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Abstract As the application of model transformation
becomes increasingly commonplace, the focus is shifting
from model transformation languages to the model trans-
formations themselves. The properties of model trans-
formations, such as scalability, maintainability and reus-
ability, have become important. Composition of model
transformations allows for the creation of smaller, main-
tainable and reusable transformation definitions that to-
gether perform a larger transformation. This paper fo-
cuses on composition for two rule-based model transfor-
mation languages: the ATLAS Transformation Language
(ATL) and the QVT Relations language. We propose
a composition technique called module superimposition
that allows for extending and overriding rules in trans-
formation modules. We provide executable semantics as
well as a concise and scalable implementation of module
superimposition based on ATL.
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1 Introduction

The application of model transformation has become
increasingly commonplace in model-driven engineering,
with a number of stable model transformation languages
and tools available. The survey performed by Czarnecki
et al. in [5] already covers 30 different model transfor-
mation approaches. The Object Management Group has
even released the MOF Query/View/Transformation
(QVT) standard transformation language [16]. Whereas
the main focus of the model transformation community
initially lay on the expressiveness of transformation lan-
guages, other properties are starting to become impor-
tant, such as scalability, maintainability and reusabil-
ity of model transformation definitions. The term model
transformation definition refers to an expression in a
model transformation language and is intended to dis-
ambiguate from the term model transformation execu-
tion, which refers to the act of transforming models [8].
As model-driven engineering becomes more mature, the
model transformation definitions used typically become
more elaborate. During the evolution of a model trans-
formation definition, alternatives to the standard trans-
formation scenario are discovered. An example of such an
alternative is that we want to generate different getter
and setter operations for ordered and non-ordered prop-
erties with a multiplicity higher than one. Such alterna-
tives are integrated back into the original model transfor-
mation definition, which will grow in size and complex-
ity. This increase in size and complexity is detrimental to
maintainability and reusability of model transformation
definitions, especially where multiple complex transfor-
mation definitions are involved. Such complex transfor-
mation definitions may include general rules that occur
in other transformation definitions as well, while at the
same time they may include very specific rules that apply
only to that specific transformation definition.

In order to keep such model transformation defini-
tions maintainable, they eventually have to be split up
into separate model transformation definitions of a man-
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ageable size and scope. By this, we mean that the rules
in each transformation definition are highly reusable and
have a high degree of cohesion. Those separate model
transformation definitions have to be composable in or-
der to achieve the intended transformation result. By
composable model transformation definitions, we mean
that their specified behaviour can be composed into a
well-defined, combined behaviour. The concept of com-
posable modules is already well-known in the domain
of programming, where programs are also modularised
in order to cope with their (essential) complexity. In [4],
Cuadrado et al. also argument how factorisation and sub-
sequent composition of transformation definitions bene-
fits reusability. This paper includes a number of specific
model transformation scenarios that aim to demonstrate
how model transformation definitions can benefit from
modularisation.

Perhaps the most straightforward method of compo-
sition is to chain several model transformation executions
together by providing the output of one transformation
execution as input for another transformation execution.
Another method is to compose the rules from a num-
ber of transformation definitions, resulting in a single,
combined transformation execution. The latter method
typically requires the model transformation definitions
that will be composed to be expressed in the same lan-
guage. This is because the transformation language se-
mantics must be aligned in order to combine the parts of
several model transformation definitions. In a workshop
on the topic of model transformation composition [9],
these two methods were labelled as external and inter-
nal transformation composition, respectively. We believe
that both composition methods are necessary and com-
plement each other, as we will also illustrate in this paper
under subsection 4. Internal and external composition
do not interfere with each other: internal composition
combines model transformation definitions into a model
transformation execution, whereas external composition
combines model transformation executions.

The focus of this paper is on a technique for inter-
nal transformation composition, which means that the
composition technique is specific to the domain of a par-
ticular transformation language. We propose a compo-
sition technique called module superimposition. Module
superimposition allows one to overlay several transfor-
mation definitions on top of each other and then execute
them as one transformation. We will discuss our com-
position technique based on the ATLAS Transformation
Language (ATL) [7], which is used as an implementation
vehicle for our experiment. We provide an executable se-
mantics for ATL module superimposition in the form of
a higher-order transformation expressed in ATL. In addi-
tion, we provide a concise and scalable implementation of
ATL module superimposition, based on the ATL virtual
machine. As a secondary target, we discuss module su-
perimposition in the context of the QVT Relations [16]
language. By translating our composition technique to

QVT Relations, we assess whether our composition tech-
nique can be incorporated in model transformation lan-
guages other than ATL.

This paper is an extension of our ICMT 2008 confer-
ence paper [18]. In this paper, we provide a more in-depth
discussion of ATL module superimposition semantics, we
explain in detail how ATL module superimposition is im-
plemented in a concise and scalable way, we reflect on
limitations in the QVT Relations specification and tools
that affect the application of module superimposition to
QVT Relations, we provide a detailed comparison to re-
lated work and we provide an updated outlook on future
work.

The rest of this paper is organised as follows: in sec-
tion 2, we briefly explain ATL. After that, in section 3, we
introduce module superimposition based on ATL and we
also discuss how module superimposition interacts with
other composition techniques in ATL. In section 4, we
provide a number of usage scenarios for module super-
imposition. We then discuss module superimposition se-
mantics in section 5 by means of a higher-order transfor-
mation that performs module superimposition. We then
explain in section 6 how module superimposition is im-
plemented in ATL and which optimisations have been
made. We also discuss briefly in section 7 how module
superimposition applies to QVT Relations. After that,
section 8 discusses related work, followed by future work
in section 9 and the conclusion in section 10.

2 ATLAS Transformation Language

ATL is a MOF-based transformation language that com-
bines declarative rules with imperative statements. ATL
makes a strict distinction between input models and out-
put models: a model cannot serve as both input model
and output model in a single transformation execution.
Input models are read-only, while output models are
write-only. Output models are always empty at the start
of a transformation execution and cannot be navigated
during the transformation execution. One can refer to el-
ements in an output model via the implicit tracing mech-
anism, which is explained later in this section.

ATL supports three kinds of units: libraries, queries
and modules. Libraries contain helper methods, which
can be used in other ATL units. Queries define a read-
only navigation over one or more input models and re-
turn a simple value. Queries can also contain helper at-
tributes and methods. Modules consist of rules that trans-
form input model elements into output model elements,
and can also contain helper attributes and methods. ATL
modules are the only kind of unit that can return output
models. As our composition technique applies to ATL
modules, we limit ourselves to discussing modules in the
remainder of this section.
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2.1 Modules

An ATL transformation module has a number of input
models and typically one output model. It contains a
number of rules that define the mapping from source el-
ements to target elements. ATL has two kinds of rules:
matched rules and called rules. Matched rules are auto-
matically triggered, while called rules must be invoked
from a matched rule. There also exists a special kind
of matched rule that does not automatically trigger: the
lazy rule. Hence, a lazy rule must be explicitly invoked,
just like a called rule. The difference between lazy rules
and called rules is that lazy rules have a matching spec-
ification, just like matched rules, whereas called rules
have a parameter specification. We will limit ourselves
to an explanation of matched rules, as this is sufficient
to understand the principle of module superimposition.
A complete discussion of ATL can be found in [6].

Listing 1 shows an example ATL module, named
“UML2Copy”, that copies a UML Model element to an-
other UML Model element. The UML2Copy module has
one output model named “OUT” of model type “UML2”
and one input model “IN”, which is also of model type
“UML2”. In ATL, models and model types are bound to
concrete models and meta-models in a run configuration,
which is not part of the module. Multiple run configura-
tions can be defined for each ATL module. ATL does not
perform any type-checking at compile-time and allows
the developer to use any meta-class or property name.
Only at run-time, ATL resolves meta-classes and prop-
erties by their name in the bound meta-model. In our
example, the model type “UML2” is (intended to be)
bound to the Eclipse UML2 meta-model. The relevant
part of this meta-model is shown in Fig. 1.

module UML2Copy;
create OUT: UML2 from IN: UML2;
rule Model {

from s: UML2!"uml::Model"
to t: UML2!"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint)

}

Listing 1 UML2Copy transformation module

The transformation module has one matched rule
named “Model”. ATL matched rules have a from part
and a to part. The from part specifies which model ele-
ments from the input model(s) trigger the matched rule.
The to part creates one or more model elements in the
output model. In the example, any instance of the meta-
class “uml::Model” from the “UML2” meta-model trig-
gers the rule, where the “uml::” prefix specifies that the
“Model” meta-class is inside the “uml” package. ATL
uses ‘<-’ to specify assignment: the “name”, “visibility”

Model

viewpoint : String

PackageableElement

Package

NamedElement

name : String

visibility : VisibilityKind

packagedElement

0..*

Fig. 1 Part of the Eclipse UML2 meta-model.

and “viewpoint” values of the source Model “s” are as-
signed to same properties of the target Model “t”.

