
An approach for evolving transformation chains?

Andrés Yie1,2, Rubby Casallas1, Dennis Wagelaar2, Dirk Deridder2

1 Grupo de Construcción de Software, Universidad de los Andes, Colombia
{a-yie, rcasalla}@uniandes.edu.co

2 Software Languages Lab, Vrije Universiteit Brussel, Belgium
{ayiegarz, dennis.wagelaar, dirk.deridder}@vub.ac.be

Abstract. A transformation chain (TC ) generates applications from
high-level models that are defined in terms of problem domain concepts.
The result is a low-level model that is rooted in the solution domain. The
evolution of a TC is a complex and expensive endeavor since there are
intricate dependencies between all its constituent parts. More specific, an
evolution problem arises when we need to add an unanticipated concern
(e.g., security) that does not fit the expressiveness of the high-level
metamodel, because such an addition forces us to adapt existing assets
(i.e., metamodels, models, and transformations). We present a solution
that adds a new concern model to the TC, in an independent way.

1 Introduction

Model-Driven Engineering (MDE ) implementations promote the use of models
expressed in terms of problem domain concepts (e.g. Bank Account, Insurance
Claim) as the prime artifact to develop software. These models, to which we refer
as high-level models, are used as input for a transformation chain (TC ). A TC
is a sequence of transformation steps that converts the high-level model, which
is rooted in the problem domain, into a low-level model, which is rooted in the
solution domain. In addition to the translation from problem domain concepts
to solution domain concepts (e.g., mapping a Business Entity onto a Java Class),
the TC adds implementation details in every transformation step.

For high-level models, the metamodels are rooted in the problem domain.
These metamodels define the abstract syntax of a domain-specific modeling
language (DSML) that is suitable to be used by domain experts [1]. For the
low-level models, the metamodels are rooted in the solution domain. These
metamodels are typically closer to the definition of general-purpose languages
(GPLs).

The particular problem we address is the addition of a new concern (e.g.,
security, monitoring, etc.) that was not anticipated in the existing MDE imple-
mentation. No real problem arises if the new concern can be cleanly expressed
using the existing high-level metamodel. However, if this is not the case, then a

? This research was performed in the context of the Caramelos project (VLIR), the
VariBru project (ISRIB), and the MoVES project (IAP, Belgian Science Policy)



number of problems arise when trying to extend the existing high-level metamodel
with new concepts (e.g., the notion of security in a business domain metamodel):
1) the existing metamodel will be polluted with concepts that do not belong to
its main problem domain, 2) including all the new elements in the core appli-
cation model produces a single monolithic model which is detrimental to the
overall maintainability, and 3) the new concepts will impact the TC by imposing
intricate changes (adding, updating or deleting TC elements) to its existing
implementation, which increases the complexity and the number of dependencies
within the TC. These changes increase the dependencies among the steps in the
TC. These problems make it hard to evolve an existing MDE implementation
and to maintain applications.

To overcome these problems we propose a strategy that consists of specifying
the new concern in a separate high-level model. This leaves the original model
unaltered and oblivious of the added concern. The concern-specific model can
thus be specified using concepts close to its domain which is expressed in a
separate meta-model. Therefore, we have two high-level models that conform
to two different metamodels. Consequently, to obtain the final application, it
is necessary to compose both models. If we perform a high-level composition,
then we face a heterogeneous composition because both models conform to two
different metamodels. A heterogeneous composition is a complex task and requires
a particular composition mechanism for every added concern. Therefore, we chose
to align the high-level models using a Correspondence Model (CM) [2], which
explicitly describes the relationships among the elements of different models. We
use these correspondence relationships to identify the elements to compose.

