefit from their
results without being exposed to their intricate details —even when defining
additional example-based interpretations for source code excerpts.10

A semantic analysis ensures correctness. For qualified and unqualified
names of types, import declarations are taken into account. A points-to anal-
ysis enhances identification efficacy. When expressions are compared, syn-
tactic deviations are allowed as long as they may-alias at run-time. Using
the points-to analysis to resolve late binding, method invocations unify with
their possible target method declarations.

• Unification results either in failure, or in a unification degree. Unification
degrees are propagated by the fuzzy resolution procedure to the reported re-
sults.

Through these degrees, our approach communicates information about
the program analyses used in a domain-specific unification. For instance,
whether unifying variables required a semantic analysis or a points-to anal-
ysis. The former is the case for variables that are bound to an unqualified
name and the fully qualified name of the same type respectively. The latter is

9This is the sole intent of the reported quantifications. In particular, they should not be confused
with probabilities.

10Advanced users can define additional domain-specific extensions of the general-purpose unifica-
tion procedure through a tool. It is only here that they are exposed to the details of the program analyses.

8

1.4. Dissertation Outline

the case for variables that are bound to two expressions that may alias in an
execution of the program.

• To enable the natural use of unification to quantify over the program repre-
sentation, a reified program element (e.g. the abstract syntax tree node for
the qualified name of a type x.y) unifies with a structurally equivalent com-
pound term (e.g. qualifiedName(simpleName(’x’),simpleName(’y’)))
—even if the reified version of the program element is not a compound term.
A reification is needed by the logic meta programming approach to support
querying the program representation using logic conditions.

Our approach forgoes the prevalent transcription to compound terms (e.g.
a database of logic facts) and queries the program representation directly
(see next section). Our unification procedure avoids that queries that have
to quantify over the program representation become convoluted. Otherwise,
compounds such as qualifiedName(?qualifier,simpleName(’y’)))
could not be used to identify types of which y is the last part of the qualified
name. Our approach lends the reified name an alternative, compound-based
representation on-the-fly.

1.3.3 Program Representation

The program representation of our approach includes both behavioral and non-
behavioral information about the program under investigation. However, our logic
specifications range only over abstract syntax tree nodes. In other words, only ab-
stract syntax trees are reified in our approach. This way, the user is shielded from
the intricate details of program analyses. It also precludes elements from interme-
diate program representations from popping up in the reported results. This, in
turn, facilitates user assessment and integration with other tools.

As mentioned in the previous section, our approach does not reify abstract syn-
tax tree nodes as compound terms. Rather, the nodes are kept as is (e.g. objects).
This renders reconstituting the actual AST nodes from their reified counterparts
trivial at any point in the proof procedure. In particular, incorporating whole-
program analyses in the unification of individual abstract syntax tree nodes is fa-
cilitated. The context within the program of each node can be obtained easily (e.g.
parent node or parent method declaration).

Our approach is agnostic with respect to the concrete logic meta programming
language that is used as its foundation. In our concrete instantiation, we have
opted for a language in which objects are first-class values: the Smalltalk-Prolog
hybrid SOUL [Wuy01].11 Such a hybrid opens the door to the imperative paradigm
in specifications wherever it is more convenient.

1.4 Dissertation Outline

Chapter 2: Detection of User-Specified Software Patterns This chapter primarily
serves to formulate and motivate the criteria for a general-purpose pattern
detection tool. However, some background information is provided first.

11In fact, within Smalltalk expressions within logic rules, our prototype communicates with a Java
Virtual Machine to reify an ECLIPSE workspace. It relies on the interoperability between Java and
Smalltalk provided by the JAVACONNECT [Jav] library.

9

1. INTRODUCTION

We present detailed definitions for software patterns and their machine-
verifiable characteristics. We illustrate that software patterns are more varied
than the canonical design patterns lead to believe and enumerate interesting
applications of their detection in software engineering. For each machine-
verifiable characteristic, we investigate which configurations in the design of
a tool support its detection.

Chapter 3: State of the Art in Pattern Detection In this chapter, we survey the
state of the art in tools that support the detection of user-specified patterns.
The survey is structured according to the characteristics each tool is primar-
ily intended for. The fact that such a structure is possible, already highlights
the current lack of general-purpose pattern detection tools.

Chapter 4: An Example-Driven Approach to Pattern Detection This chapter de-
fines our example-driven approach to pattern detection in terms of four cor-
nerstones and their inter-dependencies: logic meta programming, example-
based specifications, domain-specific unification, fuzzy logic and open im-
plementations. Each cornerstone is introduced and carefully motivated with
respect to the criteria for a general-purpose pattern detection tool it helps
fulfill. Their individual contributions are also illustrated on a running exam-
ple. As a suggestion for their concrete instantiation, we briefly outline the im-
plementation of each cornerstone in our research prototype. The remaining
chapters revisit the implementations in detail, except for the last cornerstone
which crosscuts all others.

Chapter 5: Instantiating the Logic Meta Programming Cornerstone This chap-
ter discusses the LMP cornerstone as instantiated in the prototype that we
will use to validate our approach. Concretely, this LMP instance consists
of the Smalltalk-Prolog hybrid SOUL and the CAVA library of predicates for
reasoning about Java programs. To illustrate the support offered by LMP
for each kind of pattern characteristic, we specify representative patterns as
logic queries. Subsequent chapters revisit the same patterns.

Chapter 6: Instantiating the Fuzzy Logic and Domain-Specific Unification Cor-
nerstones

In this chapter, we discuss the instantiations of the fuzzy logic and domain-
specific unification cornerstones. Both instantiations adapt the logic meta
programming instance discussed in the previous chapter. We specify the
representative patterns of the previous chapter as fuzzy logic queries that use
domain-specific extensions to the general-purpose unification procedure.
This illustrates how both cornerstones improve upon the support for each
pattern characteristic offered by the founding cornerstone.

Chapter 7: Instantiating the Example-Based Specification Cornerstone This
chapter discusses the example-based specification cornerstone as in-
stantiated in our prototype. We revisit the representative patterns of the
previous chapters to demonstrate how this cornerstone enables exemplify-
ing their characteristics by means of a code excerpt that corresponds to their
prototypical implementation.

Chapter 8: Validation - Detecting Patterns using Example-Based Queries In this
chapter, we validate our example-driven approach to pattern detection by

10

1.5. Supporting Publications

applying its instantiation to several interesting software patterns. An evalu-
ation on the criteria for a general-purpose pattern detection tool concludes
this chapter.

Chapter 9: Conclusion and Future Research Directions This chapter concludes
our dissertation. We revisit the problem statement and restate the contribu-
tions of our dissertation. Finally, we present interesting directions for future
research.

1.5 Supporting Publications

Of the (co-)authored publications that are related to logic meta program-
ming [DGD05, DMG+06, DBD06, MDB+06, HGC+07, DBN+07, BDM07, KBD08,
HGC+09, BD09], the following introduce the key ideas of our example-driven ap-
proach to pattern detection:

• Combining Fuzzy Logic and Behavioral Similarity for Non-strict Program
Validation [DBD06]
Coen De Roover, Johan Brichau and Theo D’Hondt
Proceedings of the 8th ACM-SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP 2006)
This paper explores extending the unification procedure of an LMP language such
that incompatible logic terms unify if they reify Java expressions that are in a may-
alias relation. It also proposes using fuzzy logic to discern solutions that required
such an extension from the ones that were found under the regular unification proce-
dure. Both are predecessors of the instantiations of the domain-specific unification
and fuzzy logic cornerstones discussed in Chapter 6. The more refined unification
procedure, for instance, incorporates additional program analyses such as a must-
alias and a semantic analysis.

• Behavioral Similarity Matching using Concrete Source Code Templates in
Logic Queries [DBN+07]
Coen De Roover, Johan Brichau, Carlos Noguera, Theo D’Hondt and
Laurence Duchien
Proceedings of the 2007 ACM-SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM 2007)
This paper explores the use of source code excerpts to exemplify the prototypical
implementation of various software patterns. In contrast to the more refined in-
stantiation of the example-based specification cornerstone discussed in Chapter 7,
only a single example-based interpretation of the excerpt is considered to resolve the
term (i.e. an inter-procedural version of the lexical interpretation discussed in Sec-
tion 7.2.2).

• Open Unification for Program Query Languages [BDM07]
Johan Brichau, Coen De Roover and Kim Mens
Proceedings of the 26th International Conference of the Chilean Computer Sci-
ence Society (SCCC 2007)
The research artifacts supporting the above publications rely upon the logic predi-
cates of the IRISH library [FM04] to reason about Java programs. The artifact sup-
porting this dissertation relies upon the predicates of the CAVA library instead (cf.
Chapter 5). The paper introduces a predecessor of this library for reasoning about

11

1. INTRODUCTION

the projects in an Eclipse workspace. In addition, the paper explores two domain-
specific unification extensions: one that consults a semantic analysis to unify two
reified Java AST nodes (cf. Section 6.4.1) and one that unifies a reified Java AST node
with a structurally equivalent compound term (cf. Section 6.4.2). The paper also ex-
plores a domain-specific unification procedure for Smalltalk programs. However, in
contrast to the unification procedure for Java programs, it does not incorporate any
whole-program analyses.

Finally, in [DGD05], we motivated using advanced program analyses to support
pattern detection applications of LMP. In [BD09], we discuss the JAVACONNECT li-
brary in more detail. It enables Smalltalk applications to invoke methods on any
Java object in a running JVM instance. This is how the aforementioned CAVA library
is able to reason about the projects in an Eclipse workspace (cf. Chapter 5).

12

C
H

A
P

T
E

R

2
DETECTION OF USER-SPECIFIED SOFTWARE

PATTERNS

We initiate our discourse on pattern detection with an overview of its
applications in software engineering. We illustrate that for many ap-
plications, domain-specific and application-specific patterns preclude
the use of a predefined pattern catalogue. Instances of the targeted pat-
terns exhibit non-behavioral, but also behavioral characteristics. While
the former concern the program’s syntactic and architectural organisa-
tion, the latter concern the execution order of its constituents and the
values they evaluate to. We identify the key dimensions in the design of
a tool that supports the detection of user-specified patterns. We inves-
tigate which combinations of a specification language, detection mech-
anism and representation of the program under investigation support
each individual kind of pattern characteristic. We conclude the chapter
with an overview of the criteria a general-purpose pattern detection tool
should exhibit. These criteria are organized according to the previously
identified design dimensions and will be used to assess the state of the
art in the next chapter.

2.1 Software Patterns

Following the liberal definition introduced by Riehle et al. [RZ96], we use the term
“pattern” to denote “an abstraction from a concrete form which keeps recurring in
specific non-arbitrary contexts”. The form of a pattern consists of “a number of visi-
ble and distinguishable components and their relationships”. The abstract form of a
pattern materializes as a mental concept, according to this definition, from reflec-
tion on experience gained from recognizing and comparing its recurring concrete
forms. These are referred to as pattern instances. The abstract form can also be
used as a template to create new pattern instances in a new context of use. This
context is said to constrain the abstract form of the pattern to the concrete form
of its instance. It is moreover non-arbitrary in the sense that all contexts in which
concrete forms recur share specific commonalities such that it is beneficial to doc-

13

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

ument and abstract the concrete forms into a pattern.
“Software patterns” denote patterns of which the form consists of software en-

tities and their relationships. We restrict the scope of this dissertation to software
patterns of which the recognition can be automated: their abstract form consists
of “machine-identifiable software entities” and the relationships among these soft-
ware entities are machine-verifiable. In keeping with the automated pattern recog-
nition setting, we refer to the source of the software entities in the concrete pattern
forms as the “program under investigation”. Machine-identifiable software enti-
ties encompass both higher-level and lower-level constituents of the program un-
der investigation. These range from packages and compilation units over classes,
individual statements and expressions to the keywords and identifiers contained
therein. The “machine-verifiable relationships” can express both “non-behavioral
as well as behavioral characteristics” of the entities involved in a pattern’s concrete
form. The former express syntactic and organisational characteristics of the pro-
gram’s source code and architecture respectively. The latter express the relative or-
der in which entities are executed or properties of the values they evaluate to at
run-time. The specific characteristics considered in this dissertation are denomi-
nated later on.

Well-known software patterns of which the recognition can be automated in-
clude, but are not limited to, the following:

• application-specific patterns that capture the programming style and con-
ventions agreed upon by a team of developers (e.g. the coding conventions
for Java programs advocated by Sun Microsystems [Mic99] or those checked
by the CHECKSTYLE project [Che08]).

• language-specific idioms such as the idiomatic way to enumerate all ele-
ments in a collection. Other examples include the idiomatic implementa-
tion of double dispatching in single dispatch languages and the idiomatic
use of the reflection (see Livshits et al. [LWL05b] for case studies of the latter
in Java, while Peel [Pee87] and Coplien [Cop91] represent early collections of
advanced idioms for APL and C++ respectively).

• the coarse-grained, but implementation-level object-oriented µ-patterns
coined by Gil et al. [GM05, CGM06a] which describe software entities in
straightforward structural relations. Examples include the Implementor,
Overrider and Extender µ-patterns which describe a class that exclusively
implements abstract methods, overrides existing methods and enriches an
inherited interface respectively. The Record µ-pattern is another example
which describes a class without methods and only public fields.

• best practice patterns [Bec96] which capture software engineering best prac-
tices such as the use of getter and setter methods to eliminate direct field
accesses hindering the evolution of classes. Conversely, bad practice pat-
terns document bad practices. An example is dropping a raised exception by
catching the exception without handling it.

• patterns describing bad smells [FBB+99] which are indications of a subopti-
mal implementation suggesting the need for a thorough refactoring. An ex-
ample of a bad smell is a method that is too long or has too many parameters.

14

2.2. Machine-Verifiable Pattern Characteristics

• language-specific and application-specific bug patterns that could lead to er-
roneous behavior at run-time. Language-specific bug patterns are not lim-
ited to the classical dereferencing of a null pointer or the reading of a closed
file, but also include common pitfalls such as the unintended use of an as-
signment operator in the condition of an if-statement. Implementing a cus-
tom hashCode()method without implementing a custom equals(Object)
method is another common Java pitfall that could lead to violations of the
invariant that equal objects must have equal hash codes (see the FindBugs
project [HP04], the PMD [PMD08] project and Allen [All02] for comprehen-
sive collections of Java bug patterns). Many application-specific bug patterns
amount to violations of the protocol expected by the application program-
mer interface of a library (e.g. a driver’s failure to restore the interrupts it
disabled through the API of an operating system kernel as examined by Chou
et al [CYC+01]).

• certain security vulnerabilities such as the passing of untrusted data to sensi-
tive methods without appropriate security measures (e.g. the SQL injections
common in web-based systems that pass a string as it was received from the
user to their database server)

• the seminal design patterns introduced by Gamma et al. [GHJV94] which de-
scribe proven object-oriented solutions to common design problems

• pitfalls in the implementation of design patterns [GHJV94] and software ar-
chitectures. An example of the former are lapsed listeners. These are listeners
from the Observer design pattern that are no longer needed, but are never
garbage collected because they never unregistered with their subject (see the
Checklipse [Liv05] project for pitfalls related to the Observer and Template
Method design patterns as observed in Eclipse [Liv05]). An example of the
latter arises in straightforward implementations of a distributed Blackboard
architecture [BHS07]. With a permissive control component that always re-
turns the most freshly published data, inconsistencies between knowledge
source components potentially arise when these components directly or in-
directly alter the state of local data after having it published on the black-
board.

2.2 Machine-Verifiable Pattern Characteristics

In this dissertation, the only relationships among software entities that are con-
sidered for the form of a software pattern express its “machine-verifiable syntac-
tic, structural, control flow or data flow characteristics”. While the first two are of
a non-behavioral nature, the last two are behavioral as they concern the run-time
behavior of the program under investigation.

Consider the bug pattern describing the reading from a closed file as an exam-
ple. Through syntactic characteristics, the software entities in its form are restricted
to expressions x.close() and y.read(). Through data flow characteristics, the
software entities are further restricted to those in which variables x and y denote
the same file. The control flow characteristics on the other hand express that the
reading from this file follows its closing at run-time.

15

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

2.2.1 Syntactic Characteristics

The syntactic characteristics in a pattern’s form concern the syntactic structure of
source code according to the formal grammar of the programming language it is
written in. They restrict the software entities in the form to source code elements
belonging to a particular grammatical category such as the one of statements or
the one of all productions that are not expressions. Syntactic characteristics also
concern the relations, according to the grammar, between source code constructs
in the pattern’s form. For instance, the aforementioned unintended assignment
pattern consists of an if-statement and an assignment expression such that the
latter is produced by the expression-part of the former’s grammar rule. Many low-
level software idioms are primarily characterized by syntactic characteristics.

Behavioral characteristics are not easily expressed in terms of syntactic charac-
teristics as the semantics of the programming language must be taken into account.
While two variables can be related syntactically through the strings they are iden-
tified by, they do not necessarily refer to the same run-time entity. Likewise, the
semantics of exception handling and control statements must be accounted for in
order to express through syntactic characteristics that two statements may be exe-
cuted sequentially at run-time.

2.2.2 Structural Characteristics

The structural characteristics in a pattern’s form concern the structural organi-
zation of the program under investigation. They restrict the entities in the form
to select software entities that are too coarse grained to reconstruct the complete
source code of the program under investigation, but nonetheless offer a birds-
eye-view of its organisation. Examples include packages, compilation units and
the types defined therein. The machine-verifiable relations among these enti-
ties range from a generic containment relation over inheritance relations between
types to invocation relations between methods. Many of the aforementioned µ-
patterns [GM05, CGM06a] and especially the structural rather than the creational
or behavioral design patterns [GHJV94] are primarily characterized by structural
characteristics.

Structural characteristics can be expressed in terms of syntactic characteristics.
While this is straightforward compared to the expression of behavioral characteris-
tics, it results in large expressions with idiomatic recurring parts because structural
entities and relations must be derived from the complete syntactic structure of the
program’s source code.

2.2.3 Control Flow Characteristics

The control flow characteristics in a pattern’s form concern the order in which se-
lected software entities are executed at run-time. They stipulate how the execution
of key instructions, such as the reading and closing of a file, must be sequenced
at run-time. The software entities in a particular sequencing relation are often syn-
tactically dispersed throughout the program’s source code. Examples of straightfor-
ward machine-verifiable sequencing relations are consecutive execution and tran-
sitive reachability. Other relations impose restrictions on the kind of instructions
that can occur in between two instructions. The most refined relations express that
sequences of executed instructions fit a certain form. As the behavior of a program

16

2.3. Applications of Pattern Detection in Software Engineering

possibly varies each time it is executed, these forms can be required to hold for
one, some or all run-time executions of the program. Dwyer et al. [DAC99] present
a taxonomy of sequencing relations and compare common formalisms to express
them.

Control flow characteristics are common in the form of bug patterns. As illus-
trated above, they are usually complemented by syntactic and data flow character-
istics. These serve the identification of the key instructions in a program’s execu-
tion upon which sequencing constraints are imposed. Without data flow charac-
teristics, sequencing constraints are limited in their ability to relate instructions.
False positives might be reported. This is the case if the receiver variable of the
x.close() invocation shares its name with the one in a subsequent x.read() in-
vocation, but both variables point to different files.

2.2.4 Data Flow Characteristics

The data flow characteristics in a pattern’s form concern the range of run-time val-
ues software-entities can assume at run-time. They restrict the software entities in
the form to entities through which values are denoted (e.g. variable declarations),
to entities that evaluate to a value at run-time (e.g. expressions) or to entities that
encompass them (e.g. a variable reference within a statement). Machine-verifiable
data flow relations range from the relation between the use of a variable and its def-
inition to the relation between a method invocation and its possible target method
declarations. Other data-flow relations state whether two expressions point to the
same value at run-time. Again, these relations can be required to hold for one, some
or all run-time executions of the program under investigation.

Syntactically, the software entities in a data flow relation may differ significantly.
This was for instance the case for the x and y variables in the bug pattern above. Re-
lying on data flow characteristics, a pattern’s form does not have to enumerate the
multitude of syntactic variations in which relations between run-time values can be
established. Often, the entire program must be considered in order to determine
that two of its software entities are in a data flow relation.

2.3 Applications of Pattern Detection in Software Engineering

This section briefly highlights some applications of pattern detection tools in soft-
ware engineering.

2.3.1 Applications in Quality Assurance

For many of the aforementioned software patterns, the overall quality of a program
can be ensured by a pattern detection tool that asserts the presence or absence of
the pattern’s instances in or from the program’s source code. Examples include pat-
terns prescribing coding conventions and software engineering best practices or
patterns describing bugs and security vulnerabilities. Ideally, such tools are applied
continuously throughout the program’s entire life-cycle such that quality violations
are reported the moment they are introduced —either during forward engineering,
maintenance or re-engineering of the program.

The full potential of pattern detection in quality assurance is however only real-
ized by tools that support the detection of user-specified patterns. Coding conven-
tions and programming styles are often specific to a project development context.

17

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

While specialized bug detection tools excel at the detection of common bug pat-
terns such as potential null pointer dereferences, a tool supporting the detection
of user-specified patterns can also be applied to application-specific bugs such as
violations of the protocol an application programmer interface (API) expects to be
adhered to. During development, such tools moreover allow developers to check
that a discovered bug is not more widespread throughout the application.

Paraphrasing Engler [ECCH00], “developers understand the semantics of the
system operations they build and use but do not have the mechanisms to check or
exploit these semantics automatically”. Tools restricted to a fixed pattern repository
“have the machinery to do so, but their domain ignorance prevents them from ex-
ploiting it”. Provided developers can communicate the form of the desired patterns,
user-specified pattern detection tools can bring machinery and domain-specific
semantics together. Applied to higher-level patterns documenting program design,
continuous detection of user-specified patterns can also ensure that the design and
implementation of the program under investigation remain synchronized (coined
co-evolution by Wuyts [Wuy01]).

2.3.2 Applications in Program Comprehension

Developers can apply pattern detection tools in various ways to improve their un-
derstanding of an unfamiliar program. Software patterns establish a common vo-
cabulary for software developers. Applied to well-known patterns, pattern detec-
tion tools offer a more abstract view of the program under investigation. This view
comprises terminology that is of a higher abstraction level than that of the actual
software entities in a pattern’s form. Each localized instance of the aforementioned
enumeration idiom for instance conveys which collection is being enumerated over
in the program’s source code and which iteration or recursion constructs imple-
ment the enumeration. Wills [RW90, Wil92] takes this application of pattern detec-
tion to the extreme of automated program recognition: a hierarchical view of the
program under investigation is produced comprising recognized pattern instances
and the implementation relations among them.

As patterns occur in non-arbitrary contexts, localized pattern instances can
moreover convey more than the sum of the entities and relationships their form
comprises. This is especially true for design patterns, proven solutions to design
problems, of which the form is complemented by a design rationale and discus-
sion of the trade-offs they implement. The view that their localization conveys in-
formation about why they are included in the program under investigation is sup-
ported by for instance Keller et al. [KSRP99]. Prechelt et al. [PULPT02] also found
in empirical experiments that maintainers equipped with explicit design pattern
information solve maintenance tasks quicker and with fewer errors.

Recalling that instances of software patterns comprise software entities in par-
ticular relationships, tools that support the detection of user-specified patterns can
also be applied by a developer to verify the mental model he or she gradually builds
about the inner workings of the program under investigation. This model is correct
when the tool asserts the presence of the user-specified software patterns it com-
prises. Such tools therefore support views of program comprehension as an itera-
tive process of mental model construction, verification and revision (see [vMV95]
for an introductory overview).

18

2.4. Design Dimensions of a Pattern Detection Tool

2.3.3 Applications Relied upon by Meta Programming Tools

While the program comprehension and quality assurance applications enumerated
above represent direct instances of pattern detection, pattern detection is also im-
plicitly relied upon to varying extents by tools that manipulate programs. Such pro-
grams that manipulate other programs are in general referred to as meta programs.

This is for instance the case for tools that produce visualisations of (see [GC08]
for a recent survey) or metrics about (see e.g. [LM06]) about the program under
investigation in which the software entities involved in a visualisation or metric
are restricted to those exhibiting specific characteristics. Richner [RD99, Ric02]
presents an interesting example where the detection of user-specified, structurally
characterized patterns produces custom visualisations.

Refactoring tools, of which the Smalltalk refactoring browser [RBJ97] repre-
sents an early example, for instance implement behavior-preserving source-to-
source program transformations intended to improve the quality of a program’s
implementation [Opd92, FBB+99] of which the applicability can be determined
by the presence of patterns that fit our liberal definition of a software pattern.
This is also the case for the semantic patches of the program transformation tool
SMPL [PLM06] which describe modifications to multiple program sites intended
to automate collateral evolutions, defined as evolutions of a library interface that
also affects its clients, in device drivers. SMPL has in fact been applied outside its
original domain to the detection of bug patterns [LBH+08]. Pattern detection is in-
volved to similar extents in automatic software migration through program trans-
formation. In contrast to program comprehension and quality assurance applica-
tions of pattern detection, it is important in program transformation applications
that all reported instances match the pattern’s form exactly as these determine the
sites where transformations are applied.

A very specific form of pattern detection is also relied upon by programming
languages from the aspect-oriented programming paradigm [KLM+97]. These fea-
ture pointcut expressions which describe a set of join points in the program un-
der investigation where implementation parts of an aspect and the program can
be joined. Intended for the separation of crosscutting concerns, there is more to
aspect-oriented programming than the localization of join points. Publications in
which expressive pointcuts serve a pure pattern detection purpose are nonethe-
less testament to the connection (e.g. [SB05] in which bug patterns are detected at
run-time).

2.4 Design Dimensions of a Pattern Detection Tool

In this dissertation, we will consider only pattern detection tools that support the
detection of user-specified software patterns. Such tools are not limited to a fixed
catalogue of patterns. We identify three important dimensions in the design of such
a tool: the language in which a pattern’s characteristics can be specified, the mech-
anism the tool employs to detect program elements that match the pattern spec-
ification and the representation of the program in which such pattern instances
are to be found. The tools referenced throughout this section to exemplify each
dimension are discussed in the literature study of Chapter 3.

19

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

2.4.1 Pattern Specification Language

The “pattern specification language” is the language in which developers express a
pattern’s form. It is the most prominent point of divergence among tools as it deter-
mines which and how machine-verifiable pattern characteristics can be specified.
Following the categorization of programming languages in paradigms, we distin-
guish imperative specification languages from declarative specification languages.

Imperative specification languages Imperative specification languages consist
of an imperative programming language and an application programmer inter-
face (API) through which the tool can be algorithmically instructed to search
for an application-specific pattern. Many tools support custom traversals
of the program’s source code (e.g. PMD [PMD08], CHECKSTYLE [Che08] and
SPOON [PNP06]) or byte code (e.g. FINDBUGS [HP04]) by extending an im-
plementation of the Visitor design pattern. The resulting program cannot be
considered a specification of a pattern’s characteristics, but rather one of the
possible implementations for its search. While such algorithmic implementa-
tions of the search process lend themselves to pattern-specific optimizations,
the knowledge required about a tool’s internals is often on par with that of its
implementers. As a similar search process is shared by multiple patterns, parts
of the implementation will moreover have to be repeated.

Declarative specification languages Tools offering a declarative specification
language do not require an algorithmic implementation of the search for a
particular pattern, but identify program elements using a built-in detection
mechanism. Generalizations of regular expressions (e.g. over abstract syntax
trees as used by TAWK [GAM96] or over control flow graphs as used by Liu et
al. [LRY+04] and JUNGL [VEdM06]), temporal logic formulae (e.g. over control
flow graphs as used by TRANS [LdM01]) and even source code fragments (e.g.
Sellink et al. ’s Native Patterns [SV98]) are all instances of declarative pattern
specifications encountered in the literature. Some of the programs written in a
general-purpose declarative programming language can be considered declar-
ative specifications of a pattern’s characteristics as well.

At first sight, tools using declarative programs for the specification of patterns
are akin to tools using imperative programs for the implementation of the pattern
search process. However, a common characteristic of declarative programming
languages sets both approaches apart. In imperative programming languages, pro-
grammers specify exactly how the solution to a problem is to be found using step-
by-step algorithmic descriptions. In contrast, declarative programming languages
allow the problem itself to be specified. The programming language will find a so-
lution on its own, relying on a specific problem solving strategy embodied by the
language’s operational semantics. In a pattern detection setting, this property of
declarative programs facilitates their use as specifications of a pattern’s character-
istics rather than its search process. Torgersson [Tor96] gives an introduction to the
declarative paradigm and the diverse general-purpose programming languages it
comprises.

2.4.2 Pattern Detection Mechanism

Given a declarative specification of a pattern’s form, it is up to the “pattern detection
mechanism” to localize matching software entities in the program under investiga-

20

2.4. Design Dimensions of a Pattern Detection Tool

tion. Depending on the actual format the declarative pattern specification takes,
the employed detection mechanisms range from matching the program’s AST with
the one of a pattern specified as a source code fragment (e.g. IntelliJ’s Structural
Search and Replace feature [Mos05]) to constraint solving for patterns specified as
a set of constraints (e.g. PTIDEJ [Gué03]).

The choice for a particular declarative specification language does not entail a
unique pattern detection mechanism. A tool’s pattern specification language and
its detection mechanism are separate dimensions in the design space. Multiple
algorithms with different properties can for instance be devised to localize software
entities that are executed in the order dictated by a machine-verifiable control flow
characteristic (e.g. both de Moor et al. [dLW03] and Liu et al. [LRY+04] present an
algorithm to check that sequences of executed instructions fit a form). We will refer
to the algorithms employed by the detection mechanism in the search for matching
software entities as “search strategies”.

The same even goes for specifications taking the form of a program in a declar-
ative programming language. Datalog [CGT89] programs can for instance be eval-
uated according to various strategies. While we argued above that general-purpose
declarative programming languages are suited for the specification of patterns,
both domain-specific extensions to their regular syntax (e.g. JTL [CGM06b]) and
their regular problem solving strategy (e.g. ASTLOG [Cre97]) are common. These re-
spectively intend to increase the expressiveness of the resulting specifications and
render the localization of pattern instances more effective. After all, the declarative
nature of the programming language does not impede the user from implementing
algorithmic searches for a pattern.

The search strategy is not the only point on which detection mechanisms tend
to differ. Another point of variation encountered in the survey of the state of the art
(see Chapter 3) is whether or not users are able to steer the devised search strate-
gies. Such provisions range from simple declarations external to the specification
that influence whether all type-related syntactic characteristics in the specification
are to be adhered to strictly, to advanced provisions for interactivity that support
soliciting the user for advice on intermediate results. Another variation point con-
cerns whether or not the detection mechanism provides a ranking for the instances
of a pattern it reports.

2.4.3 Program Representation

To localize instances of a specified pattern, the detection mechanism needs to be
able to examine the program under investigation as data. To this end, it requires a
representation of the program under investigation. The kind of information about
the program this representation carries can be considered a key dimension in the
design of a general-purpose pattern detection tool. It shapes the kind of patterns
the tool is able to detect, the effort that is required to specify a pattern’s character-
istics with respect to the provided information and the precision and recall ratios
the detection mechanism is able to attain. This is clarified below:

• The information carried by this representation first of all determines the kind
of software patterns the tool is able to localize. In case this information is
purely structural in nature, it will be impossible to apply the tool to the de-
tection of pattern forms that include other characteristics. When a represen-
tation of a Java program for instance lacks information about method bodies,

21

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

localizing instances of the potential null dereference bug pattern will be im-
possible without additional information.

• Moreover, the information carried by the program representation determines
the effort that is required from the user to specify a pattern’s form and the
effort that is required from the detection mechanism to localize its instances.

Pattern specification is straightforward when a pattern’s characteristics can
be expressed through direct references to the information that is explicitly
carried by the program representation. For instance, in a representation that
explicitly indicates which pairs of instructions are executed consecutively, an
existential quantification over this information suffices to specify a pattern
of two consecutively executed instructions.

The detection mechanism realizes the semantics of the specification lan-
guage. Any information not carried by the program representation that is
necessary to verify that a software entity exhibits a specified characteristic
will have to be derived by the detection mechanism itself. The detection
mechanism bridges the gap between the information the program represen-
tation carries and the pattern characteristics that can be expressed in the
specification language. For instance, information about the execution order
of instructions can be derived from abstract syntax trees (see Section 2.5.1)
or extracted from control flow graphs (see Section 2.5.3). However, from the
point of view of the user, this situation does not differ from the one described
above. In both cases, the user can concentrate on specifying the pattern
rather than deriving any information its detection requires.

Considerably more effort is required from the user in case the specification
language does not support the expression of certain pattern characteristics.
Where possible, users can express the unsupported characteristics in terms
of those that are supported. For instance, most characteristics can be ex-
pressed in terms of syntactic characteristics albeit not straightforwardly. As
a final resort, users can attempt to express the unsupported characteristics
by quantifying over program information they derive themselves —provided
the necessary information can be derived from the carried information and
provided the tool’s specification language is sufficiently powerful to specify
how this derivation is to proceed.

• Finally, the program representation has a non-negligible influence on the
effort that is required to minimize the number of program entities that are
identified mistakenly as instances of the specified pattern (i.e. false posi-
tives). The same goes for the effort required to maximize the tool’s recall (i.e.
the ratio of the true positives to the sum of the true positives and false neg-
atives the tool reported [Hea78]). The tool’s precision is measured in terms
of the ratio of true positives to the sum of all true and false positives. For in-
stance, associating line numbers with AST nodes gives an indication of the
order in which each node is executed. This representation is simple, but
might lead to a lower recall in the search for two consecutively executed in-
structions. According to this representation, the last statement in a loop is
never executed before the first statement in the loop. False positives are also
reported for the same pattern. According to the representation, statements
in the else branch of an if-statement are executed after the statements in

22

2.4. Design Dimensions of a Pattern Detection Tool

the then branch. Depending on the tool’s intended application area, these
defects might however be acceptable to users favoring detection speed.

The information in a program representation can be obtained from the pro-
gram under investigation through various techniques. This is especially true for
information about the program’s run-time behavior. For object-oriented programs
this information can take different forms ranging from the execution order of state-
ments in a method body to a whole-program method invocation graph. Behavioral
information can be obtained either by monitoring the program’s behavior at run-
time or by predicting it through an analysis of its code at compile-time. These pro-
gram analyses are called dynamic analysis and static analysis respectively.

Dynamic analysis While the behavioral information offered by a dynamic analy-
sis is very precise, it is only valid for one of many possible program executions.
Different behavior might be observed in a subsequent execution and certain
parts of the program might not be executed at all. Although a pattern instance
might be identified with great precision, its presence in or absence from all pos-
sible program executions can therefore not be established universally.

Dynamic analysis furthermore requires a high degree of user involvement.
The program must be executed along a well-defined scenario that either con-
centrates on particular parts of the program or exercises as much of the pro-
gram’s code as possible. Determining a suitable execution scenario might re-
quire detailed knowledge of the program.

Finally, while a regular program execution might already take a substan-
tial amount of time, the overhead introduced by run-time monitoring aggra-
vates this problem. Depending on whether pattern detection is interleaved with
program monitoring or is performed after the program has run, a substantial
amount of memory might be required to store the required behavioral infor-
mation.

We refer the reader for a more elaborate discussion on the drawbacks
and advantages of dynamic analysis in pattern detection to [DGD05, De 04,
DMG+06, MDB+06].

Static analysis The focus of this dissertation is on pattern detection using pro-
gram representations that can be obtained without executing the program un-
der investigation. Any behavioral information in such a program representation
must result from a static analysis [NNH05] which exploits the semantics of the
base program’s programming language to derive facts about its behavior.

While the behavioral information derived by a static analysis is valid for all
possible program executions, it approximates the application’s actual behavior.
In this sense, both static analysis and dynamic analysis techniques complement
each other for pattern detection —see for instance [Ern03].

Some of the tools included in the survey of the state of the art in Chapter 3
therefore augment their statically obtained information with an optional dy-
namic analysis to refine their results. Costly program monitoring can then be
restricted to those parts of the program the static analysis couldn’t provide pre-
cise enough results about.

23

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

1 public void insertElement(Object x) {
2 Iterator i = list.iterator();
3 while (i.hasNext()) {
4 Object o = i.next();
5 addObjectToCollection(x, (Collection) this.self().list);
6 }
7 }

Figure 2.1: Concrete syntax of the Java method insertElement(Object).

2.5 Supporting Machine-Verifiable Pattern Characteristics

In this section, we discuss for each kind of pattern characteristic which combina-
tions of a specification language, detection mechanism and a statically obtained
program representation support its detection. We limit ourselves to those combi-
nations encountered in the pattern detection literature. Section 2.5.1, Section 2.5.2,
Section 2.5.3 and Section 2.5.4 discuss support for the syntactic, structural, control
flow and data flow characteristics introduced in Section 2.2 respectively.

A general-purpose pattern detection tool must support each of these character-
istics explicitly. Otherwise, users are forced to implement the missing support for a
necessary characteristic themselves. We will show for each characteristic why this
is hard. We will also show that this might lead to false positives being reported and
a lower recall of pattern instances.

2.5.1 Supporting Syntactic Characteristics

Syntactic characteristics are introduced in Section 2.2.1. They require an appropri-
ate specification language, detection mechanism and program representation. The
support provided by most integrated development environments, locating strings
in the program’s source code that match a specified regular expression, is not ade-
quate. It is sensitive to the textual organisation of the program. The possibility of
white-space variations and spurious characters must be accounted for in specifica-
tions. With most regular expression languages lacking support for meta-variables
or abstraction facilities, this is hard. Paul [PP94] illustrates this for the pattern con-
sisting of an int and char variable declaration. Its specification as a regular ex-
pression is given below. Note how white-space and all permutations of the two
declarations must be accounted for. The possibility of pattern instances that span
multiple lines is not taken into account. Such instances will not be recalled.

1 (.*int[]*x[]*;.*char[]*c[]*;) | (.*char[]*c[]*;.*int[]*x[]*;)

A representation of the program that abstracts away from its textual organisa-
tion is therefore highly desirable. Ideally, the program’s text adheres to the concrete
syntax of the programming language it is written in, which is usually described
formally as a context-free grammar. Rather than relying on concrete syntax trees
that encode the program’s syntactic structure with respect to this grammar, most
program manipulating tools rely on abstract syntax trees (AST). Concrete syntax
features such as parentheses are often absent from abstract syntax trees as their
hierarchical structure suffices for instance to encode expression evaluation prece-
dence.

24

2.5. Supporting Machine-Verifiable Pattern Characteristics

MethodDeclaration

Modifier

public

PrimitiveType

void

SimpleName

insertElement

SingleVariableDeclaration

Object x

SimpleType

Object

SimpleName

Object

SimpleName

x

Block

{ Iterator i=list.iterator();

 while (i.hasNext()) { Object o=i.next();

 addObjectToCollection(x,(Collection)this.self().list);

 }}

VariableDeclarationStatement

Iterator i=list.iterator();

SimpleType

Iterator

SimpleName

Iterator

VariableDeclarationFragment

i=list.iterator()

SimpleName

i

MethodInvocation

list.iterator()

SimpleName

list

SimpleName

iterator

WhileStatement

while (i.hasNext()) { Object o=i.next();

 addObjectToCollection(x,(Collection)this.self().list);

}

MethodInvocation

i.hasNext()

SimpleName

i

SimpleName

hasNext

Block

{ Object o=i.next();

 addObjectToCollection(x,(Collection)this.self().list);

}

VariableDeclarationStatement

Object o=i.next();

SimpleType

Object

SimpleName

Object

VariableDeclarationFragment

o=i.next()

SimpleName

o

MethodInvocation

i.next()

SimpleName

i

SimpleName

next

ExpressionStatement

addObjectToCollection(x,(Collection)this.self().list);

MethodInvocation

addObjectToCollection(x,(Collection)this.self().list)

SimpleName

addObjectToCollection

SimpleName

x

CastExpression

(Collection)this.self().list

SimpleType

Collection

SimpleName

Collection

FieldAccess

this.self().list

MethodInvocation

this.self()

ThisExpression

this

SimpleName

self

SimpleName

list

Figure 2.2: Graphical representation of an abstract syntax tree for the Java method
insertElement(Object), depicted in Figure 2.1, obtained through the DOM
component of the Eclipse Java Development Toolkit (JDT).

Figure 2.2 depicts a graphical representation of an AST for the Java method
insertElement(Object) of which the concrete syntax is depicted in Figure 2.1.
This particular AST is produced by the DOM component of the Eclipse Java Devel-
opment Toolkit (JDT) [Ecl08a] and is relied upon by all Eclipse plug-ins that ma-
nipulate Java source code. Its implementation is object-oriented. Each AST node is
depicted along with its concrete syntax representation. We will revisit this compo-
nent in the next section.

Section A.1 details how abstract syntax trees can be obtained for the program
under investigation. Some pattern detection tools (e.g. SCRUPLE [Pau92, PP94]) ap-
ply a further canonicalization to the obtained AST. Syntactically differing, but se-
mantically similar constructs are mapped into a canonical form. It obviates the
need to specify all semantically similar syntactic constructs in a pattern’s form.
However, in order to avoid confusing the user, software entities from the original
rather than the canonicalized source code should be reported.

25

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

CONDATE [Vol06a, Vol06b] and MJ [BE03] base their program representation
on a control flow graph (see Section 2.5.3) rather than an AST. The nodes in these
graphs stem from an intermediate representation and a bytecode representation
respectively. The tools support syntactic characteristics by reconstructing the pro-
gram’s AST from the control flow graphs. However, this is not straightforward.
There is no one-to-one mapping for most programming languages. Moreover, not
all characteristics can be supported. AST nodes with internal control flow such as
iterative loop constructs are missing from these graphs as they are expanded in
their atomic operations.

Apart from a program representation, tools supporting syntactic characteristics
still require a suitable specification language and associated detection mechanism.
For instance, TAWK [GAM96] offers a generalization of regular expressions over AST
nodes. ASTLOG [Cre97] offers a Prolog specialized in AST traversals. Ideally, the
specification language features abstraction facilities that enable partial reuse of
specifications. However, these should not be used to express non-syntactic charac-
teristics in terms of syntactic characteristics. This results in convoluted specifica-
tions with recurring parts that might lead to a lower recall and false positives. For
instance, expressed in terms of syntactic characteristics, the specification of a pat-
tern of two consecutive function calls must account for the situation in which both
occur at different levels of nesting in a procedure. We will revisit this statement in
our discussion of the other characteristics.

2.5.2 Supporting Structural Characteristics

Structural characteristics are introduced in Section 2.2.2. The actual nature and
granularity of the program information that supports them differs greatly —even
for base programs in the same programming language. Some representations of
object-oriented programs offer only coarse-grained information about a program’s
classes and their inheritance relations (e.g. the one used by PAT [KP96] which is ex-
tracted from the header files of a C++ program). Others offer information about the
program’s methods encompassing an enumeration of the fields they read and write
(e.g. the ones used by jQuery [De 06, JD03] and CODEQUEST [HVd06]). However,
common to all structural information is that their granularity prohibits a recon-
struction of the source code that results in a completely functional program.

The motivation to support structural characteristics explicitly rather than have
the user specify them through syntactic characteristics is two-fold:

• Expressing structural characteristics in terms of syntactic characteristics is
not straightforward. It results in large expressions with idiomatic recurring
parts because structural entities and relations must be derived from the com-
plete syntactic structure of the program’s source code. Consider the Overrider
pattern, introduced in Section 2.1, which describes a class that exclusively
consists of overriding methods. Without explicit support for the overriding
and inheritance relations, the pattern must be expressed in terms of multiple
AST traversals.

• Specified explicitly, the detection mechanism can profit from the reduction
in search space that the use of structural information implies. With respect
to an AST of the whole program, fewer software entities must be considered.
However, these tools often pay for the reduction in search space with false
positives. Many design patterns are structurally equivalent. Instances of the

26

2.5. Supporting Machine-Verifiable Pattern Characteristics

J
a
v
a
P
ro
je
c
t

D
is

s
e
rt

a
ti
o
n
E

x
a
m

p
le

P
a
c
k
a
g
e
F
ra
g
m
e
n
tR
o
o
t

s
rc

P
a
c
k
a
g
e
F
ra
g
m
e
n
t

e
x
a
m

p
le

s

J
a
v
a
M
o
d
e
l

w
o
rk
s
p
a
c
e

C
o
m
p
il
a
ti
o
n
U
n
it

E
x
a
m

p
le

.j
a
v
a

T
y
p
e

E
x
a
m

p
le

M
e
th
o
d

s
e
lf
()

F
ie
ld

lis
t

M
e
th
o
d

in
s
e
rt

E
le

m
e
n
t(

O
b
je

c
t)

P
a
c
k
a
g
e
F
ra
g
m
e
n
tR
o
o
t

J
R

E
 S

y
s
te

m
 L

ib
ra

ry
 (

1
.5

)

Figure 2.3: Graphical representation of a structural representation of the Java pro-
gram in which the method insertElement(Object), depicted in Figure 2.1, re-
sides as obtained through the Model component of the Eclipse Java Development
Toolkit (JDT) .

Strategy and State design patterns can for instance only be distinguished by
analysing the program’s source code [NSW+02].

Figure 2.3 depicts a graphical representation of a structural representation of
the Java program in which the method insertElement(Object), depicted in Fig-
ure 2.1, resides. It is obtained through the Java Model component of the Eclipse
Java Development Toolkit (JDT) [Ecl08a]. The class of which structural elements
are an instance is depicted at the top of the node.

Section A.2 details how structural information can be obtained for the program
under investigation. Most AST-based tools incorporate structural information as
an index into their abstract syntax trees, e.g. :

• The Eclipse [Ecl08b] integrated development environment is an illustrating
example. Its Java Development Toolkit (JDT) comprises an API against which
plugins that manipulate Java code can be developed [ABL05]. Plug-ins can
access the code in the IDE through two distinct interfaces that can be char-
acterized as an abstract syntax tree and a structural program representation
respectively: the DOM and Java Model components of the JDT. The former
offers access to all of a program’s syntactic constructs the latter only includes
summary information about its structural entities such as packages, compi-
lation units, classes, field and method signatures. Its lightweight nature facil-
itates keeping the structural representation in sync with the program’s code
and therefore functions as basis for many navigational and program query
tools. Tools that have to manipulate the program’s code rely on the abstract
syntax tree representation instead.

• Every Smalltalk program has access to a program representation that com-
bines syntactic and structural information. The reflective capabilities of the

27

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

1 public void insertElement(java.lang.Object) {
2 examples.Example r0, $r5;
3 java.lang.Object r1;
4 java.util.Iterator r2;
5 java.util.List $r4, $r6;
6 boolean $z0;

7 r0 := @this: examples.Example;
8 r1 := @parameter0: java.lang.Object;
9 $r4 = r0.<examples.Example: java.util.List list>;

10 r2 = interfaceinvoke $r4.<java.util.List: java.util.Iterator iterator()>();
11 goto label1;

12 label0:
13 interfaceinvoke r2.<java.util.Iterator: java.lang.Object next()>();
14 $r5 = virtualinvoke r0.<examples.Example: examples.Example self()>();
15 $r6 = $r5.<examples.Example: java.util.List list>;
16 virtualinvoke r0.<examples.Example: void addObjectToCollection(java.lang.Object,
17 java.util.Collection)>(r1, $r6);

18 label1:
19 $z0 = interfaceinvoke r2.<java.util.Iterator: boolean hasNext()>();
20 if $z0 != 0 goto label0;

21 return;
22 }

Figure 2.4: Concrete syntax of the JIMPLE intermediate representation for the Java
method insertElement(Object), depicted in Figure 2.1, obtained through the
SOOT Java Optimization Framework.

Smalltalk programming language [Riv96, GR83] allow a program to inspect
the classes and methods it is comprised of. In addition to this structural self-
representation, programs can access the abstract syntax trees of their meth-
ods at run-time through the Smalltalk compiler or the parser of the Refactor-
ing Browser [RBJ97] which is included in most integrated development envi-
ronments.

We will revisit the above representations in the discussion of the logic program-
ming language SOUL in Chapter 5. The logic predicates in its LICOR library rely
on linguistic symbiosis [GWDD06] to access the reflective protocols of Smalltalk
—thus enabling pattern detection for Smalltalk. The Eclipse-delivered representa-
tions will be revisited in that chapter too as one of our own extensions to SOUL com-
prises the logic predicates in the CAVA library which access the code in an Eclipse
workspace through a symbiosis between Java and Smalltalk —thus enabling pat-
tern detection for Java.

2.5.3 Supporting Control Flow Characteristics

Control flow characteristics are introduced in Section 2.2.3. To support them,
pattern detection tools need information about the order in which instructions are
executed at run-time. Given a sufficiently powerful specification language, users
can derive this information themselves. However, as exemplified in Section 2.4.3,
expressing control flow characteristics correctly in terms of syntactic characteris-

28

2.5. Supporting Machine-Verifiable Pattern Characteristics
r0

 :
=

 @
th

is

r1
 :

=
 @

p
a

ra
m

e
te

r0

$
r4

 =
 r

0
.l
is

t

r2
 =

 $
r4

.i
te

ra
to

r(
)

g
o

to
 l
a

b
e

l1

la
b

e
l1

:
$

z
0

 =
 r

2
.h

a
s
N

e
x
t(

)

la
b

e
l0

:
r2

.n
e

x
t(

)

$
r5

 =
 r

0
.s

e
lf
()

$
r6

 =
 $

r5
.l
is

t

r0
.a

d
d

O
b

je
c
tT

o
C

o
lle

c
ti
o

n
(r

1
,

$
r6

)

if
 $

z
0

 !
=

 0
 g

o
to

 l
a

b
e

l0

re
tu

rn

Figure 2.5: Graphical representation of a control flow graph for the Java method
insertElement(Object), depicted in Figure 2.1, obtained through the SOOT Java
Optimization Framework with nodes in the graph originating from its JIMPLE inter-
mediate representation depicted in Figure 2.4.

tics is hard. The semantics of the programming language must be taken into ac-
count. The execution order of instructions may vary with each execution of the
program. Without information about the run-time values of expressions, control
constructs must be handled conservatively. For instance, the conditional expres-
sion of an if-statement can be followed by either branch of the statement. Any
errors made by users in this derivation might lead to false positives and a lower re-
call. Without support for a pattern’s control flow characteristics, its specification
grows with idiomatic recurring parts that are not specific to the pattern itself.

Explicit support for control flow characteristics is therefore desirable. Speci-
fication languages encountered in the literature range from formulae in temporal
logic (e.g. TRANS [LdM01]), over generalizations of regular expressions specifying
sequences of executed instructions (e.g. Liu et al. [LRY+04] and JUNGL [VEdM06]),
to expressions specifying that a specified instruction is executed eventually after
another specified instruction without a third specified instruction ever being exe-
cuted in between (e.g. Condate [Vol06a, Vol06b]).

Representing Control Flow

Analogous to an AST that abstracts away from the program’s textual organisation, a
control flow graph abstracts away from its syntactic organisation. This is desirable
as consecutively executed instructions are often syntactically dispersed. Nodes in
the directed graph represent instructions. Edges in the graph connect instructions
that might be executed consecutively at run-time. A node has multiple predeces-
sors when branches from the program’s control flow join. Conversely, a node has
multiple successors when the program’s control flow splits. A control flow graph
may have cycles. Most cycles originate from back-edges that connect the last state-
ment in the body of an iterative control statement with its conditional expres-
sion. Like all instructions with internal control flow, such statements are usually
expanded into the atomic operations they comprise.

Figure 2.5 depicts a graphical representation of a control flow graph for the Java
method insertElement(Object), depicted in Figure 2.1. It is obtained through
the SOOT Java Optimization Framework [VRCG+99]. The nodes in the graph stem
from its JIMPLE intermediate representation depicted in Figure 2.4. It will be revis-
ited in Section 5.3.4.

29

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

Control flow graphs are the starting point for many traditional program analy-
ses [NNH05]. For instance, an analysis that computes which variable assignments
reach a variable reference. Section 2.5.4 discusses how their results support data
flow characteristics. In the bug pattern detection literature, an edge-labelled con-
trol flow graph is more common (e.g. [OO90] representing an early instance). The
edges of the graph rather than its nodes carry program instruction labels. Each
edge is labelled by its target instruction. This has the advantage that information
about whether the true or false branch is taken out of a conditional expression can
be encoded easily.

The control flow graph for a procedure can be constructed inductively by con-
necting the sub-graphs of the statements it comprises. A whole-program control
flow graph can be obtained by cloning the graph of the called procedure at each
call site, but this is not space effective. The alternative is to link procedure calls to
the entry point of the callee’s graph and to link its exit points back to the caller. The
construction of whole-program control flow graphs for higher-order and object-
oriented programs can no longer proceed inductively. Complications and possible
solutions are sketched in Section A.3. There, we also sketch the construction in the
presence of reflection. Because of these complications, it is better not to burden
the user with the construction of a control flow graph.

Extracting Execution Order Information

A control flow graph is a compact representation of the possible executions of a
program. However, a simple quantification over such a graph does not suffice to
detect control flow characteristics. The paths through this graph must be com-
puted. Paths represent sequences of consecutively executed instructions. Every
path from its entry to one of its exit nodes corresponds to a trace of instructions
that might be observed at run-time. Again, it is best not to burden the user with the
computation of these paths. Cycles in the graph are an example of a complication
that users must handle otherwise. Infeasible paths and unrealizable paths are other
complications that might introduce false positives. The detection mechanisms en-
countered in the literature vary on whether and how these complications are dealt
with.

Infeasible paths can be eliminated by tracking the truth value of conditional
expressions. For instance, the search strategy maintains that an expression must
evaluate to true on paths where it follows the true-branch out of this expression. If
it encounters an equivalent or derived expression later on, it must not follow the
false-branch out of this expression. However, accurately maintaining data depen-
dencies from the encountered equalities is hard. According to our literature study,
it is only performed by METAL [ECCH00].

In order to recognize instances of a sequencing pattern that crosses func-
tion boundaries, an inter-procedural search strategy (e.g. the one employed by
METAL [ECCH00]) is necessary. It joins the graphs of individual functions. Search
strategies that are restricted to instances within a single function are called intra-
procedural (employed by most of the other tools specialized in control flow charac-
teristics). However, multiple call sites result in control flow splits at the exit points
of callees for link-based whole-program graphs. The search strategy has to take
care not to follow unrealizable paths by ensuring that the successors of a function’s
exit nodes agree with the function call earlier on the path.

We conclude that both the derivation of an accurate control flow graph and the

30

2.5. Supporting Machine-Verifiable Pattern Characteristics

1 public void addObjectToCollection(java.lang.Object, java.util.Collection) {
2 examples.Example r0;
3 java.lang.Object r1;
4 java.util.Collection r2;

5 r0 := @this: examples.Example;
6 r1 := @parameter0: java.lang.Object;
7 r2 := @parameter1: java.util.Collection;
8 interfaceinvoke r2.<java.util.Collection: boolean add(java.lang.Object)>(r1);
9 return;

10 }

11 P(r2) = {
12 AllocNode 3986 new java.util.Vector in <examples.Example: void anotherInvoker()>,
13 AllocNode 3983 new java.util.LinkedList in <examples.Example: void initializeContainer()> }

14 P(r6) = {
15 AllocNode 3983 new java.util.LinkedList in <examples.Example: void initializeContainer()> }

Figure 2.6: Concrete syntax of the JIMPLE intermediate representation for the Java
method addObjectToCollection(), invoked by the insertElement(Object)
method depicted in Figure 2.1, and the points-to sets for their may-aliasing local
variables r2 and r6 respectively as obtained through the SPARK [Lho02] context-
insensitive points-to analysis of the SOOT Java Optimization Framework.

efficient localization of instruction sequences on its paths is hard. It is better not to
burden the user with either and to support control flow characteristics explicitly.

2.5.4 Supporting Data Flow Characteristics

Data flow characteristics are introduced in Section 2.2.4. In theory, data flow char-
acteristics can be expressed in terms of syntactic characteristics. However, this is
not trivial. The semantics of the programming language must be taken into ac-
count. Often, the entire program must be considered in order to determine that
two of its entities are in a data flow relation. For instance, a field can be assigned
at many different locations. Moreover, fix-point computations may be necessary in
the presence of loops.

Data flow information pertains to the range of possible run-time values expres-
sions can assume, as well as their origin and how they are related. Computed at
compile-time, data flow information is valid for all possible executions of the pro-
gram under investigation. It is crucial to the successful application of program opti-
mizations in modern compilers —offering answers to important problems such as
the scope of definitions and which expressions may, must or definitely do not point
to the same memory location. Reaching definitions and points-to analysis [Hin01],
the data flow analyses [NNH05] that solve said problems, are also crucial in pattern
detection. In this context, their results support data flow characteristics. Specifi-
cations do not have to enumerate the multitude of syntactically differing program
snippets that establish the same data flow relation between variables. For instance,
an aliasing relation can be established between two variables by assigning the value
of one variable to the other or by assigning to one variable the value of a third vari-
able that already aliased the other.

Figure 2.6 depicts a textual representation of the points-to sets for the

31

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

may-aliasing local variables r2 and r6 stemming from the intermediate
representation of the method addObjectToCollection() and method
insertElement(Object) respectively. The latter is depicted in Figure 2.4.
The points-to sets are obtained through the SPARK [Lho02] context-insensitive
points-to analysis of the SOOT Java Optimization Framework. We will revisit this
analysis in the remainder of this section.

Section A.4 lists some existing implementations of data flow analyses, the re-
sults of which can be incorporated in the program representation of a pattern de-
tection tool. Data flow analyses differ greatly in the kind of information they com-
pute and the conclusions their results allow to be drawn about the program’s run-
time values. In the remainder of this section, we will illustrate the complications
that arise in accessing and interpreting the results of certain analyses correctly.
Data flow representations must therefore be accompanied by a pattern specifi-
cation language as well as a detection mechanism that hides and interprets the
analysis-specific nature of their information respectively. The variety among data
flow analyses cannot only give rise to completely different search strategies for the
same pattern, but also to a different recall and precision among pattern detection
tools that employ their results as program representation.

Complications Arising from the Use of Data Flow Information

Informally, many static analyses can be regarded as if they were executing the anal-
ysed program with abstract descriptions of the concrete values that appear dur-
ing an ordinary program execution. This is especially true for those analyses con-
structed according to the abstract interpretation methodology [CC77]. To make this
idea somewhat more tangible, consider the sign of an integer variable which can be
used as an abstract description of the set of values it can assume at run-time. This
abstraction constitutes a source of imprecision of which the clients of such a sign
analysis must be aware of. Likewise, the manner in which the execution of the pro-
gram is simulated constitutes a source of unknowns.

Unknowns in data flow information In order to be useful, the information de-
rived by a data flow analysis must agree with the program’s actual run-time values.
For an integer sign analysis, this for instance entails that all identified absolutely
negative expressions do evaluate to a negative integer (< 0) at run-time. However,
not all of a program’s negative expressions might be identified. For integer expres-
sions residing in reflectively invoked code, a simple analysis might for instance of-
fer no sign information at all (⊥). Unknowns are therefore to be expected in the
results.

Imprecision in data flow information It is not exceptional for results to be im-
precise, as the deliberate introduction of less precise, but valid information is key
to the manner in which they are derived:

• The actual abstraction employed to describe possibly unbounded sets of
concrete values constitutes a first source of imprecision. While an expres-
sion’s value might in reality be restricted to odd numbers only, their abstrac-
tion in the aforementioned sign analysis represents a larger set of concrete
program values which also includes even numbers. Moreover, as the pro-
gram’s execution is simulated with these abstract values, they are affected by

32

2.5. Supporting Machine-Verifiable Pattern Characteristics

the program’s instructions. While the effect of multiplying a positive and neg-
ative integer is well-known, their addition can result in a positive as well as a
negative sum. The analysis can therefore not be conclusive.

• Finally, as the computed information should be valid for all of the program’s
executions, the analysis is forced to introduce more imprecision to account
for all the paths through its control flow graph. For instance, both branches of
a conditional contribute to the analysis results for a variable even though the
variable is assigned completely different values in each branch. In order to
agree with both control flow paths that are possible, the unified results for the
variable therefore include weaker information than is actually true on either
path. In case the variable’s value is deemed to be negative (< 0) in one branch
and zero in the other, the analysis can only conclude that the variable’s value
after the conditional must be non-positive (≤ 0). This is a conservative, yet
reasonably precise approximation. When both branches yield contradicting
results, the overall result indicates that any sign is possible (#).

The most conservative conclusion has to be avoided as much as possible for
an analysis to be useful. There is a trade-off to be made between precision and
analysis time. Abstract value descriptions and the merging of information from
distinct paths respectively deal with sets of potential run-time values and execution
states.

Accessing and drawing conclusions from data flow information In order to in-
terpret data flow information correctly, users must be aware of the conclusions this
information allows to be drawn about the program’s run-time values. In order to
access their results, some of the more precise analyses require knowledge about
the execution state abstractions that are employed.

Accessing results Little impedes the results from the classical data flow analyses
used in compiler construction from being queried. Most implementations an-
notate the entities in their underlying program representation or provide an in-
dex into the analysis results. However, problems arise when this representation
does not correspond to the one employed by the pattern detection tool. Most
data flow analyses rely on a control flow or intermediate representation derived
from the program’s compiled code.

Accessing context-sensitive results Data flow analyses implement different trade-
offs with respect to precision and cost. For instance, at the cost of some pre-
cision, flow-insensitive inter-procedural analyses save time and space by only
propagating analysis information along the program’s procedure call and re-
turn edges while ignoring execution order inside individual procedures. What
trade-off is appropriate depends on the needs of the client. Relevant to our
discussion is that one of these trade-offs, whether or not the inter-procedural
analysis is context-sensitive, also impacts the way its results are accessed. As
the effect of a procedure might differ per call, a context-sensitive analysis aims
to increase precision by computing separate results for each calling context it
can discern. Their context-insensitive counterparts merge the effects of individ-
ual calls thus producing information that fits all of the procedure’s calls. From
the user’s perspective, context-sensitive analyses parametrize their results by a
static representation of the program’s calling contexts at run-time. In order to

33

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

access context-specific results, users need to be able to reconstruct these con-
text representations —usually an abstraction of the topmost entries on the pro-
gram’s call stack.

That this is not always trivial is perhaps best illustrated by the aforemen-
tioned points-to analyses for Java which compute the set of all heap objects a
reference expression may point to at run-time. Here, clients need to be aware
of both the heap referee (i.e. the object being referred to) and heap reference
(e.g. a variable) abstractions employed by the context-sensitive variants:

Context-sensitive heap references A context-sensitive points-to analyses
computes for each reference a points-to set parametrized by an invocation
context for the method the reference resides in. While the call sites of
the topmost invocations on the call stack usually comprise the context
abstractions for procedural languages, in an object-oriented setting the
receivers of the topmost invocations on the call stack [MRR02] are more
appropriate with respect to scalability and precision [LH06]. Again, such
an analysis employs a static abstraction of the concrete objects this receiver
may comprise at run-time. As clients need to reconstruct invocation
contexts in order to access analysis results, clients must also reconstruct the
heap referee abstractions that are part of the heap reference abstractions
employed by such an analysis.

Context-sensitive heap referees As points-to sets are computed at compile-
time, they comprise abstractions of the concrete objects that populate a
program’s heap at run-time. In order to ensure that the analysis terminates
for programs that create infinitely many concrete objects, its static heap ref-
eree abstraction may only comprise a finite amount of abstract objects. A
single abstract object must therefore correspond to multiple concrete ob-
jects. Analogous to the context abstractions above, a common heap ref-
eree abstraction scheme is to represent all concrete objects by their alloca-
tion site in the underlying program representation. A context-sensitive ref-
eree abstraction in addition records information about the context in which
each object is allocated. This helps the analysis to discern objects created at
the same site —for instance internal objects created in constructors of data
structures [LH06].

Interpreting analysis results Finally, users must know the limits of the calculated
results. Again, we will illustrate this using a points-to analysis. Each object a
reference points to at run-time must be included in its points-to set. A refer-
ence can therefore never point to any object that is not included in its points-to
set. Due to over-approximation, the points-to set might however include ob-
jects the reference never points to in reality. Clients are therefore able to derive
whether two references may-alias by checking whether the intersection of their
respective points-to sets is not empty. From non-overlapping points-to sets,
clients can moreover derive that the corresponding references must-not-alias.
They can however never derive a must-alias relation from the points-to analysis
results.

34

2.6. Criteria for a General-Purpose Pattern Detection Tool

Criterion Description
CSL1 Supports the specification of behavioral and non-behavioral charac-

teristics in a uniform language
CSL2 Results in descriptive pattern specifications
CSL3 Supports expressing explicit points of variation among pattern in-

stances
CSL4 Provides means for abstraction and reuse among specifications
CSL5 Hides program representation details

CDM1 Reports elements from the program’s source code
CDM2 Facilitates user assessment of reported instances
CDM3 Supports implicit points of variation among pattern instances
CDM4 Can be extended with user-defined search strategies
CPR1 Includes behavioral and non-behavioral program information explic-

itly

Table 2.1: Overview of the criteria for a general-purpose pattern detection tool. The
acronyms CSL#,CDM# and CPR# stand for CRITERION FOR THE SPECIFICATION

LANGUAGE, CRITERION FOR THE DETECTION MECHANISM and CRITERION FOR THE

PROGRAM REPRESENTATION respectively.

2.6 Criteria for a General-Purpose Pattern Detection Tool

A general-purpose pattern detection tool is not specialized in one particular appli-
cation of pattern detection, but can be applied equally well to any of the software
engineering problems enumerated in Section 2.3. Such a tool obviates the need
for an assortment of tools each specialized in one kind of pattern. As a result, users
only need to know the specification language of a single tool to benefit from pattern
detection.

When fulfilled, the criteria formulated in this section ensure that these proper-
ties of a general-purpose pattern detection tool are satisfied. Table 2.1 enumerates
all criteria. The criteria are organized according to the previously identified dimen-
sions in the design of a pattern detection tool: the offered specification language
(criteria CSL#), the employed detection mechanism (criteria CDM#) and the pro-
gram representation relied upon (criteria CPR#) .

2.6.1 Criteria for the Pattern Specification Language

CSL1: Supports the specification of behavioral and non-behavioral characteris-
tics in a uniform language

Patterns embodying proven architectural blueprints, coding conventions, best
practices, prescribed protocols of application programmer interfaces and
application-specific bugs are but a few of the patterns that a general-purpose
tool should support. The specification language of a general-purpose tool
must support expressing their machine-verifiable characteristics. Examples of
software patterns are given in Section 2.1. Their structural, syntactic, control
flow and data flow characteristics are discussed in Section 2.2.

In the interest of the tool’s accessibility to application programmers, it is
important that all machine-verifiable characteristics can be expressed in one
uniform specification language. As illustrated by the running example in Sec-
tion 2.2, patterns need not be characterized by a single kind of characteristic.

35

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

For those patterns, using a general-purpose tool has no advantage over using a
combination of special-purpose tools if the specification language is an amal-
gamation of languages individually designed to express one kind of character-
istic. In both cases, users have to know multiple specification languages.

CSL2: Results in descriptive pattern specifications The specification language
should result in a descriptive specification of the characteristics of a pattern,
not in an operational implementation of the search for program elements
exhibiting these characteristics. Both ought to be separated. As elaborated on
in Section 2.4.1, the latter is best left to the implementers of the tool. This re-
lieves users from having to re-implement a search process for similar patterns.
Additionally, such implementations often require a level of knowledge about
the tool’s internals that is on par with that of its implementers.

To separate pattern specifications from the search for their instances, it is
up to the detection mechanism to devise the operational search corresponding
to a given specification. Realizing its semantics, the detection mechanism is
closely related to the specification language. We will discuss the criteria for the
detection mechanism separately.

CSL3: Supports expressing explicit points of variation among pattern instances
Recalling the definition of a pattern from Riehle et al. [RZ96] (see Section 2.1) as
an abstraction of concrete forms that recur in non-arbitrary contexts of use, we
distinguish explicit points of variation from implicit points of variation among
pattern instances. Implicit points of variation among instances represent
different implementations of the same characteristic. For example, instances
can refer to a type by its fully qualified name or its simple name. These will
be revisited in the discussion of the criteria for the detection mechanism
as the user should not have to enumerate all implicit variation points in a
specification. Explicit points of variation among instances represent variations
in the characteristics shared by all pattern instances. For example, the field
protected by a getter method differs in each instantiation of this best practice
pattern [Bec96]. The specification language should support expressing such
points of variation in pattern specifications.

It should also be possible to express constraints on explicit variation points.
For example, the name of a getter method varies with the field it protects. In
the interest of succinctness, it should also be possible to express that the in-
stances of a pattern can exhibit any of several potential characteristics. Like-
wise, expressing that instances are allowed to exhibit anything but a particular
characteristic should also be possible.

CSL4: Provides means for abstraction and reuse among specifications In the in-
terest of reuse, the specification language should support specifications to
share groups of common characteristics. While it should be possible to hide the
majority of the details of this group from the referring specification, it should
also be possible to adapt details to the particular specification in which they are
reused. Under these conditions, specifications can be composed in a modular
fashion which facilitates the construction of a hierarchical library of patterns.

CSL5: Hides program representation details In the interest of the tool’s accessi-
bility, application programmers should not be exposed to the sometimes intri-
cate details of the information carried by its program representation.

This is especially true for behavioral information. As Section 2.5.3 and Sec-

36

2.6. Criteria for a General-Purpose Pattern Detection Tool

tion 2.5.4 extensively argued for control flow and data flow characteristics re-
spectively, the specification language should shield the user from the intricate
details of the behavioral information that supports them. Such information of-
ten comes overlaid on an underlying intermediate representation from the do-
main of optimizing compilers. Context representations add to the complexity
of context-sensitive information.

This is also true for non-behavioral information. For instance, the organi-
sation of abstract syntax trees varies among tools. Without proper abstractions,
its details must be known to users in order to express syntactic characteristics.
With a program representation that combines different kinds of information,
the need to hide their intricate details is only aggravated.

2.6.2 Criteria for the Pattern Detection Mechanism

CDM1: Reports elements from the program’s source code Given a specification
of a pattern’s essential characteristics, the detection mechanism of a general-
purpose tool is required to report matching elements from the program’s source
code rather than elements from the internal representation. This criterion not
only ensures that users can inspect the tool’s results in a straightforward man-
ner, but also facilitates their manipulation by other software engineering tools.

As already argued in Section 2.5.1, establishing a mapping between ele-
ments from an intermediate program representation and elements from the
program’s source code is hard. Interpreting the results from a tool that relies
on a canonicalized version of the same code might prove confusing for users as
well.

In practice, a specification’s matches can be reported in a variety of ways
–each attaining this desirable property to a different extent. A straightforward
option comprises reporting the line and column numbers elements comprising
a match occupy in a program’s textual organisation. Modern development en-
vironments often provide an application programmer interface through which
integrated tools can communicate and share results efficiently in terms of the
environment’s internal representations.

CDM2: Facilitates user assessment of reported instances To most of the applica-
tions enumerated in Section 2.3, the results of a pattern detection tool are only
of use once false positives have been filtered out. In case no guarantees about
their absence can be given, it is in the interest of the tool’s applicability to fa-
cilitate user assessment of its results —especially when the sheer amount of
instances renders a manual examination of each reported instance infeasible.

The tool should therefore communicate information from which users are
able to assess the likelihood that a reported instance is a false positive. Depend-
ing on the application domain, users can then concentrate their efforts either
on assessing unlikely or on assessing very likely false positives. For instance, a
ranking can be devised for all instances the detection mechanism reports.

The likelihood that an individual instance is a false positive can be gauged
based on the historical precision of the search strategy used in its detection.
All strategies implement a particular trade-off with respect to precision, recall
and cost. Section 2.4.3 illustrated this for a pattern comprising two sequentially
executed statements.

This likelihood can also vary among the instances identified by a single

37

2. DETECTION OF USER-SPECIFIED SOFTWARE PATTERNS

search strategy. Conservative approximations relied upon by data flow analy-
ses might lead to the introduction of false positives. The extent to which the
strategy is able to assert the presence of a specified data flow characteristic
can however be communicated. For instance, must-alias information might be
available for local variables within the same method while only may-alias infor-
mation might be available for others (see Section 2.5.4). This way, the detection
mechanism assists users in interpreting behavioral information correctly —just
like the specification language hides its intricate details.

CDM3: Supports implicit points of variation among pattern instances We al-
ready pointed out the need for an expressive specification language in which
all of a pattern’s characteristics can be expressed together with the explicit
points of variation among its instances. The semantics of the language should
alleviate the otherwise impossible burden of having to enumerate all implicit
points of variation in a pattern’s specification. For instance, a loop can be
implemented using a while or an until control structure.

Realizing the semantics of the specification language, the detection mecha-
nism is able to bridge discrepancies between the evidence necessary to assert a
pattern characteristic and the evidence at hand from the program representa-
tion. Minor discrepancies are to be expected because it is impossible to account
for all implicit variation points in a specification. By interpreting pattern spec-
ifications in a non-strict manner, the detection mechanism is able to discover
instances that are not implemented exactly as formulated.

However, not all discrepancies originate from implicit variation points.
Some discrepancies may originate from possibly imperfect pattern instantia-
tions in the code. Such discrepancies range from differences in the spelling of
identifiers over differences in their declared visibility. Nonetheless, the ability
to recognize imperfect instances is valuable in many pattern detection appli-
cations. For instance, a programmer is not always aware that she is partially
implementing a design pattern. As this might come at the cost of additional
false positives, this criterion does not require imperfect pattern instances to be
identified.

CDM4: Can be extended with user-defined search strategies It is impossible to
foresee all problems a general-purpose pattern detection tool might be applied
to. Our final criterion has the detection mechanism transparently consider
user-defined strategies to complement its predefined ones. This safeguards
the separation between the declarative specification of a pattern and the op-
erational search for its instances. Otherwise, users might revert to expressing
operational searches tailored to the specifics of a problem.

For the same reason, it is highly desirable to minimize the distance between
the tool’s pattern specification language and the language in which additional
strategies can be implemented. However, it is realistic to relax some of the cri-
teria for the latter. In particular, criterion CSL1 which requires it to be uniform
and criterion CSL5 which requires all of the intricate details of the program
representation to be hidden. Different abstraction levels are appropriate for
different customization tasks. However, exposure to raw behavioral informa-
tion should still be avoided unless explicitly required by the task at hand.

38

2.7. Conclusion

2.6.3 Criteria for the Program Representation

CPR1: Includes behavioral and non-behavioral program information explicitly
Criterion CSL1 requires behavioral and non-behavioral pattern characteristics
to be supported. For each kind of characteristic, Section 2.5 examined which
configurations in the design space of a pattern detection tool support it.
Realizing the semantics of the specification language, the detection mecha-
nism bridges the gap between the information that is explicitly available in
the program representation and the information specifications can refer to.
Therefore, as long as the detection mechanism sufficiently compensates its
triviality, criterion CSL1 is already supported by a representation that includes
only abstract syntax tree information (see the discourse on its relation to other
kinds of program information in Section 2.5.1).

However, under such a configuration, it is nearly impossible to fulfill the
requirements of criterion CDM4. All search strategies, including the user-
defined ones, are tasked with the derivation of all program information they
require. By explicitly including this information in the program representa-
tion, user-defined search strategies will not have to resort to error-prone deriva-
tions of the lacking information. In the interest of accuracy, the representation
should therefore explicitly include complete and accurate behavioral and non-
behavioral information.

2.7 Conclusion

This chapter initiated our discourse on pattern detection by providing sufficient
background to motivate each criterion a general-purpose pattern detection tool
should fulfill. Individually these criteria concern one of the key dimensions identi-
fied in the design of such a tool: its pattern specification language, its pattern detec-
tion mechanism and its representation of the program under investigation. Com-
bined, these criteria ensure that a wide variety of patterns can be detected using
descriptive specifications in an expressive language that is accessible to applica-
tion programmers —regardless of whether these patterns are characterized by syn-
tactic, structural, control flow or data flow characteristics. While emphasising the
intricacies of the necessary behavioral program information, the chapter’s back-
ground sections examined for each kind of characteristic which configurations in
the design space of a pattern detection tool support it.

39

C
H

A
P

T
E

R

3
STATE OF THE ART IN PATTERN DETECTION

This chapter presents a survey of the state of the art in tools for detect-
ing user-specified software patterns. The scope of the survey is limited to
tools with a declarative specification language and a program represen-
tation that carries information obtained through a static analysis. The
survey is structured according to the characteristics each tool is primar-
ily tailored to: syntactic, structural, control flow or data flow character-
istics. For each characteristic, we complement an in-depth discussion of
select tools with a shorter discussion of related tools. For each dimension
in the design space of pattern detection tools, a table summarizes the dis-
tinctive features of all surveyed tool. Based on this overview, the chapter
is concluded with an evaluation of the state of the art on the general-
purpose pattern detection criteria identified in the previous chapter.

3.1 Overview of the Surveyed Tools

We initiate our chapter with an overview of the surveyed tools. Table 3.1, Table
3.2, Table 3.3 respectively list the specification language, detection mechanism and
program representation of each surveyed tool. For each kind of pattern charac-
teristic, we investigated which combinations support its detection in Section 2.5.
Horizontal lines in the overview tables group the tools according to the character-
istics they are primarily intended for. Tools listed in bold are discussed in-depth.

Table 3.4 evaluates the surveyed tools on the criteria for a general-purpose pat-
tern detection tool introduced in Section 2.6. They are summarized in Table 2.1.
The tools marked with a $ are constructed along the lines of the logic meta pro-
gramming approach to pattern detection (confer Section 4.2). In descending order,
entries of the form +, ± and − denote the extent to which each criterion is fulfilled.
We will explain the entries in the remainder of this chapter.

41

3. STATE OF THE ART IN PATTERN DETECTION

1 $t $f_decl($*v) {*
2 @*;
3 @{* #{* $f_call(#*) *} *}
4 @*;
5 *}

Figure 3.1: A SCRUPLE specification pairing function calls with the function defini-
tion they occur in lexically.

3.2 Tools Tailored to Syntactic Characteristics

Syntactic characteristics concern the syntactic structure of code according to the
formal grammar of the language it is written in (cf. Section 2.2.1). Section 2.5.1
detailed how pattern detection tools can support the detection of syntactic charac-
teristics.

3.2.1 SCRUPLE: Concrete Syntax Specifications as Code Pattern Automatons

SCRUPLE [Pau92, PP94] is intended as a hypothesis verification and feature local-
ization tool for program understanding and maintenance. It localizes C and PL/AS
fragments specified in the concrete syntax of the base program extended with wild-
cards. Wildcard symbols $d, $t, $v, $f, # and @ substitute for an individual decla-
ration, type, variable, function, expression and statement respectively.

The SCRUPLE specification depicted in Figure 3.1 amounts to a naive call-graph
extractor for C. It pairs function declarations $f_decl with the function applica-
tions $f_call in its lexical scope. Suffixing a wildcard with an underscore followed
by a name transforms it into a meta-variable. By prefixing a wildcard’s type en-
coding symbol with an asterisk, the wildcard will match a collection of program
elements (e.g. the parameters $*v of the function declaration and the arguments
#* of the function call). A wildcard suffix of the form {* *} allows matches to oc-
cur at an arbitrary level of nesting. The function call is allowed to be nested within
another expression (#{* *}) nested within a statement (@{* *}) nested within the
function declaration.

Wildcards allow expressing explicit points of variation. Apart from multiple oc-
currences of the same meta-variable, there are no expressive means to express con-
straints on explicit variation points such as logic connectives (± for CSL3). Rather
than a linguistic means to compose specifications, the authors propose a tool solu-
tion which allows the matches for one specification to be used as input to another
(− for CSL4)

Using the concrete syntax of the base program relieves users from having to
know the abstract syntax internally relied upon by the tool (+ for CSL5). However,
specifications lose their resemblance to source code fragments (± for CSL2) be-
cause of cryptic wildcards. The language does not support expressing behavioral
characteristics directly, nor is it expressive enough to express them in terms of syn-
tactic characteristics (− for CSL1).

Pattern specifications are compiled into so-called code pattern automatons.
These are hierarchical, non-deterministic finite state automatons that consume ab-
stract syntax tree nodes and gather bindings for meta-variables. Each transition is
complemented by a navigation function which states how the input to the destina-

42

3.2. Tools Tailored to Syntactic Characteristics

tion state can be reached from the node matching the transition condition: move
to leftmost child, move to right sibling and move to parent.

While the pattern detection mechanism is not open-ended to start with (− for
CDM4), its implementation also does not lend itself to possible user amenability
as code pattern automatons require users to be aware of how AST nodes relate.

Before serving as input to the code pattern automaton, AST nodes are mapped
to a canonical form. At the cost of losing the original code in meta-variable bind-
ings (− for CDM1), this supports detecting implicit variation points. The authors
illustrate the usefulness of this mapping using the C do and while statements —
even though these are not completely semantically equivalent given the order in
which their condition is evaluated with respect to their body. Further support for
implicit variation points is limited (± for CDM3). The specification in Figure 3.1
has to express explicitly that other statements are allowed before and after the func-
tion call. A different specification is necessary to match function declarations with
an implicitly declared return type.

SCRUPLE illustrates that introducing non-native syntax in concrete syntax spec-
ifications often detracts from their descriptiveness. SCRUPLE also illustrates an early
approach to supporting implicit points of variation among a pattern’s characteris-
tics. It maps implementation variants to a canonical form. In order to avoid confus-
ing the user, software entities from the original rather than the canonicalized source
code should be reported.

3.2.2 ASTLOG: Prolog with an Implicit Current Object Execution Model

ASTLOG [Cre97] is a Prolog variant designed specifically to localize software idioms
through abstract syntax tree traversals. It successfully localizes syntactic bugs in
immense C++ programs within the time it takes to have them compiled. It achieves
this remarkable performance by foregoing the prevalent transcription of AST nodes
into a logic fact base (which separates base program from meta-program look-ups
in the database). Node kinds are identified by numeric op-codes for which named
aliases are defined (e.g. the op-code alias #IF). Aliases are also defined for the inte-
gers that identify the children of a node. However, users are exposed to the details
of the AST nodes and their reification (− for CSL5).

ASTLOG relies on an alternative execution model in which the truth of a pred-
icate is established with respect to an implicit node that is encountered during an
abstract syntax tree traversal. Prolog’s excellent built-in support for pattern match-
ing, backtracking and query abstraction are nonetheless preserved (+ for CSL3 and
CSL4). The following code snippet matches assignment nodes whose left-hand
side is a symbol named "foo":

1 and(op(#=), kid(#LEFT, asym(sname("foo"))))

Upon evaluation, the primitive predicate op/1 is satisfied whenever its argument
is the op-code of the implicit AST node it is evaluated against. The binary predi-
cate kid(integer-pred, ast-pred) is satisfied when the current node’s child at
index integer-pred satisfies ast-pred.

Detecting software patterns using ASTLOG amounts to launching traversal
queries over an AST. Predicates parent and kid are the primary means to change
the current node to a related one. Predicate op is the primary means to filter
nodes. They also give the resulting parse tree traversals an operational flavour (±
for CSL2).

43

3. STATE OF THE ART IN PATTERN DETECTION

1 somenode(pred) <- or(pred, kid(_, somenode(pred)));

Figure 3.2: ASTLOG definition of a general-purpose tree traversal predicate.

ASTLOG’s built-ins can be augmented with user-defined predicates through
Prolog’s regular predicate definition facilities (+ for CSL3. Behavioral characteris-
tics can be expressed through traversals of the AST (± for criterionCSL1). However,
users have to enumerate all their implementation variants (− for CDM3). The logic
rule depicted in Figure 3.2 defines a general-purpose tree traversal predicate. Upon
backtracking, the anonymous variable in the rule causes the traversal predicate to
be applied recursively to all children of the original node.

ASTLOG illustrates that logic meta programming tools require an operational
traversal of an AST to support syntactic characteristics. To shield the user from
traversal details, a higher-order predicate that implements a generic traversal is usu-
ally provided. ASTLOG goes further by adopting resolution against an implicit cur-
rent node.

3.2.3 FUJABA: One Graph Rewrite Rule for Multiple Implementation Variants
Weighted by the Expected False Positives

Niere et al. [NWW03, NSW+02] apply a fuzzy [Zad65] variant of the FU-
JABA [FNT+98] graph rewriting system to detect structural design pat-
terns [GHJV94]. These are specified in terms of UML [Fow97] class diagrams,
including relations such as association, delegation and generalization. These
structural relations are derived by lower-level rewrite rules over the program’s
abstract syntax tree. We discuss the tool here as FUJABA itself supports syntactic
characteristics, while tools tailored to structural characteristics do not support
syntactic characteristics. Graph rewrite rules are sufficiently powerful (+ for CSL3
and CSL4) to express other characteristics in terms of syntactic characteristics (±
for CSL1).

Figure 3.3 depicts a graph rewrite rule annotating the program’s abstract syntax
graph with 1N_Delegation nodes denoting one-to-many delegation pattern in-
stances. Its specification comprises the annotation nodes and edges that are to be
added, depicted with the stereotype <<create>>, and a sub-graph template iden-
tifying locations in the program’s graph where they are to be inserted.

Prior to the successive application of rewrite rules, FUJABA’s program represen-
tation starts out as an abstract syntax tree. From there on, added annotation nodes
and edges transform it into a graph. Abstract syntax tree nodes are represented
as typed rectangles while annotations are represented as typed ovals. They are
connected by named, directional edges. In the lower right corner of Figure 3.3, a
ContainerReference annotates a class and an attribute of another class. The an-
notation is connected to the class and the attribute through edges named field
and references.

The rule identifies caller and callee nodes of type Operation and verifies
whether the caller’s class has a container reference to the callee’s class. For this, it
relies on the ContainerReference annotation that is to be discovered by another
rewrite rule. It also requires an identifier node of type PTNodeId to reside at an
arbitrary depth (specified by a Path edge) within a loop node of type PTLoopNode

44

3.2. Tools Tailored to Syntactic Characteristics

ASG correspond to the pattern. Such subgraphs can then be used

by rules defining other patterns that contain the defined pattern as a

constituent part.

As a first example of such a subpattern definition, Figure 4 shows

the transformation rule defining a subpattern which is an

association relationship between two classes that each have an

attribute annotated as a reference to the other class. In the notation

used, the subgraph to be matched in the host graph is defined by

the black nodes and edges. The subgraph to be added is defined by

the grey node(s) and edges annotated with the keyword “create“.

This simple notation can be used because the rules only add

information to the host graph and never delete any. (The formal

definition and theory underlying such graph transformation rules is

given in [SWZ95].)

The definition of a so-called 1N_Delegation subpattern is shown in

Figure 5. An 1N_Delegation requires the existence of a reference

between two classes which involves a container class, i.e. an

attribute definition in one class must be defined as a collection

which contains objects of the type of the other class. The existence

of that reference is given by the annotation :ContainerReference.

In addition, a method body of that class (the caller class) must

contain a call of an operation provided by the interface of the

callee class. That call must appear within the body of a loop

statement in order to support the assumption that the call is made

to a particular item in a collection of items. Finally, the names of

the called and provided operation must be the same. Each edge

labelled Path in the definition indicates that an arbitrarily defined

path in the tree part of the ASG must exist between the source and

target node of that edge, i.e., the call can appear in an arbitrarily

deep nesting of statements within a method body. This is a typical

example of how many false positives can be avoided by checking

method bodies in addition to type definitions in class headers.

Furthermore, our definition of the 1N_Delegation does not require

application and declaration links between classes and objects,

because this leads to very complex rules. In practice it is usually

sufficient to identify a delegation only based on naming

conventions and their corresponding appearance within method

bodies.

Figure 6 then shows one possible definition of the Composite

pattern. The definition requires that a generalisation and an

association between the same two classes exist and that a

Delegation pattern occurs between two operations of these classes.

In effect, this definition describes the Composite variant without

the existence of a leaf class (cf. Figure 1). Other variants require a

slightly different definition.

The notation used here for pattern definitions is supported by the

FUJABA1 environment [FNTZ98, KNNZ99]. FUJABA supports

(among others) the definition of UML class and collaboration

diagrams and the definition of method behaviours as

corresponding graph transformation rules which use the definitions

of the class and object diagrams. The environment generates

executable and complete Java code from these definitions. The

graph transformation rules can be viewed as a subset of UML-like

collaboration diagrams. They are drawn somewhat differently but

can easily be translated into the UML syntax [KNNZ00].

:Attribute

:Attribute

:Association

:Reference

:Class :Class

:Reference

«create»

classclass

attrs references

field

references

field

attrs

 Figure 4. Association pattern specification

«create»«create»

:Attribute

caller:Operation

:1N_Delegation

:Class
:Class

:ContainerReference

«create»

calleecaller

Path

methods

field re
fe

re
n

ce
s

ast

attrs

 Figure 5. 1N_Delegation pattern specification

callee:Operation

:PTNode

:PTLoopNode

:PTNodeId

name == caller.name

name == callee.name

methods

Path

«create»«create»

1. The Fujaba (From UML to Java And Back Again) environment

is developed by the Software Engineering Group at the Univer-

sity of Paderborn (www.fujaba.de).

 Figure 6. Composite pattern specification

:Operation :Operation

:1N_Delegation
callee caller

:Association

:Composite

:Generalization

assoc

isA

«create»

subsuper

component composite

classclass

classclass

:Class :Class

«create»

«create»

«create»

«create»

Figure 3.3: An abstract syntax tree consulting FUJABA specification for a one-to-
many delegation pattern [NSW+02].

within the caller’s method parse tree root reached through an ast-edge. An addi-
tional node condition requires the identifier, presumed to be part of an invocation
node, to match the callee’s name which in turn is required to match the caller’s
name.

The rule annotates exact instances of the one-to-many delegation relation with
a precise annotation according to a detailed and verbose grammar rule specifica-
tion (± for CSL2). Another rule is necessary to detect one-to-many delegations
implemented through recursion instead of iteration, which increases the overall
pattern search space. At the cost of an increase in false positives, a less precise rule
that covers both cases could forgo the required loop node or not analyze the caller’s
body at all.

Instead of specifying a separate graph rewrite rule per implementation variant
of such a relation, the authors minimise the search space by specifying a single
rule that comprises only the commonalities between the variants (− for CDM3).
This way, they were able to detect design patterns in Java libraries in the range of
100.000 lines of code. To help the reverse engineer cope with the false positives this
deliberate imprecision inadvertently introduces, a weight is added to the resulting
rule which represents the anticipated percentage of correct matches.

The fuzzy FUJABA variant [NWW03, NSW+02] supports weighted annotations.
The weight of an annotation is computed as the minimum of the weights of all an-
notations involved in a match and the weight that is associated with the relaxed
rule. The associated weight, a number between 0 and 1, is intended to express
the reverse engineer’s belief in the rule’s precision based on personal experience or
historical data. Computed annotation weights therefore rank pattern instances ac-
cording to the expected precision of the rules that were used in their localization (+
for CDM2). This allows reverse engineers to filter the false positives caused by the
reduction of the total amount of rules. In addition to a weight, each rule is adorned
with a threshold above which all of the weights computed for its sub-graph anno-
tations have to lie. This increases the scalability of the approach by not allocating
resources on the derivation of pattern instances whose constituents could not be
demonstrated with sufficient certainty.