Listing 2 shows how multiple matched rules inter-
act. The “Model” rule now includes an assignment of
the “packagedElement” property. “s.packagedElement”
refers to a collection of packaged model elements in the
source model. Each of those model elements may sepa-
rately match against a rule in the transformation mod-
ule. Normally, “t.packagedElement” of the “Model” rule
is not supposed to contain the elements from
“s.packagedElement”, because those elements reside in
the source model. Rather, “t.packagedElement” should
contain the “equivalents” of those elements in the tar-
get model. These “equivalents” are the elements cre-
ated by a rule that matched against an element from
“s.packagedElement”. ATL’s implicit tracing mechanism
takes care of this and automatically translates assign-
ments of source elements to their target element counter-
parts whenever those source elements trigger a matched
rule in the transformation module.

module UML2ExtendedCopy;
create OUT: UML2 from IN: UML2;
rule Model {

from s: UML2!"uml:: Model"
to t: UML2!"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
packagedElement <- s.packagedElement)

}
rule Package {

from s: UML2!"uml:: Package" (
s.oclIsTypeOf(UML2!"uml:: Package "))

to t: UML2!"uml:: Package" (
name <- s.name ,
visibility <- s.visibility ,
packagedElement <- s.packagedElement)

}

Listing 2 UML2ExtendedCopy transformation module
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This kind of source-to-target element tracing [5] is
defined by the from element and the first to element.
Tracing information for the other to elements is also
recorded, but must be retrieved explicitly in ATL via
the “resolveTemp()” API method. The exact workings
of “resolveTemp()” are not relevant for the remainder
of this paper. The tracing information is used to trans-
late an assignment of source elements to target elements:
“t.packagedElement” in the “Model” rule will not con-
tain the elements of “s.packagedElement”, but rather the
(first) target elements that trace back to the elements of
“s.packagedElement”.

The “Package” rule copies all instances of
“uml::Package” that satisfy the additional condition
“s.oclIsTypeOf(UML2!uml::Package)”. This addition-
al condition is necessary to prevent the rule from trigger-
ing against subclasses of “uml::Package”, such as
“uml::Model”.

Listing 3 provides another example transformation
module to demonstrate ATL’s implicit tracing mecha-
nism1. The Class2Relational module translates classes
and attributes to relational database tables and columns.
The corresponding “Class” and “Relational” meta-
models are shown in Fig. 2 and Fig. 3. All classes are
translated to tables and all attributes with single values
are translated to columns. All multi-valued attributes
are translated to a separate table with an “id” column
and a column that contains the attribute values.

module Class2Relational;
create OUT: Relational from IN: Class;
rule Class2Table {

from c: Class!Class
to t: Relational!Table (

name <- c.name ,
col <- c.attr ->reject(e|e.multiValued ))

}
rule SingleValuedAttribute2Column {

from a: Class!Attribute (
not a.multiValued)

to c: Relational!Column (
name <- a.name)

}
rule MultiValuedAttribute2Column {

from a: Class!Attribute (a.multiValued)
to t: Relational!Table (

name <- a.owner.name + ’_’ + a.name ,
col <- Sequence{id , value}),

id: Relational!Column (
name <- ’Id ’),

value: Relational!Column (
name <- a.name)

}

Listing 3 Class2Relational transformation module

The interesting part of this transformation module
is the “col <- c.attr->reject(e|e.multiValued)”
assignment in the “Class2Table” rule. This assignment

1 Source: http://www.eclipse.org/gmt/omcw/

NamedElt 

+ name : String 

Classifier 

Attribute 

+ multivalued : Boolean 

type + 

DataType Class 

 
 

attr + 

* 
{ ordered } 

owner 
   

Fig. 2 The “Class” meta-model.

Named 
+ name : String 

Table Column 

owner + 

col + 

* 
{ ordered } 

keyOf + 0..1 key + * 

Type* type + 

Fig. 3 The “Relational” meta-model.

specifies that the columns of each class’ table are made
up out of the class’ attributes that are not multi-valued.
However, all attributes that are not multi-valued
are transformed into columns by the “SingleValuedAt-
tribute2Column” rule. Therefore, the implicit tracing
mechanism translates the attributes specified by the
“c.attr->reject(e|e.multiValued)” expression into
the corresponding columns, resulting from the “Single-
ValuedAttribute2Column rule”.

The order of execution for matched rules is not spec-
ified in ATL. Any execution order of the matched rules
should result in the same transformation output. This
is enforced in ATL by requiring that all matched rules
in a module are confluent [14], which in the context of
ATL means that no two rules are allowed to trigger on
the same input. As the transformation input cannot be
changed and the transformation output cannot be used
as input (output cannot be read), the to parts need not
be considered and non-overlapping from parts are suffi-
cient to ensure rule confluence in ATL.

3 Module superimposition

ATL transformation modules are normally run one trans-
formation module at a time. While ATL allows for factor-
ing out helper methods in libraries, the various kinds of
rules and helper attributes must always reside in an ATL
module. This limits the reuse of transformation rules

http://www.eclipse.org/gmt/omcw/
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to external composition, while helper attributes are not
reusable at all. This limitation in reuse can lead to code
duplication in transformation modules, which in turn in-
creases the maintenance effort.

We propose to split up transformation modules into
modules of manageable size and scope, which are then
superimposed on top of each other. This results in (the
equivalent of) a transformation module that contains the
union of all transformation rules. In addition to adding
rules, it is also possible for a transformation module to
override rules from the transformation modules it is su-
perimposed upon. By overriding, we mean replacing the
original rule with a new one, whereby it is not possi-
ble to refer to the original rule anymore. This allows for
rule-level adaptation of one transformation module by
another and improves reusability of transformation mod-
ules. Other rule-based model transformation languages
also support rule-level adaptation, such as QVT Rela-
tions and Operational Mappings [16], ETL [11] and
RubyTL [4]. The QVT Relations language is covered in
section 7, while the other languages are discussed in sec-
tion 8.

Rule overriding is done by name: superimposed rules
with the same name as an existing rule override the ex-
isting rule. This means that there is no obliviousness
between the modules in a superimposition, where mod-
ules do not need to consider the contents of other mod-
ules. The superimposing module typically needs to know
about the rule names and content in the base module,
such that it can override rules in a purposeful manner.
ATL’s implicit tracing mechanism makes that rules can
depend on the result of other rules in the transforma-
tion module (see subsection 2.1). In order to safely over-
ride a rule, the overriding rule should (1) match a su-
perset of the elements that were matched by the over-
ridden rule, and (2) create a superset of the output el-
ements, which have to be of the same or more specific
(substitutable) types, compared to the overridden rule.
Explained in terms of covariance and contravariance: (1)
the matching specification of the overriding rule must be
covariant with respect to the original matching specifi-
cation, while (2) the types of the output elements of the
overriding rule must be contravariant with respect to the
original output elements. In this way, substituting traces
are available for all original traces after overriding, and
their target elements can substitute the original target
elements. Safe rule overriding is only required if there are
rules that depend on the output of the overridden rule.

In a large transformation system, rule naming con-
ventions and/or a special management system for rule
naming may be required to perform meaningful super-
impositions. Such a naming convention scheme could use
the meta-class – or type – name in the rule matching
specification as a basis for the rule name, while adding a
descriptive term for any OCL restriction that is part of
the rule’s matching specification.

Rule overriding is not done on the basis of the rule’s
matching specification, as it quickly becomes unclear to
the developer which rule overrides which other rule and
for which subset of the input elements. Rule overrid-
ing based on matching specification would also allow the
overriding of multiple rules by a single rule, which makes
safe rule overriding even more difficult to accomplish.
Rule overriding based on matching specification would
also limit the ways in which one can modify the match-
ing specification in the overriding rule. It is not possible,
for example, to reduce the set of elements on which a rule
matches by overriding that rule. While that is not safe
rule overriding, it is a useful way to simulate deletion of
model elements in ATL.

In the case where partial overriding behaviour on
the basis of matching specifications is required, ATL’s
rule inheritance mechanism provides a better alterna-
tive. Rule inheritance requires that the developer makes
his/her intention to override another rule explicit by
adding an inheritance clause. In addition, the matching
specification of the sub-rule indicates for which subset of
input elements the sub-rule should be applied in favour
of the super-rule. The relationship between module su-
perimposition and rule inheritance is discussed in depth
in subsection 3.1.