We have developed a mechanism to automatically derive the CM through the
various steps in the TC. The actual composition is postponed until the lowest
level. At this level, every model conforms to the same metamodel (e,g,. Java
metamodel), or to metamodels that are extensions of this metamodel. Having
models that conform to the same low-level metamodel and a low-level CM relating
these models allows us to perform a homogeneous composition (e.g., composition
of two Classes). This reduces the complexity of the composition and it gives
the means to use a single composition mechanism for multiple concerns. In our
case study, we use a model composition strategy based on the UML Package
Merge [3] mechanism that composes the low-level models into a single model
that conforms to the existing low-level platform metamodel.

2 Approach overview

The overall approach is to add a new TC next to the existing MDE implementation
that takes a high-level concern-specific model as input and produces a low-level
concern model as output. We align the new high-level model with the original one
by using a Correspondence Model (CM), which needs to be propagated through
the TC. The main challenge is to define a mechanism to automatically derive
the new correspondence relationships, having in mind that the TC increments
the complexity of the models by adding elements at each step. Once we reach



the lowest level, the models conform to the same existing metamodel (e,g,. Java
metamodel), or conform to an extension of it. Therefore, both TCs produce
two complementary low-level models that can be composed using a common
composition mechanism.

To derive a low-level CM it is necessary to trace back the elements of the
low-level models and to check if they come from pairs of related elements in
the high-level. With a trace model (TM) [4] we determine the elements in
both low-level models that come from a couple of related elements in the high-
level. For instance, an Attribute in the business model is transformed into an
Attribute, a GetterMethod and a SetterMethod in the low-level model. In the
security model a ResourceAttribute with a ReadPermission is transformed in a
private Attribute and an annotated ReadMethod in the low-level security model.
Therefore, it is necessary to trace back all these low-level elements and verify that
the high-level source element (Attribute) from which they originate, is related
with a correspondence relationship to the high-level concern-specific element
(ResourceAttribute).

Once the elements in the low-level models that have a pair of correspondent
elements as sources are determined, we have to relate these elements by identifying
the correct match for each one. For instance, a GetterMethod (in the low-level
application model) can be related to a ReadMethod (in the low-level security
model) but not to a WriteMethod. To avoid, erroneous correspondences, the
modeler has to specify some constraints. A constraint is a relationship between
two metaclasses that defines if the correspondence link between the concepts that
conform to them can be established or not. In our solution this set of constraints
is called a Derivation Model (DM).

Figure 1 presents the general schema of our approach. The original TC is
in the left (MMbus, Mbus, MMjava, Mjava, T1)1. The concern TC is presented
in the right (MMsec, Msec, MMsec−java, Msec−java, T2). CMhigh−level is the
high-level correspondence model that aligns the two high-level models. TMA

and TMS are the trace models that relate the high-level models with the low-
level models. The DM relates the low-level metamodels with constrains between
their metaclasses. The DM is used to generate the transformation T3, that uses
the trace models and the CMhigh−level to generate the CMlow−level. Finally,
the low-level models are composed and transformed into code by the original
model-to-text transformation (G1).

3 Derivation of Correspondence Model and Composition

The key element in our approach is the derivation of the low-level CM in order
to perform an homogeneous composition which we will briefly detail below.

We align the two high-level models using the CMhigh−level which relates the
elements to be composed. For example, the business model (Mbus) contains the
Attribute dueDate and the security model (Msec) contains the Resource date

1 MM = Metamodel, M = Model, T = Transformation chain



T1* T3 T2

MMbus* MMsec

MMjava* MMsec-java

Mbus*

Mjava Msec-java

Msec
CMhigh-level

Mfull

CMlow-level

composition

Application code
G1*

(*) Reused assets

TMA TMB
DM

Fig. 1. General Schema

that needs to be protected. These two elements are related by a correspondence
relationship in CMhigh−level. The modeler creates these correspondence links
because he knows the meaning of the relationships between elements.