The fuzzy FUJABA variant employs a combination of bottom-up and top-down

45

3. STATE OF THE ART IN PATTERN DETECTION

rule application strategies in its graph rewriting algorithm. This only affects the
sequence in which rules are considered for application. The algorithm starts by
scheduling all rules at the lowest level in the hierarchical rule library thus avoiding
top-down failures of higher-level rules due to a lack of supporting information. In
this bottom-up mode, reverse engineers are allowed to steer the detection process
by rejecting or adding intermediate results in an interactive manner. The system
switches to a goal-driven, top-down mode as soon as a rule lacks information that
could be provided by another rule. This way, the search space of the top-down
mode is restricted by the information already derived in bottom-up mode.

When two annotations of the same kind can be derived for the same program
sub-graph, only the one with the highest weight is retained. As a rule’s weight is an
effective upper bound for the weight of all annotations that can be derived from it,
rules with a weight lower than the one already associated with a derived annotation
therefore need not be considered for application —further restricting the search
space.

The fuzzy FUJABA variant illustrates an alternative to specifying all implemen-
tation variants of a structural characteristic: only specifying their commonalities.
Focusing on efficiency rather than precision (− for CDM3), extremely relaxed graph
rewrite rules serve as pattern specifications which is likely to result in many false pos-
itives. However, FUJABA illustrates an interesting application of the theory of fuzzy
logic: ranking pattern detection results on a theoretical basis (+ for CDM2).

3.2.4 Other Declarative Tools

Centaur Centaur [BCD+89] represents an early attempt at generating interactive
programming environments from a formal language specification. A Prolog-
based inference system augments the environment with a type checker, a com-
piler and an interactive interpreter for debugging purposes. The evaluation of
Prolog goals can be controlled from within a Lisp process that runs as a corou-
tine taking care of most of the graphical user interaction. Relevant to our work is
that abstract syntax tree nodes communicated by the Lisp coroutine are trans-
formed into Prolog terms as needed.

Structural search and replace JetBrain’s IntelliJ integrated development environ-
ment for Java offers an advanced Structural Search and Replace [Mos05] feature.
Search queries are specified in the concrete syntax of Java that is only extended
with untyped meta-variables of the form $identifier$. The concrete syntax
is matched against an AST, but users are not exposed to its details (+ for CSL5).
Each template must comprise either an expression, statement sequence or a
class definition. The first two template kinds only match exact occurrences in
the program’s code, while class definition templates also allow non-specified
content in their matching base program classes.

Through a graphical user interface, constraints can be applied to meta-
variables which severely influence the matching process. A high maximum
occurrence constraint on the argument meta-variable in a single-argument
method invocation template will for instance also match invocations with mul-
tiple arguments. Setting the minimum occurrence constraint of a statement
meta-variable in a block template to 0 and its maximum occurrence constraint
will have the template match empty blocks as well as blocks whose statements
are bound individually to the statement meta-variable.

46

3.2. Tools Tailored to Syntactic Characteristics

1 (declaration:FUNCTION:$fdef
2 * [expression:FUNCTION:$fcall] *)

Figure 3.4: A TAWK expression pairing function calls with the function definition
they occur in lexically.

Meta-variables are the only means to express explicit points of variation
within a template. Constraints on these points can however be expressed out-
side of the template (± for CSL2). This keeps specifications free from non-
native syntax which ensures their descriptiveness (+ for CSL2).

PMD Like Checkstyle [Che08], PMD [PMD08] examines abstract syntax trees us-
ing visitors to detect common bug Java bug patterns and bad coding practices
in an operational manner. However, declarative XPath [CD99] expressions can
be used to query an XML representation of the program’s AST. The following
expression will for instance match all VariableDeclarator descendants of
the root(//), whose parent node (..) has a type child with name (@image=)
Logger. Users not completely familiar with XPath can build (the sometimes
cryptic) path expressions in an exploratory manner using PMD’s interactive ex-
pression evaluator window which shows matching nodes for an expression.

1 //VariableDeclarator[../Type/ReferenceType/ClassOrInterfaceType[@Image=’Logger’]]

AWK derivatives TAWK and A* Inspired by the popular text processing language
AWK [AKW88], TAWK [GAM96] programs comprise pattern-action pairs evalu-
ated against a C or MUMPS program’s AST. An action consists of C code that
is executed when the associated pattern matches. Action code can reference a
pattern’s meta-variable bindings. Patterns are translated to automatons similar
to SCRUPLE’s [Pau92, PP94] code pattern automatons. However, TAWK patterns
comprise regular abstract syntax tree expressions. Atomic patterns of the form
type:expression:variable specify a meta-variable to which an AST node of
the given type will be bound if one of its child strings matches the given regular
expression or literal. Atomic patterns are composed using a syntax reminiscent
of regular expressions extended with operators such as (e c1 . . .cn) or [f] which
respectively match a tree with root matching e and children matching ci or a
tree with a descendant matching f . The TAWK expression depicted in Figure
3.4 can therefore function as pattern in a naive call graph extractor matching
function calls at an arbitrary depth within a function declaration.

From the user, TAWK requires detailed knowledge of its internal abstract
syntax tree representation such as the tag FUNCTION that adorns specific ex-
pression and declaration nodes (− for CSL5). Its matching semantics is more-
over fixed. Pattern abstraction is limited to the definition of a textual macro ex-
panded by the C pre-processor (± for CSL4). Representing another tree-based
AWK, A* [LR94] is quite similar to TAWK, but allows custom abstract syntax tree
traversals and hence matching semantics to be implemented. These however
exhibit a highly non-declarative nature.

LogicAJ2 and GenTL Neither LogicAJ2 [RKA06] nor the closely related GenTL
[AK07] were specifically designed with pattern detection applications in mind.
However, their respective pointcut and transformation applicability specifica-
tions are relevant to our discourse. Both are expressed in logic programming

47

3. STATE OF THE ART IN PATTERN DETECTION

1 pointcut get(?jp,??modifier,?declType,?name)
2 expr(?jp,?name)
3 && (decl(?field,??modifier ?retType ?name;)
4 || decl(?field,??modifier ?retType ?name = ?v;
5)
6 && equals(?field, ?jp::ref)
7 && equals(?declType, ?field::parent::type);

Figure 3.5: A LogicAJ2 pointcut predicate definition identifying expressions that
syntactically reference a field.

languages that feature concrete syntax extensions (+ for CSL5) adapting plain
Prolog to the respective application domains of aspect oriented programming
(AOP [KLM+97]) and program transformation.

The extensions to LogicAJ2’s pointcut language comprise three predicates
decl/2, stmt/2 and expr/2. These select from the candidate joinpoints
bound to their first argument those declarations, statements and expressions
that match the concrete syntax patterns bound to their second argument. Two
types of logic meta-variables can be discerned in concrete syntax patterns.
Meta-variables of the form ?var match one base program element while meta-
variables of the form ??var match an arbitrary amount of elements. This is for
instance used to distinguish between patterns intended to match method dec-
larations with a single parameter versus all method declarations. Logic meta-
variables can moreover be suffixed by attributes parent and type which re-
spectively select the parent and type of the value bound to the variable. At-
tributes are convenient shorthand for logic conditions that would be required
to retrieve the information otherwise. The attribute ref resolves identifiers and
invocation expressions to their static declaration, possibly missing the actual
method that is invoked dynamically at run-time. Fine-grained static point-
cuts can be defined using the three basic predicates over abstract syntax trees.
The pointcut depicted in Figure 3.5 for instance identifies syntactic references
?jp to a field named ?name by selecting expressions matching the concrete
syntax ?name that resolve to a declaration of the field within the desired type
?declType [RKA06]. Note how the specification explicitly accounts for field
declarations defined with or without an initializing expression (+ for CSL3).
Unfortunately it misses declarations that define multiple fields of the same type
at once. It is unclear from the paper whether field references with an explicit
this qualifier are identified as well, but semantic references through aliases or
other layers of indirection are definitely missed as the matching semantics is
purely structural (− for CDM3).

GenTL [AK07] relies on concrete syntax patterns for expressing where and
under which conditions a program transformation applies as well as for spec-
ifying any code that is to be generated. It unifies LogicAJ2’s concrete syntax
predicates in one construct that does not require a pattern’s syntactic category
to be specified: ?match is [[pattern]].

Both tools perform a structural matching on the program’s abstract syntax
tree and incorporate no behavioral information in the process. Neither paper
explicitly defines the semantics used for matching sequences of statements in
a concrete syntax pattern. It is therefore not clear whether non-specified state-
ments may appear syntactically between a sequence’s constituents. However,

48

3.2. Tools Tailored to Syntactic Characteristics

1 equations
2 [1] COMPUTE Data-name2 = Data-name1/4
3 COMPUTE Data-name3 = Data-name1 - Data-name2*4
4 ...
5 =
6 ...
7 DIVIDE Data-name1 BY 4 GIVING
8 Data-name2 REMAINDER Data-name3
9 END-DIVIDE

Figure 3.6: Canonicalizing ASF term rewriting equations from Sellink et al. [SV98]’s
native COBOL patterns.

the actual matching semantics is fixed and cannot be altered by the user (− for
CDM4).

Native patterns Sellink et al. [SV98] apply so-called native patterns to the reno-
vation of legacy COBOL programs, more concretely to the identification and
correction of instances of the year 2000 problem. These native patterns com-
prise concrete syntax mixed with wildcards. Interestingly, wildcards correspond
to non-terminals in the base language’s grammar. Their naming scheme as de-
fined in the language’s reference manual is expected to be known by users as
wildcards must be named accordingly. List wildcard suffixes + and * provide a
limited amount of control over the tool’s matching semantics. The tool’s pat-
tern specification language can however be generated automatically provided
the base language’s grammar is expressed in the declarative Syntax Definition
Formalism (SDF) [SDF08, VS00, HHKR89]. 1 Its companion Algebraic Specifi-
cation Language (ASF) [vdBKV07, vdBHKO02, Ber89, DHK96], a term rewriting
language, can moreover be used to define semantic equalities between terms
matching native patterns. The modularly defined equalities drive problem-
specific abstract syntax tree canonicalizations such as the ones depicted in Fig-
ure 3.6 which state an equivalence between the COMPUTE and DIVIDE opera-
tions involved in leap year calculations [SV98] (± for CDM3).

3.2.5 Noteworthy Imperative Tools

Initially designed to check whether a program adheres to predefined coding con-
ventions, Checkstyle [Che08] currently also examines the code for common Java
bug patterns such as switch statements with non-empty cases that fall through.
Application-specific checks can be added as abstract syntax tree walkers imple-
menting the Visitor design pattern [GHJV94]. They have no information beyond
what’s available as an individual compilation unit’s AST nodes. PMD [PMD08] is
similar, but supports in addition declarative XPath [CD99] expressions to query an
XML representation of the program’s abstract syntax tree. Spoon [PNP06] relies on
abstract syntax tree traversing visitors not only to implement similar checks, but
also to recognize candidates for program transformations of which the code that
is to be generated can be specified as plain Java parametrized by meta-variable
identifying annotations. GENOA [Dev92, Dev99] is a procedural domain-specific
language specifically designed to express program query answering traversals over

1Section 2.5.1 and Section A.2 discuss it in the context of obtaining abstract syntax trees and struc-
tural program representations respectively.

49

3. STATE OF THE ART IN PATTERN DETECTION

annotated abstract syntax trees. It achieves language and parser independence
through an explicit specification of the abstract syntax tree models delivered by an
external parser.

3.3 Tools Tailored to Structural Characteristics

Structural characteristics concern the structural organization of the program under
investigation (cf. Section 2.2.2). While structural characteristics can be expressed in
terms of syntactic characteristics, the tools in this section do not support syntactic
characteristics. They employ a coarse-grained program representation that pro-
hibits a complete reconstruction of the program’s source code (cf. Section 2.5.2).

3.3.1 PTIDEJ: Deviating Pattern Instances as Solutions to a Relaxed Constraint
Satisfaction Problem

PTIDEJ [AACGJ01, GAA01, Gué03] (Pattern Trace Identification, Detection and En-
hancement For Java) detects and subsequently corrects implementations that dif-
fer slightly from the well-known micro-architectures prescribed by design patterns
[GHJV94]. Programs are represented according to an object-oriented meta model
whose API forms PTIDEJ’s Pattern Description Language (PDL). Its name conveys
the fact that the same API is used to describe design patterns as well. The model
describing the entities in a design pattern’s micro-architecture is called an abstract
model while models representing the application’s architecture are called concrete
models instead.

The visualisation of the relationship between both models, a mapping of pat-
tern participants to application entities, is the tools’ contribution to the design re-
covery process. The actual mapping is determined by the solution to a constraint
satisfaction problem (which has to be specified manually in the Claire [CL96] pro-
gramming language). Its domain covers the concrete model of the application,
while its constraints correspond to the entities in the abstract model of the design
pattern and the relationships between them. A solution to the CSP determines the
mapping between the entities in the program’s concrete model and the design pat-
tern’s abstract model.

The Claire extract depicted in Figure 3.7 declares a constraint satisfaction prob-
lem whose domain length(listC) enumerates the number of classes in the ap-
plication’s concrete model. Its variables leaves, composites, and components
capture the Leaf, Composite, and Component entities involved in the Composite
design pattern respectively.

Users can specify that the variable assignments of a problem have to adhere to a
set of constraints. The built-in constraints govern relationships ranging from inher-
itance (StrictInheritanceConstraint A < B , stating that class A must be the super-
class of class B), over invocation knowledge (RelatedClassesConstraint A!B stating
class A invokes a method of class B) to instance variable types (PropertyTypeCon-
straint B : A. f = B stating that the field f in class A must be of type B).

The Claire extract in Figure 3.7 specifies that the entities assigned to the
Component variable have to be direct subclasses of the entities assigned to the
Composite variable. The composite must also be in a composition relation with
its leaves. Finally, composites and leaves are required to be different.

50

3.3. Tools Tailored to Structural Characteristics

1 [problemForCompositePattern() : PalmEnumProblem ->
2 let pb := makePalmEnumProblem("Composite Pattern",
3 length(listC),
4 length(listC)),
5 leavesTypes := makePtidejIntVar(pb, "LeavesType", ...
6 leaves := makePtidejIntVar(pb, "Leave", ...
7 composites := makePtidejIntVar(pb, "Composite", ...
8 components := makePtidejIntVar(pb, "Component", ...

Figure 3.7: Claire extract defining the domain variables involved in a PTIDEJ con-
straint satisfaction problem for the Composite design pattern.

1 post(pb,
2 makeStrictInheritanceConstraint("Composite,Component |
3 javaXL.XClass c1,
4 javaXL.XClass c2 |
5 c1.setSuperclass(c2.getName());",
6 composites, components),
7 50)
8 post(pb, makeCompositionConstraint("throw new RuntimeException(....)",
9 composites, leaves),

10 90)
11 post(pb, composites <> leaves, 100)

Figure 3.8: Claire extract posting inheritance and composition constraints on the
variables involved in a PTIDEJ constraint satisfaction problem for the Composite
design pattern.

An explanation-based CSP solver first identifies program entities identical to
the micro-architecture put forth by the design pattern the problem encodes. When
no solutions can be found, an explanation is given for the solver’s failure consisting
of unsatisfiable constraints. Individual constraints from this set can subsequently
be relaxed. Solutions to the relaxed problem identify source code entities whose re-
lationships only satisfy a subset from the problem constraints. The minimal subset
of constraints to which an architecture must adhere is determined either interac-
tively by the user or by weights associated with each constraint.

A weight is associated with each constraint posted to a problem. The strict in-
heritance constraint is for instance given a weight of 50 in the problem specifica-
tion depicted in Figure 3.8. These are problem-specific and hence do not establish
a hierarchy among the constraints in the constraint library, but rather express a
constraint’s importance to the problem. A quality metric sorts the problem’s dis-
torted solutions based on the weights associated with the relaxed constraints (+ for
CDM3).

Unsatisfied constraints are considered symptomatic of design defects. In addi-
tion to weights, JavaXL [AA01] transformation rules can be associated with a con-
straint to correct defects of the entities that fail to comply with the constraint. The
strict inheritance constraint in Figure 3.8 is for instance given a transformation rule
which corrects the inheritance relation.

PTIDEJ illustrates a potential, but extreme approach to supporting implicit vari-
ation points among pattern instances: automatically relaxing characteristics not ad-
hered to by a potential instance. It is better suited to detecting imperfect instantia-

51

3. STATE OF THE ART IN PATTERN DETECTION

tions of a pattern, than detecting alternative implementations of a characteristic.
PTIDEJ also illustrates that the ranking computed for a result can be specific to a
specification, rather than predetermined by the characteristics in the specification.

3.3.2 Other Declarative Tools

4Thought The 4Thought [CMR92] software design tool relies on a graphical Dat-
alog [CGT89] subset called GraphLog. Graphs serve as visual representations
and specifications of investigated programs and program queries respectively.
The actual meta model according to which the program is represented is spe-
cific to he problem at hand: a manually extracted entity-relationship model was
used to determine package dependencies, while a function call graph was used
to partition code into modules.

Pat The Pat [KP96, PK98] system extracts coarse-grained structural program in-
formation from C++ header files and subsequently queries the resulting logic
fact base for structural design patterns using Prolog. The extracted information
only pertains to classes, their attributes and operations, and merely a subset of
the various ways in which association and aggregation relationships can be de-
clared. As the conditions in Pat’s pattern specifications are therefore severely
constrained, it suffers from relatively low precision.

Richner’s visualisation tool This tool [RD99, Ric02] relies on Prolog to generate
user-specified program visualisations. One predicate induces a partitioning of
program elements into components visualised as nodes. Another predicate
specifies a binary relation that is to be satisfied by any two elements in order
for an edge to be drawn between the nodes each individual element is assigned
to. In most visualisation queries, the latter predicate queries method invoca-
tion traces obtained through a dynamic analysis. The former predicate how-
ever usually queries a program’s structure represented according to the FAMIX
[TDDN00] meta-model.

CodeQuest Designed as a scalable, general-purpose program query tool,
CodeQuest [HVd06] translates Datalog [CGT89] to SQL queries over a rela-
tional database system. The database is populated with information about a
Java program’s packages, compilation units, types and their members. Binary
hasChild, implements and extends relations capture how program elements
are related. Information about methods is limited to their signature, the fields
they read or write, the types they return and their invocations. CodeQuest is
tightly integrated with the Eclipse [Ecl08b] integrated development environ-
ment, which signals modifications to resources causing the resource’s compi-
lation unit and all its children to be re-inserted into the database. CodeQuest’s
main contribution lies in demonstrating that a modern optimizing database
back-end for Datalog allows queries to scale to programs as large as Eclipse.
It employs essentially the same program representation as jQuery.

jQuery This program navigation plug-in for the Eclipse IDE [De 06, JD03] uses
the TyRuBa logic programming language to quantify over the base program
and configure its user interface. It is a Prolog variant with tabled resolu-
tion [RC97, CW96] featuring predicate mode and type annotations. Based on
these annotations, TyRuBa is able to detect ill-formed queries and order a
query’s constituents based on heuristics that favour performance.

52

3.4. Tools Tailored to Control Flow Characteristics

3.3.3 Noteworthy Imperative Tools

CrocoPat [Bey06, BNL03] supports the detection of structural patterns in a rela-
tional representation of a program’s structure extracted by a third party, e.g. the
inheritance and containment relations among its classes to detect instances of the
Composite design pattern [GHJV94]. It combines imperative control flow state-
ments and a transitive closure operation with first-order predicate logic expres-
sions over n-ary relations. Internally it relies on binary decision diagrams (BDD)
[Bry92] to represent relations in a compact manner and implement relational op-
erations efficiently. In this it is similar to the on a data flow representation relying
PQL [LWL+05a, MLL05, Liv06] which Section 3.5 discusses extensively.

3.4 Tools Tailored to Control Flow Characteristics

Control flow characteristics concern the order in which instructions are executed at
run-time (cf. Section problems:characteristics:controlflow). Section 2.5.3 detailed
how pattern detection tools can support the detection of control flow characteris-
tics.

3.4.1 Metal: Syntax-Driven Finite State Machine Transitions over Control Flow
Graphs

The bug pattern specifications of METAL [ECCH00, CEH02, HCXE02] consist of fi-
nite state machines that encode illegal sequences of program instructions. These
instructions are specified by concrete syntax patterns (or boolean C expressions)
that guard the transitions of the state machine. State machines are simulated along
the paths through a control flow graph of which the nodes stem from an AST (±
for CPR1, + for CDM1). They consume the AST nodes encountered on these
paths. METAL has been applied successfully to detecting bugs in the Linux ker-
nel [ECCH00], but also to inferring plausible illegal event sequences from existing
programs [ECH+01]. It owes a great deal of this flexibility to arbitrary C code that
can be associated with the action of a transition.

The specification depicted in Figure 3.9 identifies potential null pointer deref-
erence bugs. To discern meta-variable identifiers from base program identifiers,
METAL requires all meta-variables to be declared in advance using the decl key-
word (e.g. meta-variable v). The specification is a template for object-specific state
machines with three states v.unknown, v.null and v.stop. Each object-specific
state machine tracks the state of a pointer v. The specification itself is, in contrast, a
global state machine. It has one creation state start on line 6. When its transition
guard is applicable, a new object-specific state machine is instantiated to track the
pointer v. There is a transition from the global start state to the object-specific
v.unknown state. The transition is applicable if its transition guard, the pattern
v = kmalloc(x,y), matches the current AST node. The object-specific state ma-
chine starts in the v.unknown state because v is allocated using an instruction that
offers no null-ness guarantees. Whenever a use of the pointer is encountered in
the v.unknown state or in the v.null state, the object-specific machine’s execu-
tion is stopped and an error is reported. The instructions that constitute a use are
enumerated on line 4 as a disjunction of concrete syntax patterns.

The v.unknown state on line 7 features path-specific transitions. Their destina-
tion states vary according to the branch that is taken out of the conditional node

53

3. STATE OF THE ART IN PATTERN DETECTION

1 sm null_checker local {
2 state decl any_pointer v;
3 decl any_expr x,y;
4 pat use = { *(any *)v } || { memset(v,x,y) }
5 || { v + x } || { v - x };
6 start: { v = kmalloc(x,y) } ==> v.unknown;
7 v.unknown: { (v == NULL) } ==> true=v.null, false=v.stop
8 | { (v != NULL) } ==> true=v.stop, false=v.null;
9 v.null, v.unknown: use ==> v.stop,

10 { v_err("NULL", v, "Using \"$name\" illegaly!"); }
11 ;
12 }

Figure 3.9: A METAL finite state machine specification identifying possible null
pointer dereferences.

identified by their pattern guards. The state of v is definitely null on the true path
out of a positive comparison against null (line 7), while it no longer needs to be
tracked on the false path —and vice versa for negative comparisons (line 8).

Transition guards consist of conjunctions and disjunctions of concrete syntax
(+ for CSL5) extended with meta-variables. They can be complemented by callouts
to C. The following transition guard only triggers when a call to a debug function is
encountered:

1 { call(-1,v) } && ${is_debug_call(call)}

Metal’s support for checker composition amounts to the sequential execution
of the constituent state machines where each individual machine can annotate the
program’s abstract syntax tree with data that is to be shared (± for CSL4).

The state machine simulator implements a depth-first control flow graph
traversal, backtracking to the latest branch point whenever a path has been ex-
hausted. Each encountered abstract syntax tree node is matched against the guards
of the current state’s transitions, rendering the algorithm flow-sensitive. Function
calls are followed from multiple call sites and only returned from when all paths
through the callee have been exhausted. The resulting analysis is therefore inter-
procedural and context-sensitive. However, the local qualifier adorning the null
checker example in Figure 3.9 keeps the analysis intraprocedural.

Multiple occurrences of the same meta-variable in a specification must stand
for equivalent abstract syntax trees. Arbitrary expression aliasing is ignored, but
the state machine simulator keeps track of variable synonyms along a path when it
encounters one variable being assigned to another. This provides limited support
for detecting implicit variation points (± for CDM3).

State caches at join points in the flow graph eliminate redundant paths along
which machines reach a join point in the same state. They also take care of ter-
mination in the presence of back edges. By keeping track of which branch was
followed out of a conditional expression, infeasible paths can be pruned whenever
a branch out of another conditional is excluded by the knowledge gathered along
the path.

Based on the effort a manual inspection would require, METAL classifies local
bug pattern instances above interprocedural ones (+ for CDM2). In a similar vein,
instances without synonyms are considered a higher priority than the ones with-
out. Within these severity classes, instances are sorted according to the amount of

54

3.4. Tools Tailored to Control Flow Characteristics

1 from "close(%F)" to "read(%F,%_)" avoid "%F=open(%_ ,%_)"

2 from "%X=malloc(%_)" to "*%X" avoid +"%X!=0" or -"%X==0"

3 from "%T %X" | TYPE_P(T) && TREE_CODE(X)==VAR_DECL &&
4 DECL_SIZE(X)>1024

Figure 3.10: CONDATE constrained reachability queries identifying reads from a
closed file, potential null pointer dereferences and large variable declarations re-
spectively.

lines they span and the number of conditionals encountered along the erroneous
path. A statistical ranking augments this generic ranking by preferring checks that
are more often adhered to than violated.

METAL has proven successful and influential in bug pattern detection. METAL

also illustrates a multifaceted ranking of results according to the effort their manual
inspection would require.

3.4.2 Condate: Constrained Control Flow Reachability Queries between
Unparsed Patterns

CONDATE [Vol06a, Vol06b] represents a compiler-integrated approach to the per-
manent detection of user-defined bug patterns. Bug patterns are specified as a se-
quence of program events which are identified by concrete syntax patterns with
meta-variables. To stimulate continuous checking at compile-time, sequencing
properties are restricted to a class that is checkable both in linear time and space.
While deliberately less powerful than the heavyweight stand-alone checkers it in-
tends to complement, such a compiler-integrated approach automatically offers
continuous checking and the possibility to reuse program analyses already present
in industrial-strength compilers.

A bug pattern has to be specified as a constrained reachability query (CRQ) of
the form “Is there a path from a program fragment f to a program fragment t avoid-
ing: fragments v, successful tests vt and unsuccessful tests ve ?” where 〈 f , t , v, vt , ve〉
are respectively the 〈from, to, avoid, avoid-then, avoid-else〉 patterns of which all
but the from pattern can be omitted. These patterns match atomic expressions or
statements in the program’s control flow graph. They are specified as quoted strings
containing concrete syntax with meta-variables preceded by the escape character
% or the anonymous meta-variable %_ (+ for CSL2).

The first CRQ depicted in Figure 3.10 captures the pattern describing a read
from a closed file in C which manifests itself when there is a path from an expres-
sion closing a file %F to an expression reading from this same file without it being
reopened along this path. Note that the meta-variable %F intends to relate the dif-
ferent syntactic patterns along the control flow path to the same file. All occur-
rences of a meta-variable must stand for structurally equivalent subfragments (−
for CDM3). The semantics of the programming language is not taken into account.

By expressing whether the positive (then) or negative (else) branch out of a de-
cision node in the control flow graph is to be avoided, the avoid-then and avoid-else
syntactic patterns allow for more fine-grained control over the edges constituting
the paths matching a CRQ. This is for instance important in the second CRQ de-

55

3. STATE OF THE ART IN PATTERN DETECTION

picted in Figure 3.10 that matches potential null pointer dereferences. Only deref-
erences *%X encountered on a path where the boolean expression %X!=0 evaluates
to false constitute an error.

Finally, a CRQ’s matches can be further constrained using boolean expressions
that refer to the compiler’s internals — provided users are familiar with its meta
model. As meta-variables are untyped, the from pattern in the third CRQ depicted
in Figure 3.10 would match every occurrence of two program constructs, were it not
for the boolean expression restricting the bindings to large variable declarations.

The specification language provides no mechanism to reuse individual CRQs
(− for CSL4). Although syntactic patterns within a CRQ can comprise disjunctions,
this correlating the choices among different patterns is not possible (± CSL3). The
following CRQ does check whether all locks are eventually released, but it cannot
check whether each lock is released using the function unlocki corresponding to
the one that acquired the lock l ocki :

1 from "lock1(%X)" or ... "lockN (%X)" to "return"
2 avoid "unlock1(%X)" or ... "unlockn (%X)"

A CRQ 〈 f , t , v, vt , ve〉 corresponds to the regular path expression f [ˆv+vt−ve]∗y
which matches any edge leaving a node matching the syntactic pattern f , followed
by an arbitrary concatenation of edges —that individually do not match any edge
leaving a node matching v , nor a positive (then) edge leaving a decision node
matching vt nor a negative (else) edge leaving a decision node matching ve —
which leads to a node matching the syntactic pattern y .

Syntactic patterns may contain meta-variables. Such expressions are existen-
tially qualified parametric regular path expressions. An algorithm for evaluating
such expressions with respect to an intraprocedural control flow graph has been
studied in detail in [LRY+04]. CONDATE’S CRQs are a particular class of regular path
expressions for which the algorithm requires only linear running time and space.
The generated automaton that is executed along the paths in the control flow graph
is of the same size for all CRQs. CONDATE furthermore imposes the restriction that
all meta-variables must be instantiated in the positive from pattern f , eliminating
the costly possibility of having different substitutions match the same regular path
expression to the same path.

The nodes in CONDATE’S control flow graphs do not constitute nodes from an
AST (− for CDM1), but rather nodes from the GCC compiler’s GIMPLE [Mer03]
intermediate representation. This representation introduces temporary variables
to ensure all instructions involve maximum three addresses. Their definition is
conceptually inlined in an attempt to reconstruct original syntax of the expression
when matching a concrete syntax pattern against a GIMPLE node. This is not al-
ways successful (− for CSL1).2

CONDATE’s matching algorithm for syntactic patterns only requires an unparser
for the base programming language (pretty-printer) rather than a parser for the pat-
tern language (i.e. unparsed patterns [VR08]) The technique recursively unparses
the base program’s abstract syntax tree (AST) to compare it against the pattern
which is kept as a string. In order to ensure that meta-variables are bound to AST
subtrees rather than plain strings, unparsing is performed lazily, one tree level at
a time keeping subtrees intact. However, meta-parentheses %(and %) might have

2A syntactically different, yet semantically equivalent expression might be reconstructed from the
components of the original expression.

56

3.4. Tools Tailored to Control Flow Characteristics

to be introduced in a pattern to force unparse steps. For instance, to take the sub-
traction operator’s left associativity into account: %w = %(%(%x - %y%) - %z%).
Awareness of the compiler’s internal AST structure is the price users have to pay for
the implementer’s convenience (± for CSL5 in spite of the use of concrete syntax
for specifications).

Condate illustrates that many bug patterns can be specified as descriptive, ex-
istential reachability queries. Condate also illustrates that the benefits of concrete
syntax specifications are easily negated when too many non-native constructs are
introduced. Furthermore, it illustrates that many intermediate program representa-
tions do not suffice to adequately support syntactic characteristics.

3.4.3 Other Declarative Tools

Parametric regular path expressions Liu et al. [LRY+04] present a detailed study
of an algorithm for evaluating parametric regular path expression with re-
spect to an intraprocedural control flow graph. These are regular expressions,
parametrized by meta-variables, over the labels encountered along one (ex-
istentially quantified) or all (universally quantified) paths in the control flow
graph. With analysis-specific abstractions of program instructions such as
def(x) substituting for the usual control flow graph labels, it has also been suc-
cessfully applied to classical problems such as the search for uninitialized vari-
ables: [ˆdef(x)]∗use(x). The algorithm translates the regular path expression to
an automaton which is executed along paths in the control flow graph, follow-
ing a transition whenever its label matches the current graph’s edge. It com-
putes all tuples 〈v, s,θ〉 consisting of a reachable node v , reachable automaton
state s and corresponding meta-variable substitution θ that are reachable from
a given starting node and state. Condate’s (Section 3.4.2) CRQs comprise a re-
stricted class of regular path expressions for which the algorithm requires only
linear running time and space.

MJ MJ [BE03] is an implementation of Metal’s (Section 3.4.1) finite-state machine
based bug pattern specification language and its corresponding static checker
for Java. In contrast to the original implementation for C, an MJ automaton
does not consume abstract syntax tree nodes in their control flow graph de-
rived execution order. It rather consumes nodes from an intermediate register-
based bytecode representation computed by the Joeq [Wha03] virtual machine
and compiler framework (− for CDM1). Identifying concrete syntax patterns,
which guard each automaton’s transitions, in this intermediate representation
is therefore much more involved. MJ’s mapping can rely on optional debug in-
formation embedded in class files such as line numbers and a method’s local
variable names. The drawbacks and advantages of using a mapping between
concrete source code and an intermediate representation have already been
discussed for Condate (− for CSL1).

TRANS, Path Logic Programming and JunGL As powerful program trans-
formation specification languages, neither TRANS [LdM01, Lac03],
Path Logic Programming [DdMS02], nor JunGL [VEdM06] is intended for
general-purpose software pattern detection. Their specifications must how-
ever stipulate precisely under which conditions a transformation is applicable
and most of these conditions take the form of control flow graph constraints.

TRANS [LdM01, Lac03] is based on conditional rewrite rules of which the

57

3. STATE OF THE ART IN PATTERN DETECTION

left-hand side comprises sequences of statements in the base program’s con-
crete syntax extended with meta-variables. The concrete syntax patterns are
matched against basic blocks in the program’s control flow graph to identify
a transformation’s candidate subjects. These are further refined by additional
reachability constraints over the graph expressed as computational tree logic
(CTL) formulae [CES86], verified by a model checker, that are associated with
each rewrite rule. In the case of eliminating unused variables by a transforma-
tion that removes the defining node, these are for instance used to stipulate
that for all of the node’s successors there is no path on which the variable x is
eventually used: AX (¬E(TrueUuse(x))). Such temporal path expressions can
be used as precise specifications of control flow characteristics, but are hard to
get right and read (± for CSL2). This view is shared by Dwyer et al. [DAC99]
who propose a higher-level pattern language instead to describe how program
events are related. Moroever, in [dLW03] de Moor et al. motivate their explo-
ration of regular path expressions by the observation that most of their TRANS

examples don’t exploit the full power of temporal logic.
Existential and universal regular path expression primitive predicates

exists P (A,B) and all P (A,B) are the logic programming extensions
proposed by path logic programming [DdMS02]. They are compiled to Prolog
with tabled resolution according to the algorithm in [dLW03]. A logic term rep-
resenting the transformation action to undertake is associated with successful
queries. The regular path primitive predicates are satisfied when the sequence
of labels encountered on one path (and respectively all paths) between the pro-
gram’s control flow graph nodes A and B adheres to the language defined by
the regular path expression P . Its alphabet consists of curly braces housing a
conjunction of logic predicates an individual edge label should adhere to.

1 unused_from(X, N) :-
2 all ({ ‘unused_other_than_at(N,X) }*;
3 (ε + { ‘def(X) }; { }*))
4 (N, exit).

The above path logic programming query from [DdMS02] checks whether
X is an unused variable defined by a given node N if all paths from N to the
exit node are either completely described by a potentially empty sequence of
edges pointing to nodes that don’t use X (with the exception of N itself) or are
described by such a sequence followed by a redefinition of the variable. Note
that {} matches any edge label while ε matches the empty path. The ticked (‘)
logic predicates take the current edge label against which they are evaluated as
an additional implicit argument.

While the above approaches work on an intermediate program representa-
tion (− for CSL1 and CDM1), JunGL [VEdM06] works on abstract syntax trees
as it is intended as a specification language for refactorings rather than opti-
mizing transformations. It extends the ML programming language with stream
comprehensions {?x | Q} ranging over all bindings for the meta-variable ?x
that satisfy the Datalog query Q. JunGL supports regular path expressions to ex-
press the preconditions of a refactoring and to add derived edges to the con-
trol flow graph in a demand-driven way. The following JunGL extract from
[VEdM06] is, for instance, used to resolve SimpleName nodes to a method pa-
rameter declaration. Here, square brackets distinguish predicates over control
flow graph nodes from predicates over edge labels. The declaration is thus
reached by following one or more parent edges to a method declaration node

58

3.5. Tools Tailored to Data Flow Characteristics

?m and taking the child edge that leads to a parameter declaration ?dec with
the correct name. The omitted query disjuncts (...) handle the case where the
SimpleName refers to a local variable declaration or to a field declaration anal-
ogously.

1 let matches = { ?dec | ...
2 ([from] parent+ [?m:Kind("MethodDecl")]
3 child [?dec:Kind("ParamDecl")] &
4 ?dec.name == name) ... }

3.4.4 Noteworthy Imperative Tools

FindBugs [HP04] is effective at localizing potential bug pattern instances in Java
programs. Application-specific checks can be added by extending a Visitor design
pattern [GHJV94] implementation. In this it is similar to both PMD [PMD08] and
Checkstyle [Che08]. However, rather than walking an abstract syntax tree, Find-
Bugs’ visitors traverse class files. Bytecode instructions can either be scanned lin-
early without regard for control flow or along a control flow graph. Some checks,
such as the check for potential null pointer dereferences, rely on a simple intrapro-
cedural data flow analysis. However, defining one’s own checker is hard as this re-
quires expert knowledge of Java bytecode instructions. Much of the search strategy
and related bookkeeping has to be implemented imperatively.

3.5 Tools Tailored to Data Flow Characteristics

Data flow characteristics concern the range of possible run-time values expressions
can assume, as well as their origin and how they are related (cf. Section 2.2.4). Sec-
tion 2.5.4 detailed how pattern detection tools can support the detection of data
flow characteristics.

3.5.1 JTL: Java-like Datalog Syntax over Structural and Intraprocedural Data
Flow Information

The Datalog [CGT89] derivative JTL (Java Tools Language) [CGM06b] has been
used primarily to detect [CGM06a] what the authors call µ-patterns [GM05]. This
requires support for structural characteristics (cf. Section 2.1). In addition, JTL
supports data flow characteristics to enable detecting unread parameters, unused
locals, etc . . .

Due to deliberate departures from the regular Datalog syntax, many JTL spec-
ifications have a query-by-example flavour (+ for CSL2). The solutions to the fol-
lowing query, for instance, consist of all parameter-less public abstract methods
that are declared to return void:

1 public abstract void ()

JTL predicates have an implicit subject variable and are named after the Java key-
words that qualify matching subjects. Juxtaposition amounts to a conjunction in
which the subject variable is shared by the conjuncts. Note that the argument list
in the query is actually a predicate succeeding for empty argument lists. Also note
that the name of the method is missing from the query. Although the query has a
query-by-example flavour, its syntax is far from the concrete syntax of Java.

59

3. STATE OF THE ART IN PATTERN DETECTION

1 service := public !static method;
2 statemachine := interface offers: {
3 service => ();
4 exists service;
5 };

Figure 3.11: JTL specification for the state machine µ-pattern [GM05].

JTL specifications for more complex patterns often rely on set quantification
abstractions through which the underlying operational semantics become appar-
ent. The unary statemachine predicate defined in Figure 3.11 captures the spec-
ification of the state machine µ-pattern [GM05]. It is defined as an interface that
only offers parameter-less instance methods (i.e. a purely structural characteri-
zation). Set quantifications consist of a generator (e.g. offers:) which gener-
ates a set of program entities against which quantified queries are evaluated (lines
3 and 4). The definition relies on the => quantifier which is satisfied whenever
every set element that adheres to its left hand side also adheres to the query
on its right hand side. It is used most often in combination with the exists
quantifier to make sure there is at least one element that satisfies its left hand
side. The query-by-example flavour of the query class { int field; } is due
to default values for quantifiers and generators. It is equivalent to the query
class members: { exists int field; }.

In contrast to the purely structural queries presented so far, the data_manager
predicate defined in Figure 3.12 relies on intra-procedural data flow information.
It detects classes whose instance methods consist solely of getter and setter meth-
ods (i.e. the data manager µ-pattern [GM05]). This is specified at lines 2–4. The
getter predicate is satisfied by non-void, parameter-less methods whose return
operands all originate from a bytecode retrieval of a field F within the method’s
class (line 6). The binding for S (called a scratch) is an anonymous representation
of the operand’s run-time value (i.e. it carries no information about the concrete
value), but can be passed to other predicates to express the transitive data flow
dependency between the field and the return operand (± for CSL5). Note that
dependencies established by field aliasing or inter-procedural flow are missed. The
setter predicate, on the other hand, ensures that all of a method’s bytecode field
assignments are to the same field and have an intra-procedural data flow depen-
dency on one of the method’s parameters (lien 9).

Data flow characteristics are supported through predicates that range over
so-called scratches. Values originating from the method’s parameters, receiver,
operand stack or its local variables are represented by the unary predicates
parameter, this, temp and local respectively. The binary predicates from and
func connect these values together by stating that one is obtained from the other
through an assignment and an arithmetical computation respectively. Predicates
such as getfield and get_invokespecial state that a value is obtained through
a field reference or a method invocation. Branches in a method’s control flow can
generate multiple occurrences of the same value in these relations.

Structural characteristics are supported through binary predicates such as
extends and members. Control flow characteristics are not supported. Method
bodies are represented using binary predicates such as invokes_virtual and
invokes_special (i.e. sets of bytecode instructions, ± for CSL5). Syntactic in-

60

3.5. Tools Tailored to Data Flow Characteristics

1 data_manager := class is C offers: {
2 exist instance field;
3 exist service;
4 service => [setter | getter];

5 getter := !void () returned: {
6 all from* S, S getfield F, C holds F;
7 };

8 setter := void (_), C offers F, F field {
9 putfield _ => putfield F, from* P, P parameter;

10 exists putfield;
11 };
12 };

Figure 3.12: Definitions for the data flow incorporating JTL predicates that identify
instances of the data manager µ-pattern.

Equality-

within-

Epsilon

2

1

!

"

Absolute-

Value
1 23 3

11

2 2 null-
1 test

!

"

Attribute Conditions: All nodes co-occur.

Attribute-Transfer Rules:

ce := ce(null-test)

success-ce := failure-ce(null-test)

failure-ce := success-ce(null-test)

Figure 3.13: GRASPR flow graph grammar rule encoding the equality-within-ε id-
iom [Wil94].

formation is not supported either (− for CSL1).
JTL queries are translated to Datalog [CGT89] in a syntax-directed way. This

entails handling every predicate’s implicit subject variable and translating disjunc-
tion to auxiliary rules that implement the same predicate. As soon as a generator’s
set has been enumerated and each quantifier’s query subject is set to the elements
of this set, evaluation of quantifiers is straightforward. Evaluation of the existential
quantifier is trivial as Datalog queries are already existentially qualified. Negation
is used to implement the universal quantifier in terms of the existential one. The
translation of JTL to Datalog is fixed. Changing a rather complex Java implementa-
tion comprises the end-users’ only means to amend these semantics (− for CDM4).

JTL illustrates that a carefully chosen surface syntax that resembles the syntax of
the base program can make logic specifications more familiar to developers. How-
ever, the specifications for all but the simplest patterns lack any real resemblance to
source code excerpts.

3.5.2 GRASPR: Idioms as Attributed Data Flow Sub-graph Isomorphisms

GRASPR (Graph-based System for Program Recognition) [RW90, Wil92, Wil93,
Wil94] is an early program recognition tool for Lisp. Given a hierarchical library of
software patterns describing algorithms and data structures, it produces a forest of
design trees that specify the implementation relationships among any recognized
higher and lower-level software patterns.

It uses a very simple directed, acyclic graph as program representation. Its
nodes represent the program’s primitive operations. Input and output ports are

61

3. STATE OF THE ART IN PATTERN DETECTION

associated with nodes. Data flow edges between instructions are represented as
edges between ports of the corresponding nodes. Edges fanning out of a node in-
dicate that there are multiple consumers for the result of its operation. Sink nodes
in the graph (i.e. nodes without outgoing edges) represent conditional tests.

GRASPR’s design trees are in fact parse trees obtained by parsing the program’s
data flow graph using a context-free graph grammar encoding of the pattern library.
Figure 3.13 depicts GRASPR’s production rule for the low-level equality-within-ε id-
iom which tests whether two values are less than ε apart. It specifies how its left-
hand side node can be replaced by the data flow subgraph on its right-hand side.
The atomic instructions on the right hand side are -, <= and null-test. The lat-
ter is a sink node (i.e. no outgoing edges). Ports are depicted as numbers on the
corresponding nodes. Ports on either side of the rule are mapped according to an
embedding relation. Labels α and β graphically depict the rule’s embedding rela-
tion.

The ability to refer to non-terminals on a rule’s right-hand side provides a
means of abstraction for alternative pattern implementations (+ for CSL4). The
equality-within-ε rule’s right-hand side refers to the absolute-value idiom. Produc-
tion rules are hence organized in a hierarchical library which allows implementa-
tion relationships among patterns to be captured in derivation trees.

Attributes on graph nodes are used to encode control flow information in the
form of named control environments. Each control environment refers either to
a failure or success environment of a conditional test (sink nodes in the graph).
Left-hand side node attributes are transferred from the nodes matching the rule’s
right-hand side. The actual transfer is determined by attribute transfer rules.
As the equality-within-ε pattern is evaluated under the same control flow condi-
tions as its inequality check, they share the same control environment attribute
(ce:=ce(null-test)). Being a boolean predicate and hence a sink node itself, it
is also annotated with a success and failure control environment. These are the re-
verse of its own sink node. Attribute conditions further constrain potential matches
for a rule’s right-hand side.

GRASPR’s flow graph canonizes implementation variants of the same data flow
characteristics (+ for CDM3). The order of operations in this representation is de-
termined by their data flow dependency. Programs that differ only in the ordering
of independent operations are mapped to the same representation. This is for in-
stance the case for the snippets below, adapted from the original in [Our89]. This
precludes GRASPR from being used in API conformance checking, but overcomes
non-essential control flow variations in the recognition of low-level software id-
ioms.

1 (defun FGH (x) (defun FHG (x)
2 (let ((z (F x))) (H (F x))
3 (G x) (G x)
4 (H z) x)
5 x))

The program’s flow graph is parsed in accordance with the pattern library’s at-
tributed graph grammar. To recognize low-level patterns that are not part of a
higher design, parsing is performed in a bottom-up manner —treating all non-
terminal nodes as possible start nodes and ignoring any unrecognizable flow sur-
rounding candidate idioms. The detection process therefore amounts to comput-
ing subgraph isomorphisms. The parser maintains a chart of both partially and
completely recognized items which is extended by continuously combining items.

62

3.5. Tools Tailored to Data Flow Characteristics

Chart monitors can intervene in the process. For instance, to further canonize the
flow graph on-the-fly (+ for CDM3) or consult the user for advice.

GRASPR’s approach to idiom detection requires a graph isomorphism to be es-
tablished between a pattern and an instance in the program’s flow graph. A precise
flow graph of both is vital to the approach. Prior to recognition, the program under
investigation has to be converted manually to a restricted functional programming
style in order to circumvent the prototype’s inability to handle side-effecting op-
erations, tree recursions and function arguments. Pattern specification involves a
manual data flow analysis and its subsequent transcription to a graph grammar
production rule. This is especially hard when arbitrary, user-defined functions can
interrupt the flow between the idiom’s primitive operations.

GRASPR is of historical relevance as it is one of the earliest pattern detection tools
that uses a data flow representation. It illustrates how data flow information sup-
ports implicit points of variation among instance. Interestingly, the order of oper-
ations in this representation is completely induced by their data flow dependency
rather than the one that is specified in the program’s code. At the same time, GRASPR

illustrates the need for a specification language in which not all of a pattern’s char-
acteristics need to be specified in excruciating detail.

3.5.3 PQL: Concrete Syntax Resembling Data Flow Queries

PQL (Program Query Language) [LWL+05a, MLL05, Liv06] supports the specifica-
tion of control flow characteristics and data flow characteristics in a unified lan-
guage. However, PQL detects the former using dynamic analysis and the latter us-
ing static analysis (cf. Section 2.4.3). Structural and syntactic characteristics are
not supported (− for CSL1).

The PQL prototype has successfully identified errors related to security and ob-
ject persistence in web applications as well as instances of the lapsed listener prob-
lem (cf. Section 2.1) in real-life Java applications.

Ignoring the actual ordering between run-time instructions, the static analysis
identifies the potential matches for a query. It relies on a context-sensitive points-
to analysis [WL04] to approximate the run-time objects operated on by the instruc-
tions (cf. Section 2.5.4). The subsequent dynamic analysis only needs to verify the
ordering of the actual instructions and the aliasing relations between their associ-
ated objects. As program points deemed irrelevant by the static analysis must not
be instrumented, the run-time overhead of the dynamic analysis can be kept to a
minimum. Whenever a match does occur at run-time, user-provided actions can
correct the error on-the-fly.

The scope of this dissertation is restricted to statically obtained program repre-
sentations. We will only discuss the static resolution of PQL queries. It ignores the
execution order of instructions. It solely relies on the information that is vital to rea-
soning about object-oriented programs: points-to information and the invocation
graphs that can be derived from it (cf. Section 2.5.4).

The program is represented as a set of Datalog [CGT89] relations. Operations
operating on primitive data types are ignored. Input relations are populated from
the program’s bytecode, while a set of Datalog rules derive relations that comple-
ment the input relations with approximations of the heap objects their object at-
tributes may point to and the method declarations an invocation may resolve to
at run-time. These derived relations are parametrized by a static approximation
of the callers on the program’s run-time call stack and are hence context-sensitive.

63

3. STATE OF THE ART IN PATTERN DETECTION

1 simpleSQLInjection(b1, b2, h) :-
2 IE(c1, b1, _, "getParameter"),
3 ret(b1, v1),
4 vP(c1, v1, h),
5 IE(c2, b2, _, "execute"),
6 actual(b2, 1, v2),
7 vP(c2, v2, h).

Figure 3.14: Datalog rule that identifies straightforward SQL injections using the
predicates from PQL’s program representation.

The following table lists the relations related to a method invocation at bytecode
b. Additional relations capture assignments, field and array loads, field and array
stores and direct object allocations.

actual(b, z, v) variable v is the invocation’s zth actual argument
ret(b, v) variable v stores the result returned by the invocation

IE(c1,b,c2,m) in context c1, method m may be invoked in context c2

vP(c, v,h) in conctext c, variable v may point to heap object h
Many patterns that are primarily characterized by data flow characteristics

can already be expressed as direct Datalog rules over the above relations. Fig-
ure 3.14 defines a Datalog rule that identifies straightforward SQL injections (cf.
Section 2.1) where a heap object h is the result of an invocation of a method named
getParameter and is passed as the first argument to an invocation of a method
named execute:

Note that this static rule does not enforce any ordering between the two calls.
Their presence in the bytecode is sufficient. Rather than requiring the return vari-
able v1 and actual parameter variable v2 to be the same, the rule only requires
them to possibly point to the same heap object h. This abstracts away from syntac-
tically differing implementation variants through which this aliasing relation can
be established. However, the user has to manage invocation contexts c2 and c1
manually and work directly on the program representation.

PQL queries therefore specify a bug pattern as a set of program events con-
nected by sequencing operators. Again, these operators are only taken into account
by the dynamic analysis. The events themselves are specified in a Java-like syntax
(+ for CSL5) with meta-variables (+ for CSL3). The PQL query depicted in Fig-
ure 3.15 represents a more complete SQL injection specification which considers
strings derived from the getParameter source tainted as well:

The object meta-variable in a query have to be declared as either local or output
variables (qualified by uses and returns respectively) or as argument variables
passed in from other queries (line 9). Each object meta-variable is typed and will
match only heap object approximations that can be cast to that type. A ! prefix
will take the complement of such a type declaration. Every occurrence of the same
object meta-variable must match the same heap object approximation. Member
meta-variables will match methods and fields rather than objects and must be de-
clared with the pattern their name has to adhere to.

Queries can be named and called from other queries. An extra-native oper-
ator := has to be used to bind the returned value to a meta-variable. The main
query in Figure 3.15 relies on another derivedString query to determine whether
the argument to the execute invocation is derived from user input. This particu-
lar query is recursive: its base case returns its argument while the recursive cases

64

3.5. Tools Tailored to Data Flow Characteristics

1 query main()
2 returns object Object source, tainted;
3 uses object java.sql.Statement stmt;
4 matches {
5 source = req.getParameter();
6 tainted := derivedString(source);
7 stmt.execute(tainted);
8 }
9 query derivedString(object Object x)

10 returns object Object y;
11 uses object Object temp;
12 matches
13 y := x
14 | { temp.append(x); y := derivedString(temp); }
15 | { temp = x.toString(); y := derivedString(temp); }

Figure 3.15: A more complete specification of the SQL injection bug pattern in PQL’s
specialized syntax.

consider transitive alternations of append and toString invocations. Recursion is
used in PQL to either define such recursive event patterns or, when field member
meta-variables are involved, recursive object relations.

There is a straightforward mapping of PQL queries to Datalog rules. Primitive
PQL statements over heap objects are mapped to Datalog predicates over byte-
codes and program variables —augmented with a lookup of program variables in
the points-to relation vP. The := operator maps to an equality test of heap ob-
ject approximations. Individual operands of a disjunction map to separate Dat-
alog rules implementing the same predicate. Any control flow implied by state-
ments joined by the sequencing operator is ignored as the latter simply maps to a
Datalog conjunction. Only the within control flow construct is supported. It re-
quires matching bytecodes to occur in methods that are called transitively from its
operand.

The actual PQL semantics are fixed. Knowledgeable end-users could in theory
alter this mapping by modifying the Java visitors that generate the Datalog rules (−
for CDM4).

The static resolution of PQL queries relies heavily on a precise approximation of
the heap objects that are involved in every possible program execution. A context-
sensitive points-to analysis [WL04], implemented by a handful of Datalog rules,
provides the necessary precision. The analysis is cloning-based: per call site it cre-
ates a unique method clone to which a regular context-insensitive analysis is ap-
plied resulting in a points-to relation that is parametrized by explicitly represented
calling contexts.

The entailed explosion of context information is managed only by a particularly
clever Datalog implementation which exploits similarities between contexts. This
implementation, bddbddb (Binary Decision Diagram Based Deductive Database)
[WACL05], encodes Datalog relations as boolean functions over tuples of domain
values enumerated as binary numbers. These can be represented efficiently using
binary decision diagrams (BDD) [Bry92]. Resolution of Datalog queries with a fi-
nite domain and stratified negation maps easily to a sequence of BDD operations .
Operating on an entire relation at the same time, their cost depends on the shape
of the BDD graphs encoding the relation rather than the relation’s population size.

65

3. STATE OF THE ART IN PATTERN DETECTION

1 method("ResultSet Statement.executeQuery(String)", ExecMeth),
2 call(ExecMeth, Receiver, ExecCall, QueryStringLocal),
3 assignment(Target, ExecCall, _),
4 member(QSLocal, QueryStringLocal),
5 local_constant_def(QSLocal, QueryString),
6 findall(Column, columnUsed(Target, Column), Columns)

Figure 3.16: DeepWeaver pointcut conditions identifying expensive database
queries.

Computation of the points-to information and the dependent PQL queries is per-
formed exhaustively in a bottom-up manner.

PQL illustrates that it is possible to support precise data flow characteristics
without exposing users to the details of its enabling analysis. The specification lan-
guage resembles a subset of Java’s concrete syntax: those instructions that influence
data flow characteristics directly.

3.5.4 Other Declarative Tools

DeepWeaver As a bytecode transformation and program optimization tool,
DeepWeaver [FKI+07] is not intended for software pattern detection per se. Its
transformations are however expressed in the aspect oriented programming
paradigm (AOP) [KLM+97] and therefore include a pointcut part which iden-
tifies instances of suboptimal implementations. These are subsequently opti-
mized by the transformations’ code modification part. We will only discuss the
former.

DeepWeaver pointcuts consist of Prolog predicates over the Jimple interme-
diate bytecode representation and low-level data flow and control flow analysis
results provided by the SOOT [VRCG+99] Java optimization framework.

A “select *” performance anti-pattern [FKI+07] is for instance character-
ized by code executing an expensive database query to retrieve all of a rela-
tion’s columns, only to use a few specific columns afterwards. The conjunc-
tion of DeepWeaver conditions depicted in Figure 3.16 is given to detect such
situations in its intermediate representation. The first three conditions locate
the intermediate SOOT local variable Target which is assigned the result of the
database query: a ResultSet instance. The invocation’s argument, the query
string, is expected to reside in the caller’s ExecCall constant pool. It must be
retrieved by the three subsequent conditions for it to be replaced by an opti-
mized database query.

The optimized query only includes those columns that are actually used,
identified by an auxiliary predicate columnUsed. It consists of the conditions
listed in Figure 3.17. The first condition finds all actual uses Use of the Target
variable through the SOOT-provided results of a classical reaching definitions
[NNH05] analysis. The next condition verifies that the ResultSet is used as the
receiver of a get method invocation. Its string argument ColumnArg contains
the name of an operationally selected database column.

In addition to the predicates shown in Figure 3.17, DeepWeaver also pro-
vides access to SOOT’s intraprocedural control flow graphs through predicates
such as dominates/2 and between/4 which respectively check whether all
paths to a Jimple instruction go through another and enumerate nodes reach-

66

3.6. Concluding Evaluation of the Surveyed Tools

1 reaching_def(Target, Use, false),
2 call("* ResultSet.get*(String)", Use, Location, ColumnArgs),
3 encloses(Location, Use),
4 member(ColumnArg, ColumnArgs),
5 local_constant_def(ColumnArg, Column)

Figure 3.17: Definition of the DeepWeaver columnUsed predicate that selects the
names of those columns in the result of a database query that are actually used by
the querying program.

able on all or any path between two others. Predicates loop/1 and encloses/2
together provide functionality to detect whether an instruction resides in a
loop. The user is however not shielded from the details of the intermediate pro-
gram representation that underlies the control flow graphs. There are moreover
no readily available predicates to access SOOT’s higher-level points-to and call
graph analyses.

3.6 Concluding Evaluation of the Surveyed Tools

Table 3.4 evaluates the surveyed tools on the criteria for a general-purpose pattern
detection tool introduced in Section 2.6. Throughout this chapter, we have briefly
explained the entries in Table 3.4 on a tool-by-tool basis. We conclude our chapter
by revisiting the entries for each criterion individually.

3.6.1 Evaluation on the Criteria for the Pattern Specification Language

Table 3.1 summarizes the pattern specification language of each tool.

CSL1: Supports the specification of behavioral and non-behavioral characteris-
tics in a uniform language

Criterion CSL1 is not fulfilled by any of the surveyed tools. METAL comes
closest to fulfilling this criterion. It is tailored to control flow characteristics
and has built-in support for basic data flow characteristics (e.g. variable syn-
onym tracking). JUNGL follows METAL. It is tailored to syntactic and control
flow characteristics. Its specification language is sufficiently powerful to
support expressing non-syntactic characteristics in terms of syntactic char-
acteristics. The latter is also true for the other tools marked with ±. However,
expressing other characteristics in terms of syntactic characteristics is hard
and error-prone (cf. Section 2.2).

CSL2: Results in descriptive pattern specifications Criterion CSL2 is fulfilled to a
large extent (±) by most of the surveyed specification languages —at least for
those characteristics that can be specified. The scope of this survey is lim-
ited to declarative specification languages. Tools tailored to a single charac-
teristic result in very descriptive specifications (+): syntactic characteristics
in the case of INTELLIJ SSR and SELLINK ET AL. ’S NATIVE PATTERNS; struc-
tural characteristics in the case of 4THOUGHT, PAT, RICHNER’S VISUALISA-
TION TOOL, CODEQUEST and JQUERY; control flow characteristics in the case
of CONDATE and PATH LOGIC PROGRAMMING; data flow characteristics in the
case of JTL and PQL.

67

3. STATE OF THE ART IN PATTERN DETECTION

CSL3: Supports expressing explicit points of variation among pattern instances
Because of meta-variable provisions, the concrete syntax featuring specifica-
tion languages of SCRUPLE, INTELLIJ SSR and CONDATE fulfill criterion CSL3
at least to some extent. The other surveyed tools feature expressive means to
convey that a pattern’s characteristic is only one of several or anything but
allowed —usually inspired by logic connectives.

CSL4: Provides means for abstraction and reuse among specifications
Specification languages based on a logic or grammar formalism fulfill
this criterion to the full extent. Explicitly adorning the program representa-
tion with annotations to which other specifications can refer (METAL, MJ) or
defining macros (TAWK, TRANS) comprise other prevalent, but less rigorously
defined (±) instances of pattern specification reuse. With the exception of
CONDATE, abstraction facilities are only absent from tools that specialize in
syntactic characteristics.

CSL5: Hides program representation details Specification languages that sup-
port the concrete syntax of the base program fulfill this criterion best.

The following observations about concrete syntax in specification languages
can be made:

I/ The specifications in INTELLIJ SSR and SELLINK ET AL. ’S NATIVE PATTERNS

comprise stand-alone fragments from the base program. Their specifica-
tion language only extends the syntax from the base program with provisions
for meta-variables. Neither language offers substantial abstraction facilities.
Stand-alone SCRUPLE specifications and the unparsed patterns in CONDATE’s
specifications are relatively close to the base program’s syntax, but include
many non-native constructs out of a desire to influence the matching seman-
tics and out of sheer necessity respectively. Once again, both lack substantial
abstraction facilities.

II/ Three distinct approaches to combining concrete syntax with a logic-based
specification language can be discerned. LOGICAJ2 and GENTL complement
the ordinary terms in the logic language with the base program’s concrete syn-
tax for individual statements, declarations and expressions mixed with meta-
variables. In this approach, concrete syntax is integrated within the logic lan-
guage. While PQL specifications comprise only the reference-related subset
of the base program’s concrete syntax, it goes beyond concrete syntax for in-
dividual concrete syntax elements and associates for instance a semantics to
the matching of sequences of statements. In this approach, the logic language
is completely hidden and the base program’s concrete syntax is extended with
non-native constructs that absorb select features from the underlying logic
language. Logic operators are for instance included and instead of predicate
definition, procedure definition and invocation provide for reuse and abstrac-
tion in specifications. The resulting specifications still resemble valid excerpts
from the base program. JTL takes a third approach which amounts to little
more than a new surface syntax for the underlying logic language. These de-
partures from the regular logic syntax are carefully chosen to ensure the re-
sulting specification language is more familiar to the base program’s imple-
menters. The specifications for all but the simplest patterns however lack any
real resemblance to base program fragments.

68

3.6. Concluding Evaluation of the Surveyed Tools

III/ Finally, one can observe that not a single logic-based specification language
integrates the complete concrete syntax of the base program.

3.6.2 Evaluation on the Criteria for the Pattern Detection Mechanism

Table 3.2 summarizes the detection mechanism of each approach.

CDM1: Reports elements from the program’s source code For tools that rely on a
program representation that only carries syntactic or structural program in-
formation, CDM1 is fulfilled as long as no reported elements stem from
an advance canonicalization of this information such as the one applied by
SCRUPLE. As abstract syntax trees underlie the control flow graphs employed
by JUNGL and METAL, they too report elements from the program’s source
code. Although the program representation of PQL and JTL carries data
flow information, only structural information is reported. The former shields
users completely from its points-to information, while the latter supports ref-
erences to its intra-procedural dependency information through scratches
but does not report them since they are anonymous.

CDM2: Facilitates user assessment of reported instances Providing a ranking for
results is the only means through which the surveyed tools accommodate
criterion CDM2. The actual information conveyed by the rankings and the
way in which they are determined differs greatly. The same goes for the mo-
tivation to provide the user with such a ranking in the first place. The ranking
provided by the FUZZY FUJABA variant truly reflects an instance’s likelihood
of being a false positive and is motivated by a desire to use less precise pat-
tern specifications that cover many implementation variants. It is computed
according to the theory of fuzzy logic. The ranking provided by the column’s
remaining entries is not supported by a well-defined formalism. The rank-
ing computed by METAL and the closely related MJ aims to report true bug
pattern instances above likely false positives and severe bugs above more be-
nign ones. The ranking reported by PTIDEJ reflects the importance of and the
amount of specification constraints an instance does not adhere to.

CDM3: Supports implicit points of variation among pattern instances The third
column of Table 3.2 summarizes how each detection mechanism recognizes
implicit implementation variants. Note that the entries in this column are
scarce. Strictly spoken, SCRUPLE and PQL owe this ability to their program
representation rather than their detection mechanism. The points-to anal-
ysis of the latter automatically recognizes syntactically differing expressions
that might evaluate to the same object at run-time. The representation of all
loop constructs in the former’s program representation is canonicalized in
advance. GRAPSR’s canonicalizations are in contrast performed on-the-fly
by the detection mechanism. The tool relies on the tolerant nature of its data
flow representation as well, although it is very basic compared to the one
of PQL. SELLINK ET AL. ’S NATIVE PATTERNS perform on-line canonicaliza-
tions expressed as user-specified, problem-specific rewrite rules. However,
it lacks predefined language-specific rules. METAL has more advanced on-
line provisions. It tracks variable synonyms induced by simple assignments
and simplifies boolean expressions. Under the assumption that mismatches
originate from distorted instances of a pattern, PTIDEJ takes more radical

69

3. STATE OF THE ART IN PATTERN DETECTION

measures by automatically relaxing constraints. In the evaluation table, tools
marked with a + symbol perform on-line canonicalizations comprising both
predefined language-specific ones and any additional problem-specific ones
defined by the user. The entry for the FUZZY FUJABA variant comprises a −
symbol as it does not perform any canonicalizations.

CDM4: Can be extended with user-defined search strategies Not a single sur-
veyed tool explicitly supports the definition of user-defined search strategies.
In Chapter 5, we will describe and subsequently argue against the options
available to users of logic meta programming tools. Users of other tools have
little choice but to alter the existing implementation of the detection mecha-
nism in a language that differs significantly from the specification language.
To alter SCRUPLE’s detection mechanism, for instance, knowledge is required
about the code pattern automatons it relies on. Although conceptually sim-
pler, altering the translation of PQL specifications to Datalog still requires
knowledge of the Java visitors that implement it.

Based on the overview in Table 3.2, the following observations about the sur-
veyed detection mechanisms can be made:

I/ General-purpose proof procedures for logics constitute the bulk of the detec-
tion mechanisms’ pattern search strategies —no surprise given the prevalence
of logic-based specification languages illustrated by Table 3.1. These range
from tabled or plain resolution for Prolog over model checkers for temporal
formulae to various evaluation techniques for Datalog. ASTLOG on the other
hand employs a variant of resolution that is well-suited to AST traversals.

II/ Algorithms specifically tailored to a particular pattern characteristic can only
be discerned in the third row of the table which groups tools tailored to con-
trol flow characteristics. These algorithms are implemented in the declarative
as well as in the imperative programming paradigm. As pointed out in the
previous section, the syntax of the logic-based tools in the lower row deviates
significantly from the one their formalism is usually associated with. In the
case of PQL, one could also state that the logic program PQL specifications
are translated to implements an algorithm that hides the intricate details of
the data flow representation.

III/ Another observation is that the particular detection mechanism a tool em-
ploys is largely fixed by the tool’s implementers. Apart from the interactive
pattern search strategies through which FUZZY FUJABA and GRASPR solicit the
user for advice on intermediate results, all other provisions for control over
the detection mechanism require either annotations or invasive changes to
pattern specifications. Neither changing whether instances of a pattern are
to be found across function boundaries in METAL, nor changing whether a
meta-variable should bind a single rather than all of a method’s parameters
in INTELLIJ SSR requires invasive changes to the essence of a pattern spec-
ification. Users of SCRUPLE and CONDATE are however forced to pollute the
concrete syntax of their specifications with non-native constructs to control
the detection mechanism.

70

3.6. Concluding Evaluation of the Surveyed Tools

3.6.3 Evaluation on the Criteria for the Program Representation

Table 3.3 summarizes the program representations of the surveyed tools.

CPR1: Includes behavioral and non-behavioral program information explicitly
Criterion CPR1 is not fulfilled by any of the surveyed tools. METAL and
DEEPWEAVER are close (±) to fulfilling this criterion. The nodes in METAL’s
inter-procedural control flow graphs stem from an abstract syntax tree. This
information is complemented by basic data flow information computed
by the detection mechanism to handle variable synonyms and function
parameters. DEEPWEAVER is the only tool that offers basic structural,
intra-procedural control flow and intra-procedural data flow information.
However, DEEPWEAVER users are exposed to their intricate details and to the
intermediate representation that underlies the control flow and data flow
information. Syntactic information is moreover missing.

From the overview Table 3.3, we furthermore observe the following about the
surveyed tools:

I/ A quick glance immediately reveals that most approaches settle on a repre-
sentation that exclusively carries either syntactic, structural, control flow or
data flow information. Few entries complement the table’s diagonal. No-
table exceptions are the representations for programs in the object-oriented
paradigm which virtually always include basic structural information about
the program’s classes and methods.

II/ A second observation is that the program representation underlying the con-
trol flow and data flow representations almost always constitutes an interme-
diate or bytecode representation. Only the instructions in the control flow
graphs of Metal and JunGL stem from the program’s abstract syntax trees. Not
a single approach offers data flow information with respect to a program’s ab-
stract syntax tree nodes.

III/ Thirdly, the majority of pattern detection tools offering control flow informa-
tion restrict themselves to the intra-procedural case —Metal being the excep-
tion. PQL constitutes the only tool offering non-trivial inter-procedural data
flow information.

71

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
de

cl
ar

at
iv

e
p

at
te

rn
sp

ec
ifi

ca
ti

on
la

n
gu

ag
es

em
p

lo
ye

d
by

su
rv

ey
ed

to
ol

s.

A
p

p
ro

ac
h

In
a

N
u

ts
h

el
l

A
bs

tr
ac

ti
on

Fa
ci

lit
y

R
ep

re
se

n
ta

ti
on

Ex
p

os
u

re

S
C

R
U

P
L

E
ba

se
la

n
gu

ag
e’

s
co

n
cr

et
e

sy
n

ta
x

ex
te

n
de

d
w

it
h

n
on

-n
at

iv
e

co
n

st
ru

ct
s

th
at

in
fl

u
en

ce
m

at
ch

in
g

se
m

an
ti

cs
-

lo
w

A
S

T
L

O
G

Pr
ol

og
qu

er
y

ag
ai

n
st

an
im

p
lic

it
A

ST
tr

av
er

sa
ln

od
e

p
re

di
ca

te
de

fi
n

it
io

n
h

ig
h

Fu
zz

y
F

U
JA

B
A

vi
su

al
gr

ap
h

re
w

ri
te

ru
le

w
ei

gh
te

d
by

it
s

ex
p

ec
te

d
p

re
ci

si
on

ru
le

de
fi

n
it

io
n

h
ig

h

C
en

ta
u

r
Pr

ol
og

qu
er

y
ag

ai
n

st
lo

gi
c

te
rm

co
n

st
ru

ct
ed

fr
om

s-
ex

p
re

ss
io

n
w

it
h

ca
ll-

ou
ts

to
Li

sp
p

re
di

ca
te

de
fi

n
it

io
n

h
ig

h

In
te

lli
JS

SR
su

bs
et

of
ba

se
la

n
gu

ag
e’

s
co

n
cr

et
e

sy
n

ta
x

w
it

h
G

U
I-

sp
ec

ifi
ed

co
n

st
ra

in
ts

on
m

et
a-

va
ri

ab
le

s
th

at
in

fl
u

en
ce

m
at

ch
in

g
se

m
an

ti
cs

-
lo

w

D
ec

la
ra

ti
ve

su
bs

et
of

PM
D

X
Pa

th
qu

er
y

ag
ai

n
st

X
M

L
do

cu
m

en
t

-
h

ig
h

T
A

W
K

re
gu

la
r

ab
st

ra
ct

sy
n

ta
x

tr
ee

ex
p

re
ss

io
n

s
te

xt
u

al
m

ac
ro

ex
p

an
si

on
h

ig
h

Lo
gi

cA
J2

an
d

G
en

T
L

Pr
ol

og
qu

er
y

w
it

h
co

n
cr

et
e

sy
n

ta
x

co
n

di
ti

on
s

p
re

di
ca

te
de

fi
n

it
io

n
m

ed
iu

m

Se
lli

n
k

et
al

.’
s

N
at

iv
e

Pa
tt

er
n

s
co

n
cr

et
e

sy
n

ta
x

w
it

h
m

et
a-

va
ri

ab
le

n
am

es
co

rr
es

p
on

di
n

g
to

n
on

-t
er

m
in

al
n

am
es

in
th

e
ba

se
la

n
gu

ag
e’

s
gr

am
m

ar
-

lo
w

P
T

ID
E

J
C

la
ir

e
co

n
st

ra
in

ts
at

is
fa

ct
io

n
p

ro
bl

em
w

it
h

w
ei

gh
te

d
co

n
st

ra
in

ts
(l

ow
-l

ev
el

)c
on

st
ra

in
t

de
fi

n
it

io
n

h
ig

h

4T
h

ou
gh

t
vi

su
al

G
ra

p
h

Lo
g

qu
er

y
ru

le
de

fi
n

it
io

n
h

ig
h

Pa
t,

R
ic

h
n

er
’s

vi
su

al
is

at
io

n
to

ol
,j

Q
u

er
y

Pr
ol

og
qu

er
y

p
re

di
ca

te
de

fi
n

it
io

n
h

ig
h

M
et

al
de

te
rm

in
is

ti
c

fi
n

it
e

st
at

e
m

ac
h

in
e

w
it

h
co

n
cr

et
e

sy
n

ta
x

tr
an

si
ti

on
gu

ar
ds

an
d

ca
ll-

ou
ts

to
C

in
te

r-
m

ac
h

in
e

th
ro

u
gh

A
ST

an
n

ot
at

io
n

s
lo

w

C
on

da
te

co
n

st
ra

in
ed

re
ac

h
ab

ili
ty

qu
er

y
be

tw
ee

n
n

od
es

id
en

ti
fi

ed
by

u
n

p
ar

se
d

p
at

te
rn

s
co

m
p

ri
si

n
g

co
n

cr
et

e
sy

n
ta

x
su

bs
et

w
it

h
m

et
a-

p
ar

en
th

es
es

-
m

ed
iu

m

M
J

se
e

M
et

al
,o

n
ly

su
bs

et
of

ba
se

la
n

gu
ag

e’
s

co
n

cr
et

e
sy

n
ta

x
se

e
M

et
al

m
ed

iu
m

T
R

A
N

S
co

m
p

u
ta

ti
on

al
lo

gi
c

fo
rm

u
la

ov
er

gr
ap

h
la

be
ls

w
it

h
in

re
w

ri
te

ru
le

m
ac

ro
de

fi
n

it
io

n
h

ig
h

Pa
th

Lo
gi

c
Pr

og
ra

m
m

in
g

Pr
ol

og
qu

er
y

w
it

h
em

be
dd

ed
re

gu
la

r
p

at
h

ex
p

re
ss

io
n

s
ov

er
gr

ap
h

la
be

ls
p

re
di

ca
te

de
fi

n
it

io
n

h
ig

h

Ju
n

G
L

D
at

al
og

qu
er

y
w

it
h

em
be

dd
ed

re
gu

la
r

p
at

h
ex

p
re

ss
io

n
s

as
st

re
am

co
m

p
re

h
en

si
on

w
it

h
in

fu
n

ct
io

n
al

tr
an

sf
or

m
at

io
n

la
n

gu
ag

e
ed

ge
co

n
st

ru
ct

or
de

fi
n

it
io

n
h

ig
h

JT
L

D
at

al
og

qu
er

y
in

Ja
va

-l
ik

e
sy

n
ta

x
fe

at
u

ri
n

g
se

tq
u

an
ti

fi
ca

ti
on

ab
st

ra
ct

io
n

s
p

re
di

ca
te

de
fi

n
it

io
n

m
ed

iu
m

G
R

A
S

P
R

gr
ap

h
gr

am
m

ar
p

ro
du

ct
io

n
ru

le
tr

an
sc

ri
be

d
as

s-
ex

p
re

ss
io

n
ru

le
de

fi
n

it
io

n
h

ig
h

P
Q

L
re

fe
re

n
ce

-r
el

at
ed

su
bs

et
of

ba
se

la
n

gu
ag

e’
s

co
n

cr
et

e
sy

n
ta

x
ex

te
n

de
d

w
it

h
lo

gi
c

op
er

at
or

s
tr

an
sl

at
ed

to
D

at
al

og
qu

er
y

p
ro

ce
du

ra
la

bs
tr

ac
ti

on
lo

w

D
ee

p
W

ea
ve

r
Pr

ol
og

qu
er

y
p

re
di

ca
te

de
fi

n
it

io
n

ex
tr

em
el

y
h

ig
h

Ta
bl

e
3.

2:
O

ve
rv

ie
w

of
de

te
ct

io
n

m
ec

h
an

is
m

s
em

p
lo

ye
d

by
su

rv
ey

ed
to

ol
s.

A
p

p
ro

ac
h

Se
ar

ch
St

ra
te

gy
U

se
r

St
ee

ri
n

g
Im

p
lic

it
Va

ri
at

io
n

Po
in

ts
In

st
an

ce
R

an
ki

n
g

S
C

R
U

P
L

E
co

de
p

at
te

rn
au

to
m

at
on

w
ild

ca
rd

su
ffi

xe
s

co
n

tr
ol

n
es

ti
n

g
de

p
th

ad
va

n
ce

lo
op

co
n

st
ru

ct
ca

n
on

ic
al

iz
at

io
n

-

A
S

T
L

O
G

re
so

lu
ti

on
ag

ai
n

st
im

p
lic

it
cu

rr
en

to
bj

ec
t

-
-

-

Fu
zz

y
F

U
JA

B
A

bo
tt

om
-u

p
an

d
to

p
-d

ow
n

sc
h

ed
u

le
d

ru
le

s
in

te
ra

ct
io

n
on

in
te

rm
ed

ia
te

re
su

lt
s

-
ap

p
lie

d
ru

le
s

w
ei

gh
te

d
by

ex
p

ec
te

d
fa

ls
e

p
os

it
iv

es

C
en

ta
u

r
Pr

ol
og

re
so

lu
ti

on
co

-r
ou

ti
n

ed
ev

al
u

at
io

n
w

it
h

Li
sp

-
-

In
te

lli
JS

SR
cl

os
ed

so
u

rc
e

m
at

ch
in

g
co

n
st

ra
in

ts
on

m
et

a-
va

ri
ab

le
s

-
-

D
ec

la
ra

ti
ve

su
bs

et
of

PM
D

X
Pa

th
ev

al
u

at
io

n
-

-
-

T
A

W
K

co
de

p
at

te
rn

au
to

m
at

on
-

-
-

Lo
gi

cA
J2

,G
en

T
L

Pr
ol

og
re

so
lu

ti
on

-
-

-

Se
lli

n
k

et
al

.’
s

N
at

iv
e

Pa
tt

er
n

s
te

rm
re

w
ri

ti
n

g
-

p
ro

bl
em

-s
p

ec
ifi

c
eq

u
iv

al
en

ce
s

be
tw

ee
n

n
at

iv
e

p
at

te
rn

s
-

P
T

ID
E

J
ex

p
la

n
at

io
n

-b
as

ed
C

SP
so

lv
er

-
au

to
m

at
ic

co
n

st
ra

in
tr

el
ax

at
io

n
re

la
xe

d
co

n
st

ra
in

ts
w

ei
gh

te
d

by
im

p
or

ta
n

ce

4T
h

ou
gh

t
G

ra
p

h
Lo

g
re

so
lu

ti
on

-
-

-

Pa
t,

R
ic

h
n

er
’s

vi
su

al
is

at
io

n
to

ol
Pr

ol
og

re
so

lu
ti

on
-

-
-

C
od

eQ
u

es
t

D
at

al
og

ev
al

u
at

io
n

th
ro

u
gh

tr
an

sl
at

io
n

to
SQ

L
-

-
-

jQ
u

er
y

ta
bl

ed
Pr

ol
og

re
so

lu
ti

on
-

-
-

M
et

al
st

at
e

m
ac

h
in

e
si

m
u

la
ti

on
ov

er
co

n
tr

ol
fl

ow
gr

ap
h

de
cl

ar
at

io
n

de
te

rm
in

es
in

te
rp

.o
r

in
tr

ap
.s

im
u

la
ti

on
va

ri
ab

le
sy

n
on

ym
tr

ac
ki

n
g,

bo
ol

ea
n

ex
p

re
ss

io
n

si
m

p
lifi

ca
ti

on
h

eu
ri

st
ic

s
fa

vo
u

ri
n

g
lo

w
in

sp
ec

ti
on

ef
fo

rt
an

d
h

ig
h

h
is

to
ri

ca
la

dh
er

en
ce

C
on

da
te

co
n

st
ra

in
ed

ve
rs

io
n

of
Li

u
et

al
.[

LR
Y+

04
]

(o
ft

en
n

ec
es

sa
ry

)m
et

a-
p

ar
en

th
es

es
-

-

M
J

se
e

M
et

al
-

-
se

e
M

et
al

T
R

A
N

S
C

T
L

m
od

el
ch

ec
ke

r
w

it
h

B
D

D
va

lu
at

io
n

re
p

re
se

n
ta

ti
on

-
-

-

Pa
th

Lo
gi

c
Pr

og
ra

m
m

in
g

ta
bl

ed
Pr

ol
og

re
so

lu
ti

on
an

d
de

M
oo

r
et

al
.[

dL
W

03
]

-
-

-

Ju
n

G
L

M
L,

D
at

al
og

ev
al

u
at

io
n

an
d

de
M

oo
r

et
al

.[
dL

W
03

]
-

-
-

JT
L

m
ix

ed
to

p
-d

ow
n

&
bo

tt
om

-u
p

D
at

al
og

ev
al

u
at

io
n

-
-

-

G
R

A
S

P
R

bo
tt

om
-u

p
ch

ar
tp

ar
se

r
fe

at
u

ri
n

g
ch

ar
tm

on
it

or
m

on
it

or
-t

ri
gg

er
ed

u
se

r
ad

vi
ce

m
on

it
or

-t
ri

gg
er

ed
ca

n
on

ic
al

iz
at

io
n

s,
sy

n
ta

ct
ic

al
ly

di
ff

er
in

g
da

ta
fl

ow
or

ig
in

s
-

P
Q

L
D

at
al

og
ev

al
u

at
io

n
th

ro
u

gh
B

D
D

m
an

ip
u

la
ti

on
-

sy
n

ta
ct

ic
al

ly
di

ff
er

in
g

re
fe

re
n

ce
ex

p
re

ss
io

n
s

-

D
ee

p
W

ea
ve

r
Pr

ol
og

re
so

lu
ti

on
-

-
-

Ta
bl

e
3.

3:
O

ve
rv

ie
w

of
p

ro
gr

am
re

p
re

se
n

ta
ti

on
s

em
p

lo
ye

d
by

su
rv

ey
ed

to
ol

s.

A
p

p
ro

ac
h

B
as

e
La

n
gu

ag
e

A
ST

St
ru

ct
u

ra
lI

n
fo

rm
at

io
n

C
on

tr
ol

Fl
ow

D
at

a
Fl

ow

S
C

R
U

P
L

E
C

,P
L/

A
S

•
-

-
-

A
S

T
L

O
G

C
/C

++
•

-
-

-

Fu
zz

y
F

U
JA

B
A

,L
og

ic
A

J2
,G

en
T

L
Ja

va
•

oo
en

ti
ti

es
an

d
re

la
ti

on
s

-
-

C
en

ta
u

r
u

se
r-

de
fi

n
ed

•
-

-
-

In
te

lli
JS

SR
,D

ec
la

ra
ti

ve
su

bs
et

of
PM

D
Ja

va
•

-
-

T
A

W
K

C
,M

U
M

PS
•

-
-

-

Se
lli

n
k

et
al

.’
s

N
at

iv
e

Pa
tt

er
n

s
C

O
B

O
L

•
-

-
-

P
T

ID
E

J
Ja

va
-

oo
en

ti
ti

es
an

d
re

la
ti

on
s

-
-

4T
h

ou
gh

t
-

-
p

ro
vi

de
d

by
u

se
r

-
-

Pa
t

C
++

-
oo

en
ti

ti
es

an
d

re
la

ti
on

s
-

-

R
ic

h
n

er
’s

vi
su

al
is

at
io

n
to

ol
Sm

al
lt

al
k

-
oo

en
ti

ti
es

an
d

re
la

ti
on

s
-

-

C
od

eQ
u

es
t,

jQ
u

er
y

Ja
va

-
oo

en
ti

ti
es

an
d

re
la

ti
on

s,
fi

el
d

r/
w

an
d

in
vo

ca
ti

on
s

in
m

et
h

od

-
-

M
et

al
C

•
-

in
te

rp
.o

n
A

ST
-

C
on

da
te

C
-

-
in

tr
ap

.o
n

IR
-

M
J

Ja
va

-
-

in
tr

ap
.o

n
IR

-

T
R

A
N

S
Ja

va
,C

-
-

in
tr

ap
.o

n
IR

-

Pa
th

Lo
gi

c
Pr

og
ra

m
m

in
g

.N
E

T
IL

-
-

in
tr

ap
.o

n
IR

-

Ju
n

G
L

C
#

•
-

la
zi

ly
co

n
st

ru
ct

ed
in

tr
ap

.o
n

A
ST

-

JT
L

Ja
va

-
ba

si
c

oo
-

in
tr

ap
.v

al
u

e
de

p
en

de
n

cy
on

by
te

co
de

G
R

A
S

P
R

Li
sp

-
-

co
n

tr
ol

en
vi

ro
n

m
en

ts
en

co
de

d
in

da
ta

fl
ow

in
te

rp
.v

al
u

e
de

p
en

de
n

cy
on

p
ri

m
it

iv
es

P
Q

L
Ja

va
-

ba
si

c
oo

,c
on

te
xt

-s
en

si
ti

ve
ca

ll
gr

ap
h

-
in

te
rp

.c
on

te
xt

-s
en

si
ti

ve
p

oi
n

ts
-t

o
an

al
ys

is
on

IR

D
ee

p
W

ea
ve

r
Ja

va
-

ba
si

c
oo

in
tr

ap
.o

n
IR

in
tr

ap
.v

al
u

e
de

p
en

de
n

cy
on

IR

Ta
bl

e
3.

4:
Ev

al
u

at
io

n
of

su
rv

ey
ed

to
ol

s
on

ge
n

er
al

-p
u

rp
os

e
p

at
te

rn
de

te
ct

io
n

cr
it

er
ia

.

CSL1

CSL2

CSL3

CSL4

CSL5

CDM1

CDM2

CDM3

CDM4

CPR1

S
C

R
U

P
L

E
.

±
±

.
+

.
.

±
.

.
A

S
T

L
O

G
$,C

en
ta

u
r$

±
±

+
+

.
+

.
.

.
.

Fu
zz

y
F

U
JA

B
A

±
±

+
+

.
+

+
.

.
.

In
te

lli
JS

SR
.

+
±

.
+

+
.

.
.

.
D

ec
la

ra
ti

ve
su

bs
et

of
PM

D
.

±
+

.
.

+
.

.
.

.
T

A
W

K
.

±
+

±
.

+
.

.
.

.
Lo

gi
cA

J2
$,G

en
T

L$
±

±
+

+
+

+
.

.
.

.
Se

lli
n

k
et

al
.’

s
N

at
iv

e
Pa

tt
er

n
s

±
+

+
.

+
+

.
±

.
.

P
T

ID
E

J
.

±
+

+
.

+
+

.
.

.
4T

h
ou

gh
t$

,P
at

$,R
ic

h
n

er
’s

vi
su

al
is

at
io

n
to

ol
$,C

od
eQ

u
es

t$
,j

Q
u

er
y$

.
+

+
+

.
+

.
.

.
.

M
et

al
±

±
+

±
+

+
+

±
.

±
C

on
da

te
.

+
±

.
±

.
.

.
.

.
M

J
.

±
+

±
+

.
+

.
.

.
T

R
A

N
S

.
±

+
±

.
.

.
.

.
.

Pa
th

Lo
gi

c
Pr

og
ra

m
m

in
g$

.
±

+
+

.
.

.
.

.
.

Ju
n

G
L

±
±

+
+

.
+

.
.

.
.

JT
L$

.
+

+
+

±
+

.
.

.
.

G
R

A
S

P
R

.
±

+
+

.
.

.
+

.
.

P
Q

L$
.

+
+

+
+

+
.

±
.

.
D

ee
p

W
ea

ve
r$

.
±

+
+

.
.

.
.

.
±

C
H

A
P

T
E

R

4
AN EXAMPLE-DRIVEN APPROACH TO PATTERN

DETECTION

This chapter outlines our primary contribution to pattern detection: an
example-driven approach that fulfills all of the criteria for a general-
purpose pattern detection tool. We introduce and motivate each corner-
stone of this approach. As the cornerstones are complementary, we clar-
ify their contributions to our approach in terms of the criteria they help
to fulfill. We illustrate these contributions by applying a concrete instan-
tiation of each cornerstone, detailed in subsequent chapters, separately
to a running example.

4.1 Cornerstones of the Approach

This chapter outlines the cornerstones of our example-driven approach to pattern
detection. Logic meta programming lends its machine-executable proof procedure
for logic formulas, providing our approach with the potential to separate the spec-
ification of patterns from the search for their instances. This founding cornerstone
is introduced in Section 4.2. Two cornerstones of our approach ensure that this
potential is fully realized. The descriptiveness of the resulting specifications sets
our approach apart. The first, example-based specifications, incorporates source
code excerpts within logic formulas. This cornerstone is introduced in Section 4.3.
The second, a domain-specific unification procedure, incorporates whole-program
analysis results in the comparison of individual program elements. It is introduced
in Section 4.4. Through its quantification of truth, fuzzy logic facilitates user as-
sessment of the detected pattern instances. This cornerstone is introduced in Sec-
tion 4.5. The final cornerstone, open implementation, crosscuts the other corner-
stones to ensure their user-extensibility. It is introduced in Section 4.6.

Figure 4.1 depicts a detailed architectural overview of the research prototype
that instantiates our example-driven approach. Instantiated cornerstones are de-
picted as puzzle pieces. Chapter 5, Chapter 6 and Chapter 7 detail the concrete
instantiations of the logic meta programming, domain-specific unification and
example-based specification cornerstones. The concrete instantiation of the fuzzy

77

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

Program Representation

Reified program
representation

analyzes

uses

uses

in support of
control flow

characteristics

in support of
structural

characteristics

defined on

analyzes

analyzes

structural
information

E

abstract syntax tree

E

semantic
analysis

E

interprocedural
control flow graph

call graph analysis

S

intermediate
bytecode

representation

S

points-to
analysis

S

Cava logic library

quantifies over

source code excerpt
Example-Based

Specification

uses predicates from

uses

in support of
data flow

characteristics

Logic query

SOUL evaluator
Logic Meta Programming

evaluates

translates
to logic
query

in support of
syntactic

characteristics

Domain-Specific
Unification

Fuzzy Logic

Figure 4.1: Architectural overview of a concrete instantiation of our approach.

logic cornerstone is discussed alongside the logic meta programming cornerstone.
The instantiation of the open implementation cornerstone is revisited in each
chapter as it crosscuts the concrete instantiation of each cornerstone. We discuss
these instantiations here as well, but only to the extend necessary to illustrate their
respective cornerstones on a running example.