Fig. 4 shows an example of a typical use case for
superimposition: the transformation rules of a general
module are reused and overridden where necessary by
specific modules that specify a slight variation in the
base behaviour. In this case, the transformation rules of
the UML2Copy transformation module are reused and
overridden where necessary by the UML2Profiles trans-
formation module. While the UML2Copy transformation
module given earlier in this paper contains only one rule,
the real UML2Copy is generated from the UML meta-
model and includes a transformation rule for every meta-
class of which it must copy the instances2. This amounts
to approximately 200 rules for the entire UML2 meta-
model. Any refinement transformation basically needs to
copy all meta-class instances, except for the few meta-
class instances that are refined. The UML2Profiles trans-
formation module applies a profile to the “uml::Model”
instance, provided it was not yet applied. All other ele-
ments should just be copied. To achieve this, the UML2-
Profiles module is superimposed on the UML2Copy mod-
ule. It overrides the existing “Model” rule, which copies
each “uml::Model” instance, by a version that checks
whether the profile we want to apply has already been
applied. It also introduces a new rule “ModelProfile”,
which checks that the profile we want to apply has not
been applied and then applies the profile. The resulting
transformation module contains all rules from Fig. 4 that
are not struck out.

As explained in section 2, ATL has a number of other
constructs besides matched rules, such as lazy rules,
called rules, helper attributes and helper methods. Simi-

2 http://tinyurl.com/uml2copy

http://tinyurl.com/uml2copy
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module UML2Copy;

rule Model { ... }
rule Package { ... }
rule Class { ... }
rule Interface { ... }
rule DataType { ... }
rule PrimitiveType { ... }
rule Property { ... }
rule Operation { ... }
rule Parameter { ... }
rule OpaqueBehavior { ... }
...

module UML2Profiles;

rule Model { ... }
rule ModelProfile { ... }

overrides

Superimposed on

extends

Fig. 4 ATL superimposition example.

lar to matched rules, all of these constructs have a name
that is registered in a global ATL namespace during ex-
ecution. Module superimposition therefore also applies
to all these constructs. Note that attribute and method
helpers also have a context in addition to their name:
multiple helpers with the same name can exist as long as
they have a different context. This is taken into account
by module superimposition, which overrides helpers by
name and context.

It is possible to superimpose more than one mod-
ule. The result of such a superimposition depends on
the order in which the modules are superimposed, in the
same way that the order of functions matter in sequen-
tial function composition, for example f(g(x)). In the
case of multiple superimposed modules, the first module
is superimposed on top of the base module, after which
the next module is superimposed on top of the result of
the previous superimposition, and so on. If more than
one superimposed module overrides the same rule, the
rule in the module that was superimposed last will be in
effect. The exact semantics of multiple module superim-
position are discussed in section 5.

3.1 Interaction with other composition techniques

Module superimposition interacts with other composi-
tion techniques in ATL, such as helpers and called rules.
In addition to the normal matched rules in ATL, mod-
ule superimposition also allows for reusing and overriding
called rules and helpers.

Called rules allow for functional composition in ATL.
Called rules can be invoked (with side-effects) and return
a value. With module superimposition, it is possible to
replace parts of the function invocation chain by overrid-
ing called rules. It is also possible to invoke called rules
from other modules in the superimposition stack. This
introduces dependencies on the other modules, however,
and should be used with care. It is advisable to limit
invocation of called rules in other modules to the mod-
ules “below” (i.e. modules that are superimposed upon,

not the superimposing modules). Any direct reference
to called rules (or helpers) in other modules already re-
quires those modules to be specified in the uses clause.
This way, dependencies between modules are made ex-
plicit. The uses clause is normally reserved for libraries
in ATL, since ATL could not combine multiple modules
in one transformation execution before the addition of
module superimposition. In the presence of module su-
perimposition, the uses clause becomes meaningful for
modules as well. The uses clause indicates what direct
(lexical) dependencies the current ATL unit (module/li-
brary/query) has to which other units. Similar to model
and model type specifications in ATL modules, the uses
clause refers to names of referenced units rather than
concrete units. The concrete referenced units are spec-
ified as part of a run configuration, and it is therefore
possible to use different library/module implementations
to satisfy a given uses clause.

Module superimposition has a similar effect on
helpers as on called rules. Helpers are different from
called rules in that they can have a context, however. The
ATL engine keeps track of helper attributes and meth-
ods per context. That way, it is possible to define multi-
ple helpers with the same name and a different context.
Depending on the context, the corresponding version of
the helper is used. As a consequence, superimposition
can override helpers per context in ATL, leaving helpers
with another context in place.

ATL supports another composition construct called
rule inheritance [12]. Rule inheritance allows one to de-
fine general transformation rules that can be extended by
specific rules. A sub-rule is required to specify a from
part that matches the same or less elements than its
super-rule. It can then inherit the to part from its super-
rule and add its own entries to the to part. In ATL’s cur-
rent implementation, it not possible to separately super-
impose sub- and super-rules. Only the sub-rules can be
manipulated by module superimposition. This is because
the ATL compiler in-lines the super-rules into the sub-
rules, and no super-rules exist in the ATL bytecode. As
module superimposition is performed after the compiler
does its work, the super-rules are no longer available.
In principle, module superimposition can be combined
with rule inheritance without this limitation. If super-
rules and sub-rules exist in the ATL bytecode, module
superimposition can add new sub-rules and override ex-
isting super- and sub-rules. Section 5 already describes
the semantics for this combination.

4 Superimposition usage scenarios

Module superimposition can be used in a number of spe-
cific model transformation scenarios. In our experiments
with ATL, we have identified three of these scenarios:

Variation of base behaviour – a base module speci-
fies the bulk of the transformation behaviour, while
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various smaller, superimposed modules specify vari-
ations of the base behaviour.

Factorisation of common behaviour – common be-
haviour in two or more transformations is factored
out into a separate module.

Factorisation of meta-model-specific behaviour –
whenever a meta-model spans multiple packages,
models or files, the transformation rules can be
spanned over multiple transformation modules ac-
cordingly.

Similar usage scenarios are also identified and ex-
plained in detail by Cuadrado et al. in [4], who provide a
solution based on the RubyTL transformation language.
RubyTL will be discussed further in section 8. In the
following subsections, we will give an ATL example for
each of the scenarios.

4.1 Variation of base behaviour

Module superimposition can be used to achieve a specific
“base behaviour” of the transformation engine, such as
copying the input model to the output model. In addition
to ATL’s standard and “refining mode” base behaviour,
which performs an implicit copy from input to output
model, superimposition can deal with non-standard sit-
uations, such as having multiple input (and/or output)
models and filter which elements must be copied. Smaller
transformation modules can be superimposed on top of
the base behaviour module to specify incremental varia-
tions in transformation behaviour. Our example UML2-
Copy transformation is meant to only copy elements
from the model “IN” to the model “OUT”. Listing 4
shows the UML2Profiles transformation module that is
superimposed on UML2Copy.

UML2Profiles adds an extra input model, “ACCES-
SORS”. The “ACCESSORS” model refers to a UML pro-
file that is applied to the “OUT” model. The elements
of the “ACCESSORS” model should not be copied, but
should instead be referenced from the “OUT” model.
This is achieved by checking that only elements con-
tained in the “inElements” helper attribute match the
from part from each rule. The “inElements” helper is
provided by the UML2Copy module and contains all el-
ements from “IN”.

By separating the general copying functionality
(UML2Copy module) from the specific refinement func-
tionality (UML2Profiles module), we have achieved bet-
ter maintainability, since it’s much easier to find a spe-
cific transformation rule within a small, specific transfor-
mation module. This particular example also uses exter-
nal composition by chaining together several refinement
transformation steps. Module superimposition is used in
each of the refinement steps. In this case, maintainabil-
ity is also improved by reduced code duplication in all
available refinement transformation modules; all copying
code is now centralised and available for reuse. Finally,

module UML2Profiles;
create OUT: UML2
from IN: UML2 , ACCESSORS: UML2;
helper def: accessorsProfile:
UML2!"uml:: Profile" =

UML2!"uml:: Profile ". allInstances ()
->select(p|p.name=’Accessors ’)->first ();

rule Model {
from s: UML2!"uml:: Model" (

i f thisModule.inElements ->includes(s)
then

s.profileApplication ->select(a|
a.appliedProfile=

thisModule.accessorsProfile)
->notEmpty ()

else false endif)
to t: UML2!"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
profileApplication <-

s.profileApplication)
}
rule ModelProfile {

from s: UML2!"uml:: Model" (
i f thisModule.inElements ->includes(s)
then

s.profileApplication ->select(a|
a.appliedProfile=

thisModule.accessorsProfile)
->isEmpty ()

else false endif)
to t: UML2!"uml:: Model" (

name <- s.name ,
visibility <- s.visibility ,
viewpoint <- s.viewpoint ,
profileApplication <-

s.profileApplication),
pa : UML2!"uml:: ProfileApplication" (
applyingPackage <- s,
appliedProfile <-

thisModule.accessorsProfile)
}

Listing 4 UML2Profiles transformation module

reusability is improved by the ability to extend and adapt
general transformation modules, such as UML2Copy.