Low-level correspondence relationships are derived automatically by the
transformation (T3). For instance, two elements a′ and b′, from Mjava and
Msec−java models respectively, will have a correspondence relationship if: 1) There
is a CM relationship at the higher level between a and b, where a′ was produced
from a by T1, and b′ was produced from b by T2. 2) The metaclasses ma′ and
mb′ where a′ conforms to ma′ and b′ conforms to mb′, allow for a correspondence
relationship between their instances. Intuitively, the first condition establishes
that elements a′ and b′ trace back to a pair of elements that have a high-level
correspondence relationship between them. The second condition means that the
metaclasses ma′ and mb′ are the same metaclass or extensions of the same one.
Therefore, it is permitted to define correspondence links between their instances
and finally to compose them. If both conditions are satisfied for an element a′

and b′, T3 will produce a correspondence link between a′ and b′.
In order to fulfill the first condition, we need traceability. For instance, when

T1 is applied to the Attribute dueDate, it is transformed into the Attribute
dueDate, the GetterMethod getDueDate and the SetterMethod setDueDate. To
make this information available to T3, we generate trace links between target
elements and source elements. The same happens in the T2 side, T3 needs to
know if the ReadMethod traces back to a related Resource. Once T1 and T2 are
executed, two tracing models are generated (TMA and TMS); with these links,
T3 can find the elements in both lower-level models that trace back to the pair
of related elements in both higher-level models.

To fulfill the second condition, the modeler has to define a Derivation Model
(DM ) to make explicit if the instances of two metaclasses can be related by a
correspondence link. Furthermore, the modeler has to decide constraints stating
if a couple of metaclasses can be composed. We have defined different types of
constraints in the Derivation Metamodel. These types are: Inheritable constraint
(to allow submetaclasss), Final constraint (to reject submetaclasses), Incompatible
constraint (to explicitly reject two metaclasses), and Composition constraint (to
allow composites). Due to space restrictions the details of the semantics of these
constraints are out of the scope of this paper.



To generate the CM Transformation (T3), the DM is processed by a High
Order Transformation (HOT ). This HOT analyzes the constraints in the DM and
generates the CM transformation T3. Therefore, it is not necessary to develop a
new transformation for every pair of metamodels. The developer only requires
defining the constraints between them.

The final step is the composition of both low-level models, which uses the
generated CMlow−level. This CM model has the information of what will be
composed. For instance, Classes in the application low-level model Mjava will be
composed with the annotated Classes in the security low-level model Msec−java,
the Attributes in Mjava with the private Attributes in Msec−java, and the
Methods in Mjava with the annotated methods in Msec−java. By using the
correspondence links it is possible to identify every pair of elements to be composed.
To perform the composition we use a mechanism based on the UML Package
Merge [3].

4 Conclusions

Our approach facilitates the modeling of multiple concerns in separated models
each one close to the problem domain. The different concern models are aligned
using a CM, which explicitly capture the overlapping and dependencies among
their elements. Our approach offers an automatic derivation mechanism to
maintain both models aligned from the high-level until the lowest level through
the TC. This is one factor that differentiates our approach from others approaches
where the correspondence relationships are only defined as an input, but not
maintained during the TC. As a result of delaying the composition to the lowest
level, where all the models conform to the same metamodel, it is possible to
perform a homogeneous composition using a single composition mechanism.

Summarizing, our approach offers several advantages: 1) it facilitates the
modeling of multiple concerns in separated models and close to the problem
domain, 2) it offers an automatic derivation mechanism to identify the elements
to compose in the low-level models based on relationships defined in the high-level,
3) it eases the use of a single composition mechanism at low-level of abstraction,
4) it reuses the existing assets (metamodels, models and transformations).

References

1. Tolvanen, J.P., Kelly, S.: Defining domain-specific modeling languages to automate
product derivation: Collected experiences. Software Product Lines (2005) 198-209

2. Bézivin, J., Bouzitouna, S., Del Fabro, M., Gervais, M.P., Jouault, F., Kolovos, D.,
Kurtev, I., Paige, R.F.: A canonical scheme for model composition. ECMDA-FA
(2006) 346-360

3. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge.
Software and Systems Modeling 7(4) (2008) 443-467

4. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability.
IBM Systems Journal 45(3) (2006) 515-526