Our example-driven approach fulfills all of the criteria for a general-purpose
pattern detection tool identified in Section 2.6. For each cornerstone, Table 4.1 lists
the individual contributions to our approach in terms of the criteria it helps to ful-
fill. The entries in the table are explained in the remainder of this chapter. Entries
of the form + indicate that the cornerstone in the column header contributes to
the fulfillment of the criterion in the row label. Entries of the form CPR1 indicate
that whether or not a cornerstone helps our approach fulfill a criterion, depends
on whether criterion CPR1 is fulfilled.

Running Example

We will use the well-known getter method best practice pattern [Bec96] as a
running-example. The pattern consists of a method that returns the value of an
instance variable. Accessing this variable through the getter method rather than
directly eases evolution. Clients of a class are shielded from changes to its inter-
nals. Method getVar(), depicted in Figure 4.2, corresponds to the prototypical
Java implementation of the pattern.

78

4.2. Cornerstone: Logic Meta Programming

Lo
gi

c
M

et
a

P
ro

gr
am

m
in

g

E
xa

m
p

le
-B

as
ed

Sp
ec

ifi
ca

ti
on

D
om

ai
n

-S
p

ec
ifi

c
U

n
ifi

ca
ti

on

Fu
zz

y
Lo

gi
c

O
p

en
Im

p
le

m
en

ta
ti

on
s

CSL1 CPR1 + + . CPR1 Supports the specification of behavioral
and non-behavioral characteristics in a
uniform language

CSL2 . + + . . Results in descriptive pattern specifica-
tions

CSL3 + Supports expressing explicit points of vari-
ation among pattern instances

CSL4 + Provides means for abstraction and reuse
among specifications

CSL5 . + + . . Hides program representation details
CDM1 ¬ CPR1 + . . . Reports elements from the program’s

source code
CDM2 . . . + . Facilitates user assessment of reported in-

stances
CDM3 . + + . . Supports implicit points of variation

among pattern instances
CDM4 + Can be extended with user-defined search

strategies
CPR1 Includes behavioral and non-behavioral

program information explicitly

Table 4.1: Overview of the pattern detection criteria that each cornerstone of our
example-driven approach helps to fulfill.

1 class Y {
2 private X var;
3 public X getVar { return var; }
4 public void setVar(X val) { var = val; }
5 }

Figure 4.2: Prototypical implementations of the getter and setter method best prac-
tice patterns.

The consistent use of the pattern can be enforced through a pattern detection
tool. There should be no direct accesses to a variable protected by a getter method.
However, despite the pattern’s simplicity, supporting the detection of its implemen-
tation variants using a descriptive specification is hard.

4.2 Cornerstone: Logic Meta Programming

We initiate the discourse on our example-driven approach to pattern detection
with a discussion of its logic meta programming roots.

Logic formulas can be used in a straightforward manner to specify a pattern.
This merely requires a reification of the program representation such that variables
can range over its elements. Executing a proof procedure will establish whether
program elements exhibit the characteristics specified in a formula.

Machine-executable proof procedures range from tabled [RC97, CW96] or plain

79

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

1 ?methodDeclaration getsFragmentNamed: ?fieldName
2 ofFieldDeclaration: ?fieldDeclaration
3 in: ?typeDeclaration if
4 ?methodDeclaration isMethodDeclaration,
5 ?fieldDeclaration fieldDeclarationHasFragments: ?fragments,
6 [?fieldDeclaration parentTypeDeclaration] equals: ?typeDeclaration,
7 ?typeDeclaration equals: [?methodDeclaration parentTypeDeclaration],
8 ?fragments contains: ?fragment,
9 ?fragment variableDeclarationFragmentHasName: ?fieldName,

10 ?fieldName simpleNameHasIdentifier: ?fieldIdentifier,
11 ?methodDeclaration methodDeclarationHasBody: ?block,
12 ?block blockHasStatements: ?statements,
13 [?statements size = 1],
14 ?statements contains: ?statement,
15 ?statement returnStatementHasExpression: ?expression,
16 ?expression simpleNameHasIdentifier: ?expressionIdentifier,
17 ?fieldIdentifier equals: ?expressionIdentifier

Figure 4.3: SOUL rule for the prototypical implementation of the getter method in
Java.

[Rob65] resolution for Prolog [EK76] over model checkers for temporal formulas
to various evaluation techniques for Datalog [CGT89]. Powerful pattern detection
tools result from procedures that give rise to a Turing-complete specification lan-
guage. In this case, pattern specifications can be considered logic meta programs.

Logic meta programming (LMP) refers to the use of a logic program to manipu-
late other programs.1 The declarative nature and expressiveness of logic programs
facilitates their use as descriptive specifications of a pattern’s characteristics rather
than the search for its instances. However, nothing precludes users from imple-
menting an operational search themselves.

We will identify two shortcomings of logic meta programming that lead to op-
erational and convoluted pattern specifications: quantification over and unifica-
tion of reified program representation elements. We will remedy these problems by
adopting the example-based specification and domain-specific unification corner-
stones in addition to the founding logic meta programming cornerstone.

4.2.1 Running Example Revisited

We revisit the running example to illustrate logic meta programming in isola-
tion from the other cornerstones of our approach.

Figure 4.3 depicts a logic meta programming specification for the prototypical
implementation of the getter method shown in Figure 4.2. The rule expresses what
it means for a method declaration ?methodDeclaration to declare a getter method
for one of the variable declaration fragments2 named ?fieldName of a field declara-
tion ?fieldDeclaration in the type declaration ?typeDeclaration. As such, it serves as
a specification of the getter method.

The syntax3 of the depicted rule stems from the SOUL logic programming lan-

1We do not restrict the term to logic programs that manipulate parts of themselves using the meta-
level functionality of a logic programming language.

2Note that Java allows multiple fields of the same type to be declared in one declaration.
3In Prolog, the head of the rule would read as getsFragmentNamedOfFieldDeclarationIn(

MethodDeclaration, FieldName, FieldDeclaration, TypeDeclaration):-. The syntax for a

80

4.2. Cornerstone: Logic Meta Programming

guage [Wuy98, Wuy01, Sou08]. SOUL is the Prolog [EK76] and Smalltalk [GR83]
hybrid used as instantiation of the logic meta programming cornerstone in our re-
search prototype. SOUL programs comprise both logic conditions (e.g. line 12) and
Smalltalk expressions (e.g. line 13). Objects are exchanged transparently through
logic variables as if they were ordinary values in either language.

Other specifications for the getter method are possible, but this one illus-
trates the hybrid language characteristic of SOUL. As mentioned in the introduc-
tion, logic meta programming requires a reification of the program representa-
tion such that variables can range over its elements. This reification is provided
by the predicates in the CAVA library (cf. Section 5.2). For instance, the predi-
cate isMethodDeclaration/1 in the first condition of the rule binds its argu-
ment to a method declaration. The hybrid language characteristic of SOUL allows
us to forgo the prevalent transcription to compound terms (e.g. methodDeclara-
tion(?modifiers,...,?body)). The reified version of the method declaration is
the declaration itself (i.e. an abstract syntax tree) which can be queried by sending
messages to it. For instance, we use a Smalltalk term (i.e. a Smalltalk expression ex-
tended with logic variables and demarcated by square brackets) on line 7 to retrieve
the type declaration in which the method is declared.

The first condition of the rule binds its variable to a method declaration. The
second condition provides a binding for a field declaration and its variable dec-
laration fragments. The Smalltalk terms on the left- and right-hand sides of the
equals:/24 conditions express that the getter method and the field it protects
must be declared in the same type. Lines 8 through 10 access the strings that
identify each fragment of the field declaration. Lines 11 through 14 state that the
method declaration must have a body that consists of a single statement. The con-
dition on line 15 requires this statement to be a return statement and provides a
binding for the expression it returns. Finally, the last condition ensures that this ex-
pression is a simple name that is named after the string that identifies the variable
declaration fragment.

4.2.2 Motivation for the Logic Meta Programming Cornerstone

We briefly clarify the entries in the first column of Table 4.1. These consist of the
contributions of the logic meta programming cornerstone in terms of the criteria it
helps our approach to fulfill.

Provides Support for Expressing Explicit Points of Variation

Logic formalisms are particularly suited for expressing variation among the in-
stances of a pattern (criterion CLS3) using logic connectives (e.g. conjunction, dis-
junction and negation). Logic variables can be used to relate aspects of multiple
characteristics across a specification. There are, for instance, multiple occurrences
of the ?methodDeclaration variable in the specification of the getter method. The
bindings for these occurrences are consistent and only differ per pattern instance.

predicate in SOUL closely resembles the one of Smalltalk for a message sent to the first argument of
the predicate. Logic variables are preceded by a question mark. Section 5.1.1 discusses the syntax and
semantics of SOUL in more detail.

4The logic fact ?x equals: ?x. implements the equals: predicate which hence serves as a sub-
stitute for the =/2 operator of Prolog.

81

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

Logic variables can also be used to indicate that an aspect of an individual charac-
teristic is unimportant (i.e. anonymous variable).

The logic meta programming cornerstone lends our specification language
support for expressing explicit points of variation among pattern variants. The
domain-specific unification cornerstone will lend our detection mechanism sup-
port for detecting implicit points of variation among the variants. The latter repre-
sent different implementations of the same characteristic, while the former repre-
sent variations among the characteristics that should be detected.

The example-based specification cornerstone will adopt the logic variables
from this cornerstone as its primary means to express variation. Logic meta pro-
gramming will provide its logic connectives and abstraction facilities to compose
example-based specifications.

Provides Abstraction and Reuse Facilities

Implication in logic formalisms and predicate definition in logic programming can
be used to abstract multiple characteristics into a single characteristic. The result-
ing characteristic can be reused without exposing the inner details it comprises
(criterion CSL4).

The SOUL rule for the getter method defines a predicate getsFragment-
Named:ofFieldDeclaration:in:/4which can be used in the body of other rules.
The predicate can, for instance, be used in another rule to verify that the detected
method adheres to the naming convention for getter methods.

Defining an additional rule with the same head amounts to providing an alter-
native specification for the same pattern. For instance, one that uses logic predi-
cates exclusively and one that uses example-based specifications exclusively.

Provides Support for Behavioral and Non-Behavioral Characteristics

It depends on the program representation employed by its concrete instantiation
whether the logic meta programming cornerstone supports the specification of
syntactic, structural, control flow and data flow characteristics.

Non-syntactic characteristics can be expressed in terms of syntactic character-
istics. As syntactic characteristics are only supported by abstract syntax trees, they
must be included in the program representation. However, relying on syntactic
characteristics to express other characteristics results in convoluted specifications
with idiomatic recurring parts (see Section 2.5).

This can be avoided by providing a library of characteristics accompanied by
implementations of the search for program elements that exhibit them. Logic meta
programming tools can provide a predefined library of logic rules. Without such a
library, the contribution of logic meta programming to criterion CSL1 is limited to
the characteristics that can be expressed by referencing the reified program repre-
sentation directly. For instance, in a representation that explicitly indicates which
pairs of instructions are executed consecutively, an existential quantification over
this information suffices to specify a pattern of two consecutively executed instruc-
tions. This option, on the other hand, exposes users to the details of the program
representation and its reification (cf. criterion CSL5).

Our query-by-example approach to pattern detection includes both behav-
ioral and non-behavioral information in the program representation. However, as
shown in Figure 4.1, the logic meta programming cornerstone only reifies abstract

82

4.2. Cornerstone: Logic Meta Programming

1 ?root isAncestorOf: ?directSubclass if
2 ?directSubclass isSubClassOf: ?root.
3 ?root isAncestorOf: ?indirectSubclass if
4 ?indirectSubclass isSubClassOf: ?parent,
5 ?root isAncestorOf: ?parent

6 if ?superclass isAncestorOf: [SmallInteger]
7 if [Object] isAncestorOf: [SmallInteger]
8 if [Object] isAncestorOf: ?subclass
9 if ?superclass isAncestorOf: ?subclass

Figure 4.4: SOUL rules describing the ancestor relation between two Smalltalk
classes.

syntax tree nodes5 in compliance with criterion CDM1. By forgoing the transcrip-
tion to compound terms, users are not exposed to the details of an arbitrary reifica-
tion. SOUL’s hybrid language characteristics allows the nodes to be queried using
message sends (e.g. line 7 of the getter rule). The example-based specification cor-
nerstone will hide the remaining details of these nodes and support the expression
of behavioral information.

Potential for Descriptive Pattern Specifications

Using a logic language for meta programming purposes has several advantages
[CH87, Wuy01]. Logic programming languages feature advanced pattern match-
ing abilities, built-in support for non-determinism, logic connectives and powerful
programming concepts such as recursion and backtracking.

Consider the problem of finding all ancestors of a particular class. As shown in
Figure 4.4, it suffices to describe what it means for one class to be an ancestor of
another class in logic programming. The first rule expresses that a class ?root is the
ancestor of a class ?directSubclass if the latter is a subclass of the ancestor class. The
second rule expresses that a ?root class is also the ancestor of a subclass of a class it
is already the ancestor of.

The specification of the problem is very descriptive. Logic rules describe rela-
tions between their arguments in a declarative instead of an operational manner.
The ancestor rule, for instance, can be used to find all superclasses of a given class
(line 6), but also to find all subclasses of a given class (line 8). Each problem requires
a separate algorithm in the imperative paradigm.

The ancestor rule in Figure 4.4 illustrates the potential descriptiveness of logic
rules. In contrast, the rule for the getter method in Figure 4.3 illustrates the opera-
tional nature logic meta programming specifications often incur in practice.

As mentioned in the introduction, we identify two shortcomings of logic meta
programming that lead to such operational and convoluted pattern specifications:
quantification over and unification of reified program representation elements.

Quantification-Related Shortcomings of LMP

We discuss the quantification-related causes for the operational nature of LMP
specifications first. They will be remedied by the example-based specification cor-

5The structural information consists of select AST nodes, while the control flow graph referred to by
example-based specifications is constructed on top of the AST.

83

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

1 foundAssignment(?context,assign(?var,?value)).
2 processAssignment(?context,assign(?var,?value),<?var,?value>).

3 methodWithAssignment(?method,assign(?var,?value)) if
4 traverseMethodParseTree(?method,<?var,?value>,
5 foundAssignment,processAssignment)

Figure 4.5: SOUL traversal of the AST for a Smalltalk method to search for assign-
ments.

nerstone of our approach. The unification-related causes will be described along
with the domain-specific unification cornerstone that remedies them.

Structural program information (see Section 2.5.2) concerns the organisation
of a program in terms of the relations (e.g. inheritance) between key program enti-
ties (e.g. classes). Logic meta programming tools can support expressing structural
characteristics in a straightforward manner. This merely requires reifying structural
relations as predicates over the reified program entities in the relation. The rela-
tional nature of logic programming facilitates quantifying over the reified relations.
This, in turn, results in descriptive specifications of structural characteristics. The
descriptive ancestor rule of Figure 4.4, for instance, quantifies existentially over an
inheritance relation reified as the multi-directional isSubClassOf:/2 predicate.

Logic meta programming tools can support syntactic information in a similar
manner by reifying the hierarchical relations between abstract syntax tree nodes.
However, expressing syntactic characteristics (cf. Section 2.5.1) in terms of these re-
lations is less straightforward. This requires an operational traversal of an AST. De-
pending on the employed reification of the AST6, the traversal might require an on-
the-fly reconstruction of the tree in case its reification had it flattened into multiple
compound terms. To shield the user from these operational traversals, logic meta
programming tools can provide higher-order predicates that implement a generic
traversal.

In SOUL, for instance, the higher-order predicate traverseMethodParse-
Tree(?method,?result,?found,?process) traverses a Smalltalk AST while ap-
plying predicate ?process to every node for which predicate ?found succeeds. Fig-
ure 4.5 depicts a SOUL program, in traditional predicate syntax, that can be used
to find assignments in a Smalltalk method. A ?context argument, describing the
context in which the current traversal node resides (e.g. the path followed through
the AST), is passed to each predicate. This is often necessary to express syntactic
characteristics. To find expressions that use the assignment itself as a value, for
instance, the parents of the assignment need to be taken into account.

Compared to non-LMP tools specialized in syntactic characteristics (see Section
3.2), the resulting specifications are operational rather than descriptive. Traversal
contexts and higher-order predicates only add to their complexity.

6 The intricacies of reification should not be underestimated. Consider the abstract syntax tree
with root a. Root node a has two children b and c, while node c has a child d. For nearly all of the
surveyed LMP tools, reification amounts to a transcription into compound terms. In case the whole
AST is mapped onto a single compound term (e.g. node(a,<node(b,<>),node(c,<node(d,<>)>))),
users have to perform a tree traversal of the compound to check that a is an ancestor of d. In case
the tree is flattened into multiple compound terms (e.g. child(a,b), child(a,c) and child(c,d)),
users have to reconstruct the tree to check the ancestor relation between a and d. This is common in
formalisms that are compound-free.

84

4.2. Cornerstone: Logic Meta Programming

Having users quantify over reified control flow graphs to express control flow
characteristics is also possible, but poses similar problems. In addition, cycles in
control flow graphs may cause termination problems. Having users quantify over
reified data flow information causes similar problems, but in addition exposes
them to the intricate details of the intermediate program representations they are
usually computed for (see Section 2.5.4). We will illustrate these problems in Sec-
tion 5.3.4 by means of Figure 5.13, but they can already be discerned among the
DEEPWEAVER rules depicted in Figure 3.16 and Figure 3.17 of our survey.

4.2.3 Concrete Instantiation in Brief

Chapter 5 details the concrete logic meta programming instantiation in the re-
search artifact used to validate our approach: the Smalltalk-Prolog hybrid [Wuy98,
Wuy01, Sou08] and our CAVA library of predicates for reasoning about Java. Here,
we briefly outline the information in its program representation as depicted in the
architectural overview of Figure 4.1.

The predicates in the CAVA library reify structural and syntactic information
from the Java model and DOM of the Eclipse JDT Core Component [Ecl08a] re-
spectively (cf. Figure 2.3 and Figure 2.2).

To comply with criterion CPR1, our program representation also includes se-
mantic analysis results from the Eclipse JDT Core Component [Ecl08a] and the
context-insensitive points-to analysis results from the SPARK [Lho02] component
of the SOOT Java Optimization Framework [VRCG+99] respectively (cf. Figure 2.6).
These are whole-program analyses that take the code of the whole program into ac-
count. An intra-procedural must-alias analysis is included as well. It offers definite
aliasing information about expressions within a single method.

However, to comply with criterion CDM1, we do not reify the program anal-
yses information. Otherwise, users would be exposed to their details —including
the JIMPLE intermediate representation for which the points-to analysis is com-
puted (cf. Figure 2.4). Instead, the analyses will be used by the instantiation of the
domain-specific unification cornerstone in the comparison of reified program ele-
ments.

An inter-procedural control flow graph is computed on-the-fly whenever its
reification is requested by SOUL. The nodes in this graph stem from the Eclipse
ASTs. Its computation relies on the points-to analysis results to resolve late bind-
ing in method invocations. While the CAVA library includes predicates to query this
graph, the example-based specification cornerstone will provide a more descriptive
means to express control flow characteristics.

The hybrid language characteristic of SOUL is not crucial to the logic meta pro-
gramming cornerstone of our approach. However, it opens the door to the im-
perative paradigm in specifications wherever it is more convenient. More impor-
tantly, we do not have to reify the information in the program representation as
compound terms. Instead, the reified version of an Eclipse AST node is the AST
node itself.

We rely on a linguistic symbiosis [GWDD06] between SOUL and Java. It is
established transitively by combining the existing symbiosis between SOUL and
Smalltalk with the symbiosis between Smalltalk and Java provided by the JAVACON-
NECT [Jav] library. We refer to Figure 5.1 for an illustration of this symbiosis. For
now, it suffices to mention that it enables quantifying over any object that is reach-
able in the Smalltalk run-time image —including Smalltalk objects that function as

85

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

1 if jtStatement(?statement){ return; }

2 if jtStatement(?statement){ return ?expression; }

3 if jtStatement(?statement){ return ?expression; },
4 ?expresion isExpression

5 if jtStatement(?statement){ return ?expression; },
6 not(jtStatement(?statement){ return; })

Figure 4.6: Example-based specifications embedded in SOUL queries.

proxies for Java objects stemming from an Eclipse instance.
Relying on linguistic symbiosis for the reification renders reconstituting the ac-

tual AST nodes from their reified counterparts trivial at any point in the proof pro-
cedure. In particular, incorporating analyses in the unification of abstract syntax
tree nodes is facilitated. The context within the program of each node can be ob-
tained easily (cf. line 7 of Figure 4.3).

4.3 Cornerstone: Example-Based Specification

This section introduces the second cornerstone of our approach. It is detailed in
Chapter 7. The cornerstone adopts source code excerpts in the concrete syntax
of the program under investigation as example-based specifications. An example-
based specification of a pattern corresponds to the prototypical implementation of
its essential machine-verifiable characteristics.

Figure 4.2 depicts the prototypical implementation of the getter method. It is
prototypical in the sense that its instructions implement only the essential charac-
teristics of the pattern. Real-world implementations often include instructions that
log accesses to the field or initialize the field on the first invocation of the method.
The code exemplifies the essential characteristics shared by the pattern’s instances:
they return the value of the private field they protect and are named after.

Template Terms in Logic Meta Programming Specifications

A pattern specification language should support expressing explicit points of
variation among the instances of a pattern (criterion CSL3). Likewise, means for
abstraction and reuse among specifications should be provided (criterion CSL4).
On these aspects, the example-based and logic meta programming cornerstones of
our approach complement each other (cf. Table 2.1). We therefore embed source
code excerpts in logic meta programming specifications. Template terms, contain-
ing source code excerpts, are introduced in the logic language. As resolvable terms,
template terms can be used as conditions in the body of a rule or a query.

Figure 4.6 depicts a number of template terms for Java statements. They are
embedded within logic queries7. Each template term comprises a single-argument
predicate jtStatement/1 in classical predicate logic notation, followed by a se-
quence of concrete syntax elements delimited by braces. As the predicate name
indicates8, the concrete syntax is recognized as a Java statement.

7Recall that if is equivalent to :- in Prolog.
8The prefix jt differentiates Java templates from Smalltalk templates.

86

4.3. Cornerstone: Example-Based Specification

1 if jtClassDeclaration(?classDeclaration) {
2 class ?className {
3 private ?fieldDeclarationType ?fieldName;
4 ?modifierList ?returnType ?methodName(?parameterList) {
5 return ?fieldName;
6 }
7 }
8 }

Figure 4.7: Example-based specification for the prototypical implementation of the
getter method.

Upon backtracking over the template term in the first query of Figure 4.6, SOUL

will present bindings for the logic variable ?statement that match the Java source
code between the braces of the template. The fourth query illustrates that tem-
plates are resolvable terms in SOUL.

Concrete Syntax in Template Terms

By adopting the concrete syntax of the base program for template terms, this cor-
nerstone overcomes the hurdle of unfamiliar specification languages. Logic meta
programming tools, in contrast, expose application programmers to an arbitrary
reification of their program representation.

However, some departures from the concrete syntax are necessary. To indicate
points of variation, logic variables are introduced in template terms. The tem-
plate term in the second SOUL query of Figure 4.6 illustrates that logic variables
can be used as placeholders for productions originating from a non-terminal in
the Statement grammar production rule. Solutions to this query will have a re-
turn statement bound to the ?statement logic variable, while the expression part
of this statement will be bound to the ?expression logic variable. The third logic
query comprises the same template term with an additional logic condition from
the CAVA predicate library. It explicitly checks that ?expression is bound to an
expression AST node.

This technique is common among the tools that feature concrete syntax sur-
veyed in Chapter 3(i.e. [Pau92, SV98, ECCH00, BE03, RKA06, AK07, Mos05, Vol06b,
Liv06]). Concretely, the grammar of the base programming language is extended
with meta-variables (e.g. logic variables) that can be used in specifications as
placeholders for productions that originate from a non-terminal. It is also com-
mon to introduce non-native syntax in source code excerpts as more expressive
means to indicate points of variation (e.g. the negation operator ![] in the ex-
cerpt return ![null]). To ensure the descriptiveness of example-based specifica-
tions (criterion CSL2), our approach limits concrete syntax departures to the bare
minimum.

4.3.1 Running Example Revisited

Figure 4.7 depicts an example-based specification for the prototypical imple-
mentation of the getter method depicted in Figure 4.2. A class declaration template
term (i.e. jtClassDeclaration) is used to include both the getter method and the
field declaration in the specification.

87

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

To indicate explicit points of variation, the specification substitutes
?fieldName for identifier var in the implementation. This transforms the source
code excerpt in a specification that encompasses multiple pattern instances and
captures the relation between each occurrence of the same meta-variable9.

The code excerpt in the term exemplifies the prototypical implementation of
the essential characteristics of the getter method. The detection mechanism of our
approach realizes the example-based semantics of the template term. We will in-
troduce the semantics in Section 4.3.2. For now, it suffices to mention that several
example-based interpretations are considered for each source code excerpt. One
interpretation, for instance, identifies getter methods that match the prototypi-
cal implementation exactly. Another interpretation recognizes getter methods that
have additional instructions. Under the latter interpretation, method getAge() in
Figure 4.8 will be recognized.

4.3.2 Motivation for the Example-Based Specification Cornerstone

We conjecture that developers tend to think of patterns in terms of examples: code
fragments that exemplify their essential characteristics. Example-based specifica-
tions are highly descriptive (criterion CSL2). They ease the hurdle that unfamiliar
specification languages pose to a developer. Consider the example-based speci-
fication for the getter method in Figure 4.7. It is arguably more descriptive and
accessible than its logic meta programming equivalent in Figure 4.3.

The occurrences of concrete syntax in the state of the art primarily serve to ex-
press the syntactic characteristics of a single program element. Figure 3.10 depicts
the CONDATE [Vol06a] specification for the reading of a closed file. Concrete syntax
is used to specify the syntax of the instructions that open, read and close the file %F
(e.g. close(%F)). The data flow characteristics are expressed through the occur-
rences of %F. The control flow characteristics of the pattern (i.e. the sequencing of
the instructions) cannot be expressed in concrete syntax.

Example-based specifications, in contrast, adopt whole source code excerpts of
a coarse granularity. The concrete syntax of complete method declarations and
class declarations can be used as example-based specification. Source code ex-
cerpts serve to exemplify the prototypical implementation of the syntactic, struc-
tural, data flow and control flow characteristics of a pattern (criterion CSL1). They
are interpreted as such by the detection mechanism which realizes their example-
based semantics.

This way, developers do not have to quantify over reified program information
to express the characteristics that are exemplified by the source code excerpt. The
details of the program information and its reification are hidden (criterion CSL5).
The quantification-related shortcomings of the logic meta programming corner-
stone (cf. Section 4.2.2) are overcome. Depending on which one is more conve-
nient, either a logic-based or an example-based specification can be used. Combi-
nations of both are supported as well.

9To account for getter methods that have parameters, the specification uses a naming convention
for meta-variables. A meta-variable that ends with a List suffix stands for a collection of concrete syn-
tax productions. It will be bound to a collection of abstract syntax tree nodes upon resolution of the
template term it resides in. Meta-variables are dynamically typed. This naming convention is therefore
merely a parser directive.

88

4.3. Cornerstone: Example-Based Specification

Example-Based Semantics for Source Code Excerpts

The detection mechanism realizes the example-based semantics of the source code
excerpts in an example-based specification. The same excerpt can exemplify both
non-behavioral as well as behavioral characteristics of the prototypical implemen-
tation of a pattern.

For one user, the syntactic characteristics of the instructions in the excerpt
might exemplify the prototype. For another user, the control and data flow es-
tablished by the same instructions might exemplify the prototype. The detection
mechanism has to account for all possibilities. It should therefore consider several
example-based interpretations for a source code excerpt.

In our research artifact, the following interpretations are predefined:

Syntactic interpretation Under this interpretation, the syntactic characteristics
of the source code excerpt exemplify the pattern. It is strict in the sense that
only perfect matches are reported. Matching program elements do not exhibit
any other characteristics than those exemplified by the excerpt. The points of
variation among the matches are restricted to those indicated explicitly by the
meta-variables in the excerpt (i.e. the explicit points of variation).

The prototypical getter method depicted in Figure 4.2 is a perfect match
for the specification in Figure 4.7. None of the getter methods depicted in Fig-
ure 4.8 matches the specification under this interpretation. Matching classes
have one matching field declaration and one matching method declaration.
The field is private and has no other modifiers. The method only differs from
the prototype in its name and in the operand of the return statement. This
operand has to match the field.

The search strategy associated with this interpretation quantifies over rei-
fied abstract syntax trees. It uses the amount of declarations (statements) in
candidate classes (methods) to direct its search. It is very cost-effective, but
supports no implicit points of variation among the matches.

Lexical interpretation This interpretation is a less restrictive version of the syn-
tactic interpretation. Matches have to exhibit the syntactic characteristics ex-
emplified by the excerpt, but are allowed to exhibit additional ones. However,
the lexical relations among the elements have to be the same as the ones among
the corresponding elements in the excerpt. If a statement in a specification
is preceded by a local variable declaration, for instance, matching statements
have to be preceded by a matching variable declaration as well.10

The prototypical getter method matches the specification under this in-
terpretation. Method getAge() from Figure 4.8 is also reported as a match.
Matching classes feature a matching field and a matching method. The field
and method must be declared in the lexical scope of the class declaration. The
field is allowed to have additional modifiers. Likewise, the method lexically fea-
tures a return statement of which the operand matches the field. Additional
statements are allowed. The return statement is also allowed to be nested
within other statements.

The search strategy associated with this interpretation is costlier than the
previous one. It accounts for implicit points of variation among the instances of

10For performance reasons, the implementation imposes this ordering constraint on all statements.
Matches for ?x lexically (i.e. based on line numbers) precede matches for ?y in the specification {?x;
?y;}.

89

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

a pattern (i.e. different implementations of the same characteristic) as required
by criterion CDM3.

Control flow interpretation Under this interpretation, the control flow character-
istics of the source code excerpt exemplify the pattern. Consider the speci-
fication jtStatement(?block){ {?x; ?y;} } for a block with two instruc-
tions. Matches for ?x are evaluated, in the control flow of the block, before the
matches for ?y during at least one execution of the program. Other instructions
are allowed between these matches.

The control flow established by the getter method is very basic. Matching
methods have an expression in their control flow that matches the field. This
expression is followed in the flow by a return statement. The operand of this
statement matches the expression.

The search strategy associated with this interpretation examines control
flow graphs. Implicit points of variation are supported:

• non-specified instructions are allowed in the graph

• the strategy only requires that the return statement is reachable through
at least one path (i.e. existentially qualified). It does not require that all
paths through the graph feature the return statement (i.e. universally
qualified). The latter is more expensive.

• the strategy crosses method boundaries in the search for matching in-
structions (i.e. it is inter-procedural). However, statements are matched
intra-procedurally. Otherwise, methods invoking a getter would for in-
stance be recognized as a getter method themselves.

The specification in Figure 4.7 exemplifies the data flow characteristics of the
getter method through the ?fieldName meta-variable. It substitutes for the name
of the field declaration as well as the operand of the return statement. Both are
required to unify.

In isolation from the other cornerstones of our approach, the example-based
interpretations will incorrectly report method notGettingAge(Integer) in Fig-
ure 4.8 as an instance of the getter method.11 At the same time, getter method
retrieveBirthDay(), will not be recognized. The domain-specific unification
cornerstone will remedy these shortcomings by incorporating data flow informa-
tion in the unification of the ?fieldName occurrences.

4.3.3 Concrete Instantiation in Brief

Chapter 7 discusses the example-based specification cornerstone in detail, includ-
ing its instantiation in the artifact used to validate our approach. Here, we briefly
clarify how template terms are resolved by the logic meta programming instanti-
ation in which they are embedded. The architectural overview in Figure 4.1 illus-
trates the relation between both.

At compile-time, the SOUL evaluator parses the source code excerpt of a
template term using a definite clause grammar [PW80] (cf. Section A.1) for

11Although method notGettingAge(Integer) matches the template, it is not a getter method for
the field age as the definition of the field is shadowed by the parameter of the method. The SOUL version
of the specification in Figure 4.3 has the same problem.

90

4.4. Cornerstone: Domain-Specific Unification

1 class Person {
2 private Date birthday;
3 private Integer age;
4 private boolean ageDirty;

5 public Date retrieveBirthday() {
6 Logger.log("Birthday retrieved");
7 return this.birthday;
8 }

9 public Integer getAge() {
10 if(ageDirty) age = Calender.now().yearsSince(retrieveBirthday());
11 return age;
12 }

13 public Integer notGettingAge(Integer age) {
14 return age;
15 }

16 public Date wastefulGetBirthday(int cyclesToWaste) {
17 Date val = (Date) indirectReturn(birthday, cyclesToWaste);
18 return val;
19 }

20 public Object indirectReturn(Object o, int delay) {
21 if(delay == 0)
22 return o;
23 else
24 return indirectReturn(o, delay - 1);
25 }
26 }

Figure 4.8: Implementation variants of the getter and setter method best practice
patterns in Java.

Java [GJSB00].12 The predicate name of the template term is used as the starting
rule for the grammar. This results in a forest of ASTs for the excerpt.13

Each example-based interpretation transforms each AST for the source code ex-
cerpt into a logic query. This results in a set of logic queries. The predicates in these
queries stem from the CAVA library (cf. Section 5.2) and quantify over the reified
program representation. At run-time, template terms are resolved by backtracking
over each generated query.

4.4 Cornerstone: Domain-Specific Unification

This section introduces the domain-specific unification cornerstone of our ap-
proach. It is detailed in Chapter 6.

Unification is the process of computing a substitution θ, a function from
variables to terms, that unifies two terms s and t such that sθ = tθ. It is an

12Template terms only support the concrete syntax of Java 1.4 for pragmatic reasons. However, the
program representation supports Java 1.5.

13The combination of concrete syntax and untyped meta-variables in the excerpt is often ambigu-
ous. Template terms support this inherent ambiguity by transparently considering all possible abstract
syntax trees. This way, the user is not burdened with the disambiguation and is assured that the intended
specification is always considered. However, parser directives for disambiguation are available.

91

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

essential ingredient of the proof procedure in logic programming (i.e. resolu-
tion [Rob65]). Unification has applications outside automated theorem proving as
well (cf. Knight [Kni89] for a survey). In pattern detection, s stems from the spec-
ification and t from the reified program representation (which may include vari-
ables).

The detection mechanism of our approach employs a domain-specific unifica-
tion procedure which differs from the general-purpose unification procedure. Its
comparisons of program representation elements are specifically tailored to the
pattern detection domain.

Pattern specifications express such comparisons to relate program elements:
either explicitly by equating variables (last condition in Figure 4.3) or implicitly
through multiple occurrences of a variable (?fieldName in Figure 4.7).

Concretely, the domain-specific unification procedure differs from the general-
purpose procedure on the following points:

• The domain-specific unification procedure treats reified program elements
different from other terms. The comparison of two reified program elements
can succeed where the general-purpose procedure fails. Through domain-
specific comparisons, different implementations of the same characteristic
are treated uniformly. As a result, our detection mechanism supports implicit
points of variation among the instances of a pattern (criterion CDM3).

• To recognize implicit variation points, the procedure incorporates the results
of whole-program14 data flow analyses (cf. Section 2.5.4) in domain-specific
comparisons of individual program elements.

A semantic analysis [ASU86] ensures correctness. When a fully qualified and
an unqualified type are compared, for instance, the import declarations of
their compilation units are taken into account. A points-to analysis [Hin01]
enhances identification efficacy. When two expressions are compared, syn-
tactic deviations are allowed as long as they may alias at run-time.

Users benefit from the results of these analyses without being exposed to
their intricate details (criterion CSL5). Concretely, multiple occurrences of a
meta-variable express data flow characteristics (in positions where they stand
for expressions).

• Reified program elements (cf. Section 4.2) unify with compound terms, even if
the reified version of the element is not a compound term. We will show that
this ensures the descriptiveness of logic rules (criterion CSL2) by enabling
the natural use of unification to quantify over reified program information.

By adopting example-based specifications, our approach remedies the
quantification-related shortcomings of logic meta programming. The unification-
related shortcomings of its founding cornerstone will be remedied by adopting
domain-specific unifications. We will identify these shortcomings in Section 4.4.2.

4.4.1 Running Example Revisited

Example-based and logic meta programming specifications share the same unifi-
cation procedure. Clearly, variable bindings need to be consistent across the con-
ventional terms and template terms in a specification.

14A whole-program analysis takes the code of the whole program into account.

92

4.4. Cornerstone: Domain-Specific Unification

Here, we illustrate domain-specific unification on the example-based specifica-
tion for the getter method. We will revisit the logic rule for the getter method after
our discussion of its unification-related shortcomings.

Example-Based Specification for the Getter Method Revisited

The unification procedure complements the example-based interpretations of the
specification in Figure 4.7. The matches for the specification differ under each
interpretation. Under the syntactic interpretation, for instance, matching meth-
ods consists of a single matching return statement. Under the lexical interpreta-
tion, in contrast, matching methods feature this statement lexically. However, the
statement must return the value of the field under each interpretation. The spec-
ification exemplifies this data flow characteristic through the occurrences of the
?fieldName variable. It substitutes for the name of the field as well as the operand
of the return statement. The reifications of both are required to unify.

Assume for a moment that both are reified as string constants. Using the
general-purpose unification procedure, method notGettingAge(Integer) from
Figure 4.8 would be reported as a match for the getter method under all interpre-
tations. Each occurrence of the ?fieldName variable is bound to the same string.
However, the method is not a getter method. The definition of the field is shad-
owed by the parameter of the method. Getter method retrieveBirthday(), on
the other hand, would not be recognized under any interpretation. The reification
of its operand (’this.birthday’) does not unify with the reification of the field
(’birthday’).

We could avoid this problem by using a reification that makes the “references”
relation between the operand and the field explicit. However, other patterns might
require different reifications. Moreover, the bindings for the ?fieldName variable
would expose users to the details of the reification.

Complemented by the domain-specific unification procedure, all example-
based interpretations treat both methods correctly. To determine whether the
reified operand (an org.eclipse.jdt.core.dom.SimpleName instance) and rei-
fied field (an org.eclipse.jdt.core.dom.VariableDeclarationFragment in-
stance) unify, the results of the semantic analysis are consulted first. Unification
succeeds if the operand definitely references the field according to the semantic
analysis. This can be determined for certain variable reference expressions (i.e.
a field access or a reference to a parameter), but not for all expressions in gen-
eral. For those expressions, the results of the alias analyses are consulted (i.e.
the inter-procedural points-to analysis and the intra-procedural must-alias anal-
ysis). As the intra-procedural must-alias analysis only offers aliasing informa-
tion about two expressions within a method, the results of the inter-procedural
points-to analysis are consulted for this example. These determine whether the
operand and the field may-alias at run-time (i.e. when their respective points-to
sets have a non-empty intersection). Matches for the specification therefore in-
clude methods that return the value of the field without referring to it directly. For
instance, a getter for a field that aliases with the field in the specification. Method
wastefulGetBirthday(int) is another example.

Unification based on points-to analysis supports more implicit points of varia-
tion among pattern instances than unification based on semantic analysis or must-
alias analysis. However, the higher recall comes at the cost of false positives caused
by the imprecision of the points-to analysis (cf. Section 2.5.4). Matches for the spec-

93

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

1 if compilationUnit(packageDeclaration(simpleName([’examples’])),?,?types) isCompilationUnit,
2 ?types contains: ?type

3 if ?compilationUnit isCompilationUnit,
4 ?compilationUnit hasPackage: ?package,
5 ?package hasName: ?name,
6 ?name isSimpleName,
7 ?name hasIdentifier: [’examples’],
8 ?compilationUnit compilationUnitHasTypes: ?types,
9 ?types contains: ?type

Figure 4.9: SOUL queries quantifying over all types defined by compilation units in
the package named examples.

ification also include indirectReturn(Object,int) as a getter method for the
birthday field. This method returns the value of the field for at least one of its
invocations.

Clearly, users should be able to discern matches identified by the points-to
analysis from those identified by the semantic analysis and the must-alias analy-
sis (cf. criterion CDM2). The fuzzy logic cornerstone of our approach will provide
a ranking for matches.

4.4.2 Motivation for the Domain-Specific Unification Cornerstone

The detection mechanism of our approach uses the same domain-specific unifica-
tion procedure for example-based and logic meta programming specifications. The
general-purpose unification procedure of logic meta programming would result in
operational and convoluted specifications.

We identify the unification-related shortcomings of the logic meta program-
ming cornerstone. We revisit the logic rule for the getter method using the domain-
specific unification procedure which remedies these shortcomings.

Unification-Related Shortcomings of LMP

The example-based specification for the getter method demonstrated the need
for domain-specific comparisons of program elements. Without these compar-
isons, alternative implementations of the pattern’s data flow characteristics would
not be recognized. Worse, a naive comparison of variable references and declara-
tions would lead to false positives being reported. We illustrated these issues using
a hypothetical reification to strings.

In general, logic meta programming tools employ a reification to compound
terms. Such a reification enables the natural use of unification to quantify over
program elements in a descriptive manner. Candidate elements can be required to
unify with a compound term that does not stem from the program representation,
but unifies with the desired program elements. The first query in Figure 4.9 uses
this technique to quantify over all types in compilation units that are declared in
the package named examples.15

15Upon backtracking over the first condition, the predicate isCompilationUnit/1 binds its argu-
ment to a reified compilation unit which has to unify with a partially ground compound term. This
succeeds only for the compilation units in the package named examples. When successful, ?types is
bound to the types in the compilation unit.

94

4.4. Cornerstone: Domain-Specific Unification

Example-based and logic specifications share the need for comparisons that are
tailored to pattern detection. In logic meta programming, however, the unification
procedure is hard-wired. Users have to implement domain-specific comparisons
themselves.

The reification determines which comparisons of program elements are per-
formed by the general-purpose unification procedure when their reified versions
are unified. A reification that maps structurally equivalent program elements to
the same compound term, for instance, gives rise to structure-based comparisons
in the general-purpose unification procedure. The first query in Figure 4.9 requires
such a reification. In particular, a reification that reifies the children of an AST node
as the arguments of a corresponding compound term.

To support other domain-specific comparisons, additional reifications of the
same program element have to be introduced. A reification in which modifier
lists are sorted, for instance, gives rise to domain-specific comparisons that con-
sider public static and static publicdeclarations equivalent. A reification of
the form astNode(uniqueidentifier), on the other hand, gives rise to identity-
based comparisons of AST nodes using the general-purpose unification procedure.

Users have to implement domain-specific comparisons by quantifying over the
most appropriate reification manually. This results in operational and convoluted
queries that are not descriptive. The identity-based reification, for instance, does
not give rise to structure-based comparisons in the general-purpose unification
procedure. In the second query of Figure 4.9, structure-based comparisons are
therefore implemented manually. It is less descriptive and more convoluted than
the first query.

The domain-specific unification cornerstone remedies the above shortcomings
by treating reified program elements different from other terms. Domain-specific
comparisons are used in their unification to support implicit points of variation
among pattern instances (e.g. to recognize different implementations of a data flow
characteristic as described in Section 4.4.1). This precludes users from implement-
ing such comparisons manually which leads to operational queries.

As multiple reifications are no longer necessary, users are only exposed to the
details of one reification. Regardless of this reification, the domain-specific unifi-
cation procedure unifies reified program elements with compound terms that are
structurally equivalent. This facilitates the natural use of unification to quantify
over reified AST nodes as illustrated by the first query in Figure 4.9.

LMP Specification for the Getter Method Revisited

SOUL employs an identity-based reification which forgoes a transcription to com-
pound terms. The reified version of an AST node is the AST node itself (i.e.
an object). As a result, the general-purpose unification procedure only uni-
fies identical objects.16 The operational nature of the logic rule for the get-
ter method in Figure 4.3 is due to the combination of a compound-free reifi-
cation with a general-purpose unification procedure. Its reporting of the false
positive notGettingAge(Integer) and its failure to recognize getter method

16The procedure tests for the result of the Smalltalk equality message, =, sent to one
of the objects. Smalltalk proxies for Java objects respond to this message with an invoca-
tion of the Java equals(Object) method which is implemented as object identity == for the
org.eclipse.jdt.core.dom.ASTNode instances in the program representation.

95

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

1 if ?method isMethodDeclaration,
2 ?fieldDeclaration fieldDeclarationHasFragments: ?fragments,
3 [?fieldDeclaration parentTypeDeclaration] equals: [?method parentTypeDeclaration],
4 ?fragments contains: variableDeclarationFragment(simpleName(?identifier), ?, ?),
5 ?method methodDeclarationHasBody: block(nodeList(<returnStatement(simpleName(?identifier))>))

6 if ?method isMethodDeclaration,
7 ?fieldDeclaration fieldDeclarationHasFragments: ?fragments,
8 [?fieldDeclaration parentTypeDeclaration] equals: [?method parentTypeDeclaration],
9 ?fragments contains: variableDeclarationFragment(?name, ?, ?),

10 ?method methodDeclarationHasBody: block(nodeList(<returnStatement(?name)>))

Figure 4.10: SOUL queries illustrating domain-specific unification in the detection
of the getter method.

retrieveBirthDay() (see Figure 4.8) are due to to a naive, manual implemen-
tation of the domain-specific comparison of variable references and declarations.

The two logic queries depicted in Figure 4.10 are alternative specifications for
the getter method. Both are more succinct and descriptive than the logic rule de-
picted in Figure 4.3. They rely on the domain-specific unification cornerstone to
overcome the unification-related shortcomings of logic meta programming.

The first query relies on the unification of reified program elements (i.e.
org.eclipse.jdt.core.dom.ASTNode instances) with compound terms. The
query detects the same instances as the convoluted logic rule depicted in Figure 4.3,
including the false positive notGettingAge(Integer). The query differs from the
rule in its selection of the variable declaration fragment among the ?fragments in
the field declaration (i.e. line 4 in the query versus line 8 in the rule). In the query,
the second argument to the contains:/2 predicate is a compound term that will
unify with each reified fragment upon backtracking. The arguments of the term
correspond to the name, extra dimensions and initializer children of the AST node
for the variable declaration fragment.17 An anonymous variable in the last two ar-
gument positions indicates that we are not interested in their values. The first ar-
gument of the term is another compound term. It will unify with the name child of
the node. As a result, the ?identifier variable gets bound to the string that identifies
the fragment. Line 4 of the query has the same effect as lines 8–10 in the rule.

The condition on line 5 relies on the unification of ASTNode$NodeList in-
stances (i.e. collections) with a single-argument compound term containing a reifi-
cation of their contents as a logic list.18 The condition states that the block in the
body of the method declaration is made up of a single statement: a return state-
ment of which the operand is a simple name named after the ?identifier of the field.
This condition has the same effect as the 7 conditions on lines 11–17 of the original
logic rule.

The notGettingAge(Integer) false positive is not reported by the second
query. The query relies on domain-specific comparisons of the binding for the
?name variable on line 9 (the name child of the variable declaration fragment) and
the binding for the ?name on line 10 (the operand of the return statement). Once
the restriction on the amount of statements in the method is lifted, this query cor-

17Their concrete syntax counterparts are produced by the grammar rule
VariableDeclarationFragment ::= Identifier { [] } [= Expression] in EBNF no-
tation.

18The SOUL list <1,2|?tail> is equivalent to the Prolog list [1,2|Tail].

96

4.5. Cornerstone: Fuzzy Logic

rectly identifies all getter methods in Figure 4.8. In fact, as domain-specific com-
parisons are also implemented for variable declaration fragments, there is no need
to extract the name child from the fragment on line 9.

These queries illustrate how the domain-specific unification cornerstone en-
sures the descriptiveness of logic-based pattern specifications.

4.4.3 Concrete Instantiation in Brief

Chapter 6 discusses the domain-specific unification cornerstone in detail, includ-
ing an enumeration of the domain-specific comparisons implemented in our re-
search artifact.

The architectural overview in Figure 4.1 illustrates the relation between this
cornerstone and the program representation. Domain-specific comparisons are
defined on reified program elements (i.e. org.eclipse.jdt.core.dom.ASTNode
instances) using the double dispatching idiom. To support implicit points of vari-
ation, these comparisons use the parts of the program representation that are not
reified: the results of the semantic analysis, the must-alias analysis and the points-
to analysis (cf. Section 4.2.3).

It is important to note that unifying a compound term with a reified program el-
ement is meant as convenient syntactic sugar (i.e. for a condition that restricts the
type of the node and subsequent unification conditions over its child nodes). Our
implementation precludes other uses. It distinguishes regular compound terms
(uninstantiated compound terms) from compound terms that have been unified
with a reified program element (instantiated compound terms). The latter repre-
sent the object they are instantiated to. Unifying two instantiated compound terms
therefore amounts to unifying the objects they are instantiated to.

Likewise, within Smalltalk terms (cf. Section 4.2.1), a logic variable bound to
an instantiated compound term evaluates to the object the term is instantiated to.
An uninstantiated compound term, in contrast, evaluates to the Smalltalk imple-
mentation of the compound term itself (i.e. a Soul.CompoundTerm instance). The
following predicate can be used to discern uninstantiated compound terms from
objects and instantiated compound terms:

1 +?x isInstantiatedTo: [?x] if
2 [(?x isKindOf: Soul.CompoundTerm) not]

4.5 Cornerstone: Fuzzy Logic

The fourth cornerstone of our approach consists in using fuzzy logic rather than
the two-valued logics conventionally employed in pattern detection. It provides
our detection mechanism a theoretical foundation to rank the results it reports.
This ranking facilitates assessing a large amount of results. The fuzzy logic corner-
stone can be incorporated in any tool based on a logic formalism with a machine-
executable proof procedure.

Incorporated in a LMP tool, this cornerstone gives rise to a fuzzy logic program-
ming language. Our fuzzy variant of SOUL is representative for the many “fuzzy Pro-
log” systems that exist, but more advanced instantiations have been devised. How-
ever, it constitutes an otherwise rare application of fuzzy logic in software pattern
detection (fuzzy graph rewrite rules are used by the fuzzy FUJABA variant discussed
in Section 3.2.3). We detail the fuzzy variant of SOUL in Section 6.1.

97

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

Fuzzy Logic Programming

Analogous to the partial membership degrees of a fuzzy set [Zad65], fuzzy logics
(cf. Petr Hájek and Godo [Háj98] for an introduction) assign a degree of truth to
logic propositions. One proposition may be absolutely true, while another may be
true to an extent between absolute truth and absolute falsity. Fuzzy logics are logics
of quantified truth. In sharp contrast to probabilistic logics, fuzzy logics are truth-
functional: the truth of a formula is only determined by the truth of its constituents.
As different semantics can be given to the logical connectives∧, ∨ and¬, there exist
many different kinds of deductive fuzzy logic. As a notion of proof, these logics use
modus ponens.

In fuzzy logic programming, a resolution procedure is used as machine-
executable proof procedure. Lee [Lee72] was the first to extend the classical res-
olution procedure to handle partial truths, initiating a plethora of “fuzzy Prolog”
systems. These all differ in the way they model the logical connectives as well as in
whether or not they allow fuzzy facts, fuzzy rules or fuzzy constants. A detailed his-
torical overview of the resulting programming languages can be found in Alsinet’s
dissertation [Als01].

In our fuzzy variant of SOUL, logic facts and rules can be annotated with truth
degrees. The language is close to F-PROLOG [LL90] in that its resolution procedure
quantifies truth in a similar manner. In addition, our unification procedure quan-
tifies unification. However, we support only real-valued partial truth values in the
interval]0,1], while the F-PROLOG system supports fuzzy numbers.

Fuzzy logic rules are of the following form. Like standard rules, they have a head
q and a body q1, . . . , qn . In contrast to standard rules, they are annotated by a partial
truth degree c ∈]0,1]. This degree is interpreted as the confidence the programmer
has in the conclusion q reached by the rule given the absolute truth of the subgoals
in its body.

q : c if q1, . . . , qn .

Developers can use these annotations to establish a ranking among alternative
logic meta programming specifications for a pattern. We use this feature internally
to establish a ranking among the example-based interpretations of a template term.
Recall from Section 4.3.3 that a template term is translated to a different logic query
by each example-based interpretation.

Fuzzified Resolution Procedure

The essential difference between the fuzzified resolution procedure and the stan-
dard procedure lies in the quantification of the deduced answer sets for a goal. Our
fuzzy logic programming language computes the truth degree of the conclusion q
as the product of c and the minimum of the truth degrees of the subgoals q1 . . . qn .
Hence, we interpret conjunction and implication as minimum and product respec-
tively. Negation is interpreted as complement.

Fuzzified Unification Procedure

An analogously fuzzified unification procedure quantifies the extent to which two
terms unify. Unifying two terms results either in failure, or in a unification degree.
The resolution procedure incorporates unification degrees in its quantification of

98

4.5. Cornerstone: Fuzzy Logic

1 15 isAmountSoldOf: flowers.
2 (chips hasAttractivePackaging) : [9/10].
3 (chips isWellAdvertised) : [6/10].

4 ?product isPopular if
5 ?amount isAmountSoldOf: ?product,
6 [?amount > 10].

7 (?product isPopular) : [8/10] if
8 ?product hasAttractivePackaging,
9 ?product isWellAdvertised.

Figure 4.11: A fuzzy SOUL program illustrating quantified resolution.

the answer sets for a goal. This way, unification degrees are propagated to the re-
sults.

Through the propagated degrees, the domain-specific unification cornerstone
communicates which program analyses were used in the unification of reified pro-
gram elements. For instance, whether the unification of two expressions required
the results of the points-to analysis (i.e. they may alias in an execution of the pro-
gram) or the results of the must-alias analysis (i.e. they definitely alias in every ex-
ecution of the program). This allows us to establish a ranking among the results
reported by a single example-based interpretation of a template term and the solu-
tions to a logic query.

An Illustrative Fuzzy Logic Program

Consider, as an introductory example, the fuzzy logic program depicted in Fig-
ure 4.11. It models the vague concept of the popularity of a grocery item. The stan-
dard logic rule on lines 4–6 states that any product of which more than 10 items
have been sold is definitely popular. Well-advertised products with an attractive
packaging are considered popular by the fuzzy logic rule on lines 7–9. The latter
has an associated truth degree of [8/10], an instance of the Smalltalk Fraction
class. This expresses our confidence in the conclusion of the rule given the abso-
lute truth of the goals in its body. The parentheses in the head of the rule are not
required and are only added for clarity. The background information of the pro-
gram states that 15 flowers have been sold, while the product chips has a fairly
attractive packaging and has been advertised reasonably well.

From the depicted program, we can derive that the product chips must be
fairly popular. It is found as a solution to the query if ?product isPopular
with a reasonably large partial truth degree of min(9

10 , 6
10) · 8

10 = 48
100 . The product

flowers, on the other hand, is definitely popular.

4.5.1 Running Example Revisited

Figure 4.12 depicts the quantified results for an example-based specification of the
getter method. The specification itself is shown in the bottom-left window of the
figure. It is a logic query that consists of a single condition which is a template
term annotated by the variable ?degree. This variable will be bound to the partial
truth degree that is computed for the term it annotates. The solutions for the query

99

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

are shown in the left column of the upper left window. They consist of bindings
for the ?class, ?field and ?methodName variables (bindings for the other variables
are not shown). All solutions are getter methods from the Person class depicted in
Figure 4.8. Note that the false positive notGettingAge(Integer) is not reported.

Figure 4.12 illustrates the reification of the founding logic meta program-
ming cornerstone in addition to the fuzzy logic, example-based specifica-
tion and domain-specific unification cornerstones of our approach. The top-
most inspector window on the right was obtained by inspecting the bind-
ing for the ?field variable in the first solution. This is an instance of
org.eclipse.jdt.core.dom.SimpleName. In the evaluation pane of the win-
dow, we sent it the message getParent and printed the result. The parent of this
instance in the AST is the variable declaration fragment from the field declaration.
Next, we sent it the message pointsTo and inspected the results. The inspector
window in the bottom shows the points-to set for the variable declaration fragment
as retrieved from the points-to analysis results.

The right column of the results window lists the truth degree associated with
each solution. These degrees establish a ranking among the solutions. Solutions
with a higher degree are less likely to be false positives. A single result can be identi-
fied by multiple example-based interpretations of a template term. For each result,
Figure 4.12 lists only the largest of its associated truth degrees. All methods match
the term under the control flow interpretation, for instance, but never with a truth
degree higher than 8/10.

Ranking among matches from different example-based interpretations

Truth degrees for solutions identified under the syntactic, lexical and control flow
interpretation of a template term (cf. Section 4.3.2) can be no larger than 1, 9/10 and
8/10 respectively. This ranking reflects the projected similarity of solutions to the
source code in the term. Under the syntactic interpretation, only perfect matches
for a template term are identified. None of the getter methods in Figure 4.8 are
perfect matches for the template term. Under the lexical interpretation, matches
can deviate from the source code in the template term. In addition to the specified
return statement, methods getAge() and retrieveBirthDay() feature a logging
and a lazy initialisation instruction respectively. They are identified under the lexi-
cal interpretation.

Ranking among matches from a single example-based interpretation

Methods getAge() and retrieveBirthDay()match the template term under the
lexical interpretation, but have an associated truth degree of 0.81 which is smaller
than the maximum of 9/10 for this interpretation.

Truth degrees can vary among the matches identified by a single example-based
interpretation of a template term. The more characteristics a match exhibits in
addition to the ones that are exemplified by the source code excerpt in the term, the
smaller its associated truth degree. Under the lexical interpretation, for instance, a
method with 3 instructions is considered a better match for a specification with 1
instruction than a method with 6 instructions.

100

4.5. Cornerstone: Fuzzy Logic

Figure 4.12: Quantified results for the example-based specification of the getter
method in Figure 4.7 matched against the implementations in Figure 4.8.

Influence of domain-specific unification degrees

As discussed in Section 4.4.1, the domain-specific unification procedure comple-
ments the example-based interpretations of a template term. All methods are iden-
tified because the reified operand of their return statement unifies with the reified
field.

Unification degrees lower the truth degrees computed for a match. Unification
succeeds either because the operand is a variable reference to the field (according
to the semantic analysis) or because the operand and the field may-alias at run-
time (according to the points-to analysis). The former is the case for the afore-
mentioned methods. The latter is the case for methods wastefulGetBirthday()
and indirectReturn(Object,int). Because the operand and field do not nec-
essarily alias in all invocations of these methods, the unification degree halved the
truth degree computed for the lexical interpretation of the template term. As a re-
sult, the false positive indirectReturn(Object,int) can be discerned more eas-
ily among all results.

4.5.2 Motivation for the Fuzzy Logic Cornerstone

The fuzzy logic cornerstone provides our detection mechanism with a theoretical
foundation to rank its results. This ranking facilitates assessing a large amount of
results (criterion CDM2). A truth degree is associated with each result. Analogous
to partial set memberships, the reported degrees quantify the extent to which each

101

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

result can be considered an instance of the specified pattern. In other words, the
extent to which reported instances exhibit the characteristics in a specification is
quantified. The smaller this extent, the more likely the reported instance is a false
positive.

Communicating this likelihood is desirable when the search strategies em-
ployed by the detection mechanism implement different trade-offs with respect
to cost, precision and recall. Because of domain-specific unification, this is the
case for logic queries with and without template conditions. Unification based on
points-to analysis supports more implicit variation points than unification based
on semantic analysis. This higher recall comes at the cost of false positives caused
by the imprecision of the points-to analysis. Their respective unification degrees
reflect this trade-off.

The fuzzy resolution procedure combines the truth degrees of all conditions in
a query and takes unification degrees into account.

Concrete Ranking of Results

The logic rules used in the resolution of a logic term and the example-based inter-
pretation used in the resolution of a template term establish an upper bound for
the truth values of their solutions:

• Figure 4.13 illustrates this for logic terms. It depicts a fuzzy query and two
fuzzy rules. The second, recursive rule is annotated with a lower truth de-
gree. In the base program, MPExtender extends MPOverriderwhich extends
AbstractBaseClass which extends Object. Solutions to the query consists
of ancestors of MPExtender. In the solutions, the maximum truth degree 1 is
associated with the immediate super class MPOverrider. It is identified by
the first rule. Indirect super classes have a lower associated truth degree that
corresponds to the amount of recursive invocations of the second rule. The
minimum truth degree of the goals in its body is multiplied with the truth
degree its head is annotated with. For AbstractBaseClass, this results in a
truth degree of (999

1000)2.

• The source code excerpt of a template term exemplifies the prototypical im-
plementation of a pattern’s essential characteristics. Truth degrees for solu-
tions identified under the syntactic, lexical and control flow interpretation
of a template term (cf. Section 4.3.2) can be no larger than 1, 9/10 and 8/10
respectively. This ranking reflects the projected similarity of the solutions to
the prototypical implementation of the pattern.

The specific properties of a solution for a term further refine (i.e. lower) the
truth degrees computed from the rules and example-based interpretation used in
its resolution:

• Solutions that required a unification based on points-to analysis are ranked
lower. For both logic terms and template terms, the upper bound established
by the logic rules and example-based interpretation is lowered by unification
degrees. The unification degree associated with domain-specific unification
based on points-to analysis, for instance, halves the truth degree computed
by a resolution without unification degrees. In general, truth degrees for a
goal are computed by multiplying the unification degree with the truth value
computed by the resolution without unification degrees.

102

4.5. Cornerstone: Fuzzy Logic

1 +?classDeclaration extends: ?superclassTypeDeclaration if
2 ?classDeclaration equals: classDeclaration(?,?,?,?,?superclassType,?,?),
3 ?superclassTypeDeclaration typeDeclarationForType: ?superclassType

4 (+?classDeclaration extends: ?ancestorDeclaration) : [999/1000] if
5 ?classDeclaration equals: classDeclaration(?,?,?,?,?superclassType,?,?),
6 ?superclassTypeDeclaration typeDeclarationForType: ?superclassType,
7 ?superclassTypeDeclaration extends: ?ancestorDeclaration

Figure 4.13: Quantified results for a fuzzy SOUL query and the fuzzy rule defining
the predicate used in the query.

• For template terms, truth degrees differ among solutions identified under a
single example-based interpretation. The more characteristics a solution ex-
hibits in addition to the ones that are exemplified, the smaller its associated
truth degree. For a method specification that only exemplifies apublicmod-
ifier, a method with a single modifier is a better match than apublic static
method. For a class specification that exemplifies 3 members, a class with 5
members is a better match than a class with 7 members. This is true for all
example-based interpretations —even for the control flow interpretation un-
der which only the control flow characteristics of the template exemplify the
pattern.

Note that the sole intent of the computed truth degrees is to facilitate user as-
sessment of a large amount of results. The ranking established by these degrees is
more important than the degrees themselves. However, fuzzy logic programming
offers several ways to further manipulate the degrees that are computed for a goal.
We will discuss these in Section 6.1.

103

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

4.5.3 Concrete Instantiation in Brief

Unification degrees computed by the domain-specific unification procedure are
discussed in Chapter 6. Chapter 7 details the truth degrees computed by resolving
the example-based interpretations of a template term.

The fuzzy logic cornerstone is incorporated into SOUL, the logic meta program-
ming instance described in Chapter 5, by specializing the object-oriented imple-
mentation of its resolution procedure.

4.6 Cornerstone: Open Implementation

This section introduces the fifth cornerstone, user-extensibility through open im-
plementations, which crosscuts the implementations of the other cornerstones.
Each implementation presents a meta-interface through which existing search
strategies of the detection mechanism can be altered and user-defined ones can
be implemented (criterion CDM4). The meta-interface gives clients control over
the search strategies without exposing them to all of their implementation details.
The abstraction levels of the meta-interfaces differ.

4.6.1 Open Implementation of the Logic Meta Programming Cornerstone

In a sense, the implementation of SOUL [Wuy98, Wuy01, Sou08] (i.e. the instanti-
ation of our founding cornerstone) has been open since its conception. Its hybrid
language characteristic allows quantifying over any object that is reachable in the
Smalltalk run-time image, including objects from its implementation.

Consider the logic rule for the isInstantiatedTo:/2 predicate in Sec-
tion 4.4.3. It illustrates that the Smalltalk implementation of a logic term can be
accessed (e.g. a Soul.CompoundTerm instance in the rule). By manipulating these
objects in a logic rule, the implementation can be changed from within the lan-
guage itself. Several SOUL rules rely on this functionality. They can access the
current environment, current call stack, invoke the unification procedure, create
resolution results, create new terms, change lexical addresses etc.

Clearly, defining custom search strategies through this meta-interface requires
knowledge about the internals of SOUL that is on par with that of its implementers.
In this regard, defining a meta-interpreter that implements a custom search strat-
egy for logic specifications is a better option. Technically, however, both options
are available to knowledgeable users.

4.6.2 Open Implementation of the Fuzzy Logic Cornerstone

The implementation of the fuzzy logic cornerstone specializes the object-oriented
implementation of SOUL. It is therefore as open as SOUL itself. Technically, its im-
plementation can be changed from within the fuzzy logic programming language,
but not without being exposed to its implementation details.

In the definition of an open implementation by Kiczales [Kic96, KPK94], a meta-
interface explicitly hides such implementation details of the primary interface: “the
primary interface provides the functionality and the meta-interface allows the client
to adjust the implementation strategy decisions that underlie the primary interface”.

104

4.6. Cornerstone: Open Implementation

4.6.3 Open Implementation of the Domain-Specific Unification Cornerstone

The acronym SOUL stands for Smalltalk Open Unification Language. The im-
plementation of the unification procedure of SOUL is truly open. Whether two
logic terms unify is determined by sending the message unifyWith:inEnv: to
the Smalltalk implementation of one of the terms with the Smalltalk implemen-
tation of the other term as argument. The corresponding methods comprise the
meta-interface through which the general-purpose unification procedure can be
extended. SOUL already employed a modest extension to accommodate the uni-
fication of reified Smalltalk objects. Their implementation of unifyWith:inEnv:
invokes = on the corresponding Smalltalk objects.

The domain-specific unification procedure of our approach defines additional
extensions on reified abstract syntax tree nodes. These are tailored to the pattern
detection domain and incorporate whole-program analysis results. The openness
of the unification procedure allows users to define additional domain-specific ex-
tensions.

In addition to the meta-interface provided by SOUL, our implementation pro-
vides an API through which the local variable in the JIMPLE three-address repre-
sentation (Figure 2.4 depicts an example) that corresponds to an expression in an
ECLIPSE AST node can be retrieved. Manually establishing such a mapping is dif-
ficult (cf. Section 2.5.1). Program analysis results from the SOOT Java Optimization
Framework [VRCG+99] can be queried for this local.

4.6.4 Open Implementation of the Example-Based Specification Cornerstone

As discussed in Section 4.3.3, template terms are resolved by backtracking over
logic queries that are generated by SOUL at compile-time. Each query corresponds
to an example-based interpretation of an AST for the source code excerpt in the
term. The translational semantics is specified and implemented as logic rules.

Rules implementing the predicate “?template underInterpretation:
?interpretation compilesTo: ?query forResult: ?result” comprise
the meta-interface through which users can define additional example-based
interpretations.

The first rule in Figure 4.14 defines the translational semantics for a
jtClassDeclaration(?class){class ?name {...}} template term. The rule
takes four arguments. The ?template argument is bound to the AST of the source
code excerpt within the braces of the term. The second argument ?interpretation
is bound to one of the example-based interpretations. Under this interpretation,
the template compiles to the third argument. This is a list of logic conditions that
quantifies over the reified program representation. They are evaluated at run-time
when the template term is resolved. Variables in the list are compile-time variables.
The compile-time ?query variable, for instance, represents the tail of the conditions
list. Compile-time variables can also be bound to a representation of a run-time
variable in the query. We refer to such variables as quoted variables. The argu-
ment of the first condition in the list is a quoted variable. Its binding stems from
the fourth argument ?result of the rule. The SOUL evaluator will first resolve the
template term by evaluating the conditions in the list. Next, it will unify the run-
time variable corresponding to the quoted ?result variable with the argument of
the jtClassDeclaration/1 template term.

A recursive descent through the AST of the class declaration template de-

105

1
?template

underInterpretation:
?interpretation

compilesTo:
<?result

isClassDeclaration|?query>
forResult:

?result
if

2
?template

equals:
classDeclaration@(?),

3
?template

classDeclarationUnderInterpretation:
?interpretation

compilesTo:
?query

forResult:
?result

4
statement(return(?e))

5
internalStatementUnderInterpretation:

?interpretation
6

compilesTo:
<?result

equals:
returnStatement(?baseExpression)|?expressionQuery>

7
forResult:

?result
if

8
not(?interpretation

isControlFlowInterpretation),
9

not(?e
equals:

expression(epsilon)),
10

?baseExpression
isNewQuotedVariable,

11
?e

expressionUnderInterpretation:
?interpretation

12
compilesTo:

?expressionQuery
13

forResult:
?baseExpression

14
statement(return(?e))

15
internalStatementUnderInterpretation:

?interpretation
16

compilesTo:
?query

17
forResult:

?result
if

18
?interpretation

controlFlowInterpretationHasFlowContext:
?sContext

andToBeFound:
?,

19
?sContext

equals:
contextInTemplate(?flow,?nodesToFollow,<?baseExpression|?extendedNodesToFollow>,?nodesToStayAhead)

20
not(?e

equals:
expression(epsilon)),

21
?baseExpression

isNewQuotedVariable,
22

?eContext
equals:

contextInTemplate(?flow,?nodesToFollow,?extendedNodesToFollow,<?result|?nodesToStayAhead>),
23

?expressionInterpretation
controlFlowInterpretationHasFlowContext:

?eContext
andToBeFound:

[true],
24

?e
expressionUnderInterpretation:

?expressionInterpretation
25

compilesTo:
?expressionQuery

26
forResult:

?baseExpression,
27

append(?expressionQuery,<?result
equals:

returnStatement(?baseExpression)>,?query)

Figu
re

4.14:O
p

en
im

p
lem

en
tation

ofth
e

tran
slation

alsem
an

tics
for

a
tem

p
late

retu
rn

statem
en

t.

4.7. Conclusion

termines the conditions in the tail of the condition list. For the template term
in Figure 4.7, the two remaining rules in Figure 4.14 are considered eventually.
They specify the translational semantics of a return statement. The callers of
the internalStatementUnderInterpretation:compilesTo:forResult: will
generate conditions that quantify over the statements in the program representa-
tion. The conditions generated by these rules further constrain candidate state-
ments to return statements:

• The first rule is applicable under the syntactic and lexical interpretations.
Note how it introduces a new quoted variable ?baseExpression for the
operand of the return statement. In the generated query, it is bound at run-
time by unifying the statement from the program representation with a com-
pound term (i.e. a domain-specific unification). The base program operand
is required to unify with the result of the translation of the template operand.
The translational semantics does not refer to any program analysis this may
require. Their details are hidden by the domain-specific unification proce-
dure.

• The second rule is applicable under the control flow interpretation. It is com-
plicated because it has to specify the contexts of the return statement and its
operand in the control flow. It specifies that the operand has to precede the
return statement in the control flow ?flow. The nodes the operand has to
follow in the flow, ?nodesToFollow, are determined by the callers of the rule.
The translation of the template operand can further refine these nodes to
?extendedNodesToFollow. In the flow, the operand has to stay ahead of the
return statement: <?result | ?nodesToStayAhead>. The return statement, on
the other hand, has to follow the operand and the nodes the operand had to
follow: <?baseExpression | ?extendedNodesToFollow>. The nodes it has to stay
ahead, nodesToStayAhead, are determined by the callers of the rule.

We will further clarify the translational semantics of the example-based inter-
pretations in Chapter 7. The rules depicted in this section illustrate that the imple-
mentation language for additional example-based interpretations is close to the
pattern specification language. It results in relatively descriptive specifications of
the translational semantics for a template term (w.r.t. the Visitor implementations
of other LMP tools that feature concrete syntax [LWL+05a, CGM06b]). Users are ex-
posed to details such as quoted variables and control flow contexts, but are shielded
from intricate program analysis results by the domain-specific unification proce-
dure. Different abstraction levels are appropriate for different customization tasks.

4.7 Conclusion

In this chapter, we defined our example-driven approach to pattern detection in
terms of four cornerstones and their inter-dependencies: logic meta programming,
example-based specifications, domain-specific unification, fuzzy logic and open
implementations. Section 1.3 provides a more abstract overview of our approach
that is structured according to the dimensions in the design of a pattern detection
tool (cf. Section 2.4).

Cornerstone: logic meta programming is the founding cornerstone of our ap-
proach. It adopts logic formulas for the specification of a pattern. This merely

107

4. AN EXAMPLE-DRIVEN APPROACH TO PATTERN DETECTION

requires a reification of the program representation to terms in the formal-
ism. Executing a proof procedure establishes whether program elements ex-
hibit the characteristics specified in a formula. The declarative nature and
expressiveness of the resulting logic programs facilitates their use as descrip-
tive pattern specifications.

We identified two shortcomings of logic meta programming that lead to oper-
ational and convoluted specifications: quantification over and unification of
reified program representation elements. An example of such a specification
is the one for the getter method depicted in Figure 4.3. These shortcomings
are remedied by the example-based specification and domain-specific unifi-
cation cornerstones respectively.

Cornerstone: example-based specifications integrates source code excerpts in
the concrete syntax of the program under investigation within logic formulas.
We refer to these extra-logical terms as template terms. An example-based
specification of a pattern corresponds to the prototypical implementation of
its essential machine-verifiable characteristics. Multiple occurrences of logic
variables are the primary means to express variation within a template term,
but template and logic terms can be connected through logic connectives
(e.g. conjunction, disjunction, negation).

The detection mechanism realizes the example-based semantics of a tem-
plate term. The same code excerpt can exemplify both non-behavioral as
well as behavioral characteristics of the prototypical implementation of a
pattern. The detection mechanism has to account for all possibilities. Sev-
eral example-based interpretations are therefore considered for each tem-
plate term.

Cornerstone: domain-specific unification treats reified program elements differ-
ent from other terms. Unifying two reified program elements can succeed
where the general-purpose unification procedure fails. Example-based and
logic meta programming specifications share the same unification proce-
dure. Clearly, variable bindings need to be consistent across the conventional
terms and template terms in a specification.

To enable the natural use of unification to quantify over the program rep-
resentation, a reified program element unifies with a structurally equivalent
compound term —even if the reified version of the program element is not
a compound term. To recognize implicit variation points (i.e. different im-
plementations of the same pattern characteristic), the domain-specific pro-
cedure consults whole-program data flow analyses when unifying individual
reified program elements. A semantic analysis [ASU86] ensures correctness.
Scoping rules and import declarations are taken into account. A points-to
analysis [Hin01] enhances identification efficacy. Syntactically differing ex-
pressions unify if their values may alias. Users benefit from the results of
these analyses without being exposed to their intricate details.

Cornerstone: fuzzy logic provides our detection mechanism a theoretical founda-
tion to rank the results it reports. Each result is quantified by the extent to
which it exhibits the characteristics in a specification. The smaller this ex-
tent, the more likely the reported instance is a false positive. This ranking
facilitates assessing a large amount of results.

108

4.7. Conclusion

Fuzzy logic is a logic of quantified truth. Concretely, our detection mecha-
nism associates truth degrees with each result it reports. For the logic terms
and template terms in a specification, the truth degree of a result is bounded
respectively by the example-based interpretation and logic rules used in their
resolution.

The properties of the result itself further refine this upper bound. Solutions
are ranked lower if they required a domain-specific unification that could in-
troduce false positives (due to imprecision in the program analyses the uni-
fication relies on). To this end, unification degrees are associated with each
unification. In addition, results for template terms are ranked lower if they
exhibit more characteristics than are exemplified by the template.

Cornerstone: open implementation crosscuts the implementations of the other
cornerstone. Each cornerstone presents a meta-interface through which
existing search strategies of the detection mechanism can be altered and
user-defined ones can be implemented. The meta-interface gives clients
control over the search strategies without exposing them to all of their
implementation details. The meta-interfaces of each cornerstone are in
decreasing order of abstraction: logic rules implementing the predicate
underInterpretation:compilesTo:forResult: (example-based speci-
fication), Smalltalk methods implementing unifyWith:inEnv: for reified
program elements complemented by an API to query whole-program analy-
sis results (domain-specific unification), quantifying over and manipulating
implementation objects through the hybrid language characteristic of SOUL

(fuzzy logic and logic meta programming cornerstones). Because the latter
exposes users to many implementation details, defining a meta-interpreter
that implements a custom search strategy is often a better option at this ab-
straction level.

Having introduced and motivated the cornerstonse summarized above, the
chapter outlined their implementations in our research prototype as a suggestion
for their concrete instantiation in a pattern detection tool. Figure 4.1 presents an
architectural overview. Our example-driven approach fulfills all of the criteria for a
general-purpose pattern detection tool identified in Section 2.6. Table 4.1 lists the
individual contributions to our approach in terms of the criteria it helps to fulfill.

109

C
H

A
P

T
E

R

5
INSTANTIATING THE LOGIC META

PROGRAMMING CORNERSTONE

This chapter discusses the instantiation of the logic meta programming
cornerstone in the prototype that we will use to validate our example-
driven approach to pattern detection. The overview chapter introduced
and motivated this founding cornerstone. Its instantiation consists of
the Smalltalk-Prolog hybrid SOUL and the CAVA predicate library. The
latter is a technical contribution of this dissertation. We briefly discuss
the syntax and semantics of the former and clarify the implementation
of key predicates in the latter. We demonstrate the support provided by
logic meta programming for each of the previously identified pattern
characteristics.

5.1 The SOUL Logic Meta Programming Language

The Smalltalk Open Unification Language (SOUL) [Wuy98, Wuy01, Sou08] is a logic
programming language implemented in —and tightly integrated with— Smalltalk
[GR83]. SOUL programs consist of both logic conditions and Smalltalk expressions
which transparently exchange Smalltalk objects through logic variables. This lin-
guistic symbiosis [GWDD06] already renders SOUL interesting by itself. A meta
programming task can be implemented in the paradigm that lends itself most fit-
tingly to the task at hand, even resorting to either the imperative or the declarative
paradigm for individual sub-tasks.

The ability to embed Smalltalk expressions in logic rules only detracts from the
declarative interpretation of a SOUL program if the embedded expressions are not
side-effect free. Although sometimes indispensable, embedding Smalltalk expres-
sions with side-effects exposes the operational interpretation of a SOUL program.
To a lesser extent, the same is also true for Smalltalk expressions in conditions of
a logic rule that depend on each other’s outcome through a shared logic variable.
Here, the evaluation order of the conditions is made explicit.1

1For the second condition in the query “if ?x equals: [1], ?y equals: [?x + 2]” to bind

111

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

All in all, this situation is similar to the input-output predicates of Prolog. Used
wisely, SOUL’s hybrid language characteristic will not detract from its declarative
nature. We therefore consider SOUL as good an instantiation of logic meta pro-
gramming as approaches centered around Prolog. After all, SOUL programs can
still opt to forgo Smalltalk completely.

5.1.1 Syntax and Semantics in a Nutshell

We briefly introduce the syntax and semantics of SOUL in an informal manner. We
restrict our discourse to the features that are necessary to understand the code
snippets in this dissertation. For a less dense introduction, we refer the reader to
the SOUL website [Sou08]. We stress that the version of SOUL described here differs
from the one in the earliest papers.

Smalltalk Terms

For predicates, the Smalltalk keyword syntax was adapted to accommodate linguis-
tic symbiosis [DGJ04]. For compound terms, we will retain the traditional notation
(i.e. a functor symbol followed by its arguments). The following SOUL snippet de-
picts a logic goal that consists of the binary predicate contains:/2 and two terms.
The first term is the logic variable ?collection and the second is a so-called Smalltalk
term:

1 ?collection contains: [1+3]

Such Smalltalk terms are delimited by square brackets and can contain
logic variables wherever Smalltalk variables are allowed. Examples include
[3.4 asInteger], [Object] and [?x > ?y]. Logic lists are demarcated by angle
brackets. Examples include the empty list <>, the list with three elements <1,2,3>
and every list with head ?h and tail ?t: <?h|?t>. The expressions within Smalltalk
terms are evaluated as standard Smalltalk, after logic variables have been substi-
tuted by the values they are bound to. As alluded to in the introduction, this mech-
anism is rather unsophisticated. In case ?x has no binding, the Smalltalk VM will
send the message doesNotUnderstand: to the Smalltalk object that implements
the variable (i.e. a Soul.Variable instance). A Smalltalk term (e.g. the argument
of a condition) unifies with another term (e.g. the parameter of the head of a rule) if
its expression evaluates to a value that unifies with the term. A Smalltalk term can
also be used as a condition on its own, in which case its expression has to evaluate
to the singleton True in order for resolution to succeed. In practice, it is not nec-
essary to know when the expression in a Smalltalk term is evaluated unless it has
side-effects.2

The hybrid language characteristic of SOUL influences the design of its logic li-
braries. Predicate contains:/2, for instance, is equivalent to the member/2 predi-
cate of Prolog. In addition to the membership relation between logic lists and their
elements, contains:/2 captures the membership relation between Smalltalk col-
lections and their elements. Variable bindings ?x → 1, ?x → 3 and ?x → 5 are the
solutions to the following query:

?y to 3, for instance, the first condition must have already bound ?y to 1. Section 5.1.1 introduces the
syntax of SOUL.

2Although carelessly crafted SOUL programs also incur a performance overhead from the repeated
unification of side-effect free Smalltalk terms.

112

5.1. The SOUL Logic Meta Programming Language
5.1. The SOUL Logic Meta Programming Language

1 +?collection contains: ?element if
2 ?iterator equals: [?collection iterator],
3 [?iterator hasNext],
4 ?iterator iteratorPointsTo: ?element

5 +?iterator iteratorPointsTo: ?element if
6 ?element equals: [?iterator next].
7 +?iterator iteratorPointsTo: ?element if
8 [?iterator hasNext],
9 ?iterator iteratorPointsTo: ?element

Figure 5.1: Linguistic symbiosis with Java in the implementation of contains:/2.

necessary to know when the expression in a Smalltalk term is evaluated unless it
has side-effects.2

The hybrid language characteristic of SOUL influences the design of its logic li-
braries. Predicate contains:/2, for instance, is equivalent to the member/2 predi-
cate of Prolog. In addition to the membership relation between logic lists and their
elements, contains:/2 captures the membership relation between Smalltalk col-
lections and their elements. Variable bindings ?x → 1, ?x → 3 and ?x → 5 are the
solutions to the following query:

1 if [1 to: 5 by: 2] contains: ?x

Linguistic Symbiosis with Java

The JAVACONNECT [Jav] library allows a Smalltalk application to invoke methods
on any Java object in a running JVM instance. Java objects can be referenced
through Smalltalk proxies. We have combined the existing symbiosis between
SOUL and Smalltalk with the symbiosis between Smalltalk and Java provided by
JAVACONNECT. This transitively establishes a symbiosis between SOUL and Java.

Figure 5.1 illustrates the resulting symbiosis. It depicts an additional clause for
the contains:/2 predicate of the SOUL standard library. This clause quantifies
over all elements in a Java collection. The pre-existing clauses already quantified
transparently over logic lists and Smalltalk collections.

On line 2, ?iterator is bound to a Smalltalk proxy that wraps a Java iterator
and forwards messages to it. Examples of such messages include iterator and
hasNext. Note that line 2 introduces no choice-points and commits to a single
iterator —recalling that care must be taken when using Smalltalk terms with side-
effects. The equals:/2 predicate is implemented by the fact ?x equals: ?x. It
is equivalent to the =/2 operator in Prolog.

2Although carelessly crafted SOUL programs also incur a performance overhead from the re-
peated unification of side-effect free Smalltalk terms.

125

5.1. The SOUL Logic Meta Programming Language

1 +?collection contains: ?element if
2 ?iterator equals: [?collection iterator],
3 [?iterator hasNext],
4 ?iterator iteratorPointsTo: ?element

5 +?iterator iteratorPointsTo: ?element if
6 ?element equals: [?iterator next].
7 +?iterator iteratorPointsTo: ?element if
8 [?iterator hasNext],
9 ?iterator iteratorPointsTo: ?element

Figure 5.1: Linguistic symbiosis with Java in the implementation of contains:/2.

necessary to know when the expression in a Smalltalk term is evaluated unless it
has side-effects.2

The hybrid language characteristic of SOUL influences the design of its logic li-
braries. Predicate contains:/2, for instance, is equivalent to the member/2 predi-
cate of Prolog. In addition to the membership relation between logic lists and their
elements, contains:/2 captures the membership relation between Smalltalk col-
lections and their elements. Variable bindings ?x → 1, ?x → 3 and ?x → 5 are the
solutions to the following query:

1 if [1 to: 5 by: 2] contains: ?x

Linguistic Symbiosis with Java

The JAVACONNECT [Jav] library allows a Smalltalk application to invoke methods
on any Java object in a running JVM instance. Java objects can be referenced
through Smalltalk proxies. We have combined the existing symbiosis between
SOUL and Smalltalk with the symbiosis between Smalltalk and Java provided by
JAVACONNECT. This transitively establishes a symbiosis between SOUL and Java.

Figure 5.1 illustrates the resulting symbiosis. It depicts an additional clause for
the contains:/2 predicate of the SOUL standard library. This clause quantifies
over all elements in a Java collection. The pre-existing clauses already quantified
transparently over logic lists and Smalltalk collections.

On line 2, ?iterator is bound to a Smalltalk proxy that wraps a Java iterator
and forwards messages to it. Examples of such messages include iterator and
hasNext. Note that line 2 introduces no choice-points and commits to a single
iterator —recalling that care must be taken when using Smalltalk terms with side-
effects. The equals:/2 predicate is implemented by the fact ?x equals: ?x. It
is equivalent to the =/2 operator in Prolog.

2Although carelessly crafted SOUL programs also incur a performance overhead from the re-
peated unification of side-effect free Smalltalk terms.

125

Figure 5.1: Linguistic symbiosis with Java in the implementation of contains:/2.

1 if [1 to: 5 by: 2] contains: ?x

Linguistic Symbiosis with Java

The JAVACONNECT [Jav] library allows a Smalltalk application to invoke methods on
any Java object in a running JVM instance. Java objects can be referenced through
Smalltalk proxies. We have combined the existing symbiosis between SOUL and
Smalltalk with the symbiosis between Smalltalk and Java provided by JAVACON-
NECT. This transitively establishes a symbiosis between SOUL and Java.

Figure 5.1 illustrates the resulting symbiosis. It depicts an additional clause for
the contains:/2 predicate of the SOUL standard library. This clause quantifies
over all elements in a Java collection. The pre-existing clauses already quantified
transparently over logic lists and Smalltalk collections.

On line 2, ?iterator is bound to a Smalltalk proxy that wraps a Java iterator
and forwards messages to it. Examples of such messages include iterator and
hasNext. Note that line 2 introduces no choice-points and commits to a single
iterator —recalling that care must be taken when using Smalltalk terms with side-
effects. The equals:/2 predicate is implemented by the fact ?x equals: ?x. It is
equivalent to the =/2 operator in Prolog.

Mode Annotations

SOUL supports mode annotations on variables in the head of a rule: the annota-
tions on +?var and -?var indicate that the rule is only applicable when ?var is bound
and unbound respectively. Such annotations allow specializing the proof proce-
dure for a predicate to its context of use. Predicate isMethodDeclaration/1 from
the CAVA library, for instance, can be used to quantify over all method declarations.
It can also be used to check whether its argument is a method declaration. Check-
ing whether the argument unifies with one of the method declarations would be
inefficient for the second use. The implementation therefore discerns these two
uses through mode annotations:

1 -?m isMethodDeclaration if
2 [Soul.MLI forJava allMethodDeclarations] contains: ?m
3 +?m isMethodDeclaration if
4 [?m isKindOf: JavaWorld.org.eclipse.jdt.core.dom.MethodDeclaration]

The Smalltalk expression Soul.MLI forJava evaluates to the meta level inter-
face for Java, which is the central access point to the reified program representa-
tion. Note that the reified version of a method declaration is the method declara-
tion itself (i.e. an instance of org.eclipse.jdt.core.dom.MethodDeclaration
from the DOM of the Eclipse JDT Core Component [Ecl08a]). Linguistic symbiosis
with Java allows the CAVA library (cf. Section 5.2) to forgo a transcription to com-

113

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

pound terms of org.eclipse.jdt.core.dom.ASTNode instances in its identity-
based reification (cf. Section 4.4.2).

Variable Argument Terms

Other deviations from Prolog include support for variable argument compound
terms (e.g. term or@(?args) as indicated by the @ that precedes its argument
list). Unifying the compound term max(1,4,?x) with the variable argument
compound term ?functor@(?args), dissects the compound term in its functor
?functor→max and arguments ?args→<1,4,?x>3.

Functor Variables

As illustrated above, logic variables can be used as functor and predicate symbols
in SOUL. This higher-order syntax facilitates a limited form of higher-order pro-
gramming. The higher-order map/2 predicate, for instance, can be implemented
as follows:4

1 map(<>,<>,?).
2 map(<?e1|?rest1>,<?e2|?rest2>,?predicate) if
3 ?predicate(?e1,?e2),
4 map(?rest1,?rest2,?predicate)

5 if map(<?x,2>,<1,?y>,#equals:)
6 if map(<1,2>,?list,[[:each | each + 3]])

The binding for the ?predicate variable determines the actual goal that is resolved
on line 3. Evaluating the query on line 5 results in bindings ?x→1 and ?y→2. Key-
word symbols can be used as functor symbols if the arity corresponds. Through
such constructions, the translational semantics of example-based interpretations
have been implemented in a generic manner (cf. Section 7.5). As demonstrated by
the query on line 6 above, SOUL transparently supports instances of BlockClosure
in the functor position on line 3 as well. In keeping with its hybrid characteristic, it
will bind ?list to the list <4,5>.

The next section presents a more formal account of the semantics through a
meta-interpreter for SOUL.

5.1.2 Vanilla Meta-Interpreter for SOUL

Apart from minor deviations related to linguistic symbiosis, the proof procedure
employed by SOUL is the same as the one employed by Prolog: SLDNF-resolution
[Rob65, EK76]. Figure 5.2 depicts a vanilla meta-interpreter for SOUL. It differs only
slightly from the traditional one for Prolog. We will revisit the meta-interpreter to
illustrate how the fuzzy logic and example-based specification cornerstones extend
SOUL. Figure 6.1, for instance, depicts the meta-interpreter corresponding to the
fuzzy variant of SOUL.

On lines 1–5, the meta-interpreter demonstrates how SOUL resolves Smalltalk
terms. On line 2, variable &goal is bound to a Soul.SmalltalkTerm instance. If

3This is equivalent to max(1,4,X)=..[Functor|Arguments] in Prolog.
4 Using predicate call/n on line 3 would be more appropriate. This would support a goal

map([3,1],[X,Y],nth1([a,b,c,d])) that binds X →c and Y →a. Predicate nth1/3 expects three ar-
guments.

114

5.1. The SOUL Logic Meta Programming Language

1 &goal isProven if
2 [&goal isKindOf: Soul.SmalltalkTerm],!,
3 getEnv(?env,?), envLookup(&goal,?gpointer),
4 ?value equals: [?gpointer term evaluateIn: ?env startAt: ?gpointer envIndex],
5 [?value = true].