4.2 Factorisation of common behaviour

Another usage scenario is the factorisation of common
transformation behaviour, where multiple transforma-
tion definitions share a significant part of their behaviour.
Fig. 5 shows an example of this scenario, where plat-
form ontologies are generated from Java API models
expressed in UML [19]. In this scenario, a number of
Java API models are correlated to each other in terms
of compatibility. The result is a set of OWL ontologies
that model the Java API elements and how they relate
to each other3. The arrows in the figure indicate which
models are passed between the different transformation

3 http://ssel.vub.ac.be/ssel/research:mdd:
platformkit:ontologies

http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
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executions. The Jar2UML transformation execution con-
verts Java class libraries in jar format into UML models.
The UML2ToAPIOntology.atl transformation execution
converts these UML models into OWL ontologies. The
source UML model of the left-hand transformation chain
is compared with the main source UML model in terms
of compatibility: each pair of API elements from the two
models is compared and determined to be incompati-
ble, compatible, or equivalent (two-way compatible). The
output OWL ontology of the left-hand transformation
chain is used to create references from the main output
OWL ontology to the left-hand OWL ontology. Different
levels of granularity can be achieved for the OWL on-
tologies by superimposing either UML2ToPackageAPI-
Ontology.atl or UML2ToClassAPIOntology.atl on top of
the base UML2ToAPIOntology.atl module. This will re-
sult in either a package-level or a class- and interface-
level ontology of the API elements. The base module
contains general helper attributes that are used to store
intermediate values, as well as a called rule that can be
invoked from one of the superimposed modules. In this
way, 152 lines of ATL code have been factored out into
the UML2ToAPIOntology.atl module, while UML2To-
PackageAPIOntology.atl and UML2ToClassAPIOntolo-
gy.atl still consist of 112 and 132 lines of code respec-
tively.

4.3 Factorisation of meta-model-specific behaviour

The third scenario deals with the situation where a meta-
model spans over multiple files/packages/models. In
other words: the meta-model is modularised into mul-
tiple, reusable parts. It makes sense to also modularise
transformation definitions based on this meta-model,
such that those transformation definitions are reusable
together with their specific meta-model part.

Fig. 6 shows an example of this scenario, provided
by the configuration language of our instant messen-
ger case study4, where the configuration language def-
inition consists of two parts. The configuration language
meta-model is split up in a general “Transformations”
package and a specific “InstantMessenger” package. The
model transformation definitions that make up the con-
figuration generator follow this modularisation: the Con-
figToBuildFile.atl transformation module has also been
split up in two parts: one for each meta-model package,
where ConfigToBuildFile.atl for “InstantMessenger” can
be superimposed on ConfigToBuildFile.atl for “Trans-
formations”. The (matched) rules of left-hand Config-
ToBuildFile.atl in Fig. 6 only refer to meta-classes from
the left-hand “Transformations” meta-model, while the
right-hand side ConfigToBuildFile.atl adds the rules that
refer to the meta-classes of the right-hand “InstantMes-
senger” meta-model. This allows for reuse of the general

4 http://ssel.vub.ac.be/ssel/research:mdd:
casestudies

“Transformations” infrastructure in other configuration
languages and generators.

5 Semantics of module superimposition

This section provides an in-depth discussion of the se-
mantics of module superimposition. An important as-
pect of the module superimposition semantics is that any
combination of superimposed modules can be rewritten
as a single transformation module. We have expressed
the rewriting of two combined modules as a single mod-
ule in a higher-order ATL transformation module. This
higher-order transformation module serves as a basis for
explaining the superimposition semantics. It also ex-
plains the semantics of superimposing more than one
module. The superimposition of the first module on top
of the base module results in a single, combined module.
The next superimposed module is then superimposed on
top of that single combined module. This is similar to
a sequential function composition f(g(x)), where f is
applied to the result of g(x). As such, the effect of su-
perimposing multiple modules is defined by applying the
higher-order transformation module multiple times, tak-
ing the output of the previous superimposition as the
new base module.

By expressing the semantics of ATL module super-
imposition in ATL itself, the semantics are executable
and do not need any alignment with the ATL semantics.
The actual implementation of ATL module superimposi-
tion, discussed in section 6, does not use this higher-order
transformation module, but provides a more scalable and
concise alternative based on the ATL virtual machine.
The ATL meta-model, on which the higher-order trans-
formation module operates, is given in Appendix A. The
start of the higher-order transformation module is shown
in Listing 5.

module Superimpose;
create OUT: ATL from IN: ATL , SUPER: ATL;
helper def: inElements:
Set(ATL!ATL:: LocatedElement) =

ATL!"ATL:: LocatedElement"
.allInstancesFrom(’IN ’)
->reject(o|o.isOverridden ())->asSet ()

->union(ATL!"ATL:: LocatedElement"
.allInstancesFrom(’SUPER ’)
->reject(s|

i f s.oclIsKindOf(ATL!"ATL::Rule")
or s.oclIsKindOf(ATL!"ATL:: Helper ")
then s.isOverriding ()
else false endif ));

Listing 5 Superimpose transformation module

The higher-order transformation module superimpo-
ses the “SUPER” transformation module on the “IN”
transformation module and writes the result into the
“OUT” transformation module. It copies all the elements

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
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classes.jar

j2me-pp-1_0.uml

j2me-pp-1_0.owl

Jar2UML

classes.jar

j2se-1_2.uml

j2se-1_2.owl

Jar2UML

UML2ToAPIOntology.atl
UML2ToPackageAPIOntology.atl /
UML2ToClassAPIOntology.atl

classes.jar

j2me-pp-1_1.uml

j2me-pp-1_1.owl

Jar2UML

UML2ToAPIOntology.atl
UML2ToPackageAPIOntology.atl /
UML2ToClassAPIOntology.atl

UML2ToAPIOntology.atl
UML2ToPackageAPIOntology.atl /
UML2ToClassAPIOntology.atl

module UML2ToAPIOntology;

helper ... includedPackages ... 
helper ... references …
helper ... owlClassesInPrev …
helper ... compatibleClasses ...
helper ... equivalentClasses ...
rule PrevNamespace { ... }
...

module UML2ToPackageAPIOntology;

rule Model { ... }
rule Package { ... }
… module UML2ToClassAPIOntology;

rule Model { ... }
rule Package { ... }
rule Classifier { ... }
…

Superimposed on

Fig. 5 ATL superimposition scenario for generation of platform ontologies.

module ConfigToBuildFile;

rule ConfigRoot { ... }
rule JavaMapping { ... }
rule Java1DataTypes { ... }
rule Java2DataTypes { ... }
...

module ConfigToBuildFile;

rule ConfigRoot { ... }
rule AWTUserInterface { ... }
rule JabberNetwork { ... }
...

Superimposed on

Transformations MM InstantMessenger MM

<<import>>

Corresponding generator for Corresponding generator for

Fig. 6 ATL superimposition scenario for instant messenger configuration language.

in “inElements” directly to “OUT”. “inElements” is
a helper attribute that contains all elements from “IN”
that are not overridden, and all elements from “SUPER”
excluding overriding rules and helpers. There are special
transformation rules for overridden rules and helpers.

Listing 6 gives the definition of an overridden rule:
each rule in the base module is overridden if and only if
there exists a rule with the same name in the superim-
posed module and that rule is also of the same type. The
rule type refers to the various kinds of rules available in
ATL: matched rules, called rules and lazy rules (see also
Appendix A). This means that the scope of overriding

is always limited to the exact language construct: it is
not possible to override matched rules by called rules,
for example.

helper context ATL!"ATL::Rule"
def :isOverridden (): Boolean =

ATL!"ATL::Rule"
.allInstancesFrom(’SUPER ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

Listing 6 isOverridden helper for ATL::Rule
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Rule deletion is not directly supported, but can be
achieved by changing the condition of the from part.
Overriding a rule by a rule that has a from part with
the condition “false” has an equivalent effect to delet-
ing that rule, since the rule can never trigger. This kind
of rule “deletion” only applies to matched rules: lazy
rules and called rules are triggered explicitly by an in-
vocation. Enabling deletion of lazy/called rules is also
dangerous, as it will invalidate any existing invocation
of that rule. Deletion of matched rules is also not with-
out risk, because of the effects it has on the implicit
tracing mechanism. The affected source elements are no
longer mapped to a target element, which may change
the result of assignments in other rules.

The transformation rule in Listing 7 deals with over-
ridden matched rules. Similar rules exist for overridden
lazy rules, called rules and helper attributes/methods.
The “OverriddenMatchedRule” transformation rule
transforms the overridden matched rules from “IN” to
“OUT” using all the property values from the overriding
matched rule “o”. As a consequence, the output matched
rule “t” will have all the properties of “o”, but it will still
occur in the same place in “OUT” as “s” did in “IN”.
This is achieved by ATL’s implicit tracing mechanism,
which maps all “s” references to “t” references.

helper def: realInElements:
Set(ATL!"ATL:: LocatedElement ") =

ATL!"ATL:: LocatedElement"
.allInstancesFrom(’IN ’);

rule OverriddenMatchedRule {
from s: ATL!"ATL:: MatchedRule" (

i f thisModule.realInElements
->includes(s) then

s.oclIsTypeOf(ATL!"ATL:: MatchedRule ")
and s.isOverridden ()

else false endif)
using { o: ATL!"ATL:: MatchedRule" =

s.overriddenBy (); }
to t: ATL!"ATL:: MatchedRule" (

name <- o.name ,
...)

}

Listing 7 OverriddenMatchedRule transformation rule

This becomes clearer when looking at Listing 8, which
shows the transformation rule that deals with the trans-
formation module element. The “Module” transforma-
tion rule copies only the transformation module element
from “IN”. The contained elements are retrieved from
the “SUPER” transformation module in the using part.
They are then appended to the (ordered) list of existing
elements. In the case of overridden matched rules, the
overridden rule is already contained in “s.elements”.
After the assignment, “t.elements” contains the same
ordered list, except that its elements are all mapped to
their “OUT” counterparts by the implicit tracing mech-
anism. All references to overridden rules and helpers are
treated in this way.

rule Module {
from s: ATL!"ATL:: Module" (

thisModule.realInElements ->includes(s))
using {

superElements:
Sequence(ATL!"ATL:: ModuleElement ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.elements

->select(e|not e.isOverriding ()))
->flatten ();

superInModels:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.inModels)->flatten ();

superOutModels:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.outModels)->flatten ();

superLibraryRefs:
Sequence(ATL!"ATL:: LibraryRef ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.libraries)->flatten ();

}
to t: ATL!"ATL:: Module" (

name <- s.name ,
...,
libraries <- s.libraries

->union(superLibraryRefs),
inModels <- s.inModels

->union(superInModels),
outModels <- s.outModels

->union(superOutModels),
elements <- s.elements

->union(superElements ))
}

Listing 8 Module transformation rule

While ATL semantics specify that the execution or-
der of matched rules does not matter, ATL’s meta-model
does keep a record of the rule order. This order is also
followed by the ATL execution engine. By taking into
account the rule ordering in our higher-order transfor-
mation, an exact specification is given of the structure
of the resulting module composition. This structure in
turn defines the behaviour in the current ATL execution
engine.

The “Module” transformation rule also specifies how
models and model types in the base and superimposed
module are dealt with. The superimposition result con-
tains the union of input models and the union of out-
put models, all with their corresponding model types.
Listing 9 shows how the “OclModelElement” rule makes
sure that all references to “OCL::OclModel” instances
are resolved to either the original instance or the overrid-
ing instance, if there is one. It uses the “overriddenBy”
helper to do so. The “OCL::OclModel” instances refer to
input/output (meta-)models that are defined in a trans-
formation module.
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helper context ATL!"OCL:: OclModel"
def: overriddenBy (): ATL!"OCL:: OclModel" =

l e t selfInSuper:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"OCL:: OclModel"
.allInstancesFrom(’SUPER ’)
->select(r|

r.name = self.name and
r.oclType () = self.oclType ()) in

i f selfInSuper ->isEmpty () then self
else selfInSuper ->first() endif;

rule OclModelElement {
from s : ATL!"OCL:: OclModelElement" (

thisModule.inElements ->includes(s))
to t : ATL!"OCL:: OclModelElement" (

location <- s.location ,
commentsBefore <- s.commentsBefore ,
commentsAfter <- s.commentsAfter ,
name <- s.name ,
type <- s.type ,
model <- s.model.overriddenBy ())

}

Listing 9 OclModelElement transformation rule

The full higher-order transformation is split up in
two modules: ATLCopy.atl and Superimpose.atl, where
ATLCopy.atl is a simple copying transformation and Su-
perimpose.atl provides the special transformation rules
for superimposition. For the full source code, see Ap-
pendix B. As a proof of concept, Superimpose.atl is su-
perimposed on ATLCopy.atl using the regular superim-
position implementation (see section 6) and then applied
to ATLCopy.atl and itself. The result is a single trans-
formation module, ATLSuperimpose.atl, that represents
the composition of ATLCopy.atl and Superimpose.atl.
We have then verified that applying ATLSuperimpose.atl
to ATLCopy.atl and Superimpose.atl yields the same re-
sults as the regular superimposition implementation ap-
plied to ATLCopy.atl and Superimpose.atl by comparing
the results. This is not a guarantee that the implementa-
tion always yields the same results as the specification
given here, but it serves as a test case for checking that
the superimposition implementation follows the specifi-
cation for a given input.

6 Implementation of module superimposition

While the semantics we have provided in section 5 are
executable, they are not optimal as an implementation
of module superimposition for ATL. One of the reasons
for using module superimposition was to improve scala-
bility; each time a change is made in a single transfor-
mation module, only that module needs to be recom-
piled. If this module is part of a superimposition com-
position, all modules involved must first be composed
and the resulting module must then be compiled. In or-
der to achieve improved scalability, module superimpo-
sition must be performed on the compiled ATL modules.
That way, module superimposition has no effect on the

compiler workload. This section explains how module su-
perimposition is implemented in ATL and demonstrates
how module superimposition can be implemented in a
scalable and concise way in the ATL virtual machine.

Module superimposition is implemented as a load-
time construct: there is no real transformation module
that represents the result of superimposing several mod-
ules on top of each other, as was the situation in the pre-
vious section. Instead, several modules are loaded on top
of each other, overriding existing rules and adding new
rules. This approach leverages the natural semantics of
extending and overriding in the ATL loading mechanism.

Fig. 7 shows a schematic overview of the superimpo-
sition implementation in the ATL virtual machine, and
shows how the “ASM” representations of a base module
and a superimposed module are loaded in sequence into
ATL’s execution environment. ATL transformation mod-
ules are first compiled to “ASM” instruction (or byte-
code) format. ASM files contain operations with signa-
tures, where a signature consists of a name, context type
and a list of parameters. The body of each operation con-
sists of a list of ASM instructions. Helper methods and
helper attribute initialisation expressions are represented
as operations in ASM format. Lazy and called rules are
represented as operations with context type “Module”.
Matched rules are represented by two operations: one for
matching and one for applying the rule, both with con-
text type “Module” ( matchModel and execModel for
the “Model” matched rule in Fig. 7).

The ATL execution environment allows for loading
(and reloading) operations into its lookup table. Rules
and helpers are represented by such operations in their
compiled form. Therefore, it is possible to load additional
rules and helpers and reload overriding rules and helpers
into the VM’s lookup table. As a result, the optimised
implementation of module superimposition consists of
377 lines of Java code5, whereas the combined higher-
order transformation specification explained in section 5
(ATLCopy.atl and Superimpose.atl) consists of 1035 lines
of ATL code. Module superimposition has been imple-
mented in ATL since the end of 2006 and was included
in the ATL release since version 2.06.

The remainder of this section is organised as follows:
subsection 6.1 provides a technical description of the
ASM loading procedure as implemented in the current
ATL engine with module superimposition support. Sub-
section 6.2 discusses the safety issues related to the byte-
code adaptation that is performed as part of the ASM
loading procedure. Finally, subsection 6.3 discusses the
benefits and drawbacks of ATL’s module superimposi-
tion implementation.

5 http://tinyurl.com/AtlSuperimposeModule-java
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=

156095

http://tinyurl.com/AtlSuperimposeModule-java
https://bugs.eclipse.org/bugs/show_bug.cgi?id=156095
https://bugs.eclipse.org/bugs/show_bug.cgi?id=156095
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6.1 The ASM loading procedure

Whenever an ATL transformation is launched, the mod-
els and base transformation module (in ASM format) are
loaded first. Then, each ATL library is loaded and its op-
erations are registered in the operation lookup table of
the execution environment. After that, the operations of
the base transformation are registered in the lookup ta-
ble. From here on, the explanation assumes the output
of the atl2006 compiler. The situation is slightly differ-
ent for the older atl2004 compiler, but the principle is
the same. Our implementation covers the output of both
compilers.

At this point, each superimposed module is loaded
in sequence. The ASM file for each module contains a
main, matcher and exec operation that perform
helper attribute initialisation and the application of the
matched rules. For each superimposed module, the bod-
ies of the main, matcher and exec operations al-
ready registered in the execution environment are adap-
ted, starting with the main operation. The helper at-
tribute initialisation code from the superimposed mod-
ule is inserted in the registered main operation. The ad-
dress offsets for branching instructions in the registered
main operation are updated to reflect the inserted in-
structions. The main operation from the superimposed
module is then removed.