6 ?goal isProven if
7 ?goal equals: and@(?goals),!,?goals isProvenListOfGoals.
8 ?goal isProven if
9 ?goal equals: or@(<&h|?t>),not(?t equals: <>),!,

10 or(&h isProven,or@(?t) isProven)
11 ?goal isProven if
12 ?goal equals: or(&h),!,&h isProven
13 ?goal isProven if
14 ?goal equals: not@(?goals),!,not(and@(?goals) isProven).

15 ?goal isProven if
16 ?goal isHeadOfRule: ? withBody: ?body,
17 ?body isProvenListOfGoals.

18 <> isProvenListOfGoals.
19 <&g|?r> isProvenListOfGoals if
20 &g isProven,
21 ?r isProvenListOfGoals

Figure 5.2: The vanilla meta-interpreter for SOUL.

a Smalltalk term is unified with a variable of the form &var rather than the regular
?var, the variable is bound to the Smalltalk implementation of the term rather than
the value of the expression within the term.

Lines 3–4 perform the actual evaluation of the expression within the Smalltalk
term. Its value is bound to variable ?value. It is computed by method
evaluateIn:startAt: which evaluates an expression in which a single Smalltalk
variable substitutes for all occurrences of a logic variable in the term. Each
Smalltalk variable is assigned the binding of their corresponding logic variable in
the current environment ?env. A starting index in this environment is needed be-
cause SOUL optimizes variable lookup through lexical addressing. The reflective
predicate envLookup/2 binds its second argument to a wrapper (?gpointer) for the
Smalltalk object that implements the binding for its first argument (?gpointer term)
and its lexical index in the current environment (?gpointer envIndex).

Line 5 demonstrates that in order for the resolution of a Smalltalk term to suc-
ceed, its expression must evaluate to true.5 The meta-interpreter for the fuzzy vari-
ant of SOUL will differ on this line.

Lines 6–14 clarify the semantics of SOUL’s variable-argument connectives
and/n, or/n and not/n.

Lines 15–21 illustrate resolution. To resolve a goal ?goal, a list of goals ?goals is
resolved that corresponds to the body of a rule with a conclusion that unifies with
?goal. Some essential ingredients of the proof procedure are not made explicit by
the meta-interpreter. Candidate rule selection, backtracking and cuts are handled
as in Prolog.

5Note that the symbol true is not assigned a special meaning in Soul. The query “if true
isProven” will fail because there is no corresponding logic fact true/0. In contrast, the query “if
[true] isProven” will succeed because of line 5 of the meta-interpreter.

115

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

5.2 CAVA: Predicates for Reasoning about Java Programs

We complemented the SOUL evaluator with a library of predicates for reasoning
about Java programs: the CAVA library. Two types of predicates can be discerned:
reification predicates and basic reasoning predicates.

In the LMP approach to pattern detection, the program representation is reified
as values in the logic language such that variables can range over its information.
The reification predicates implement relations that quantify over the reified pro-
gram representation described in Section 4.2.3. This representation contains syn-
tactic, structural, control flow and data flow information about the Java program.
The basic reasoning predicates use the reification predicates to implement relations
that are not explicit in the program representation. They can be used in specifica-
tions to implement more advanced relations that quantify over all instances of a
pattern.

The next section details the reification predicates. The basic reasoning predi-
cates are detailed in Section 5.2.2.

5.2.1 Reification Predicates

Our LMP instance uses an identity-based reification (cf. Section 4.4.2). This means
that unifying logic terms are reified versions of the same AST node.6 Linguistic
symbiosis moreover enables forgoing the prevalent reification to compound terms:
the reified version of an AST node (i.e. an org.eclipse.jdt.core.dom.ASTNode
instance) is the AST node itself.

At any point in the proof procedure, this identity-based reification to objects
renders reconstructing the actual AST node from its reified counterpart trivial. The
AST node is the term (i.e. the object) at hand. The node’s context within the pro-
gram can be obtained through message sends. This facilitates querying whole-
program analyses for the results of individual AST nodes —for instance, in the
domain-specific unification procedure (cf. Section 6.7). Integration with other
tools in the Smalltalk environment is facilitated as well. Query results consist of
objects that can be used directly. The inspector windows on the right side of Fig-
ure 4.12, for instance, are standard tools in the Smalltalk environment.

The following query illustrates this reification:

1 if ?m isMethodDeclaration,
2 [?m modifiers isEmpty],
3 ?m methodDeclarationHasModifiers: ?list

Its solutions consist of methods that have been declared without modifiers.
Upon backtracking over the first condition, ?m gets bound successively to each
org.eclipse.jdt.core.dom.MethodDeclaration instance in the program rep-
resentation. Predicate isMethodDeclaration/1 is one of the reification pred-
icates defined in the CAVA library. The Smalltalk term on the second line fil-
ters out all method declarations that have modifiers. Message modifiers re-
turns an instance of the Java list subclass ASTNode$NodeList (an innerclass of
org.eclipse.jdt.core.dom.ASTNode). It answers message isEmpty with a Java
boolean. Through an automatic conversion to the equivalent Smalltalk boolean,
this answer determines whether the second condition succeeds.

6Provided the terms unify according to the general-purpose unification procedure.

116

5.2. CAVA: Predicates for Reasoning about Java Programs

Figure 5.3: AST node meta-information enables generating reification predicates.

Predicate methodDeclarationHasModifiers:/2, used on the third line
above, is another reification predicate. It reifies the relation between a reified
method declaration and its reified modifier list. Note that the modifiers list ?list
of the method declaration is not converted to a logic list, but kept as an in-
stance of ASTNode$NodeList. In other words, adding an additional condition [?m
modifiers = ?list] would not change the results for the query.

The CAVA library defines reification predicates for the relations among the syn-
tactic, structural and control flow information in the program representation.7 The
following sections detail these predicates.

Reification Predicates for Syntactic Information

Abstract syntax trees in the program representation stem from the DOM of the
Eclipse JDT Core Component [Ecl08a]. Each node in these trees is an instance of an
org.eclipse.jdt.core.dom.ASTNode subclass. In Figure 2.2, all AST nodes are
depicted with their class and the concrete syntax elements they represent.

For each subclass of ASTNode, the CAVA library provides a unary predicate
(e.g. isMethodDeclaration/1) that reifies all nodes of this kind in an Eclipse
workspace. Binary predicates (e.g. methodDeclarationHasModifiers/2) reify
the relations between each node and its children.

The reification predicates for syntactic information are generated automati-
cally. This is possible because an API for structural reflection is implemented on
the entire ASTNode hierarchy. Figure 5.3 illustrates the methods that provide in-
formation about the structure of the AST. The second condition retrieves a collec-
tion of property descriptors that describe the children of a MethodDeclaration
node. The third condition retrieves the name of such a property descriptor ?p.
The fourth condition binds ?m to a method declaration node (i.e. an instance of
the class ?nodeKind bound by the first condition). The last condition binds ?child
to the node’s child that corresponds to descriptor ?p. The query quantifies in a

7The results of the data flow analyses are not reified. This precludes them from popping up in solu-
tions to a logic query (criterion CDM1). They will be used by the domain-specific unification procedure
instead.

117

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

generic manner over all immediate children of all method declaration nodes. The
first column of the results depicts all property descriptors for method declaration
nodes. The second column depicts the values for the ’parameters’ property (i.e. the
child corresponding to the parameter list) of all method declarations in the Eclipse
workspace.

The actual implementation of the reification predicates relies on the domain-
specific unification of a reified program element with a structurally equivalent
compound term (cf. Section 4.4):

1 ?m methodDeclarationHasModifiers: ?modifiers if
2 ?m isMethodDeclaration,
3 ?m equals: methodDeclaration(?,?modifiers,?,?,?,?,?,?,?)

The domain-specific unification procedure invokes the reflective API of the
ASTNode hierarchy to map AST nodes to structurally equivalent compound terms.
This leaves its implementation and the implementation of the reification predi-
cates less brittle to changes in the parser and the language specification. The reifi-
cation predicates evolve with the syntactic information they reify.

Reification Predicates for Structural Information

Our program representation includes structural information provided by the Java
Model of the Eclipse JDT Core Component [Ecl08a]. 8 Figure 2.3 depicts the
structural information available for a project DissertationExample in the Eclipse
workspace. It offers information about the configuration of the project in the
Eclipse workspace: its compilation units (i.e. source files), its compiled classes, the
libraries it references, etc. The compiler needs this information to build the project.
We use the same information to launch the data flow analyses of the program rep-
resentation.

Structural information is also available for the types and methods declared
within the project. Type Example is one of the types declared in compilation unit
Example.java. Whether or not a type or method has a binary or source decla-
ration is abstracted from. Note that the structural information does not include
abstract syntax trees and is too coarse-grained to reconstruct the complete AST of
the program.

The CAVA library provides predicates that reify the elements
in the structural information and their relations. Predicate
isTypeWithFullyQualifiedName:/2, for instance, reifies the relation be-
tween a type and its fully qualified name. Note that the exact binding for ?t in
“?t isTypeWithFullyQualifiedName: [’java.lang.Thread’]” depends on
the configuration of the project (i.e. the version of the standard library that is
referenced by the project).

8Structural information can be derived from syntactic information. The logic rules that implement
the extends:/2 predicate in Figure 4.13, for instance, derive a type hierarchy from type declaration
AST nodes. However, the AST for the declaration of a type is not always available (e.g. types imported
from binary packages). Predicate typeDeclarationForType:/2 (on lines 3 and 6 of the extends:/2
implementation) fails on such types. It is therefore better to quantify over the structural information in
the program representation.

118

5.2. CAVA: Predicates for Reasoning about Java Programs
CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 132

class Composite extends Component {
public void aceptVisitor(ComponentVisitor v) {

Iterator i = elements.iterator();
while (i.hasNext()) {

Component comp = (Component) i.next();
comp.aceptVisitor(v);

}
}

}

class Leaf2 extends Component {
public int value;
public void a() { c(); }
public void b() { d(); }
public void c() { System.out.println("c"); }
public void c() { System.out.println("d"); }
public void aceptVisitor(ComponentVisitor v) {

v.visitLeaf2(this);
{ a(); b(); }

}
}

class ComponentVisitor {
public void visitLeaf1(Component c2) { .. }
public void visitLeaf2(Component c2) {

System.out.println("A visitor is visiting a leaf2.");
}

}

class SumComponentVisitor extends ComponentVisitor
public void visitLeaf2(Component c2) {

super.visitLeaf2(c2);
Leaf2 l2 = (Leaf2)c2;
sum = sum + l2.value;

}

5.3.6 Basic Reasoning Predicates

CAVA provides basic reasoning predicates that use the reification predicates de-
fined above. They implement relations between program elements that are not
explicit in the program representation.

Basic reasoning predicate isChildOf:/2, for instance, can be used to traverse
ASTs. 8 It is implemented by the following rules:

1 ?term isChildOf: ?functor@(?args) if
2 ?args contains: ?child, ?term isChildOf: ?child
3 ?term isChildOf: ?term if
4 not([?term isKindOf: JavaWorld.org.eclipse.jdt.core.dom.ASTNode_NodeList])

8Note that isChildOf:/2 does not manage a traversal context. The context within the
AST of each returned node can be queried by invoking methods on the node (e.g. method
parentOfKind:avoiding:). Of course, there is a computational overhead associated with reverse
tree walks that follow each descend into a node. The alternative is using a higher-order traver-
sal predicate that passes its traversal context to user-provided predicate arguments (e.g. predicate
traverseMethodParseTree(?method,?result,?found,?process) in Figure 4.5).

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 132

class Composite extends Component {
public void aceptVisitor(ComponentVisitor v) {

Iterator i = elements.iterator();
while (i.hasNext()) {

Component comp = (Component) i.next();
comp.aceptVisitor(v);

}
}

}

class Leaf2 extends Component {
public int value;
public void a() { c(); }
public void b() { d(); }
public void c() { System.out.println("c"); }
public void c() { System.out.println("d"); }
public void aceptVisitor(ComponentVisitor v) {

v.visitLeaf2(this);
{ a(); b(); }

}
}

class ComponentVisitor {
public void visitLeaf1(Component c2) { .. }
public void visitLeaf2(Component c2) {

System.out.println("A visitor is visiting a leaf2.");
}

}

class SumComponentVisitor extends ComponentVisitor
public void visitLeaf2(Component c2) {

super.visitLeaf2(c2);
Leaf2 l2 = (Leaf2)c2;
sum = sum + l2.value;

}

5.3.6 Basic Reasoning Predicates

CAVA provides basic reasoning predicates that use the reification predicates de-
fined above. They implement relations between program elements that are not
explicit in the program representation.

Basic reasoning predicate isChildOf:/2, for instance, can be used to traverse
ASTs. 8 It is implemented by the following rules:

1 ?term isChildOf: ?functor@(?args) if
2 ?args contains: ?child, ?term isChildOf: ?child
3 ?term isChildOf: ?term if
4 not([?term isKindOf: JavaWorld.org.eclipse.jdt.core.dom.ASTNode_NodeList])

8Note that isChildOf:/2 does not manage a traversal context. The context within the
AST of each returned node can be queried by invoking methods on the node (e.g. method
parentOfKind:avoiding:). Of course, there is a computational overhead associated with reverse
tree walks that follow each descend into a node. The alternative is using a higher-order traver-
sal predicate that passes its traversal context to user-provided predicate arguments (e.g. predicate
traverseMethodParseTree(?method,?result,?found,?process) in Figure 4.5).

?i1

?i2

?i3

?i3

?i3

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 134

class Composite extends Component {
public void aceptVisitor(ComponentVisitor v) {

Iterator i = elements.iterator();
while (i.hasNext()) {

Component comp = (Component) i.next();
comp.aceptVisitor(v);

}
}

}

class Leaf2 extends Component {
public int value;
public void a() { c(); }
public void b() { d(); }
public void c() { System.out.println("c"); }
public void c() { System.out.println("d"); }
public void aceptVisitor(ComponentVisitor v) {

v.visitLeaf2(this);
{ a(); b(); }

}
}

class Leaf1 extends Component {
public int value;
public void aceptVisitor(ComponentVisitor v) {

System.out.println("A leaf1 is accepting a visitor.");
ComponentVisitor tempVisitor=v;
Leaf1 tempSelf=this;
tempVisitor.visitLeaf1(tempSelf);

}
}

class ComponentVisitor {
public void visitLeaf1(Component c2) {

System.out.println("A visitor is visiting a leaf1.");
}
public void visitLeaf2(Component c2) {

System.out.println("A visitor is visiting a leaf2.");
}

}

class SumComponentVisitor extends ComponentVisitor
public void visitLeaf2(Component c2) {

super.visitLeaf2(c2);
Leaf2 l2 = (Leaf2)c2;
sum = sum + l2.value;

}

5.3.6 Basic Reasoning Predicates

CAVA provides basic reasoning predicates that use the reification predicates de-
fined above. They implement relations between program elements that are not
explicit in the program representation.

Basic reasoning predicate isChildOf:/2, for instance, can be used to traverse
ASTs. 8 It is implemented by the following rules:

8Note that isChildOf:/2 does not manage a traversal context. The context within the

Figure 5.4: Illustrating reification predicates for control flow information.

Reification Predicates for Control Flow Information

The program representation includes an inter-procedural control flow graph
that is computed on-the-fly (cf. Section 2.5.3). We implemented a method
nextNodeToBeMatched on the ASTNode hierarchy. This method returns the node
that, at run-time, would be executed after the receiver. A collection of nodes is re-
turned in case the control flow splits after the receiver of nextNodeToBeMatched.
Among others, this is the case for polymorphic method invocations. Computing the
transitive closure of nextNodeToBeMatched enumerates all sequences of consec-
utively executed instructions (i.e. possible paths through the control flow graph).

The CAVA predicate inFlowOf:following:before:/4 reifies information
about the execution order of AST nodes by traversing the control flow graph. All
of its arguments, except the first, are input arguments. Figure 5.4 illustrates its use.
Solutions to the depicted query consist of three instructions ?i1, ?i2 and ?i3 that
may be executed consecutively at run-time. These instructions lie on the same
path through the control flow graph. Unspecified instructions are allowed on this
path (before, after and in between the specified instructions).

119

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

The path is computed by a depth-first traversal of the control flow graph. The
third condition binds ?i1 to the first instruction in the control flow graph of ?block.
Upon backtracking over this condition (e.g. because the binding for ?i1 is not a
method invocation as required by the fourth condition), ?i1 is bound to the next
instruction in the graph. In case there are multiple successors to a node (i.e. a
branch point in the graph), each path is followed completely until it is exhausted
(i.e. depth-first traversal). Backtracking over an exhausted path will return to the
latest branch point and start the traversal over a new path.

The fifth condition in the query explicitly requires ?i to be a branch point in the
graph: a method invocation that has multiple possible target method declarations
(i.e. due to late binding and polymorphism). Using the results from the points-to
analysis, these can be determined based on an approximation of the dynamic type
of the receiver (i.e. the dynamic type of all heap object approximations in its points-
to set) rather than its static type (e.g. class hierarchy analysis [DGC95]). In fact,
the precision of points-to analyses is often compared using the amount of virtual
method invocations they can resolve [LH06].

The first column of Figure 5.4 depicts the method invocation in
the flow of method Composite.aceptVisitor(ComponentVisitor)9

that could not be resolved completely. After this instruction, the con-
trol flow splits. One path corresponds to an invocation of method
Leaf1.aceptVsitor(SumComponentVisitor) while the other corresponds
to an invocation of method Leaf2.aceptVisitor(SumComponentVisitor). The
second column depicts a different binding for ?i2 on each path. Each binding
corresponds to a different super invocation in SumComponentVisitor. The third
column depicts string literals that are evaluated on the path after the invocation of
super.visitLeaf2(c2) (i.e. bindings for ?i3).

Each method invocation is followed once —even if the intra-procedural control
flow graph of the target method declaration has already been traversed. A method
invocation is not returned from until all paths through the target declaration have
been exhausted. The resulting analysis is therefore inter-procedural and context-
sensitive. Cycles in the graph are followed once. The maximum depth of the sim-
ulated call stack can be customized. In the query, the second condition limits the
stack to three invocations.

Compared to state of the art algorithms for evaluating regular path expressions
over control flow graphs (cf. Section 3.4), the CAVA predicates only perform straight-
forward graph traversals. The third condition in the query, for instance, does not
generate bindings for variables ?i2 and ?i3. If these variables were bound, however,
the predicate would backtrack to the latest branch point when they are encoun-
tered on a path. They represent nodes on the path to stay ahead, but the traversal
never checks whether they actually follow the bindings for its first argument.

5.2.2 Basic Reasoning Predicates

CAVA provides basic reasoning predicates that use the reification predicates intro-
duced above. They implement relations between program elements that are not
explicit in the program representation.

Basic reasoning predicate isChildOf:/2, for instance, can be used to traverse

9The spelling error is deliberate.

120

5.2. CAVA: Predicates for Reasoning about Java Programs

ASTs. 10 It is implemented by the following rules:

1 ?term isChildOf: ?functor@(?args) if
2 ?args contains: ?child, ?term isChildOf: ?child
3 ?term isChildOf: ?term if
4 not([?term isKindOf: JavaWorld.org.eclipse.jdt.core.dom.ASTNode_NodeList])

The rules rely on the domain-specific unification between an AST node and
a structurally equivalent compound term (cf. Section 4.4). Unifying an AST node
with the variable argument compound term ?functor@(?args) (cf. Section 5.1.1)
binds ?args to the children of the node. The first rule recurses over these children.
The second rule is the stop condition.11

Other basic reasoning predicates implement the relations between the syntac-
tic information and the structural information in the program representation. Con-
sider predicatesdeclaresType:/2 andextendsType:/2. The former implements
the relation between a type declaration AST node and the type it declares. The lat-
ter implements the relation between a type declaration AST node and the type it
extends. Such types stem from the structural rather than the syntactic informa-
tion in the program representation. This is because a type that is referred to in the
source code, may be declared in any of the byte code libraries included in the base
program. No syntactic information is available for such types (i.e. an AST node for
their declaration). In general, this is the case for the types declared in the java stan-
dard library (e.g. java.lang.Thread).

Figure 5.5 depicts the results for a query that uses predicate extendsType:/2
to quantify over all class declaration AST nodes (first condition) that extend an im-
mediate super type (second condition) for which no source code is available (third
condition). The third column depicts the class declaration itself. The first column
depicts all fully qualified names of these types (i.e. bindings for ?name). The second
column depicts the bindings for ?superNode. This is the AST node that corresponds
to the concrete syntax elements after the extends keyword in the class declaration.
Because of the identity-based reification of AST nodes, there are multiple entries in
the second column for each entry in the first column.

The rules that implement the extendsType:/2 predicate rely on the results of
the semantic analysis to map the AST node ?superNode (corresponding to the con-
crete syntax elements after the extends keyword) to a binary or source type ?type.
These results are necessary because the actual type referred to by the AST node de-
pends on its context of use in the program (e.g. the import declarations of the com-
pilation unit it resides in). The domain-specific unification procedure will unify
type declaration nodes with type nodes based on the same semantic analysis. This
way, users can benefit from its results without being exposed to its details.

10Note that isChildOf:/2 does not manage a traversal context. The context within the
AST of each returned node can be queried by invoking methods on the node (e.g. method
parentOfKind:avoiding:). Of course, there is a computational overhead associated with reverse
tree walks that follow each descend into a node. The alternative is using a higher-order traver-
sal predicate that passes its traversal context to user-provided predicate arguments (e.g. predicate
traverseMethodParseTree(?method,?result,?found,?process) in Figure 4.5).

11The elements in an ASTNode$NodeList are returned by the first rule. A NodeList instance unifies
with compounds nodeList(?elements).

121

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

Figure 5.5: Classes with an immediate super-type for which no AST is available.

5.3 LMP Support for Pattern Characteristics

Having introduced SOUL and the CAVA library, we will now demonstrate how this
instantiation of the LMP cornerstone supports each of the pattern characteristics
identified in Section 2.2:

Section 5.3.1 specifies and detects the syntactic characteristics of regular for-
statements that can be transformed to the enhanced for-statements intro-
duced in Java 1.5.

Section 5.3.2 specifies and detects the structural characteristics of application-
specific coding conventions.

Section 5.3.3 specifies and detects the control flow characteristics of the protocol
an API expects to be adhered to.

Section 5.3.4 specifies and detects the data flow characteristics of the aforemen-
tioned protocol and enhanceable for-statements.

We will point out the unification-related (cf. Section 4.4.2) and quantification-
related (cf. Section 4.2.2) shortcomings of regular LMP as manifested in these ex-
amples. The examples will therefore be revisited in future chapters to show how
these shortcomings are remedied by the other cornerstones of our approach.

We will furthermore specify the patterns with non-syntactic characteristics
twice. Once through the predicates that reify the information that supports them
(e.g. control flow characteristics through reification predicates for control flow in-
formation) and once through the reification predicates for syntactic information.
We will show that the latter specifications are far from descriptive, have recurring
parts and possibly lead to a lower recall and false positives —motivating the impor-
tance of explicit support for each characteristic.

122

5.3. LMP Support for Pattern Characteristics

5.3.1 Expressing Syntactic Characteristics

In this section, we specify and detect the syntactic characteristics of regular for-
statements that could be transformed to the enhanced for-statement introduced
in Java 1.5. To enumerate all elements in a collection, a regular for-statement that
iterates through the collection can be used:

1 for(Iterator i = list.iterator(); i.hasNext();) {
2 Object element = i.next();
3 }

Alternatively, such enumerations can be implemented using an enhanced for-
statement of the form:

1 for (Object element : list) {
2 }

The logic query at the top of Figure 5.6 specifies the syntactic characteristics
of potentially enhanceable for-statements. The query uses the reification predi-
cates for syntactic information (cf. Section 5.2.1) and the basic reasoning predicate
isChildOf:/2. The latter predicate implements an AST traversal of its second ar-
gument (cf. Section 5.2.2).

The first four lines of the query quantify over all for-statement AST nodes
and their expression, updaters and body children. They establish the binding
?condition →i.hasNext() for the enhanceable for-statement above. Lines 5–10
traverse the ?condition expression of the for-statement to retrieve an invocation
of method hasNext(). Variable ?hasNextReceiver is bound to the receiver of this
invocation. Requiring the invocation to be a child of the expression rather than the
expression itself, ensures that more potentially enhanceable statements are recog-
nized at the cost of necessitating a manual assessment of the solutions to the query.
Lines 11–16 require an invocation of method next() to reside in the body of the
for-statement or in one of its updaters.

The bottom-left corner of Figure 5.6 depicts the outcome of
this query on the program depicted in the bottom-right corner.
The binding for ?method is established by an additional condition
[?for parentMethodDeclaration] equals: ?method. In addition to the
conditions on lines 10 and 16, this condition illustrates our identity-based reifi-
cation to objects: the binding of ?for is queried for its method declaration parent
through a method invocation.

The query identifies all potentially enhanceable for-statements. It also reports
the false positive in method not_enhanceable_1. This is because the query does
not specify a data flow characteristic stating that the receivers of the invocations of
hasNext() and next() should be the same iterator. Section 5.3.4 discusses how
this characteristic can be expressed. Note that method enhanceable_3 features
three times in the solutions. The second solution is a false positive. Its binding
?nextReceiver →j does not correspond to its binding ?for →for(Iterator i =
l.iterator(); i.hasNext();). The binding for ?nextReceiver in this solution
originates from the inner loop rather than the outer loop.

Evaluation The query uses an AST traversal on line 11 to express that invocation
node ?nextInv can reside at an arbitrary depth within the ?body node of the for-
statement. The aforementioned false positive can only be eliminated by further

123

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 137

turally equivalent compound terms, for instance, the conditions that extract
the identifier from the name of an interface declaration (lines 2–3) and method
declaration (lines 10–11) could be replaced by a single and more descriptive
...hasName: simpleName(?identifier) condition.

Expressing Structural Characteristics Directly

The logic rules and queries of Figure 5.7 express structural characteristics in terms
of the reification predicates that reify syntactic information (cf. Section 5.3.3). Al-
ternatively, the basic reasoning predicates isTypeWithFullQualifedName/1 and
extendsType:/2 can be used. These relate interface declarations to types (cf. Sec-
tion 5.3.6).

in case ATObject is a binary types no confusion with ATObject note however,
that in figure

5.4.2 Expressing Syntactic Characteristics

enhanced for-loop
(cf. Section 4.2.2)

1 if ?for isStatement,
2 ?for forStatementHasExpression: ?condition,
3 ?for forStatementHasUpdaters: ?updaters,
4 ?for forStatementHasBody: ?body,

5 ?hasNextInv isChildOf: ?condition,
6 ?hasNextInv methodInvocationHasName: ?hasNextName,
7 ?hasNextName simpleNameHasIdentifier: [’hasNext’],
8 ?hasNextInv methodInvocationHasExpression: ?hasNextReceiver,
9 ?hasNextInv methodInvocationHasArguments: ?hasNextArguments,

10 [?hasNextArguments size = 0],

11 or(?nextInv isChildOf: ?body,?nextInv isChildOf: ?updaters),
12 ?nextInv methodInvocationHasName: ?nextInvName,
13 ?nextInvName simpleNameHasIdentifier: [’next’],
14 ?nextInv methodInvocationHasExpression: ?nextReceiver,
15 ?nextInv methodInvocationHasArguments: ?nextArguments,
16 [?nextArguments size = 0],

17 ?hasNextReceiver simpleNameHasIdentifier: ?id,
18 ?nextReceiver simpleNameHasIdentifier: ?id,
19 ?method equals: [?for parentMethodDeclaration]

5.4.3 Expressing Data Flow Characteristics

In logic meta programming approaches to pattern detection, a reification entail-
ing a transcription to logic terms arguably imposes an additional burden on ap-

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 138

application-specific structural characteristics

query that checks the prescribed coding convention

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 135

are multiple entries in the second column for each entry in the first column.
The rules that implement the extendsType:/2 predicate rely on the results

of the semantic analysis to map the AST node ?superNode (corresponding to the
concrete syntax elements after the extends keyword) to a binary or source type
?type. These results are necessary because the actual type referred to by the AST
node depends on its context of use in the program (e.g. the import declarations
of the compilation unit it resides in). The domain-specific unification procedure
will unify type declaration nodes with type nodes based on the same semantic
analysis. This way, users can benefit from its results without being exposed to its
details.

5.4 Support for Pattern Characteristics

Having introduced SOUL and the most important reification and basic reasoning
predicates in the CAVA library, we will now demonstrate how this instantiation of
the LMP cornerstone supports each of the pattern characteristics (cf. Section 2.2)
in isolation from the other cornerstones. Future chapters revisit the examples
in this section to demonstrate how each of the other cornerstones remedies the
shortcomings of logic meta programming.

5.4.1 Expressing Structural Characteristics

already shown application-specific pattern expressive support for indication ex-
plicit points of variation and abstraction facilities higher-order predicates

1 ?interface isATObjectRootInterface if
2 ?interface interfaceDeclarationHasName: simpleName([’ATObject’])

3 ?interface isATObjectInterface if
4 ?root isATObjectRootInterface,
5 or(?interface equals: ?root,?interface interfaceExtends: ?root)

6 ?m isNativeATMethodDefinedIn: ?t if
7 ?t isATObjectInterface,
8 ?t definesMethod: ?m,
9 ?m methodDeclarationHasName: ?name,

10 ?name simpleNameHasIdentifier: ?id,
11 or([’base_*’ match: ?id],[’meta_*’ match: ?id])

1 if ?m isNativeATMethodDefinedIn: ?i,
2 ?m methodDeclarationHasReturnType: ?returnType,
3 ?decReturnType typeDeclarationForType: ?returnType,
4 ?m methodDeclarationHasParameters: ?pars,
5 ?decReturnType isATObjectInterface,
6 forall(?pars contains: ?p,
7 and(?p singleVariableDeclarationHasType: ?parType,
8 ?decParType typeDeclarationForType: ?parType,
9 ?decParType isATObjectInterface))

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 136

1 if ?m isNativeATMethodDefinedIn: ?i,
2 ?m methodDeclarationHasReturnType: ?returnType,
3 ?decReturnType typeDeclarationForType: ?returnType,
4 ?m methodDeclarationHasParameters: ?pars
5 ?pars contains: ?p,
6 ?p singleVariableDeclarationHasType: ?parType,
7 ?decParType typeDeclarationForType: ?parType,
8 or(not(?decParType isATObjectInterface),
9 not(?decReturnType isATObjectInterface))

dit is om fouten tegen het voorschrift te vinden
ambienttalk is ...
existentieel quantifieren over reification directly
for instance, if you want to discover all methods with a certain signature
iscompilation unit that ...
is method that throws ...
goed voor geschikt
en ook eentje
every method in declares

5.4.2 Expressing Syntactic Characteristics

for-statement voorbeeld
sub method dingen

5.4.3 Expressing Data Flow Characteristics

points-to analyse manueel toevoegen aan return statements semantic analyse
manueel toevoegen

uitleg plakken
In logic meta programming approaches to pattern detection, a reification en-

tailing a transcription to logic terms arguably imposes an additional burden on
application programmers that are already familiar with the raw format the reified
information comes in. This overhead is however negligible compared to the in-
tricate details of the information itself —especially for control and data flow in-
formation. Regardless of the employed reification, approaches that stay true to
the syntax and proof procedure usually associated with their formalism can only
fulfil this criterion by providing predicates that abstract away hide the intricate
details of the explicitly carried information and that derive the missing informa-
tion implicitly. The evaluation on the first criterion deemed this solution however
unsatisfactory because of the extent of predicate libraries that have to encompass
multiple varieties of program information and the lack of uniformity in the result-
ing specification language.

Analogous to the way the CAVA predicate library supports direct references to an
Eclipse workspace to support the expression of a pattern’s syntactic and structural

query that detects violations against the coding convention

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 137

1 ?interface isATObjectRootInterface if
2 ?interface interfaceDeclarationHasName: ?name,
3 ?name simpleNameHasIdentifier: [’ATObject’]

4 ?interface isATObjectInterface if
5 ?root isATObjectRootInterface,
6 or(?interface equals: ?root,?interface interfaceExtends: ?root)

7 ?m isNativeATMethodDefinedIn: ?t if
8 ?t isATObjectInterface,
9 ?t definesMethod: ?m,

10 ?m methodDeclarationHasName: ?name,
11 ?name simpleNameHasIdentifier: ?id,
12 or([’base_*’ match: ?id],[’meta_*’ match: ?id])

All of the rules quantify directly over the basic reification predicates. They
are quite descriptive, but somewhat convoluted due to the quantification-related
shortcomings of an identity-based, compound-free reification combined with the
general-purpose unification procedure (cf. Section 4.2.2). If it were possible to
unify SimpleName instances with structurally equivalent compound terms sim-
pleName(?identifier),

every method in declares

5.4.2 Expressing Syntactic Characteristics

for-statement voorbeeld
sub method dingen

1 ?method hasEnhanceableForLoop: ?s if
2 ?method isMethodDeclaration,
3 ?method methodHasStatement: ?s,
4 ?s equals: forStatement(?,?expression,?updaters,?body),
5 methodInvocation(?r,?,simpleName([’hasNext’]),nodeList(<>)) isChildOf: ?expression,
6 or(?next isChildOf: ?body,?next isChildOf: ?updaters),
7 ?next equals: methodInvocation(?r,?,simpleName([’next’]),nodeList(<>))

8 ?method hasEnhanceableForLoop: ?s if
9 ?method isMethodDeclaration,

10 ?method methodHasStatement: ?s,
11 ?s equals: forStatement(?initializers,?,?updaters,?body),
12 ?initializers contains: variableDeclarationExpression(?,primitiveType(int),?fragments),
13 ?fragments contains: variableDeclarationFragment(?varName,?,numberLiteral([’0’])),
14 ?updaters contains: ?exp,
15 ?exp isIncrementAssignmentOfVariable: ?varName,
16 arrayAccess(?,?varName) isChildOf: ?body

5.4.3 Expressing Data Flow Characteristics

In logic meta programming approaches to pattern detection, a reification entail-
ing a transcription to logic terms arguably imposes an additional burden on ap-
plication programmers that are already familiar with the raw format the reified

Figure 5.9: SOUL rules defining application-specific structural pattern character-
istics used to enforce coding conventions.

1 public class ForStatements {
2 public List l = new ArrayList();
3 void enhanceable_1() {
4 for (Iterator iterator = l.iterator();
5 iterator.hasNext();) {
6 iterator.next();
7 }
8 }

9 void enhanceable_2() {
10 Iterator i = l.iterator();
11 for (Iterator j = i; i.hasNext();) {
12 j.next();
13 }
14 }

15 void enhanceable_3() {
16 for (Iterator i = l.iterator(); i.hasNext();) {
17 Object o = i.next();
18 for (Iterator j = l.iterator(); j.hasNext();)
19 j.next();
20 }
21 }

22 void enhanceable_4() {
23 Iterator i = l.iterator();
24 Object temp = i;
25 for (; i.hasNext();) {
26 ((Iterator) temp).next();
27 }
28 }

29 void not_enhanceable_1() {
30 Iterator i = l.iterator();
31 Iterator j = l.iterator();
32 for (; i.hasNext();)
33 j.next();
34 }
35 }
36 }

Figure 5.6: LMP specification for syntactic char. of enhanceable for-statements.

5.3. LMP Support for Pattern Characteristics

restraining the nesting relation between both nodes. For instance, by not descend-
ing into inner for-statements within the body of an outer for. This solution evi-
dences the quantification-related shortcomings of LMP (cf. Section 4.2.2) through
the higher-order traversal predicate and managing of traversal contexts it requires.
Our identity-based reification to objects allows an alternative solution. The follow-
ing condition could be added to eliminate the false positive:

1 [?hasNextInv parentOfKind: org.eclipse.jdt.core.dom.ForStatement] equals: ?for

However, this solution is equally operational in nature. Moreover, it introduces a
computational overhead because a reverse tree walk is performed for each ?has-
NextInv.

The query relies on predicates that reify AST nodes and predicates that reify
the relation of each AST node with its child nodes (e.g. isForStatement/1 and
forStatementHasBody:/2). The convoluted sequences of the latter (e.g. the
“. . . has . . . ” conditions on lines 2–4, 6–10, 12–16) are necessary because the
general-purpose unification procedure does not unify reified AST nodes with struc-
turally equivalent compound terms. These sequences illustrate the unification-
related shortcomings of an identity-based reification combined with the general-
purpose unification procedure (cf. Section 4.4.2).

5.3.2 Expressing Structural Characteristics

The specifications presented so far quantified directly over the relations among
program elements that are made explicit by the reification predicates. Logic rules
allow users to derive additional, application-specific relations among program el-
ements from the ones that are reified. We will demonstrate this using rules that
are specific to the 2008/02/01 implementation of the interpreter for the AMBI-
ENTTALK [Amb] programming language. Appendix B.1 details some statistics about
this program. In particular, we will specify and detect the structural characteris-
tics of violations against two AMBIENTTALK-specific coding conventions. The first
specification expresses the structural characteristics in terms of syntactic charac-
teristics, while the second specification expresses them directly.

Expressing Structural Characteristics in Terms of Syntactic Characteristics

The implementation of the AMBIENTTALK interpreter has a hierarchy of interfaces
that extend a root interface ATObject. Within this hierarchy, all methods of which
the name starts with prefix base_ or meta_ are called “native methods”. These
methods have to adhere to an AMBIENTTALK-specific coding convention: their re-
turn type and the types of their parameters should be declared in the ATObject
interface hierarchy. This avoids that method signatures refer to concrete classes
that implement an abstract interface.

The logic rules at the top of Figure 5.7 define application-specific predicates
isATObjectInterface/1 and isNativeATMethodDefinedIn:/2. They quantify
over the interfaces in the ATObject hierarchy and their native methods respec-
tively. The queries at the bottom of Figure 5.7 refer to the predicates defined by
these rules. As a result, they did not have to duplicate the conditions in the bodies
of the rules.

The bottom-left query can be used to check whether all “native meth-
ods” adhere to the required convention. For instance, by manually com-

125

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

application-specific structural characteristics

query that checks the prescribed coding convention

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 135

are multiple entries in the second column for each entry in the first column.
The rules that implement the extendsType:/2 predicate rely on the results

of the semantic analysis to map the AST node ?superNode (corresponding to the
concrete syntax elements after the extends keyword) to a binary or source type
?type. These results are necessary because the actual type referred to by the AST
node depends on its context of use in the program (e.g. the import declarations
of the compilation unit it resides in). The domain-specific unification procedure
will unify type declaration nodes with type nodes based on the same semantic
analysis. This way, users can benefit from its results without being exposed to its
details.

5.4 Support for Pattern Characteristics

Having introduced SOUL and the most important reification and basic reasoning
predicates in the CAVA library, we will now demonstrate how this instantiation of
the LMP cornerstone supports each of the pattern characteristics (cf. Section 2.2)
in isolation from the other cornerstones. Future chapters revisit the examples
in this section to demonstrate how each of the other cornerstones remedies the
shortcomings of logic meta programming.

5.4.1 Expressing Structural Characteristics

already shown application-specific pattern expressive support for indication ex-
plicit points of variation and abstraction facilities higher-order predicates

1 ?interface isATObjectRootInterface if
2 ?interface interfaceDeclarationHasName: simpleName([’ATObject’])

3 ?interface isATObjectInterface if
4 ?root isATObjectRootInterface,
5 or(?interface equals: ?root,?interface interfaceExtends: ?root)

6 ?m isNativeATMethodDefinedIn: ?t if
7 ?t isATObjectInterface,
8 ?t definesMethod: ?m,
9 ?m methodDeclarationHasName: ?name,

10 ?name simpleNameHasIdentifier: ?id,
11 or([’base_*’ match: ?id],[’meta_*’ match: ?id])

1 if ?m isNativeATMethodDefinedIn: ?i,
2 ?m methodDeclarationHasReturnType: ?returnType,
3 ?decReturnType typeDeclarationForType: ?returnType,
4 ?m methodDeclarationHasParameters: ?pars,
5 ?decReturnType isATObjectInterface,
6 forall(?pars contains: ?p,
7 and(?p singleVariableDeclarationHasType: ?parType,
8 ?decParType typeDeclarationForType: ?parType,
9 ?decParType isATObjectInterface))

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 136

1 if ?m isNativeATMethodDefinedIn: ?i,
2 ?m methodDeclarationHasReturnType: ?returnType,
3 ?decReturnType typeDeclarationForType: ?returnType,
4 ?m methodDeclarationHasParameters: ?pars
5 ?pars contains: ?p,
6 ?p singleVariableDeclarationHasType: ?parType,
7 ?decParType typeDeclarationForType: ?parType,
8 or(not(?decParType isATObjectInterface),
9 not(?decReturnType isATObjectInterface))

dit is om fouten tegen het voorschrift te vinden
ambienttalk is ...
existentieel quantifieren over reification directly
for instance, if you want to discover all methods with a certain signature
iscompilation unit that ...
is method that throws ...
goed voor geschikt
en ook eentje
every method in declares

5.4.2 Expressing Syntactic Characteristics

for-statement voorbeeld
sub method dingen

5.4.3 Expressing Data Flow Characteristics

points-to analyse manueel toevoegen aan return statements semantic analyse
manueel toevoegen

uitleg plakken
In logic meta programming approaches to pattern detection, a reification en-

tailing a transcription to logic terms arguably imposes an additional burden on
application programmers that are already familiar with the raw format the reified
information comes in. This overhead is however negligible compared to the in-
tricate details of the information itself —especially for control and data flow in-
formation. Regardless of the employed reification, approaches that stay true to
the syntax and proof procedure usually associated with their formalism can only
fulfil this criterion by providing predicates that abstract away hide the intricate
details of the explicitly carried information and that derive the missing informa-
tion implicitly. The evaluation on the first criterion deemed this solution however
unsatisfactory because of the extent of predicate libraries that have to encompass
multiple varieties of program information and the lack of uniformity in the result-
ing specification language.

Analogous to the way the CAVA predicate library supports direct references to an
Eclipse workspace to support the expression of a pattern’s syntactic and structural

query that detects violations against the coding convention

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 137

1 ?interface isATObjectRootInterface if
2 ?interface interfaceDeclarationHasName: ?name,
3 ?name simpleNameHasIdentifier: [’ATObject’]

4 ?interface isATObjectInterface if
5 ?root isATObjectRootInterface,
6 or(?interface equals: ?root,?interface interfaceExtends: ?root)

7 ?m isNativeATMethodDefinedIn: ?t if
8 ?t isATObjectInterface,
9 ?t definesMethod: ?m,

10 ?m methodDeclarationHasName: ?name,
11 ?name simpleNameHasIdentifier: ?id,
12 or([’base_*’ match: ?id],[’meta_*’ match: ?id])

All of the rules quantify directly over the basic reification predicates. They
are quite descriptive, but somewhat convoluted due to the quantification-related
shortcomings of an identity-based, compound-free reification combined with the
general-purpose unification procedure (cf. Section 4.2.2). If it were possible to
unify SimpleName instances with structurally equivalent compound terms sim-
pleName(?identifier),

every method in declares

5.4.2 Expressing Syntactic Characteristics

for-statement voorbeeld
sub method dingen

1 ?method hasEnhanceableForLoop: ?s if
2 ?method isMethodDeclaration,
3 ?method methodHasStatement: ?s,
4 ?s equals: forStatement(?,?expression,?updaters,?body),
5 methodInvocation(?r,?,simpleName([’hasNext’]),nodeList(<>)) isChildOf: ?expression,
6 or(?next isChildOf: ?body,?next isChildOf: ?updaters),
7 ?next equals: methodInvocation(?r,?,simpleName([’next’]),nodeList(<>))

8 ?method hasEnhanceableForLoop: ?s if
9 ?method isMethodDeclaration,

10 ?method methodHasStatement: ?s,
11 ?s equals: forStatement(?initializers,?,?updaters,?body),
12 ?initializers contains: variableDeclarationExpression(?,primitiveType(int),?fragments),
13 ?fragments contains: variableDeclarationFragment(?varName,?,numberLiteral([’0’])),
14 ?updaters contains: ?exp,
15 ?exp isIncrementAssignmentOfVariable: ?varName,
16 arrayAccess(?,?varName) isChildOf: ?body

5.4.3 Expressing Data Flow Characteristics

In logic meta programming approaches to pattern detection, a reification entail-
ing a transcription to logic terms arguably imposes an additional burden on ap-
plication programmers that are already familiar with the raw format the reified

Figure 5.7: LMP specification for structural characteristics of a coding convention.

paring its solutions with the solutions for the first condition only. Vio-
lations of the coding convention can also be detected by negating all but
the first condition in the query: if ?m isNativeATMethodDefinedIn:?i,
not(and(?m methodDeclarationHasReturnType:?returnType,...)). Alter-
natively, the bottom-right query can be used to detect such violations.

Evaluation The above specifications illustrate the facilities for abstraction and
reuse (criterion CSL4) provided by the LMP cornerstone (e.g. reuse of user-defined
predicate isATObjectInterface/1) and its facilities for expressing explicit points
of variation (criterion CLS3) among pattern instances (e.g. logic connective or/n
on line 12).

The specifications are descriptive, but convoluted due to the unification-
related shortcomings of an identity-based reification combined with the general-
purpose unification procedure (cf. Section 4.4.2). If it were possible to unify
SimpleName instances with structurally equivalent compound terms, for in-
stance, the conditions that extract the identifier from the name of an inter-
face declaration (lines 2–3) could be replaced by a single and more descriptive
?interface hasName: simpleName(?identifier) condition. The same goes
for the conditions that extract the identifier from the name of a method declara-
tion (lines 10–11).

Finally, the specifications express structural characteristics by quantifying over
the reification predicates for syntactic information (cf. Section 5.2.1). This might
lead to false positives. Predicate isAtObjectRootInterface/1, for instance,
will confuse interfaces with unqualified name ATOBject in a package that differs
from edu.vub.at.objects with the root of the AMBIENTTALK interface hierarchy.
Moreover, the predicate only succeeds if the AST for the root interface declaration
is available. This need not be the case as the base program can include its bytecode
instead. Using reification predicates for structural information would have avoided
these problems.

126

5.3. LMP Support for Pattern Characteristics

1 if ?rootType isTypeWithFullyQualifiedName:
2 [’edu.vub.at.objects.natives.NativeATObject’],
3 or(?class inClassHierarchyOfType: ?rootType,
4 ?class typeDeclarationForType: ?rootType),

5 ?class definesMethod: ?m,
6 ?m methodDeclarationHasName: ?name,
7 ?name simpleNameHasIdentifier: ?id,
8 [?id matchesRegex: ’(meta|base)_.+’],

9 not(and(?class inClassHierarchyOfType: ?super,
10 ?super definesMethod: ?superm,
11 ?m overrides: ?superm)),

12 not(and(or(?class implementsType: ?interfacetype,
13 and(?class inClassHierarchyOfType: ?supertype,
14 ?superclass declaresType: ?supertype,
15 ?superclass implementsType: ?interfacetype)),
16 ?interface declaresType: ?interfacetype,
17 ?interface definesMethod: ?interfacem,
18 ?m overrides: ?interfacem))

Figure 5.8: LMP specification for the structural char. of violations of a convention.

Expressing Structural Characteristics Directly

A closely related AMBIENTTALK-specific coding convention concerns the class
hierarchy with root NativeATObject which parallels the interface hierarchy with
root ATObject. Classes that define their own native methods (i.e. methods with
the base_ or meta_ prefix that are not defined in a super class) should implement
an interface in which those methods are defined. It can also be the case that the
interface is implemented by a super class.

The specification at the top of Figure 5.8 can be used to detect violations of this
coding convention. Lines 1–4 identify class declarations in the NativeATObject
hierarchy. They are similar to the isATObjectInterface/1 definition given
above. Lines 5–8 identify the native methods defined by each class in the hierar-
chy. Lines 9–11 filter out the methods that override a method from a super class in

127

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

the hierarchy.12 Lines 12–18 filter out methods that adhere to the coding conven-
tion. Lines 12–16 identify the interface that declares the type that is implemented
either by the class or one of its super classes. Lines 17–18 identify methods from
the class that override a method from this interface.

The violations depicted at the bottom of Figure 5.8 have been corrected in more
recent implementations of the AMBIENTTALK interpreter.

Evaluation The above specification expresses structural characteristics through
reification predicates for structural information (cf. Section 5.2.1). This
avoids false positives with respect to these characteristics. On line 2,
for instance, predicate isTypeWithFullyQualifiedName:/2 will not confuse
classes with unqualified name NativeATOBject in a package that differs from
edu.vub.at.objects.nativeswith the root of the AMBIENTTALK class hierarchy.

The specification also uses basic reasoning predicates that relate the syntactic
and structural information in the program representation (cf. Section 5.2.2). The
first and second argument to the implementsType:/2 goal on line 12, for instance,
are an AST node and a source or binary type from the structural program informa-
tion respectively.

If we had expressed the structural characteristics of this coding convention
using the reification predicates for syntactic information, we had to derive the
implementsType:/2 relation ourselves and consider the context of each syntactic
element correctly. This is not always straightforward. The actual type implemented
by a class declaration AST node, for instance, is determined by the import declara-
tions of the compilation unit in which it resides. We would therefore have to find
this compilation unit through a backwards AST traversal —leading to operational
and possibly flawed pattern specifications.13

5.3.3 Expressing Control Flow Characteristics

This section evaluates the support for control flow characteristics offered by regu-
lar LMP. Concretely, we apply SOUL and the CAVA library to another application of
user-specified pattern detection: checking conformance with and violations of the
protocol of an API (cf. Section 2.3).

An invocation of method a() initiates the protocol. This invocation should be
followed by an invocation of method c(Object). This invocation should take the
result returned by a() as its argument. Between the invocation of a and c, there
should not be an invocation of method b(). The bottom-left corner of Figure 5.9
depicts the method declarations that correspond to these invocations.

We will express the control flow characteristics of methods that comply with the
protocol and of methods that violate the protocol. Figure 5.9 depicts examples of
both. In Section 5.3.4, we will discuss how to express their data flow characteristics.

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The query in the top-left corner of Figure 5.10 expresses the control flow character-
istics of methods that comply with the protocol. The conditions on lines 1–5 select

12A single condition not(?m overrides: ?) would have sufficed.
13Alternatively, we could consult the semantic analysis results in the program representation. After

all, this is the analysis that ensures the correctness of the basic reasoning predicates. However, criterion
CSL5 requires the specification language to hide the intricate details of this analysis.

128

C
H

A
PT

E
R

5.
IN

ST
A

N
T

IA
T

IN
G

T
H

E
LO

G
IC

M
E

TA
PR

O
G

R
A

M
M

IN
G

C
O

R
N

E
R

ST
O

N
E

14
3

1
cl
as
s
Pr
ot

oc
ol
Ex
am
pl

e
{

2
Da
te

a(
)
{
re
tu
rn

ne
w

Da
te

()
;
}

3
vo
id

b(
)
{
}

4
Da
te

c(
Ob
je

ct
a)
{
re
tu

rn
(D

at
e)

a;
}

5
Ob
je
ct

e(
)
{
re
tu

rn
a(

);
}

6
Da
te

te
mp
;

7
vo
id

co
mp
li

an
t_
1(
)
{

8
Da
te

d
=
a(
);

9
c(
d)

;
10

b(
);

11
}

12
vo
id

co
mp
li

an
t_
2(
)
{

13
b(
);

14
c(
a(

))
;

15
}

16
vo
id

co
mp
li

an
t_
3(
)
{

17
c(
e(

))
;

18
}

19
vo
id

co
mp
li

an
t_
4(
)
{

20
te
mp

=
a(

);
21

if
(f

al
se
)
{

22
b(
);

23
}
el

se
{

24
c(
te
mp

);
25

}
26

}
27

cl
as
s

Pr
ot
oc
ol
Ca

ll
er

{
28

vo
id

ca
ll

()
{

29
c(
a(
))
;

30
}

31
}

32
vo
id

co
mp
li

an
t_
5(
)
{

33
ne
w

Pr
ot
oc
ol
Ca
ll
er

()
.c

al
l(
);

34
}

35
vo
id

se
mi
_c

om
pl
ia
nt
_1

()
{

36
te
mp

=
a(

);
37

if
(f

al
se
)
{

38
b(
);

39
}

40
c(
te

mp
);

41
}

42
vo
id

se
mi
_c

om
pl
ia
nt
_2

()
{

43
te
mp

=
a(

);
44

if
(f

al
se
)
{

45
c(
te
mp

);
46

}
47

b(
);

48
}

49
vo
id

no
t_
co

mp
li
an
t_
1(

)
{

50
Da
te

d;
51

if
(t

ru
e)

{
52

d
=
a(
);

53
}
el

se
{

54
c(
d)
;

55
}

56
}

57
vo
id

no
t_
co

mp
li
an
t_
2(

)
{

58
Da
te

d
=
a(
);

59
Sy
st

em
.o
ut
.p
ri
nt
ln

(d
);

60
b(
);

61
c(
d)

;
62

}
63

}

C
H

A
PT

E
R

5.
IN

ST
A

N
T

IA
T

IN
G

T
H

E
LO

G
IC

M
E

TA
PR

O
G

R
A

M
M

IN
G

C
O

R
N

E
R

ST
O

N
E

14
3

1
cl
as
s
Pr

ot
oc
ol

Ex
am
pl

e
{

2
Da
te

a(
)
{
re
tu

rn
ne
w

Da
te
()

;
}

3
vo
id

b(
)
{
}

4
Da
te

c(
Ob
je

ct
a)

{
re
tu

rn
(D

at
e)

a;
}

5
Ob
je
ct

e(
)
{
re

tu
rn

a(
);

}
6

Da
te

te
mp
;

7
vo
id

co
mp
li

an
t_
1(
)

{
8

Da
te

d
=
a(
);

9
c(
d)

;
10

b(
);

11
}

12
vo
id

co
mp
li

an
t_
2(
)

{
13

b(
);

14
c(
a(

))
;

15
}

16
vo
id

co
mp
li

an
t_
3(
)

{
17

c(
e(

))
;

18
}

19
vo
id

co
mp
li

an
t_
4(
)

{
20

te
mp

=
a(

);
21

if
(f

al
se
)

{
22

b(
);

23
}
el

se
{

24
c(

te
mp

);
25

}
26

}
27

cl
as
s

Pr
ot
oc

ol
Ca
ll

er
{

28
vo
id

ca
ll
()

{
29

c(
a(

))
;

30
}

31
}

32
vo
id

co
mp
li

an
t_
5(
)

{
33

ne
w

Pr
ot
oc
ol

Ca
ll
er
()

.c
al
l(
);

34
}

35
vo
id

se
mi
_c

om
pl
ia
nt

_1
()

{
36

te
mp

=
a(

);
37

if
(f

al
se
)

{
38

b(
);

39
}

40
c(
te

mp
);

41
}

42
vo
id

se
mi
_c

om
pl
ia
nt

_2
()

{
43

te
mp

=
a(

);
44

if
(f

al
se
)

{
45

c(
te
mp

);
46

}
47

b(
);

48
}

49
vo
id

no
t_
co

mp
li
an
t_

1(
)
{

50
Da
te

d;
51

if
(t

ru
e)

{
52

d
=

a(
);

53
}
el

se
{

54
c(
d)

;
55

}
56

}
57

vo
id

no
t_
co

mp
li
an
t_

2(
)
{

58
Da
te

d
=
a(
);

59
Sy
st

em
.o
ut
.p

ri
nt
ln
(d

);
60

b(
);

61
c(
d)

;
62

}
63

}

C
H

A
PT

E
R

5.
IN

ST
A

N
T

IA
T

IN
G

T
H

E
LO

G
IC

M
E

TA
PR

O
G

R
A

M
M

IN
G

C
O

R
N

E
R

ST
O

N
E

14
3

1
cl
as

s
Pr
ot

oc
ol
Ex

am
pl
e
{

2
Da

te
a(
)
{

re
tu
rn

ne
w

Da
te
()
;
}

3
vo

id
b(
)
{

}
4

Da
te

c(
Ob

je
ct

a)
{

re
tu

rn
(D
at

e)
a;

}
5

Ob
je
ct

e(
)
{
re
tu

rn
a(

);
}

6
Da

te
te
mp

;

7
vo

id
co
mp

li
an

t_
1(
)
{

8
Da
te

d
=
a(
);

9
c(
d)
;

10
b(
);

11
}

12
vo

id
co
mp

li
an

t_
2(
)
{

13
b(
);

14
c(
a(
))

;
15

}
16

vo
id

co
mp

li
an

t_
3(
)
{

17
c(
e(
))

;
18

}
19

vo
id

co
mp

li
an

t_
4(
)
{

20
te
mp

=
a(
);

21
if
(f
al

se
)
{

22
b(

);
23

}
el
se

{
24

c(
te
mp
);

25
}

26
}

27
cl

as
s

Pr
ot
oc
ol
Ca

ll
er

{
28

vo
id

ca
ll
()

{
29

c(
a(
))

;
30

}
31

}
32

vo
id

co
mp

li
an

t_
5(
)
{

33
ne
w
Pr
ot

oc
ol
Ca

ll
er
()
.c
al

l(
);

34
}

35
vo

id
se
mi

_c
om

pl
ia
nt
_1

()
{

36
te
mp

=
a(
);

37
if
(f
al

se
)
{

38
b(

);
39

}
40

c(
te
mp

);
41

}
42

vo
id

se
mi

_c
om

pl
ia
nt
_2

()
{

43
te
mp

=
a(
);

44
if
(f
al

se
)
{

45
c(

te
mp
);

46
}

47
b(
);

48
}

49
vo

id
no
t_

co
mp

li
an
t_
1(

)
{

50
Da
te

d;
51

if
(t
ru
e)

{
52

d
=
a(

);
53

}
el
se

{
54

c(
d)
;

55
}

56
}

57
vo

id
no
t_

co
mp

li
an
t_
2(

)
{

58
Da
te

d
=
a(
);

59
Sy
st
em
.o

ut
.p
ri

nt
ln
(d
);

60
b(
);

61
c(
d)
;

62
}

63
}

Fi
gu

re
5.

9:
R

es
u

lt
s

fo
r

th
e

qu
er

ie
s

th
at

ch
ec

k
p

ro
to

co
lc

on
fo

rm
an

ce
de

p
ic

te
d

in
Fi

gu
re

5.
10

.

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 142

5.4.3 Expressing Control Flow Characteristics

Protocol c follows a, never follow a call to b

1 if ?c classDeclarationHasName: simpleName([’ProtocolExample’]),
2 ?c definesMethod: ?m,
3 ?m methodDeclarationHasModifiers: ?mods,
4 not(?mods isStatic),
5 ?m methodDeclarationHasBody: ?block,

6 ?s isControlFlowTraversalState,
7 ?a inFlowOf: ?block following: <> before: <?c>,
8 ?a methodInvocationHasName: simpleName([’a’]),
9 ?c inFlowOf: ?block following: <?a> before: <>,

10 ?c methodInvocationHasName: simpleName([’c’]),

11 not(and(?s2 isControlFlowTraversalState,
12 ?a inFlowOf: ?block following: <> before: <?b,?c>,
13 ?b inFlowOf: ?block following: <?a> before: <?c>,
14 ?b methodInvocationHasName: simpleName([’b’]),
15 ?c inFlowOf: ?block following: <?b,?a> before: <>))

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The source range usually begins at the first character of the first token correspond-
ing to the node; leading whitespace and comments are not included. The source
range usually extends through the last character of the last token corresponding to
the node; trailing whitespace and comments are not included. There are a handful
of exceptions (including the various body declarations); the specification for these
node type spells out the details. Source ranges nest properly: the source range for
a child is always within the source range of its parent, and the source ranges of
sibling nodes never overlap.

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

line of

Expressing Control Flow Characteristics Directly

not ervoor zetten vindt de non-compliant methoden

5.4.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 142

5.4.3 Expressing Control Flow Characteristics

Protocol c follows a, never follow a call to b

1 if ...,
2 ...,
3 ...,
4 ...,
5 ...,

6 not(and(...,
7 ...,
8 ...,
9 ...,

10 ...,

11 not(and(...,
12 ...,
13 ...,
14 ...,
15 ...))))

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The source range usually begins at the first character of the first token correspond-
ing to the node; leading whitespace and comments are not included. The source
range usually extends through the last character of the last token corresponding to
the node; trailing whitespace and comments are not included. There are a handful
of exceptions (including the various body declarations); the specification for these
node type spells out the details. Source ranges nest properly: the source range for
a child is always within the source range of its parent, and the source ranges of
sibling nodes never overlap.

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

line of

Expressing Control Flow Characteristics Directly

not ervoor zetten vindt de non-compliant methoden

5.4.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would
have to quantify over these results in queries and interpret the solutions to these

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 142

5.4.3 Expressing Control Flow Characteristics

Protocol c follows a, never follow a call to b

1 if ?class classDeclarationHasName: simpleName([’ProtocolExample’]),
2 ?class definesMethod: ?m,
3 ?m methodDeclarationHasModifiers: ?mods,
4 not(?mods isStatic),
5 ?m methodDeclarationHasBody: ?block,

6 ?a isExpressionInScopeOf: ?block,
7 ?a methodInvocationHasName: simpleName([’a’]),
8 ?c isExpressionInScopeOf: ?block,
9 ?c followsASTNode: ?a,

10 ?c methodInvocationHasName: simpleName([’c’]),

11 not(and(?b isExpressionInScopeOf: ?block,
12 ?b followsASTNode: ?a,
13 ?c followsASTNode: ?b,
14 ?b methodInvocationHasName: simpleName([’b’])))

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The source range usually begins at the first character of the first token correspond-
ing to the node; leading whitespace and comments are not included. The source
range usually extends through the last character of the last token corresponding to
the node; trailing whitespace and comments are not included. There are a handful
of exceptions (including the various body declarations); the specification for these
node type spells out the details. Source ranges nest properly: the source range for
a child is always within the source range of its parent, and the source ranges of
sibling nodes never overlap.

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

line of

Expressing Control Flow Characteristics Directly

not ervoor zetten vindt de non-compliant methoden

5.4.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would
have to quantify over these results in queries and interpret the solutions to these
queries correctly. Both are problematic (cf. Section 2.5.4). Before illustrating this,

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 142

5.4.3 Expressing Control Flow Characteristics

Protocol c follows a, never follow a call to b

1 if ...,
2 ...,
3 ...,
4 ...,
5 ...,

6 not(and(...,
7 ...,
8 ...,
9 ...,

10 ...,

11 not(and(...,
12 ...,
13 ...,
14 ...))))

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The source range usually begins at the first character of the first token correspond-
ing to the node; leading whitespace and comments are not included. The source
range usually extends through the last character of the last token corresponding to
the node; trailing whitespace and comments are not included. There are a handful
of exceptions (including the various body declarations); the specification for these
node type spells out the details. Source ranges nest properly: the source range for
a child is always within the source range of its parent, and the source ranges of
sibling nodes never overlap.

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

line of

Expressing Control Flow Characteristics Directly

not ervoor zetten vindt de non-compliant methoden

5.4.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would
have to quantify over these results in queries and interpret the solutions to these
queries correctly. Both are problematic (cf. Section 2.5.4). Before illustrating this,

e
x
p

re
s
s
e

d
 i
n

 t
e

rm
s
 o

f
s
y
n

ta
c
ti
c
 c

h
a

ra
c
te

ri
s
ti
c
s

control flow characteristics of protocol compliance protocol violation

e
x
p

re
s
s
e

d
 d

ir
e

c
tl
y

CHAPTER 5. INSTANTIATING THE LOGIC META PROGRAMMING
CORNERSTONE 142

5.4.3 Expressing Control Flow Characteristics

Protocol c follows a, never follow a call to b

1 if ?class classDeclarationHasName: simpleName([’ProtocolExample’]),
2 ?class definesMethod: ?m,
3 ?m methodDeclarationHasModifiers: ?mods,
4 not(?mods isStatic),
5 ?m methodDeclarationHasBody: ?block,

6 ?a isExpressionInScopeOf: ?block,
7 ?a methodInvocationHasName: simpleName([’a’]),
8 ?c isExpressionInScopeOf: ?block,
9 ?c followsASTNode: ?a,

10 ?c methodInvocationHasName: simpleName([’c’]),

11 not(and(?b isExpressionInScopeOf: ?block,
12 ?b followsASTNode: ?a,
13 ?c followsASTNode: ?b,
14 ?b methodInvocationHasName: simpleName([’b’])))

Expressing Control Flow Characteristics in Terms of Syntactic Characteristics

The source range usually begins at the first character of the first token correspond-
ing to the node; leading whitespace and comments are not included. The source
range usually extends through the last character of the last token corresponding to
the node; trailing whitespace and comments are not included. There are a handful
of exceptions (including the various body declarations); the specification for these
node type spells out the details. Source ranges nest properly: the source range for
a child is always within the source range of its parent, and the source ranges of
sibling nodes never overlap.

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

line of

Expressing Control Flow Characteristics Directly

not ervoor zetten vindt de non-compliant methoden

5.4.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would
have to quantify over these results in queries and interpret the solutions to these
queries correctly. Both are problematic (cf. Section 2.5.4). Before illustrating this,

Figure 5.10: LMP specifications for protocol-related control flow characteristics.

the body ?block of instance methods defined in the class ProtocolExample. Lines
6–10 state that an invocation of a method named c should follow the invocation of
a method named a. Lines 11–14 express that there should not be an invocation of a
method named b in between.

The query expresses the control flow characteristics in terms of syntactic char-
acteristics. Predicate isExpressionInScopeOf:/2 is equivalent to an AST traver-
sal of the second argument in search of expressions.14 Variables ?a (line 6) and ?c
(line 8) are thus bound to invocations in the body of the method. The invocation of
method c is required to follow the invocation of method a. This is expressed using
predicate followsASTNode:/2 on line 9. It is defined as follows:

1 +?astnode1 followsASTNode: +?astnode2 if
2 ?pos1 equals: [?astnode1 getStartPosition],
3 ?pos2 equals: [?astnode2 getStartPosition],
4 [(?pos1 > ?pos2) and: [?pos1 > (?pos2 + (?astnode2 getLength))]]

The predicate determines whether the execution of ?astnode1 follows the execution
of ?astnode2 using the positions in the source code of the concrete syntax elements
they represent (whitespace not included). This implementation leads to instances

14The condition on line 6 is equivalent to ?a isChildOf: ?block, ?a isExpression. The im-
plementation of the predicate differs out of performance considerations. Its results are cached. The
predicate is used in queries generated under the lexical interpretation for template terms.

130

5.3. LMP Support for Pattern Characteristics

of the control flow characteristic being missed and false positives being reported.
The positions in the source code can only be used as a rough indication of the ac-
tual run-time execution order (cf. Section 2.4.3). This is illustrated by the solutions
to the query. They are depicted in the right column of the top-left window in Fig-
ure 5.9.15 A green entry indicates that the method in the row label is included in
the solutions (i.e. complies with the protocol according to the query). Red entries
indicate that the method is not included in the solutions.

The solutions to the query consist of methods compliant_1(),
semi_compliant_2() and not_compliant_1(). Only the first two methods
comply with the control flow characteristics of the protocol in reality.16 The other
complying methods are not identified. Method compliant_2(), for instance, is
not identified because ?a lies within ?c. Method not_compliant_1() is incor-
rectly identified by the query because ?c follows ?a in the source code —but not at
run-time. The same goes for method semi_compliant_2().

Violations of the protocol can be detected by negating the conditions on lines
6–14. This is illustrated by the query in the top-right corner of Figure 5.10. Its solu-
tions correspond to the green entries in the right column of the top-right window
depicted in Figure 5.9. The query does not recognize the aforementioned methods
compliant_1(), semi_compliant_2() and not_compliant_1() as violations of
the protocol. They are either not listed in the table (because the other query did not
recognize them either) or they have a red entry in the column. All other methods
are incorrectly recognized as violations.

Evaluation Detecting control flow characteristics using a tool that does not ex-
plicitly support them is hard. Users of such a tool have to derive information about
the order in which instructions can be executed at run-time. The above specifica-
tions attempted to approximate this information in an ad-hoc manner which lead
to false positives and a lower recall. Clearly, line numbers only give a rough indi-
cation of the actual execution order. The alternative, constructing a precise control
flow graph, requires users to take the complete semantics of the programming lan-
guage into account. This is far from trivial (cf. Section 2.5.3). Criterion CSL1 there-
fore requires the specification language to explicitly support specifying control flow
characteristics.

Expressing Control Flow Characteristics Directly

The query in the bottom-left corner of Figure 5.10 expresses the control flow char-
acteristics of complying methods directly. It uses CAVA predicates that traverse a
control flow graph (cf. Section 5.2.1).

Lines 1–5 are identical to the previous query. Line 6 initiates a new series of
control flow traversals. Traversal state ?s can be thought of as an implicit parameter
to the occurrences of predicate inFlowOf:following:before:/4 on lines 7 and
9. It keeps track of the nodes that have already been visited. Line 7 traverses the
control flow graph in search for a binding for ?a. Note that variable ?c is unbound
on line 7. Variable ?c can therefore not function as a boundary in the control flow

15The left column depicts the solutions to a query that specifies the control flow characteristics di-
rectly (i.e. the query at the bottom of Figure 5.10). This way, the solutions to both queries can be easily
compared.

16Method semi_compliant_2() complies with the protocol when the condition of its if-statement
evaluates to true. Note that we do not consider data flow characteristics in this section.

131

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

graph for ?block. Line 7 will not establish any bindings for this variable either.17

Line 9 traverses the graph starting at ?a in search for a binding for ?c. It expresses
that ?c should follow ?a in the control flow of ?block.

Lines 11–15 state that there should not be an invocation of a method namedb()
in between the execution of ?a and ?c. Line 11 initiates a new series of traversals.
This time, ?a and ?c are already bound. Line 12 will therefore dismiss bindings for
?a that cross the boundary set by ?c. Likewise, line 13 traverses ?block between ?a
and ?c in search for a binding for ?b.

The solutions to the query are depicted in the left column of the top-left win-
dow in Figure 5.9. Again, green entries indicate that a method is included in the
solutions. The query recognizes all methods that comply with the protocol. Its
solutions do not include the false positive not_compliant_1. Note that the con-
trol flow graph traversal had to cross method boundaries to recognize methods
compliant_3 and compliant_5 (i.e. it is inter-procedural). We will discuss meth-
ods semi_compliant_1 and semi_compliant_2 later.

Negating the conditions on lines 6–15 results in the query depicted in the
bottom-right corner of Figure 5.10. It detects methods that violate the protocol. Its
solutions correspond to the green entries in the left column of the top-right win-
dow depicted in Figure 5.9. The query recognizes all violating methods correctly.
None of the complying methods are included in its results.

Method semi_compliant_1 is recognized as a method that violates the proto-
col. There are two execution paths through the method. One in which the con-
dition of the if-statement evaluates to true and one where it evaluates to false.
The traversal predicate assumes that both are possible. The method complies with
the protocol on the second path. However, the final conditions of the query specify
that there should not be any traversal of the method that retrieves an invocation of
b(). It is therefore reported as a violation of the protocol.

Method semi_compliant_2 is, on the other hand, recognized as a method that
complies with the protocol. There is an execution path through the method on
which c is executed after a. However, there is also an execution path on which c is
never executed. This is because lines 6–10 of the query are existentially qualified.

Evaluation Compared to the specification languages of tools that are tailored to
control flow characteristics (cf. Section 3.4), CAVA’s graph traversal predicates com-
prise a convoluted means to express such characteristics. The example-based spec-
ification cornerstone will remedy this quantification-related shortcoming of LMP
(cf. Section 4.2.2). It enables exemplifying control flow characteristics through code
excerpts.

In essence, successive control flow traversals express an existential path query.
Negating a series of successive control flow traversals renders the path query uni-
versal. It is therefore not possible to express an existential path query in which all
but a certain instruction is allowed. Moreover, successive control flow graph traver-
sals cannot attain the performance levels of state of the art algorithms for evaluat-
ing path queries.

We will discuss these limitations of the control flow traversal predicates in Sec-
tion 5.5.2. The example-based specification cornerstone provides a more descrip-
tive means to express control flow characteristics, but its instantiation in our proto-

17Predicate inFlowOf:following:before:/4 is a straightforward graph traversal predicate. It
does not perform model checking of the graph (cf. Section 5.2.1).

132

5.3. LMP Support for Pattern Characteristics

Figure 5.11: Results for Figure 5.6’s query extended with ad-hoc data flow char. .

type shares the same limitations. Template terms are compiled to queries that use
the traversal predicates of CAVA.

5.3.4 Expressing Data Flow Characteristics

The CAVA library does not provide predicates that reify the data flow analysis re-
sults used by the domain-specific unification procedure. Otherwise, users would
have to quantify over these results in queries and interpret the solutions to these
queries correctly. Both are problematic (cf. Section 2.5.4). Before illustrating this,
we will show how LMP users often attempt to express data flow characteristics in
terms of syntactic characteristics. Concretely, we will specify and detect (in an ad-
hoc manner) the data flow characteristics of enhanceable for-statements and the
protocol discussed in the previous section.

Expressing Data Flow Characteristics in Terms of Syntactic Characteristics

The query depicted in Figure 5.6 only expresses the syntactic characteristics of po-
tentially enhanceable for-statements. Their data flow characteristics state that the
receiver of the invocations hasNext() and next() should be the same iterator ob-
ject. This can be expressed in terms of syntactic characteristics by adding the fol-
lowing conditions to the query:

1 ?hasNextReceiver simpleNameHasIdentifier: ?id,
2 ?nextReceiver simpleNameHasIdentifier: ?id

The additional conditions require both receivers to be SimpleNamenodes with uni-
fying identifier strings (e.g. "iterator" in method enhanceable_1). The query
will not recognize for-statements in which the receivers of these invocations are
other AST nodes.

Figure 5.11 depicts the solutions to the extended query against the program in
Figure 5.6. The statement in method not_enhanceable_1 is no longer recognized
as enhanceable. This is correct. The statement in method enhanceable_2 was re-
ported by the original query, but is no longer included in the results to the extended
query. The identifiers of the receivers of the hasNext() ("i") and next() ("j") in-
vocations differ syntactically. The for-statement in method enhanceable_4 is not
included either. The receivers of the hasNext() ((Iterator) temp) and next()

133

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

1 +?typeDeclaration declaresType: ?aType if
2 [?typeDeclaration resolveBinding getJavaElement] equals: ?aType.
3 +?method1 overrides: +?method2 if
4 ?method1 isMethodDeclaration,
5 ?method2 isMethodDeclaration,
6 [?method1 resolveBinding overrides_IMethodBinding: ?method2 resolveBinding]

Figure 5.12: CAVA’s basic reasoning predicates rely on semantic analysis results.

(i) invocations are not SimpleName nodes. However, both statements can be en-
hanced. In this case, expressing the data flow characteristics in terms of syntactic
characteristics resulted in pattern instances being missed.

Note that method enhanceable_3 features twice in the solutions to this query.
The false positive in which ?nextReceiver →j is not the iterator used in the outer
for-statement ?for →for(Iterator i = l.iterator(); i.hasNext();) is
eliminated. The query uses the data flow characteristics of the pattern to eliminate
this false positive rather than extra conditions on the nesting of ?nextReceiver
within one of the ?updaters of the for-statement.

The data flow characteristics of methods that comply with the protocol de-
scribed in Section 5.3.3 are even harder to express correctly in terms of syntactic
characteristics. The protocol requires that the invocation of method c(Object)
takes the result of a prior invocation of method a() as its argument. We could try
to add the following condition to the query in the bottom-left corner of Figure 5.10:

1 ?c methodInvocationHasArguments: ?args,
2 [?args size = 1],
3 ?args contains: ?a

According to the resulting query, only methods compliant_2 and compliant_5 in
Figure 5.9 comply with the control flow and data flow characteristics of the pro-
tocol. In the control flow of these methods, invocation ?a is the actual argument
of invocation ?c. The query fails to recognize method compliant_1, for instance,
because it assigns the result returned by ?a to a local variable that is used as the
argument for ?c. This is an implicit point of variation among complying meth-
ods. It could be specified as an explicit variation point in the query (e.g. using a
disjunction or an alternative query). However, some implicit variation points can
only be recognized by analyzing the entire program. This is, for instance, the case
for method compliant_3 which invokes a method that returns the result of ?a.
Method compliant_4 assigns the result of ?a to a field that is used as the argument
of ?c.

Evaluation Compared to the original query for the enhanceable for-statement,
the extended query was able to eliminate a false positive by expressing the pattern’s
data flow characteristics —albeit in an ad-hoc manner. This illustrates the impor-
tance of these characteristics.

However, it is difficult to enumerate all implicit points of variation among the
implementations of a data flow characteristic and express them in terms of syntac-
tic characteristics. This is evidenced by the specification for methods that comply
with the protocol. General-purpose pattern detection tools should therefore ex-
plicitly support data flow characteristics —as required by criterion CSL1.

134

5.3. LMP Support for Pattern Characteristics

Expressing Data Flow Characteristics Directly

The CAVA library does not support expressing data flow characteristics directly. The
data flow analyses results in the program representation are not reified.

The implementation of some of the basic reasoning predicates uses the re-
sults of the semantic analysis internally. These predicates have to relate type
declarations to the types they declare, implement or extend (cf. Section 5.2.2).
The Eclipse JDT Core Component [Ecl08a] provides a convenient API to query
its semantic analysis for the results for a specific AST node. Invoking method
resolveBinding() on (among others) method declaration, type declaration,
name and type nodes results in a “binding”. This binding represents a fully qual-
ified named entity in the program under investigation (i.e. an entry in the symbol
table of the Eclipse compiler). Given an AST node, the implementation of most
basic reasoning predicates merely has to consult its binding. This is illustrated by
the rules depicted in Figure 5.12.18 The first rule demonstrates that the binding
for an AST node can be mapped back to an element in the structural program in-
formation. Note that the depicted predicates hide the details from the semantic
analysis results used in their implementation. This is in compliance with crite-
rion CDM1. Otherwise, details internal to the Eclipse compiler would pop up in
solutions to queries. We will revisit the semantic analysis in the discussion of the
domain-specific unification procedure (cf. Chapter 6).

The results of the context-insensitive points-to analysis computed by the
SPARK [Lho02] component of the SOOT Java Optimization Framework [VRCG+99]
are not reified either. There are no technical problems in the way. We could have
reified the results through the linguistic symbiosis with Java. In fact, the points-to
analysis results depicted in Figure 2.6 were obtained by backtracking over the first
six conditions of the query in Figure 5.13. The analysis is computed for the JIM-
PLE intermediate representation rather than the AST nodes in our representation.
The query finds all pairs of local variables ?local1 and ?local2 in this representation
that are in a may-alias data flow relation. The latter is checked by the condition
on line 12 which requires the points-to sets ?set1 and ?set2 for the locals to have a
non-empty intersection.

Evaluation The predicates in Figure 5.13 form a superficial logic interface to
the API of the SOOT framework. In this, they are reminiscent of the DEEP-
WEAVER [FKI+07] predicates depicted in Figure 3.16 and Figure 3.17 which rely on
the same framework. We present these predicates in the traditional Prolog nota-
tion to stress that they are not part of our instantiation of the LMP cornerstone. The
predicates exemplify all of the problems data flow information poses in a pattern
detection setting (cf. Section 2.5.4):

• The points-to analysis results come overlaid on the JIMPLE intermediate rep-
resentation. This is a typed three-address representation in which all in-
structions take the form of two operands, an operation and a result. It is
constructed from bytecode. Bytecode instructions that manipulate the stack
have been eliminated by introducing local registers for implicit stack loca-
tions. JIMPLE’s grammar is compact compared to the amount of bytecode
instructions. However, users are still burdened with a non-trivial program

18The rules that handle unbound variables ?typeDeclaration, ?method1 and ?method2 are, in con-
trast, complicated.

135

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

representation if they want to query the points-to analysis results. Figure 2.4
depicts the JIMPLE representation of the method queried in Figure 5.13. It
differs significantly from the concrete syntax of the method depicted in Fig-
ure 2.1.

• The query in Figure 5.13 enumerates all local variables in the intermedi-
ate representation. Establishing the mapping between arbitrary AST nodes
depicted in Figure 2.2 and the intermediate representation depicted in Fig-
ure 2.4 is difficult and contributes to the operational nature of pattern spec-
ifications (cf. Section 2.5.1). This mapping is required for patterns that are
characterized by both behavioral and non-behavioral characteristics.

• The points-to analysis queried in Figure 5.13 is context-insensitive. It does
not use any context-sensitive parametrizations for its static representation of
heap references (cf. Section 2.5.4). Its results can therefore be accessed with-
out having to provide a static representation of the run-time context in which
a reference resides (e.g. the call sites of the topmost invocations on the call
stack). The elements in the points-to set for such a reference (i.e. static rep-
resentations of heap referees) are not parametrized by contexts either. They
can thus be used without having to interpret static representations of run-
time contexts. However, such contexts must be accounted for when the more
precise analyses of the framework are used.

• Read literally, solutions to the query in Figure 5.13 consist of pairs of local
variables such that their associated points-to sets have a non-empty inter-
section. Correctly interpreted, this entails that the local variables are in a
may-alias data flow relation. A must-alias relation cannot be derived from
these results. To correctly assess the solutions to a query that quantifies over
data flow analysis results, users need to know which data flow relations can
be derived from the results. Moreover, solutions to the query will inevitably
include local variables that are never in an alias relation at run-time. This is
because of imprecision in the analysis. To assess the solutions to the query,
users need to be aware of the trade-offs with respect to precision and cost
implemented by the analysis they quantify over.

A predicate library that reifies the results of the analysis at a higher level
of abstraction could alleviate some of these problems. Providing a predicate
mayAlias/2 that reifies the may-alias relation between AST nodes would solve the
first two problems. However, users would still have to provide a static representa-
tion of a run-time context to access context-specific results. Moreover, providing a
predicate library to specify data flow characteristics does not assist users in their as-
sessment of the reported results. Therefore, data flow analysis results are not reified
in our approach. They are incorporated in the domain-specific unification proce-
dure instead. This way, users can benefit from these results without being exposed
to their details.

5.4 Open Implementation

We introduced the open implementation of SOUL in Section 4.6. SOUL provides
reflective predicates that form a meta-interface through which its proof procedure
can be manipulated. However, detailed knowledge about the internals of SOUL is

136

5.5. Limitations of the Instantiation

1 if ?s equals: [’<examples.Example: void insertElement(java.lang.Object)>’],
2 sSignatureOfMethod(?s,?method),
3 sActiveBodyOfMethod(?body,?method),
4 sLocalsOfBody(?locals,?body),
5 member(?local1, ?locals),
6 equals(?set1, [Soul.MLI forJavaBytecode
7 pointsToAnalysis reachingObjects_Local: ?local1]),
8 member(?local2, ?locals),
9 not(equals(?local1, ?local2)),

10 equals(?set2, [Soul.MLI forJavaBytecode
11 pointsToAnalysis reachingObjects_Local: ?local2]),
12 [?set1 hasNonEmptyIntersection_PointsToSet: ?set2]

Figure 5.13: How not to quantify over the may-alias relation of local variables.

required to implement custom pattern search strategies in this manner. Imple-
menting a meta-interpreter is therefore a better option (cf. Section 4.6.1).

The meta-interpreter in Figure 5.2 only uses reflective predicates to clarify the
handling of Smalltalk terms. Lines 3–5 can be replaced by a single condition &goal.
Users are thus not necessarily exposed to implementation details.

5.5 Limitations of the Instantiation

The instantiation of the LMP cornerstone discussed in this chapter, SOUL and the
CAVA library, still have some technical limitations.

5.5.1 Performance Disadvantage of SOUL

Performance-wise, SOUL lags behind other Prolog implementations. Compared to
the open source GNU PROLOG and SWI-PROLOG on the 10-queens problem, SOUL

is about a factor of 5 and 20 slower respectively. The SOUL evaluator is an inter-
preter implemented in Smalltalk. SOUL programs are not compiled to Smalltalk
byte codes. Its design facilitates exploring non-standard syntax and proof proce-
dures that are suitable for logic meta programming. Few optimizations have been
incorporated. This should be taken into account when assessing the running times
of the queries in this dissertation.

To cope with this performance disadvantage, the CAVA library makes extensive
use of mode annotations and caching. The former allow specializing the rules that
are used for a predicate depending on its context of use (cf. Section 5.1.1). The lat-
ter applies to the results of predicates that are used often. Otherwise subsequent
uses of predicate isExpressionInScopeOf:/2, for instance, would lead to identi-
cal AST traversals (cf. Section 5.3.3).

We also retrieve and cache the Java objects in the program representation ahead
of time. Otherwise, the JAVACONNECT library would still have to create Smalltalk
proxies for Java objects during the evaluation of queries.

In future work, we want to incorporate tabled resolution [RC97, CW96] in SOUL.
This would obviate the need to manually cache the results of strategic predicates
and allow left-recursion in the Definite Clause Grammar for the code in template
terms (cf. Section 4.3.3). Linguistic symbiosis might provide a new implementation
technique for incorporating tabling in an existing Prolog engine as well.

137

5. INSTANTIATING THE LOGIC META PROGRAMMING CORNERSTONE

5.5.2 Technical Limitations of CAVA’s Control Flow Traversal Predicate

The control flow traversal predicates in the CAVA library are limited in the control
flow characteristics they support:

Inaccurate control flow graph The control flow graph in the program represen-
tation of our prototype is not very accurate. The effect of exceptions, for in-
stance, is not taken into account. The graph has inter-procedural back-edges
(e.g. for recursive methods), but does not have intra-procedural back-edges
(e.g. for while loops). This is only a technical limitation of the prototype that
computes control flow edges on-the-fly.

In future work, we want to adopt an accurate control flow graph. However,
its nodes should still be nodes from the AST. This rules out using the control
flow graphs from the Soot framework (cf. Figure 2.5).

No support for complements in existential path queries In essence, subsequent
control flow traversals express an existential path query. Consider the condi-
tions on lines 6–10 of the bottom-left query in Figure Figure 5.10. They corre-
spond to the existential query: “does there exist a path through ?block on which
?c follows ?a ?”. Negating a series of subsequent control flow traversals renders
the query universal: “is it true that there is not a single path . . . ?”. It is not pos-
sible to express an existential path query with a complement: “does there exist
a path through ?block on which anything but ?c follows ?a?”. We will illustrate
this shortcoming of the CAVA library using the examples below.

The following query demands that all paths after ?a contain instructions
that are anything but ?c:

1 if ...
2 ?a inFlowOf: ?block following: <> before: <>,
3 ?a methodInvocationHasName: simpleName([’a’]),
4 not(and(?c inFlowOf: following: <?a> before: <>,
5 ?c methodInvocationHasName: simpleName([’c’])))

It has only methods e and not_compliant_1 in Figure 5.9 as solutions. Method
compliant_4 is, for instance, not recognized even though it has a path on
which ?a is not followed by ?c.

The following query, on the other hand, only filters out bindings for ?c that
are not invocations of a method named c. A binding for ?c can even originate
from a path on which an invocation of c follows the invocation of a.

1 if ...
2 ?a inFlowOf: ?block following: <> before: <>,
3 ?a methodInvocationHasName: simpleName([’a’]),
4 ?c inFlowOf: following: <?a> before: <>,
5 not(?c methodInvocationHasName: simpleName([’c’]))

The query only fails for methods c, b and a in Figure 5.9. They have no invoca-
tion of method a in their control flow graph. The query succeeds for all other
methods.

Finally, the following query states that there is not a single path through
?block on which ?a is followed by ?c:

1 if ...
2 not(and(?a inFlowOf: ?block following: <> before: <>,
3 ?a methodInvocationHasName: simpleName([’a’]),
4 ?c inFlowOf: following: <?a> before: <>,
5 ?c methodInvocationHasName: simpleName([’c’])))

138

5.6. Conclusion

It has methods a,b,c,e and not_compliant_1 as solutions. All paths through
the latter method contain only a single method invocation.

The control flow interpretation of template terms (cf. Section 4.3.2) shares the
same limitation. Under this interpretation, their source code excerpts are compiled
to queries that use the traversal predicates of CAVA. Moreover, complements can-
not be indicated in these excerpts without introducing more non-native syntax.

In future work, we want to change the translational semantics of the control
flow interpretation to properly support universal and existential path queries with
complements. Candidate algorithms to target are inter-procedural versions of the
parametric regular path expressions proposed by Liu et al. [LRY+04] or the al-
gorithm by de Moor et al. [dLW03] that is the basis for path logic programming
[DdMS02] (cf. Section 3.4.3). Linguistic symbiosis facilitates integrating a straight-
forward Smalltalk implementation of the former algorithm. The latter algorithm
requires tabled resolution. If SOUL is extended to support tabled resolution, a
model checker for CTL formulas (computational tree logic [CES86]) over the con-
trol flow graph could also be incorporated in a straightforward manner (cf. for in-
stance [RRR+97]).

5.6 Conclusion

In this chapter, we discussed the instantiation of the logic meta programming cor-
nerstone. It consists of SOUL and the CAVA library for reasoning about Java pro-
grams.

We clarified how SOUL differs from regular Prolog through a meta-interpreter.
Key features are its open implementation and its symbiosis with Smalltalk. The
latter enables quantifying over any object that is reachable in the Smalltalk run-
time image —including Smalltalk objects that function as proxies for Java objects.
This is how we transitively established a symbiosis between SOUL and Java. We
illustrated how we adapted the standard library predicates accordingly.

We discussed the predicates in the CAVA library. These can be used to quan-
tify directly over the syntactic, structural and control flow information in our
program representation. We do not provide reification predicates for the data
flow analyses used by the domain-specific unification procedure. Otherwise,
users would have to quantify over their results in queries and interpret the so-
lutions to these queries correctly. Unique is its identity-based reification to ob-
jects: the reified version of an AST node is the AST node itself (i.e. an instance of
org.eclipse.jdt.core.dom.ASTNode). It is enabled by the linguistic symbiosis
with Java. This way, reconstructing the actual AST node from its reified counter-
part is trivial at any point in the proof procedure (e.g. in the unification procedure).
Moreover, the node’s context within the program can be obtained through message
sends.

We specified representative patterns for each characteristic as a logic query and
identified the unification-related and quantification-related shortcomings of LMP
as manifested in these specifications. Future chapters will therefore revisit these
examples to show how these shortcomings are remedied by the other cornerstones
of our approach. Only the patterns that are primarily characterized by structural
characteristics need little improvement. The relational nature of logic program-
ming facilitates quantifying over the reification predicates for structural informa-
tion to express their structural characteristics.

139

C
H

A
P

T
E

R

6
INSTANTIATING THE FUZZY LOGIC AND

DOMAIN-SPECIFIC UNIFICATION

CORNERSTONES

In this chapter, we discuss the instantiations of the fuzzy logic and
domain-specific unification cornerstones. Both instantiations adapt the
logic meta programming instance discussed in the previous chapter. The
fuzzy variant of SOUL initiates our discourse. It quantifies the truth of
solutions to a logic query. This establishes a ranking among solutions
which facilitates their assessment. We clarify the syntactic and semantic
differences from regular SOUL using a meta-interpreter. The logic rules
used in the resolution of a goal determine the upper bound for the truth
degrees of its solutions. A solution can be ranked lower than the other
solutions identified by the same rules. This is the case if it requires a
domain-specific unification that could introduce false positives. Pro-
gram analyses are used by the procedure to recognize implicit points of
variation among pattern instances. False positives can stem from im-
precision in these analyses. We will demonstrate how both cornerstones
improve the support for pattern characteristics offered by logic meta pro-
gramming.