Consider the instructions of the UML2Copy.atl main
operation in Listing 10. Lines 1–16 represent boilerplate
instructions that occur in every module. Lines 17–23 rep-
resent initialisation code for the “inElements” helper at-
tribute. Lines 24–32 are again boilerplate instructions.
The exact semantics of each instruction can be found
in the ATL virtual machine specification [1], but this
information is not required to understand the loading
procedure. Any helper attribute initialisation code from
a superimposed module should be inserted just before
instruction 24. The recurring boilerplate instruction pat-
terns are used to find the specific helper attribute initial-
isation code.

Now, the matcher and exec operations are
adapted; these operations contain only instructions cor-
responding to invocations of the matching and applica-
tion operations for each matched rule, such as
“ matchModel ” and “ execModel ” in Fig. 7. Any
such instructions corresponding to invocations that ex-
ist in the superimposed “ matcher ” and “ exec ”
operations, but not in the registered operations, are ap-
pended to the registered operations. When the bodies of
the registered “ matcher ” and “ exec ” operations
have been adapted, the “ matcher ” and “ exec ”
operations from the superimposed module are removed.
Finally, the remaining operations of the superimposed
module are registered. Note that the operation signa-
tures for rules and helpers are different, even if the rule/
helper names are the same. This way, name clashes be-
tween rules and helpers, for example, are avoided. Be-

1 getasm
2 push OclParametrizedType
3 push #native
4 new
5 dup
6 push Collection
7 call J.setName(S):V
8 dup
9 push OclSimpleType

10 push #native
11 new
12 dup
13 push OclAny
14 call J.setName(S):V
15 call J.setElementType(J):V
16 set col
17 getasm
18 push ecore:: EObject
19 push UML2
20 findme
21 push IN
22 call J.allInstancesFrom(J):J
23 set inElements
24 getasm
25 push TransientLinkSet
26 push #native
27 new
28 set links
29 getasm
30 call A.__matcher__ ():V
31 getasm
32 call A.__exec__ ():V

Listing 10 UML2Copy main operation instructions

cause of this, it is also impossible to override a rule by a
helper (or vice versa) with module superimposition.

Listing 11 shows an extract of the UML2Copy.atl
matcher operation instructions. This operation con-

sists entirely of a repeated pattern of two instructions for
each matched rule. These patterns are compared against
the patterns in the matcher operation of the super-
imposed module. Any new patterns in the superimposed
matcher operation are appended to the registered
matcher operation.

1 getasm
2 call A.__matchEAnnotation ():V
3 getasm
4 call A.__matchEStringToStringMapEntry ():V
5 getasm
6 call A.__matchComment ():V
7 ...

Listing 11 UML2Copy matcher operation instructions

Listing 12 shows an extract of the UML2Copy.atl
exec operation instructions. Similar to the
matcher operation, this operation also consists en-

tirely of a repeated pattern, this time consisting of ten
instructions for each matched rule. These patterns are
compared against the patterns in the exec operation
of the superimposed module. Any new patterns in the
superimposed exec operation are again appended to
the registered exec operation.
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module UML2Copy;

operation main
operation __matcher__
operation __exec__
operation __matchModel
operation __matchPackage
...
operation __execModel
operation __execPackage
...

module UML2Profiles;

operation main
operation __matcher__
operation __exec__
operation __matchModel
operation __matchModelProfile
operation __execModel
operation __execModelProfile

ATL ExecEnv

Operation lookup table

signature_1 -> code_1
      ... -> ...
      ... -> ...
      ... -> ... 1

Model A Model B

MModel A MModel B

2

Fig. 7 ATL superimposition implementation.

1 getasm
2 get links
3 push EAnnotation
4 call NTransientLinkSet ;. getLinksByRule(S):

QNTransientLink;
5 iterate
6 store 1
7 getasm
8 load 1
9 call A.__applyEAnnotation(NTransientLink ;):V

10 enditerate
11 getasm
12 get links
13 push EStringToStringMapEntry
14 call NTransientLinkSet ;. getLinksByRule(S):

QNTransientLink;
15 iterate
16 store 1
17 getasm
18 load 1
19 call A.__applyEStringToStringMapEntry(

NTransientLink ;):V
20 enditerate
21 ...

Listing 12 UML2Copy exec operation instructions

6.2 Safety of bytecode adaptation

The adaptation of instructions as we have just discussed
comes with a risk. We make certain assumptions about
the ATL compiler output: for example, each main opera-
tion starts with 16 boilerplate instructions, followed by a
variable number of helper attribute initialisation instruc-
tions, followed again by at least 5 boilerplate instructions
ending with set links. If we encounter other ASM code
than expected, our superimposition implementation may
produce an erroneous ASM instruction sequence.

One way to cover this risk is to require (and test
for) a specific ATL compiler implementation. Any com-
piler change will immediately break our superimposition
implementation. As the superimposition implementation
only covers a small part of the generated ASM code, we
have chosen to perform a number of local “sanity” tests
on the generated ASM code. This allows for changes in
the ATL compiler without breaking the superimposition

implementation, as long as the local tests succeed. The
superimposition implementation applies the following lo-
cal sanity tests before it performs the superimposition:

1. Each main is at least 21 instructions long. The 21 is
made up by a start boilerplate of 16 instructions that
is contained in each transformation module, and an
insertion point for instructions in the main that lies
5 instructions before the set links instruction.

2. Instruction 16 of each main is set col. This is a char-
acteristic instruction that cannot occur anywhere else
in the transformation module – and hence main –
and the last instruction of the start boilerplate. This
check is used as a partial verification that the ex-
pected start boilerplate is present.

3. There exists an instruction set links after instruc-
tion 16 for each main. This check is used to verify
that we can properly recognise the end boilerplate by
looking up the characteristic instruction (set links
cannot occur anywhere else in a transformation mod-
ule).

4. The first 16 instructions of the base main and the su-
perimposed main are the same. This check augments
check 2 and verifies that the start boilerplates of both
main operations are the same.

5. Each matcher and exec contain only whole
patterns of two respectively ten instructions long.
This check verifies that matcher and exec con-
sist of instruction runs of the same length that can
be compared against each other and inserted as whole
patterns (instead of dealing with each single instruc-
tion separately).

6. The starting instruction of each pattern in each
matcher and exec is always the same. This

check augments check 5 by checking for an indica-
tion that the instruction runs are in fact repetitive
patterns.

7. The starting instructions of the patterns in a base
and superimposed matcher or exec are al-
ways the same. This check further augments checks 5
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and 6 by checking that both transformation modules
use the same instruction patterns in matcher and
exec .

6.3 Discussion

We mentioned earlier that the situation is slightly dif-
ferent for the atl2004 compiler: it is not possible to use
superimposition on a mix of atl2006 and atl2004 com-
piler output. The above sanity checks also detect this
situation, as the first 16 instructions already differ for
both compilers.

As normally each ATL transformation is compiled
to “ASM” instruction format before it is executed, this
load-time superimposition approach significantly
improves scalability. Only the ATL modules that have
changed need to be recompiled, regardless of the other
ATL modules it will be combined with. Consider the first
scenario given in subsection 4.1: by separating the gen-
eral copying functionality (UML2Copy module) from the
specific refinement functionality (UML2Profiles module),
we have achieved better scalability in our development
process where we don’t have to recompile ±200 copying
rules each time we change a refinement rule.

The cost of the improved scalability is the depen-
dency on the ATL compiler implementation: changes to
the ATL compiler may violate the assumptions made
by the superimposition implementation and effectively
break it. Our experience so far shows that ATL com-
piler changes are not very common and typically concern
small changes. We have managed to adapt our implemen-
tation in a matter of hours when ATL switched from the
atl2004 compiler to the atl2006 compiler. The depen-
dency on the output of the ATL compiler also causes
some limitations that cannot easily be addressed. By in-
lining super-rule instructions into the sub-rule operations
in rule inheritance, for example, it becomes impossible
to do any manipulation of super-rules after compilation.
Such limitations require the compiler to be modified.

The performance overhead of the superimposition it-
self is minimal. The ATL engine already keeps an inter-
nal look-up table of available operations when loading
a transformation module. Module superimposition up-
dates that table as new modules are loaded on top of
the previously loaded modules. The adaptation of the
main, matcher and exec operations form a very
small overhead, as only a small fraction of the instruc-
tions have to be analysed and manipulated. As a com-
parison, parsing ASM files currently takes much longer
than performing superimposition.