6.1 Fuzzy Variant of SOUL

We introduced and motivated the fuzzy logic cornerstone of our approach in Sec-
tion 4.5. It can be incorporated in any pattern detection tool based on a machine-
executable proof procedure for a logic formalism. Incorporated into SOUL (cf. Sec-
tion 5.1), this cornerstone gives rise to a fuzzy logic programming language.

6.1.1 Syntax and Semantics in a Nutshell

Many “fuzzy Prolog” systems exist (cf. Section 4.5). The fuzzy variant of SOUL is
close to F-PROLOG [LL90]. Its model, operational and fix-point semantics are de-

141

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

tailed in [De 04] where we applied an older incarnation to the detection of patterns
through dynamic analysis.

We briefly recapitulate the core syntax and semantics of fuzzy SOUL from Sec-
tion 4.5. Figure 4.11 depicts a fuzzy SOUL program. The fuzzy facts on lines 2–3 are
annotated with truth degrees. This is also the case for the fuzzy rule on lines 7–9. In
brief, fuzzy rules are of the following form:

q : c if q1, . . . , qn .

The rule has a head q and a body q1, . . . , qn . It is annotated with a truth degree
c ∈]0,1]. This degree is interpreted as the confidence in a solution to goal q given
the absolute truth of the sub-goals q1, . . . , qn . It is the upper bound for the truth
degrees of all solutions identified by this rule. Consider the fuzzy rule on lines 7–9
in Figure 4.11. The truth degrees for solutions to the query “-if ?product isPopular”
identified by this rule cannot exceed 0.8. The truth degree of goal q is computed
as the product of c and the minimum of the truth degrees of the sub-goals q1 . . . qn .
Hence, we quantify conjunction and implication as minimum and product respec-
tively. This is the predominant quantification used by “fuzzy Prolog” systems (cf.
Section 4.5). The truth degree computed for the solution ?product → chips to the
aforementioned query is therefore min(9

10 , 6
10) · 8

10 = 48
100 = 0.48.

Logic Variables as Annotations

Fuzzy SOUL supports two exceptions to the syntactic form of rules described above.
Rules can be annotated with a logic variable rather than the real c. Eventually, this
variable has to get bound in the body of the rule.

A goal can also be annotated with an unbound variable or a real (i.e. the anno-
tated goal q : t). If t is an unbound variable, it will be bound to the truth degree of
inner goal q . The truth extracting goal as a whole succeeds with a truth degree of 1
—neutralizing its influence. If t is a real, it serves as a threshold for the truth degree
of inner goal q . The goal q : 0.7 succeeds with absolute truth (i.e. a truth degree of
1) if the truth degree of q is equal to or greater than 0.7. The goal fails otherwise.
Solutions to the following query therefore consist of bindings ?t2 → 1 and ?t1 → t
where t is the truth degree of the inner goal q:

1 if (q : ?t1) : ?t2

Should the need arise, such truth extracting goals allow overriding the default
quantification of logic connectives —although only in an operational manner. For
instance, to implement linguistic hedges such as fairly and more or less. In fuzzy
set theory, these modify the membership degrees of the elements in a fuzzy set
(cf. Kerre et al. [KC99] for an overview). The following higher-order rule could, for
instance, be used to implement the linguistic hedge very:

1 (?goal) very : ?implicationStrength if
2 ?goal : ?truth,
3 [?truth squared] equals: ?implicationStrength

The truth degree computed for the solution ?product → chips to the query
“if (?product isPopular) very” is (48

100)2 = 0.23

142

6.1. Fuzzy Variant of SOUL

6.1.2 Meta-Interpreter for Fuzzy SOUL

The meta-interpreter depicted in Figure 6.1 further clarifies the semantics of the
fuzzy variant of SOUL. We will concentrate on the differences from regular SOUL.

Compared to the meta-interpreter for regular SOUL (cf. Section 5.1.2), its
clauses take two extra arguments ?degree and ?threshold. The former represents the
extent to which the truth of ?goal can be proven. The latter represents a threshold
for this truth degree. The following query, for instance, computes the truth degree
of the goal [9/10]:

1 if [Soul.Maybe degree: 9/10] isProvenToExtent: ?degree aboveThreshold: 0

It will result in a binding ?degree → 9
10 .

Handling of Smalltalk Terms

Fuzzy SOUL and regular SOUL differ in how they handle Smalltalk terms that are
used as goals. Rather than requiring the expression in the term to evaluate to the
boolean true, fuzzy SOUL requires it to evaluate to an object that understands the
message degree (line 5 of Figure 5.2 versus line 5 of Figure 6.1). The instances
of singletons True and False respond to this message with 1 and 0 respectively.
Instances of class Maybe respond with the particular truth degree they wrap (0.9 for
the instance created in the query above). The resolution of the Smalltalk term is
quantified by the truth degree ?degree of its expression (first condition on line 5).

Handling of Annotated Goals

In general, a goal succeeds if its truth degree lies above 0 (second condition on line
5) and satisfies the threshold ?threshold (third condition on line 5). Otherwise, the
goal fails.

Lines 20–23 and lines 24–26 handle goals that are annotated with a real and
an unbound variable respectively. Line 23 illustrates that the former annotations
impose a threshold for the truth degree of the inner goal. Line 26 illustrates that
the latter annotations unify with the truth degree of the inner goal. The complete
goals succeed with a truth degree of 1 if their inner goals succeed. Thresholds for
the truth degrees of the complete goals therefore need not be checked (? on lines
20 and 24) and are not imposed on the inner goal (line 26).

Quantification of Logic Connectives

Lines 6–19 clarify how the variable-argument connectives and/n, or/n and not/n
of SOUL are quantified. The truth degree of a goal and@(?goals) is the minimum
of the truth degrees of its argument goals. We will discuss the predicate used on
lines 8–9 to compute this degree in the section on quantified resolution.

A solution to a goal or@(?goals) is identified by one or more of its argument
goals (lines 12–13). Multiple truth degrees can therefore be associated with the
same solution (i.e. variable bindings). The fuzzy SOUL prototype does not ag-
gregate identical solutions with different truth degrees into a single solution with
an aggregated truth degree (e.g. the maximum of these degrees as computed by
van Emden’s quantitative rules [vE86] or Li’s F-PROLOG [LL90]).1 This exposes the

1For consistency reasons, it does not aggregate over solutions to a goal that can be resolved using
multiple fuzzy rules either.

143

1 &goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
2 [&goal isKindOf: Soul.SmalltalkTerm],!,
3 getEnv(?env,?),envLookup(&goal,?gpointer),
4 ?value equals: [?gpointer term evaluateIn: ?env startAt: ?gpointer envIndex],
5 [?value degree] equals: ?degree,[?degree > 0],[?degree >= ?threshold].

6 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
7 ?goal equals: and@(?goals),!,
8 ?goals isProvenListOfGoalsToExtent: ?degree aboveThreshold: ?threshold
9 runningMin: [1] implicationStrength: [1].

10 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
11 ?goal equals: or@(<&h|?t>),not(?t equals: <>),!,
12 or(&h isProvenToExtent: ?degree aboveThreshold: ?threshold,
13 or@(?t) isProvenToExtent: ?degree aboveThreshold: ?threshold)
14 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
15 ?goal equals: or(&h),!,
16 &h isProvenToExtent: ?degree aboveThreshold: ?threshold
17 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
18 ?goal equals: not@(?goals),!,
19 ?goal : ?degree,[?degree >= ?threshold]

20 ?goal isProvenToExtent: [1] aboveThreshold: ? if
21 equals(?goal,&innergoal : ?annotation),nonvar(?annotation),!,
22 [?annotation isReal],
23 &innergoal isProvenToExtent: ? aboveThreshold: ?annotation.
24 ?goal isProvenToExtent: [1] aboveThreshold: ? if
25 equals(?goal,&innergoal : ?annotation),var(?annotation),!,
26 &innergoal isProvenToExtent: ?annotation aboveThreshold: [0].

27 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
28 ?goal isHeadOfRuleWithBody: ?conditions andImplicationStrength: ?i,
29 ?conditions isProvenListOfGoalsToExtent: ?degree aboveThreshold: ?threshold
30 runningMin: [1] implicationStrength: ?i

31 <> isProvenListOfGoalsToExtent: ?implication aboveThreshold: ?threshold
32 runningMin: ? implicationStrength: ?implication if
33 [?implication >= ?threshold].

34 <&last> isProvenListOfGoalsToExtent: ?degree aboveThreshold: ?threshold
35 runningMin: ?currentMin implicationStrength: &implication if
36 !,&last isProvenToExtent: ?d aboveThreshold: ?threshold,
37 ?min equals: [?currentMin min: ?d],
38 ?degree equals: [?min * ?implication],
39 [?degree >= ?threshold].

40 <&g|&r> isProvenListOfGoalsToExtent: ?degree aboveThreshold: ?threshold
41 runningMin: ?currentMin implicationStrength: if
42 &g isProvenToExtent: ?d aboveThreshold: ?threshold,
43 ?min equals: [?d min: ?currentMin],
44 &r isProvenListOfGoalsToExtent: ?degree aboveThreshold: ?threshold
45 runningMin: ?min implicationStrength: ?implication

Figure 6.1: The meta-interpreter corresponding to the fuzzy variant of SOUL.

6.1. Fuzzy Variant of SOUL

operational nature of its goal-oriented proof procedure, but clarifies the origin of
each pattern instance (i.e. solution) presented in this dissertation. For instance,
whether an instance was identified by multiple example-based interpretations of
the same template term. If required, users can still perform an explicit aggregation
step manually (e.g. using the higher-order findall/3 predicate).

The meta-interpreter in Figure 6.1 does not clarify how a goal not@(?goals)
is quantified. The underlying interpreter computes the truth degree and the meta-
interpreter only verifies that the threshold is met (line 19). The meta-interpreter
should therefore be evaluated in fuzzy SOUL (i.e. it is meta-circular). The fuzzy
not/n connective succeeds as long as the conjunction of its arguments does not
succeed completely (i.e. truth degree < 1). If the conjunction of its arguments fails,
the fuzzy not/n connective succeeds with the complete truth degree of 1. If the
conjunction of its arguments succeeds with a truth degree d , the connective suc-
ceeds with a truth degree 1 − d . The prototype therefore quantifies negation as
failure using complement (i.e. the original De Morgan style quantification defined
by Zadeh [Zad65]).

Quantified Resolution

Lines 27–45 illustrate quantified resolution. Line 28 looks up a rule of
which the head unifies with the current ?goal. Its ?conditions are used as
a new list of goals to resolve. Their resolution is handled by predicate
isProvenListOfGoalsToExtent:aboveThreshold:runningMin:implicationStrength:/5. If
the rule is annotated with a truth degree (i.e. a fuzzy rule), it is passed as the last
argument to the predicate. If the rule is not annotated with an explicit truth degree
(i.e. a crisp rule), it has an implicit truth degree of 1.

The rules that implement the predicate (lines 31–45) keep a running minimum
that represents the smallest truth degree among the goals evaluated so far. The
third rule is the recursive rule. It updates the running minimum on line 43. The
second rule handles the last goal in the list. On line 38, it multiplies the smallest
truth degree among the goals (?min) with the truth degree the rule is annotated
with (?implication). Line 39 verifies whether or not the threshold is met. 2

The quantified resolution procedure (described here) is incorporated into SOUL

by specializing the object-oriented implementation of the regular resolution pro-
cedure. Some essential ingredients of this procedure are not made explicit by the
meta-interpreter. For instance, the procedure considers candidate rules for the res-
olution of a goal in the order in which they are defined in the program. Rules with
a higher truth degree are not considered first.

Combining Resolution Degrees with Unification Degrees

The meta-interpreter does not clarify how unification degrees can lower the
truth degrees of solutions either (cf. Section 4.5). The rule in Figure 6.2 clarifies

2The truth degree of a fuzzy rule is an upper bound for the truth degrees of the solutions it
identifies. On line 28, this can be used to discard rules that will not lead to solutions that meet
the imposed threshold. It can also be used on line 42 to stop evaluating the remainder of goals if
the truth degree of the current goal precludes the threshold from being met (i.e. using a condition
[(?d * ?implication) >= ?threshold]). However, allowing rules to be annotated with variables
precludes incorporating this optimization in a straightforward manner. Such a variable may not receive
its binding until the very last goal in the list.

145

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

1 ?goal isProvenToExtent: ?degree aboveThreshold: ?threshold if
2 &head isHeadOfRule: ?rule withBody: ?conditions andImplicationStrength: ?i,
3 getEnv(?env,?),envLookup(&head,?headp),envLookup(?goal,?goalp),
4 [?env startUnifyWith: ?rule],
5 ?udegree equals: [((?headp term) unifyWith: (?goalp term)
6 inEnv: ?env
7 myIndex: (?headp envIndex)
8 hisIndex: (?goalp envIndex)
9 inSource: true) degree],

10 [(?udegree > 0) ifTrue: [true] ifFalse: [?env rollback. false]],
11 ?conditions isProvenListOfGoalsToExtent: ?rdegree
12 aboveThreshold: ?threshold runningMin: 1 implicationStrength: ?i,
13 ?degree equals: [?rdegree * ?udegree],
14 [?degree >= ?threshold]

Figure 6.2: Meta-interpreter excerpt clarifying handling of unification degrees.

how unification degrees are handled. The rule can substitute for the rule on lines
27–30 of the meta-interpreter.3

The truth degree ?rdegree obtained by resolving ?goal using the ?conditions of a
?rule (lines 11–12) is multiplied with the extent ?udegree to which the head of the
rule and the goal unify (line 13). Unification degrees quantify the extent to which
two terms unify. Two terms do not unify if the computed unification degree is 0. In
this case, the rule cannot be used to resolve the goal and changes to the environ-
ment ?env are rolled back (line 10). The Smalltalk term evaluates to false to ensure
that the first condition is backtracked over to consider other candidate rules.

We use multiplication rather than minimum to compute the truth degree from
the resolution and unification degrees. This way, both influence the truth degree for
the goal.4 Section 6.8 elaborates on the combination of unification and resolution
degrees.

Method unifyWith:inEnv:myIndex:hisIndex:inSource: implements the
unification procedure. It is invoked on object ?headp which implements the term
that represents the head of the rule (lines 5–9). This receiver and the other argu-
ments of the invocation are retrieved using the reflective predicates of SOUL (Sec-
tion 5.1.2 discusses their use in the vanilla meta-interpreter). The invocation re-
turns either an instance of the singletons True and False or an instance of class
Maybe containing a unification degree between 0 and 1.

Composite Unification Degrees

In our approach, unification degrees only arise when unifying two reified program
elements could introduce false positives (cf. Section 6.4). However, reified pro-
gram elements can be used in compound terms, lists and predicates (i.e. compos-
ite terms). The unification degree of two composite terms is therefore computed
by multiplying the unification degrees of their corresponding sub-terms. The more
imprecise unifications of sub-terms are required, the lower the unification degree
of the composites.

3Their behavior is identical if the fuzzy variant of SOUL is used to evaluate the meta-interpreter in
Figure 6.1.

4Otherwise, all solutions to a template term that require a unification based on points-to analysis
would for instance have the same truth degree regardless of whether or not the example-based inter-
pretation itself could introduce false positives.

146

6.2. Fuzzified Standard Library

This is illustrated by the solutions to the following query that originate from
method indirectReturn(Object,int) (cf. Figure 4.8):

1 if ?m methodDeclarationHasName: simpleName([’indirectReturn’]),
2 ?e1 isExpressionInScopeOf: ?m, ?e2 isExpressionInScopeOf: ?m,
3 f(a,?e2,?e1) equals: f(a,?e1,?e2) : ?t

These include solution <?t → 1,?e1 → o,?e2 → o> and solution
<?t → 1

4 ,?e1 → o,?e2 → indirectReturn(o,delay-1)>. The last goal is im-
plemented by the logic fact “?x equals: ?x”. The truth degree ?t of the goal is
therefore 1 (the implicit truth degree of the fact) multiplied by the unification
degree of compound terms f(a,?e2,?e1) and f(a,?e1,?e2). The unification
degree of these composite terms is computed by multiplying the unification
degrees of their corresponding sub-terms. In the first solution, ?e1 and ?e2 are
bound to the same AST node. The unification degree of the compound terms is 1
because the unification degrees of their corresponding arguments are respectively
1, 1 and 1. In the second solution, ?e1 and ?e2 are bound to expressions that are in
a may-alias relation. The unification degree of the compound terms is 1

4 because
the unification degrees of their corresponding arguments are respectively 1, 1

2 and
1
2 (cf. Section 6.4).5

6.2 Fuzzified Standard Library

The fuzzy version of SOUL extends and adapts the standard library of SOUL as well.
We will discuss the predicates that are used by the queries in the remainder of this
dissertation.

6.2.1 Support for Fuzzy Sets

Zadeh proposed fuzzy sets [Zad65] to capture vague concepts without sharp
boundaries in human-like descriptions of systems. Examples include the fuzzy set
of people that are tall or the fuzzy set of numbers that are close to 20. The fuzzy
set A differs from crisp sets in that its characteristic function µA takes on values in
the real interval [0,1] for every element in its universe —membership degrees. The
value µA(x) represents the membership degree of the element x in the fuzzy set A.
Fuzzy logic has its roots in fuzzy set theory. The value µA(x) can also be seen as the
truth degree of the proposition that states x ∈ A is true.

Fuzzy sets are useful in specifications of patterns with vague classifica-
tion boundaries (cf. Section 6.3). Examples include patterns describing bad
smells [FBB+99] such as methods that are too long and patterns involved in the
calculation of software metrics [LM06]. In fuzzy SOUL, users can define fuzzy rules
to implement a predicate that reifies the characteristic function of a fuzzy set. Alter-
natively, the contains:/2 predicate of its standard library can be used to quantify
over the elements of a fuzzy set. Such sets are Smalltalk objects and can be instan-
tiated with user-defined characteristic functions.

5One could argue that this solution to the query is ranked lower than required because unifying
?e1 and ?e2 should not introduce more false positives if ?e2 and ?e1 already unify. This is an issue of
the implementation (which performs a recursive descent through the terms), not of our use of multi-
plication. If minimum were used, a composite of which 3 sub-terms are in a may-alias relation would
not have a lower unification degree than one in which 2 sub-terms are in a may-alias relation. Medina et
al. [MOAV04] and Gilbert et al. [GS00] moreover argue independently for the use of multiplication rather
than minimum in unification degrees.

147

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.3: Illustrating fuzzy isEqualToOrGreaterThanButRelativelyCloseTo:/2.

We will demonstrate both techniques. The first technique illustrates that fuzzy
SOUL supports rules annotated with a variable that gets bound in their body. The
second technique illustrates that fuzzy SOUL supports Smalltalk terms with an ex-
pression that evaluates to a truth degree rather than a boolean.

1/ Implementing Predicates that Reify the Characteristic Function of a Fuzzy Set

Predicate +?x isEqualToOrGreaterThanButRelativelyCloseTo:+?y reifies
the characteristic function of the fuzzy set of numbers that are greater than ?y, but
still relatively close to ?y. Both arguments have to be bound. The following rules
implement the predicate:

1 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?x.
2 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?y : ?c if
3 [?x > ?y],
4 ?c equals: [(?y / ?x) max: (9 / 10)]

Note that the second rule is annotated with a variable that gets bound in the body
of the rule (cf. Section 6.1.1). It associates a truth degree ∈ [9

10 ,1[with numbers ?x
that are greater than ?y, but do not deviate more than 10% from ?y. The closer ?x
is to ?y, the higher the computed truth degree. We do not let the truth degree drop
below 9

10 for numbers that lie far from ?y.6

The first column in Figure 6.3 depicts the truth degrees for solutions to a query
that uses the predicate to identify class declarations in the AMBIENTTALK inter-
preter (cf. Section 5.3.2) with more than 20 members. Except for the classes with
21 and 22 members (truth degrees 20

21 and 10
11 respectively), all classes with more

than 20 members have a truth degree of 9
10 .

6The predicate is used in the resolution of template terms where it ensures that lower truth degrees
are associated with solutions that exhibit more characteristics than the ones that are exemplified by a
template (cf. Section 4.5.2). It is, for instance, used to compare the number of modifiers in the template
(?y) to the modifiers in a solution (?x). Whether a reported method has more modifiers than specified
should not affects its likelihood of being a false positive too much.

148

6.2. Fuzzified Standard Library

2/ Quantifying over Fuzzy Sets implemented in Smalltalk

Predicate contains:/2 quantifies over the elements of a fuzzy set through linguis-
tic symbiosis. Instances of class FuzzySet respond to message membershipDe-
greeOfElement: with the extent to which the argument can be considered an el-
ement of the set. The following rule implements the case in which both arguments
of the predicate are bound:

1 +?c contains: +?e if
2 [?c isKindOf: Soul.FuzzySet],
3 [?c membershipDegreeOfElement: ?e]

Its implementation illustrates that Smalltalk terms are allowed to evaluate to a
truth degree (cf. Section 6.1.2). Solutions to the following query include bindings
<?t → 1,?e → 20>, <?t → 9

10 ,?e → 21> and <?t → 4
5 ,?e → 22>:

1 if ?about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30],
2 [8 to: 32] contains: ?e,
3 ?about20 contains: ?e : ?t

The first line of the query instantiates a fuzzy set of which the elements are close to
the number 20. Its triangular membership function ∆(x,10,20,30) determines the
membership degree of element x. It linearly models how close x is to β (α<β< γ):

∆(x,α,β,γ) =






0 x <α

(x −α)/(β−α) α≤ x ≤β

(γ−x)/(γ−β) β≤ x ≤ γ

0 x > γ

The membership function of a fuzzy set can also be instantiated with a custom
BlockClosure or by enumerating its elements and their membership degrees.

6.2.2 Classical Negation as Failure

Unlike the regular connective, the fuzzy not/n connective (cf. Section 6.1.2) intro-
duces choice points if the conjunction of its arguments can be proven to different
extents. However, like the regular connective, variable bindings established by re-
solving this conjunction are undone.

Where choice points are undesirable, predicate absolutelyNot/n can be used
as an alias for the regular not/n connective. It succeeds only if the fuzzy not/n
connective succeeds with an absolute truth degree (i.e. if the conjunction of its ar-
guments fails). The predicate is implemented as follows:

1 absolutelyNot@(?goals) if
2 not@(?goals) : 1

6.2.3 Higher-Order Predicates

The implementation of some higher-order standard library predicates is changed
as well. Like the regular forall/2 predicate, the fuzzy version of the predicate fails
when there is a solution to the first argument goal for which the second argument
goal does not succeed. Both versions differ in their quantification.

The fuzzy version of the predicate is quantified by the smallest product of truth
degrees for each solution to its first argument and the corresponding solution to its
second argument. Its implementation relies on linguistic symbiosis:

149

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

1 forall(?query,&test) : ?t if
2 ?degrees equals: [OrderedCollection new],
3 not(?query : ?queryTruth,
4 not(&test : ?testTruth,
5 [?degrees add: (?queryTruth * ?testTruth). true])),
6 ?t equals: [?degrees inject: 1 into: [:min :truth | min min: truth]]

The collection instantiated on line 2 contains the truth degree ?queryTruth of each
solution to goal ?query multiplied by the truth degree ?testTruth of the correspond-
ing solution to goal &test (line 5).7 Line 6 binds the truth degree of the rule to the
minimum of these degrees. This is also the truth degree of forall/2 goals because
the goals in the body of the rule have a truth degree of 1.

Other quantifications are possible. We use minimum on line 6 because we re-
gard a successful forall/2 goal as a sequence of conjunctions. This is in line with
our quantification of conjunction. In contrast, we use product on line 5 because
neither ?query nor &test subsumes the other goal. This way, the computed truth
degree reflects the truth of both goals.

The bindings <?about20 →a FuzzySet,?t → 7
10 > are the solution to the follow-

ing query:

1 if ?about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30],
2 forall([17 to: 23] contains: ?e, ?about20 contains: ?e) : ?t

The truth degree bound to ?t is the smallest membership degree in the fuzzy set
?about20 of the elements in the interval [17,23]. It corresponds to the boundaries
of the interval.

In case ?query and &test are required to succeed completely (i.e. not with a
truth degree < 1), the goal forall(?query:1,&test:1) as well as the annotated
goal forall(?query,&test):1 can be used. The former goal fails earlier.

This concludes our discussion of the standard library for fuzzy SOUL. The dif-
ferences from the one for regular SOUL are straightforward. Moreover, with the
exception of predicate absolutelyNot/n, most of the predicates presented here
are not often used in pattern specifications. Instead, they are used in the resolution
of template terms to rank their matches.

6.3 Logic Meta Programming with Fuzzy Logic

The fuzzy logic cornerstone enables our detection mechanism to quantify the pat-
tern instances it reports with the extent to which they exhibit the characteristics ex-
pressed in a specification (cf. Section 4.5.2). The lower this extent, the more likely a
result is a false positive. False positives may originate from an unintended example-
based interpretation of the source code in a template term (cf. Section 4.3.2) or from
imprecision in the static analyses that enable recognizing implicit points of varia-
tion among pattern instances (cf. Section 4.4). Facilitating user assessment of such
results is the primary motivation for the fuzzy logic cornerstone.

Nonetheless, fuzzy logic meta programming has interesting applications of its
own. We will briefly demonstrate two applications in which solutions are quanti-
fied by other information than their likelihood of being false positives.

7Variable &test is preceded by an ampersand in the head of the rule to delay the evaluation of the
expression within Smalltalk terms to line 4 (cf. Section 5.1.2).

150

6.3. Logic Meta Programming with Fuzzy Logic

Figure 6.4: Interfaces in a hierarchy quantified by how close they are to the root.

Example 1: Quantifying the Distance to the Root of a Type Hierarchy

Figure 6.4 depicts the solutions to a query that identifies all interfaces that extend
the ATObject interface of the AMBIENTTALK [Amb] interpreter. Section 5.3.2 intro-
duced the application-specific predicate isATObjectInterface/1 which reifies
the ATObject interface hierarchy. Its implementation is depicted in Figure 5.7. It
relies on predicate interfaceExtends:/2 which is quantified similarly to predi-
cate extends:/2 depicted in Figure 4.13.8

In solutions to the query, the maximum truth degree 1 is associated with inter-
faces that extend the ATObject root interface itself. Interfaces that extend ATO-
bject indirectly are identified with a lower truth degree of (99

100)i where i is the
depth in the hierarchy at which its direct super interface is found. Interface ATNil
(selected in the first column of Figure 6.4) extends interface ATObject directly as
well as indirectly through interface ATExpression (second column). It is therefore
identified once with a truth degree of 1 and once with a truth degree of (99

100)3 be-
cause ATExpression resides at depth 3 in the interface hierarchy (third column).

The computed truth degrees clarify how far an interface lies from the root of
the hierarchy. Substituting a truth degree for ?t in the query, the interfaces can
moreover be restricted to those that reside at a certain depth in the hierarchy.

Example 2: Detecting Patterns With Vague Classification Boundaries

Consider the bad smell [FBB+99] describing classes with many public static fields
of a primitive type. These are often used to simulate C-like enumeration types in
Java. In case classes with 10 fields are deemed a bad smell, it it is likely that a class
with 9 fields is considered a bad smell as well. In regular LMP specifications, such
vague classification boundaries have to be accounted for explicitly. For instance,
by relaxing the classification boundary of the bad smell to 7 fields. In solutions to
the resulting query, classes with 7 fields cannot be discerned from classes with 10
fields —although the former methods are less “bad”.

Fuzzy SOUL supports fuzzy sets in specifications for patterns with vague clas-
sification boundaries (e.g. bad smells and patterns involved in the calculation of

8The predicates differ because interfaces can extend multiple super interfaces.

151

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.5: Quantified instances of the “many primitive public static final fields” bad smell.

software metrics [LM06]). Figure 6.5 depicts the quantified solutions to a fuzzy
query that identifies the aforementioned bad smell in the AMBIENTTALK [Amb] in-
terpreter. The query uses the fuzzy set ?closeTo10 of numbers that are close to 10
(first condition) to relax the classification boundary “more than 10 fields” to “more
than 10 or close to 10 fields” (last condition). The query identifies, for instance,
class Pattern as an instance of the bad smell with a truth degree of 2

5 . This is the
membership degree of 7 (its number of fields) in the fuzzy set ?closeTo10 with char-
acteristics function ∆(x,5,10,15) (cf. Section 6.2.1).

Like the regular LMP query, the fuzzy LMP query explicitly relaxes the clas-
sification boundary of the bad smell. Solutions to the fuzzy LMP query are,
however, quantified by the membership degree of the number in the fuzzy set.
This way, classes with 7 fields can be discerned easily from classes with 10 fields.
Moreover, higher-order predicates that implement linguistic hedges such as very
(cf. Section 6.1.1) can be used to highlight the worst instances of the bad smell (i.e.
very long methods) in a descriptive manner.

In both applications of fuzzy LMP demonstrated above, the specification ex-
plicitly relaxes the classification boundary of a pattern to include imperfect pattern
instances. In the first application, predicate interfaceExtends:/2 relaxes the
direct inheritance relation between an interface and its super interface to all an-
cestors of the interface. In the second application, fuzzy set ?closeTo10 relaxes the
classification boundary of having more than 10 public static fields of a primitive
type. There are no false positives: all reported instances adhere to the relaxed spec-
ification and the detection mechanism does not consult imprecise static analyses
to recognize implicit points of variation among instances. Our detection mech-
anism does not automatically relax specifications to recognize imperfect pattern
instances in this way. This would lead to many false positives.

6.4 Domain-Specific Unification Procedure for Java

Section 4.4 introduced and motivated the domain-specific unification cornerstone
of our approach. This cornerstone overcomes the unification-related shortcomings
of LMP in pattern detection. Terms that do not unify under the general-purpose
procedure, can unify under the domain-specific procedure. The procedure com-
putes a unification degree that reflects the likelihood that such a unification intro-

152

6.4. Domain-Specific Unification Procedure for Java

duces false positives.
Section 6.4.1 discusses domain-specific extensions to the general-purpose uni-

fication procedure that concern unifying two reified AST nodes. To recognize im-
plicit points of variation among pattern instances, reified AST nodes unify if they
represent different implementations of the same pattern characteristic. The re-
sults of whole-program analyses determine if this is the case for individual nodes.
For instance, by unifying an unqualified type (e.g. List) with the qualified type
it denotes according to the import declaration of the unit in which it resides (e.g.
java.util.List with import declaration java.util.List; or java.util.*).
Ad-hoc implementations of such comparisons lead to operational queries with
false positives and a low recall (argued in Section 2.5 and illustrated in Section 5.3).
Relying on the domain-specific unification procedure, users benefit from the re-
sults of its enabling analyses without being exposed to their details.

Section 6.4.2 discusses the extensions that concern unifying a reified AST node
and other logic terms. Reified AST nodes unify with structurally equivalent com-
pound terms to enable the natural use of unification to quantify over AST nodes
(i.e. selecting nodes with specific children and accessing child nodes) —even if the
reified version of an AST node is not a compound term. To support conditions over
the source code that corresponds to an AST node, reified AST nodes also unify with
terms representing a regular expression that matches their source code.

6.4.1 Unifying Reified AST Nodes

Whether two logic terms unify is determined by sending message unify-
With:inEnv:myIndex:hisIndex:inSource: to the Smalltalk implementation of
one of the terms with the Smalltalk implementation of the other term as argu-
ment. This was illustrated by lines 5–9 of the meta-interpreter excerpt in Figure 6.2.
SOUL already employs a modest extension to the regular unification procedure to
accommodate unifying reified Smalltalk objects. Their implementation of uni-
fyWith:inEnv:myIndex:hisIndex:inSource: invokes = on the corresponding
Smalltalk objects. On instances of org.eclipse.jdt.core.dom.ASTNode, this
method tests for object identity (i.e. ==). As a result, the general-purpose unifi-
cation procedure only unifies identical AST nodes. Until our publications on the
subject [DBD06, BDM07], the openness of SOUL (Smalltalk Open Unification Lan-
guage) was never exploited to specialize the unification of AST nodes.

This section discusses our domain-specific extensions that concern how two
AST nodes are unified. The domain-specific unifications are only attempted when
the general-purpose unification (which amounts to an object identity test) fails.
The most restrictive unification is attempted first and only upon its failure, a more
relaxed unification is attempted. This ensures that two AST nodes always unify
with the maximum unification degree. The unification procedure therefore does
not introduce choice points in the refutation process that can be backtracked over.

According to the domain-specific unification procedure of our prototype, the
following AST nodes unify. Their unification degree is 1 unless mentioned other-
wise:

Unifying AST nodes are identical instances of ASTNode (i.e. the root class of the
AST hierarchy). This ensures that the relation of unifying AST nodes is reflex-
ive (i.e. xRx).

153

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Unifying collections of AST nodes are ASTNode$NodeList instances of the same
size for which all corresponding elements unify. Such collections contain the
arguments of method invocations, the modifiers of method declarations, the
statements in a block statement, etc. The computed unification degree is the
product of the unification degrees of their corresponding elements. This is in
line with the unification degree for two composite terms (cf. Section 6.1.2).
The following query therefore always succeeds if ?collection1 and ?collection2
are unifying collections of AST nodes:

1 if ...
2 ?collection1 equals: ?collection2 : ?degree,
3 ?collection1 equals: nodeList(<?e1,?e2>)
4 ?collection2 equals: nodeList(<?e1,?e2>) : ?degree,

In the last condition, ?collection2 unifies to an extent of ?degree with a struc-
turally equivalent compound term. This is the extent to which both collec-
tions unify in the first condition because the compound term contains the
elements of ?collection1.

Unifying modifiers are instances of Modifier that represent the same modifier
keyword (e.g. abstract). Instances that represent the same keyword would
not unify according to the general-purpose procedure because they are dif-
ferent AST nodes.

Unifying formal parameters are SingleVariableDeclaration instances in the
formal parameter list of a method declaration of which the types unify. The
names of the parameters are not required to unify.

Unifying expressions are instances of Expression representing expressions of a
reference type (i.e. a sub-type of java.lang.Object or an array of such
types) that are in a may-alias relation according to the inter-procedural,
context-insensitive points-to analysis (cf. Section 2.5.4) in our program rep-
resentation (cf. Figure 4.1). The points-to sets of such expressions have a
non-empty intersection. The procedure does not unify expressions with dis-
joint points-to sets. Such expressions can never evaluate to the same ob-
ject because a points-to set includes all objects (i.e. static representations
thereof) an expression can evaluate to.

The unification degree for expressions that are in a may-alias relation is 1
2 .

Unifying such expressions can introduce false positives if the expressions do
not alias during all possible program executions. Expressions in the same
method that are in a may-alias relation unify with a higher unification degree
of 9

10 if they are also in a must-alias relation according to the intra-procedural
must-alias analysis. Such expressions are guaranteed to alias in all possible
program executions and can therefore never introduce false positives.9

Local expressions that are not in a may-alias relation can never be in a must-
alias relation. The unification procedure fails early for such expressions.
Expressions that are not in a must-alias relation (according to the intra-
procedural must-alias analysis) can still be in a may-alias relation (accord-

9A unification degree of 9/10 rather than 1 accounts for unlikely, but possible errors in the map-
ping from AST nodes to the corresponding instructions in the intermediate representation for which
the must-alias analysis is computed.

154

6.4. Domain-Specific Unification Procedure for Java

ing to the inter-procedural points-to analysis). This is the case in the fol-
lowing Java excerpt. The must-alias analysis is restricted to a single method.
It will therefore never report that the arguments a and b of the invocations
in method m(Object,Object) must alias. The inter-procedural points-to
analysis, in contrast, will report that the arguments may alias:

1 void m(Object a, Object b) { void caller() {
2 System.out.println(a); Integer o = new Integer(8);
3 System.out.println(b); m(o,o);
4 } }

Both the points-to analysis and the must-alias analysis originate from the
SOOT Java Optimization Framework [VRCG+99]. They are computed for its
JIMPLE intermediate representation of the program (cf. Figure 2.4). To de-
termine whether two expressions are in a may-alias or must-alias relation,
the unification procedure therefore has to map each AST node to the cor-
responding instruction in the intermediate representation. Section 6.7 dis-
cusses this mapping in the context of the open-ended implementation of the
procedure.

As the least restrictive domain-specific extension to the unification proce-
dure, it is only attempted when the other extensions have failed.

Unifying names of the non-variable kind are instances of Name that denote enti-
ties of the non-variable kind (e.g. a method and a class) according to the se-
mantic analysis and have identifier strings that unify (i.e. equal strings). For
each name, the semantic analysis determines which entity it denotes.

The semantic analysis discerns four important kinds of entities: packages,
types, methods and variables. Entities of the variable kind include fields, lo-
cal variables, parameters and exception variables in catch clauses. A Name
that denotes an entity of the variable kind is either used as an expression or
is the “name” part of the declaration that declares the entity.10 The former
names are treated by the unification procedure as expressions, while the lat-
ter names are treated as variable declaration names. A query that requires
such names to unify expresses a data flow characteristic. Unifying such
names because their identifier strings are equal would result in false posi-
tives of the data flow characteristic (cf. Section 5.3.4). This domain-specific
unification extension is therefore only applicable to Name instances that de-
note an entity of the non-variable kind.

A query that requires Name instances of the non-variable kind to unify, ex-
presses a syntactic characteristic. No false positives can result. The following
query, for instance, identifies non-constructor methods that are named after
the class they are declared in:

1 if ?c definesMethod: ?m,
2 ?c classDeclarationHasName: ?name,
3 ?m methodDeclarationHasName: ?name,
4 [?m isConstructor not]

10The AST for method void m(Integer i){Object j = i;} has 4 Name instances representing
m, i (in the parameter list), i (in the body) and j respectively. The Name instance for m denotes an entity
of the non-variable kind (i.e. a method). The name instances for i in the parameter list and for i in the
body both denote an entity of the variable kind (i.e. a formal parameter). The instance in the parameter
list is a variable declaration name, while the instance in the body is a name that is used as an expression.

155

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

The Name instances in the above query denote entities of different non-
variable kinds. Name instances that denote different entities of the same non-
variable kind (e.g. two methods) can also be required to unify. For instance,
in example-based specifications for overriding and overloading methods (cf.
Chapter 8). Section 6.6.2 demonstrates such a unification in an LMP specifi-
cation for overriding methods.

A variable declaration name and an expression that unify are an instance of
Name and Expression respectively such that the former is a variable decla-
ration name (i.e. the “name” part of a VariableDeclaration instance) and
the latter is in a may-alias (unification degree of 1

2) or must-alias (unification
degree of 9

10) relation with the entity declared by the variable declaration.
This entity can be a field, local variable, formal parameter or exception
variable in a catch clause.

The above would suffice for a pure object-oriented language. For Java expres-
sions of a primitive type, however, aliasing information is not available. We
therefore refine the above with the results of the semantic analysis.11 This
analysis relates names to the entities they denote. The names of a field and
parameter declaration unify (unification degree of 9

10) with a variable refer-
ence that respectively references the declared field and parameter according
to the semantic analysis. In method m(int p), for instance, the right-hand
side of expression x = p is a reference to parameter p. Variable references
(i.e. FieldAccess instances and Name instances of the variable kind) are the
only expressions for which semantic analysis information is available.

The refinement of this domain-specific unification extension is not applica-
ble to local variable and exception variable references. These can be assigned
in the body of a method. The semantic analysis is oblivious to such assign-
ments (i.e. it only relates a variable reference to the corresponding declara-
tion).

The second query in Figure 4.10 expressed the data flow characteristics of the
getter method through the occurrences of variable ?name on lines 9 and 10:

6 ...
7 ?fieldDeclaration fieldDeclarationHasFragments: ?fragments,
8 ...
9 ?fragments contains: variableDeclarationFragment(?name, ?, ?),

10 ?method methodDeclarationHasBody: block(nodeList(<returnStatement(?name)>))

The query requires the operand of the return statement in a getter method
to unify with the field it protects. The Name instance bound to ?name on line
9 is always the “name” part of a variable declaration because VariableDec-
larationFragment extends VariableDeclaration.12 On line 10, variable
?name is bound to an expression. The bindings for ?name on lines 9 and 10
are therefore unified by this domain-specific unification extension.

11To ensure that two AST nodes always unify with the maximum unification degree, the semantic
analysis is consulted before the alias analyses.

12The subclasses of VariableDeclaration are SingleVariableDeclaration and
VariableDeclarationFragment. The former represent formal parameters and exception variables in
catch clauses. The latter represent the fragments of field declarations which can declare multiple fields.
The same goes for local variable declarations (e.g. fragment j=1 in declaration int i=0, j=1;).

156

6.4. Domain-Specific Unification Procedure for Java

A variable declaration and an expression unify according to a variation of this
domain-specific unification extension. The following conditions can there-
fore substitute for the conditions on lines 9–10 of the getter method query in
Figure 4.10:

8 ...
9 ?fragments contains: ?f,

10 ?method methodDeclarationHasBody: block(nodeList(<returnStatement(?f)>))

Unifying variable declaration names are two Name instances that are each the
“name” part of a variable declaration that declares an entity of the variable
kind (i.e. a field, local variable, parameter or exception variable). Both enti-
ties have to be of a reference type and in a may-alias (unification degree of 1

2)
or must-alias (unification degree of 9

10) relation with each other.

Note that the variable declaration parents of two unifying variable declara-
tion names need not unify and vice versa. There is only one domain-specific
unification extension that concerns two variable declarations: formal param-
eters unify if their types unify. The names of the parameters need not unify.
Other variable declarations (e.g. a field declaration) do not unify unless they
are the same AST node.

A method invocation name and method declaration name that unify are the
“message” part of a method invocation and the “name” part of the corre-
sponding method declaration respectively. Both are instances of Name.

The associated unification degree is 1
2 if the invocation may invoke the

method according to an approximation of the dynamic type of its receiver
(i.e. the union of the dynamic types of all heap object approximations in its
points-to set). This is also how CAVA’s predicates for control flow information
resolve polymorphic method invocations (cf. Section 5.2.1).

If the method invocation and declaration do not unify according to the above,
the associated unification degree is 1

4 —provided the invocation may invoke
the method according to the static type of its receiver (i.e. class hierarchy
analysis [DGC95]). Otherwise, the unification fails.

While the latter unifications are less precise with respect to the run-time be-
havior of the program, they are often required in example-based specifica-
tions. For instance, when the target method declaration is exemplified as an
interface method or as an abstract class method. Such methods are not in-
voked at run-time because the dynamic type of the invocation’s receiver im-
plements them. We will illustrate this in Section 8.1 of the validation chapter.

A method invocation (name) and a method declaration (name) unify accord-
ing to variations of this domain-specific unification extension.

Unifying types are instances of Type (fully qualified, unqualified, parametrized,
etc.) that denote the same type according to the semantic analysis.

The introduction to this section illustrated how an unqualified type List can
unify with the qualified type java.util.List if the unit in which it resides
has an import declaration java.util.List; or java.util.*.

Unifying return types denote the same type or are in a sub-type relation where the
method declaration of the sub-type overrides the method declaration of the

157

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

super type (all checked using the semantic analysis). This keeps the unifica-
tion procedure consistent with the Java semantics which supports co-variant
return types. Return type AST nodes are instances of Type that are the “return
type” part of a method declaration. Section 6.6.1 will illustrate this domain-
specific unification.

Note that the overriding condition ensures that the relation of unifying AST
nodes is symmetric (i.e. xR y ⇒ yRx) even though the sub-type relation is not.
Otherwise, condition ?x equals: ?y would allow ?x to be a sub-type of ?y,
while condition ?y equals: ?x would allow ?y to be a sub-type of ?x.

A type and type declaration that unify are an instance of Type (e.g.
java.util.List) and TypeDeclaration (e.g. an interface declaration)
such that the former AST node denotes the type declared by the latter AST
node according to the semantic analysis.

The following logic rule identifies ad-hoc copy constructors. These are of-
ten the cause of subtle bugs involving a shallow copy where a deep copy was
intended instead:

1 ?m isPossibleCopyConstructorIn: ?c if
2 ?c definesMethod: ?m,
3 ?c classDeclarationHasName: ?name,
4 ?m methodDeclarationHasName: ?name,
5 ?m methodDeclarationHasParameters: nodeList(<?p>),
6 ?p singleVariableDeclarationHasType: ?c

The rule requires the name of the method to unify with the name of its declar-
ing class. This is checked by the domain-specific unification extension con-
cerning names of the non-variable kind. In addition, the method should have
a single parameter of the type declared by its class. This is checked by this
domain-specific unification extension.

Reflections

The above domain-specific unification extensions ensure that implicit points of
variation among pattern instances are recognized. Syntactically differing nodes
can, for instance, denote the same type or evaluate to the same object at run-time.
The extensions enumerated above are those that we implemented to validate our
approach. More extensions may be needed in the future.

The domain-specific unification procedure cannot be bypassed in a query. If
necessary, solutions that needed a domain-specific extension can be excluded by
adding a condition to the query. Adding condition “?x equals: ?y : [1]” excludes
solutions in which the unification degree of ?x and ?y is lower than 1 (i.e. possible
false positives). Adding condition “[?x == ?y]” excludes solutions in which ?x and
?y are not bound to the same AST node (i.e. solutions that would not be identified
under the general-purpose unification procedure).

6.4.2 Unifying a Reified AST Node and a Logic Term

The previous section enumerated which combinations of two reified AST nodes
unify. Here, we describe the combinations of a reified AST node and a logic term
(other than a reified AST node) that unify:

158

6.4. Domain-Specific Unification Procedure for Java

An AST node and an uninstantiated compound term that unify are structurally
equivalent instances of ASTNode and CompoundTerm respectively of which
the latter has not yet been unified with any AST node before. A compound
term f (t1, . . . , tn) is structurally equivalent to an AST node with children
δ1, . . . ,δn if the term’s functor f unifies with the decapitalized name of the
node’s class its multiplicity n has to agree with the amount of child nodes and
each of the term’s arguments ti unifies with child node δi . The associated
unification degree is the product of the unification degrees to which each ti
unifies with δi . This is in line with the unification degree for two composite
terms (cf. Section 6.1.2).

The following query illustrates this domain-specific unification extension on
an instance of CastExpression:

1 if ?cast isExpression,
2 [?cast isKindOf: JavaWorld.org.eclipse.jdt.core.dom.CastExpression],
3 ?cast castExpressionHasType: ?type,
4 ?cast castExpressionHasExpression: ?expression,
5 ?cast equals: castExpression(?type,?expression)

Unifying an AST node with a structurally equivalent compound term (line 5)
is short-hand for a condition that restricts the type of the node (line 2) and
subsequent unification conditions over its child nodes (lines 3–4). There is
however more to an AST node than its type and child nodes. The structurally
equivalent compound term has no information about the node’s identity, the
node’s parent or the node’s state (i.e. instance variables).

The unification procedure therefore distinguishes compound terms that
have not yet been unified with an AST node from those that have. We refer to
the former and the latter as uninstantiated compound terms and as instan-
tiated compound terms respectively. Unifying an uninstantiated compound
term with an AST node instantiates the term to the AST node. From then on,
the instantiated compound term represents the AST node it is instantiated to.
Each instantiated compound term is an alternative reified version of an AST
node. Unifying two instantiated compound terms, for instance, amounts to
unifying the AST node they are instantiated to. The following queries illus-
trate the need to instantiate compound terms to the AST node they are uni-
fied with:

CHAPTER 6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC
UNIFICATION CORNERSTONES 176

1 if ?cast isExpression,
2 [?cast isKindOf: JavaWorld.org.eclipse.jdt.core.dom.CastExpression],
3 ?cast castExpressionHasType: ?type,
4 ?cast castExpressionHasExpression: ?expression,
5 ?cast equals: castExpression(?type,?expression)

Unifying an AST node with a structurally equivalent compound term (line 5)
is short-hand for a condition that restricts the type of the node (line 2) and
subsequent unification conditions over its child nodes (lines 3–4). There is
however more to an AST node than its type and child nodes. The structurally
equivalent compound term has no information about its identity, its parent
node or its state (i.e. instance variables).

The unification procedure therefore distinguishes compound terms that
have not yet been unified with an AST node (i.e. uninstantiated compound
terms) from those that have (i.e. instantiated compound terms). Unifying
an uninstantiated compound term with an AST node instantiates the term
to the AST node. From then on, the instantiated compound term repre-
sents the AST node it is instantiated to. Unifying two instantiated compound
terms, for instance, amounts to unifying the objects they are instantiated to.
The following queries illustrates the need to instantiate compound terms to
the AST node they are unified with:

1 if ?x isCastExpression,
2 ?y equals: castExpression(?t, ?e),
3 ?y equals: ?x,
4 [?y getType] equals: ?t

5 if ?x isCastExpression,
6 ?y equals: ?x,
7 ?y equals: castExpression(?t, ?e),
8 [?y getType] equals: ?t

Otherwise, the Smalltalk terms on lines 4 and 8 would evaluate to differ-
ent objects —even though the queries only differ in the order of their con-
ditions. In fact, the second query would raise an exception because the
CompoundTerm instance bound to ?y does not understand message getType.
Instantiating compound terms to the objects they unify with safeguards the
declarative nature of logic queries.

Each instantiated compound term is an alternative reified version of an AST
node. They are also handled as such by the reification predicates of the
CAVA library (cf. Section 5.3.3). Predicate isExpression/1, for instance,
succeeds on a reified Expression instance as well as on compound term
instantiated to such an instance. The implementation of the predicate dis-
cerns has to adhere to

CHAPTER 6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC
UNIFICATION CORNERSTONES 176

1 if ?cast isExpression,
2 [?cast isKindOf: JavaWorld.org.eclipse.jdt.core.dom.CastExpression],
3 ?cast castExpressionHasType: ?type,
4 ?cast castExpressionHasExpression: ?expression,
5 ?cast equals: castExpression(?type,?expression)

Unifying an AST node with a structurally equivalent compound term (line 5)
is short-hand for a condition that restricts the type of the node (line 2) and
subsequent unification conditions over its child nodes (lines 3–4). There is
however more to an AST node than its type and child nodes. The structurally
equivalent compound term has no information about its identity, its parent
node or its state (i.e. instance variables).

The unification procedure therefore distinguishes compound terms that
have not yet been unified with an AST node (i.e. uninstantiated compound
terms) from those that have (i.e. instantiated compound terms). Unifying
an uninstantiated compound term with an AST node instantiates the term
to the AST node. From then on, the instantiated compound term repre-
sents the AST node it is instantiated to. Unifying two instantiated compound
terms, for instance, amounts to unifying the objects they are instantiated to.
The following queries illustrates the need to instantiate compound terms to
the AST node they are unified with:

1 if ?x isCastExpression,
2 ?y equals: castExpression(?t, ?e),
3 ?y equals: ?x,
4 [?y getType] equals: ?t

5 if ?x isCastExpression,
6 ?y equals: ?x,
7 ?y equals: castExpression(?t, ?e),
8 [?y getType] equals: ?t

Otherwise, the Smalltalk terms on lines 4 and 8 would evaluate to differ-
ent objects —even though the queries only differ in the order of their con-
ditions. In fact, the second query would raise an exception because the
CompoundTerm instance bound to ?y does not understand message getType.
Instantiating compound terms to the objects they unify with safeguards the
declarative nature of logic queries.

Each instantiated compound term is an alternative reified version of an AST
node. They are also handled as such by the reification predicates of the
CAVA library (cf. Section 5.3.3). Predicate isExpression/1, for instance,
succeeds on a reified Expression instance as well as on compound term
instantiated to such an instance. The implementation of the predicate dis-
cerns has to adhere to

Otherwise, the Smalltalk terms on lines 4 and 8 would evaluate to different
objects —even though the queries only differ in the order of their condi-
tions. In fact, the query on the left would raise an exception because the
CompoundTerm instance bound to ?y does not understand message getType.
Instantiating compound terms to the objects they unify with safeguards the
declarative nature of logic queries.

This domain-specific unification extension accommodates using compound
terms to quantify over AST nodes. Without, users would have to resort to the
second rather than the first query depicted in Figure 4.9. The second query il-
lustrated the unification-related shortcomings of CAVA’s identity-based reifi-

159

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

cation to objects under the general-purpose unification procedure (cf. Sec-
tion 4.4.2).

The implementation of the extension invokes the API for structural reflec-
tion offered by the entire org.eclipse.jdt.core.dom.ASTNode hierarchy
(cf. Section 5.2.1). The implementation is therefore generic (i.e. it is only im-
plemented on the root class) and evolves with the parser and the language
specification.

Unifying uninstantiated compound terms are instances of CompoundTerm of
which the functors and corresponding arguments unify (i.e. regular Prolog
unification).

An AST node and an instantiated compound term that unify are instances of
ASTNode and CompoundTerm respectively such that the former unifies with
the AST node the latter is instantiated to. The associated unification degree
is the degree to which both nodes unify.

Because the term represents the node it is instantiated to, the term and the
node are not required to be structurally equivalent. As a result, the following
query has solutions in which the bindings for variables ?f1 and ?f2 differ:

1 if ?compound equals: ?f1@(?args1),
2 ?e1 isExpression,
3 ?compound equals: ?e1,
4 ?e2 isExpression,
5 (?compound equals: ?e2) : ?degree,
6 ?e2 equals: ?f2@(?args2),
7 not(?f1@(?args1) equals: ?f2@(?args2)),
8 (?e1 equals: ?e2) : ?degree

The first condition binds ?compound to an uninstantiated compound term.13

The third condition instantiates the term to an expression ?e1. The fourth
condition illustrates this domain-specific unification extension: the instan-
tiated compound term ?compound unifies with expression ?e2 to the extent
?degree. This is the extent to which ?e1 and ?e2 unify on line 8. Lines 6–7 illus-
trate that node ?e2 does not have to be structurally equivalent to ?compound.

The first and second argument to equals:/2 on line 7 are uninstantiated
compounds with the same functor and arguments as the instantiated com-
pounds on line 3 and line 6 respectively. The uninstantiated compounds do
not unify if their functors or one pair of corresponding arguments does not
unify. The former is possible if ?e1 and ?e2 are bound to instances of different
classes that unify according to one of the domain-specific extensions in the
previous section. For instance, a ParenthesizedExpression and CastEx-
pression that are in a may-alias relation. They are structurally equivalent to
parenthesizedExpression(?) and castExpression(?,?) respectively.

Unifying instantiated compound terms are instances of CompoundTerm that are
instantiated to AST nodes that unify. The associated unification degree is
the degree to which both nodes unify. The functors and corresponding ar-
guments of the term are not required to unify. The following query therefore
has the same solutions as the previous query:

13Term ?f1@(?args1) is a variable argument compound term (cf. Section 5.1.1).

160

6.4. Domain-Specific Unification Procedure for Java

1 if ?e1 equals: ?f1@(?args1),?e2 equals: ?f2@(?args2),
2 ?e1 isExpression, ?e2 isExpression,
3 ?e1 equals: ?e2,
4 not(?f1@(?args1) equals: ?f2@(?args2))

Line 3 illustrates this domain-specific unification extension: ?e1 and ?e2 are
bound to compound terms that have been instantiated by on line 2 (reifica-
tion predicate isExpression/1 quantifies over all expressions).

An instantiated and uninstantiated compound term that unify are instances of
CompoundTerm such that their functors and arguments unify. The unification
procedure instantiates the uninstantiated term to the object represented by
the instantiated term.

The following query illustrates this unification extension:

1 if ?e equals: castExpression(?,?), ?e isExpression,
2 ?m isMethodDeclaration, ?e isChildOf: ?m : ?degree

3 ?term isChildOf: ?functor@(?args) if ...

The conditions on the first line instantiate a compound term to a cast expres-
sion. The conditions on the second line identify a method declaration that
has an expression that unifies with this cast expression to extent ?degree. The
unification extension is needed to unify the head of the rule that implements
predicate isChildOf:/2 (cf. Section 5.2.2) with the last goal in the query.

Note that method declaration ?m is not necessarily the parent method dec-
laration of the cast expression to which the compound ?e is instantiated
(i.e. not(?m equals: [?e parentMethodDeclaration]) Against the pro-
gram depicted in Figure 5.9, its solutions include bindings ?m→“Object
e(){return a();}”, ?degree→ 1

2 with ?e bound to a compound instan-
tiated to the cast expression in method “Date c(Object a){return
(Date) a;}”. Section 6.6.4 clarifies why expression “a()” and expression
“(Date) a” are in a may-alias relation.

An AST node and a regular expression term that unify are an instance of ASTN-
ode and RegExpTerm respectively such that the regular expression repre-
sented by the latter matches the source code represented by the former.

The following query identifies method declarations that have the string
"Visitor" in their body:

1 if ?m methodDeclarationHasBody: {.+Visitor.+}

The second argument to methodDeclarationHasBody:/2 is a regular ex-
pression term. The regular expression itself is demarcated by braces. Sec-
tion 6.6.2 demonstrates this domain-specific unification extension.

A collection of AST nodes and a compound term unify according to variants of
the above above domain-specific unification extensions. For instance, an
instance of ASTNode$NodeList unifies with an uninstantiated compound
term nodeList(?list) of which the single argument unifies with a logic
list of the same size containing the elements of the collection. The follow-
ing query therefore identifies method invocations with two arguments that
unify with a single expression:

161

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

1 if ?e isExpression, ?i methodInvocationHasArguments: nodeList(<?e,?e>)

2 ?i methodInvocationHasArguments: ?a if
3 ?i isMethodInvocation, ?i equals: methodInvocation(?,?,?,?a)

Reflections

Having enumerated the implemented domains-specific unification extensions, we
conclude this section by discussing their impact on the reification predicates of the
CAVA library (cf. Section 5.2.1). Predicates that quantify over the children of an
AST node merely have to unify their argument with a structurally equivalent com-
pound term. This is illustrated by the implementation of predicate methodInvo-
cationHasArguments:/2 depicted above. The impact on predicates that quantify
over all AST nodes of a certain kind is more subtle. Were predicate isMethodIn-
vocation/1 implemented as follows, it would behave different under the domain-
specific and general-purpose unification procedure:

1 ?i isMethodInvocation if [Soul.MLI allMethodInvocations] contains: ?i

The Smalltalk term evaluates to a collection of all MethodInvocation instances
in the program’s AST. The predicate would therefore succeed on any AST node
that unifies with one of these instances. Under the domain-specific procedure,
the AST node is not necessarily a MethodInvocation itself. This is problematic
as the conditions “?i isMethodInvocation, [?i isConstructor]” could raise an
exception. For instance, when ?i is bound to a CastExpression that is in a may-
alias relation with one of the method invocations. The first condition would more-
over introduce choice points in the proof procedure when ?i is already bound to a
method invocation. This is undesirable out of performance considerations.

To avoid these problems and keep the behavior of the CAVA library consistent
under both unification procedures, the actual implementation of the reification
predicate only quantifies over method invocation instances. It succeeds without
introducing choice points if it is given such an instance or a compound term in-
stantiated to such an instance. It fails on other AST nodes and other instantiated
compound terms. On an uninstantiated compound term14, the predicate succeeds
if there is a method invocation that unifies with the uninstantiated term. As a re-
sult, the predicate instantiates the term to each structurally equivalent expression
upon backtracking.

6.5 Logic Meta Programming with Domain-Specific Unification

The two previous sections respectively defined how reified AST nodes unify and
how a reified AST node unifies with a logic term. Here, we illustrate the complete
domain-specific unification procedure on two logic meta programming queries.

Example 1: Detecting Overriding Methods

The query depicted in Figure 6.6 expresses the overriding relation between two
methods in terms of their syntactic characteristics and the inheritance relation be-
tween their classes. Whether or not its conditions implement the overriding rela-
tion correctly, depends on the unification procedure under which they are resolved:

14The reification predicates discern instantiated compounds from uninstantiated compounds in a
way similar to predicate isInstantiatedTo:/2 (cf. Section 4.4.3).

162

6.5. Logic Meta Programming with Domain-Specific Unification

1 if ?m isMethodDeclaration,
2 ?overrider isMethodDeclaration,
3 [?overrider getParent] extends: [?m getParent],
4 ?m equals: methodDeclaration(?,?,?,?type,?name,?params,?,?,?),
5 ?overrider equals: methodDeclaration(?,?,?,?type,?name,?params,?,?,?)

Figure 6.6: Quantifying over overriding methods through dom.-spec. unification.

• Under the general-purpose unification procedure, the last two conditions
would either fail or implement the relation incorrectly. The former is the
case for the identity-based reification of CAVA that maps each AST node to
a unique term. The occurrences of variable ?name on lines 4 and lines 5, for
instance, can never be bound to the same SimpleName instance.

The latter is the case for a reification that maps structurally equivalent AST
nodes to the same term. Consider the parameters ?params of the meth-
ods. The general-purpose unification procedure requires the names of cor-
responding parameters to unify. This is incorrect as Java only requires their
types to be the same. The procedure moreover requires the AST nodes for
the types to unify. This is incorrect as an unqualified type in one method
does not necessarily denote the same unqualified type in the other method.
Instances where one method uses an unqualified type (eg. Object) and the
other a qualified type (e.g. java.lang.object) are also missed. The same
goes for the return types of the methods. Worse, instances in which the re-
turn types are co-variant (i.e. the one of the overriding method is a subtype
of the base method) are missed as well.

• Under the domain-specific unification procedure, the conditions implement
the overriding relation correctly. Different ASTNode$NodeList instances (i.e.
the occurrences of ?param) unify if their corresponding elements unify. In-
stances of SingleVariableDeclaration (i.e. individual parameters) unify
if the AST nodes for their types unify. Instances of Type, in turn, unify if they
denote the same type according to the semantic analysis or if they are both
the return types of methods that are in an overriding relation. Co-variant re-
turn types are therefore supported. The implementation of the unification
procedure verifies this relation in the same manner as the implementation of
predicate overrides:/2 in the CAVA library (cf. Figure 5.12).

The domain-specific unification procedure enables expressing the structural
“overriding” characteristic in terms of syntactic characteristics without introduc-
ing false positives or missing instances. Section 7.4.2 will show how this enables
exemplifying such characteristics in example-based specifications. To understand
the above query, however, one has to be familiar with the domain-specific unifica-
tion procedure. In LMP specifications, it is therefore preferable to use a predicate
that reifies the overriding relation explicitly (i.e. overrides:/2).

Example 2: Detecting Double Dispatching

Figure 6.7 depicts a query that identifies two methods ?m and ?invMethod such
that the former invokes the latter through the idiomatic implementation of double

163

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

6.5. Logic Meta Programming with Domain-Specific Unification

1 if ?m methodDeclarationHasParameters: nodeList(<?parameter>),
2 ?parameter singleVariableDeclarationHasType: ?type,
3 ?parameter singleVariableDeclarationHasName: ?param,
4 ?inv isChildOf: ?m, ?this isChildOf: ?m,
5 ?inv methodInvocationHasExpression: ?receiver,
6 (?receiver equals: ?param) : ?ud1,
7 ?inv methodInvocationHasArguments: nodeList(<?arg>),
8 ?this equals: thisExpression([nil]),
9 (?arg equals: ?this) : ?ud2,

10 ?invMethod isMethodDeclaration,
11 ?invMethod equals: ?inv

Figure 6.6: Domain-specific unification in a query that identifies idiomatic imple-
mentations of double dispatching in Figure 5.4.

?invMethod → SumComponentVisitor»visitLeaf1(Component)>
in which ?m and ?invMethod are bound to the invoking method
and the invoked method respectively. The second solution corre-
sponds to the pair <?m → Leaf2»aceptVisitor(ComponentVisitor),
?invMethod → SumComponentVisitor>. Figure 5.4 depicts the source code
of these methods. Leaf1 and Leaf2 are subclasses of Component. They implement
the Composite design pattern [GHJV94]. Class ComponentVisitor is the abstract
root of a hierarchy of visitors for the Component hierarchy. It defines methods
visitLeaf1(Component) and visitLeaf2(Component). Class SumCompo-
nentVisitor extends ComponentVisitor and overrides these methods.

In each solution to the query, ?invMethod is bound to a method of SumCompo-
nentVisitor rather than the overridden method in ComponentVisitor. This is
because the points-to analysis was able to determine the dynamic type SumCom-
ponentVisitor for the receivers of tempVisitor.visitLeaf1(tempSelf) and
v.visitLeaf2(this) —their static type is ComponentVisitor.

The unification degree ?ud2 (line 9) of the invocation argument ?arg and the
this expression ?this differs in each solution. The first solution has binding ?ud2 →
9

10 because ?this and ?arg are bound to local expressions that alias according to the
intra-procedural must-alias analysis. The second solution has binding ?ud2 → 1
because ?this and ?arg are bound to the same AST node and therefore unify ac-
cording to the general-purpose unification procedure.

The query requires nodes of the same kind (e.g. the arguments to
?arg equals: ?this are expressions) and nodes of different kinds to unify (e.g. the

161

Figure 6.7: Quantified double dispatching implementations of Figure 5.4.

dispatching in single dispatch languages.15 This implementation has method ?m
invoke method ?invMethod on its single parameter passing its receiver (i.e. this)
as an argument.

The query requires method ?m to have a single parameter named ?param of
type ?type declared in variable declaration ?parameter (lines 1–3). The method has
to have an invocation ?inv (line 4) that invokes method ?invMethod (line 11) on
an expression ?receiver that unifies with the parameter ?param (line 6). The single
argument ?arg of this invocation should unify (line 9) with an unqualified this-
expression ?this (line 8) of method ?m (line 4). The query relies on the domain-
specific unification procedure: AST nodes unify with structurally equivalent com-
pound terms (lines 1, 7 and 8), expressions unify with aliasing expressions (lines 6
and 9) and a method invocation unifies with the method declaration it may invoke
(line 11).

The solutions to the query are depicted at the top of Figure 6.7. They stem
from the program depicted in Figure 5.4 in which Leaf1 and Leaf2 are sub-
classes of Component. They implement the Composite design pattern [GHJV94].

15The query can be shortened by merging some explicit unification conditions. Condition
?inv equals: methodInvocation(?parameter,?,?,nodeList(<?this>)), for instance, can
substitute for the conditions on lines 5–7 and line 9. The conditions on lines 2–3 are not necessary
either.

164

6.5. Logic Meta Programming with Domain-Specific Unification

Class ComponentVisitor is the abstract root of a hierarchy of visitors for the
Component hierarchy. It defines methods visitLeaf1(Component) and vis-
itLeaf2(Component). Class SumComponentVisitor extends ComponentVisi-
tor and overrides these methods.

The first two solutions correspond to a method invocation ?inv → tempVis-
itor.visitLeaf1(tempSelf) in Leaf1. Their truth degrees stem from the
domain-specific unification of this method invocation with a method declaration
?invMethod on line 11 (i.e. the minimum of the truth degrees for all goals in the
query).16

The first solution has an associated truth degree of 0.25. This is be-
cause ?inv → tempVisitor.visitLeaf1(tempSelf) only resolves to method
?invMethod → ComponentVisitor»visitLeaf1(Component) according to the
static type of tempVisitor. The second solution, in contrast, has an associated truth
degree of 0.5. This is because the points-to analysis was able to determine the dy-
namic type SumComponentVisitor (i.e. a subclass of ComponentVisitor) for the
receiver of ?inv. Note that line 10 quantifies over all method declarations.

The remaining solutions correspond to a method invocation ?inv → tempVis-
itor.visitLeaf1(tempSelf) in Leaf2. Again, the dynamic and static type of
its receiver are SumComponentVisitor (truth degree 0.5) and ComponentVisitor
(truth degree 0.25) respectively.

The unification degree ?ud2 (line 9) of the invocation’s argument ?arg and the
this-expression ?this differs for each binding of ?inv. The first two solutions have
binding ?ud2 → 9

10 because ?this and ?arg are bound to local expressions that alias
according to the intra-procedural must-alias analysis. The remaining solutions
have binding ?ud2 → 1 because ?this and ?arg are bound to the same AST node
and therefore unify according to the general-purpose unification procedure.

The unification degree ?ud1 (line 6) of the invocation’s receiver ?receiver and
?m’s parameter ?param differs for each binding of ?inv as well. The first two solu-
tions have binding ?ud1 → 1

2 because Leaf1 invokes visitLeaf1 on a local that
may-alias the parameter of method aceptVisitor (cf. Figure 5.4). The remaining
solutions have binding ?ud1 → 9

10 because Leaf2 invokes visitLeaf2 immedi-
ately on the parameter of method aceptVisitor.

The query requires nodes of the same kind (e.g. the arguments to
?arg equals: ?this are expressions) and nodes of different kinds to unify (e.g. the
arguments to ?inv equals: ?invMethod are a method invocation and declaration).
To understand the query, one has to know in which relation the nodes should be for
their unification to succeed. For nodes of the same kind, this relation is straight-
forward because it is based on the semantics of the programming language (e.g. a
qualified and unqualified type should denote the same type). The required rela-
tion between nodes of different kinds is less straightforward. It is therefore prefer-
able to use a reification predicate for the required relation instead (e.g. ?inv may-
Invoke: ?invMethod). In example-based specifications, however, multiple occur-
rences of the same variable express such relations naturally. 17.

16Recall that truth extracting goals succeed with a truth degree of 1 (e.g. lines 6 and 9).
17Figure 8.12 depicts an example-based specification for the double dispatching idiom.

165

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

6.6 Revisiting LMP Support for Pattern Characteristics

Having discussed the instantiations of the fuzzy logic and domain-specific unifica-
tion cornerstones, we demonstrate how they improve upon the support offered by
the LMP cornerstone for each kind of pattern characteristic (cf. Section 5.3).

6.6.1 Expressing Syntactic Characteristics

Figure 5.6 depicts a regular SOUL query that specifies the syntactic characteristics of
a potentially enhanceable for-statements. The query depicted in Figure 6.8 has the
same solutions (bottom of Figure 5.6), but is substantially shorter (i.e. 5 conditions
versus the original 16). It relies on the domain-specific unification procedure.

The second condition in the improved query replaces the 3 “. . . has . . . ” con-
ditions on lines 2–4 of the original query. This condition unifies the reified for-
statement bound to ?for with a structurally equivalent compound term to access its
expression, updaters and body children. This was not possible under the general-
purpose unification procedure because the CAVA library reifies the for-statement
as the statement itself rather than a compound term (cf. Section 5.2).

The condition on line 5 is equivalent to conditions 12–16 of the original query.
It restricts the bindings for ?nextInv (a child of either the body or the updaters of the
for-statement) to invocations of a method named next with an empty argument
list. The condition achieves the former by unifying its name part (an instance of
SimpleName) with compound term simpleName([’next’]) and the latter by uni-
fying its arguments part (an instance of ASTNode$NodeList) with nodeList(<>).
The original query restricted the size of the argument list by sending it message
size in a Smalltalk term (line 16).

Evaluation As discussed in Section 5.3.1, the convoluted sequences of
“. . . has . . . ” conditions of the original query evidence the unification-related short-
comings of LMP (cf. Section 4.4.2). They are no longer present in the improved
query. This illustrates how the domain-specific unification procedure helps over-
come the unification-related shortcomings of LMP.

Both queries use AST traversals to express the pattern’s syntactic character-
istics. As discussed in Section 5.3.1, the traversals evidence the quantification-
related shortcomings of LMP. In Section 7.4.1, we will exemplify these character-
istics through a source code excerpt instead. This will illustrate how the example-
based specification cornerstone helps overcome the quantification-related short-
comings of LMP.

The improved query does not yet state that methods hasNext() and
next() should be invoked on the same iterator. The false positive in method
not_enhanceable_1 is therefore still included in its solutions. In Section 6.6.4,
we will express this data flow characteristic simply by requiring ?hnRec and ?nRec
to unify according to the domain-specific unification procedure.

6.6.2 Expressing Structural Characteristics

This chapter does not improve on the LMP support for the structural character-
istics of the AMBIENTTALK-specific coding convention described in Section 5.3.2.
The query in Figure 5.8 already expresses the characteristics succinctly without re-
porting false positives. It relies on CAVA’s reification predicates for structural in-

166

6.6. Revisiting LMP Support for Pattern Characteristics

1 if ?for isStatement,
2 forStatement(?,?c,?updaters,?body) equals: ?for,
3 methodInvocation(?hnRec,?,simpleName([’hasNext’]),nodeList(<>)) isChildOf: ?c,
4 or(?nextInv isChildOf: ?body,?nextInv isChildOf: ?updaters),
5 ?nextInv equals: methodInvocation(?nRec,?,simpleName([’next’]),nodeList(<>)),

Figure 6.8: Syntactic char. of enhanceable fors with dom. -spec. unification.

formation (cf. Section 5.2.1) and basic reasoning predicates that connect syntactic
and structural information (cf. Section 5.2.2). The relational nature of logic pro-
gramming facilitates quantifying over these predicates (cf. Section 4.2.2).

The unification-related shortcomings of LMP are only evidenced by the con-
ditions that express the syntactic characteristics of the coding convention. The
domain-specific extension that unifies AST nodes with compound terms enables
substituting condition ?m methodDeclarationHasName: simpleName(?id) for
the two conditions on lines 6–7. Alternatively, the following condition could substi-
tute for the conditions on lines 6–8. It relies on the domain-specific extension that
unifies an AST node with a regular expression that matches its concrete syntax:

1 ?m methodDeclarationHasName: {(meta|base)_.+}

6.6.3 Expressing Control Flow Characteristics

To express the syntactic characteristics of the protocol described in Section 5.3.3,
the queries in Figure 5.10 already unify AST nodes with structurally equivalent
compound terms. For instance, to identify invocations of method c() in the con-
trol flow of methods that comply with the protocol (line 10 of the query in the
bottom-left corner of the figure). The sequences of “. . . has . . . ” conditions that are
required without this extension would have distracted from the control flow char-
acteristics of the protocol. Neither the domain-specific unification procedure, nor
fuzzy LMP improves the support of regular LMP for the control flow characteristics
of the protocol. The next section will demonstrate the former’s support for the data
flow characteristics of the protocol.

6.6.4 Expressing Data Flow Characteristics

We express the data flow characteristics of the pattern that describes potentially
enhanceable for-statements and the pattern that describes methods complying
with the protocol described in Section 5.3.3 separately.

Enhanceable for-Statements Revisited

Neither the regular LMP query in Figure 5.6, nor the equivalent query in Figure 6.8
which relies on domain-specific unification express the data flow characteristics of
enhanceable for-statements. These require methods hasNext() and next() to
be invoked on the same iterator.

Section 5.3.4 attempted to express this in terms of syntactic characteristics be-
cause the CAVA library does not provide reification predicates for data flow infor-
mation. Concretely, the following conditions were added:

1 ?hasNextReceiver simpleNameHasIdentifier: ?id,
2 ?nextReceiver simpleNameHasIdentifier: ?id

167

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.9: Data flow char. of enhanceable fors with dom. -spec. unification.

These conditions require the receivers of the hasNext() and next() invocations
to be SimpleName nodes with unifying identifier strings. Figure 5.11 depicts the
solutions to the query. Most notably, its solutions do not include the enhanceable
for-statements in method enhanceable_2 and method enhanceable_4. The re-
ceivers of the invocations in each method differ syntactically ("i" versus "j" and
"(Iterator) temp)" versus "i"), but nevertheless evaluate to the same iterator.

The query in the bottom-right corner of Figure 6.9, in contrast, expresses
this data flow characteristic by requiring both receivers to unify according
to the domain-specific unification procedure (without restricting them to the
SimpleName kind):

1 ?hasNextReceiver equals: ?nextReceiver

This condition extends the query in Figure 6.8.18 The solutions to the extended
query are shown in the top-left corner of Figure 6.9. We evaluated the query in
fuzzy SOUL to quantify its solutions.

In solutions with a truth degree of 9
10 , ?hasNextReceiver and ?nextReceiver are

bound to expressions that alias during every program execution according to the
must-alias analysis. In solutions with a truth degree of 0.5, they are bound to
expressions that alias during at least one program execution. Such solutions
are more likely to be false positives. The query does not miss any of the previ-
ously unidentified enhanceable for-statements in methods enhanceable_2 and
enhanceable_4. The truth degree of the latter solution indicates that ?hasNex-
tReceiver and ?nextReceiver are in a may-alias relation. However, the solutions to
the query include two false positives. Both have an associated truth degree of 0.5.

The first false positive is the single occurrence of method enhanceable_3 with
a truth degree of 0.5. Its binding for ?nextReceiver originates from the inner loop,
while variable ?for is bound to the outer loop. As in the original query, this is be-
cause the AST traversal on line 3 does not properly constrain the nesting of ?nextInv

18In the original query, ?hasNextReceiver and ?nextReceiver have been shortened to ?hnRec and ?nRec
respectively.

168

6.6. Revisiting LMP Support for Pattern Characteristics

within ?body (cf. Section 5.3.1). Because local variables i and j point to different
iterators at run-time, one however expects that unifying ?hasNextReceiver and ?nex-
tReceiver would have eliminated this solution.

Both false positives are reported because of imprecise points-to analysis re-
sults in our program representation. The highlighted occurrence of method
not_enhanceable_1, the second false positive, will clarify this. The points-to sets
for i and j are printed on the second and fourth line at the bottom of the inspector
window in the top-right corner of Figure 6.9. As the intersection of their points-
to sets is non-empty, they are in a may-alias relation according to the points-to
analysis. The must-alias analysis was unable to assert that they are in a must-alias
relation. The unification procedure therefore unifies ?hasNextReceiver and ?nextRe-
ceiver, but only with a unification degree of 0.5 to indicate that it might introduce
false positives. This is the case for this solution because the points-to sets for i and
j are imprecise. They contain a single heap referee abstraction that is allocated in
method iterator() of AbstractList. They are computed by the SPARK [Lho02]
analysis which is context-insensitive. It does not analyze individual invocations of a
method in different invocation contexts separately (cf. Section 2.5.4). According to
the analysis, all invocations of the iterator method return the same heap referee
abstraction:

1 public Iterator iterator() { return new Itr(); }

The domain-specific unification procedure of our prototype will therefore always
unify AbstractList iterators because its imprecise points-to analysis considers
them in a may-alias relation.

Evaluation The reported pattern instances illustrate that whole-program analy-
ses enable detecting implicit implementation variants of data flow characteristics.
This obviates the need for specifications that enumerate these variants in an ad-
hoc manner. Incorporating whole-program analyses in the unification procedure
allows data flow characteristics to be specified without having to refer to the analy-
ses that enable their detection. In particular, they can be expressed through multi-
ple occurrences of a variable or by requiring different variables to unify. The latter
is illustrated by the pattern specification.

To eliminate the reported false positives, a context-sensitive points-to analysis
can be adopted —in particular one that models invocation contexts using the re-
ceivers of the topmost invocations on the call stack [LH06]. However, the fuzzy logic
cornerstone already allows discerning solutions that required a unification which
could introduce false positives. In this way, both cornerstones are complementary.

The Protocol Revisited

The protocol described in Section 5.3.3 requires complying methods to initiate the
protocol by invoking a() and subsequently use the returned result as the argument
for an invocation of c(Object) without invoking b() in between. The left side
of Figure 5.10 depicts two queries that detect complying methods. The query in
the top-left corner expresses their control flow characteristics in terms of syntactic
characteristics, while the query in the bottom-left corner expresses them directly.
Their results are shown in the top-left window in Figure 5.9.

The CAVA library does not provide reification predicates for data flow informa-
tion. In an attempt to express the pattern’s data flow characteristics in terms of

169

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.10: Quantified solutions for data flow char. of complying methods.

syntactic characteristics, Section 5.3.4 therefore extended the queries as follows (?c
and ?a are bound to invocations of methods a() and c(Object) respectively):

1 ?c methodInvocationHasArguments: ?args, [?args size = 1], ?args contains: ?a

This query requires invocation ?a to be the actual argument of invocation ?c.
The query therefore failed to recognize methods compliant_1, compliant_3 and
compliant_4 of Figure 5.9. Each method implements a different implicit varia-
tion point of the data flow characteristic. The latter two can only be recognized by
analyzing the entire program.

The domain-specific unification procedure allows expressing data flow char-
acteristics without exposing users to the whole-program analyses that enable de-
tecting their implicit variation points. Only the condition on line 10 of either the
top-left query (expressing control flow characteristics indirectly) or the bottom-
left query (expressing control flow characteristics directly) in Figure 5.10 has to be
changed:

1 ?c equals: methodInvocation(?,?,simpleName([’c’]),nodeList(<?a>))

The condition succinctly expresses that the single argument of method invocation
?c should be the result of method invocation ?a. The quantified results for both
adapted queries are depicted in Figure 6.10. The left and right column respectively
list the truth degrees associated with solutions to the query that expresses the con-
trol flow characteristics directly and indirectly.

The first column in Figure 6.10 depicts the truth degrees for the solutions to the
extended query that expresses the control flow characteristics directly. Apart from
method semi_compliant_1 (cf. Section 5.3.3), it identifies all complying methods
and does not identify a false positive. For solutions with a truth degree of 1, the
argument of the invocation of c(Object) is the actual invocation of method a()
itself.

The second column illustrates the difficulties that arise in mapping AST nodes
to the intermediate program representation commonly used by program analy-
ses. It depicts the solutions to the extended query that fails to express the control

170

6.7. Open Implementation

flow characteristics properly. Of the complying methods, the query only identi-
fies methods compliant_1 and semi_compliant_2.19 Compared to the original
query, it no longer reports the false positive not_compliant_1 (cf. the second col-
umn of the top-left window in Figure 5.9). As the query still expresses the control
flow characteristics in terms of syntactic characteristics, this improvement is due
to the domain-specific unification procedure. Method invocation a() in the true-
branch (bound to ?a) does not unify with the argument of method invocation c(d).

However, the reason is not immediately clear. Because of the assignment in the
true-branch, the return value of a() should have been included in the points-to
set for local variable d. A closer inspection reveals that the unification procedure
could not query the points-to analysis results for the argument of c(d). This invo-
cation is absent from the JIMPLE intermediate byte code representation for which
the analysis is computed (cf. Section 5.3.4). The Java compiler omitted the if-
statement in the bytecode on lines 1–4 below. Lines 5–7 show the corresponding
JIMPLE representation. Here, the code is further optimized such that the result of
a() is not even stored:

1 aload_0 [this]
2 invokevirtual protocol.ProtocolExample.a() : example.Date [27]
3 astore_1 [d]
4 return

5 r0 := @this: protocol.ProtocolExample
6 virtualinvoke r0.<protocol.ProtocolExample: example.Date a()>()
7 return

For this false positive, the query benefits from the inherent incompleteness of the
mapping from arbitrary AST nodes to the intermediate representations analyses
are usually computed for (cf. Section 2.5.1). However, the false positive would have
been included in its results if the compiler had not determined that the condition
of the if-statement always evaluates to true. Method c(Object) is invoked after
method a() according to the query (cf. Section 5.3.3).

Evaluation The above illustrates the difficulties that arise in mapping AST nodes
to instructions in intermediate representations. Possible errors in this mapping
warrant the unification degree of 9

10 rather than 1 for expressions that are guaran-
teed to evaluate to the same object according to the must-alias analysis. Under the
general-purpose unification procedure, users would have to implement this map-
ping and the domain-specific unification extensions that require them repeatedly
in logic queries.

6.7 Open Implementation

The fuzzy variant of SOUL extends the object-oriented implementation of SOUL.
It is therefore as open as SOUL itself (cf. Section 5.4). The same goes for
its implementation of the domain-specific unification procedure. The in-
terpreter determines whether two logic terms unify by sending the message
unifyWith:inEnv:myIndex:hisIndex:inSource: to the Smalltalk implemen-
tation of one of the terms with the Smalltalk implementation of the other term as

19Methods with a truth degree of 0 are not included in its solutions, but are included in the entries
of the right column to facilitate comparing its solutions with those of the other query. In order for a goal
to succeed, its truth degree has to lie within]0,1] (cf. Section 6.1).

171

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

argument. The corresponding methods comprise the meta-level interface through
which the unification procedure can be extended.

Our domain-specific extensions implement a double dispatching idiom on the
org.eclipse.jdt.core.dom.ASTNode hierarchy. The methods at the top of Fig-
ure 6.11, for instance, implement the extension that determines whether two types
unify. The first method is invoked by the interpreter on a Type instance. It double
dispatches to the second method if its argument is another Type instance. Two type
nodes unify if they are the same instance of Type (cf. Section 6.4.1). This is checked
by the unification procedure on line 5. Two type nodes also unify if they denote the
same type according to the semantic analysis. The unification procedure verifies
this on lines 6–8 by comparing the “bindings” for the type nodes (i.e. entries in the
symbol table of the Eclipse compiler —cf. Section 5.3.4). Return types of overriding
methods also unify if the return type of the overriding method denotes the same
or a sub-type of the return type of the overridden method. The implementation
only checks whether their method declaration parents are in an overriding relation
(lines 9–14). It does not check whether the return types are co-variant. This is un-
necessary as the semantic analysis already asserted the overriding relation.

To facilitate implementing custom unification extensions, we provide a tool
through which developers can edit a matrix that defines how each pair of AST nodes
unifies (see [BDM07] for a screenshot). The extension itself has to be implemented
in Smalltalk, but the tool automatically generates the remaining code for the double
dispatching and ensures the symmetry of the algorithm. This way, the developer
can concentrate on the implementation of the extension itself.

The SOOT Java Optimization Framework [VRCG+99] computes its points-to and
must-alias analyses for the JIMPLE three-address based representation (cf. Fig-
ure 2.4). The instructions in this representation take the form of at most two
operands, an operation and a result. We provide an API through which the JIM-
PLE instruction that corresponds to an expression in an ECLIPSE AST node can be
retrieved. Custom unification extensions can therefore query other program anal-
yses for their results for such an instruction.

The method at the bottom of Figure 6.11 implements the mapping from
CastExpression instances to JIMPLE instructions. It returns an association of a
unit (i.e. statement) and a local (i.e. variable) from the JIMPLE method that corre-
sponds to the method declaration in which the expression resides (line 2).20 The
local is assigned the value of a JIMPLE cast expression by the unit (i.e. it is the left
hand side of an assignment unit). The JCastExpr and the CastExpression have
to cast to the same type. We consult the semantic analysis to determine to which
type the latter casts (line 4). Their respective operands should also be compatible
(line 5). The operand of the CastExpression is one of its child nodes. Its parent
node should also be compatible with one of the trailing units that use the result of
this local.21 If the information about the parent and child nodes of the expression
does not suffice to unambiguously identify its corresponding unit, the procedure
also checks whether their line numbers correspond (line 7).22 The mappings for
other expressions are similar, but complicated. For instance, because of synthetic
fields, methods and constructor arguments generated by the Java compiler to im-

20Cast expressions in field declarations are handled similarly.
21Consider the unit that assigns a local which corresponds to a cast expression that is used as the

argument to a method invocation. It should have a trailing unit that uses the local as the argument to a
corresponding method invocation.

22These are only available when the program has been compiled with debug information.

172

1
Ty

pe
>>

un
if

yW
it

h:
aT

er
m

in
En

v:
an

En
v

my
In

de
x:

my
In

de
x

hi
sI

nd
ex

:
hi

sI
nd

ex
in

So
ur

ce
:

aB
oo

l
2

^a
Te

rm
un

if
yW

it
hT

yp
e:

se
lf

in
En

v:
an

En
v

my
In

de
x:

hi
sI

nd
ex

hi
sI

nd
ex

:
my

In
de

x
in

So
ur

ce
:

aB
oo

l
no

t.

3
Ty

pe
>>

un
if

yW
it

hT
yp

e:
aT

er
m

in
En

v:
an

En
v

my
In

de
x:

my
In

de
x

hi
sI

nd
ex

:
hi

sI
nd

ex
in

So
ur

ce
:

aB
oo

l
4

|
se

lf
bi

nd
in

g
ot

he
rb

in
di

ng
|

5
se

lf
=

aT
er

m
if

Tr
ue

:
[^

tr
ue

].
6

ot
he

rb
in

di
ng

:=
aT

er
m

re
so

lv
eB

in
di

ng
.

7
se

lf
bi

nd
in

g
:=

se
lf

re
so

lv
eB

in
di

ng
.

8
(s

el
fb

in
di

ng
is

Eq
ua

lT
o_

IB
in

di
ng

:
ot

he
rb

in
di

ng
)

if
Tr

ue
:

[^
tr

ue
].

9
(s

el
f

is
Re

tu
rn

Ty
pe

Of
Me

th
od

De
cl

ar
at

io
n

an
d:

[a
Te

rm
is

Re
tu

rn
Ty

pe
Of

Me
th

od
De

cl
ar

at
io

n]
)

10
if

Tr
ue

:
[|

my
Me

th
od

Bi
nd

in
g

ot
he

rM
et

ho
dB

in
di

ng
|

11
my

Me
th

od
Bi

nd
in

g
:=

se
lf

ge
tP

ar
en

t
re

so
lv

eB
in

di
ng

.
12

ot
he

rM
et

ho
dB

in
di

ng
:=

aT
er

m
ge

tP
ar

en
t

re
so

lv
eB

in
di

ng
.

13
^(

my
Me

th
od

Bi
nd

in
g

ov
er

ri
de

s_
IM

et
ho

dB
in

di
ng

:
ot

he
rM

et
ho

dB
in

di
ng

)
14

or
:

[o
th

er
Me

th
od

Bi
nd

in
g

ov
er

ri
de

s_
IM

et
ho

dB
in

di
ng

:
my

Me
th

od
Bi

nd
in

g]
].

15
^f

al
se

1
ML

IF
or

So
ot

>>
lo

ca
lI

nU
ni

tF
or

Ca
st

Ex
pr

es
si

on
:

aC
as

tE
xp

re
ss

io
n

2
^(

aC
as

tE
xp

re
ss

io
n

pa
re

nt
Me

th
od

De
cl

ar
at

io
n

co
rr

es
po

nd
in

gS
oo

tM
et

ho
d)

3
lo

ca
lI

nU
ni

tI
sA

ss
ig

ne
dV

al
ue

Sa
ti

sf
yi

ng
:

4
[:

va
lu

e
|

(v
al

ue
is

Ki
nd

Of
:

Ja
va

Wo
rl

d.
so

ot
.j

im
pl

e.
in

te
rn

al
.J

Ca
st

Ex
pr

)
an

d:
5

[(
se

lf
so

ot
Ty

pe
:

va
lu

e
ge

tT
yp

e
is

Co
mp

at
ib

le
Wi

th
Bi

nd
in

g:
aC

as
tE

xp
re

ss
io

n
re

so
lv

eT
yp

eB
in

di
ng

)
an

d:
6

[s
el

f
su

bE
xp

re
ss

io
n:

aC
as

tE
xp

re
ss

io
n

ge
tE

xp
re

ss
io

n
is

Co
mp

at
ib

le
Wi

th
Lo

ca
l:

va
lu

e
ge

tO
p]

]]
7

by
Un

it
Sa

ti
sf

yi
ng

:
[:

un
it

|
se

lf
no

de
:

aC
as

tE
xp

re
ss

io
n

is
Po

si
ti

on
Co

mp
at

ib
le

Wi
th

Un
it

:
un

it
]

8
an

dS
om

eT
ra

il
in

gU
ni

tS
at

is
fy

in
g:

9
[:

un
it

:l
oc

al
:u

ni
tC

ha
in

|
10

se
lf

so
ot

Un
it

:
un

it
us

es
Lo

ca
l:

lo
ca

l
as

Pa
re

nt
Of

Ex
pr

es
si

on
:

aC
as

tE
xp

re
ss

io
n

in
Un

it
Ch

ai
n:

un
it

Ch
ai

n]

Fi
gu

re
6.

11
:

A
do

m
ai

n
-s

p
ec

ifi
c

u
n

ifi
ca

ti
on

ex
te

n
si

on
(t

op
)

an
d

a
m

et
h

od
m

ap
p

in
g

E
cl

ip
se

A
ST

n
od

es
to

in
st

ru
ct

io
n

s
in

th
e

JI
M

P
L

E
in

te
rm

ed
ia

te
re

p
re

se
n

ta
ti

on
(b

ot
to

m
).

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

plement inner classes.

6.8 Limitations of the Instantiation

This section enumerates the technical limitations of fuzzy SOUL and the domain-
specific unification procedure. We discuss the open research questions related to
their respective cornerstones in the concluding chapter.

Fuzzy Logic Programming using Fuzzy SOUL

In our prototype, the fixed quantification of logic connectives and resolution is
arguably too restrictive for general-purpose fuzzy logic programming. Users can
override this quantification only in a highly operational and ad-hoc manner using
variable annotations and Smalltalk terms that manipulate truth degrees (cf. Sec-
tion 6.1.1).

To better accommodate fuzzy logic programming, fuzzy SOUL could be gen-
eralized to quantify truth using custom t-norms [Háj98] (i.e. a generalized inter-
pretation of conjunction from which interpretations for disjunction, negation and
implication follow) and use truth degrees that generalize the unit interval (i.e. to
unions of sub-intervals such as [VGMH02] or custom truth lattices). In future work,
we want to investigate whether there are also configurations in this design space
that improve the current ranking of pattern instances.

Our goal-driven resolution procedure does not aggregate identical solutions
with different truth degrees into a single solution with an aggregated truth degree
(cf. Section 6.1.2). Users have to aggregate over results manually. This further hin-
ders the use of fuzzy SOUL to solve fuzzy problems. Straccia [Str06] provides an
interesting starting point to address this deficiency in an efficient manner. It uses
tabled resolution [RC97, CW96] which is already included in the future work for
SOUL (cf. Section 5.5.1) and also addresses the aforementioned generalizations by
allowing arbitrary functions in rules to manipulate values from truth lattices.

Premature Combination of Resolution Degree with Unification Degree

Section 6.1.2 describes how fuzzy SOUL computes the truth degree for a goal by
multiplying the degree to which the goal and the head of a rule unify (i.e. unifica-
tion degree) with the degree to which the goal can be resolved using this rule (i.e.
resolution degree). The following program illustrates that unification and resolu-
tion degrees are sometimes combined prematurely:

1 (?y foo: ?y) : [0.7].

2 if ?e1 expressionMayAlias: ?e2,
3 (?x foo: ?e1) : ?t11,
4 (?x equals: ?e2) : ?t12

5 if ?e1 expressionMayAlias: ?e2,
6 (?x equals: ?e2) : ?t21,
7 (?x foo: ?e1) : ?t22

Predicate foo:/2 is a weighted variant of equals:/2, while
expressionMayAlias:/2 reifies the may-alias relation between expressions.
Although both queries only differ in the order of their last two conditions, the

174

6.8. Limitations of the Instantiation

truth degrees for solutions to both queries would differ significantly if the variable
annotations on these conditions were removed (i.e. 0.5 for the first query and
0.35 for the second query). The bindings for these annotations are ?t11 → 0.7,
?t12 → 0.5 for the first query and ?t21 → 1, ?t22 → 0.35 for the second query.

At first sight, this problem could be addressed using different quantifications.
Using minimum to combine unification and resolution degrees would ensure that
the solutions to both queries have the same truth degrees (i.e. 0.5). However, all
annotations of foo:/2 that are above 0.5 would no longer have an influence on the
truth degree of these solutions. We therefore use multiplication rather then min-
imum to ensure that both resolution and unification degrees influence the truth
degree for a goal. Using multiplication to quantify conjunction would, on the other
hand, result in very small truth degrees if the same condition is repeated in a query.
This is because multiplication is not idempotent. The truth degree of the following
query would for instance have a truth degree of 0.343:

1 if ?e1 foo: ?e2, ?e1 foo: ?e2, ?e1 foo: ?e2

In future work, we should delay combining unification degrees and resolution
degrees until a truth degree is requested (i.e. for goal annotations). This would ad-
dress the above problem. Solutions to a query that rely on two unifications based
on points-to analysis lower would, moreover, be ranked lower than solutions that
only require one. This without having to adopt multiplication to quantify conjunc-
tion (argued against above).

The similarity-based unification procedure of LIKELOG [AF99] is an interesting
starting point. It computes and propagates unification degrees separately from the
resolution degrees. Our quantification of unification degrees is closer to Sessa’s
weak unification procedure [Ses02].

The Relation of Unifying AST Nodes is not an Equivalence Relation

Each domain-specific unification extension (cf. Section 6.4.1) unifies two reified
AST nodes if they are in a particular relation. For instance, two expressions unify if
they are in a may-alias relation. Not all relations are symmetric. This is the case for
the may-invoke relation and the sub-type relation. However, the overall relation R
of unifying AST nodes is reflexive (i.e. xRx) and symmetric (i.e. xR y ⇒ yRx). Both
are important properties. Without the latter, condition ?x equals: ?y and condi-
tion ?y equals: ?x would allow different bindings for ?x and ?y.

We ensure symmetry by taking the context of AST nodes into account. For in-
stance, by checking whether two Type instances represent the return types of over-
riding method declarations. In this case, the return type of the overriding method
is allowed to be a sub-type of the return type of the overridden method. Other Type
instances only unify if they denote the same type. CAVA’s reification (cf. Section 5.2)
facilitates querying an AST node for its context. The unification procedure invokes
the following method to discern Type instances:

1 Type>>isReturnTypeOfMethodDeclaration
2 ^self getParent isMethodDeclaration

The relation R of unifying AST nodes is not transitive. The following query can
have a solution <?e1 → e1,?e2 → e2,?e3 → e3> such that P (e1)∩P (e2) /= ∅∧P (e2)∩
P (e3) /= ∅∧ P (e1) ∩ P (e3) = ∅ where pt (e) is the points-to set for expression e.
Clearly, the may-alias relation (which determines when two expressions unify) is
not transitive. The following query can have solutions:

175

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

1 if ?e1 isExpression, ?e2 isExpression, ?e3 isExpression,
2 ?e1 equals: ?e2, ?e2 equals: ?e3, not(?e1 equals: ?e3)

Under the general-purpose unification procedure, R is an equivalence relation.
Under the domain-specific unification procedure, R is only a dependency relation:
it is reflexive and symmetric, but not transitive. In future work, we want to inves-
tigate the theoretical implications of this difference. In practice, we have not yet
encountered any problems caused by this difference. The unification extensions
address specific shortcomings of LMP in pattern detection and their implementa-
tion precludes other uses in queries.

6.9 Conclusion

This chapter discussed the instantiations of the fuzzy logic and domain-specific
unification cornerstones. Concretely, we defined a fuzzy version of SOUL with
domain-specific extensions to the general-purpose unification procedure.

Fuzzy logic is a logic of quantified truth. It enables quantifying pattern in-
stances with the extent to which they exhibit the characteristics expressed in a spec-
ification. We defined the semantics of fuzzy SOUL using the meta-circular evalua-
tor methodology and discussed key predicates from its standard library. Apart from
how it combines resolution degrees with unification degrees, its quantification of
truth is representative for many early “fuzzy Prolog” systems. Rather uncommon
are its support for rules that are weighted by a variable and for defining the char-
acteristic function of a fuzzy set through linguistic symbiosis. We have shown how
patterns with vague classification boundaries can be specified in this manner.

The domain-specific unification cornerstone overcomes the unification-
related shortcomings of LMP in pattern detection. Terms that do not unify under
the general-purpose procedure, can unify under the domain-specific procedure.
The procedure computes a unification degree that reflects the likelihood that such
a unification introduces false positives.

To support the natural use of unification to quantify over AST nodes, reified
AST nodes unify with structurally equivalent compound terms —even if the reified
version of an AST node is not a compound term. This is the case for the CAVA library
which uses an identity-based reification to objects through the linguistic symbiosis
of SOUL.

To recognize implicit points of variation among pattern instances, reified AST
nodes unify if they represent different implementations of the same characteris-
tic. This obviates the need for specifications that enumerate these variants in an
ad-hoc manner. CAVA’s reification facilitates incorporating whole-program anal-
yses in the unification of individual AST nodes. Most notably, expressions unify
with a unification degree of 1

2 if they are in a may-alias relation according to an
inter-procedural points-to analysis. Unifying such expressions can introduce false
positives if the expressions do not evaluate to the same object during all possible
program executions. Expressions that reside in the same method unify with a uni-
fication degree of 9

10 if they are guaranteed to alias during all executions according
to an intra-procedural must-alias analysis. If both expressions are the same AST
node, they unify with a complete unification degree.

To illustrate how both cornerstones improve upon regular LMP, we specified the
patterns that are representative for each kind of pattern characteristic as fuzzy logic
queries that rely on domain-specific unification.

176

C
H

A
P

T
E

R

7
INSTANTIATING THE EXAMPLE-BASED

SPECIFICATION CORNERSTONE

The instantiation of the example-based specification cornerstone ex-
tends fuzzy SOUL with template terms. These wrap code excerpts that
correspond to the prototypical implementation of a pattern’s essential
characteristics. Having introduced their syntax, we revisit the meta-
interpreter for fuzzy SOUL to clarify how template terms are resolved.
Template terms are matched against the program under investigation.
Matches should exhibit the characteristics exemplified by the code ex-
cerpt of the template term. However, a single code excerpt can exemplify
different pattern characteristics. An AST node therefore always matches
a template term under a particular example-based interpretation of the
excerpt. Under the control flow interpretation, for instance, the control
flow characteristics of the source code excerpt exemplify the intended
matches. We discuss three standard example-based interpretations. We
demonstrate how this cornerstone improves upon the support for the dif-
ferent pattern characteristics offered by regular LMP. Finally, we discuss
the meta-level interface through which additional example-based inter-
pretations can be defined.

7.1 Extending SOUL with Template Terms

The example-based specification cornerstone overcomes the quantification-
related shortcomings of logic meta programming (cf. Section 4.2.2). It suffices to
exemplify a pattern’s characteristics by means of a source code excerpt, rather than
expressing them by explicitly quantifying over the reified program representation.
The details of the program information and its reification are hidden (criterion
CSL5). The resulting specifications are highly descriptive (criterion CSL2) and
their syntax is familiar to application programmers.

However, explicit points of variation among pattern instances can only be ex-
pressed (criterion CSL3) by introducing “cutouts” (i.e. variables) in the source code
excerpt of a template term. Logic meta programming, in contrast, features connec-

177

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

tives (e.g. and/n, or/n and not/n) to constrain such variation points. It moreover
features an expressive means for abstraction and reuse of specifications (criterion
CSL4): defining predicates.

As both cornerstones are complementary on criteria CSL2-CSL5 and criteria
CSL3-CSL4 (cf. Table 4.1), we extended SOUL with template terms. They can be
used anywhere a regular logic term is allowed. Depending on which one is more
convenient, either a logic-based or an example-based specification can be used.
Section 7.3 will moreover illustrate that integrating template terms in a logic lan-
guage enables template composition.

7.1.1 The Syntax of Template Terms in a Nutshell

We introduced the syntax of template terms in Section 4.3. In brief, they consist of
a compound term followed by a Java code excerpt demarcated by braces:

1 if jtStatement(?st){ ?x = (?type) ?e; }

The above query contains a template term for a Java statement. It consists of a func-
tor jtStatement, a single argument ?st and a code excerpt delimited by braces. The
functor of the template term identifies the grammar rule adhered to by the code ex-
cerpt.1 This grammar describes the concrete syntax of Java —extended with logic
variables and a minimum of non-native syntax. The above excerpt exemplifies an
expression statement (i.e. a statement that wraps an expression). The expression
assigns, to a left hand side ?x, the result of a cast to a type ?type of an expression ?e.
Within a code excerpt, logic variables stand for productions that originate from a
non-terminal in the Java grammar. They indicate explicit points of variation among
pattern instances.

Template terms can be used anywhere a regular logic term is allowed (e.g.
as conditions in logic rules and queries or embedded within other terms). Sec-
tion 7.1.2 details how template terms are resolved. For now, it suffices to say
that they are matched against the AST nodes of the program under investigation.
Matching AST nodes exhibit the characteristics exemplified by the source code ex-
cerpt of the template term. Backtracking over the term successively unifies each
matching node with the argument of the term. Variables within the excerpt get
bound as well. The bindings for multiple occurrences of the same variable have to
unify according to the domain-specific unification procedure (cf. Chapter 6).

Two-Argument Template Terms

Matches for a template term exhibit the characteristics exemplified by its source
code excerpt. However, a single code excerpt can exemplify multiple characteristics
(cf. Section 4.3.2). An AST node therefore always matches a template term under
a particular example-based interpretation. Under the syntactic interpretation, for
instance, the syntactic characteristics of the source code excerpt exemplify the
intended matches. Under the control flow interpretation, in contrast, the control
flow characteristics of the source code excerpt exemplify the intended matches.
Section 7.2 details the predefined example-based interpretations. They realize the
example-based semantics of the template terms.

1The prefix jt of the functor discerns template terms for Java statements from those for Smalltalk
statements (which start with the st prefix).

178

7.1. Extending SOUL with Template Terms

The template terms presented so far have a single argument. This argument
unifies with an AST node that matches the excerpt under a particular example-
based interpretation. All example-based interpretations are considered successively
upon backtracking over the term. In case a second argument is provided, only the
example-based interpretation named after this argument is considered.

The first condition of the following query therefore restricts the example-based
interpretations for the template term to those named syntactic or controlflow
(i.e. the elements of the logic list2):

1 if <syntactic, controlflow> contains: ?interpretation,
2 jtMethodDeclaration(?match,?interpretation){
3 ?modList ?type ?name(?paramList){ ?s1; ?s2; }
4 }

The matches for the term can differ considerately under each interpretation.
Under the control flow interpretation, instructions ?s1 and ?s2 need not reside in
method ?match. They can reside in different methods invoked from ?match. Un-
der the syntactic interpretation, in contrast, only perfect matches for the term are
reported. The points of variation among the matches are restricted to those indi-
cated explicitly by the logic variables in the excerpt.

The domain-specific unification procedure ensures that bindings for multiple
occurrences of a variable are consistent across all terms in a specification. Differ-
ent implementations of a data flow characteristic therefore match a template term
regardless of the interpretation under which it is resolved.3 Section 7.2.4 discusses
the implicit variation points that each interpretation supports uniquely.

Variable Suffixes as Parser Directives

The above template term contains two directives for the parser of its code excerpt.
Variables that end with the List suffix stand for a collection of concrete syntax ele-
ments. Variables ?paramList and ?modList therefore stand for the modifier list and
formal parameter list of method ?match rather than a single modifier and param-
eter. In solutions to the term, both variables will be bound to a collection of AST
nodes. Note that logic variables are dynamically typed. This naming convention is
therefore merely a parser directive.

Another parser directive is available to disambiguate source code excerpts. The
combination of concrete syntax and dynamically typed variables is often ambigu-
ous (i.e. can be recognized by multiple grammar rules that each construct a sepa-
rate AST). Consider the class declaration template term in the following query:

1 if jtClassDeclaration(?classDeclaration) {
2 class ?className {
3 ?modifier ?type ?methodName(?parameterList) ?statementList
4 }
5 }

The source code excerpt of the term is ambiguous. It can exemplify a class with
a method with a single modifier ?modifier (1), a class with a constructor with mod-
ifiers ?modifier and ?type (2), a class with an additional member ?modifier in its

2Recall that logic lists are demarcated by angle brackets in SOUL (cf. Section 5.1.1).
3Where this is not desirable, a condition of the form “?x equals: ?y : [1]” excludes solutions in

which the unification degree of ?x and ?y is lower than 1. A condition of the form “[?x == ?y]” excludes
solutions in which ?x and ?y are not bound to the same AST node (cf. Section 6.4).

179

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

body and a method without modifiers (3), a class with an additional ?modifier in its
body and a constructor with a single modifier ?type (4) and a class with additional
declarations ?modifier, ?type and a constructor without modifiers (5).

Template terms support this ambiguity by considering all possible ASTs for a
source code excerpt upon backtracking. This way, users are not burdened with
having to disambiguate the source code excerpts. The intended AST is always con-
sidered. If necessary, however, variables can be suffixed with the name of a gram-
mar rule. Such variables only stand for the concrete syntax elements produced by
this rule. Substituting variable ?type::jtType for variable ?type, for instance, dis-
ambiguates the above template term. The ::jtType suffix will ensure that vari-
able ?type::jtType only stands for concrete syntax elements produced by the jtType
grammar rule.

A Minimum of Non-Native Syntax

To ensure the descriptiveness of example-based specifications (criterion CSL2), we
limit concrete syntax departures in template terms to the bare minimum. With-
out the following, however, many example-based specifications would be less con-
cise:

Non-native operator := unifies its left hand side (a logic variable) with the AST
node that matches the concrete syntax on its right hand side.4 In the following
query, the := operator binds ?inner to an inner class named ?innerName of the
class ?class named ?name that matches the template term:

1 if jtClassDeclaration(?class,?interpretation){
2 class ?name { ?inner := [class ?innerName ?innerMemberList] }
3 }

The following query is equivalent and does not use the := operator, but is less
concise (and slower):

1 if jtClassDeclaration(?class,?interpretation){
2 class ?name { ?inner }
3 },
4 jtClassDeclaration(?inner,?interpretation){
5 class ?innerName ?innerMemberList
6 }

The first template term establishes a binding for the left hand side of the orig-
inal := operator: a member declaration ?inner of ?class. The second template
term matches the right hand side of the original := operator and unifies this
with its first argument ?inner. Both template terms have variable ?interpreta-
tion as their second argument to ensure that they are resolved under the same
example-based interpretation. Otherwise, both queries would have different
solutions. Section 7.3 will demonstrate that it is not always possible to elimi-
nate the := operator by composing template terms in this manner.

Non-native operator ! is a complement operator. The following template term
matches classes that do not implement any interface and have a method of
which the modifiers list includes a public modifier, but not a static modi-
fier:

4The operator is analogous to the @ operator of Haskell and Mercury, rather than the := operator of
PQL (cf. Section 3.5.3). We borrowed the syntax from the assignment operator of Smalltalk.

180

7.1. Extending SOUL with Template Terms

1 if jtClassDeclaration(?class){
2 class ?name implements ![?interface] {
3 public ![static] ?type::jtType ?mName(?pList) ?sList
4 }
5 }

The following query is equivalent and does not use the complement operator,
but is less concise:

1 if jtClassDeclaration(?class,?interpretation){
2 class ?name {
3 public ?type::jtType ?mName(?pList) ?sList
4 }
5 },
6 absolutelyNot(jtClassDeclaration(?class,?interpretation){
7 class ?name {
8 static ?type::jtType ?mName(?pList) ?sList
9 }

10 }),
11 jtClassDeclaration(?class,?interpretation) {
12 class ?name implements ?interface ?memberList
13 },
14 [?interface isNil]

The first condition is a template term that contains all positive (i.e. non-
complemented) concrete syntax elements of the original template term. It
matches a class ?class that has a method with a public modifier.

The second condition only succeeds if the same method in ?class does not
have a static modifier. It is equivalent to the second occurrence of the com-
plement operator in the original template term. The higher-order predicate
absolutelyNot/n only succeeds if the conjunction of its arguments does not
succeed (cf. Section 6.2.2). The regular not/n predicate also succeeds if its ar-
guments can be proven to a less than perfect truth degree.

The third and fourth condition are equivalent to the first occurrence of the
complement operator in the original template term. They express that the
AST node bound to ?class should not have a child node representing an im-
plemented interface type. The solutions to the third condition include classes
that implement and classes that do not implement an interface type. In the lat-
ter solutions, ?interface is bound to nil. This behavior is consistent with the
matching of return statements with and without an expression operand (cf.
Figure 4.6).

Our prototype does not support complement operators that precede in-
structions in a method declaration template. Under the control flow inter-
pretation, template terms share the same limitation as the control flow traver-
sal predicates they compile to (cf. Section 5.5.2). It is not possible to express
an existential path query with a complement such as “does there exist a path
through ?m on which anything but b is executed between a() and c(?arg)?”.
Section 7.4.3 demonstrates how the closely related universal path query “is it
true that there is not a single path on which c(?arg) follows b() and b() fol-
lows a()?” can be expressed by negating a method declaration template.

Non-native operator * is a reflexive transitive closure operator that can only be
used in two specific places. The logic rule in the top-left corner of Figure 7.1
illustrates that the operator can also be used before the member declarations
of a class (or interface) declaration template. In this position, it matches the
specified members against the combined members of the class itself and all

181

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.1. Extending SOUL with Template Terms
7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

Figure 7.1: Four equivalent example-based definitions for a predicate that quanti-
fies over all members in a class.

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

203

7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

7.1. Extending SOUL with Template Terms
7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

7.1. Extending SOUL with Template Terms

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp : [999/1000] if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

Matching of Lists

7.1.2 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.1 clarifies how template terms are resolved. The depicted clause
extends the meta-interpreter for fuzzy SOUL (cf. Figure 6.1). The condi-
tion on line 4 unifies the “type” component of the template term bound to
&goal with a variable argument compound term (cf. Section 5.1.1). For the
template term jtStatement(?s){return ?e;}, this establishes the bindings
?functor→jtStatement and ?args→<?s>. Line 5 clarifies that a template term

203

Figure 7.1: Four equivalent example-based definitions for a predicate that quanti-
fies over all members in a class.

1 ?class classHas: ?member under: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{ ?member }
4 }

5 ?class classHas2: ?member under: ?interp if
6 jtClassDeclaration(?class,?interp){
7 class ?className { ?member }
8 }
9 ?class classHas2: ?member under: ?interp if

10 jtClassDeclaration(?class,?interp){
11 class ?className extends ?super ?memberList
12 },
13 ?super classHas2: ?member under: ?interp

14 ?class classHas3: ?member under: ?interp if
15 jtClassDeclaration(?class,?interp){
16 class ?className extends* ?super ?memberList
17 },
18 jtClassDeclaration(?super,?interp){
19 class ?superName { ?member }
20 }
21 ?class classHas3: ?member under: ?interp if
22 jtClassDeclaration(?class,?interp){
23 class ?className { ?member }
24 }

25 ?class classHas4: ?member under: ?interp if
26 jtClassDeclaration(?class,?interp){
27 class ?className { ?member }
28 }
29 ?class classHas4: ?member under: ?interp if
30 jtClassDeclaration(?class,?interp){
31 class ?className extends* ?superList ?mList
32 },
33 ?superList contains: ?super,
34 jtClassDeclaration(?super,?interp){
35 class ?superName { ?member }
36 }

203

Figure 7.1: Four equivalent template terms illustrating non-native syntax.

of its super classes.5 The implemented predicate therefore quantifies over all
members ?member defined in ?class or its super-classes. The recursive rule in
the bottom-left corner illustrates how this operator can be eliminated. Its first
clause stops the recursion by quantifying over all members of a class. Its second
clause recurses into each super class.

The logic rules at the right of Figure 7.1 illustrate that the op-
erator can be used after the extends (or implements) keyword of a
class (or interface) declaration template. In this position, it matches
the concrete syntax it precedes against the reflexive transitive closure
of the super types. The jtClassDeclaration(?c){class ?n extends*
java.lang.Exception} template term, for instance, matches all direct and
indirect descendants of java.lang.Exception. The template term jt-
ClassDeclaration(?c){class ?n extends* ![java.lang.Object]}, on
the other hand, has no matches as all Java classes descend from Object. Like-
wise, variable ?super gets bound successively to each super type of ?class upon
backtracking over the template term on lines 15–17. Variable ?superList in the
template term on lines 30–32 collects all of these super types. The rules in which
both terms reside are not recursive, but implement the same predicate as the
other depicted rules.

7.1.2 Semantics of Template Terms in a Nutshell

The non-native operators enumerated above conclude the discussion of the syntax
for template terms. This section details how a template term is resolved and how
the truth degree for such a goal is computed. Section 4.3.3 introduced both aspects
of the semantics.

5Members defined in the interfaces it implements are not included.

182

7.1. Extending SOUL with Template Terms

Conceptually, each example-based interpretation transforms the template term
into a logic rule. This conceptual rule quantifies over the AST nodes that exhibit the
characteristics exemplified by the term’s code excerpt —under the corresponding
interpretation. When its body has identified a matching AST node, the node is uni-
fied with the first argument of the term. If present, the second argument is unified
with the name of the example-based interpretation.

The truth degree for a solution to a template term is bounded by the example-
based interpretation under which the solution matches the term’s code excerpt. The
corresponding rule is weighted by this upper bound. Resolving the term using this
conceptual rule computes a resolution degree (cf. Section 6.1.2). It corresponds to
the minimum of the truth degrees for the goals in the body of the rule, multiplied
by its weight (i.e. the weight associated with the corresponding example-based in-
terpretation). The truth degree for the solution is computed as the product of this
resolution degree and the unification degree of the term’s first argument and the
matching AST node. This is consistent with the influence of unification degrees on
the resolution degree for a regular goal (cf. Section 6.1.2).

Parsing an ambiguous source code excerpt produces a forest of ASTs (cf. Sec-
tion 7.1.1). Conceptually, each example-based interpretation compiles each of the
ASTs into a separate logic rule. Backtracking over the template term exhausts all
choice points for a rule before the next rule is considered. The example-based in-
terpretations are considered in the lexical order of the logic rules that implement
their translational semantics (cf. Section 4.6.4).

From the above, it is clear that the example-based semantics of template terms
are realized solely by the example-based interpretations of their source code ex-
cerpts. We discuss the standard interpretations in Section 7.2. Through a meta-
interpreter, the next section further clarifies how template terms are resolved.

7.1.3 Meta-Interpreter for Fuzzy SOUL Extended With Template Terms

Figure 7.2 defines how template terms are resolved using the meta-circular eval-
uator methodology. The depicted clause extends the meta-interpreter for fuzzy
SOUL (cf. Figure 6.1). The condition on line 4 unifies the “type” component of the
template term bound to &goal with a variable argument compound term (cf. Sec-
tion 5.1.1). For the template term jtStatement(?s){return ?e;}, this estab-
lishes the bindings ?functor→jtStatement and ?args→<?s>. Line 5 clarifies
that a template term can have two arguments.

Parsing the Source Code Excerpt of a Template Term

Lines 6–8 clarify how the source code excerpt is extracted from the template term
(line 6), converted to a list of tokens ?tokens (line 7) and subsequently parsed by
a Definite Clause Grammar [PW80] (cf. Section A.1). The functor ?functor of the
template term is used as the starting rule for the grammar (line 8). The DCG
rules describe the concrete syntax of Java extended with logic variables and a min-
imum of non-native syntax. Figure 7.3 depicts the DCG rules that recognize the
source code excerpt of the return statement template. They establish the binding
?ast→statement(return(expression(metaVar(?e)))).

The DCG rules on lines 1–6 of Figure 7.3 construct the AST for the return state-
ment. From the ?tokens list, they consume the tokens that are recognized by thejt-
ExpressionOpt/1 rule —following a return keyword and followed by a semicolon

183

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

1 &goal isProvenToExtent: [?rdegree * ?udegree] aboveThreshold: ?threshold if
2 [&goal isKindOf: Soul.TemplateTerm],
3 !,
4 [&goal type] equals: ?functor@(?args),
5 or(?args equals: <?match>,?args equals: <?match,?interpretation>),
6 ?excerpt equals: [&goal source],
7 deify(?tokens,[QuotedCodeJavaTokenScanner new breakInTokens: ?excerpt]),
8 ?functor(?ast,?tokens,<>),

9 (?ast templateUnderInterpretation: ?quotedInterpVar
10 compilesTo: ?quotedGoals
11 forResult: ?quotedMatchVar) : ?implicationStrength,
12 ?quotedGoals quotedVariablesAsHiddenVariables: ?goals,
13 ?quotedInterpVar quotedVariablesAsHiddenVariables: ?interpVar,
14 ?quotedMatchVar quotedVariablesAsHiddenVariables: ?matchVar,

15 ?interpVar equals: ?interpretation,
16 ?goals isProvenListOfGoalsToExtent: ?rdegree
17 aboveThreshold: ?threshold
18 runningMin: 1
19 implicationStrength: ?implicationStrength,
20 ?matchVar equals: ?match : ?udgree

Figure 7.2: Meta-interpreter excerpt clarifying fuzzy resolution of template terms.

1 jtStatement(statement(?s)) --> jtStatementWithoutTrailingSubstatement(?s)
2 jtStatementWithoutTrailingSubstatement(?s) --> jtReturnStatement(?s)
3 jtReturnStatement(return(?exp)) --> <keyword([#return])>,
4 jtExpressionOpt(?exp),<token([#’;’])>
5 jtExpressionOpt(expression(epsilon)) --> <>
6 jtExpressionOpt(?exp) --> jtExpression(?exp)

7 jtExpression(expression(?exp)) --> jtAssignmentExpression(?exp)
8 ...
9 jtPrimary(?exp) --> jtMetaVariable(?var),jtPrimaryNameRest(?var,?exp)

10 jtPrimaryNameRest(?name,?name) --> <>
11 jtPrimaryNameRest(?name,send(epsilon,?name,?args)) --> jtArguments(?args)

Figure 7.3: DCG rules parsing code excerpt of term jtStatement(?s){return ?e;}.

token (lines 3–4). The expression operand of the return statement is optional. The
first clause of the jtExpressionOpt/1 rule therefore succeeds without consuming
any tokens (line 5). In the example term, meta-variable ?e substitutes for the ex-
pression operand. It is recognized as a valid expression by the jtMetaVariable/1
goal on line 9.

Line 8 of the meta-interpreter clarifies how ambiguous source code excerpts
are handled. Backtracking over this starting goal for the DCG successively binds
?ast to all possible ASTs for the excerpt. DCG rules inherently support ambiguous
grammars (cf. Section A.1).

Compiling an AST for an Excerpt to Logic Goals

Lines 9–14 of Figure 7.2 clarify how an AST for the excerpt in a template term
is compiled to a conjunction of logic goals. These goals correspond to one
of the example-based interpretations of the excerpt. Each interpretation com-

184

7.1. Extending SOUL with Template Terms

piles the AST to a different conjunction of goals. The translational semantics
are defined by logic rules that implement predicate templateUnderInterpre-
tation:compilesTo:forResult:/4. This predicate is the meta-level interface
through which additional example-based interpretations can be defined (cf. Sec-
tion 7.5). It is called by the goal on lines 9-11. It is given the AST for the excerpt
?ast as its input argument, while the other arguments are output arguments. The
goal binds ?quotedGoals to a list of goals that, when resolved, quantify over the pro-
gram representation. The variables in this list are quoted and have to be unquoted
(i.e. transformed to logic variables) before the goals can be resolved.6 In fact, pred-
icate quotedVariablesAsHiddenVariables:/2 ensures that these variables are
unique to each template term and hidden from its solutions (lines 12–14). This way,
goals corresponding to different terms do not interfere and users only see bindings
for the variables in their excerpts.

For the jtStatement(?s){return ?e;} template term, the solutions
to lines 9–14 include bindings ?goals→<?Var1544669 equals: syntac-
tic, ?Var1544668 isStatement, ?Var1544668 equals: returnState-
ment(?Var1544670), ?Var1544670 equals: ?e>, ?interpVar→?Var1544669
and ?matchVar→?Var1544668. The former variable is bound to the name of the
interpretation under which the return statement bound to the latter variable
matches the excerpt.

The meta-interpreter performs the compilation step described here at run-
time. The actual evaluator for SOUL already performs this step at compile-time
(cf. Section 7.5).

Quantified Resolution of the Compiled Goals

Lines 15–20 clarify how the template term bound to &goal is resolved and how the
truth degree for this goal is computed. Conceptually, the template term is resolved
using a fuzzy logic rule weighted by ?implicationStrength. Its body consists of the
goals ?goals to which the term compiles under the example-based interpretation
named ?interpVar. Each interpretation associates a different truth degree ?implica-
tionStrength with the result of this compilation step (line 11). This degree functions
as an upper bound for the truth degrees of the term’s solutions under this inter-
pretation. The resolution degree ?rdgree for &goal corresponds to the minimum
of the truth degrees for ?goals multiplied by ?implicationStrength (lines 16–19) —
consistent with the resolution degree for a regular goal (cf. Section 6.1.2).

Resolving ?goals establishes a binding for variable ?matchVar: an AST node that
matches the source code excerpt of the term under the example-based interpreta-
tion named ?interpVar. Lines 20 and 15 unify variables ?interpVar and ?matchVar
with the second and first argument of the template term respectively.7 The truth
degree for &goal is computed as the product of the resolution degree ?rdegree and

6Quoted variables facilitate defining the translational semantics as logic rules. They can be bound
to regular logic variables and passed around. In Figure 4.14, for instance, the quoted variable bound
to ?baseExpression is passed from a rule that compiles statement templates to the rule that compiles
expression templates. The quoted variable represents the variable to which matching expressions will
be bound at run-time.

7The latter unification is performed after the compiled goals ?Var1544668 isStatement,
?Var1544668 equals: returnStatement(?Var1544670) have established a binding for ?match-
Var. This way, the goal jtStatement(?s){return ?e;} can succeed if ?s is already bound to any
AST node that unifies with the return-statement matching source code excerpt.

185

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

1 if jtMethodDeclaration(?m,?interpretation) {
2 !static public synchronized ?type::jtType ?name(?a) {
3 3; ?i2; return ?rec.?message(?a);
4 }
5 }

Figure 7.4: Method declaration template term illustrating translational semantics.

the unification degree ?udegree (line 1) —consistent with the influence of unifica-
tion degrees on the resolution degree for a regular goal (cf. Section 6.1.2).

The next section details the predefined example-based interpretations that re-
alize the example-based semantics of template terms.

7.2 Predefined Example-Based Interpretations

Template terms are resolved using multiple example-based interpretations.
Section 4.3.2 introduces the example-based interpretations that are predefined in
the prototype used to validate our approach. Its open-ended implementation en-
ables users to define additional interpretations.

Conceptually, each example-based interpretation compiles the code excerpt of
a template term to a logic rule. We will illustrate their translational semantics us-
ing the method declaration template term depicted in Figure 7.4. Its code excerpt
corresponds to a non-static method that is declared public and synchronized.
It has a single parameter ?a that is used as an argument to a method invocation in
its body. This invocation is the operand of a return statement that is preceded by
two other instructions: “3” and “?i2”.

The former instruction illustrates a minor syntax deviation. Java programs can-
not use integers as statements. In template terms, all expressions can be used as
statements. Otherwise, specifications would have to enumerate all syntactically al-
lowed occurrences for such an expression: as the right-hand side of an assignment
expression used as a statement, in the expression part of a while-statement, etc.

7.2.1 Syntactic Interpretation

Under the syntactic interpretation, AST nodes match a template term if they
exhibit the syntactic characteristics exemplified by its code excerpt. Moreover,
matching nodes should not exhibit any other syntactic characteristics. More pre-
cisely, the matching AST node and the AST for the excerpt unify under the domain-
specific unification extension that unifies AST nodes with structurally equivalent
compound terms —provided their abstract grammars are compatible.

Example Match The points of variation among the matches are restricted to
those indicated explicitly by the logic variables in the excerpt. Therefore, the tem-
plate term of Figure 7.4 has no matches under the syntactic interpretation. After
all, Java programs cannot use expression “3” as a statement. Note that multiple oc-
currences of the same variable need not be bound to the same AST node under the
domain-specific unification procedure.

186

7.2. Predefined Example-Based Interpretations

1 ?Var1715032 equals: syntactic,
2 ?Var1715031 isNonConstructorMethodDeclaration,
3 ?Var1715031 equals: methodDeclaration(?,?Var1715033,?,?type,?Var1715036,
4 ?Var1715034,?,?,?Var1715035),
5 ?name equals: ?Var1715036,
6 [1] isSizeOf: ?Var1715034,
7 ?Var1715034 equals: nodeList(<?Var1715052>),
8 ?a equals: ?Var1715052,

9 [2] isSizeOf: ?Var1715033,
10 ?Var1715033 equals: nodeList(<?Var1735803,?Var1735804>),
11 modifier([’public’]) equals: ?Var1735803,
12 modifier([’synchronized’]) equals: ?Var1735804,
13 absolutelyNot@(<?Var1715033 contains: ?Var17358020,
14 modifier([’static’]) equals: ?Var1735802>),

15 ?Var1715035 equals: block(?Var1715043),
16 [3] isSizeOf: ?Var1715043,
17 ?Var1715043 equals: nodeList(<?Var1715044,?Var1715046,?Var1715047>),

18 ?Var1715044 equals: expressionStatement(?Var1715045),
19 numberLiteral([’3’]) equals: ?Var1715045,

20 ?i2 equals: ?Var1715046,

21 ?Var1715047 equals: returnStatement(?Var1715048),
22 ?Var1715048 equals: methodInvocation(?Var1715049,?,?message,?Var1715050),
23 ?Var1715049 equals: ?rec,
24 [1] isSizeOf: ?Var1715050,
25 ?Var1715050 equals: nodeList(<?Var1715051>),
26 ?Var1715051 equals: ?a

Figure 7.5: Syntactic interpretation of the template term in Figure 7.4.

Corresponding Goals Figure 7.5 depicts the goals that are used to resolve the
template term depicted in Figure 7.4. These goals quantify over the AST nodes that
exhibit the syntactic characteristics exemplified by the term’s code excerpt. They
express these characteristics through the predicates of the CAVA library that reify
syntactic information (cf. Section 5.2.1). The binding for variable ?Var1715031 (line
2) is a matching AST node. It will be unified with the first argument of the template
term (cf. Section 7.1.2). The binding for variable ?Var1715032 (line 1) is the name
of the syntactic interpretation. It will be unified with the second argument of the
term. Variables of this form are unique to the term and hidden from its solutions
(cf. Section 7.1.3).

Line 3 unifies the method declaration AST node with a structurally equivalent
compound term to access its children (cf. Section 6.4.2). Line 5 binds the “name”
child to variable ?name in the code excerpt. Lines 6–8 bind variable ?a to the single
formal parameter of the method declaration. These lines are the same under all
predefined interpretations.

Lines 9–14 express the syntactic characteristics of the “modifiers” child bound
to ?Var1715033. This ASTNode$NodeList instance has to contain two modifiers in
the order exemplified by the template term (lines 10–12). No other modifiers are
allowed. Lines 13–14 correspond to the complement operator before the static
modifier in the template term. They are redundant as the preceding lines have al-
ready restricted the size of the modifiers list. This redundancy is due to the generic
manner in which template lists are compiled (cf. Section 7.5).

Lines 15–17 express that the “body” child of the method declaration has to be
a block that wraps an ASTNode$NodeList instance containing three instructions.

187

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

Again, these have to occur in the order exemplified by the template term. No other
instructions are allowed.

Lines 18–19 restrict the first instruction in the method to expression “3” used
as a statement. As this is impossible in Java, the template term does not have any
solutions under the syntactic interpretation. Line 20 unifies the second instruction
with variable ?i2 of the code excerpt. Lines 21–26 restrict the third instruction to a
return statement that has the exemplified method invocation as its operand.

Points of variation among the matches for the term are restricted to the explicit
points of variation indicated by the logic variables in its excerpt. In fact, lines 3–26
could be replaced by a single condition that unifies the AST for the excerpt with
the method declaration node ?var1715031 if their abstract grammars were compat-
ible. This would rely on the domain-specific unification extension that unifies AST
nodes with structurally equivalent compound terms (cf. Section 6.4.2).

7.2.2 Lexical Interpretation

The lexical interpretation is a less restrictive version of the syntactic interpretation.
Matches have to exhibit the syntactic characteristics exemplified by the excerpt, but
are allowed to exhibit additional ones. This accounts for implicit variation points.
However, the lexical relations among the elements have to be the same as the ones
among the corresponding elements in the excerpt. If a statement in the excerpt is
preceded by a local variable declaration, for instance, matching statements have to
be preceded by a matching variable declaration as well.

Example Match The following method matches the template term of Figure 7.4
under the lexical interpretation:

1 synchronized public Integer callsite_2(Integer arg_2){
2 if (5 > 3) { return called_from_multiple_sites(arg_2); }
3 else return callsite_1(arg_2);
4 }

Note that it features all exemplified modifiers, but not in the same order. Its body
also features all exemplified instructions, but they are nested within other instruc-
tions. We explain the bindings for instruction ?i2 within this match below.

Corresponding Goals Figure 7.6 depicts the goals that are used to resolve the
template term. The first 8 lines are similar under all example-based interpretations.

Under the syntactic interpretation, matching methods were required to have
exactly two modifiers in the exemplified order (lines 9–14 of Figure 7.5). Un-
der the lexical interpretation, matching methods are allowed to have additional
modifiers. There is no restriction on their order. Variable ?Var1715053 is bound
to the ASTNode$NodeList instance that contains the modifiers of the matching
method. There should be at least two (lines 9–10). Predicate collectionCon-
tains:andAlso:/3 is defined in the standard library of SOUL. It unifies its sec-
ond argument with an element chosen from the collection that is given as its first
argument. The remaining elements are unified with its third argument. Line 11
therefore extracts a public modifier from the modifiers collection and line 13 ex-
tracts a synchronizedmodifier from the remaining modifiers. Upon backtracking,
both lines quantify over all combinations of a public and synchronized modifier
in this collection (i.e. without repetition). Lines 15–16 ensure that the collection

188

7.2. Predefined Example-Based Interpretations

1 ?Var1715032 equals: lexical,
2 ?Var1715031 isNonConstructorMethodDeclaration,
3 ?Var1715031 equals: methodDeclaration(?,?Var1715053,?,?type,?Var1715056,
4 ?Var1715054,?,?,?Var1715055),
5 ?name equals: ?Var1715056,
6 [1] isSizeOf: ?Var1715054,
7 ?Var1715054 equals: nodeList(<?Var1715071>),
8 ?a equals: ?Var1715071,

9 ?Var1715059 isSizeOf: ?Var1715053,
10 ?Var1715059 isEqualToOrGreaterThanButRelativelyCloseTo: [2],
11 ?Var1715053 collectionContains: ?Var1715060 andAlso: ?Var1715061,
12 modifier([’public’]) equals: ?Var1715060,
13 ?Var1715061 collectionContains: ?Var1715062 andAlso: ?Var1715063,
14 modifier([’synchronized’]) equals: ?Var1715062,
15 absolutelyNot@(<?Var1715053 contains: ?Var1715058,
16 modifier([’static’]) equals: ?Var1715058>),

17 ?Var1715055 blockIsLexicalCandidateForAmountOfActualStatements: [1],

18 ?Var1715064 isStatementOrExpressionInScopeOf: ?Var1715055,
19 numberLiteral([’3’]) equals: ?Var1715064,

20 ?Var1715065 isStatementOrExpressionInScopeOf: ?Var1715055,
21 ?Var1715065 followsASTNode: ?Var1715064,
22 ?i2 equals: ?Var1715065,

23 ?Var1715066 isStatementInScopeOf: ?Var1715055,
24 ?Var1715066 followsASTNode: ?Var1715065,
25 ?Var1715066 equals: returnStatement(?Var1715067),
26 ?Var1715067 equals: methodInvocation(?Var1715068,?,?message,?Var1715069),
27 ?Var1715068 equals: ?rec,
28 [1] isSizeOf: ?Var1715069,
29 ?Var1715069 equals: nodeList(<?Var1715070>),
30 ?Var1715070 equals: ?a

Figure 7.6: Lexical interpretation of the template term in Figure 7.4.

does not contain a static modifier. The goal uses the higher-order predicate ab-
solutelyNot/n in variable argument notation (cf. Section 5.1.1).

The body of the method declaration template in Figure 7.4 exemplifies three
instructions. The first instruction is an expression that is used as a statement.
Matching method declaration AST nodes are required to feature a corresponding
expression or statement at any level of nesting (lines 18–19). In method call-
site_2, for instance, the corresponding expression ?Var1715064 is nested within
the expression child of an if-statement. Predicate isStatementOrExpression-
InScopeOf:/2 quantifies over all expressions and statements at any level of nest-
ing within its second argument.

Variable ?i2 is the second instruction in the method declaration template of
Figure 7.4. It can stand for any statement or expression at any level of nest-
ing within a matching method declaration AST node. However, a lexical or-
dering constraint (i.e. based on line numbers) is imposed on the instructions
within this node. Matches for the first instruction (bound to ?Var1715064) lex-
ically precede the matches for the second instruction (bound to ?Var1715065).
Line 21 asserts this through predicate followsASTNode:/2 (cf. Section 5.3.3).
Method callsite_2 therefore matches the template term with the following bind-
ings for ?i2: the block “{return called_from_multiple_sites(arg_2);}”,
the statement “return called_from_multiple_sites(arg_2);”, the expres-
sion “called_from_multiple_sites(arg_2)” and the expression “arg_2”. All
of these bindings lexically precede statement “return callsite_1(arg_2);”

189

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

which matches the third template instruction “return ?rec.?message(?a);”.
The third template instruction is an actual statement (i.e. not an expression

used as a statement): a return-statement with a method invocation as its operand.
Lines 23–30 ensure that matching method declaration AST nodes feature a corre-
sponding statement ?Var1715066 at any level of nesting (line 23). This statement
should lexically follow the node corresponding to the second instruction in the
template (line 24). Method callsite_2 matches the template term under the lex-
ical interpretation with ?message bound to “callsite_1”.

7.2.3 Control Flow Interpretation

Most template terms are resolved under the control flow interpretation as if they
were resolved under the lexical interpretation. Only method declaration templates
and method declarations within type declaration templates are resolved differently.

Under the control flow interpretation, matching method declarations have to
exhibit the control flow characteristics exemplified by the template term. There
should be a path through the control flow graph of the method (i.e. existentially
qualified) on which all exemplified instructions are executed. Implicit variation
points are supported. Non-specified instructions are allowed on the execution
path. The path also crosses method boundaries (i.e. it is inter-procedural). As a re-
sult, matches for an instruction in the template term need not reside in the method
declaration that matches the term. They can also reside in a method called (directly
or transitively) by the matching method declaration. However, actual statements
such as return-statements are matched intra-procedurally.

Example Match Method callsite_2 (cf. Section 7.2.2) matches the template
term of Figure 7.4 under the control flow interpretation. However, the bindings for
the logic variables within the term differ from the previous section. Variable ?mes-
sage, for instance, can be bound to “callsite_1” (in the true-branch of the if-
statement) and to “called_from_multiple_sites” (in the false branch). Both
bindings reside on different paths through the control flow graph of the method.
The corresponding bindings for variable ?i2 differ as well.

Corresponding Goals Figure 7.7 depicts the goals that are used to resolve the
template term. These goals quantify over the method declarations that exhibit
the exemplified control flow characteristics. They express these characteristics
through the predicates of the CAVA library that reify control flow information (cf.
Section 5.2.1). Lines 1–15 are the same as under the lexical interpretation.

Actual statements (i.e. not expressions that are used as a statement) are
matched intra-procedurally. This is illustrated for the return-statement in the
template by the goals on lines 18 and lines 33–34 respectively. The former goal
asserts that the matching AST node (bound to ?Var1715552) lexically resides within
the matching method declaration. The latter goal ensures that this statement is
executed after the nodes matching “?i2” and “3” have been executed. These AST
nodes (bound to ?Var1715557 and ?Var1715558) are found on the inter-procedural
execution path by lines 29–32 and lines 26–28 respectively.

Line 21 requires an AST node that matches the operand ?rec.?message(?a)
(i.e. ?Var1715553) of the specified return-statement to be executed before the AST
node that matches said statement (i.e. ?Var1715552), but after the AST node that

190

7.2. Predefined Example-Based Interpretations

1 ?Var1715500 equals: controlflow,
2 ?Var1715499 isNonConstructorMethodDeclaration,
3 ?Var1715499 equals: methodDeclaration(?,?Var1715540,?,?type,?Var1715543,
4 ?Var1715541,?,?,?Var1715542),
5 ?name equals: ?Var1715543,
6 ?Var1715541 equals: nodeList(<?Var1715559>),
7 ?a equals: ?Var1715559,

8 ?Var1715546 isSizeOf: ?Var1715540,
9 ?Var1715546 isEqualToOrGreaterThanButRelativelyCloseTo: [2],

10 ?Var1715540 collectionContains: ?Var1715547 andAlso: ?Var1715548,
11 modifier([’public’]) equals: ?Var1715547,
12 ?Var1715548 collectionContains: ?Var1715549 andAlso: ?Var1715550,
13 modifier([’synchronized’]) equals: ?Var1715549,
14 absolutelyNot@(<?Var1715540 contains: ?Var1715545,
15 modifier([’static’]) equals: ?Var1715545>),

16 ?Var1715551 isControlFlowTraversalState,
17 ?Var1715542 blockIsLexicalCandidateForAmountOfActualStatements: [1],

18 ?Var1715552 isStatementInScopeOf: ?Var1715542,

19 ?Var1715555 equals: nodeList(<?Var1715556>),
20 ?Var1715553 equals: methodInvocation(?Var1715554,?,?message,?Var1715555),
21 ?Var1715553 inFlowOf: ?Var1715542 following: <?Var1715556>
22 before: <?Var1715552>,
23 ?a equals: ?Var1715556,
24 ?rec equals: ?Var1715554,
25 ?Var1715552 equals: returnStatement(?Var1715553),

26 numberLiteral([’3’]) equals: ?Var1715557,
27 ?Var1715557 inFlowOf: ?Var1715542 following: <>
28 before: <?Var1715558,?Var1715552>,

29 ?i2 equals: ?Var1715558,
30 ?Var1715558 inFlowOf: ?Var1715542 following: <?Var1715557>
31 before: <?Var1715552>,
32 ?Var1715558 isGroundStatementOrExpression,

33 ?Var1715552 inFlowOf: ?Var1715542 following: <?Var1715558,?Var1715557>
34 before: <>

Figure 7.7: Control flow interpretation of the template term in Figure 7.4.

matches the argument of the invocation (i.e. ?Var1715556). This corresponds to
the order in which the children of such a return-statement would be executed at
run-time. Note that the matching expression ?Var1715553 is not necessarily the
“operand” child of the return-statement. Line 25 merely requires both AST nodes
to unify according to the domain-specific unification procedure. As a result, the
following method declaration template also matches the template of Figure 7.4:

1 public synchronized Integer othermethod(Integer arg) {
2 Object temp = new Integer(3);
3 temp = this.callsite_2(arg);
4 return (Integer) temp;
5 }

7.2.4 Shared Implicit Variation Points

The points of variation among the matches for a template differ under each inter-
pretation. This was explained by the previous sections. However, all interpretations
recognize different implementations of the same data flow characteristic (i.e. im-
plicit variation points). In template terms, data flow characteristics are expressed
through multiple occurrences of the same variable. Their bindings have to unify

191

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

according to the domain-specific unification procedure which is the same for all
interpretations.

Shared support for other implicit variation points is due to a common design
principle. Matches for a template term have to exhibit all exemplified character-
istics.8 What is not exemplified cannot constrain these matches further —except
under the syntactic interpretation which requires exact matches. Under the lexical
and control flow interpretation, the following template and field declaration there-
fore match —successively binding ?field to i and j upon backtracking:

1 jtFieldDeclaration(?dec){ public int ?field = ?init; }
2 public int i=0, j=1;

Likewise, the following template and method declaration match. The latter’s vari-
able declaration with an initializer expression can be considered shorthand for an
initializer-free variable declaration followed by an assignment:

1 jtMethodDeclaration(?m){ void m() { ?x = ?init; } }
2 void m() { int x = 3; }

However, the converse is not true. A method declaration template with a local vari-
able declaration requires its matches to declare a local variable.

Support for such implicit variation points is not implemented in the domain-
specific unification procedure, but in the translational semantics of the example-
based interpretations. SOUL does not support choice points in its unification pro-
cedure. This would be required for the field declaration example above. Moreover,
the abstract grammars for the base program and code excerpts are not structurally
compatible. This precludes unifying a base program AST node with a compound
term that represents the AST for the source code excerpt.

7.2.5 Truth Degrees for Example-Based Interpretations

In our approach, pattern detection results are ranked according to the extent to
which they exhibit the characteristics in a specification. The smaller this extent,
the more likely a reported instance is a false positive (cf. Section 4.5.2).

Concretely, the fuzzy logic cornerstone associates truth degrees with each so-
lution to a query (cf. Section 6.1). The truth degrees for solutions to a template
term are bounded by the example-based interpretation under which the term is
resolved. Truth degrees for solutions identified under the syntactic, lexical and
control flow interpretation can be no larger than 1, 9

10 and 8
10 respectively. This

ranking reflects the projected similarity of the solutions to the code excerpt of the
term. Under the control flow interpretation, for instance, matches for an instruc-
tion in a method declaration template need not reside in the method declaration

8Exceptions to this design principle are few. Template jtExpression(?e){this.?field},
for instance, also matches field accesses with an implicit base expression. This is because
such field accesses cannot be quantified over using a jtExpression(?e){?field} template
—at least, not without suffixing ?field with the ::jtFieldAccess parser directive. Template
jtClassDeclaration(?class){class ?name implements ?interface ?memberList} also
matches class declarations that do not implement an interface type —binding ?interface to nil.
Otherwise, a disjunction of two templates would have to be used to quantify over all classes. Likewise,
templates jtStatement(?statement){return ?e;} and jtFieldDeclaration(?dec){?modList
?type ?field = ?init;} quantify over all return-statements and field declarations —regardless of
whether they have an expression operand and initializer expression respectively.

192

7.3. Composing Template Terms

that matches the term (cf. Section 7.2.3). Conceptually, each interpretation com-
piles the term to a fuzzy logic rule that is weighted by this upper bound. The term
is resolved using this rule (cf. Section 7.1.2).

The properties of the solution itself further refine this upper bound. Solu-
tions are ranked lower if they required a domain-specific unification that could
introduce false positives (cf. Section 6.4). For instance, if the bindings for two
occurrences of the same variable are in a may-alias relation. Solutions are also
ranked lower if they exhibit more characteristics than are exemplified by the tem-
plate —except under the syntactic interpretation, which requires exact matches.
For instance, if a method declaration AST node has more modifiers than the ones
that are exemplified. This is ensured by goals involving predicate isEqualToOr-
GreaterThanButRelativelyCloseTo:/2 (e.g. line 10 and line 9 in Figure 7.6 and
Figure 7.7 respectively). They succeed with a truth degree of 9

10 for all numbers ?x
that are greater than ?y, but deviate more than 10% from ?y (cf. Section 6.2.1).

This concludes our discourse on the standard example-based interpretations
for template terms. Section 7.4 further demonstrates their practical differences on
realistic example-based specifications.

7.3 Composing Template Terms

Template terms can be used anywhere a regular logic term is allowed. This enables
composing example-based specifications from template terms and logic connec-
tives such as and/n, or/n and not/n. Section 7.1.1 makes extensive use of this
feature to eliminate non-native syntax from the source code excerpts of template
terms. In this section, we will illustrate that composing terms in such a manner
allows for fine-grained control over their matches.

Figure 7.8 depicts two queries that are resolved under the control flow inter-
pretation (cf. Section 7.2.3). The depicted queries are closely related in the sense
that both feature the same concrete syntax elements. Their solutions differ be-
cause these elements have been divided over different template terms —effectively
controlling the semantics of the resulting example-based specification in a fine-
grained manner:

• The query at the top of Figure 7.8 matches methods that lexically feature a
return-statement in their body. Preceding this statement, matching meth-
ods furthermore have an expression matching ?x.m() on a path through
their control flow graph. This expression unifies with the “operand” child of
the return-statement. As there is no such method at the right of the figure,
this query has no solutions.

• The closely related query at the bottom of Figure 7.8, in contrast, has two
solutions. It has two template terms. The first template term quantifies
over all expressions ?e1 that match ?x.m(): expression x.m() in method
methodC(). The second template term quantifies over all method declara-
tions that lexically feature a return-statement with operand ?e2: methods m
and methodM with operands new Integer(111) and o.f respectively. The
query succeeds because methodC() establishes their may-alias relation with
expression x.m().

193

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE 7.4. Revisiting LMP Support for Pattern Characteristics

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

First of all, all template terms in such a specification should be resolved under
the same example-based interpretation. For instance, by using the same variable
as the second argument to all template terms. This avoids duplicate and unex-
pected solutions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.4.
R

evisitin
g

LM
P

Su
p

p
ortfor

Pattern
C

h
aracteristics

1
class

Example
{

2
public

void
methodA()

{
3

methodB();
methodC();

4
}

5
public

void
methodB()

{
6

return
o.f;

7
}

8
public

void
methodC()

{
9

o.f
=

x.m();
10

}

11
private

O
o
=

new
O();

12
private

X
x
=

new
X();

13
private

class
O

{
14

public
Object

f;
15

}
16

private
class

X
{

17
public

Integer
m()

{
18

return
new

Integer(111);
19

}
20

}
21

}

Firstofall,alltem
p

late
term

s
in

su
ch

a
sp

ecifi
cation

sh
ou

ld
be

resolved
u

n
der

th
e

sam
e

exam
p

le-based
in

terp
retation

.
For

in
stan

ce,by
u

sin
g

th
e

sam
e

variable
as

th
e

secon
d

argu
m

en
t

to
all

tem
p

late
term

s.
T

h
is

avoids
du

p
licate

an
d

u
n

ex-
p

ected
solu

tion
s.

T
h

e
in

fl
u

en
ce

ofth
e

exam
p

le-based
in

terp
retation

s
is

m
ore

su
btle.

T
h

is
can

be
en

su
red

easily
by

u
sin

g
th

e
n

extsection

7.4
R

evisitin
g

LM
P

Su
p

p
ortfor

P
attern

C
h

aracteristics

H
avin

g
in

trodu
ced

th
e

exam
p

le-based
in

terp
retation

s
for

tem
p

late
term

s,
w

e
dem

on
strate

h
ow

th
is

in
stan

tiation
of

th
e

exam
p

le-based
sp

ecifi
cation

corn
er-

ston
e

im
p

roves
th

e
su

p
p

ortofLM
P

foreach
kin

d
ofp

attern
ch

aracteristic
(cf.Sec-

tion
5.4).

7.4.1
E

xp
ressin

g
Syn

tactic
C

h
aracteristics

Section
5.4.1

in
trodu

ced
th

e
syn

tactic
ch

aracteristics
of

p
oten

tially
en

h
an

ceable
for-statem

en
ts.

T
h

e
regu

lar
LM

P
qu

ery
dep

icted
in

Figu
re

5.7
iden

tifi
es

su
ch

statem
en

ts.
Its

con
volu

ted
sequ

en
ces

of
“...

has
...”

con
dition

s
eviden

ced
th

e
u

n
ifi

cation
-related

sh
ortcom

in
gs

ofregu
larLM

P
(cf.Section

4.4.2).T
h

e
equ

iv-
alen

t
LM

P
qu

ery
dep

icted
in

Figu
re

6.7
is

m
ore

con
cise.

It
relies

on
th

e
dom

ain
-

sp
ecifi

c
u

n
ifi

cation
of

A
ST

n
odes

w
ith

stru
ctu

rally
equ

ivalen
t

com
p

ou
n

d
term

s.
B

oth
qu

eries
exp

ress
th

e
p

attern’s
syn

tactic
ch

aracteristics
by

qu
an

tifyin
g

over

221

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e; }
8 }

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

Figure 7.8: Four closely related example-based queries and their solutions illus-
trating the subtleties of composing templates through logic connectives.

is specified should be in instance therefore lexical scope of blocks taken into
account in cflow

7.3 Composing Template Terms

Template terms can be used anywhere a regular logic term is allowed. This enables
composing example-based specifications from template terms and logic connec-
tives such as and/n, or/n and not/n. Section 7.1.1 made extensive use of this
feature to eliminate non-native syntax from the source code excerpts of template
terms. However, there are some subtleties to the semantics of the resulting speci-
fications. These are illustrated by Figure 7.8.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section
<?n→methodB,. . . , ?e→x.m
?n→methodB

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

220

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.

221

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE 7.4. Revisiting LMP Support for Pattern Characteristics

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

First of all, all template terms in such a specification should be resolved under
the same example-based interpretation. For instance, by using the same variable
as the second argument to all template terms. This avoids duplicate and unex-
pected solutions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.4.
R

evisitin
g

LM
P

Su
p

p
ortfor

Pattern
C

h
aracteristics

1
class

Example
{

2
public

void
methodA()

{
3

methodB();
methodC();

4
}

5
public

void
methodB()

{
6

return
o.f;

7
}

8
public

void
methodC()

{
9

o.f
=
x.m();

10
}

11
private

O
o
=
new

O();
12

private
X
x
=
new

X();

13
private

class
O
{

14
public

Object
f;

15
}

16
private

class
X
{

17
public

Integer
m()

{
18

return
new

Integer(111);
19

}
20

}
21

}

Firstofall,alltem
p

late
term

s
in

su
ch

a
sp

ecifi
cation

sh
ou

ld
be

resolved
u

n
der

th
e

sam
e

exam
p

le-based
in

terp
retation

.
For

in
stan

ce,by
u

sin
g

th
e

sam
e

variable
as

th
e

secon
d

argu
m

en
t

to
all

tem
p

late
term

s.
T

h
is

avoids
du

p
licate

an
d

u
n

ex-
p

ected
solu

tion
s.

T
h

e
in

fl
u

en
ce

ofth
e

exam
p

le-based
in

terp
retation

s
is

m
ore

su
btle.

T
h

is
can

be
en

su
red

easily
by

u
sin

g
th

e
n

extsection

7.4
R

evisitin
g

LM
P

Su
p

p
ortfor

P
attern

C
h

aracteristics

H
avin

g
in

trodu
ced

th
e

exam
p

le-based
in

terp
retation

s
for

tem
p

late
term

s,
w

e
dem

on
strate

h
ow

th
is

in
stan

tiation
of

th
e

exam
p

le-based
sp

ecifi
cation

corn
er-

ston
e

im
p

roves
th

e
su

p
p

ortofLM
P

foreach
kin

d
ofp

attern
ch

aracteristic
(cf.Sec-

tion
5.4).

7.4.1
E

xp
ressin

g
Syn

tactic
C

h
aracteristics

Section
5.4.1

in
trodu

ced
th

e
syn

tactic
ch

aracteristics
of

p
oten

tially
en

h
an

ceable
for-statem

en
ts.

T
h

e
regu

lar
LM

P
qu

ery
dep

icted
in

Figu
re

5.7
iden

tifi
es

su
ch

statem
en

ts.
Its

con
volu

ted
sequ

en
ces

of
“...

has
...”

con
dition

s
eviden

ced
th

e
u

n
ifi

cation
-related

sh
ortcom

in
gs

ofregu
larLM

P
(cf.Section

4.4.2).T
h

e
equ

iv-
alen

t
LM

P
qu

ery
dep

icted
in

Figu
re

6.7
is

m
ore

con
cise.

It
relies

on
th

e
dom

ain
-

sp
ecifi

c
u

n
ifi

cation
of

A
ST

n
odes

w
ith

stru
ctu

rally
equ

ivalen
t

com
p

ou
n

d
term

s.
B

oth
qu

eries
exp

ress
th

e
p

attern’s
syn

tactic
ch

aracteristics
by

qu
an

tifyin
g

over

221

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e; }
8 }

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

Figure 7.8: Four closely related example-based queries and their solutions illus-
trating the subtleties of composing templates through logic connectives.

is specified should be in instance therefore lexical scope of blocks taken into
account in cflow

7.3 Composing Template Terms

Template terms can be used anywhere a regular logic term is allowed. This enables
composing example-based specifications from template terms and logic connec-
tives such as and/n, or/n and not/n. Section 7.1.1 made extensive use of this
feature to eliminate non-native syntax from the source code excerpts of template
terms. However, there are some subtleties to the semantics of the resulting speci-
fications. These are illustrated by Figure 7.8.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section
<?n→methodB,. . . , ?e→x.m
?n→methodB

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

220

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.

221

Figure 7.8: Two closely related example-based queries and their solutions illus-
trating the subtleties of template composition through logic connectives.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

220

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE 7.4. Revisiting LMP Support for Pattern Characteristics

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

First of all, all template terms in such a specification should be resolved under
the same example-based interpretation. For instance, by using the same variable
as the second argument to all template terms. This avoids duplicate and unex-
pected solutions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.4.
R

evisitin
g

LM
P

Su
p

p
ortfor

Pattern
C

h
aracteristics

1
class

Example
{

2
public

void
methodA()

{
3

methodB();
methodC();

4
}

5
public

void
methodB()

{
6

return
o.f;

7
}

8
public

void
methodC()

{
9

o.f
=
x.m();

10
}

11
private

O
o
=
new

O();
12

private
X
x
=
new

X();

13
private

class
O
{

14
public

Object
f;

15
}

16
private

class
X
{

17
public

Integer
m()

{
18

return
new

Integer(111);
19

}
20

}
21

}

Firstofall,alltem
p

late
term

s
in

su
ch

a
sp

ecifi
cation

sh
ou

ld
be

resolved
u

n
der

th
e

sam
e

exam
p

le-based
in

terp
retation

.
For

in
stan

ce,by
u

sin
g

th
e

sam
e

variable
as

th
e

secon
d

argu
m

en
t

to
all

tem
p

late
term

s.
T

h
is

avoids
du

p
licate

an
d

u
n

ex-
p

ected
solu

tion
s.

T
h

e
in

fl
u

en
ce

ofth
e

exam
p

le-based
in

terp
retation

s
is

m
ore

su
btle.

T
h

is
can

be
en

su
red

easily
by

u
sin

g
th

e
n

extsection

7.4
R

evisitin
g

LM
P

Su
p

p
ortfor

P
attern

C
h

aracteristics

H
avin

g
in

trodu
ced

th
e

exam
p

le-based
in

terp
retation

s
for

tem
p

late
term

s,
w

e
dem

on
strate

h
ow

th
is

in
stan

tiation
of

th
e

exam
p

le-based
sp

ecifi
cation

corn
er-

ston
e

im
p

roves
th

e
su

p
p

ortofLM
P

foreach
kin

d
ofp

attern
ch

aracteristic
(cf.Sec-

tion
5.4).

7.4.1
E

xp
ressin

g
Syn

tactic
C

h
aracteristics

Section
5.4.1

in
trodu

ced
th

e
syn

tactic
ch

aracteristics
of

p
oten

tially
en

h
an

ceable
for-statem

en
ts.

T
h

e
regu

lar
LM

P
qu

ery
dep

icted
in

Figu
re

5.7
iden

tifi
es

su
ch

statem
en

ts.
Its

con
volu

ted
sequ

en
ces

of
“...

has
...”

con
dition

s
eviden

ced
th

e
u

n
ifi

cation
-related

sh
ortcom

in
gs

ofregu
larLM

P
(cf.Section

4.4.2).T
h

e
equ

iv-
alen

t
LM

P
qu

ery
dep

icted
in

Figu
re

6.7
is

m
ore

con
cise.

It
relies

on
th

e
dom

ain
-

sp
ecifi

c
u

n
ifi

cation
of

A
ST

n
odes

w
ith

stru
ctu

rally
equ

ivalen
t

com
p

ou
n

d
term

s.
B

oth
qu

eries
exp

ress
th

e
p

attern’s
syn

tactic
ch

aracteristics
by

qu
an

tifyin
g

over

221

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e; }
8 }

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

Figure 7.8: Four closely related example-based queries and their solutions illus-
trating the subtleties of composing templates through logic connectives.

is specified should be in instance therefore lexical scope of blocks taken into
account in cflow

7.3 Composing Template Terms

Template terms can be used anywhere a regular logic term is allowed. This enables
composing example-based specifications from template terms and logic connec-
tives such as and/n, or/n and not/n. Section 7.1.1 made extensive use of this
feature to eliminate non-native syntax from the source code excerpts of template
terms. However, there are some subtleties to the semantics of the resulting speci-
fications. These are illustrated by Figure 7.8.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section
<?n→methodB,. . . , ?e→x.m
?n→methodB

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

220

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.

221

Figure 7.8: Two closely related example-based queries and their solutions illus-
trating the subtleties of template composition through logic connectives.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

220

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE 7.4. Revisiting LMP Support for Pattern Characteristics

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

First of all, all template terms in such a specification should be resolved under
the same example-based interpretation. For instance, by using the same variable
as the second argument to all template terms. This avoids duplicate and unex-
pected solutions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.4.
R

evisitin
g

LM
P

Su
p

p
ortfor

Pattern
C

h
aracteristics

1
class

Example
{

2
public

void
methodA()

{
3

methodB();
methodC();

4
}

5
public

void
methodB()

{
6

return
o.f;

7
}

8
public

void
methodC()

{
9

o.f
=
x.m();

10
}

11
private

O
o
=
new

O();
12

private
X
x
=
new

X();

13
private

class
O
{

14
public

Object
f;

15
}

16
private

class
X
{

17
public

Integer
m()

{
18

return
new

Integer(111);
19

}
20

}
21

}

Firstofall,alltem
p

late
term

s
in

su
ch

a
sp

ecifi
cation

sh
ou

ld
be

resolved
u

n
der

th
e

sam
e

exam
p

le-based
in

terp
retation

.
For

in
stan

ce,by
u

sin
g

th
e

sam
e

variable
as

th
e

secon
d

argu
m

en
t

to
all

tem
p

late
term

s.
T

h
is

avoids
du

p
licate

an
d

u
n

ex-
p

ected
solu

tion
s.

T
h

e
in

fl
u

en
ce

ofth
e

exam
p

le-based
in

terp
retation

s
is

m
ore

su
btle.

T
h

is
can

be
en

su
red

easily
by

u
sin

g
th

e
n

extsection

7.4
R

evisitin
g

LM
P

Su
p

p
ortfor

P
attern

C
h

aracteristics

H
avin

g
in

trodu
ced

th
e

exam
p

le-based
in

terp
retation

s
for

tem
p

late
term

s,
w

e
dem

on
strate

h
ow

th
is

in
stan

tiation
of

th
e

exam
p

le-based
sp

ecifi
cation

corn
er-

ston
e

im
p

roves
th

e
su

p
p

ortofLM
P

foreach
kin

d
ofp

attern
ch

aracteristic
(cf.Sec-

tion
5.4).

7.4.1
E

xp
ressin

g
Syn

tactic
C

h
aracteristics

Section
5.4.1

in
trodu

ced
th

e
syn

tactic
ch

aracteristics
of

p
oten

tially
en

h
an

ceable
for-statem

en
ts.

T
h

e
regu

lar
LM

P
qu

ery
dep

icted
in

Figu
re

5.7
iden

tifi
es

su
ch

statem
en

ts.
Its

con
volu

ted
sequ

en
ces

of
“...

has
...”

con
dition

s
eviden

ced
th

e
u

n
ifi

cation
-related

sh
ortcom

in
gs

ofregu
larLM

P
(cf.Section

4.4.2).T
h

e
equ

iv-
alen

t
LM

P
qu

ery
dep

icted
in

Figu
re

6.7
is

m
ore

con
cise.

It
relies

on
th

e
dom

ain
-

sp
ecifi

c
u

n
ifi

cation
of

A
ST

n
odes

w
ith

stru
ctu

rally
equ

ivalen
t

com
p

ou
n

d
term

s.
B

oth
qu

eries
exp

ress
th

e
p

attern’s
syn

tactic
ch

aracteristics
by

qu
an

tifyin
g

over

221

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e; }
8 }

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

221

Figure 7.8: Four closely related example-based queries and their solutions illus-
trating the subtleties of composing templates through logic connectives.

is specified should be in instance therefore lexical scope of blocks taken into
account in cflow

7.3 Composing Template Terms

Template terms can be used anywhere a regular logic term is allowed. This enables
composing example-based specifications from template terms and logic connec-
tives such as and/n, or/n and not/n. Section 7.1.1 made extensive use of this
feature to eliminate non-native syntax from the source code excerpts of template
terms. However, there are some subtleties to the semantics of the resulting speci-
fications. These are illustrated by Figure 7.8.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.
This can be ensured easily by using the
next section
<?n→methodB,. . . , ?e→x.m
?n→methodB

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

220

7.4. Revisiting LMP Support for Pattern Characteristics

1 if jtMethodDeclaration(?m,controlflow){
2 ?modList ?t ?n(?pList) { return ?x.m(); }
3 }

4 if ?interpretation equals: controlflow,
5 jtExpression(?e1,?interpretation){ ?x.m() },
6 jtMethodDeclaration(?y,?interpretation){
7 ?modList ?t ?n(?pList) { return ?e2; }
8 },
9 ?e1 equals: ?e2

1 class Example {
2 public void methodA() {
3 methodB(); methodC();
4 }
5 public void methodB() {
6 return o.f;
7 }
8 public void methodC() {
9 o.f = x.m();

10 }

11 private O o = new O();
12 private X x = new X();

13 private class O {
14 public Object f;
15 }
16 private class X {
17 public Integer m() {
18 return new Integer(111);
19 }
20 }
21 }

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.

221

Figure 7.8: Two closely related example-based queries and their solutions illus-
trating the subtleties of template composition through logic connectives.

All template terms in such a specification should be resolved under the same
example-based interpretation. For instance, by using the same variable as the sec-
ond argument to all template terms. This avoids duplicate and unexpected solu-
tions.

The influence of the example-based interpretations is more subtle.

7.4 Revisiting LMP Support for Pattern Characteristics

Having introduced the example-based interpretations for template terms, we
demonstrate how this instantiation of the example-based specification corner-
stone improves the support of LMP for each kind of pattern characteristic (cf. Sec-
tion 5.4).

7.4.1 Expressing Syntactic Characteristics

Section 5.4.1 introduced the syntactic characteristics of potentially enhanceable
for-statements. The regular LMP query depicted in Figure 5.7 identifies such
statements. Its convoluted sequences of “... has ...” conditions evidenced
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.7 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over

220

Figure 7.8: Fine-grained control over matches through template composition.

7.4 Revisiting LMP Support for Pattern Characteristics

Having instantiated the example-based specification cornerstone, we demonstrate
how it improves upon the support offered by LMP for each kind of pattern charac-
teristic (cf. Section 5.3).

7.4.1 Expressing Syntactic Characteristics

Section 5.3.1 introduces the syntactic characteristics of potentially enhanceable
for-statements. Figure 5.6 depicts two example-based specifications that identify
such statements.

The first query consists of a template term for a Java statement ?s (lines 1–4)
and a logic condition that queries ?s for its parent method declaration ?m (line 5).
Bindings for ?s are AST nodes that match the concrete syntax in the template term
under one or more example-based interpretations. The second query is equivalent
to the first query. It consists of a single template term for a Java method declaration
?m that contains a potentially enhanceable for-statement ?s.

The source code excerpt in each template term corresponds to the prototypical
implementation of the pattern’s essential characteristics only. For instance, they do
not require for-statements to have a block as their body. The following template
term, in contrast, would because of the extra braces on lines 2 and 4:

1 if jtStatement(?s){
2 for(?initList; ?hasNextReceiver.hasNext(); ?updList) {
3 ?nextReceiver.next();
4 }
5 }

The example-based queries identify the same solutions as the regular LMP
query (cf. Figure 5.6) and the LMP query that relies on domain-specific unifica-

194

1 if jtStatement(?s){
2 for(?initList; ?hasNextReceiver.hasNext(); ?updList)
3 ?nextReceiver.next();
4 },
5 [?s parentMethodDeclaration] equals: ?m

6 if jtMethodDeclaration(?m){
7 ?modList ?type ?name(?paramList) {
8 ?s := for(?initList; ?hasNextReceiver.hasNext(); ?updList)
9 ?nextReceiver.next();

10 }
11 }

Figure 7.9: Example-based spec. for syntactic char. of enhanceable fors.

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

tion (cf. Figure 6.8).9 They originate from the program depicted in Figure 5.6. The
quantified solutions for the example-based queries are depicted at the bottom of
Figure 7.9. Each row corresponds to a solution. The first column depicts the bind-
ings for variables ?s, ?m, ?hasNextReceiver and ?nextReceiver in each solution. The
second and third column depict the maximum truth degree associated with these
bindings in the solutions to the first and second query respectively.10 A truth degree
of 0 in one of these columns would indicate that the corresponding query did not
identify a solution identified by the other query. As there are no such entries, both
queries identify the same solutions. However, the queries associate different truth
degrees with each solution. Below we explain that this is because the first query
exemplifies potentially enhanceable for-statements, while the second query ex-
emplifies methods in which such a statement resides.

Truth degrees for solutions to the first query Solutions with a maximum truth
degree of 1 match the template term under the syntactic interpretation. They do
not exhibit any other characteristics than those that are exemplified by the tem-
plate term. The first column does have entries with a maximum truth degree of 1.
The inner for-statement in method enhanceable_3() and the for-statement in
method not_enhanceable_1() are perfect matches for the statement template in
the first query. The points of variation among these statements are restricted to the
explicit points of variation indicated in the template term (i.e. its logic variables).

Solutions with a maximum truth degree of 0.9 match the template term un-
der the lexical interpretation. This is the case for all other for-statements identi-
fied by the first query. They exhibit all of the syntactic characteristics exemplified
by the template term, but their body is a block statement in which the invocation
of method next() resides rather than the invocation itself. This is allowed under
the lexical interpretation as long as the lexical relations among the AST nodes in a
match are the same as the ones among the corresponding concrete syntax elements
in the template term. The next() invocation therefore only has to reside lexically
in the body of the for-statement.

Truth degrees for solutions to the second query The second column does not
have an entry with a maximum truth degree of 1. None of the methods depicted
in Figure 5.6 match the method declaration template under the syntactic interpre-
tation. Each method has more statements than just the potentially enhanceable
for-statement.

The truth degree for a solution to a template term is bounded by the example-
based interpretation under which the solution matches the term. Conceptually,
each example-based interpretation compiles the term to a fuzzy logic rule that is
weighted by this upper bound. The term is resolved using this rule (cf. Section 6.1.2
for fuzzy resolution). The truth degree for the conjunction of the goals in its body
can therefore lower the upper bound. For instance, if a solution exhibits more char-

9The LMP queries allow the invocation of method next() to reside either in the body of the for-
statement or in one of its updater expressions. The example-based queries restrict this invocation to the
body of the statement. This suffices for all statements in Figure 5.6.

10All example-based interpretations of a template term are considered transparently. The same solu-
tion can therefore be identified by multiple example-based interpretations —each with a different upper
bound on the truth degrees for their matches. The fuzzy SOUL prototype does not aggregate identical
solutions with different truth degrees into a single solution with an aggregated truth degree (cf. Sec-
tion 6.1.2). We performed such an aggregation step in the depicted table to improve its readability.

196

7.4. Revisiting LMP Support for Pattern Characteristics

1 ?member isNativeATMethodDefinedIn: ?interface if
2 or(jtInterfaceDeclaration(?interface,lexical){
3 interface ?interfaceName extends* ATObject { ?member }
4 },
5 jtInterfaceDeclaration(?interface,lexical){
6 interface ATObject { ?member }
7 }),
8 ?member methodDeclarationHasName: {(meta|base)_.+}

Figure 7.10: Example-based equivalent for the rule in Figure 5.7.

acteristics than exemplified by the template term. This is the case for the solutions
to the second query. Their truth degree of 0.81 is the product of the upper bound
for the lexical interpretation (i.e. 0.9) and the truth degree for a goal ?x isEqual-
ToOrGreaterThanButRelativelyCloseTo: ?y. Here, ?x and ?y are bound to the
number of statements in a method declaration AST node and the number of state-
ments in the template term respectively.11

Evaluation Figure 5.6 depicts a regular LMP query for potentially enhanceable
for-statements. Its convoluted sequences of “... has ...” conditions evidence
the unification-related shortcomings of regular LMP (cf. Section 4.4.2). The equiv-
alent LMP query depicted in Figure 6.8 is more concise. It relies on the domain-
specific unification of AST nodes with structurally equivalent compound terms.
Both queries express the pattern’s syntactic characteristics by quantifying over the
ASTs in the program representation. This exposes users to the abstract gram-
mar of the abstract syntax trees, their implementation details and their reifica-
tion. Both queries evidence the quantification-related shortcomings of LMP (cf.
Section 4.2.2).

The example-based specifications in Figure 7.9, in contrast, only expose users
to the concrete syntax of the base program —augmented with a minimum of non-
native syntax to indicate points of variation.

7.4.2 Expressing Structural Characteristics

In this section, we present example-based specifications for the application-
specific predicates and coding conventions introduced in Section 5.3.2.

The isNativeATMethodDefinedIn:/2 predicate revisited

Figure 7.10 depicts an example-based rule that is equivalent to the third rule
at the top of Figure 5.7. Both rules implement predicate isNativeATMethodDe-
finedIn:/2 which quantifies over method declarations defined in the ATObject
interface hierarchy of which the name starts with prefix base_ or meta_. The lat-
ter is checked by the second condition of the example-based rule. It relies on
the domain-specific extension that unifies an AST node (i.e. the “name” part of a
method declaration ?member) with a regular expression that matches the concrete
syntax of the node (cf. Section 6.4.2). The first condition in the rule is a disjunction

11At all levels of nesting, but excluding expressions that are used as a statement. Among the solutions
depicted in Figure 7.9, bindings for ?x range from 2 (method enhanceable_1()) to 4 (methods method
enhanceable_3() and enhanceable_4()), while ?y is always bound to 1.

197

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

1 if ?interpretation equals: lexical,
2 jtClassDeclaration(?class,?interpretation){
3 class ?cName extends* edu.vub.at.objects.natives.NativeATObject {
4 ?m := ?modList ?type ?mName(?pList) ?mStatList
5 }
6 },
7 ?mName equals: {(meta|base)_.+},

8 not(jtClassDeclaration(?class,?interpretation){
9 class ?cName extends* ?super ?decList

10 },
11 jtClassDeclaration(?super,?interpretation){
12 class ?sName {
13 ?superModList ?type ?mName(?pList) ?overriddenStatList
14 }
15 }),

16 not(or(jtClassDeclaration(?class,?interpretation){
17 class ?cName implements ?interface ?decList
18 },
19 and(jtClassDeclaration(?class,?interpretation){
20 class ?cName extends* ?otherSuper ?decList
21 },
22 jtClassDeclaration(?otherSuper,?interpretation){
23 class ?superName implements ?interface ?otherSuperDecList
24 })),
25 jtInterfaceDeclaration(?interface,?interpretation){
26 interface ?iName extends* ATObject {
27 ?interfaceModList ?type ?mName(?pList);
28 }
29 })

Figure 7.11: Example-based equivalent for the query in Figure 5.8.

of two jtInterfaceDeclaration/2 template terms. The terms quantify over all
member declarations ?member in interface ATObject (second template term) or
one of its sub-types (first template term). The first term has a non-native suffix *
after its extends keyword. This ensures that ?interface quantifies over the transi-
tive closure of the “extends-ATObject” relation. Upon backtracking over the term,
?interface is therefore successively bound to each sub-type of the ATObject inter-
face. The original rule used the application-specific predicate isATObjectInter-
face/1 to quantify over the interface hierarchy.

Note that both template terms should be resolved under the lexical interpreta-
tion because the syntactic interpretation only identifies interfaces that have a single
member declaration and because the template does not exemplify any control flow
characteristics.

The AMBIENTTALK coding convention revisited

The example-based query depicted in Figure 7.11 is equivalent to the query de-
picted at the top of Figure 5.8.12 Both queries detect violations against the AMBI-

12Provided the example-based query is evaluated in regular SOUL. To evaluate the query in fuzzy
SOUL, all occurrences of the not/n connective should be replaced by an absolutelyNot/n connective
(cf. Section 6.2.2). These particular not/n occurrences should also fail when their arguments succeed
with a less than perfect truth degree. We will demonstrate this in the next section.

198

7.4. Revisiting LMP Support for Pattern Characteristics

ENTTALK coding convention introduced in Section 5.3.2. The coding convention
requires that classes which define their own native methods (i.e. methods with the
base_ or meta_ prefix that are not defined in a super class) should implement an
interface in which those methods are defined. It can also be the case that the inter-
face is implemented by a super class.

As in the previous rule, we resolve all template terms of the query under the
lexical interpretation. Lines 2–7 of the example-based query are equivalent to lines
1–8 of the LMP query. They bind ?class to a sub-type of class NativeATObject
and ?m to one of the native methods in this class. The jtClassDeclaration/2
template term relies on the non-native suffix * after its extends keyword for the
former (line 3) and on the non-native operator := for the latter (line 4). Note that
method ?m can either be abstract or concrete. In case the method is abstract, vari-
able ?mStatList will be bound to nil. An abstract method has no body. In case the
method is concrete, ?mStatList will be bound to the ASTNode$NodeList instance
that represents the statements in its body. Variables ?pList and ?modList stand for
the modifier list and formal parameter list of method ?m.

Lines 8–15 of the example-based query are equivalent to lines 9–11 of the origi-
nal query. They negate (an implicit conjunction of) two template terms to express
that method ?m should not override a method from a super class ?super. The first
template term quantifies over all super classes of ?class (and their member decla-
rations ?decList). The second template term matches one of these super classes if it
has a method with the return type ?type, name ?mName and parameter list ?pList
of method ?m.

Lines 16–24 of the example-based query are equivalent to lines 12–15 of the
LMP query. They identify an interface ?interface that is either implemented directly
by class ?class (the template term on lines 16–18) or is implemented by one of its
super classes ?otherSuper (lines 19–24). Lines 25–29 (equivalent to lines 16–18 of
the LMP query) require this interface to be in the ATObject interface hierarchy
(which parallels the NativeATObject class hierarchy) and to define the abstract
version of method ?m. Lines 16–24 are negated to find violations of the coding
convention.

Evaluation There is little to improve upon the LMP specifications for the AMBI-
ENTTALK coding convention introduced in Section 5.3.2. The relational nature of
logic programming facilitates quantifying over the reification predicates for struc-
tural information to express their structural characteristics (cf. Section 4.2.2).

The above example-based specification exemplifies the overriding relation be-
tween two methods in terms of the inheritance relation between their classes
and the syntactic characteristics of the methods. This is possible because of
the domain-specific unification procedure according to which different parameter
lists, individual parameters, parameter types and return types of overriding meth-
ods unify (cf. Section 6.6.2). For instance, the return types of overriding methods
are allowed to be co-variant and parameters are allowed to have different names.
The original LMP query quantifies over the overriding relation between two meth-
ods using reification predicate overrides:/2 (cf. Figure 5.12).

The LMP and example-based queries identify the same violations in 25.890ms
and 124.893ms respectively. Clearly, quantifying directly over the reified structural
relations is less costly than exemplifying these relations. The LMP query is also
more concise (at least in terms of lines of code). However, it requires knowledge

199

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

about the reification predicates for structural information (e.g. overrides:/2, de-
finesMethod:/2, implementsType:/2 and inClassHierarchyOfType:/2).

7.4.3 Expressing Control Flow Characteristics

The example-based query depicted at the top of Figure 7.12 identifies methods
that comply with the control flow characteristics of the protocol introduced in Sec-
tion 5.3.3. These require an invocation of method a() to be followed by an invoca-
tion of method c(Object), without method b() being invoked in between.

The first condition of the query is a jtClassDeclaration/2 template term.
Upon resolution, its first argument ?class will be unified with a class declaration
AST node that matches its source code excerpt (on lines 2–8) under the example-
based interpretation named ?interpretation (its second argument). The source
code excerpt exemplifies a class named ProtocolExample that defines a method
?m which is not declared static and invokes methods a() and c(Object). The
term establishes bindings for these invocations (i.e. ?a and ?c) and for the type,
name and parameters of the method (i.e. ?type, ?name and ?paramList).

The second condition of the query verifies that method ?m does not have an
invocation of method b() in between the invocations of a() and c(Object). The
argument to the higher-order predicate absolutelyNot/n is a jtMethodDecla-
ration/2 template term. Its source code excerpt exemplifies such a violation of
the protocol by invoking b() in between the invocations of a() and c(Object).
Predicate absolutelyNot/n is defined in the standard library of fuzzy SOUL and
succeeds only if the conjunction of its arguments fails (cf. Section 6.2.2). The fuzzy
version of the regular not/n connective would have also succeeded if its arguments
succeed with a truth degree smaller than 1.

The final two conditions are optional. We added these conditions to ensure that
variables ?mods and ?block have the same bindings as in the original LMP query.
The same goes for the occurrences of the non-native := operator. The occurrence
on line 4, for instance, binds ?a to method invocation a(). We could have omitted
these occurrences and only kept their right-hand side.13

The second column of the window in Figure 7.12 lists the truth degrees for the
solutions to the query. The bindings for ?interpretation clarify whether a solution
was identified under the lexical or control flow interpretation of the template terms.

Solutions under the lexical interpretation Under the lexical interpretation, the
example-based query identifies the same methods as the LMP query in the top-left
corner of Figure 5.10 (cf. third column of the top-left window in Figure 5.9). The
LMP query is roughly equivalent to the goals that are used to resolve the template
terms under the lexical interpretation. We therefore refer to Section 5.3.3 for an
in-depth discussion of their solutions.

Clearly, we intended the template terms to exemplify the control
flow characteristics of complying methods. An additional condition
?interpretation equals: controlflow would exclude the other inter-
pretations from being considered.

13Except for the := operator on line 3. It connects the first condition with the
second condition through variable ?m. It can only be omitted by substituting a
jtMethodDeclaration/2 term for the jtClassDeclaration/2 term and adding an additional condi-
tion [?m parentTypeDeclaration getName] equals: simpleName([’ProtocolExample’]).

200

7.4. Revisiting LMP Support for Pattern Characteristics

Solutions under the control flow interpretation Under the control flow interpre-
tation, the example-based query identifies the same methods as the LMP query in
the bottom-left corner of Figure 5.10 (cf. second column of the top-left window in
Figure 5.9). We refer to Section 5.3.3 for a more in-depth discussion of their solu-
tions.

The first condition of the example-based query roughly corresponds to lines
6–10 of the LMP query. Through subsequent traversals of the control flow graph
of complying methods, they express the existential path query “does there exist
a path through ?m on which c(?arg) follows a()?”. This explains why method
semi_compliant_2 is recognized as a complying method although there is a path
through the method on which c is never executed. The second condition corre-
sponds to lines 11–15 of the LMP query. They express the universal path query “is
it true that there is not a single path on which c(?arg) follows b() and b() fol-
lows a()?”. This explains why method semi_compliant_1 is recognized as a non-
complying method although there is a path through the method that complies with
the protocol.