7 Superimposition of QVT Relations
transformations

Module superimposition can be used for other languages
than ATL, as long as the transformation language sup-

ports a number of required features/semantics. The fol-
lowing is a list of language requirements for the applica-
tion of module superimposition:.
Labeled rules and/or functions – module superim-

position operates at the level of matched, lazy and
called rules, and helper methods and attributes in
the case of ATL. It uses the name – or label – of a
rule, and the signature of a helper method, to deter-
mine whether a rule/method/attribute is appended
to the base module or overridden. Therefore, a trans-
formation language must at least have labels for its
rules, functions or fields, such that module superim-
position can distinguish between append and over-
ride situations. For functions, these labels can also
take the form of signatures. It is also assumed here
that one can distinguish between the different kinds
of constructs (rules/functions/fields) for the purpose
overriding elements of the same kind only.

Replaceable rule and/or function construct –
module superimposition can append and replace rules,
methods and attributes in the case of ATL. This is
possible, because rules, methods and attributes can
be replaced by compatible rules, methods and at-
tributes, as explained in section 3 in terms of safe
rule overriding. In order to apply module superimpo-
sition to a transformation language, it must be able
to append new rules, functions or fields, and replace
existing ones. Determining when it is safe to append
or replace a rule/function/field relies heavily on the
transformation language’s semantics, and must be re-
evaluated for each transformation language.

Module construct – module superimposition compos-
es one module of rules, methods and attributes with
another module of rules, methods and attributes in
the case of ATL. A transformation language must
have a module construct that separates the group
of base rules/functions/fields from the superimposed
rules/functions/fields.
QVT Relations is a transformation language that sat-

isfies these requirements. In the Relations language, a
transformation between models is specified as a set of
labeled relations that must hold for the transformation
to be successful. Each model in the transformation con-
forms to a model type, which is a specification of the
kind of model elements that can occur in a conforming
model. A model type is typically represented by a meta-
model. The models in a transformation are named and
are bound to a specific model type.

As ATL historically served as a submission to the
QVT Request For Proposals [15], QVT Relations shows
similarities to ATL: QVT Relations uses the term “trans-
formation” for a transformation module and “relation”
for a transformation rule, where top relations correspond
to the automatically invoked ATL matched rules, and
normal relations correspond to ATL lazy rules. There
are also some important differences between QVT Re-
lations and ATL: QVT Relations transformations can
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be bidirectional and QVT Relations is strictly declara-
tive, while ATL is a hybrid declarative/imperative lan-
guage. Furthermore, QVT Relations uses the notion of
checking transformations and enforcing transformations,
where a checking transformation only verifies if the re-
lations hold, and an enforcing transformation actually
changes the output model such that the relations hold.
Whereas ATL matched/lazy rules make a clear distinc-
tion between from and to parts, QVT relations can have
two or more domains. These domains can be used as a
matching expression, or from part, as well as an output
expression, or to part. Domains can be marked as check-
only or enforce, which allows one to indicate whether
a domain is allowed to be used for creating output. Each
relation can have a when and where clause. A when
clause specifies a necessary condition under which a re-
lation applies or is enforced. A where clause specifies
additional conditions that apply or are enforced when-
ever the relation containing the where clause applies or
is enforced. It is possible to specify OCL constraints as
well as other relations in when and where clauses.

transformation UML2Copy
(IN:UML2 , OUT:UML2) {

top relation Model {
enforce domain IN s: uml::Model {

name = n,
visibility = v,
viewpoint = vp ,
profileApplication = pa

};
enforce domain OUT t: uml:: Model {

name = n,
visibility = v,
viewpoint = vp ,
profileApplication = pa

};
}
...

}

Listing 13 UML2Copy QVTR transformation

Listing 13 shows our UML2Copy example from List-
ing 1 as a Relations specification, with the addition of
the “profileApplication” property assignment. The dots
indicate that we have omitted a number of relations. We
still need one relation for each meta-class in the UML2
meta-model, just like in our ATL version of the transfor-
mation described in subsection 4.1. Each of these rela-
tions follow the same pattern as the given “Model” rela-
tion. Now let’s consider the same scenario, in which we
superimpose the Relations version of UML2Profiles on
UML2Copy. Listing 14 shows UML2Profiles as defined
in QVT Relations.

The UML2Profiles transformation definition uses a
checkonly domain to find the “Accessors” profile ele-
ment, such that it can be applied to the model, if neces-
sary. Both relations in UML2Profiles use a when clause
to define the condition under which the relation should

transformation UML2Profiles
(IN:UML2 , ACCESSORS:UML2 , OUT:UML2) {

top relation Model {
enforce domain IN s: uml::Model {

name = n,
visibility = v,
viewpoint = vp ,
profileApplication = p

};
enforce domain OUT t: uml:: Model {

name = n,
visibility = v,
viewpoint = vp,
profileApplication = p

};
checkonly domain ACCESSORS
accessorsProfile: uml:: Profile {

name = ’Accessors ’};
when {p->select(a|

a.appliedProfile=accessorsProfile)
->notEmpty ();

}
}
top relation ModelProfile {

enforce domain IN s: uml::Model {
name = n,
visibility = v,
viewpoint = vp,
profileApplication = p

};
enforce domain OUT t: uml:: Model {

name = n,
visibility = v,
viewpoint = vp,
profileApplication = p->union(Set{

pa: uml:: ProfileApplication {
applyingPackage = t,
appliedProfile =

accessorsProfile }})
};
checkonly domain ACCESSORS
accessorsProfile: uml:: Profile {

name = ’Accessors ’
};
when {

p->select(a|
a.appliedProfile=accessorsProfile)

->isEmpty ();
}

}
}

Listing 14 UML2Profiles QVTR transformation

be applied (i.e. enforced). The “Model” relation applies
when the “Accessors” profile has already been applied
to the source model, and the “ModelProfile” relation ap-
plies if this is not the case.

The illustration of superimposition in Fig. 4 is also
valid for QVT Relations. A QVT transformation is the
equivalent of an ATL module and a QVT relation is the
equivalent of an ATL rule for the purpose of superim-
position. When the two relations “Model” and “Model-
Profile” are superimposed on UML2Copy, the “Model”
relation is overridden and the “ModelProfile” relation is
added to the base transformation.
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The fact that relations can be bidirectional has minor
influence on superimposition semantics. Bidirectional re-
lations are only interpreted in one direction at a time and
can be seen as two transformation rules expressed in a
single relation. Since module superimposition operates
at the granularity of relations, this means that one can
only extend and override a whole relation expression, in-
cluding all directions in which it can be interpreted.

The effect of overriding or adding relations to the
existing set of relations is not so easy to specify, un-
fortunately. Listing 15 shows an attempt at expressing
the UML2ExtendedCopy ATL module from Listing 2 in
QVT Relations. QVT’s when clause is used to achieve
the same effect as rule inheritance in ATL: the “Model”
relation extends the “Package” relation with a binding of
the “viewpoint” property (remember that “Model” is a
subclass of “Package” – see also Fig. 1). However, when
describing the binding of the “packagedElement” prop-
erty in the “Package” relation, we run into problems.
The QVT specification makes no mention of an implicit
tracing mechanism for QVT Relations, so we must spec-
ify the tracing explicitly. We do this in a where clause,
in which we state that “spe” is related to “tpe” via
the “PackageableElement” relation. However, the “Pack-
ageableElement” relation does not apply to sequences
of “PackageableElement”, but single “PackageableEle-
ment” instances. It is not clear whether QVT Relations
can perform implicit “mapping” of the “PackageableEle-
ment” relation to each of the values in the “spe” and
“tpe” sequences.

Assuming that the relationship between “spe” and
“tpe” can be expressed in terms of the other relations,
the effect on module superimposition is clear. Each ref-
erence to a relation requires any overriding relations to
be safe substitutes for the overridden relation. A safe
substitute relation must have at least the same number
of domains available, with the exact same types. This is
in contrast to the notion of safe rule overriding in ATL,
where the from part must match a superset of elements
(the same or more general element type) and the to part
must create elements that are of the same or more spe-
cific type. This is because QVT relations can be inter-
preted in multiple directions and any domain can play
the role of both an ATL from and to part. An exception
to this situation are the checkonly domains, which only
play the role of an ATL from part. As such, the type of a
domain that overrides a checkonly domain must be the
same or more general than the original type (covariant).
Finally, it is possible to override a checkonly domain
with an enforce domain, but not the other way around.
A checkonly domain can only be used as input, while
an enforce domain can be used as both input and out-
put. As such, enforce implies checkonly, but not the
other way around.