Evaluation Template terms provide a more descriptive means to express control
flow characteristics, but they share the same limitation as the control flow traversal
predicates they compile to. It is not possible to express the existential path query
with a complement “does there exist a path through ?m on which anything but b is
executed between a() and c(?arg)?”. We intend to address this limitation in future
work (cf. Section 5.5.2).

7.4.4 Expressing Data Flow Characteristics

In this section, we revisit the example-based specifications for methods that com-
ply with the above protocol and potentially enhanceable for-statements to express
their data flow characteristics.

Enhanceable for-Statements Revisited

Expressing the data flow characteristics of enhanceable for-statements only re-
quires minor changes to the original template terms depicted in Figure 7.9. It suf-
fices to substitute variable ?iterator for variable ?hasNextReceiver (lines 2 and 8) as
well as for variable ?nextReceiver (lines 3 and 9). The data flow characteristics re-
quire methods hasNext() and next() to be invoked on the same iterator. Fig-
ure 7.13 depicts the quantified solutions to the adapted queries. The queries have
the same solutions as the LMP query in Figure 6.9 that used equals:/2 to unify
both receivers explicitly. Only the truth degrees listed in the second and third col-
umn differ.

The second column of Figure 7.13 lists the truth degrees for the solutions to the
adapted query with the jtStatement/1 template term. They correspond to the
truth degrees for the solutions to the original query (listed in the second column
of Figure 7.9) multiplied by the unification degrees of the hasNext() and next()
receivers (listed in Figure 6.9). According to the domain-specific unification proce-
dure, the bindings for both occurrences of variable ?iterator are consistent if they
are the same AST node or if they are expressions in a may-alias or must-alias re-
lation. The associated unification degrees are 1, 0.9 and 0.5 respectively (cf. Sec-
tion 6.4.1). The for-statement in method enhanceable_4, for instance, has a

201

1 if jtClassDeclaration(?class,?interpretation){
2 class ProtocolExample {
3 ?m := !static ?type::jtType ?name(?paramList){
4 ?a := a();
5 ?c := c(?arg);
6 }
7 }
8 },
9 absolutelyNot(jtMethodDeclaration(?m,?interpretation){

10 ?modList ?type ?name(?paramList){
11 ?a := a();
12 b();
13 c(?arg);
14 }
15 }),
16 ?modList equals: ?mods,
17 ?m methodDeclarationHasBody: ?block

Figure 7.12: Example-based spec. for the control flow char. of complying methods.

7.4. Revisiting LMP Support for Pattern Characteristics

maximum associated truth degree of 0.45 = 0.9×0.5. Here, 0.9 is the upper bound
for solutions identified under the lexical interpretation of the jtStatement/1 term
and 0.5 is the unification degree of receiver expressions ((Iterator) temp) and
i which are in a may-alias relation.

The third column lists the truth degrees for the solutions to the adapted query
with the jtMethodDeclaration/1 template term. In contrast to the truth degrees
for the solutions to the adapted jtStatement/1 query, they do not correspond to
the truth degrees for the originaljtMethodDeclaration/1query multiplied by the
unification degrees of the ?iterator occurrences. Conceptually, the template term
is resolved using a different fuzzy logic rule under each interpretation. The listed
truth degrees correspond to the truth of a conjunction of goals (i.e. the minimum
of their truth degrees) multiplied by the truth degree associated with the example-
based interpretation under which the template term compiles to these goals. Of
these generated goals, the following may influence the truth degree for a solution
(i.e. can succeed with a truth degree less than 1):

1 ...,
2 ?Var687354 blockIsLexicalCandidateForAmountOfActualStatements: [1],
3 ...,
4 ?Var687358 equals: methodInvocation(?iterator,?,simpleName([’hasNext’]),?),
5 ?Var687361 equals: methodInvocation(?iterator,?,simpleName([’next’]),?),
6 ...

The first goal compares the number of statements in a MethodDeclaration
instance with the number of statements in the jtMethodDeclaration/1 term. It
uses predicate isEqualToOrGreaterThanButRelativelyCloseTo:/2 which, for
the listed solutions, succeeds with a truth degree of at least 0.9 (cf. Section 7.4.1).
Through the occurrences of ?iterator, the second and third goals assert that the
receivers of the hasNext() and next() invocations are the same. The truth degree
of the third goal is the unification degree of both receivers. It unifies the next()
invocation AST node (bound to generated variable ?Var687361) with a structurally
equivalent compound term to access its receiver child. This entails unifying the
receiver child node with the binding for ?iterator (already established by the second
goal). The third goal therefore succeeds with a truth degree of 1 (same AST node),
0.9 (in a must-alias relation) or 0.5 (in a may-alias relation) —depending on the
domain-specific unification extension according to which both receivers unify.

Evaluation The above explains why the truth degrees in the third column do not
correspond to the original truth degrees multiplied by the unification degrees of the
?iterator occurrences. In the original query, the first goal succeeded with the small-
est truth degree of all generated goals and therefore determined the truth degree
for each solution (listed in the third column of Figure 7.9). In the adapted query,
the influence of the first goal is lost. The listed truth degrees correspond only to
the truth degree of the last goal, multiplied by the truth degree associated with the
lexical interpretation (i.e. 0.9). This is because of the way fuzzy SOUL quantifies
conjunction (i.e. the minimum truth degree of all goals in the conjunction). The
future work for the fuzzy logic cornerstone therefore includes investigating other
quantifications (e.g. product) that give rise to a more refined ranking (cf. Section
6.8).

203

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

Figure 7.13: Quantified solutions to example-based spec. for enhanceable fors.

The Protocol Revisited

The data flow characteristics of the protocol require that the invocation of method
c(Object) takes the result of a prior invocation of method a() as its argument
(cf. Section 5.3.3). Figure 7.12 depicts an example-based specification for the con-
trol flow characteristics of methods that comply with the protocol. Expressing their
data flow characteristics requires only minor changes to this specification. It suf-
fices to substitute variable ?a for variable ?arg in the second template term and to
substitute either of the following bodies for the body of method ?m in the first tem-
plate term:

1 { ?a := a(); ?c := c(?a); }

2 { c(a()); }

The second and third column of Figure 7.14 list the truth degrees for the solu-
tions to the specification with the first and second modification respectively. Un-
der the control flow interpretation, both specifications identify the same solutions.
The first specification explicitly requires method a() to be invoked before method
c(Object) and the argument of the latter invocation to unify with the former invo-
cation. The second specification implies the same requirements because the argu-
ments to an invocation are always evaluated before the invocation itself. We refer
to Section 6.6.4 for an in-depth discussion of their solutions as both specifications
roughly correspond to the LMP query discussed there.14

14Note that the truth degrees for the example-based specifications do not correspond to the truth
degrees for the LMP query multiplied by the truth degree associated with the control flow interpretation
(i.e. 0.8). Method compliant_2, for instance, was identified by the LMP query with a truth degree of 1
(cf. the second column in Figure 6.10). The argument to the invocation ofc(Object) and the invocation
of a() unify with a unification degree of 1 (i.e. they are the same AST node). The example-based spec-

204

7.4. Revisiting LMP Support for Pattern Characteristics

Figure 7.14: Quantified solutions to example-based spec. for complying methods.

Under the lexical interpretation, the solutions to the first and second specifica-
tion differ. For instance, the second specification does not identify method com-
pliant_1 (i.e. there is a 0-entry in the third column) while the first specification
does. This is because the first specification merely requires both invocations to
reside in the same method. The second specification requires the invocation of
a() to reside lexically within the invocation of c(Object). As a result, method
compliant_2 is the only method identified under the lexical interpretation by the
second specification. Clearly, the specifications only exemplify the intended con-
trol flow characteristics under the control flow interpretation. An additional con-
dition ?interpretation equals: controlflow would exclude the other inter-
pretations from being considered.

Evaluation Expressing the data flow characteristics of the pattern required only
minor changes to the example-based specification that expressed its control flow
characteristics. However, this is due to the domain-specific unification procedure.
The example-based specification is an improvement on the original LMP query in
that it exemplifies the pattern’s control flow characteristics through a descriptive
code excerpt.

ifications, in contrast, identify this method with a truth degree of 0.72. Again, this is because of a goal
with predicate blockIsLexicalCandidateForAmountOfActualStatements:/2 (see the discussion
on the example-based specification for enhanceable for-statements).

205

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

7.5 Open Implementation

The translational semantics of the example-based interpretations are
realized by logic rules that implement predicate underInterpreta-
tion:compilesTo:forResult:/4. These rules comprise the meta-level interface
through which additional interpretations can be defined (cf. Section 4.6.4).

A compile-time instance of SOUL invokes this predicate to obtain the goals that
should be used to resolve each template term (cf. Figure 4.1). These goals are stored
in the object that implements the term. The stored goals are subsequently used to
resolve the term at run-time. This way, goals that use a template term do not incur
a performance overhead from the compilation step.

Figure 4.14 depicts the rules that implement the translational semantics for
return-statements in template terms. These rules are publicly available as the
Smalltalk package “Soul-JavaTemplates” that can be downloaded from the SOUL

website [Sou08].15 They provide a complete and formal account of the standard
example-based interpretations introduced in Section 7.2.

The package also defines a library of auxiliary predicates that facilitate
defining additional interpretations. The translational semantics of a mod-
ifiers lists, for instance, are implemented in a generic manner. Lines 9–
16 of Figure 7.6 result from invoking a higher-order list compilation predi-
cate. Its arguments determine how elements in the lists should be compiled
(modifierUnderInterpretation:compilesTo:forResult:/4), how elements
of the matching ASTNode$NodeList instance should be quantified over existen-
tially (collectionContains:andAlso:/3) and how such goals should be negated
(a combination of absolutelyNot/n and contains:/2). Due to space restric-
tions, we have to refer the reader to the SOUL website [Sou08] for more information.

7.6 Limitations of the Instantiation

Template terms share the technical limitations of the control flow traversal pred-
icates they compile to under the control flow interpretation. It is not possible to
express an existential path query with a complement (cf. Section 5.5.2).

We discuss another technical limitation of template terms below. The conclud-
ing chapter discusses the open research questions related to the corresponding
example-based specification cornerstone.

The Grammar for Source Code Excerpts is Constructed in an Ad-Hoc Manner

The source code excerpts in template terms are parsed by a Definite Clause Gram-
mar [PW80] (cf. Section A.1). The DCG rules describe the concrete syntax of Java ex-
tended with logic variables and a minimum of non-native syntax (cf. Section 7.1.3).

We constructed this grammar by hand —carefully inserting goals such as jt-
MetaVariable/1 where logic variables can be used. Their location has a profound
impact on the translational semantics of the example-based interpretations. Con-
sider the template term in the following query:

1 if jtClassDeclaration(?class) { class ?name { ?member } }

15The package depends on packages “Soul-Cava” and “Soul-FuzzyLogic” which roughly corre-
spond to Chapter 5 and Chapter 6 of this dissertation.

206

7.7. Conclusion

Under all but the syntactic interpretation, it quantifies over all class declara-
tions and all of their member declarations. Depending on the location of the
jtMetaVariable/1 goal that recognizes variable ?member, different ASTs corre-
spond to the excerpt. The DCG rules on lines 2–5 below, construct the single AST
depicted on the first line:16

1 classDeclaration(e,?name,e,e,classBody(<classBodyDeclaration(?member)>))

2 jtClassMemberDeclaration(?var) --> jtMetaVariable(?var)
3 jtClassMemberDeclaration(?decl)--> jtMethodDeclaration(?decl)
4 jtClassMemberDeclaration(?decl) --> jtFieldDeclaration(?decl)
5 ...

To ensure that the template term quantifies over all class declarations and their
member declarations, the translational semantics of the example-based inter-
pretations includes a disjunction such as “or(?member isMethodDeclaration,
...)”

The DCG rules on lines 4–8 below, in contrast, push the jtMetaVariable/1
goal further down in the grammar. They produce the forest of ASTs depicted on
lines 1–3:

1 classDeclaration(e,?name,e,e,classBody(<classBodyDeclaration(fieldDeclaration(?member))>))
2 classDeclaration(e,?name,e,e,classBody(<classBodyDeclaration(methodDeclaration(?member))>))
3 ...

4 jtClassMemberDeclaration(?decl) --> jtMethodDeclaration(?decl)
5 jtClassMemberDeclaration(?decl)--> jtFieldDeclaration(?decl)
6 jtMethodDeclaration(methodDeclaration(?var)) --> jtMetaVariable(?var)
7 jtFieldDeclaration(fieldDeclaration(?var)) --> jtMetaVariable(?var)
8 ...

We implemented the first option to disambiguate the grammar as much as possi-
ble. The disadvantage is that the implementation of the translational semantics is
more involved. In future work, we want to investigate a more disciplined and auto-
matic conversion of the grammar for the base programming language to a grammar
for template terms.

7.7 Conclusion

In this chapter, we discussed the instantiation of the example-based specification
cornerstone. It enables exemplifying a pattern through code excerpts that corre-
spond to the prototypical implementation of its essential characteristics. This ob-
viates the need to explicitly quantify over the reified program representation to ex-
press these characteristics.

Concretely, we integrated code excerpts as template terms in the fuzzy version
of SOUL. They are specified in the concrete syntax of the base program, augmented
with logic variables to indicate points of variation among a pattern’s instances.

AST nodes match a template term under a particular example-based interpre-
tation. We defined three standard interpretations: the syntactic, lexical and con-
trol flow interpretation. The points of variation among the matches for a template
term differ under each interpretation. Under the control flow interpretation, for
instance, the control flow characteristics of the source code excerpt exemplify the
intended matches. The common design principle of the standard interpretations is

16Out of space considerations, symbol e substitutes for symbol epsilon which denotes the empty
string.

207

7. INSTANTIATING THE EXAMPLE-BASED SPECIFICATION CORNERSTONE

that matches have to exhibit all exemplified characteristics, but that what is not ex-
emplified cannot constrain the matches further. This way, they realize the example-
based semantics of template terms. The domain-specific unification procedure
complements the example-based interpretations. It ensures that occurrences of
the same variable are consistent across the terms in a specification. All interpreta-
tions therefore allow different implementations of a data flow characteristic in their
matches.

We discussed the translational semantics of each interpretation. Conceptually,
each example-based interpretation transforms the code excerpt of a term into a
fuzzy logic rule. The generated rules are used to resolve the template term, which
explains the truth degrees associated with its matches. These cannot exceed 1, 9

10
and 8

10 under the syntactic, lexical and control flow interpretation respectively. This
ranking reflects the projected similarity of the solutions to the code excerpt of the
term. The properties of the solution itself further refine this upper bound. For in-
stance, if it required a domain-specific unification that could introduce false posi-
tives.

We defined the translational semantics of the standard interpretations. More-
over, we discussed the meta-level interface through which the translational seman-
tics of additional interpretations can be implemented as logic rules.

We have shown that composing template terms through logic connectives al-
lows for finer-grained control over their matches. We have also presented a mini-
mum of non-native syntax operators without which many example-based specifi-
cations would be less concise. Because these detract from a term’s resemblance to
actual code, however, we have shown how each non-native operator can be elimi-
nated.

Finally, we have shown that this cornerstone overcomes the quantification-
related shortcomings of LMP by specifying the patterns that are representative for
each kind of pattern characteristic in an example-based manner.

208

C
H

A
P

T
E

R

8
VALIDATION: DETECTING PATTERNS USING

EXAMPLE-BASED QUERIES

This chapter validates our example-driven approach to pattern detec-
tion by demonstrating that it fulfills the criteria for a general-purpose
pattern detection tool that we identified in Section 2.6. We apply our
approach, as instantiated in the previous chapters, to several of the soft-
ware patterns introduced in Section 2.1. As discussed in Section 2.3, de-
tecting these patterns has valuable applications throughout the devel-
opment process. We demonstrate that they can be specified as descrip-
tive example-based specifications in a uniform language —even though
many are heterogeneously characterized which would require develop-
ers to use multiple tools with diverse specification languages (cf. Sec-
tion 3.6.1 for an evaluation of the specification languages of the state
of the art). In addition, we present guidelines that can be followed
by developers when exemplifying other software patterns such as the
application-specific patterns that have served as running examples for
the previous chapters. An explicit evaluation of our approach on the cri-
teria for a general-purpose pattern detection tool concludes this chapter.

8.1 Detecting Design Patterns

We detected 7 of the 23 design patterns introduced by Gamma et al. [GHJV94] in
an example-driven manner. We selected patterns from each design pattern cat-
egory: creational patterns (Singleton, Factory Method and Prototype), structural
patterns (Composite and Decorator) and behavioral patterns (Observer and Tem-
plate Method). The selected patterns have their instances explicitly documented in
JHOTDRAW 5.1 [jHo07] —which allows assessing the pattern detection results.

Section 8.1.1 presents the example-based specifications for the selected design
patterns. Section 8.1.2 subsequently uses those specifications to detect design pat-
tern instances in two Java programs. Both programs are publicly available: JHOT-
DRAW 5.1 [jHo07] and an academic implementation of each design pattern by Han-
nemann and Kiczales [HK02]. The former program, Gamma’s port of the Smalltalk

209

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

HOTDRAW framework [Joh92] to Java, enables assessing our pattern detection re-
sults. Each pattern instance is documented in its code. Moreover, Riehle’s disser-
tation [Rie00] provides role-model enhanced class diagrams of the JHOTDRAW 5.1
framework.1 The latter program ensures that our example-based specifications are
not specific to the JHOTDRAW implementations. Appendix B.1 details some statis-
tics about the size of both programs.

8.1.1 Example-based Specifications

Figure 8.1 and Figure 8.2 depict the example-based specifications for the fol-
lowing design patterns. The logic variables in each specification are named af-
ter the classes that participate in each pattern and their members as described
in [GHJV94].

The Singleton design pattern “ensures that a class has one instance and provides a
global point of access to it”. Figure 8.1 exemplifies three prototypical implemen-
tations of the pattern in Java. All implementations have a static field ?uniqueIn-
stance and a static, parameter-less method ?instance that returns this field.

The first exemplified implementation has no public constructor. It assigns
the field a new instance of ?singleton in the initializer expression of the corre-
sponding field declaration.

The second implementation assigns the field through an ?initializer
method. Note that we split the specification in two template terms. This al-
lows a single method to match both ?initializer and ?instance. For instance, a
method that initializes ?uniqueInstance the first time it is invoked (i.e. lazy ini-
tialization). Exemplifying both methods in a single class declaration template
would require matching classes to feature at least two distinct methods.

The third exemplified implementation requires ?singleton to have at least
one public constructor. All public constructors are moreover required to assign
the current object to ?uniqueInstance. Note that, under the control flow inter-
pretation, this assignment may reside in another constructor or method that is
invoked from the public constructor.

The Template Method design pattern “defines the skeleton of an algorithm in an
operation, deferring some steps to subclasses”. Its specification is depicted in the
top-right corner of Figure 8.1. The specification relies on the domain-specific
unification of a method invocation name and the name of the invoked method
declaration. Note that the ?concreteClass participant of the pattern is required
to implement both abstract methods called by the template method of the ?ab-
stractClass participant. This corresponds to the pattern’s structure in [GHJV94].
A specification with non-native operator *{ would allow those implementa-
tions to be inherited.

The Observer design pattern “defines a one-to-many dependency between objects
so that when one object changes state, all its dependents are notified and updated
automatically”. The bottom-right corner of depicts its specification. The sub-
ject participant is exemplified as a class with a collection of ?observers to which
an ?observer can be added through method ?addObserver.

Note that we have used different variables for the formal parameter names
of methods ?removeObserver and ?addObserver. Otherwise, the specification

1In these diagrams, classes are annotated with the participant roles they play in a design pattern.

210

8.1. Detecting Design Patterns

would require that at least one observer is added to and removed from a subject
at run-time. According to the domain-specific unification procedure, formal
parameter names only unify if they are in a may-alias relation.

Method ?notifyObservers notifies the subject’s observers of a state change.
Rather than enumerating the different ways in which the ?observers field can
be iterated through, the specification exemplifies the method as one with two
successively evaluated instructions. The first evaluates to the ?observers field
and the second invokes a method on an ?observer that has been added to this
field through method ?addObserver.

The observer participant of the pattern is exemplified as a class in which
the invoked method resides. Note that this already constrains ?observerClass
to a class declaration in the sub-type hierarchy of ?observerType. No additional
conditions are therefore required to express this constraint.

The depicted specification consists almost entirely of logic variables. These
indicate explicit points of variation which are constrained by the domain-
specific unification procedure.

The Decorator design pattern “attaches additional responsibilities to an object dy-
namically”. Its specification is depicted in Figure 8.2. Lines 7–24 exemplify the
decorator participant as a class with a method ?operation and a field of type
?componentType. This ?decoratorClass has to reside in the sub-type hierarchy
of ?componentType.2

Lines 4–6 identify the pattern’s concrete decorator participant through an
auxiliary predicate. The predicate is implemented by the fuzzy logic rules
on lines 25–45. Their bodies require a subclass of ?decoratorClass to override
method ?operation such that it invokes a method with the same name on the
decorated object ?component. The first rule requires that the original argu-
ments are passed along. The second rule allows different arguments. Its weight
of 9

10 ensures a lower truth degree for the concrete decorator participants it
identifies.

The Prototype design pattern “specifies the kinds of objects to create using a pro-
totypical instance, and creates new objects by copying this prototype”. The top-
right corner of Figure 8.2 exemplifies the pattern’s prototypical implementation
in Java. The client participant is implemented as a class with a field ?proto-
typeInstance on which a clone method is invoked. The prototype participant
therefore has to implement interface Cloneable. Note that the specification
links the client to the prototype through the left-hand sides of two non-native
:= operators: the method invocation and the invoked method.

The Composite design pattern “lets clients treat individual objects and composi-
tions of objects uniformly”. A specification for this pattern is depicted in the
middle of Figure 8.2. The composite participant is exemplified as class with a
field ?children to which objects of type ?componentType are added through a
method ?add. Lines 12–13 moreover require ?compositeClass to reside in the
sub-type hierarchy of ?componentType. They are an LMP alternative to lines
13–24 of the specification for the Decorator pattern.

2The class can either extend the class (or a sub-class thereof) that declares this type, implement the
interface (or a sub-inerface thereof) that declares this type, or extend a class (or a sub-class thereof) that
implements an interface (or a sub-interface thereof) that declares this type.

211

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

The Factory Method design pattern defines “an interface for creating an object,
but lets subclasses decide which class to instantiate”. Its specification is de-
picted in the bottom-right corner of Figure 8.2. The creator participant is ex-
emplified as a class in which method ?operation invokes the factory method
on the current object. Note that the specification does not state where the fac-
tory method is declared (e.g. in the creator, an extended super-class or an im-
plemented interface). It should only be possible to invoke the method on an
instance of the creator participant. The concrete creator participant can be
either the creator participant itself or a sub-class thereof. It should declare
(and possibly override) the factory method. This method has to return a new
instance of concrete product ?concreteProductClass. Note that the specifica-
tion does not exemplify this characteristic through a statement “return new
?concreteProductClass(?aList);”. That would, under the syntactic and
lexical interpretation, require the instance to be instantiated within the expres-
sion operand of the statement. Instead, the specification requires the operand
to unify with such an instance that is identified through non-native operator
:=.

Evaluation The above specifications evidence the expressiveness of our specifi-
cation language. Within fuzzy as well as regular logic rules, they combine tem-
plate terms with other logic terms to implement user-defined predicates. They con-
tain higher-order logic goals such as forall/2, but also invoke Java and Smalltalk
methods on variable bindings.

Of course, alternative specifications are possible. The somewhat intricate
Smalltalk term in the specification for the Composite pattern, for instance, can be
replaced by a predicate of the CAVA library.

Design patterns describe proven object-oriented solutions to common design
problems. As such, they can be implemented in many different ways. Consider
the Observer pattern. The subject participant can push information about its en-
tire state towards its observers (i.e. push model). Another implementation has the
subject notify its observers, upon which the observers only pull the information
that is relevant to them (i.e. pull model). A prototypical Java implementation cor-
responds to each model. The depicted specification covers the prototypical imple-
mentation of either model by only exemplifying their common characteristics. The
specification for the Singleton pattern, on the other hand, enumerates three pro-
totypical Java implementations of the pattern. The Decorator specification more-
over ranks the prototypical implementations of the concrete decorator participant
it enumerates. We do not claim that the above specifications cover all prototypical
implementations. However, our detection mechanism recognizes different implicit
variants (i.e. implied by the semantics of the programming language) of each exem-
plified prototypical implementation (cf. Section 8.1.2).

Overall, the above design patterns were straightforward to specify in an
example-driven manner. The specifications for the Template Method, Prototype
and Observer patterns, for instance, consist exclusively out of template terms with a
minimum of non-native syntax. The cardinality constraints of the Singleton, how-
ever, were less straightforward to specify (i.e. the for-all and at-least-one require-
ment expressed through lines 41–50). We will encounter similar problems in Sec-
tion 8.2 when specifying the cardinality constraints of the µ-patterns.

212

8.
6.

C
on

cl
u

si
on

1
?c
on
cr
et
eC
la
ss

is
Co
nc
re
te
Cl
as
sW
it
hP
ri
mi
ti
ve
Op
er
at
io
n1
:
?p
ri
mi
ti
ve
Op
er
at
io
n1

2
an
dP
ri
mi
ti
ve
Op
er
at
io
n2
:
?p
ri
mi
ti
ve
Op
er
at
io
n2

3
ca
ll
ed
By
Te
mp
la
te
Me
th
od
:
?t
em
pl
at
eM
et
ho
d

4
of
Ab
st
ra
ct
Cl
as
s:

?a
bs
tr
ac
tC
la
ss

5
un
de
rI
nt
er
pr
et
at
io
n:

?i
nt
er
pr
et
at
io
n
if

6
jt
Cl
as
sD
ec
la
ra
ti
on
(?
ab
st
ra
ct
Cl
as
s,
?i
nt
er
pr
et
at
io
n)
{

7
ab
st
ra
ct

cl
as
s
?a
bs
tr
ac
tC
la
ss
Na
me

{
8

ab
st
ra
ct

?t
1:
:j
tT
yp
e
?p
ri
mi
ti
ve
Op
er
at
io
n1
(?
p1
Li
st
);

9
ab
st
ra
ct

?t
2:
:j
tT
yp
e
?p
ri
mi
ti
ve
Op
er
at
io
n2
(?
p2
Li
st
);

10
?m
od
Li
st

?t
yp
e
?t
em
pl
at
eM
et
ho
d(
?p
ar
am
Li
st
)
{

11
?p
ri
mi
ti
ve
Op
er
at
io
n1
(?
ar
g1
Li
st
);

12
?p
ri
mi
ti
ve
Op
er
at
io
n2
(?
ar
g2
Li
st
);

13
}

14
}

15
},

16
jt
Cl
as
sD
ec
la
ra
ti
on
(?
co
nc
re
te
Cl
as
s,
?i
nt
er
pr
et
at
io
n)
{

17
cl
as
s
?c
on
cr
et
eC
la
ss
Na
me

ex
te
nd
s*

?a
bs
tr
ac
tC
la
ss

{
18

?m
od
1L
is
t
?t
1
?p
ri
mi
ti
ve
Op
er
at
io
n1
(?
p1
Li
st
)
{}

19
?m
od
2L
is
t
?t
2
?p
ri
mi
ti
ve
Op
er
at
io
n2
(?
p2
Li
st
)
{}

20
}

21
}

24
9

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
B

Y-
E

X
A

M
P

L
E

L
O

G
IC

Q
U

E
R

IE
S

1
?s
ub
je
ct
Cl
as
s
is
Su
bj
ec
tO
fO
bs
er
ve
r:

?o
bs
er
ve
rC
la
ss

ad
d:

?a
dd
Ob
se
rv
er

2
re
mo
ve
:
?r
em
ov
eO
bs
er
ve
r
no
ti
fy
:
?n
ot
if
yO
bs
er
ve
rs

3
up
da
te
:
?u
pd
at
e
un
de
rI
nt
er
pr
et
at
io
n:

?i
nt
er
pr
et
at
io
n
if

4
jt
Cl
as
sD
ec
la
ra
ti
on
(?
su
bj
ec
tC
la
ss
,?
in
te
rp
re
ta
ti
on
){

5
cl
as
s
?s
ub
je
ct
Na
me

{
6

?m
od
Li
st

?t
?o
bs
er
ve
rs

=
?i
ni
t;

7
pu
bl
ic

?t
2:
:j
tT
yp
e
?a
dd
Ob
se
rv
er
(?
ob
se
rv
er
Ty
pe

?o
bs
er
ve
r)

{
8

?o
bs
er
ve
rs
.?
ad
d(
?o
bs
er
ve
r)
;

9
}

10
pu
bl
ic

?t
3:
:j
tT
yp
e
?r
em
ov
eO
bs
er
ve
r(
?o
bs
er
ve
rT
yp
e
?o
th
er
Ob
se
rv
er
)
{

11
?o
bs
er
ve
rs
.?
re
mo
ve
(?
ot
he
rO
bs
er
ve
r)
;

12
}

13
?m
od
4L
is
t
?t
4
?n
ot
if
yO
bs
er
ve
rs
(?
pa
ra
mL
is
t)

{
14

?o
bs
er
ve
rs
;

15
?o
bs
er
ve
r.
?u
pd
at
e(
?a
rg
Li
st
);

16
}

17
}

18
},

19
?a
dd

eq
ua
ls
:
{.
*a
dd
.*
},

20
?r
em
ov
e
eq
ua
ls
:
{.
*r
em
ov
e.
*}
,

21
jt
Cl
as
sD
ec
la
ra
ti
on
(?
ob
se
rv
er
Cl
as
s,
?i
nt
er
pr
et
at
io
n)
{

22
cl
as
s
?o
bs
er
ve
rN
am
e
{

23
?u
pd
at
e

24
}

25
}

1
?c
li
en
t
is
Cl
ie
nt
Cl
on
in
gI
ns
ta
nc
e:

?p
ro
to
ty
pe
In
st
an
ce

2
of
Pr
ot
ot
yp
eC
la
ss
:
?p
ro
to
ty
pe

in
Op
er
at
io
n:

?o
pe
ra
ti
on

3
us
in
gI
nv
oc
at
io
n:

?i
nv
oc
at
io
n

4
un
de
rI
nt
er
pr
et
at
io
n:

?i
nt
er
pr
et
at
io
n
if

5
jt
Cl
as
sD
ec
la
ra
ti
on
(?
cl
ie
nt
,?
in
te
rp
re
ta
ti
on
){

6
cl
as
s
?c
li
en
tN
am
e
{

7
?m
od
1L
is
t
?p
ro
to
ty
pe
Ty
pe

?p
ro
to
ty
pe
In
st
an
ce

=
?i
ni
t;

8
?m
od
2L
is
t
?t
yp
e
?o
pe
ra
ti
on
(?
pa
ra
mL
is
t)

{
9

?i
nv
oc
at
io
n
:=

?p
ro
to
ty
pe
In
st
an
ce
.c
lo
ne
()
;

10
}

11
}

12
},

13
jt
Cl
as
sD
ec
la
ra
ti
on
(?
pr
ot
ot
yp
e,
?i
nt
er
pr
et
at
io
n)
{

14
cl
as
s
?p
ro
to
ty
pe
Na
me

im
pl
em
en
ts
*
Cl
on
ea
bl
e
{

15
?i
nv
oc
at
io
n
:=

pu
bl
ic

Ob
je
ct

cl
on
e(
)
{}

16
}

17
}

24
8

8.
7.

C
on

cl
u

si
on

8.
7

C
on

cl
u

si
on

1
?s

in
gl

et
on

is
Si

ng
le

to
nC

la
ss

Fo
rI

ns
ta

nc
e:

?u
ni

qu
eI

ns
ta

nc
e

2
ac

ce
ss

ed
Th

ro
ug

h:
?i

ns
ta

nc
e

3
un

de
rI

nt
er

pr
et

at
io

n:
?i

nt
er

pr
et

at
io

n
if

4
jt

Cl
as

sD
ec

la
ra

ti
on

(?
si

ng
le

to
n,
?i

nt
er

pr
et

at
io

n)
{

5
cl

as
s
?s

in
gl

et
on

Na
me

{
6

st
at

ic
?s

in
gl

et
on

?u
ni

qu
eI

ns
ta

nc
e
=

ne
w
?s

in
gl

et
on
()

;
7

![
pu

bl
ic

?s
in

gl
et

on
(?
pa

ra
mL

is
t)

{}
];

8
pu

bl
ic

st
at

ic
?s

in
gl

et
on

::
jt

Ty
pe

?i
ns

ta
nc

e(
)

{
9

re
tu

rn
?u

ni
qu

eI
ns

ta
nc

e;
10

}
11

}
12

}

13
?s

in
gl

et
on

is
Si

ng
le

to
nC

la
ss

Fo
rI

ns
ta

nc
e:

?u
ni

qu
eI

ns
ta

nc
e

14
ac

ce
ss

ed
Th

ro
ug

h:
?i

ns
ta

nc
e

15
un

de
rI

nt
er

pr
et

at
io

n:
?i

nt
er

pr
et

at
io

n
if

16
jt

Cl
as

sD
ec

la
ra

ti
on

(?
si

ng
le

to
n,
?i

nt
er

pr
et

at
io

n)
{

17
cl

as
s
?s

in
gl

et
on

Na
me

{
18

st
at

ic
?s

in
gl

et
on

?u
ni

qu
eI

ns
ta

nc
e
=
?i

ni
t;

19
![

pu
bl

ic
?s

in
gl

et
on
(?
pa

ra
mL

is
t)

{}
];

20
pu

bl
ic

st
at

ic
?s

in
gl

et
on

::
jt

Ty
pe

?i
ns

ta
nc

e(
)

{
21

re
tu

rn
?u

ni
qu

eI
ns

ta
nc

e;
22

}

23
}

24
},

25
jt

Cl
as

sD
ec

la
ra

ti
on

(?
si

ng
le

to
n,
?i

nt
er

pr
et

at
io

n)
{

26
cl

as
s
?s

in
gl

et
on

Na
me

{
27

?m
od

Li
st

?t
yp

e
?i

ni
ti

al
iz

er
(?
pL

is
t)

{
28

?u
ni

qu
eI

ns
ta

nc
e
=

ne
w
?s

in
gl

et
on
(?
ar

gL
is

t)
;

29
}

30
}

31
}

32
?s

in
gl

et
on

is
Si

ng
le

to
nC

la
ss

Fo
rI

ns
ta

nc
e:

?u
ni

qu
eI

ns
ta

nc
e

33
ac

ce
ss

ed
Th

ro
ug

h:
?i

ns
ta

nc
e

34
un

de
rI

nt
er

pr
et

at
io

n:
?i

nt
er

pr
et

at
io

n
if

35
jt

Cl
as

sD
ec

la
ra

ti
on

(?
si

ng
le

to
n,
?i

nt
er

pr
et

at
io

n)
{

36
cl

as
s
?s

in
gl

et
on

Na
me

{
37

st
at

ic
?s

in
gl

et
on

?u
ni

qu
eI

ns
ta

nc
e
=
?i

ni
t;

38
pu

bl
ic

st
at

ic
?s

in
gl

et
on

::
jt

Ty
pe

?i
ns

ta
nc

e(
)

{
39

re
tu

rn
?u

ni
qu

eI
ns

ta
nc

e;
40

}
41

?m
em

be
r

42
}

43
},

44
?m

em
be

r
is

Pu
bl

ic
Co

ns
tr

uc
to

rD
ec

la
ra

ti
on

,
45

fo
ra

ll
(?
si

ng
le

to
n
cl

as
sH

as
Pu

bl
ic

Co
ns

tr
uc

to
rD

ec
la

ra
ti

on
:
?m
,

46
jt

Co
ns

tr
uc

to
rD

ec
la

ra
ti

on
(?
m,
?i

nt
er

pr
et

at
io

n)
{

47
pu

bl
ic

?s
in

gl
et

on
(?
pa

ra
mL

is
t)

{
48

?u
ni

qu
eI

ns
ta

nc
e
=

th
is

;
49

}
50

})

25
1

Singleton

Observer
Template Method

Fi
gu

re
8.

1:
Ex

am
p

le
-b

as
ed

sp
ec

ifi
ca

ti
on

s
fo

r
th

e
Si

n
gl

et
on

,T
em

pl
at

e
M

et
h

od
an

d
O

bs
er

ve
r

de
si

gn
p

at
te

rn
s.

8.
V

A
L

ID
A

T
IO

N
:

D
E

T
E

C
T

IN
G

P
A

T
T

E
R

N
S

U
S

IN
G

B
Y-E

X
A

M
P

L
E

L
O

G
IC

Q
U

E
R

IE
S

1
?subjectClass

isSubjectOfObserver:
?observerClass

add:
?addObserver

2
remove:

?removeObserver
notify:

?notifyObservers
3

update:
?update

underInterpretation:
?interpretation

if
4

jtClassDeclaration(?subjectClass,?interpretation){
5

class
?subjectName

{
6

?modList
?t

?observers
=
?init;

7
public

?t2::jtType
?addObserver(?observerType

?observer)
{

8
?observers.?add(?observer);

9
}

10
public

?t3::jtType
?removeObserver(?observerType

?otherObserver)
{

11
?observers.?remove(?otherObserver);

12
}

13
?mod4List

?t4
?notifyObservers(?paramList)

{
14

?observers;
15

?observer.?update(?argList);
16

}
17

}
18

},
19

?add
equals:

{.*add.*},
20

?remove
equals:

{.*remove.*},
21

jtClassDeclaration(?observerClass,?interpretation){
22

class
?observerName

{
23

?update
24

}
25

}

1
?client

isClientCloningInstance:
?prototypeInstance

2
ofPrototypeClass:

?prototype
inOperation:

?operation
3

usingInvocation:
?invocation

4
underInterpretation:

?interpretation
if

5
jtClassDeclaration(?client,?interpretation){

6
class

?clientName
{

7
?mod1List

?prototypeType
?prototypeInstance

=
?init;

8
?mod2List

?type
?operation(?paramList)

{
9

?invocation
:=

?prototypeInstance.clone();
10

}
11

}
12

},
13

jtClassDeclaration(?prototype,?interpretation){
14

class
?prototypeName

implements*
Cloneable

{
15

?invocation
:=

public
Object

clone()
{}

16
}

17
}

248

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
B

Y-E
X

A
M

P
L

E
L

O
G

IC
Q

U
E

R
IE

S

1
?concreteDecoratorClass

isConcreteDecoratorClassForDecorator:
?decoratorClass

2
ofComponentType:

?componentType
3

underInterpretation:
?interpretation

if
4

?concreteDecoratorClass
auxIsConcreteDecoratorForDecorator:

?decoratorClass
5

ofComponent:
?component

withOperation:
?operation

6
underInterpretation:

?interpretation,
7

jtClassDeclaration(?decoratorClass,?interpretation){
8

class
?decoratorName

{
9

?mod2List
?componentType

?component
=
?init;

10
?mod3List

?type
?operation(?paramList)

?sList;
11

}
12

},
13

or(jtClassDeclaration(?decoratorClass,?interpretation){
14

class
?decoratorName

extends*
?componentType

?memberList
15

},
16

jtClassDeclaration(?decoratorClass,?interpretation){
17

class
?decoratorName

implements*
?componentType

?memberList
18

},
19

and(jtClassDeclaration(?decoratorClass,?interpretation){
20

class
?decoratorName

extends*
?superClass

?memberList
21

},
22

jtClassDeclaration(?superClass,?interpretation){
23

class
?superName

implements*
?componentType

?superMemberList
24

}))

25
?concreteDecoratorClass

auxIsConcreteDecoratorForDecorator:
?decoratorClass

26
ofComponent:

?component
withOperation:

?operation
27

underInterpretation:
?interpretation

if
28

jtClassDeclaration(?concreteDecoratorClass,?interpretation){
29

class
?concreteDecoratorName

extends*
?decoratorClass

{
30

?mod1List
?t1

?operation(?paramList)
{

31
?component.?operation(?paramList);

32
}

33
}

34
}

35
?concreteDecoratorClass

auxIsConcreteDecoratorForDecorator:
?decoratorClass

36
ofComponent:

?component
withOperation:

?operation
37

underInterpretation:
?interpretation

:
[9/10]

if
38

jtClassDeclaration(?concreteDecoratorClass,?interpretation){
39

class
?concreteDecoratorName

extends*
?decoratorClass

{
40

?mod1List
?t1

?operation(?paramList)
{

41
?component.?operation(?argList);

42
}

43
}

44
},

45
absolutelyNot(?argList

equals:
?paramList)

250

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
E

X
A

M
P

L
E-B

A
S

E
D

Q
U

E
R

IE
S

8.7
C

on
clu

sion

1
?concreteCreator

isConcreteCreatorClassOfCreatorType:
?creator

2
forConcreteProduct:

?concreteProductClass
3

ofProductType:
?productType

4
usingFactoryMethod:

?factoryMethodName
5

underInterpretation:
?interpretation

if
6

jtClassDeclaration(?creator,?interpretation){
7

class
?creatorName

{
8

?modList
?type

?operation(?pList)
{

9
?factoryMethodName(?argList);

10
}

11
}

12
},

13
or(?concreteCreator

equals:
?creator,

14
?concreteCreator

classExtends:
?creator),

15
jtClassDeclaration(?concreteCreator,?interpretation){

16
class

?concreteCreatorName
{

17
?mod2List

?productType::jtType
?factoryMethodName(?paramList)

{
18

?product
:=

new
?concreteProductClass(?aList);

19
return

?product;
20

}
21

}
22

}

252

8.7.
C

on
clu

sion

p
orts

sp
ecifyin

g
syn

tactic,stru
ctu

ral,con
trolfl

ow
an

d
data

fl
ow

ch
aracteristics

in
a

u
n

iform
lan

gu
age

(criterion
C

S
L

1).

8.7
C

on
clu

sion

1
?compositeClass

isCompositeClassForComponentType:
?componentType

2
underInterpretation:

?interpretation
if

3
jtClassDeclaration(?composite,?interpretation){

4
class

?compositeClassName
{

5
?mod1List

?t1
?children

=
?init;

6
?mod2List

?t2
?add(?componentType

?c1)
{
?children.?addToChildren(?c1);

}
7

}
8

},
?add

equals:
{.*add.*},

9
?type

equals:
[?componentType

resolveBinding
getJavaElement],

10
?composite

inSubTypeHierarchyOfType:
?type,

?leaf
inSubTypeHierarchyOfType:

?type,
11

not(?leaf
equals:

?composite),
12

jtClassDeclaration(?leaf,?interpretation){
13

class
?leafName

{
?mod3List

?t2
?add(?componentType

?p)
?sList;

}
14

}

255

Decorator

Factory Method

Composite

Prototype

Figu
re

8.2:E
xam

p
le-based

sp
ecifi

cation
s

for
D

ecorator,P
rototype,C

om
posite

an
d

Factory
M

eth
od

design
p

attern
s.

8.1. Detecting Design Patterns

s
in

g
le

to
n

c
o

m
p

o
s
it

e
o

b
s
e
rv

e
r

d
e
c
o

ra
to

r
fa

c
to

ry
 m

e
th

o
d

template method

Figure 8.3: Design patterns detected in the academic program [HK02].

8.1.2 Experimental Results

We subsequently used the above specifications to detect design pattern instances
in JHOTDRAW 5.1 [jHo07] and in Hannemann’s academic program [HK02]. We will
discuss the results for these base programs separately.

Except for the Singleton, we resolved all pattern specifications under the lexi-
cal interpretation. None of the method declarations in these specifications exem-
plify complex control flow characteristics. Only the specification for the Template
Method and Observer pattern exemplify a method with multiple instructions, but
these do not need to be matched inter-procedurally.3 Inter-procedural matching
is only necessary for the third exemplified implementation of the Singleton (see
above). Not having to consider the inter-procedural control flow interpretation re-
duces the running time of the experiments significantly.4

1/ Results for Hannemann’s Program

Figure 8.3 depicts the results for the example-based specifications on Hannemann’s
academic base program [HK02]. Table 8.1 lists the precision and recall ratios (cf.

3In fact, evaluating the specification for the Template Method under the control flow interpretation
would lead to false positives as a Template Method should call its primitive operations directly. In future
work, additional non-native syntax could be introduced to specify which instructions in an exemplified
method declaration should not be matched inter-procedurally under the control flow interpretation.

4To determine whether instructions may be executed consecutively, our prototype performs suc-
cessive control flow graph traversals. We intend to address this shortcoming by adopting state of the
art model checking algorithms for the translational semantics of the control flow interpretation (cf. Sec-
tion 5.5.2).

215

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

do
cu

m
en

te
d

re
p

or
te

d

tr
u

e
p

os
it

iv
es

fa
ls

e
p

os
it

iv
es

m
is

se
d

p
re

ci
si

on

re
ca

ll

Prototype 1 0 0 0 1 NA 0
Template Method 3 5 3 2 0 0.6 1

Composite 1 1 1 0 0 1 1
Decorator 2 2 2 0 0 1 1
Singleton 1 1 1 0 0 1 1
Observer 2 2 2 0 0 1 1

Factory Method 2 2 2 0 0 1 1

Table 8.1: Precision and recall of design patterns in the academic program [HK02].

Section 2.4.3) attained by these specifications.5 For all but the Prototype and Tem-
plate Method design patterns, the specifications recalled all pattern instances with-
out false positives.

Missed Instances We recalled all pattern implementations in the academic pro-
gram, except for the one of the Prototype pattern.

• In the academic implementation of the Prototype, there is no class that
corresponds to the pattern’s client participant. Specifically, the imple-
mentation does not have a class that clones one of its fields. The instance
would have been recognized if line 7 were omitted from the specification
in Figure 8.2. However, the current specification is closer to the prototypi-
cal implementation described in [GHJV94].

False Positives Of all patterns, only the results for the Template Method include a
false positive:

• Method generate in DecoratedStringGenerator is correctly recog-
nized as a Template Method that successively invokes primitive operations
prepare, filter and finalize. These operations are overridden inSim-
pleGenerator and FancyGenerator. Note that our specification exem-
plified only two primitive operations. In the solutions where the first oper-
ation is bound to prepare, the second operation is therefore either bound
to filter or finalize. Method showFrame in GuiComponentCreator
belongs to a Factory Method implementation, but exhibits all of the speci-
fied characteristics of a Template Method. It is therefore not a false positive
with respect to the specification.
All reported Template Method instances have a low associated truth de-
gree. They required the names of a method declaration and method in-
vocation pair to unify of which the former cannot be invoked by the latter
according to the points-to set of the receiver (unification degree of 1

2), but
only according to the static type of the receiver (unification degree of 1

4).
This is already clear from the specification which exemplifies the primitive
operations as abstract methods.

Pattern Instances with Different Truth Degrees The instances of the Decorator
pattern have been identified with different truth degrees:

5In the table, each unique tuple of <?abstractClass, ?concreteClass, ?templateMethod> bindings is
considered an instance of the Template Method.

216

8.1. Detecting Design Patterns

• The two Decorator instances are identified with different truth degrees.
The goals on lines 7–24 identify their “decorator” participant OutputDec-
orator with the same truth degree.6 The difference is therefore due to
different truth degrees for the goal on lines 4–6 which identifies their “con-
crete decorator” participant: 0.405 for BracketDecorator versus 0.2025
for StarDecorator. For both, the goal is resolved using the fuzzy rule on
lines 35–45 of the specification. To understand the difference in truth de-
grees, we have to consider that a StarDecorator instance is configured
to decorate a BracketDecorater:

1 Output original = new ConcreteOutput();
2 Output bracketed= new BracketDecorator(original);
3 Output stared = new StarDecorator(bracketed);
4 stared.print("<String>");

Method BracketDecorator»print7 is called at run-time from within
method StarDecorator»print. Method StarDecorator»print, in
contrast, is not called from within any print method. The points-to
set for ?component on line 41 therefore does not include a StarDeco-
rator instance in solutions where ?concreteDecoratorClass is bound to
StarDecorator. As a result, the bindings for ?operation on line 40 and
41 unify according to the static type of ?component within StarDecora-
tor»print. Within BracketDecorator»print, they unify according to
the points-to set of ?component. This explains the different truth degrees
for both “concrete decorator” participants: 0.405 = 0.9× 0.9× 0.5 versus
0.2025 = 0.9× 0.9× 0.25. The first factor of each product stems from the
fuzzy rule. The second factor corresponds to the lexical interpretation un-
der which the template term in the rule is resolved. The third factor is the
degree to which the ?operation bindings unify.

Interesting Implementation Variants The following highlights some interesting
implementation variants that have been detected:

• The Singleton implementation is identified by the logic rule on lines 13–
31 of the specification. The method through which the unique instance
can be accessed, instance() lazily initializes the instance. It is therefore
bound to ?instance as well as ?initializer in the solution:

1 public static PrinterSingleton instance() {
2 if(onlyInstance == null) {
3 onlyInstance = new PrinterSingleton();
4 }
5 return onlyInstance;
6 }

Note that we would not have identified this implementation variant if we
had not exemplified the ?instance and ?initializer methods in different
class declaration template terms.

• The Composite implementation is recalled without false positives. Only
class Directory is a composite for the FileSystemComponent type (an
interface). Note that the field access in method ?add of the specification is
exemplified with the current object as the implicit base expression, while
method add has the current object as the explicit base for the field access:

6Specifically, a truth degree of 0.45= 0.9×0.5 where 0.9 is the truth degree for the lexical interpreta-
tion and 0.5 is the unification degree for the ?component occurrences.

7We are using the traditional Smalltalk notation to refer to a method in a class.

217

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

do
cu

m
en

te
d

re
p

or
te

d

tr
u

e
p

os
it

iv
es

fa
ls

e
p

os
it

iv
es

m
is

se
d

p
re

ci
si

on

re
ca

ll

Prototype 3 7 3 4 0 0.43 1
Template Method 3 5 1 4 2 0.2 0.34

Composite 1 1 1 0 0 1 1
Decorator 2 1 1 0 1 1 0.5
Singleton 2 2 2 0 0 1 1
Observer 3 NA NA NA 3 NA NA

Factory Method 4 NA NA NA 4 NA NA

Table 8.2: Precision and recall of design patterns in JHOTDRAW 5.1 [jHo07].

1 public void add(FileSystemComponent component) {
2 this.children.add(component);
3 }

• The solutions for the Observer pattern include class Screen twice: once
with Point as a subject and once with itself as a subject. Neither solution
is a false positive. Particular instances of Screen are configured to observe
other Screen instances. The Screen class implements both a Change-
Subject and a ChangeObserver interface. The corresponding solution is
therefore not a false positive.

Note that these Observer instances have only been identified because of
the domain-specific unification procedure. Within method notifyOb-
servers, the receiver of message refresh (bound to the second occur-
rence of ?observer) is in a may-alias relation with the parameter of method
addObserver (bound to the first occurrence of ?observer):

1 public void notifyObservers() {
2 for (Iterator e = observers.iterator() ; e.hasNext() ;) {
3 ((ChangeObserver)e.next()).refresh(this);
4 }
5 }

Remaining Results The following results have not yet been discussed:

• Classes LabelCreator and GUIComponentCreator have been identified
correctly as the only concrete creator participants of a Factory Method.
Both override method createComponent.

2/ Results for JHOTDRAW 5.1

Using the same specifications, we were able to recall most design pattern instances
in JHOTDRAW 5.1 with few false positives. Table 8.2 lists the precision and recall
ratios (cf. Section 2.4.3) attained by these specifications.8 At the end of this sec-
tion, we discuss how improving these results requires only minor changes to the
example-based pattern specifications.

Figure 8.4 and Figure 8.5 depict the design pattern instances as detected in
JHOTDRAW 5.1 [jHo07] under the lexical interpretation:

8The listed amount of false positives is with respect to the documented pattern instances. They
include solutions that can be considered undocumented design pattern instances.

218

8.1. Detecting Design Patterns

c
o

m
p

o
s

it
e

d
e

c
o

ra
to

r
s

in
g

le
to

n
p

ro
to

ty
p

e

template method

Figure 8.4: Design patterns detected in JHOTDRAW 5.1 [jHo07] (1).

Missed Instances Except for the following, we recalled most design pattern in-
stances in JHOTDRAW:

• The reported class DecoratorFigure is the only documented ?decorator
participant of the Decorator pattern. However, only its BorderDecorator
subclass is recognized as a “ConcreteDecorator” participant under the lex-
ical interpretatinon. The methods in its other subclass, AnimationDeco-
rator, decorate ?component indirectly through a super invocation:

1 public synchronized Rectangle displayBox() {
2 return super.displayBox();
3 }

Class AnimationDecorator is therefore only recognized as a participant
under the time-consuming control flow interpretation.

• There are three documented instances of the Template Method:
AbstractFigure»moveBy, AbstractFigure»displayBox and At-
tributeFigure»draw. The first two are not included in the solutions
because they invoke only one primitive operation (i.e. basicMoveBy and
basicDisplayBox respectively) rather than the required two. Method
AbstractFigure»displayBox does call two primitive operations (i.e.
drawBackground and drawFrame), but these are declared with an empty

219

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

body rather than abstract as required. To cover these instances, our
specification should be relaxed.

Although not documented in the code, the depicted solutions are no
false positives with respect to the specification and can all be consid-
ered instances of Template Method to some extent. Method PalleteBut-
ton»paint, for instance, is correctly recognized as invoking two abstract
methods —even under the control flow interpretation:

1 public abstract void paintBackground(Graphics g);
2 public abstract void paintNormal(Graphics g);
3 public abstract void paintPressed(Graphics g);
4 public abstract void paintSelected(Graphics g);
5 public void paint(Graphics g) {
6 paintBackground(g);
7 switch (fState) {
8 case PRESSED:
9 paintPressed(g);

10 break;
11 case SELECTED:
12 paintSelected(g);
13 break;
14 case NORMAL:
15 default:
16 paintNormal(g);
17 break;
18 }
19 }

• Figure 8.5 depicts the results for the Factory Method in a compact manner.
Each solution is depicted as a logic list of bindings for the variables in the
specification.

None of the documented Factory Method instances is included in the so-
lutions. This is because our specification strictly corresponds to the pro-
totypical implementation of the pattern as described in [GHJV94]. The
specification requires an ?operation within the ?creator participant to in-
voke the factory method of the ?concreteCreator participant —which is not
the case for the jHotDraw implementations.

However, all identified methods of which the name is prefixed by
“create” can be considered undocumented Factory Method instances.
The other solutions match the specification, but are false positives.
Method PolyLineFigure»displayBox, for instance, creates a Rectan-
gle and is called from within an ?operation in a super-class, but is not a
Factory Method:

1 public Rectangle displayBox() {
2 Enumeration k = points();
3 Rectangle r = new Rectangle((Point) k.nextElement());
4 while (k.hasMoreElements())
5 r.add((Point) k.nextElement());
6 return r;
7 }

False Positives Except for the Observer pattern, there are few false positives
among the pattern detection results:

• Figure 8.5 depicts an extract of the results for the Observer in a compact
manner. Each solution is depicted as a logic list of bindings for the vari-

220

8.1. Detecting Design Patterns

ables in the specification. The complete solutions for all specifications can
be downloaded from the SOUL website [Sou08].

The instances of this pattern are documented at the interface level (e.g.
interface DrawingView observes interface Drawing), while our specifica-
tion identifies the classes that implement these interfaces (e.g. Standard-
DrawingView and StandardDrawing). Furthermore, Figure sub-types
DecoratorFigure, ConnectionFigure and CompositeFigure also ob-
serve Figure itself. Because of the large amount of solutions this gives rise
to (146), we were unable to inspect each solution in detail.

A cursory exploration reveals that there are many missed instances. This
is because our specification does not cover sophisticated implementa-
tions of the push model. The one on AbstractFigure, for instance, is
not recognized because it involves static calls to an intermediary Fig-
ureChangeEventMulticaster:

1 public void addFigureChangeListener(FigureChangeListener l) {
2 fListener = FigureChangeEventMulticaster.add(fListener, l);
3 }
4 public void changed() {
5 invalidate();
6 if (fListener != null)
7 fListener.figureChanged(new FigureChangeEvent(this));
8 }

The less sophisticated implementation on StandardDrawing, on the
other hand, is recognized successfully. Note how the bindings for the dif-
ferent ?observer occurrences (i.e. listener and l) are in a may-alias rela-
tion:

1 public void addDrawingChangeListener(DrawingChangeListener listener) {
2 fListeners.addElement(listener);
3 }

4 public void figureRequestUpdate(FigureChangeEvent e) {
5 if (fListeners != null) {
6 for (int i = 0; i < fListeners.size(); i++) {
7 DrawingChangeListener l = (DrawingChangeListener)fListeners.elementAt(i);
8 l.drawingRequestUpdate(new DrawingChangeEvent(this, null));
9 }

10 }
11 }

There are also many false positives among the solutions. This is mostly
because of the heuristics used by the specification to identify methods
?addObserver and ?removeObserver (i.e. the regular expressions on lines 19
and 20) and method ?notifyObservers (i.e. not specifying the way the ob-
servers are iterated through). The following method, for instance, matches
the specification for ?addObserver:

1 public synchronized void bringToFront(Figure figure) {
2 if (fFigures.contains(figure)) {
3 fFigures.removeElement(figure);
4 fFigures.addElement(figure);
5 figure.changed();
6 }
7 }

• Classes CreationTool, ConnectionTool and ConnectionHandle are
correctly identified as ?client participants in the Prototype design pattern.

221

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

Although the ?invocation that clones the prototype is correct in each solu-
tion, there are some false positives with respect to the ?prototypeInstance
that is being cloned. This is the case for the solutions that involve Con-
nectionTool and the solutions that involve CreationToolwhere ?proto-
typeInstance is not the receiver of ?invocation, but is in a may-alias relation
with it.

In CreationTool, for instance, fCreatedFigure keeps track of a fresh
clone of fPrototype across the mouseDown, mouseDrag and mouseUp
events:

1 public void mouseDown(MouseEvent e, int x, int y) {
2 fAnchorPoint = new Point(x,y);
3 fCreatedFigure = createFigure();
4 fCreatedFigure.displayBox(fAnchorPoint, fAnchorPoint);
5 view().add(fCreatedFigure);
6 }
7 public void mouseDrag(MouseEvent e, int x, int y) {
8 fCreatedFigure.displayBox(fAnchorPoint, new Point(x,y));
9 }

10 protected Figure createFigure() {
11 if (fPrototype == null)
12 throw new HJDError("No protoype defined");
13 return (Figure) fPrototype.clone();
14 }

Pattern Instances with Different Truth Degrees The results for the Prototype
have different associated truth degrees:

• Of the reported Prototype instances, the one in which ConnectionHan-
dle is the client participant has the lowest associated truth degree. This
is because the whole-program analyses require an entry point for the an-
alyzed program. No information is available for methods and classes that
are not reachable from this point. The JHOTDRAW framework illustrates
its API through several sample applications. Class Connectionhandle is
not referenced from the main method of the largest sample application,
JavaDrawApp, which we have chosen as the entry point for the program
analyses. From the perspective of JavaDrawApp, the low truth degree is
therefore justified.

Unfortunately, the actual false positives for this pattern (see above) do
not stand out among the reported instances. This is because our proto-
type combines truth degrees and resolution degrees prematurely (cf. Sec-
tion 6.8). In each solution, the unification degree of the ?invocation oc-
currences (ranging from 1

4 to 1
2) is lower than the unification degree of the

?prototypeInstance occurrences (ranging from 1
2 for the false positives to

9
10 for the actual instances). The former depends on whether the occur-
rences unify according to the static or the dynamic type of the receiver,
while the latter depends on whether the receiver is an expression aliasing
the field or is a field access of this field. As these unifications take place
in a conjunction of goals (quantified by minimum), the former unification
degrees subsume the latter. Section 6.8 discusses how this limitation of
our prototype can be addressed in future work.

Remaining Results The following results have not yet been discussed:

• Class CompositeFigure is correctly recognized as a Composite for com-

222

8.2. Detecting micro-patterns

ponents of type Figure. The latter is an interface, implemented by Ab-
stractFigure which is extended by CompositeFigure. There are no
other documented instances of this design pattern.

• Classes ClipBoard and IconKit are correctly identified as instances of
the Singleton design pattern. They are identified by the first and third
rule in the specification respectively. There are no other documented in-
stances of this pattern.

Recalling the JHOTDRAW instances that are missing would require minor
changes to the pattern specifications. For instance, by using the control flow inter-
pretation to resolve them (e.g. Decorator), by exemplifying additional prototypical
implementations (e.g. the Observer) or by adhering less strictly to the pattern’s de-
scription in [GHJV94] (e.g. Template Method Factory Method). Moreover, many of
the reported false positives could be eliminated by taking the intent of the pattern
into account. If the Factory Method is applied correctly, for instance, its concrete
product should not be instantiated outside of the factory method.

8.2 Detecting µ-Patterns

We specified all 27 µ-patterns introduced by Gil and Maman [GM05]. These pat-
terns primarily describe type declarations of which the members are in straightfor-
ward structural relations (cf. Section 2.1). The Implementor µ-pattern, for instance,
describes a class that exclusively implements abstract methods. Section 8.2.1 dis-
cusses the resulting example-based specifications.

We subsequently compared theµ-pattern instances identified by JTL and SOUL

on two Java programs. In the first program, we hand-coded instances of each µ-
pattern. The second program was the 2008/02/01 implementation of the inter-
preter for the AMBIENTTALK [Amb]. Appendix B.1 details some statistics about the
size of these programs. Section 8.2.2 discusses the pattern detection results.

8.2.1 Example-based Specifications

Table B.2 describes the µ-patterns in more detail. Its entries differ from the natural
language descriptions given in Gil and Maman [GM05]. Rather than re-interpreting
those descriptions, we translated Cohen, Gil and Maman [CGM06a]’s more precise
specifications from JTL [CGM06b] to SOUL. Section 3.5.1 discussed this DataLog-
variant with a Java-like syntax. The resulting example-based specifications are
listed in Section B.2.

We will only discuss the µ-patterns that highlight some interesting differences
between both sets of specifications. Figure 8.6 and Figure 8.7 depict the JTL and
example-based specifications for the following patterns:

An Outline is an abstract class of which a declared method (different from main)
invokes an abstract method of the same class (declared or inherited). The
example-based specification for this µ-pattern is depicted at the top of Fig-
ure 8.6. The first template term exemplifies a class with a method that invokes
?invokedMethod on this. The second template term exemplifies an abstract
method named ?invokedMethod within this class. Because of the non-native
*{ operator (cf. Section 7.1.1), the template also matches methods that are de-
clared in a super class. The bindings for each occurrence of ?invokedMethod

223

fa
c

to
ry

 m
e

th
o

d
 (c

o
m

p
a

c
t re

s
u

lts
)

<
?

c
o

n
c
re

te
C

re
a

to
r, ?

c
re

a
to

r, ?
c
o

n
c
re

te
P

ro
d

u
c
tC

la
s
s
, ?

fa
c
to

ry
M

e
th

o
d

N
a

m
e

,?
p

ro
d

u
c
tT

y
p

e
>

o
b

s
e

rv
e

r (e
x

tra
c

t fro
m

 c
o

m
p

a
c

t re
s

u
lts

)

<
?

s
u

b
je

c
tC

la
s
s
, ?

o
b

s
e

rv
e

rC
la

s
s
, ?

a
d

d
O

b
s
e

rv
e

r, ?
re

m
o

v
e

O
b

s
e

rv
e

r, ?
n

o
tify

O
b

s
e

rv
e

r, ?
u

p
d

a
te

>

Figu
re

8.5:D
esign

p
attern

s
detected

in
JH

O
TD

R
A

W
5.1

[jH
o07](2).

8.2. Detecting micro-patterns

have to unify according to the domain-specific unification procedure. It unifies
the name of a method invocation and the name of a method declaration if the
former may invoke the latter (cf. Section 6.4.1).

The corresponding JTL specification consists of DataLog goals such as
calls, extends and declared_by which quantify explicitly over all entities
that exhibit the characteristics exemplified by the template terms. The specifi-
cation does not resemble a source code excerpt. For instance, there is no “con-
crete” modifier in Java. The template terms, in contrast, exemplify the differ-
ence between a concrete and abstract method.

A Function Pointer is a concrete class without a field that has a single public in-
stance method (all declared or inherited, but not from Object). The specifica-
tions for this µ-pattern are depicted in the middle of Figure 8.6. The JTL specifi-
cation uses set quantifier one (cf. Section 3.5.1) to express that there should only
be a single public instance method. The example-based specification expresses
this cardinality requirement through an idiom:

1 ?method := public !static !abstract ?t2::jtType ?n2(?p2List) ?s2List
2 ![?method :~= public !static !abstract ?t3::jtType ?n3(?p3List) ?s3List]

The first line uses non-native operator := to bind ?method to a public instance
method. The second line uses iterator :˜= to ensure that there are no public
instance methods that do not unify with ?method. This idiom is valid because
complemented template elements (i.e. those preceded by complement opera-
tor !) are matched after all other template elements have been matched.

The original JTL specification did not feature !synthetic goals. We added
these such that Function Pointer instances can have synthetic members which
are present in the bytecode, but not in the source code.9 Similar goals had to be
added to all JTL specifications. In fulfillment of criterion CDM1, our approach
only reports elements from the source code of the base program. This is also
why the example-based specification does not have to exclude members inher-
ited from java.lang.Object. The base program does not include the source
code for library classes.10

A Stateless is a class of which all declared and inherited fields are static and final.
The specifications for this µ-pattern are depicted at the bottom of Figure 8.6.
The JTL specification uses the set quantifier -> (cf. Section 3.5.1) to express that
each field has to be static and final. The example-based specification expresses
that there should be no field that is static and not final, nor a field that is not
static and final, nor a field that is not static and not final. All these possibilities
had to be enumerated because the ! operator does not yet support grouping
several modifiers (e.g. ![final static]).

An Immutable is a class of which all declared and inherited instance fields are pri-
vate (and that has at least one such field). Moreover, the class should have no
declared method that assigns any of its declared or inherited fields (i.e. a mu-
tator method). The specifications this µ-pattern are depicted at the top of Fig-
ure 8.7. The JTL specification refers to a put_field operation in the bytecode
of a mutator. The example-based specification exemplifies mutator methods
through a familiar source code excerpt.

9Synthetic members are generated by the Java compiler. The synthetic field this$0 of an inner
class, for instance, refers to its innermost enclosing instance.

10If it did, we could introduce additional non-native syntax similar to the existing *{ operator.

225

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

A Designator is an abstract class or interface without methods or fields (all de-
clared or inherited, but not from Object). The specifications for this µ-pattern
are depicted in the middle of Figure 8.7. The example-based specification is
about twice the size of the JTL specification. This is because it has to exem-
plify a Designator class declaration as well as a Designator interface declaration.
The JTL specification quantifies over all type declarations through a goal type.
Apart from this difference, both specifications are similar. Note that interfaces
can extend multiple super-interfaces. The example-based specification for Des-
ignator interfaces therefore uses the forall/2 predicate to ensure that all are
empty.

A Compound Box is a class with a single non-primitive instance field and at
least one primitive field (all declared or inherited). The specifications for
this µ-pattern are depicted at the bottom of Figure 8.7. The JTL speci-
fication uses set quantifier one to express the cardinality requirement on
the non-primitive instance field. The example-based specification uses a
variant of the aforementioned idiom. Java field declarations can declare
multiple fields at once. Backtracking over the field declaration template
“?modList ?type ?field = ?init;” successively binds ?field to each field
declared by the matching field declaration. The example-based specification
therefore verifies whether the Compound Box has no other non-primitive field
than the one identified by the first template term.

Evaluation Section B.2 lists the example-based specifications for the 21 remain-
ing µ-patterns. Most patterns were straightforward to specify.

Compared to the JTL specifications, the example-based specifications are closer
to actual source code excerpts. The example-based specifications, for instance, ex-
emplify the difference between a concrete and abstract method (e.g. Outline).

Only cardinality constraints were difficult to express (cf. Function Pointer and
Compound Box above). These would have been easier to express in a pure LMP
specification. Specifying a pattern as a LMP specification, however, requires fa-
miliarity with the LMP predicates that reify its characteristics. Although some-
times more verbose (e.g. Designator), example-based specifications exemplify
these characteristics through familiar source code excerpts.

8.2.2 Experimental Results

We compared the µ-pattern instances identified by JTL and SOUL on a program
with hand-coded instances of each µ-pattern and on the 2008/02/01 implemen-
tation of the AMBIENTTALK [Amb] interpreter. For each µ-pattern, Table B.1 com-
pares the number of instances identified by SOUL and JTL.

Overall, both sets of specifications identified the same instances. This confirms
that the example-based specifications (in SOUL) are equivalent to the LMP specifi-
cations (in JTL). However, as discussed above, the example-based specifications are
closer to actual source code excerpts (except for the patterns that require cardinal-
ity constraints). The complete solutions for all specifications can be downloaded
from the SOUL website [Sou08].

Most differences were due to the fact that JTL analyzes the bytecode of the pro-
gram and the libraries it relies on, while our approach only analyzes the source

226

8. VALIDATION: DETECTING PATTERNS USING BY-EXAMPLE LOGIC QUERIES

1 ?class isOutlineUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 abstract class ?className {
4 ?method := [?modList ?returnType::jtType ?methodName(?paramList){
5 this.?invokedMethod(?argList);
6 }]
7 }
8 },
9 absolutelyNot(?method isMainMethodDeclaration),

10 jtClassDeclaration(?class,?interp){
11 abstract class ?className *{
12 abstract ?invokedType ?invokedMethod(?invokedParamList);
13 }
14 }

15 ?class isFunctionPointerUnderInterpretation: ?interp if
16 jtClassDeclaration(?class,?interp){
17 !abstract class ?className *{
18 ![?modList ?t ?field = ?init;]
19 ?method := public !static !abstract ?t2::jtType ?n2(?p2List) ?s2List
20 ![?method :~= public !static !abstract ?t3::jtType ?n3(?p3List) ?s3List]
21 }
22 }

23 ?class isFunctionPointerRecursiveUnderInterpretation: ?interp if
24 ?class isFunctionPointerForMethod: ? underInterpretation: ?interp

25 ?class isFunctionPointerForMethod: ?method underInterpretation: ?interp if
26 jtClassDeclaration(?class,?interp){
27 !abstract class ?className extends ?super {
28 ![?modList ?t ?field = ?init;]
29 ?method := public !static !abstract ?t2::jtType ?n2(?p2List) ?s2List
30 ![?method :~= public !static !abstract ?t3::jtType ?n3(?p3List) ?s3List]
31 }
32 },
33 or([?super isNil],
34 ?super isFunctionPointerForMethod: ?method underInterpretation: ?interp)

35 ?class isFunctionPointerForMethod: ?method underInterpretation: ?interp if
36 jtClassDeclaration(?class,?interp){
37 class ?className extends ?super {
38 ![?modList ?t ?field = ?init;]
39 ![public !static ?type::jtType ?methodName(?paramList) ?statementList]
40 }
41 },
42 ?super isFunctionPointerForMethod: ?method underInterpretation: ?interp

242

8.4.
D

etectin
g

B
u

g
Pattern

s

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M
abstract

&
declared_by

T;
6

},
7

[C
extends

T
|
C
is

T];

8
is_common

:=
X
is

/java.lang.Object,
X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
16

class
offers:

{
17

!synthetic
field

->
static

final;
18

};

19
mutator:=

method
{
put_field[F,_];

}
C
declares

#
&
offers

F;
20

inspector
:=

method
{
get_field[F,_];

}
C
declares

#
&
offers

F;
21

immutable
:=

offers:
{

22
!synthetic

instance
field;

23
no

!synthetic
!private

instance
field;

24
no

!synthetic
!static

mutator;
25

};

26
designator

:=
abstract

type
uncommons:

{
27

no
!synthetic

method;
28

no
!synthetic

field;
29

};

30
compound_box

:=
offers:

{
31

one
!primitive

!synthetic
instance

field;
32

!synthetic
primitive

instance
field;

33
};

34
\end{Verbatim}

35
\begin{VerbatimNegatedSoulTemplate}

36
?class

isStatelessUnderInterpretation:
?interp

if
37

jtClassDeclaration(?class,?interp){
38

class
?className

*{
39

![!static
!final

?t
?field

=
?init;]

40
![static

!final
?t1

?field1
=
?init1;]

41
![!static

final
?t2

?field2
=
?init2;]

42
}

43
}

44
?class

isImmutableUnderInterpretation:
?interp

if
45

jtClassDeclaration(?class,?interp){
46

class
?className

*{
47

!static
?fieldType

?field
=
?initializer;

48
![!private

!static
?t

?f
=
?i;]

49
}

50
},

51
absolutelyNot(

52
jtClassDeclaration(?class,?interp){

53
class

?className
*{

54
?modList

?anyFieldType
?anyField

=
?anyFieldInitializer;

55
}

56
},

57
jtClassDeclaration(?class,?interp){

58
class

?className
{

59
!static

?methodType::jtType
?methodName(?paramList)

{
60

?anyField
=
?assignedValue;

61
}

62
}

63
})

64
?interface

isDesignatorUnderInterpretation:
?interp

if
65

jtInterfaceDeclaration(?interface,?interp){
66

?interface
?interfaceName

extends*
?superList

{
67

![?modList
?type

?m(?paramList);]
68

![?modList
?type

?field
=
?init;]

69
}

70
},

71
forall(?superList

contains:
?super,

72
or([?super

isNil],
73

jtInterfaceDeclaration(?super,?interp){
74

interface
?superInterfaceName

{
75

![?modList
?type

?m(?paramList);]
76

![?modList
?type

?field
=
?init;]

77
}

78
}))

79
?class

isDesignatorUnderInterpretation:
?interp

if
80

jtClassDeclaration(?class,?interp){
81

abstract
class

?className
extends*

?super
{

82
![?modList

?type
?m(?paramList)

?statementList]
83

![?modList
?type

?field
=
?init;]

84
}

85
},

86
or([?super

isNil],
87

jtClassDeclaration(?super,?interp){
88

abstract
class

?superName
{

89
![?modList

?type
?m(?paramList)

?statementList]
90

![?modList
?type

?field
=
?init;]

91
}

92
})

93
?class

isCompoundBoxUnderInterpretation:
?interp

if
94

jtClassDeclaration(?class,?interp){
95

class
?className

*{
96

!static
?type

?field
=
?init;

97
!static

?primType
?primField

=
?primInit;

98
}

99
},

100
?primType

isPrimitiveType,
101

absolutelyNot(?type
isPrimitiveType),

102
absolutelyNot(jtClassDeclaration(?class,?interp){

103
class

?className
*{

104
!static

?otherType
?otherField

=
?otherInit;

105
}

106
},

107
[?otherType

isPrimitiveType
not],

108
[?otherField

~=
?field])

109
\end{VerbatimNegatedSoulTemplate}

110
\section{Conclusion}

243

8. VALIDATION: DETECTING PATTERNS USING BY-EXAMPLE LOGIC QUERIES

1 ?class isOutlineUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 abstract class ?className {
4 ?method := [?modList ?returnType::jtType ?methodName(?paramList){
5 this.?invokedMethod(?argList);
6 }]
7 }
8 },
9 absolutelyNot(?method isMainMethodDeclaration),

10 jtClassDeclaration(?class,?interp){
11 abstract class ?className *{
12 abstract ?invokedType ?invokedMethod(?invokedParamList);
13 }
14 }

15 ?class isFunctionPointerUnderInterpretation: ?interp if
16 jtClassDeclaration(?class,?interp){
17 !abstract class ?className *{
18 ![?modList ?t ?field = ?init;]
19 ?method := public !static !abstract ?t2::jtType ?n2(?p2List) ?s2List
20 ![?method :~= public !static !abstract ?t3::jtType ?n3(?p3List) ?s3List]
21 }
22 }

23 ?class isFunctionPointerRecursiveUnderInterpretation: ?interp if
24 ?class isFunctionPointerForMethod: ? underInterpretation: ?interp

25 ?class isFunctionPointerForMethod: ?method underInterpretation: ?interp if
26 jtClassDeclaration(?class,?interp){
27 !abstract class ?className extends ?super {
28 ![?modList ?t ?field = ?init;]
29 ?method := public !static !abstract ?t2::jtType ?n2(?p2List) ?s2List
30 ![?method :~= public !static !abstract ?t3::jtType ?n3(?p3List) ?s3List]
31 }
32 },
33 or([?super isNil],
34 ?super isFunctionPointerForMethod: ?method underInterpretation: ?interp)

35 ?class isFunctionPointerForMethod: ?method underInterpretation: ?interp if
36 jtClassDeclaration(?class,?interp){
37 class ?className extends ?super {
38 ![?modList ?t ?field = ?init;]
39 ![public !static ?type::jtType ?methodName(?paramList) ?statementList]
40 }
41 },
42 ?super isFunctionPointerForMethod: ?method underInterpretation: ?interp

242

8.4.
D

etectin
g

B
u

g
Pattern

s

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M
abstract

&
declared_by

T;
6

},
7

[C
extends

T
|
C
is

T];

8
is_common

:=
X
is

/java.lang.Object,
X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
16

class
offers:

{
17

!synthetic
field

->
static

final;
18

};

19
mutator:=

method
{
put_field[F,_];

}
C
declares

#
&
offers

F;
20

inspector
:=

method
{
get_field[F,_];

}
C
declares

#
&
offers

F;
21

immutable
:=

offers:
{

22
!synthetic

instance
field;

23
no

!synthetic
!private

instance
field;

24
no

!synthetic
!static

mutator;
25

};

26
designator

:=
abstract

type
uncommons:

{
27

no
!synthetic

method;
28

no
!synthetic

field;
29

};

30
compound_box

:=
offers:

{
31

one
!primitive

!synthetic
instance

field;
32

!synthetic
primitive

instance
field;

33
};

34
\end{Verbatim}

35
\begin{VerbatimNegatedSoulTemplate}

36
?class

isStatelessUnderInterpretation:
?interp

if
37

jtClassDeclaration(?class,?interp){
38

class
?className

*{
39

![!static
!final

?t
?field

=
?init;]

40
![static

!final
?t1

?field1
=
?init1;]

41
![!static

final
?t2

?field2
=
?init2;]

42
}

43
}

44
?class

isImmutableUnderInterpretation:
?interp

if
45

jtClassDeclaration(?class,?interp){
46

class
?className

*{
47

!static
?fieldType

?field
=
?initializer;

48
![!private

!static
?t

?f
=
?i;]

49
}

50
},

51
absolutelyNot(

52
jtClassDeclaration(?class,?interp){

53
class

?className
*{

54
?modList

?anyFieldType
?anyField

=
?anyFieldInitializer;

55
}

56
},

57
jtClassDeclaration(?class,?interp){

58
class

?className
{

59
!static

?methodType::jtType
?methodName(?paramList)

{
60

?anyField
=
?assignedValue;

61
}

62
}

63
})

64
?interface

isDesignatorUnderInterpretation:
?interp

if
65

jtInterfaceDeclaration(?interface,?interp){
66

?interface
?interfaceName

extends*
?superList

{
67

![?modList
?type

?m(?paramList);]
68

![?modList
?type

?field
=
?init;]

69
}

70
},

71
forall(?superList

contains:
?super,

72
or([?super

isNil],
73

jtInterfaceDeclaration(?super,?interp){
74

interface
?superInterfaceName

{
75

![?modList
?type

?m(?paramList);]
76

![?modList
?type

?field
=
?init;]

77
}

78
}))

79
?class

isDesignatorUnderInterpretation:
?interp

if
80

jtClassDeclaration(?class,?interp){
81

abstract
class

?className
extends*

?super
{

82
![?modList

?type
?m(?paramList)

?statementList]
83

![?modList
?type

?field
=
?init;]

84
}

85
},

86
or([?super

isNil],
87

jtClassDeclaration(?super,?interp){
88

abstract
class

?superName
{

89
![?modList

?type
?m(?paramList)

?statementList]
90

![?modList
?type

?field
=
?init;]

91
}

92
})

93
?class

isCompoundBoxUnderInterpretation:
?interp

if
94

jtClassDeclaration(?class,?interp){
95

class
?className

*{
96

!static
?type

?field
=
?init;

97
!static

?primType
?primField

=
?primInit;

98
}

99
},

100
?primType

isPrimitiveType,
101

absolutelyNot(?type
isPrimitiveType),

102
absolutelyNot(jtClassDeclaration(?class,?interp){

103
class

?className
*{

104
!static

?otherType
?otherField

=
?otherInit;

105
}

106
},

107
[?otherType

isPrimitiveType
not],

108
[?otherField

~=
?field])

109
\end{VerbatimNegatedSoulTemplate}

110
\section{Conclusion}

243

8. VALIDATION: DETECTING PATTERNS USING BY-EXAMPLE LOGIC QUERIES

1 ?class isStatelessUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{
4 ![!static !final ?t ?field = ?init;]
5 ![static !final ?t1 ?field1 = ?init1;]
6 ![!static final ?t2 ?field2 = ?init2;]
7 }
8 }

9 ?class isImmutableUnderInterpretation: ?interp if
10 jtClassDeclaration(?class,?interp){
11 class ?className *{
12 !static ?fieldType ?field = ?initializer;
13 ![!private !static ?t ?f = ?i;]
14 }
15 },
16 absolutelyNot(
17 jtClassDeclaration(?class,?interp){
18 class ?className *{
19 ?modList ?anyFieldType ?anyField = ?anyFieldInitializer;
20 }
21 },
22 jtClassDeclaration(?class,?interp){
23 class ?className {
24 !static ?methodType::jtType ?methodName(?paramList) {
25 ?anyField = ?assignedValue;
26 }
27 }
28 })

244

8.4.
D

etectin
g

B
u

g
Pattern

s

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M
abstract

&
declared_by

T;
6

},
7

[C
extends

T
|
C
is

T];

8
is_common

:=
X
is

/java.lang.Object,
X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
class

offers:
{

16
!synthetic

field
->

static
final;

17
};

18
mutator:=

method
{
put_field[F,_];

}
C
declares

#
&
offers

F;
19

inspector
:=

method
{
get_field[F,_];

}
C
declares

#
&
offers

F;
20

immutable
:=

offers:
{

21
!synthetic

instance
field;

22
no

!synthetic
!private

instance
field;

23
no

!synthetic
!static

mutator;
24

};

25
designator

:=
abstract

type
uncommons:

{
26

no
!synthetic

method;
27

no
!synthetic

field;
28

};

29
compound_box

:=
offers:

{
30

one
!primitive

!synthetic
instance

field;
31

!synthetic
primitive

instance
field;

32
};

243

O
u

tl
in

e
F

u
n

c
ti

o
n

 P
o

in
te

r
S

ta
te

le
s
s

Figure 8.6: SOUL (left) and JTL (right) specifications for select µ-patterns (1).

8.4. Detecting Bug Patterns

1 ?class isStatelessUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{
4 ![!static !final ?t ?field = ?init;]
5 ![static !final ?t1 ?field1 = ?init1;]
6 ![!static final ?t2 ?field2 = ?init2;]
7 }
8 }

9 ?class isImmutableUnderInterpretation: ?interp if
10 jtClassDeclaration(?class,?interp){
11 class ?className *{
12 !static ?fieldType ?field = ?initializer;
13 ![!private !static ?t ?f = ?i;]
14 }
15 },
16 absolutelyNot(
17 jtClassDeclaration(?class,?interp){
18 class ?className *{
19 ?modList ?anyFieldType ?anyField = ?anyFieldInitializer;
20 }
21 },
22 jtClassDeclaration(?class,?interp){
23 class ?className {
24 !static ?methodType::jtType ?methodName(?paramList) {
25 ?anyField = ?assignedValue;
26 }
27 }
28 })

245

8. VALIDATION: DETECTING PATTERNS USING BY-EXAMPLE LOGIC QUERIES

1 ?interface isDesignatorUnderInterpretation: ?interp if
2 jtInterfaceDeclaration(?interface,?interp){
3 ?interface ?interfaceName extends* ?superList {
4 ![?modList ?type ?m(?paramList);]
5 ![?modList ?type ?field = ?init;]
6 }
7 },
8 forall(?superList contains: ?super,
9 or([?super isNil],

10 jtInterfaceDeclaration(?super,?interp){
11 interface ?superInterfaceName {
12 ![?modList ?type ?m(?paramList);]
13 ![?modList ?type ?field = ?init;]
14 }
15 }))

16 ?class isDesignatorUnderInterpretation: ?interp if
17 jtClassDeclaration(?class,?interp){
18 abstract class ?className extends* ?super {
19 ![?modList ?type ?m(?paramList) ?statementList]
20 ![?modList ?type ?field = ?init;]
21 }
22 },
23 or([?super isNil],
24 jtClassDeclaration(?super,?interp){
25 abstract class ?superName {
26 ![?modList ?type ?m(?paramList) ?statementList]
27 ![?modList ?type ?field = ?init;]
28 }
29 })

30 ?class isCompoundBoxUnderInterpretation: ?interp if
31 jtClassDeclaration(?class,?interp){
32 class ?className *{
33 !static ?type ?field = ?init;
34 !static ?primType ?primField = ?primInit;
35 }
36 },
37 ?primType isPrimitiveType,
38 absolutelyNot(?type isPrimitiveType),
39 absolutelyNot(jtClassDeclaration(?class,?interp){
40 class ?className *{
41 !static ?otherType ?otherField = ?otherInit;
42 }
43 },
44 [?otherType isPrimitiveType not],
45 [?otherField ~= ?field])

8.5 Conclusion

246

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
B

Y-E
X

A
M

P
L

E
L

O
G

IC
Q

U
E

R
IE

S

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M

abstract
&
declared_by

T;
6

},
7

[C
extends

T
|

C
is

T];

8
is_common

:=
X

is
/java.lang.Object,

X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
class

offers:
{

16
!synthetic

field
->

static
final;

17
};

18
mutator:=

method
{

put_field[F,_];
}
C

declares
#

&
offers

F;
19

inspector
:=

method
{

get_field[F,_];
}

C
declares

#
&
offers

F;
20

immutable
:=

offers:
{

21
!synthetic

instance
field;

22
no

!synthetic
!private

instance
field;

23
no

!synthetic
!static

mutator;
24

};

25
designator

:=
abstract

type
uncommons:

{
26

no
!synthetic

method;
27

no
!synthetic

field;
28

};

29
compound_box

:=
offers:

{
30

one
!primitive

!synthetic
instance

field;
31

!synthetic
primitive

instance
field;

32
};

244

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
B

Y-E
X

A
M

P
L

E
L

O
G

IC
Q

U
E

R
IE

S

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M

abstract
&
declared_by

T;
6

},
7

[C
extends

T
|

C
is

T];

8
is_common

:=
X

is
/java.lang.Object,

X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
class

offers:
{

16
!synthetic

field
->

static
final;

17
};

18
mutator:=

method
{

put_field[F,_];
}
C

declares
#

&
offers

F;
19

inspector
:=

method
{

get_field[F,_];
}

C
declares

#
&
offers

F;
20

immutable
:=

offers:
{

21
!synthetic

instance
field;

22
no

!synthetic
!private

instance
field;

23
no

!synthetic
!static

mutator;
24

};

25
designator

:=
abstract

type
uncommons:

{
26

no
!synthetic

method;
27

no
!synthetic

field;
28

};

29
compound_box

:=
offers:

{
30

one
!primitive

!synthetic
instance

field;
31

!synthetic
primitive

instance
field;

32
};

244

8.
V

A
L

ID
A

T
IO

N
:D

E
T

E
C

T
IN

G
P

A
T

T
E

R
N

S
U

S
IN

G
B

Y-E
X

A
M

P
L

E
L

O
G

IC
Q

U
E

R
IE

S

1
outline

:=
abstract

class
is

C
{

2
let

main_method
:=

public
static

void
’main’(_);

3
let

candidate
:=

concrete
method

!main_method;
4

let
declared_by

T
:=

T
declares

#;
5

candidate
calls

M,
M

abstract
&
declared_by

T;
6

},
7

[C
extends

T
|

C
is

T];

8
is_common

:=
X

is
/java.lang.Object,

X
declares

#;
9

not_common
:=

!
is_common;

10
uncommons

X
:=

offers
X,

X
not_common;

11
fptr

:=
!abstract

class
uncommons:

{
12

no
!synthetic

field;
13

one
public

instance
!synthetic

method;
14

};

15
stateless

:=
class

offers:
{

16
!synthetic

field
->

static
final;

17
};

18
mutator:=

method
{

put_field[F,_];
}
C

declares
#

&
offers

F;
19

inspector
:=

method
{

get_field[F,_];
}

C
declares

#
&
offers

F;
20

immutable
:=

offers:
{

21
!synthetic

instance
field;

22
no

!synthetic
!private

instance
field;

23
no

!synthetic
!static

mutator;
24

};

25
designator

:=
abstract

type
uncommons:

{
26

no
!synthetic

method;
27

no
!synthetic

field;
28

};

29
compound_box

:=
offers:

{
30

one
!primitive

!synthetic
instance

field;
31

!synthetic
primitive

instance
field;

32
};

244

8.5. Conclusion

1 invocationOnNull(?method,?stat,?message) if
2 jtStatement(?stat){
3 if(?x == null) ?x.?message(?aList);
4 },not(jtStatement(?stat){
5 if(?x == null) {?x = ?exp; ?x.?message();}
6 }),?method equals: [?stat parentMethodDeclaration]

Figure 8.15: Example-based specification for an inadvertent invocation on null.

1 ?class isDesignatorUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 abstract class ?className extends ?super {
4 ![?modList ?type ?m(?paramList) ?statementList]
5 ![?modList ?type ?field = ?init;]
6 }
7 },
8 or([?super isNil],?super isDesignatorUnderInterpretation: ?interp)

9 ?interface isDesignatorUnderInterpretation: ?interp if
10 jtInterfaceDeclaration(?interface,?interp){
11 interface ?interfaceName extends ?superList {
12 ![?modList ?type ?m(?paramList);]
13 ![?modList ?type ?field = ?init;]
14 }
15 },
16 forall(?superList contains: ?super,
17 or([?super isNil],
18 ?super isDesignatorUnderInterpretation: ?interp))

8.5 Conclusion

245

Figure 8.7: SOUL (left) and JTL (right) specifications for select µ-patterns (2).

8.3. Detecting Bug Patterns

Figure 8.8: The Function Object µ-pattern in the AMBIENTTALK interpreter.

code of the program. Figure 8.8, for instance, depicts the results for the Func-
tion Object µ-pattern on the AMBIENTTALK interpreter. It describes concrete
classes that have at least one field and a single public instance method (all de-
clared or inherited, but not from Object). Instances identified by SOUL have a
green entry in the second column. Instances identified by JTL have a green en-
try in the third column. The source code of TimeOutDetectorTask and Serial-
izationException exhibits the characteristics of the Function Object µ-pattern.
They are therefore identified by SOUL. However, they are not identified by JTL
as they inherit instance methods from library classes java.util.TimerTask and
java.io.ObjectStreamException respectively. On the other hand, SOUL did
not identify the anonymous class declarations within PartialBinder because our
example-based specification did not take such classes into account.

8.3 Detecting Bug Patterns

Of the pattern kinds introduced in Section 2.1, we also detected bug patterns to
demonstrate the general-purpose applicability of our approach. We have concen-
trated on heterogeneously characterized bug patterns. The previous sections al-
ready demonstrated that our detection mechanism is able to detect implicit imple-
mentation variants of a pattern.

8.3.1 Detecting Potential Run-time Exceptions

In this section, we exemplify a code snippet that inadvertently raises a Null-
PointerException at run-time. The resulting specification illustrates the general-

229

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

1 if jtMethodDeclaration(?m,?interpretation){
2 ?modList ?type ?name(?pList) {
3 if(?x == null)
4 ?x.?message(?aList);
5 }
6 },
7 absolutelyNot(jtMethodDeclaration(?m,?interpretation){
8 ?modList ?type ?name(?pList) {
9 if(?x == null) {

10 ?x = ?exp;
11 ?x.?message(?aList);
12 }
13 }
14 })

Figure 8.9: Detecting inadvertent invocations on null.

purpose nature of our prototype. It identifies code that raises such an exception at
run-time, but is not flagged as suspicious by the compiler.

The JVM raises a java.lang.NullPointerException when “an application
attempts to use null in a case where an object is required.” This exception is,
among others, raised when a message is invoked on the null value.

Figure 8.9 depicts a query that can be used to detect inadvertent invocations
on the null value. The first condition exemplifies a method ?m that sends a ?mes-
sage to a variable ?x that is guaranteed to evaluate to null at run-time. This is be-
cause the invocation is located in the true-branch of an if-statement that checks
whether the expression is null. The second condition ensures that the variable is
not assigned in between the null-check and the invocation.

Figure 8.9 also depicts the solutions to this query, evaluated under the control
flow interpretation against the following program:

1 public void nulltest(Integer x) {
2 if(x == null)
3 x.intValue();
4 }
5 public void nulltest2(Integer x) {
6 if(x == null) {
7 this.performOperation(x);
8 }
9 }

10 private void performOperation(Integer y) {
11 y.floatValue();
12 }
13 public void notNullTest(Integer x) {
14 if(x == null) {
15 x = new Integer(1);
16 x.intValue();
17 }
18 }

Note that method nulltest2 is included in the solutions because it invokes

230

8.3. Detecting Bug Patterns

floatValue indirectly on a null-value.

Evaluation The example-based specification is reminiscent of the METAL and
CONDATE specifications for null pointer dereferences in C depicted in Figure 3.9
and Figure 3.10 respectively. However, those specifications also take null values
into account that stem from uninitialized variables. While specialized bug detec-
tion tools excel at the detection of common bug patterns such as null pointer deref-
erences, a tool supporting the detection of user-specified patterns can also be ap-
plied to application-specific bugs.

8.3.2 Detecting Design Pattern Implementation Pitfalls

In this section, we specify and detect in an example-driven manner common pit-
falls in implementations of the Singleton, the Observer and the Composite design
pattern.

Through these bug patterns, we will demonstrate that both class-level and
instance-level patterns can be specified in a uniform language. Concretely, we will
reuse the design pattern specifications of Section 8.1 to detect the classes that par-
ticipate in a design pattern. We will exemplify the corresponding pitfalls at the
instance-level: as instances of the participating classes that exhibit the characteris-
tics of the pitfall.

1/ Singleton Implementations with Protected Constructors

The Singleton implementation in the Hannemann’s base program [HK02], dis-
cussed in Section 8.1, has a constructor that is declared protected rather than
private. This enables a subclass to initialize its inherited data members through
a super constructor invocation. The pitfall is that protected constructors can also
be invoked by other classes in the same package.

Rather than merely issuing a warning about all such constructors, the example-
based specification depicted in Figure 8.10 looks for an expression ?exp that cre-
ates an instance of a ?singleton (line 5) that does not unify to any extent with the
?uniqueInstance of the singleton. This expression is guaranteed to be in a must-
not-alias relation with the unique instance of the singleton (i.e. their points-to sets
are disjoint). The singleton itself is identified through the predicate defined in Fig-
ure 8.1. Lines 2–4 of the specification are therefore situated at the class-level, while
lines 5–6 are situated at the instance-level.

The solutions at the bottom of the figure stem from method test1 of Hanne-
mann’s base program [HK02]. As the method is defined in the same package as
PrinterSingleton, it has access to the latter’s protected constructor:

1 package ca.ubc.cs.spl.aspectPatterns.examples.singleton.java;
2 public class Main {
3 private static void test1() {
4 printer1 = new PrinterSingleton();
5 printer2 = new PrinterSingleton();
6 printer3 = new PrinterSingleton();
7 ...
8 }
9 ...

10 }

231

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

1 if ?interpretation equals: lexical,
2 ?singleton isSingletonClassForInstance: ?uniqueInstance
3 accessedThrough: ?instance
4 underInterpretation: ?interpretation,
5 jtExpression(?exp,?interpretation){new ?singleton(?argList)},
6 absolutelyNot(?exp equals: ?uniqueInstance),
7 ?parent equals: [?exp getParent]

Figure 8.10: Detecting an implementation pitfall of the Singleton design pattern.

2/ Lapsed Listeners in Observer Implementations

“Lapsed listeners” [Liv05] are observer participants in implementations of the Ob-
server design pattern that are no longer needed, but never unregister from their
subject. This is a problem for the subject participants identified by the specifi-
cation in Figure 8.1. Their ?observers field precludes an unneeded observer from
being garbage collected.

The example-based specification in Figure 8.11 therefore identifies all ?observer
objects that are added to a ?subject (lines 6–8), but not removed from it (lines 9–11).
The final condition is optional. It identifies the expression that instantiated this
observer object. Lines 2–5 of the specification are therefore situated at the class-
level, while lines 6–14 are situated at the instance-level.

The solutions at the bottom of the figure stem from a modified method
of the academic base program. The original version did not unregister a
single observer from its subject. To this method, we added an expression
“p.removeObserver(s3)”. In contrast to all other observers, observer s3 is there-
fore not included in the solutions at the bottom of the figure.

Note that the depicted specification only detects possible lapsed listeners. It
does not identify the point in the program’s execution after which an observer is
no longer needed, nor does it specify that the ?unregister expression should be exe-
cuted after the ?register expression. It can therefore only be used to issue warnings.

3/ Unvisited Components of a Composite

The Visitor and Composite design patterns are often used together [GHJV94].
This is, for instance, the case in the base program depicted in Figure 5.4. There,
Leaf1 and Leaf2 are subclasses of Component and implement the Composite de-
sign pattern. Class ComponentVisitor is the abstract root of a hierarchy of vis-
itors for the Component hierarchy. It defines methods visitLeaf1(Component)
and visitLeaf2(Component). Class SumComponentVisitor extends Compo-
nentVisitor and overrides these methods. Class Component is implemented as
follows:

232

1 if ?interpretation equals: lexical,
2 ?subjectClass isSubjectOfObserver: ?observerClass
3 add: ?addObserver remove: ?removeObserver
4 notify: ?notifyObservers update: ?update
5 underInterpretation: ?interpretation,
6 jtExpression(?register,?interpretation){
7 ?subject.?addObserver(?observer)
8 },
9 absolutelyNot(jtExpression(?unregister,?interpretation){

10 ?subject.?removeObserver(?observer)
11 }),
12 jtExpression(?alloc,?interpretation){
13 ?observer := new ?observerClass(?argList)
14 }

Figure 8.11: Detecting an implementation pitfall of the Observer design pattern.

1 if ?i equals: controlflow,
2 ?composite isCompositeClassForComponentType: ?
3 andLeafClass: ?leaf underInterpretation: ?i,
4 or(?componentClass equals: ?composite,?componentClass equals: ?leaf),

5 jtExpression(?componentInstance,?i){new ?componentClass(?arg2List)},
6 ?visitorClass classDeclarationHasName: {.*ComponentVisitor},
7 jtExpression(?visitorInstance,?i){new ?visitorClass(?arg1List)},
8 ?acceptVisitor equals: {.*Visitor},
9 jtExpression(?accept,?i){?componentInstance.?acceptVisitor(?visitor) },

10 ?visitComponent equals: {visit.*},
11 absolutelyNot(jtExpression(?visit,?i){
12 ?visitorInstance.?visitComponent(?componentInstance)
13 })

Figure 8.12: Detecting instances of Composite participants that are not visited by a
Visitor instance.

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

1 public abstract class Component {
2 public void addComponent(Component element) {}
3 public void abstract aceptVisitor(ComponentVisitor v);
4 }

The class defines an abstract method aceptVisitor.11. This method is overridden
in Leaf1 and Leaf2 such that the double dispatching idiom, which is at the heart
of the Visitor pattern, is implemented properly.

A common pitfall of such combinations of a Visitor and a Composite is that
one of the components does not properly implement the method that accepts the
visitor. For instance, because the method was implemented with an empty body
(i.e. with the intent to provide a proper implementation as soon as the program
compiles).

The query depicted in Figure 8.12 identifies instances of a ?componentClass
on which the double dispatching idiom is initiated, but not completed. Lines 2–
4 identify the classes that participate in the Composite implementation through
the specification depicted in Figure 8.2. They are situated at the class-level. Lines
5–13 are situated at the instance-level. Lines 5–9 identify a ?componentInstance
and a ?visitorInstance such that the former accepts the latter through an invocation
“?componentInstance.?acceptVisitor(?visitor)”. This invocation initiates
the double dispatching protocol. Lines 11–13 only succeed when there is no corre-
sponding “?visitorInstance.?visitComponent(?componentInstance)” that
completes the protocol. Note that lines 8 and 9 use heuristics on ?acceptVisitor and
?visitComponent to restrict the corresponding invocations to those that are part of
the prototypical Visitor implementation.

We evaluated the query against a modified version of the base program de-
picted in Figure 5.4. In this version, a Composite instance is configured with in-
stances of Leaf1, Leaf2 and Leaf5 —of which the latter class implements method
aceptVisitor with an empty body:

1 Composite cs = new Composite();
2 cs.addComponent(new Leaf1());
3 cs.addComponent(new Leaf2());
4 cs.addComponent(new Leaf5());
5 SumComponentVisitor vstor = new SumComponentVisitor();
6 cs.aceptVisitor(vstor);

The solutions for this base program are depicted at the bottom of Figure 8.12. In-
cluded are the instance of Leaf5 that is instantiated on line 4 above, but also the
instance of Composite that is instantiated on line 1. The latter instance is included
because it forwards the aceptVisitor message to its leafs (cf. Figure 5.4).

Note that the query in Figure 8.12 does not verify whether method ?visitCom-
ponent is named after the component that accepts the visitor. This is not the case,
for instance, when an implementation is inherited. This can be specified easily in
terms of structural rather than behavioral characteristics.

Evaluation The above specifications re-use the specifications of Section 8.1 to
detect the classes that participate in a design pattern. The pitfalls themselves are
exemplified at the instance-level: as instances of the participating classes that ex-
hibit the characteristics of the pitfall. This way, we demonstrated the facilities for
reuse and abstraction of our specification language well as well as its support for

11The spelling error is deliberate

234

8.4. Guidelines for Exemplifying a Software Pattern

specifying behavioral and non-behavioral pattern characteristics in a uniform lan-
guage.

8.4 Guidelines for Exemplifying a Software Pattern

Having presented example-based specifications for various software patterns, we
briefly present some rough guidelines for developers to follow when exemplifying
other software patterns.

One should first consider whether the pattern in question is situated primarily
at the instance-level or at the class-level. In the latter case, a combination of jt-
ClassDeclaration/2 and jtInterfaceDeclaration/2 template terms is gen-
erally in order.

In the former case, a combination of jtExpression/2 template terms is in or-
der. If the evaluation order of these expressions is important, they can be grouped
in a jtMethodDeclaration/2 template term. However, our research prototype
resolves such terms in a time-consuming manner under the control flow interpre-
tation. It is therefore best to restrict the candidate matches for method declaration
template terms as early as possible. For instance, by exemplifying statements in
its body that are matched intra-procedurally rather than inter-procedurally. Or by
exemplifying its formal parameters, its return type, its modifiers, the class in which
it is defined etc. . .

In either case, the template terms themselves should exemplify the prototypi-
cal implementation of a pattern’s essential characteristics. The detection mecha-
nism of our approach is geared towards finding variants of this implementation.
Matches for a template term have to exhibit all exemplified characteristics, but
may exhibit additional ones. Exemplifying unessential characteristics should be
avoided as these needlessly constrain the implementation variations that will be
recalled. The bindings for a term’s variables can always be constrained further out-
side the term. For instance, through logic conditions or Smalltalk terms. Finally,
dividing the concrete syntax of the implementation over multiple template terms
allows for finer-grained control over the matches (cf. Section 7.3).

Finally, multiple prototypical implementations of a pattern can be enumerated
in a logic disjunction. Each disjunct can also be used as the body for a rule that
implements a common predicate. This allows weighting the rules with different
truth degrees that express the confidence in the prototypical implementation they
exemplify.

8.5 Concluding Evaluation

In Section 2.6, we formulated the criteria for a general-purpose pattern detection
tool. Such a tool is not specialized in a particular application of pattern detection,
but can be applied to any of the software engineering problems enumerated in Sec-
tion 2.3. Table 2.1 summarizes these criteria.

Our example-driven approach to pattern detection fulfills all of the criteria for
a general-purpose pattern detection tool. In Chapter 4, we motivated the corner-
stones of our approach in terms of their contributions to these criteria. These are
summarized in Table 4.1.

We conclude this chapter by evaluating our approach as a whole on these crite-
ria using the design patterns, µ-patterns and bug patterns exemplified above.

235

8. VALIDATION: DETECTING PATTERNS USING EXAMPLE-BASED QUERIES

8.5.1 Evaluation on the Criteria for the Pattern Specification Language

Our approach supports specifying behavioral and non-behavioral pattern charac-
teristics in a uniform language (criterion CSL1). We specified all patterns in this
chapter using example-based specifications. Most of these patterns are heteroge-
neously characterized.

Consider the specification for the Observer pattern in Figure 8.1. It exemplifies
the ?subjectClass participant as a class with at least a field and three methods. These
are structural characteristics. The same goes for the formal parameters of methods
?addObserver and ?removeObserver. Both are required to have a single parameter of
the same type ?observerType. Method ?notifyObservers is exemplified as a method
with two successively evaluated instructions. The first evaluates to the ?observers
field and the second invokes a method on an ?observer that has been added to this
field through method ?addObserver. Clearly, these are control flow and data flow
characteristics. The lapsed listener implementation pitfall of the Observer pattern
augments the above characteristics with instance-level data flow characteristics.

In Section 7.4, to conclude, we moreover exemplified the syntactic and data
flow characteristics of potentially enhanceable for-statements, the structural
characteristics of application-specific coding conventions, and the control flow
and data flow characteristics of the protocol an API expects to be adhered to.

The example-based specifications presented in this chapter are descriptive
specifications of a pattern’s characteristics, rather than an operational imple-
mentation of the search for its instances (criterion CSL2). Most specifications
resemble actual source code excerpts. For instance, the Template Method in
Figure 8.1 or the one for the bug pattern that describes inadvertent invocations
on null in Figure 8.9. However, we encountered problems specifying cardinality
constraints such as “for-all” and “at-least-one” using template terms alone. In the
specification for the Function Pointer in Figure 8.6, for instance, we had to resort to
complicated idioms of non-native operators that detract from its descriptiveness.
These would have been easier to express using the higher-order predicates of logic
meta programming. The same is true, but to a lesser extent, for the sub-typing
relation between two types. The example-based specification for the Decorator
design pattern [GHJV94], for instance, requires a disjunction of several template
terms to exemplify the different manners in which the decorator participant can
reside in the sub-type hierarchy of another type (cf. lines 7–24 of Figure 8.2). The
relational nature of logic programming facilitates quantifying over the reification
predicates for structural information to express such structural characteristics. We
did this, for instance, on lines 12–13 of the Composite specification in Figure 8.2.
This specification illustrates that template terms can be combined with regular
logic terms to alleviate these problems.

Our specification language as a whole supports expressing explicit points
of variation among pattern instances in different ways (criterion CSL3). We
already mentioned the disjunctions of template terms in the specification for the
Decorator pattern. The specification for the Singleton in Figure 8.1 illustrates that
different template terms (each specifying a different prototypical implementation
of the pattern) can also implement the same predicate. In the specification for
the Decorator pattern, we moreover illustrated that users can associate different
weights with each exemplified prototypical implementation.

236

8.5. Concluding Evaluation

Predicate definition is also the primary means for abstraction and reuse among
specifications (criterion CSL4). This is illustrated by the specifications for the
design pattern implementation pitfalls in Section 8.3.2.

Finally, none of the specifications in this chapter expose details of the pro-
gram analyses that enable detecting implicit implementation variants of behavioral
characteristics (criterion CSL5) that are included in our program representation
(criterion CPR1).

8.5.2 Evaluation on the Criteria for the Pattern Detection Mechanism

All of the reported pattern instances stem from the source code of the base
program (criterion CDM1). In fact, this allowed us to detect errors in the JTL
specifications for the µ-patterns. To the original JTL specification for the Function
Pointer µ-pattern, for instance, we had to add additional !synthetic goals such
that its instances can have synthetic members which are present in the bytecode,
but not in the source code.

The truth degrees associated with each reported pattern instance facilitate
their user assessment (CDM2). For the Decorator instances, for example, we
were able to derive whether a method invocation and method declaration unified
according to the dynamic or static type of the former’s receiver. However, the
overall ranking could be improved (cf. Section 9.4.2). Specifically, instances that
required two unifications that could introduce false positives are not ranked lower
than instances that required only one. This is a limitation of our instantiation
of the fuzzy logic cornerstone, not of the cornerstone itself. We will address this
shortcoming in future work.

That our detection mechanism recognizes implicit points of variation among
pattern instances (criterion CDM3), is perhaps best illustrated by the Observer
specification through the occurrences of ?observer in the ?notifyObservers and
?addObserver method. In the academic base program [HK02], the former is bound
to an expression “((ChangeObserver)e.next())”, while the latter is bound to
a formal parameter “o”. Effectively, these occurrences express that at least one
?observer added through method ?addObserver should be notified upon a change
in the subject.

Although our open implementation cornerstone enables defining additional
example-based interpretations for template terms as well as additional domain-
specific unification extensions (CDM4), this was not required for the patterns in
this chapter.

237

C
H

A
P

T
E

R

9
CONCLUSION AND FUTURE WORK

This chapter concludes our discourse on the logic meta programming
foundation for example-driven pattern detection presented in this dis-
sertation. Before enumerating some interesting directions for future re-
search, we revisit the problem statement and restate the contributions of
our dissertation.

9.1 Problem Statement Revisited

Pattern detection tools that support user-specified characteristics have valuable
applications throughout the development process. However, specifying a pattern’s
characteristics and subsequently assessing the reported instances is hard. Such
characteristics not only concern the structure of a program, but also the execution
order of its instructions and the values operated on by these instructions.

As many patterns are heterogeneously characterized, we identified the need for
a specification language in which behavioral as well as non-behavioral character-
istics can be specified uniformly. We moreover identified the need for a detection
mechanism that recognizes implicit implementation variants of behavioral char-
acteristics (i.e. those implied by the semantics of the programming language). This
precludes users from having to enumerate each variant in a specification. Recent
advances in program analysis have enabled detecting these variants in industrially-
sized programs. However, different analyses implement different trade-offs with
respect to precision and analysis time. Assessing the extent to which a reported
pattern instance exhibits the specified characteristics therefore requires detailed
knowledge about a tool’s enabling analyses. There is therefore also a need to facili-
tate user assessment of the identified pattern instances.

In response to these problems, we formulated criteria for each of the dimen-
sions in the design of a pattern detection tool: its specification language, its de-
tection mechanism and its program representation. When fulfilled, these criteria
result in a general-purpose pattern detection tool that can be applied throughout
the development process to detect behavioral and non-behavioral pattern charac-
teristics using descriptive and declarative specifications in a uniform language.

In an extensive survey, we found that the state of the art in pattern detection

239

9. CONCLUSION AND FUTURE WORK

tools is currently lacking with respect to these criteria. For instance, we were able to
structure this survey according to the characteristics each tool is primarily intended
for. This confirms the need for a general-purpose tool. One can object that non-
syntactic characteristics can be expressed in terms of syntactic characteristics if the
specification language is sufficiently powerful. We argued that such specifications
are far from descriptive, have recurring parts and possibly lead to a lower recall
and false positives. In particular for data flow and control flow characteristics, the
semantics of the programming language must be taken into account correctly.

9.2 Conclusion

In this dissertation, we presented an example-driven approach to pattern detection
that fulfills all of the criteria for a general-purpose pattern detection tool. Its speci-
fication language enables exemplifying a pattern through code excerpts that corre-
spond to the prototypical implementation of its essential characteristics. Moreover,
its detection mechanism recognizes implicit points of variation among the pattern’s
instances (i.e. those implied by the semantics of the programming language).

We presented this approach in terms of five cornerstones and their inter-
dependencies:

Cornerstone: logic meta programming enables specifying a pattern’s character-
istics as an expressive logic formula. To identify the program elements that
exhibit the pattern’s characteristics, this formula has to quantify over a rei-
fied program representation. As the founding cornerstone, LMP also lends
our detection mechanism its proof procedure for such formulas.

Cornerstone: example-based specification enables exemplifying the prototypi-
cal implementation of a pattern’s essential characteristics. Within logic for-
mulas, this implementation can be exemplified as a code excerpt in the con-
crete syntax of the program under investigation —augmented with logic vari-
ables to indicate points of variation. This obviates the need to quantify ex-
plicitly over the reified program representation to express such characteris-
tics. Developers are therefore shielded from the details of the program repre-
sentation and its reification.

Cornerstone: domain-specific unification ensures that variable bindings are
consistent across the logic conditions and the code excerpts in a logic for-
mula. It incorporates whole-program analyses to determine whether reified
program elements implement the same pattern characteristic. This obviates
the need to enumerate these variants in a specification. Moreover, it hides
the intricate details of the analyses that enable their detection.

Cornerstone: fuzzy logic ensures that each reported pattern instance is quantified
by the extent to which it exhibits the characteristics in a specification. The
smaller this extent, the more likely the instance is a false positive. This rank-
ing facilitates assessing a large amount of results. False positives may result
from imprecision in the enabling analyses of the domain-specific unification
procedure. Under this procedure, unifying two reified program elements can
succeed where the general-purpose procedure fails.

240

9.3. Contributions Restated

Cornerstone: open implementation crosscuts the implementations of the other
cornerstone. Each cornerstone provides a meta-interface through which it
can be extended at a higher level of abstraction than its implementation.

We discussed each cornerstone as instantiated in the research prototype that
we used to validate our approach. We identified patterns that are representative for
each kind of pattern characteristic and successively specified these as a logic for-
mula, a fuzzy logic formula with domain-specific unification and as a logic formula
containing source code excerpts. This clarified how each cornerstone contributes
to the criteria for a general-purpose pattern detection tool.

Finally, we evaluated our approach as a whole on these criteria by detecting
several patterns: design patterns, µ-patterns and bug patterns ranging from com-
mon pitfalls in the implementation of design patterns to inadvertent invocations
on null.

9.3 Contributions Restated

The following summarizes the contributions of each chapter:

• In Chapter 2, we formulated the criteria for a general-purpose pattern detec-
tion tool and introduced sufficient background to motivate each criterion.
We identified the key dimensions in the design of a tool that supports detect-
ing user-specified patterns. We surveyed the applications of pattern detec-
tion in software engineering and identified the different kinds of characteris-
tics each requires identifying: syntactic, structural, control flow and data flow
characteristics. For each kind of pattern characteristic, we investigated which
configurations in the design of a pattern detection tool support its detection. In
particular, we emphasized the intricacies of the analyses that enable detect-
ing implementation variants of control flow and data flow characteristics.

• In Chapter 3, we presented an extensive survey of the different specification
languages, detection mechanisms and program representations used by the
state of the art in pattern detection tools. Moreover, we evaluated each tool
on the aforementioned criteria.

• In Chapter 4, we introduced and carefully motivated the cornerstones of our
approach with respect to the criteria for a general-purpose pattern detec-
tion tool. We emphasized the quantification-related and unification-related
shortcomings of logic meta programming in a pattern detection setting.
These are remedied by the example-based specification and domain-specific
unification cornerstones respectively.

• In Chapter 5, we instantiated the logic meta programming cornerstone. This
instantiation consists of SOUL and the CAVA library for reasoning about Java
programs. The latter constitutes a technical contribution of our dissertation.
Unique is its identity-based reification to objects: the reified version of an AST
node is the AST node itself (i.e. an org.eclipse.jdt.core.dom.ASTNode
instance). This way, reconstructing the actual AST node from its reified coun-
terpart is trivial at any point in the proof procedure (e.g. in the unification
procedure). We established a linguistic symbiosis between SOUL and Java to
implement this reification.

241

9. CONCLUSION AND FUTURE WORK

• In Chapter 6, we instantiated the fuzzy logic and domain-specific unifica-
tion cornerstones. This instantiation consists of a fuzzy version of SOUL with
domain-specific extensions to the general-purpose unification procedure. We
quantify the solutions to a logic goal with truth degrees. The logic rules used
in the resolution of a goal determine the upper bound for these degrees. A
solution can be ranked lower than the other solutions identified by the same
rules. This is the case if it requires a domain-specific unification that could
introduce false positives.

To support the natural use of unification to quantify over AST nodes, reified
AST nodes unify with structurally equivalent compound terms —even if the
reified version of an AST node is not a compound term. Moreover, reified
AST nodes unify if they represent different implementations of the same char-
acteristic. To this end, the domain-specific unification extensions consult the
results of whole-program analyses: a semantic analysis, an inter-procedural
points-to analysis and an intra-procedural must-alias analysis. Note that
these were not reified by the CAVA library to shield users from their intricate
details.

• In Chapter 7, we instantiated the example-based specification cornerstone
as template terms in the fuzzy version of SOUL. These are resolved by match-
ing their source code excerpt against the program representation. Matches
should exhibit the characteristics exemplified by the code excerpt of the tem-
plate term. However, a single code excerpt can exemplify different pattern
characteristics. An AST node therefore always matches a template term under
a particular example-based interpretation of the excerpt. We defined three
standard interpretations: the syntactic, lexical and control flow interpreta-
tion. The points of variation among the matches for a template term differ un-
der each interpretation. Under the control flow interpretation, for instance,
the control flow characteristics of the source code excerpt exemplify the in-
tended matches. The translational semantics of additional interpretations
can be specified through logic rules.

• In Chapter 8, we validated our approach on the criteria for a general-purpose
pattern detection tool by exemplifying and subsequently assessing the re-
ported instances for several software patterns.

9.4 Future Work

In future work, we should address the technical limitations of our research proto-
type. We discussed these limitations at the end of each chapter that instantiates a
cornerstones of our approach. We recall the most important ones:

• First of all, we should alter the translational semantics of the control flow in-
terpretation to properly support universal and existential path queries with
complements. Specifically, we should bypass the control flow graph traver-
sal predicates of the CAVA library and their limitations (cf. Section 5.5.2). For
instance, by adopting one of the algorithms for evaluating path queries sur-
veyed in Section 3.4.3.

• We should also address the performance disadvantage of SOUL with respect
to traditional Prolog implementations (cf. Section 5.5.1). There is ample

242

9.4. Future Work

of room for optimization. For instance, by using a Warren Abstract Ma-
chine [War83] rather than a completely interpreted evaluator. Incorporating
tabled resolution [RC97, CW96] would not only obviate the need to cache the
results of strategic predicates manually, but also allow left-recursion in the
Definite Clause Grammar for template terms (cf. Section 7.6).

• Finally, we should delay combining unification degrees with resolution de-
grees until a truth degree is requested (cf. Section 6.8). This would rank a
solution that required two unifications that could introduce false positives
lower than a solution that only required one. For instance, by adopting a uni-
fication procedure in the style of LIKELOG [AF99]. Adopting multiplication to
quantify conjunction would address this limitation as well, but would lead to
small truth degrees if the same condition is repeated in a query.

The remainder of this section discusses the open research questions related to
our approach rather than the technical limitations of its instantiation.

9.4.1 Exploring Example-Based UML Diagrams

Our example-based specifications for Gil and Maman [GM05]’s µ-patterns illus-
trate that cardinality constraints such as “for-all” and “at-least-one” are not easily
specified using template terms alone (cf. Section 8.2).

The same is true for structural pattern characteristics such as the sub-typing
relation between two types. The example-based specification for the Decorator de-
sign pattern [GHJV94], for instance, requires a disjunction of several template terms
to exemplify the different manners in which the decorator participant can reside in
the sub-type hierarchy of another type (cf. lines 7–24 of Figure 8.2). The partic-
ipant can either extend the class (or a sub-class thereof) that declares this type,
implement the interface (or a sub-interface thereof) that declares this type, or ex-
tend a class (or a sub-class thereof) that implements an interface (or a sub-interface
thereof) that declares this type.

The relational nature of logic programming facilitates quantifying over the reifi-
cation predicates for structural information to express such structural character-
istics. Higher-order predicates can moreover be used to specify cardinality con-
straints. However, we have already begun an initial exploration of how such char-
acteristics can be specified in a more straightforward manner.

Figure 9.1 depicts two diagrams that exemplify the prototypical Smalltalk im-
plementations of the Composite and Visitor patterns. We are investigating a UML-
like notation extended with template terms as well as regular logic terms. The di-
agram at the right, for instance, requires that all ?element classes in the sub-type
hierarchy of AbstractTerm that have a method ?acceptMethod double dispatch to
method ?visitMethod of SimpleTermVisitor. It also expresses that there should
be at least one such ?element. The diagram exemplifies the sub-type relation in
UML notation. The diagram at the left states that a ?composite should be in a UML
composition relation with its component type ?comp. It uses the UML notation for
this relation rather than exemplifying the ?composite with a ?field. This allows this
relation to be implemented in different ways.

243

9. CONCLUSION AND FUTURE WORK

Figure 9.1: Exploring example-based diagrams for Composite and Visitor.

9.4.2 Refining Ranking of Results

Section 6.4 deduces a unification degree for each domain-specific extension to the
unification procedure. In our prototype, only the unification based on points-to
analysis can introduce false positives. The associated unification degree is fixed
for all program elements that are in a may-alias relation. It immediately halves the
truth degree computed by a resolution without unification degrees. This is an ef-
fective, but crude measure to ensure that these solutions stand out. In future work,
we want to investigate how to let the unification degree vary among all elements that
are in a may-alias relation. For instance, by using a probabilistic points-to analy-
sis [SS06] which computes the probability that a reference points to a heap location.

If multiple domain-specific extensions can introduce false positives (e.g. by us-
ing different whole-program analyses to recognize implicit points of variation), the
ranking among their unification degrees should be established in a methodologi-
cal manner. For instance, based on empirical experiments that assess their relative
precision.

Section 7.2.5 deduces truth degrees for each example-based interpretation. So-
lutions to a template term are ranked according to the extent to which they ex-
hibit the characteristics in a specification. The smaller this extent, the more likely
a reported instance is a false positive. For user-defined interpretations, a rank-
ing that facilitates user assessment of results (criterion CDM2) cannot be guaran-
teed.1 Users should ensure that their truth degrees are compatible with the pre-
defined ones. If necessary, the open implementation cornerstone allows changing
the predefined truth degrees. These degrees annotate the logic rules that imple-
ment the translational semantics of each example-based interpretation. To facili-
tate changes, the rules could be annotated with Smalltalk terms that retrieve truth
degrees from a central configuration point

In future work, we want to investigate how a suitable ranking can be deduced au-
tomatically for a given set of domain-specific extensions to the unification procedure
and a given set of example-based interpretations for template terms. Their histor-
ical precision, user feedback and application-specifics could be used as input to
machine-learning algorithms that evolve the ranking over time.

1The same goes for LMP specifications with user-defined fuzzy predicates.

244

9.4. Future Work

9.4.3 Integrating Context-Sensitive Points-to Analyses

The points-to analysis in our program representation is context-insensitive. It does
not parametrize the points-to sets for expressions in a method with a static rep-
resentation of the method’s possible run-time invocation contexts. Adopting a
context-sensitive points-to analysis would enable deriving more precise may-alias
information.

Section 6.6.4 gave an example of a false positive introduced by the domain-
specific unification extension that relies on may-alias information. More precise
points-to sets would have eliminated this false positive. Context-sensitive points-
to analysis results can be accessed without having to provide a static representa-
tion of an invocation context (e.g. the points-to sets of the topmost receivers on the
call stack). To access the context-sensitive points-to sets for two expressions, the
domain-specific unification extension would not have to be changed. The retrieved
points-to sets are more precise because the analysis analyzes different invocations
of all methods in the program separately.

In its inter-procedural search for instructions that are executed in the exempli-
fied order, the control flow interpretation of a template term simulates a call stack.
In future work, we therefore want to explore how the contents of this simulated
stack can be accessed from within the unification procedure. This would allow ac-
cessing the points-to set for an expression within a particular invocation context of
the method it resides in.

In our current prototype, this is already possible in an ad-hoc manner because
we implemented the simulated stack as a global Smalltalk object that is accessi-
ble through linguistic symbiosis. However, this has proven a bad implementation
choice because splits in the control flow require restoring this stack to a previous
state when the control flow traversal predicates of CAVA are backtracked over. Man-
aging global Smalltalk state within a SOUL program is difficult in general.

245

A
P

P
E

N
D

I
X

A
SOURCES OF BASE PROGRAM INFORMATION

Section 2.5 discusses the different kinds of program information that are necessary
to support each kind of pattern characteristic. This appendix complements Sec-
tion 2.5 in that it discusses how to obtain this information about the program.

A.1 Obtaining Syntactic Information

Abstract syntax trees encode the syntactic relations between a program’s con-
structs. They are either construted from the derivation trees computed by a syntac-
tical analysis of the program’s concrete syntax or constructed immediately during
the analysis itself. Syntactical analysis has been studied extensively in computer
science. We refer the reader to Aho et al. [AU72] for a comprehensive treatise of
the theory of grammars in computer science and to the more recent Grune et al.
[GJ90] for a treatise of the many parsing algorithms that have been developed over
the years. We refer the reader to Klint et al. [KLV05] for a discussion of the impor-
tant engineering aspects of grammar-related software such as the software used to
obtain abstract syntax tree representations for pattern detection tools.

Declarative Syntax Specifications

Many parser generator tools follow the example set by the ubiquitous Unix tool Yacc
[Joh79, LMB92] in which imperative code adorning concrete syntax grammar rules
is responsible for constructing an abstract syntax tree.

However, declarative specifications of both concrete and abstract syntax are
possible. This is demonstrated, for instance, by the Syntax Definition Formalism
(SDF) [SDF08, VS00, HHKR89]. Here, constructors for abstract syntax terms adorn
the grammar rules. The latter can moreover be specified in a modular manner. Pro-
gramming language ambiguities are naturally supported both by generating a gen-
eralized parser (which allows forests of derivation trees) and by providing declara-
tive disambiguation declarations (to prune the latter). Mostly due to its modularity
and seamless integration of lexical analysis, SDF has been applied successfully in

247

A. SOURCES OF BASE PROGRAM INFORMATION

parsing incomplete or erroneous legacy artifacts according to an island grammar
[Moo01]. In this context, we will revisit SDF in our discussion of the extraction of
structural program representations in Section 3.3.

In keeping with the potential of declarative programming, the problem solv-
ing strategy of Prolog renders a mere (DCG) [PW80] in both a recognizer and gen-
erator of the sentences it describes. The body of a DCG rule comprises a gram-
mar’s non-terminals and terminals in addition to regular logic predicates which
can be used to incorporate semantics in the parsing process. A simple transla-
tion scheme maps DCG rules to regular logic rules over a token sequence. Back-
tracking naturally supports grammar ambiguities with infinite look-ahead, which
may result in a forest of parse trees when the solutions are equally correct. Defi-
nite Clause Grammars have therefore enjoyed quite some popularity in the natural
language processing community [PS02, BS02], but can be applied to programming
languages as well [CH87]. The application of higher-order programming tech-
niques [Nai96, CKW93] results in concise grammar specifications. Prolog’s depth-
first problem solving strategy, resolution [Rob65, EK76], does cause termination
problems with left-recursive grammars, but these can either be avoided or explic-
itly supported by using a tabled variant of resolution [RC97, CW96] which results
in an algorithm similar to chart parsing [PW83, XSB07]. As a general-purpose pro-
gramming language, regular Prolog moreover supports different parsing algorithms
for a logic grammar by means of a meta-interpreter interpreting its clauses or alter-
native translations schemes [CH87, BS02]. Finally, Lämmel et al. [LR01] rely on
Prolog’s operational interpretation and impure I/O predicates to interleave scan-
ning and parsing of text according to a grammar expressed as plain Prolog clauses
rather than DCG clauses.

A.2 Obtaining Structural Information

In Section 2.5.2, the Smalltalk run-time environment and the Java Model compo-
nent of the Eclipse Java Development Toolkit (JDT) [Ecl08a] are listed as sources of
structural program information. Apart from these, external tools can be used to ex-
tract such information from ASTs or compiled program artifacts. FAMIX [TDDN00],
for instance, is a language-independent structural program representation that is
shared by many reverse engineering and visualisation tools.

The ASF+SDF meta-environment, comprising the aforementioned declara-
tive Syntax Definition Formalism (SDF) [SDF08, VS00, HHKR89] and its compan-
ion term rewriting language Algebraic Specification Language (ASF) [vdBKV07,
vdBHKO02, Ber89, DHK96], have been used to extract structural program informa-
tion for many program query languages (e.g. the relational RSCRIPT [Kli03]). ASF
rules rewrite low-level terms recognized by an SDF-generated parser into the nec-
essary structural program information.

A.3 Obtaining Control Flow Information

As argued in Section 2.5.3, deriving precise control flow information is a complex
process. However, most compilers and static analysis frameworks have control flow
graphs for function and method bodies readily available. The operations in these
graphs usually stem from an intermediate program representation. Alternatively,
a pattern detection tool can construct control flow graphs itself from a compiled,

248

A.3. Obtaining Control Flow Information

intermediate or AST representation. Control flow edges can be added lazily on top
of such a representation.

Constructing Whole-Program Control Flow Graphs for Higher-Order and
Object-Oriented Programs

Section 2.5.3 described a relatively straightforward inductive process for construct-
ing control flow graphs. However, this process is not applicable to languages that
support function pointers or first-class functions. To determine the program’s con-
trol flow, knowledge is required about the possible values expressions can assume.
Traditionally, such information is delivered by data flow analyses. This introduces
a circular dependency as such analyses require a control flow graph themselves to
propagate results through. Specialized higher-order control flow analyses cope by
intertwining both. We refer the interested reader to Shivers’ [Shi04] for an overview.

Even for statically-typed object-oriented programs without closures, a similar
circular dependency between control and data flow information can still be intro-
duced by polymorphism and late binding. To determine at compile-time which
method is invoked by a method invocation, knowledge is required about the val-
ues its receiver can assume. However, an imprecise control flow graph can be
constructed using information about the invocation’s signature, the receiver’s de-
clared type, the program’s class hierarchy and the classes explicitly referred to in
object instantiations (e.g. class hierarchy analysis [DGC95] and rapid type analy-
sis [Bac97]). This initial control flow graph can subsequently bootstrap a data flow
analysis which computes information about the heap objects the receiver might
point to at run-time. The statically derived information about their run-time types
can be used to further prune the call graph.

Constructing Whole-Program Control Flow Graphs in the Presence of
Reflection

Constructing a complete call graph that comprises all of a program’s reachable
methods is still the subject of ongoing research. These should include methods
that are invoked by the program’s run-time environment (e.g. by native methods in
Java), through reflection or remotely by another program. Often, consulting the
user for assistance cannot be avoided. Recently, Livshits et al. [Liv06, LWL05b]
have made advances in the automatic resolution of reflective calls. A points-to
analysis allows them to discern two kinds of strings in reflective calls: those that
originate from constants internal to the program and those that originate from
external sources. While the former can be resolved completely, the latter require
information provided by the user. Livshits et al. [Liv06, LWL05b] also demon-
strate how user-involvement can be minimized by localizing idiomatic uses of re-
flection. In Java, it is for instance common for casts to follow invocations of the
Class.newInstancemethod which returns an instance of static type Object. The
type the object is cast to, when assumed to be successful, provides information
about its possible dynamic type. Here, pattern detection not only relies on but also
assists in program analysis.

249

A. SOURCES OF BASE PROGRAM INFORMATION

A.4 Obtaining Data Flow Information

Data flow information is readily available from many compiler construction and
program analysis frameworks. SOOT [VRCG+99] and JOEQ [Wha03] for Java both
feature a substantive collection of analyses —including the reaching definitions
[NNH05] and points-to analyses [Hin01] which are relied upon by the pattern de-
tection tools surveyed in Section 3.5. Of the latter, several implementations are
available for Java (e.g. [RMR01, LH03, WL04, Lho06, LL07]), each exploring differ-
ent trade-offs between analysis precision and cost. We refer the interested reader
to Ryder [Ryd03] for an overview of the dimensions of precision in the design of a
points-to analysis and to Lhoták [LH06] for some empirical results.

250

A
P

P
E

N
D

I
X

B
ADDITIONAL VALIDATION-RELATED

INFORMATION

This appendix complements Chapter 8 in which we validated our approach. We
list statistics about the size of the base programs used throughout the chapter and
present the example-based specifications for the µ-patterns [GM05] that we have
not yet discussed.

B.1 Base Program Statistics

The following table lists some statistics about the size of the base programs we
have used in the validation chapter:

Hannemann’s JHOTDRAW AMBIENTTALK

[HK02] 5.1[jHo07] 2008/02/01 [Amb]
compilation units 104 133 250
type declarations 104 143 287

methods 273 1222 2290
statements 980 4794 9764

expressions 2991 15462 29628
reference expressions 2101 7280 19661

B.2 Undiscussed µ-Pattern Specifications

Table B.2 describes the µ-patterns [GM05]in natural language. Table B.1 compares
the µ-pattern instances identified by SOUL and JTL in a compact manner. The first
column lists the number of inconsistencies between both sets of instances, while
the second column lists the size of the union of both sets. Most differences are
due to the fact that JTL analyzes the bytecode of the program and the libraries it
relies on, while our approach only analyzes the source code of the program (cf.

251

B. ADDITIONAL VALIDATION-RELATED INFORMATION

Number of Inconsistencies Size of the Union of Both Solution Sets
Outline 9 (JTL Exception) 9

Pseudo Class 1 3
Pure Type 0 64

State Machine 0 29
Trait 1 8

Restricted Creation 0 9
Sampler 0 3

Data Manager 0 0
Record 1 7

Sink 45 (JTL Exception) 45
Cobol Like 0 0

Function Object 4 22
Function Pointer 0 0

Common State 0 1
Immutable 103 (JTL Exception) 103

Stateless 18 34
Designator 0 0

Joiner 0 0
Pool 0 3

Taxonomy 0 12
Extender 36 115

Overrider 45 58
Box 0 0

Canopy 43 (JTL Exception) 43
Compound Box 1 8

Table B.1: Comparison of µ-patterns identified by SOUL and JTL.

Section 8.2.2). Note that JTL raised an exception on some of the µ-patterns. The
example-based specifications evaluated by SOUL are listed below:

1 ?class isBoxUnderInterpretation: ?interp if
2 jtClassDeclaration(?class,?interp){
3 class ?className *{
4 !static ?type ?field = ?init;
5 ?modList ?methodType ?methodName(?paramList) {
6 ?field = ?assignedValue;
7 }
8 }
9 },

10 absolutelyNot(jtClassDeclaration(?class,?interp){
11 class ?className *{
12 !static ?otherType ?otherField = ?otherInit;
13 }
14 },
15 absolutelyNot(?otherField equals: ?field))

16 ?class isCanopyUnderInterpretation: ?interp if
17 jtClassDeclaration(?class,?interp){
18 class ?className *{
19 !static ?type ?field = ?init;
20 ![?modList ?methodType ?methodName(?paramList) {
21 ?field = ?assignedValue;
22 }]
23 }
24 },
25 absolutelyNot(jtClassDeclaration(?class,?interp){
26 class ?className *{
27 !static ?otherType ?otherField = ?otherInit;
28 }
29 },
30 absolutelyNot(?otherField equals: ?field))

31 ?class isPseudoClassUnderInterpretation: ?interp if

252

B.2. Undiscussed µ-Pattern Specifications

µ-Pattern Description
Outline Abstract class of which a declared method (different from main) invokes an abstract method

of the same class (declared or inherited).
Pseudo Class Abstract class without instance fields and only abstract instance methods (all declared or in-

herited).
Pure Type Abstract class or interface without fields, without concrete methods and at least one abstract

method (all declared or inherited)
State Machine Interface of which all declared non-private instance methods are parameter-less (and that has

at least one of those methods).
Trait Abstract class without instance fields, at least one abstract and at least one concrete method

(all declared or inherited).
Restricted Creation Class without declared public constructors and at least one declared static field of the same

type as the class.
Sampler Class with a declared public constructor and at least one declared static field of the same type

as the class.
Data Manager Class where all non-private instance methods are setters or getters (all declared or inherited).

Record Concrete class with at least one public instance field, without private instance fields and with-
out methods (all declared or inherited, but not from Object).

Sink Class of which no declared method invokes another method.
Cobol Like Class with a single static method and no instance fields or methods (all declared or inherited,

but not from Object)
Function Object Concrete class with at least one field and a single public instance method (all declared or in-

herited, but not from Object)
Function Pointer Concrete class without field and a single public instance method (all declared or inherited, but

not from Object)
Common State Class with at least one declared non-final static field and without non-static fields or methods

(all declared or inherited, but not from Object).
Immutable Class in which all instance fields are private (and that has at least one such field) and that has

no mutators for its instance fields (all declared or inherited).
Stateless Class in which all fields are static and final (all declared or inherited).

Designator Abstract type without methods or fields (all declared or inherited, but not from Object)
Joiner Class (or interface) without declared fields or methods that implements an interface (or ex-

tends at least two super-interfaces).
Pool Class or interface without declared instance fields or methods, no visible non-final declared

fields and at least one visible static field.
Taxonomy Class (or interface) that does not declare a method or field and that does not implement an

interface (extend a super-interface).
Extender Class that extends the inherited protocol without overriding visible instance methods.

Implementor Class of which all declared visible instance methods override an inherited abstract method.
Overrider Class of which all declared visible instance methods override an inherited concrete method.

Box Class with a single instance field and at least one mutator method (all declared or inherited).
Canopy Class with a single instance field and no mutator methods (all declared or inherited).

Compound Box Class with a single non-primitive instance field and at least one primitive field (all declared or
inherited).

Table B.2: Informal µ-pattern descriptions extracted from JTL specifications
in [CGM06a].

32 jtClassDeclaration(?class,?interp){
33 abstract class ?className *{
34 ![!static ?type ?field = ?init;]
35 ![!abstract !static ?mType::jtType ?mName(?pList) ?sList]
36 }
37 }

38 ?class isPureTypeUnderInterpretation: ?interp if
39 jtClassDeclaration(?class,?interp){
40 abstract class ?className *{
41 abstract ?type::jtType ?methodName(?paramList);
42 ![!abstract ?cType::jtType ?cName(?cPList) ?sList]
43 ![?modList ?fieldType ?field = ?initializer;]
44 }
45 }

46 ?interface isPureTypeUnderInterpretation: ?interp if
47 jtInterfaceDeclaration(?interface,?interp){
48 interface ?interfaceName *{

253

B. ADDITIONAL VALIDATION-RELATED INFORMATION

49 ?type::jtType ?methodName(?paramList);
50 ![?modList ?fieldType ?field = ?initializer;]
51 }
52 }

53 ?i isStateMachineUnderInterpretation: ?interp if
54 ?i isInterfaceDeclaration,
55 exists(?i interfaceDeclarationDeclaresServiceMethod: ?
56 underInterpretation: ?),
57 forall(?i interfaceDeclarationDeclaresServiceMethod: ?m
58 underInterpretation: ?interp,
59 jtMethodDeclaration(?m,?interp){
60 ?modList ?returnType ?methodName();
61 })

62 ?class isTraitUnderInterpretation: ?interp if
63 jtClassDeclaration(?class,?interp){
64 abstract class ?className *{
65 abstract ?type::jtType ?mName(?paramList);
66 !abstract ?t2::jtType ?m2Name(?p2List) ?statementList
67 ![!static ?t3 ?field = ?init;]
68 }
69 }

70 ?class isRestrictedCreationUnderInterpretation: ?interp if
71 jtClassDeclaration(?class,?interp){
72 class ?className extends* ?super implements* ?interface {
73 ![public ?className(?paramList) ?statementList]
74 static ?type ?field = ?initializer;
75 }
76 },
77 or(?type equals: ?class,
78 ?type equals: ?super,
79 ?type equals: ?interface)

80 ?class isSamplerUnderInterpretation: ?interp if
81 jtClassDeclaration(?class,?interp){
82 class ?className extends* ?super implements* ?interface {
83 public ?className(?paramList) ?statementList
84 static ?type ?field = ?initializer;
85 }
86 },
87 or(?type equals: ?class,
88 ?type equals: ?super,
89 ?type equals: ?interface)

90 ?class isDataManagerUnderInterpretation: ?interp if
91 ?class isClassDeclaration,
92 exists(?class classDeclarationHasServiceMethod: ? underInterpretation: ?),
93 forall(?class classDeclarationHasServiceMethod: ?method
94 underInterpretation: ?inter,
95 or(?class classDeclarationHasGetterMethod: ?method
96 forVariableDeclarationFragmentNamed: ?
97 underInterpretation: ?interp,
98 ?class classDeclarationHasSetterMethod: ?method
99 forVariableDeclarationFragmentNamed: ?

100 underInterpretation: ?interp))

101 ?class isRecordUnderInterpretation: ?interp if
102 jtClassDeclaration(?class,?interp){
103 !abstract class ?className *{

254

B.2. Undiscussed µ-Pattern Specifications

104 public !static ?type ?field = ?init;
105 ![!public !static ?otherType ?otherField = ?otherInit;]
106 ![?modList ?t ?methodName(?paramList) ?statementList]
107 }
108 }

109 ?class isSinkUnderInterpretation: ?interp if
110 jtClassDeclaration(?class,?interp){
111 class ?className {
112 ![?modList ?type ?methodName(?paramList) {
113 ?rec.?inv(?argList);
114 }]
115 }
116 }

117 ?class isCobolLikeUnderInterpretation: ?interp if
118 jtClassDeclaration(?class,?interp){
119 class ?className *{
120 ![!static ?t ?field = ?init;]
121 ![!static ?type::jtType ?methodName(?paramList) ?statementList]
122 ?sMethod := static ?sType::jtType ?sMName(?sPList) ?sSList
123 ![?sMethod :~= static ?oType::jtType ?oMName(?oPList) ?oSList]
124 }
125 }

126 ?class isFunctionObjectUnderInterpretation: ?interp if
127 jtClassDeclaration(?class,?interp){
128 !abstract class ?className *{
129 ?modList ?t ?field = ?init;
130 ?method := public !static !abstract
131 ?type::jtType ?mName(?pList) ?sList
132 ![?method :~= public !static !abstract
133 ?oType::jtType ?omName(?oPList) ?oSList]
134 }
135 }

136 ?class isPoolUnderInterpretation: ?interp if
137 jtClassDeclaration(?class,?interp){
138 class ?className {
139 ![!static ?t ?f = ?i;]
140 ![!static ?tt::jtType ?m(?parameterList) ?statementList]
141 ![!private !final ?ttt ?ff = ?ii;]
142 !private static ?type ?field = ?init;
143 }
144 }

145 ?interface isPoolUnderInterpretation: ?interp if
146 jtInterfaceDeclaration(?interface,?interp){
147 interface ?interfaceName {
148 ![!static ?t ?f = ?i;]
149 ![!static ?tt::jtType ?m(?parameterList);]
150 ![!private !final ?ttt ?ff = ?ii;]
151 !private static ?type ?field = ?init;
152 }
153 }

154 ?interface isTaxonomyUnderInterpretation: ?interp if
155 jtInterfaceDeclaration(?interface,?interp){
156 interface ?emptyInterfaceName extends ?superInterfaceList {
157 ![?modList ?type ?m(?paramList);]
158 ![?modList ?type ?field = ?init;]

255

B. ADDITIONAL VALIDATION-RELATED INFORMATION

159 }
160 },
161 1 isSizeOf: ?superInterfaceList

162 ?class isTaxonomyUnderInterpretation: ?interp if
163 jtClassDeclaration(?class,?interp){
164 class ?className implements ?interfaceList {
165 ![?modList ?type ?m(?paramList) ?statementList]
166 ![?modList ?type ?field = ?init;]
167 }
168 },
169 0 isSizeOf: ?interfaceList

170 ?c classDeclarationDeclaresServiceMethod: ?m underInterpretation: ?i if
171 jtClassDeclaration(?c,?i){
172 class ?className {
173 ?m := [!private !static ?type::jtType ?mName(?pList) ?sList]
174 }
175 }

176 ?class isJoinerUnderInterpretation: ?interp if
177 jtClassDeclaration(?class,?interp){
178 class ?className implements ?interface {
179 ![?modList ?type ?m(?paramList) ?statementList]
180 ![?modList ?type ?field = ?init;]
181 }
182 },
183 [?interface notNil]

184 ?interface isJoinerUnderInterpretation: ?interp if
185 jtInterfaceDeclaration(?interface,?interp){
186 interface ?emptyInterfaceName extends ?i1, ?i2 {
187 ![?modList ?type ?m(?paramList);]
188 ![?modList ?type ?field = ?init;]
189 }
190 }

191 ?class isCommonStateUnderInterpretation: ?interp if
192 jtClassDeclaration(?class,?interp){
193 class ?className {
194 !final static ?type ?field = ?init;
195 }
196 },
197 jtClassDeclaration(?class,?interp){
198 class ?className *{
199 ![!static ?t ?f = ?i;]
200 ![!static ?methodType::jtType ?methodName(?paramList) ?statementList]
201 }
202 }

203 ?c isImplementorClassUnderInterpretation: ?i if
204 ?c isClassDeclaration,
205 exists(?c classDeclarationDeclaresServiceMethod: ? underInterpretation: ?),
206 forall(?c classDeclarationDeclaresServiceMethod: ?m underInterpretation: ?i,
207 ? abstractMethodIsImplementedBy: ?m inClass: ?c
208 underInterpretation: ?i)

209 ?c isOverriderClassUnderInterpretation: ?i if
210 ?c isClassDeclaration,
211 exists(?c classDeclarationDeclaresServiceMethod: ? underInterpretation: ?),

256

B.2. Undiscussed µ-Pattern Specifications

212 forall(?c classDeclarationDeclaresServiceMethod: ?m underInterpretation: ?i,
213 ? nonAbstractMethodIsOverriddenBy: ?m inClass: ?c
214 underInterpretation: ?i)

215 ?c isExtenderTypeUnderInterpretation: ?i if
216 ?c isClassDeclaration,
217 exists(?c classDeclarationDeclaresServiceMethod: ? underInterpretation: ?),
218 forall(?c classDeclarationDeclaresServiceMethod: ?m underInterpretation: ?i,
219 ?m methodExtendsProtocolOfClass: ?c underInterpretation: ?i)

257

BIBLIOGRAPHY

[AA01] Hervé Albin-Amiot. JavaXL, a Java source code transformation en-
gine. Technical Report 2001-INFO, École des Mines de Nantes, 2001.

[AACGJ01] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Naren-
dra Jussien. Instantiating and detecting design patterns: Putting bits
and pieces together. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE01), pages 166–
173, 2001.

[ABL05] Martin Aeschlimann, Dirk Bäumer, and Jerome Lanneluc.
Java tool smithing - extending the eclipse java develop-
ment tools. Presentation at EclipseCON05 available at
http://www.eclipsecon.org/2005/tutorials.php, March 2005.

[AF99] Francesca Arcelli and Ferrante Formato. Likelog: a logic program-
ming language for flexible data retrieval. In Proceedings of the 1999
ACM Symposium on Applied Computing (SAC99), pages 260–267,
1999.

[AK07] Malte Appeltauer and Günter Kniesel. Towards concrete syn-
tax patterns for logic-based transformation rules. In Proceedings
of the Eighth International Workshop on Rule-Based Programming
(RULE07), 2007.

[AKW88] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK
Programming Language. Addison-Wesley, 1988.

[All02] Eric Allen. Bug Patterns in Java. APress L. P., 2002.

[Als01] Teresa Alsinet. Logic Programming with Fuzzy Unificiation and Im-
precise Constants: Possibilistic Semantics and Automated Deduction.
Spain, Universitat Politécnica De Catalunya, May 2001.

[Amb] The AmbientTalk project website. http://prog.vub.ac.be/amop/.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Pearson Education Inc., 1986.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. Prentice-Hall, Inc., 1972.

[Bac97] David Francis Bacon. Fast and effective optimization of statically
typed object-oriented languages. PhD thesis, University of California,
1997.

259

BIBLIOGRAPHY

[BCD+89] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. Centaur: the system. SIGPLAN Notices - Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (PSDE89), 24(2):14–
24, 1989.

[BD09] Johan Brichau and Coen De Roover. Language-shifting objects in
inter-language interoperability. In Proceedings of the International
Workshop on Smalltalk Technologies (IWST09), 2009.

[BDM07] Johan Brichau, Coen De Roover, and Kim Mens. Open unification for
program query languages. In Proceedings of the XXVI International
Conference of the Chilean Computer Science Society (SCCC 2007),
2007.

[BE03] Godmar Back and Dawson Engler. MJ - a system for constructing
bug-finding analyses for Java. Technical report, Stanford University,
2003.

[Bec96] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1996.

[Ber89] J. A. Bergstra. Algebraic specification. ACM Press Frontier Series, 1989.

[Bey06] Dirk Beyer. Relational programming with crocopat. In Proceedings of
the 28th International Conference on Software Engineering (ICSE06),
pages 807–810, 2006.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Pattern-
Oriented Software Architecture: A Pattern Language for Distributed
Computing (Wiley Software Patterns Series). John Wiley & Sons, 2007.

[BNL03] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Simple and ef-
ficient relational querying of software structures. In Proceedings of
the 10th IEEE Working Conference on Reverse Engineering (WCRE03),
pages 216–225, 2003.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–318,
1992.

[BS02] Patrick Blackburn and Kristina Striegnitz. Natural language process-
ing techniques in Prolog. http://www.coli.uni-saarland.de/ kris/nlp-
with-prolog/html/, 2002.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Symposium on Principles of Program-
ming Languages (POPL77), pages 238–252, 1977.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) version
1.0. W3C Recommendation, November 1999.

260

Bibliography

[CEH02] Benjamin Chelf, Dawson Engler, and Seth Hallem. How to write
system-specific, static checkers in Metal. In Proceedings of the 2002
ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software
Tools and Engineering (PASTE02), pages 51–60, 2002.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Systems
(TOPLAS86), 8(2):244–263, 1986.

[CGM06a] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. JTL and the an-
noying subtleties of precise µ-pattern definitions. 1st International
Workshop on Design Patterns Detection for Reverse Engineering
(DPD4RE06/WCRE06), October 2006.

[CGM06b] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. JTL: the Java Tools
Language. In Proceedings of the 21st annual ACM SIGPLAN Confer-
ence on Object Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA06), pages 89–108, 2006.

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always
wanted to know about Datalog (and never dared to ask). IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 1(1):146–166,
1989.

[CH87] Jacques Cohen and Timothy J. Hickey. Parsing and compiling using
Prolog. ACM Transactions on Programming Languages and Systems
(TOPLAS87), 9(2):125–163, 1987.

[Che08] Checkstyle project website. http://checkstyle.sourceforge.net/index.html,
June 2008.

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. Hilog: a founda-
tion for higher-order logic programming. Journal of Logic Program-
ming, 15(3):187–230, 1993.

[CL96] Yves Caseau and François Laburthe. Claire: Combining objects and
rules for problem solving. In Proceedings of the JICSLP workshop on
Multi-Paradigm Logic Programming (MPLP96), pages 105–114, 1996.

[CMR92] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualiz-
ing and querying software structures. In Proceedings of the 14th In-
ternational Conference on Software Engineering (ICSE92), pages 138–
156, 1992.

[Cop91] James O. Coplien. Advanced C++ Programming Styles and Idioms.
Addison-Wesley Publishing Company, September 1991.

[Cre97] Roger F. Crew. ASTLOG: A language for examining abstract syntax
trees. In Proceedings of the 1997 USENIX Conference on Domain-
Specific Languages (DSL’97), pages 229–242, 1997.

[CW96] Weidong Chen and David S. Warren. Tabled evaluation with delay-
ing for general logic programs. Journal of the ACM (JACM). ACM,
43(1):20–74, 1996.

261

BIBLIOGRAPHY

[CYC+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. An empirical study of operating systems errors. In Proceed-
ings of the eighteenth ACM Symposium on Operating Systems Princi-
ples (SOSP01), pages 73–88, 2001.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in property specifications for finite-state verification. In Pro-
ceedings of the 21st International Conference on Software Engineering
(ICSE99), pages 411–420, 1999. http://patterns.projects.cis.ksu.edu/.

[DBD06] Coen De Roover, Johan Brichau, and Theo D’Hondt. Combining
fuzzy logic and behavioral similarity for non-strict program valida-
tion. In Proceedings of the 8th ACM-SIGPLAN Symposium on Princi-
ples and Practice of Declarative Programming (PPDP06), pages 15–26,
2006.

[DBN+07] Coen De Roover, Johan Brichau, Carlos Noguera, Theo D’Hondt, and
Laurence Duchien. Behavioral similarity matching using concrete
source code templates in logic queries. In Proceedings of the ACM-
SIGPLAN Symposium on Partial Evaluation and semantics-based Pro-
gram Manipulation (PEPM07), pages 92–102, 2007.

[DdMS02] Stephen Drape, Oege de Moor, and Ganesh Sittampalam. Transform-
ing the .NET intermediate language using path logic programming.
In Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’02), pages
133–144, 2002.

[De 04] Coen De Roover. Incorporating dynamic analysis and approximate
reasoning in declarative meta-programming to support software re-
engineering. Master’s thesis, Vrije Universiteit Brussel, 2004.

[De 06] Kris De Volder. JQuery: A generic code browser with a declara-
tive configuration language. In Proceedings of the 8th International
Symposium on Practical Aspects of Declarative Languages (PADL06),
pages 88–102, 2006.

[Dev92] Premkumar T. Devanbu. GENOA: a customizable language- and
front-end independent code analyzer. In Proceedings of the 14th In-
ternational Conference on Software engineering (ICSE92), pages 307–
317, 1992.

[Dev99] Premkumar T. Devanbu. GENOA–a customizable, front-end-
retargetable source code analysis framework. ACM Transactions on
Software Engineering and Methodology (TOSEM), 8(2):177–212, 1999.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
Proceedings of the 9th European Conference on Object-Oriented Pro-
gramming (ECOOP95), pages 77–101, 1995.

[DGD05] Coen De Roover, Kris Gybels, and Theo D’Hondt. Towards abstract
interpretation for recovering design information. In Proceedings of

262

Bibliography

the First International Workshop on Abstract Interpretation of Object-
oriented Languages (AIOOL05), volume 131 of Electronic Notes in The-
oretical Computer Science, pages 15–25, May 2005.

[DGJ04] Maja D’Hondt, Kris Gybels, and Viviane Jonckers. Seamless integra-
tion of rule-based knowledge and object-oriented functionality with
linguistic symbiosis. In Proceedings of the 2004 ACM symposium on
Applied computing (SAC04), pages 1328–1335, 2004.

[DHK96] Arie Van Deursen, Jan Heering, and Paul Klint, editors. Language Pro-
totyping: An Algebraic Specification Approach: Vol. V. World Scientific
Publishing Co., Inc., 1996.

[dLW03] Oege de Moor, David Lacey, and Eric Van Wyk. Universal regular
path queries. Higher-order and Symbolic Computation, 16(1-2):15–
35, 2003.

[DMG+06] Coen De Roover, Isabel Michiels, Kim Gybels, Kris Gybels, and Theo
D’Hondt. An approach to high-level behavioral program documen-
tation allowing lightweight verification. In Proceedings of the 14th
IEEE International Conference on Program Comprehension (ICPC06),
pages 202–211, 2006.

[ECCH00] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the Fourth Symposium on Op-
erating Systems Design and Implementation (OSDI00), October 2000.

[ECH+01] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs as deviant behavior: a general approach to infer-
ring errors in systems code. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP01), pages 57–72, 2001.

[Ecl08a] The Eclipse JDT Core Component Website.
http://www.eclipse.org/jdt/core/index.php, 2008.

[Ecl08b] Eclipse website. http://www.eclipse.org/, June 2008.

[EK76] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM (JACM), 23(4):733–
742, October 1976.

[Ern03] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In
Proc. of the ICSE 2003 Workshop on Dynamic Analysis (WODA), pages
24–27, May 2003.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: improving the design of existing code. Object
Technology Series. Addison-Wesley, 1999.

[Fis05] Dale Fisk. Programming with punched cards.
http://www.columbia.edu/acis/history/fisk.pdf, 2005.

263

BIBLIOGRAPHY

[FKI+07] Henry Falconer, Paul H. J. Kelly, David M. Ingram, Michael R. Mellor,
Tony Field, and Olav Beckmann. A declarative framework for analysis
and optimization. In Proceedings of the 16th International Conference
on Compiler Construction (CC07), 2007.

[FM04] Johan Fabry and Tom Mens. Language-independent detection of
object-oriented design patterns. Elsevier International Journal on
Computer Languages, Systems & Structures, 30(1-2):21–33, 2004.

[FNT+98] Thorsten Fischer, Jörg Niere, Lars Torunski, , and Albert Zündorf.
Story diagrams: A new graph rewrite language based on the uni-
fied modeling language and java. In Proceedings of the 6th Interna-
tional Workshop on Theory and Applications of Graph Transformation
(TAGT98), number 1764 in Lecture Notes in Computer Science, 1998.

[Fow97] Martin Fowler. UML Distilled. Addison Wesley, 1997.

[GAA01] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using design pat-
terns and constraints to automate the detection and correction of
inter-class design defects. In Proceedings of the 39th Conference on
the Technology of Object-Oriented Languages and Systems (TOOL-
SUSA01), pages 296–305, 2001.

[GAM96] William G. Griswold, Darren C. Atkinson, and Collin McCurdy. Fast,
flexible syntactic pattern matching and processing. In Proceed-
ings of the 4th International Workshop on Program Comprehension
(IWPC96), page 144, 1996.

[GC08] Yaser Ghanam and Sheelagh Carpendale. A survey paper on soft-
ware architecture visualization. Technical Report 2008-906-19, De-
partment of Computer Science, University of Calgary, Canada T2N
1N4, 2008.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addi-
son Wesley, 1994.

[GJ90] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques - A Practical
Guide. Ellis Horwood, 1990.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language
Specification, Second Edition: The Java Series. Addison-Wesley Long-
man Publishing Co., Inc., 2000.

[GM05] Joseph (Yossi) Gil and Itay Maman. Micro patterns in java code. In
Proceedings of the 20th annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA05), pages 97–116, 2005.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
1983.

264

Bibliography

[GS00] David Gilbert and Michael Schroeder. Fury: Fuzzy unification and
resolution based on edit distance. In Nikolaos G. Bourbakis, editor,
Proceedings of the 1st IEEE International Symposium on Bioinformat-
ics and Biomedical Engineering (BIBE00), pages 330–336, November
2000.

[Gué03] Yann-Gaël Guéhéneuc. Un cadre pour la tracabilite des motifs de con-
ception. PhD thesis, Ecole des Mines de Nantes, June 2003.

[GWDD06] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. Inter-
language reflection: A conceptual model and its implementation.
Elesevier International Journal on Computer Languages, Systems and
Structures, 32:109–124, 2006.

[Háj98] Petr Hájek. Deductive systems of fuzzy logic (a tutorial). Tutorial,
1998.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A sys-
tem and language for building system-specific, static analyses. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (PLDI02), pages 69–82, 2002.

[Hea78] H. S. Heaps. Information Retrieval. Academic Press, 1978.

[HGC+07] Charlotte Herzeel, Kris Gybels, Pascal Costanza, Coen De Roover, and
Theo D’Hondt. Forward chaining in HALO: An implementation strat-
egy for history-based logic pointcuts. In Proceedings of the 2007 inter-
national conference on Dynamic languages (ICDL07), pages 157–182,
2007.

[HGC+09] Charlotte Herzeel, Kris Gybels, Pascal Costanza, Coen De Roover,
and Theo D’Hondt. Forward chaining in HALO: An implementation
strategy for history-based logic pointcuts. Elsevier International Jour-
nal on Computer Languages, Systems & Structures, 35(1):31–47, April
2009.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism sdf—reference manual—. SIGPLAN Notices,
24(11):43–75, 1989.

[Hin01] Michael Hind. Pointer analysis: haven’t we solved this problem yet?
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE01), pages
54–61, 2001.

[HK02] Jan Hannemann and Gregor Kiczales. Design pattern implementa-
tion in Java and AspectJ. In Proceedings of the 17th Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA02), pages 161–173, 2002.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN
Notices, 39(12):92–106, 2004.

265

BIBLIOGRAPHY

[HSD08] Jeffrey S. Hammond, Carey Schwaber, and David
D’Silva. IDE usage trends - Forrester Research.
http://www.microsoft.com/presspass/itanalyst/docs/02-12-
08IDEUsageTrendsJeffreyHammond.PDF, February 2008.

[HVd06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest:
Scalable source code queries with Datalog. In Proceedings of the 20th
European Conference on Object-Oriented Programming (ECOOP06),
volume 4067 of Lecture Notes in Computer Science, pages 2–27, 2006.

[Jav] JavaConnect project website. http://www.info.ucl.ac.be/ jbrichau/software.html.

[JD03] Doug Janzen and Kris De Volder. Navigating and querying code with-
out getting lost. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD03), pages 178–187,
2003.

[jHo07] jHotDraw project website. http://www.jhotdraw.org/, 2007.

[Joh79] Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. Unix Pro-
grammer’s Manual Vol 2b, 1979.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns. In Pro-
ceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA92), pages 63–72, 1992.

[KBD08] Andy Kellens, Johan Brichau, and Coen De Roover. Example-based
program querying. In Proceedings of the 2008 Working Session on
Query Technologies and Applications for Program Comprehension
(QTAPC08) at the 16th International Conference on Program Compre-
hension (ICPC08), 2008.

[KC99] E. E. Kerre and M. De Cock. Linguistic modifiers: An overview. Fuzzy
Logic and Soft Computing, pages 69–85, 1999.

[Kic96] Gregor Kiczales. Beyond the black box: Open implementation. IEEE
Software, 13(1):8–11, 1996.

[Kli03] Paul Klint. How understanding and restructuring differ from com-
piling - a rewriting perspective. In Proceedings of the 11th IEEE In-
ternational Workshop on Program Comprehension (IWPC 03), page 2,
2003.

[Kli05] Paul Klint. A tutorial introduction to rscript — a relational approach
to software analysis, draft. Technical report, Centrum voor Wiskunde
en Informatica, May 2005.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the 11th European Confer-
ence on Object-Oriented Programming (ECOOP97), volume 1241 of
Lecture Notes in Computer Science, pages 220–242, 1997.

266

Bibliography

[KLV05] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering
discipline for grammarware. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 14(3):331–380, 2005.

[Kni89] Kevin Knight. Unification: A multidisciplinary survey. ACM Comput-
ing Surveys, 21(1):93–124, 1989.

[KP96] Christian Krämer and Lutz Prechelt. Design recovery by automated
search for structural design patterns in object-oriented software. In
Proceedings of the 3rd Working Conference on Reverse Engineering
(WCRE ’96), page 208, 1996.

[KPK94] George Kiczales, Andreas Paepcke, and Gregor Kiczales. Open Imple-
mentations and Metaobject Protocols. MIT Press, 1994.

[KSRP99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick
Pagé. Pattern-based reverse-engineering of design components. In
ICSE ’99: Proceedings of the 21st International Conference on Software
engineering, pages 226–235, 1999.

[Lac03] David Lacey. Program Transformation using Temporal Logic Specifi-
cations. PhD thesis, University of Oxford, August 2003.

[LBH+08] Julia L. Lawall, Julien Brunel, René Rydhof Hansen, Henrik Stuart,
and Gilles Muller. WYSIWIB: A declarative approach to finding proto-
cols and bugs in Linux code. Technical Report 08/1/INFO, Ecole des
Mines de Nantes, 2008.

[LdM01] David Lacey and Oege de Moor. Imperative program transformation
by rewriting. In Proceedings of the 10th International Conference on
Compiler Construction (CC01), pages 52–68, 2001.

[Lee72] Richard C. T. Lee. Fuzzy logic and the resolution principle. Journal of
the ACM, 19(1):109–119, 1972.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis
using Spark. In G. Hedin, editor, Proceedings of the 12th International
Conference on Compiler Construction (CC2003), volume 2622 of Lec-
ture Notes in Computer Science, pages 153–169, April 2003.

[LH06] Ondrej Lhoták and Laurie J. Hendren. Context-sensitive points-to
analysis: Is it worth it? In Proceedings of the 15th International Con-
ference on Compiler Construction (CC06), Lecture Notes in Computer
Science, pages 47–64, 2006.

[Lho02] Ondrej Lhoták. Spark: A flexible points-to analysis framework for
java. Master’s thesis, McGill University, December 2002.

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams.
PhD thesis, McGill University, January 2006.

[Liv05] Benjamin Livshits. Turning Eclipse against itself: Finding bugs in
Eclipse code using lightweight static analysis. In EclipseCON05 Re-
search Exchange, March 2005.

267

BIBLIOGRAPHY

[Liv06] Benjamin Livshits. Improving Software Security with Precise Static
and Runtime Analysis. PhD thesis, Stanford University, 2006.

[LL90] Deyi Li and Dongbo Liu. A fuzzy Prolog database system. John Wiley
& Sons, Inc., 1990.

[LL07] Jonas Lundberg and Welf Löwe. A scalable flow-sensitive points-to
analysis. In Advances and Applications in Compiler Construction,
Festschrift on the occasion of the retirement of Prof. Dr. Dr. h.c. Ger-
hard Goos, 2007.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice. Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems, 2006.

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly &
Associates, 1992.

[LR94] Ladd and Ramming. A*: a language for implementing language pro-
cessors. Proceedings of the 1994 International Conference on Com-
puter Languages (ICCL94), pages 1–10, 1994.

[LR01] Ralf Lämmel and Günter Riedewald. Prological language processing.
In Proceedings of the First Workshop on Language Descriptions, Tools
and Applications (LDTA01), volume 44, 2001.

[LRY+04] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller, and Nan-
jun Hu. Parametric regular path queries. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Im-
plementation (PLDI04), pages 219–230, 2004.

[LWL+05a] Monica Lam, John Whaley, Benjamin Livshits, Michael Martin, Dzin-
tars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive
program analysis as database queries. In Proceedings of the 24th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS05), pages 1–12, 2005.

[LWL05b] Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection anal-
ysis for java. Technical report, Stanford University, 2005.

[MDB+06] Isabel Michiels, Coen De Roover, Johan Brichau, Elisa Gonzalez Boix,
and Theo D’Hondt. Program testing using high-level property-driven
models. In Proceedings of the Eighteenth International Conference
on Software Engineering and Knowledge Engineering (SEKE06), pages
489–494, 2006.

[Mer03] Jason Merrill. GENERIC and GIMPLE: a new tree representation for
entire functions. In Proceedings of the 2003 GCC & GNU Toolchain
Developers’ Summit (GCC03), pages 171–180, 2003.

[Mic99] Sun Microsystems. Code Conventions for the Java Programming Lan-
guage. Sun Microsystems, Inc., 1999.

268

Bibliography

[MLL05] Michael Martin, Benjamin Livshits, and Monica Lam. Finding ap-
plication errors and security flaws using PQL: a program query lan-
guage. In Proceedings of the 20th annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages and Applica-
tions (OOPSLA05), pages 365–383, 2005.

[MOAV04] Jesús Medina, Manuel Ojeda-Aciego, and Peter Vojtás. Similarity-
based unification: A multi-adjoint approach. Fuzzy Sets and Systems
- Selected Papers from EUSFLAT 2001, 146(1), August 2004.

[Moo01] Leon Moonen. Generating robust parsers using island grammars.
In Proceedings of the 8th Working Conference on Reverse Engineering
(WCRE01), page 13, 2001.

[Mos05] Maxim Mossienko. Structural search and replace: What, why, and
how-to. JetBrains onBoard Online Magazine, February 2005. http:
//www.onboard.jetbrains.com/is1/articles/04/10/ssr/.

[MRR02] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for java. In
Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA02), pages 1–11, 2002.

[Nai96] Lee Naish. Higher-order logic programming in Prolog. Technical Re-
port 96/2, University of Melbourne, Australia, 1996.

[NNH05] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of Program Analysis. Springer, 2005. Corrected 2nd printing.

[NSW+02] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and
Jim Welsh. Towards pattern-based design recovery. In Proceedings of
the 22nd International Conference on Software Engineering (ICSE02),
pages 338–348, 2002.

[NWW03] Jörg Niere, Jörg P. Wadsack, and Lothar Wendehals. Handling large
search space in pattern-based reverse engineering. In Proceedings
of the 11th IEEE International Workshop on Program Comprehension
(IWPC03), page 274, 2003.

[OO90] Kurt M. Olender and Leon J. Osterweil. Cecil: A sequencing constraint
language for automatic static analysis generation. IEEE Transactions
on Software Engineering, 16(3):268–280, 1990.

[Opd92] William F. Opdyk. Refactoring Object-Oriented Frameworks. PhD the-
sis, University of Illinois at Urbana-Champaign, 1992.

[Our89] Dirk Ourston. Program recognition. IEEE Expert: Intelligent Systems
and Their Applications, 4(4):36–49, 1989.

[Pau92] Santanu Paul. SCRUPLE: a reengineer’s tool for source code search. In
Proceedings of the 1992 Conference of the Centre for Advanced Studies
on Collaborative research (CASCON92), pages 329–346, 1992.

[Pee87] Howard A. Peell. An APL idiom inventory. ACM SIGAPL APL Quote
Quad, 17(4):362–368, 1987.

269

http://www.onboard.jetbrains.com/is1/articles/04/10/ssr/
http://www.onboard.jetbrains.com/is1/articles/04/10/ssr/

BIBLIOGRAPHY

[PK98] Lutz Prechelt and Christian Krämer. Functionality versus practicality:
Employing existing tools for recovering structural design patterns.
The Journal of Universal Computer Science, 4(11):866–882, 1998.

[PLM06] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. SmPL: A domain-
specific language for specifying collateral evolutions in linux device
drivers. Electronic Notes in Theoretical Computer Science - Proceed-
ings of the 2006 International ERCIM Workshop on Software Evolu-
tion, 166:47–62, 2006.

[PMD08] PMD project website. http://pmd.sourceforge.net/, June 2008.

[PNP06] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Pro-
gram analysis and transformation in java. Technical Report 5901, IN-
RIA Futurs, Projet Jacquard, LIFL, Lille, France, May 2006.

[PP94] Santanu Paul and Atul Prakash. A framework for source code search
using program patterns. IEEE Transactions on Software Engineering,
20(6):463–475, 1994.

[PS02] Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-
Language Analysis. Microtome Publishing, 2002. Millenial reissue of
original 1987 print.

[PULPT02] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and
Walter F. Tichy. Two controlled experiments assessing the useful-
ness of design pattern documentation in program maintenance. IEEE
Transactions on Software Engineering, 28(6):595–606, 2002.

[PW80] Fernando C. N. Pereira and David H. D. Warren. Definite clause gram-
mars for language analysis - a survey of the formalism and a com-
parison with augmented transition networks. Artificial Intelligence,
13(3):231–278, 1980.

[PW83] Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction.
In Proceedings of 21st Annual Meeting of the Association for Compu-
tational Linguistics (AMACL83), pages 137–144, 1983.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for
smalltalk. Theory and Practice of Object Systems, 3(4):253–263, 1997.

[RC97] R. Ramesh and Weidong Chen. Implementation of tabled evaluation
with delaying in Prolog. IEEE Transactions on Knowledge and Data
Engineering, 9(4):559–574, 1997.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic informa-
tion. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM99), pages 13–22, 1999.

[Ric02] Tamar Richner. Recovering Behavioral Design Views: a Query
Based Approach. PhD thesis, Universität Bern, Philosophisch-
naturwissenschaftlichen Fakultät, May 2002.

270

Bibliography

[Rie00] Dirk Riehle. Framework Design: A Role Modeling Approach. PhD the-
sis, ETH Zürich - Institute of Computer Systems, 2000.

[Riv96] Fred Rivard. Smalltalk: a reflective language. Reflection, 1996.

[RKA06] Tobias Rho, Günter Kniesel, and Malte Appeltauer. Fine-grained
generic aspects. In Proceedings of the AOSD Workshop on Founda-
tions of Aspect-Oriented Languages (FOAL06), 2006.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to anal-
ysis for java using annotated constraints. In Proceedings of the 2001
ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA01), volume 36 of SIGPLAN No-
tices, pages 43–55, 2001.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A.
Smolka, Terrance Swift, and David Scott Warren. Efficient model
checking using tabled resolution. In Proceedings of the 9th Inter-
national Conference on Computer Aided Verification (CAV97), pages
143–154, 1997.

[RW90] Charles Rich and Linda Mary Wills. Recognizing a program’s design:
A graph-parsing approach. IEEE Software, 07(1):82–89, 1990.

[Ryd03] Barbara G. Ryder. Dimensions of precision in reference analysis of
object-oriented programming languages. In Görel Hedin, editor, Pro-
ceedings of the 12th International Conference on Compiler Construc-
tion (CC2003), volume 2622, pages 126–137, April 2003.

[RZ96] Dirk Riehle and Heinz Züllighoven. Understanding and using pat-
terns in software development. Theory and Practice of Object Systems,
2(1):3–13, 1996.

[SB05] Volker Stolz and Eric Bodden. Temporal assertions using AspectJ. In
Proceedings of the Fifth International Workshop on Run-time Verifica-
tion (RV05), 2005.

[SDF08] SDF: Language for modular syntax definition. http://www.program-
transformation.org/Sdf/WebHome, June 2008.

[Ses02] Maria I. Sessa. Approximate reasoning by similarity-based sld resolu-
tion. Theoretical Computer Science, 275(1-2):389–426, 2002.

[Shi04] Olin Shivers. Higher-order control-flow analysis in retrospect:
lessons learned, lessons abandoned. ACM SIGPLAN Notices,
39(4):257–269, 2004.

[Sou08] The Smalltalk Open Unification Language (SOUL).
http://prog.vub.ac.be/SOUL/, 2008.

271

BIBLIOGRAPHY

[SR05] Diptikalyan Saha and C. R. Ramakrishnan. Incremental and demand-
driven points-to analysis using logic programming. In Pedro Bara-
hona and Amy P. Felty, editors, Proceedings of the 7th International
ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP05), pages 117–128, July 2005.

[Sri07] Manu Sridharan. Refinement-Based Program Analysis Tools. PhD
thesis, EECS Department, University of California, Berkeley, October
2007.

[SS06] Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer analysis for
speculative optimizations. In Proceedings of the 2006 ASPLOS Confer-
ence (ASPLOS’06), pages 416–425, 2006.

[Str06] Umberto Straccia. A simple top-down query answering procedure for
many-valued logic programming. Technical report, ISTI - CNR, April
2006.

[SV98] Alex Sellink and Chris Verhoef. Native patterns. In Proceedings of the
Working Conference on Reverse Engineering (WCRE98), page 89, 1998.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nier-
strasz. A meta-model for language-independent refactoring. In Pro-
ceedings of the International Symposium on Principles of Software
Evolution (, pages 154–164, 2000.

[Tor96] Olof Torgersson. A note on declarative programming paradigms and
the future of definitional programming. Proceedings of Das Win-
teröte ’96, 1996.

[vdBHKO02] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compil-
ing language definitions: the ASF+SDF compiler. ACM Transactions
on Programming Languages and Systems, 24(4):334–368, 2002.

[vdBKV07] Mark van den Brand, Paul Klint, and Jurgen Vinju.
The language specification formalism ASF+SDF.
http://homepages.cwi.nl/ daybuild/daily-books/extraction-
transformation/asfsdf/asfsdf.html, 10 2007.

[vE86] M H van Emden. Quantitative deduction and its fixpoint theory. Jour-
nal of Logic Programming, 30(1):37–53, 1986.

[VEdM06] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. JunGL: a script-
ing language for refactoring. In Dieter Rombach and Mary Lou Soffa,
editors, Proceedings of the 28th International Conference on Software
Engineering (ICSE06), pages 172–181, 2006.

[VGMH02] Claudio Vaucheret, Sergio Guadarrama, and Susana Muñoz-
Hernández. Fuzzy Prolog: A simple general implementation
using CLP(R). In Peter J. Stuckey, editor, Proceedings of the 18th
International Conference on Logic Programming (ICLP02), volume
2401 of Lecture Notes in Computer Science, page 469, 2002.

272

Bibliography

[vMV95] Anneliese von Mayrhauser and A. Marie Vans. Program comprehen-
sion during software maintenance and evolution. IEEE Computer,
28(8):44–55, 1995.

[Vol06a] Nic Volanschi. Condate: a proto-language at the confluence between
checking and compiling. In Proceedings of the 8th ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming
(PPDP06), pages 225–236, 2006.

[Vol06b] Nic Volanschi. A portable compiler-integrated approach to perma-
nent checking. In Proceedings of the 21st IEEE International Con-
ference on Automated Software Engineering (ASE06), pages 103–112,
2006.

[VR08] Nic Volanschi and Christian Rinderknecht. Unparsed patterns: easy
user-extensibility of program manipulation tools. In Proceedings
of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM08), pages 111–121,
2008.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a Java bytecode optimization
framework. In Proceedings of the 1999 Conference of the Centre for Ad-
vanced Studies on Collaborative Research (CASCON99), page 13, 1999.

[VS00] Joost Visser and Jeroen Scheerder. A quick introduction to SDF.
ftp://ftp.stratego-language.org/pub/stratego/docs/sdfintro.pdf,
April 2000.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
Using Datalog with binary decision diagrams for program analysis.
In Kwangkeun Yi, editor, Proceedings of the 3rd Asian Symposium
on Programming Languages and Systems (APLAS05), volume 3780 of
Lecture Notes in Computer Science, pages 97–118, 2005.

[War83] David H. D. Warren. An abstract Prolog instruction setrolog instruc-
tion set. Technical Report 309, Artificial Intelligence Center, Com-
puter Science and Technology Division, SRI International, October
1983.

[Wha03] John Whaley. Joeq: a virtual machine and compiler infrastructure. In
Proceedings of the 2003 Workshop on Interpreters, Virtual Machines
and Emulators (IVME03), pages 58–66, 2003.

[Wil92] Linda Mary Wills. Automated Program Recognition by Graph Parsing.
PhD thesis, Massachusetts Institute of Technology, July 1992.

[Wil93] Linda Mary Wills. Flexible control for program recognition. In Pro-
ceedings of the Working Conference on Reverse Engineering (WCRE93),
pages 134–143, 1993.

[Wil94] Linda Mary Wills. Using attributed flow graph parsing to recognize
clichés in programs. In Proceedings of the 5th International Work-
shop on Graph Grammars and Their Application to Computer Science

273

BIBLIOGRAPHY

(TAGT94), volume 1073 of Lecture Notes in Computer Science, pages
170–184, 1994.

[WL04] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language De-
sign and Implementation (PLDI04), pages 131–144, 2004.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-
oriented systems. In Proceedings of the 26th International Conference
on Technology of Object-Oriented Languages and Systems (TOOLS98),
pages 112–124, 1998.

[Wuy01] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, Belgium, January 2001.

[XSB07] The XSB system version 3.1 volume 1: Programmer’s manual.
http://xsb.sourceforge.net/manual1/index.html, 2007.

[Zad65] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

274

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Context
	1.2 Problem Statement
	1.3 An LMP Foundation for Example-Driven Pattern Detection
	1.4 Dissertation Outline
	1.5 Supporting Publications

	2 Detection of User-Specified Software Patterns
	2.1 Software Patterns
	2.2 Machine-Verifiable Pattern Characteristics
	2.3 Applications of Pattern Detection in Software Engineering
	2.4 Design Dimensions of a Pattern Detection Tool
	2.5 Supporting Machine-Verifiable Pattern Characteristics
	2.6 Criteria for a General-Purpose Pattern Detection Tool
	2.7 Conclusion

	3 State of the Art in Pattern Detection
	3.1 Overview of the Surveyed Tools
	3.2 Tools Tailored to Syntactic Characteristics
	3.3 Tools Tailored to Structural Characteristics
	3.4 Tools Tailored to Control Flow Characteristics
	3.5 Tools Tailored to Data Flow Characteristics
	3.6 Concluding Evaluation of the Surveyed Tools

	4 An Example-Driven Approach to Pattern Detection
	4.1 Cornerstones of the Approach
	4.2 Cornerstone: Logic Meta Programming
	4.3 Cornerstone: Example-Based Specification
	4.4 Cornerstone: Domain-Specific Unification
	4.5 Cornerstone: Fuzzy Logic
	4.6 Cornerstone: Open Implementation
	4.7 Conclusion

	5 Instantiating the Logic Meta Programming Cornerstone
	5.1 The Soul Logic Meta Programming Language
	5.2 Cava: Predicates for Reasoning about Java Programs
	5.3 LMP Support for Pattern Characteristics
	5.4 Open Implementation
	5.5 Limitations of the Instantiation
	5.6 Conclusion

	6 Instantiating the Fuzzy Logic and Domain-Specific Unification Cornerstones
	6.1 Fuzzy Variant of Soul
	6.2 Fuzzified Standard Library
	6.3 Logic Meta Programming with Fuzzy Logic
	6.4 Domain-Specific Unification Procedure for Java
	6.5 Logic Meta Programming with Domain-Specific Unification
	6.6 Revisiting LMP Support for Pattern Characteristics
	6.7 Open Implementation
	6.8 Limitations of the Instantiation
	6.9 Conclusion

	7 Instantiating the Example-Based Specification Cornerstone
	7.1 Extending Soul with Template Terms
	7.2 Predefined Example-Based Interpretations
	7.3 Composing Template Terms
	7.4 Revisiting LMP Support for Pattern Characteristics
	7.5 Open Implementation
	7.6 Limitations of the Instantiation
	7.7 Conclusion

	8 Validation: Detecting Patterns using Example-Based Queries
	8.1 Detecting Design Patterns
	8.2 Detecting micro-patterns
	8.3 Detecting Bug Patterns
	8.4 Guidelines for Exemplifying a Software Pattern
	8.5 Concluding Evaluation

	9 Conclusion and Future Work
	9.1 Problem Statement Revisited
	9.2 Conclusion
	9.3 Contributions Restated
	9.4 Future Work

	Appendices
	A Sources of Base Program Information
	A.1 Obtaining Syntactic Information
	A.2 Obtaining Structural Information
	A.3 Obtaining Control Flow Information
	A.4 Obtaining Data Flow Information

	B Additional Validation-Related Information
	B.1 Base Program Statistics
	B.2 Undiscussed -Pattern Specifications

	Bibliography