In order to provide semantics for QVT Relations su-
perimposition, we can write a higher-order transforma-
tion definition that performs superimposition on two

transformation UML2ExtendedCopy
(IN:UML2 , OUT:UML2) {

top relation Model {
enforce domain IN s: uml::Model {

viewpoint = vp ,
};
enforce domain OUT t: uml:: Model {

viewpoint = vp ,
};
when {

Package(s, t);
}

}
top relation Package {

enforce domain IN s: uml:: Package {
packagedElement = spe ,
profileApplication = pa

};
enforce domain OUT t: uml:: Package {

packagedElement = tpe ,
profileApplication = pa

};
when {

PackageableElement(s, t);
}
where {

PackageableElement(spe , tpe);
}

}
top relation PackageableElement {

enforce domain IN
s: uml:: PackageableElement {};
enforce domain OUT
t: uml:: PackageableElement {};
when {

NamedElement(s, t);
}

}
top relation NamedElement {

enforce domain IN s: uml:: Package {
name = n,
visibility = v

};
enforce domain OUT t: uml:: Package {

name = n,
visibility = v

};
}

}

Listing 15 UML2Copy QVTR transformation

QVT Relations transformation definitions. Such a
higher-order transformation definition is preferably ex-
pressed in QVT Relations as well, as the semantics of
module superimposition for QVT Relations should be
based only on the semantics of QVT Relations itself.
However, if we want the same value as for the ATL su-
perimposition semantics, we should provide executable
semantics. That requires a tool that implements QVT
Relations.

There are a number of tools that implement QVT
Relations, such as Medini QVT7, MOMENT-QVT [2],

7 http://projects.ikv.de/qvt

http://projects.ikv.de/qvt


Module superimposition: a composition technique for rule-based model transformation languages 17

ModelMorf8 and Eclipse M2M Declarative QVT9. Me-
dini QVT claims to provide a full implementation of
QVT Relations, based on its textual concrete syntax.
It does not make available QVT’s meta-model to the
end user and it is therefore not possible to use Medini
QVT for higher-order transformations. The Medini QVT
tool has also been used to verify the syntax of the QVT
Relations transformation definitions in this paper. On
closer inspection of the Medini QVT source code bun-
dle, we found that the Medini developers have discovered
issues with the QVT Relations standard that made it im-
possible for them to implement all of it10. Then again,
the problem with the binding of the “packagedElement”
property described in Listing 15 does not occur in Me-
dini QVT. Medini QVT implicitly binds all containment
properties in a relation, which includes “packagedEle-
ment”. As a result, the “packagedElement” binding and
the accompanying where clause do not appear in the
Medini QVT version of UML2ExtendedCopy. This im-
plicit binding is performed according to an implicit trac-
ing mechanism, which translates elements in one model
to elements in another model using the available rela-
tions. MOMENT-QVT does appear to use the QVT
meta-model, but does not provide a download link and
claims to have only a partial implementation of QVT Re-
lations. ModelMorf is a commercial tool that is currently
in beta stage and provides a partial implementation of
QVT Relations. Eclipse M2M Declarative QVT is cur-
rently also under development and does not yet provide
a running tool. It does provide a QVT meta-model and
editor. It’s engine is built around the ATL virtual ma-
chine.

As none of the tools implementing QVT Relations
are fully functional yet, we cannot currently provide ex-
ecutable semantics for QVT Relations superimposition.
According to the Medini QVT developers, QVT Rela-
tions itself is not even well-defined yet. It also does not
make sense to implement QVT Relations superimposi-
tion when QVT Relations itself is not yet adequately
implemented. The Eclipse M2M Declarative QVT tool
looks most promising at this moment, as the ATL engine
will be used as its execution platform. Therefore, an im-
plementation of QVT Relations superimposition may be
derived from the ATL superimposition implementation
for the Eclipse M2M Declarative QVT tool.

8 Related work

In this section, we provide a comparison with the com-
position mechanisms available in several other transfor-
mation languages. Table 1 provides an overview of this

8 http://www.tcs-trddc.com/ModelMorf/
9 http://wiki.eclipse.org/M2M/Relational_QVT_

Language_(QVTR)
10 http://tinyurl.com/openproblems-txt

comparison. The remainder of this section discusses each
of the transformation languages mentioned in detail.

In the domain of model transformation languages,
(internal) composition techniques are relatively new. In
the domain of graph transformation [13], critical pair
analysis [14] can be used to analyse which transforma-
tion rules can be used together. Critical pair analysis
can determine in a pairwise way how graph transforma-
tion rules interact. This interaction can be a lot more
complex than it is in ATL, as graph transformations are
performed in-place, rules can trigger on each other’s out-
put, and rules can be triggered multiple times as long as
there is matching input. Critical pair analysis detects
possible conflicts between graph transformation rules. A
conflict indicates that a pair of rules cannot be applied in
parallel, as applying them in different order yields differ-
ent results. A composition of graph transformation rules
applied in parallel most closely resembles an ATL trans-
formation module. As graph transformations are in-place
transformations without implicit tracing mechanism [5],
there is no difference between applying one graph trans-
formation rule after the other or applying them “to-
gether” like rules in an ATL module, as long as there
are no critical pairs among the rules. As there is no sep-
arate module construct in graph transformation, there is
no module composition construct either.

The Epsilon Transformation Language (ETL) [11]
uses transformation strategies to specify the default be-
haviour for elements that don’t match against any trans-
formation rule. Strategies are defined in Java as engine
plug-ins instead of in the ETL itself, whereas with mod-
ule superimposition, such default behaviour can be de-
fined directly in the transformation language. ETL
strategies provide opportunity for performance optimi-
sation at the cost of additional complexity for the end
user of the transformation language. ETL transformation
executions can be run in sequence, while preserving trac-
ing information, using ETL workflows. This composition
mechanism closely resembles RubyTL’s phasing mecha-
nism, which is discussed later in this section. ETL also
has a module construct, just like ATL, with the difference
that ETL modules can import other modules (ATL mod-
ules can only import libraries with helpers). ETL module
import makes all rules from the imported module avail-
able to the importing module. The importing module can
override any of those rules by specifying a new rule with
the same name as the overridden rule. This is similar to
module superimposition, where rules of different mod-
ules are combined and can also be overridden by name.
The key difference lies in the fact that ETL module im-
port is specified at design-time inside the module itself
and that multiple module imports can be specified in
the same module, which may require conflict resolution
in case multiple imported modules include candidates
of the same rule. Module superimposition, on the other
hand, is specified per run configuration and there is a
strict ordering of superimposed modules. Another differ-

http://www.tcs-trddc.com/ModelMorf/
http://wiki.eclipse.org/M2M/Relational_QVT_Language_(QVTR)
http://wiki.eclipse.org/M2M/Relational_QVT_Language_(QVTR)
http://tinyurl.com/openproblems-txt
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Language Composition mechanisms Key advantage Key disadvantage
Graph Sequencing In-place transformation Rule interaction easily becomes

transformation allows free rule interaction complex and can generate conflicts
ETL Strategies, module Reuse as well as refine Tight coupling and

import, workflows existing rules possible overriding conflicts
QVT OM Inheritance, Reuse as well as refine Tight coupling and

access, extends existing rules possible overriding conflicts
RubyTL Phasing, refinement rules Easy to obtain Overriding behaviour of phasing

strict refinement can be difficult to understand
CT Logic sequencing In-place transformation Rule interaction easily becomes

allows free rule interaction complex and can generate conflicts

Table 1 Comparison overview of composition mechanisms in transformation languages.

ence is that module superimposition does not imply an
explicit import of underlying modules in the superim-
posed modules. There is no direct (lexical) dependency
between overridden rules and their overriding rules. Only
if a module explicitly invokes lazy/called rules from an-
other module, an explicit import is required. This also
means that overriding rules cannot refer to and reuse
elements from their overridden rules. In ATL, this be-
haviour is the responsibility of rule inheritance, which
involves an explicit (lexical) reference to the inherited
rule. ATL rule inheritance is currently limited to single
modules, but can conceptually be combined with mod-
ule superimposition. The semantics of this combination
can be derived from section 5. ETL also supports rule
inheritance via the extends keyword, but no further in-
formation on the semantics of this keyword is available.
Finally, as module superimposition is defined per run
configuration instead of inside the various modules, mod-
ule superimposition allows for changing the composition
of modules without changing the modules themselves.

The QVT Operational Mappings language [16] uses
the access and extends operators to compose transfor-
mation definitions. The Operational Mappings language
differs from QVT Relations and ATL in that it does
not have the concept of matching, but uses an explicit
“main()” operation instead. QVT Operational Mappings
has an implicit tracing mechanism, similar to the one
that ATL uses. Operational Mappings uses mapping op-
erations that can be invoked on model elements instead
of rules that match against model elements. Mapping op-
erations can inherit the behaviour of other mapping op-
erations, which has an effect that is similar to ATL rule
inheritance. An inheriting mapping operation performs
all assignments of its super operation, plus a number
of extra assignments. The access composition operator
imports another transformation definition that can be
accessed as if it were an object-oriented class: it can be
instantiated for an input model and its main() can be
triggered. The extends composition operator also im-
ports another transformation definition, but it places all
the imported mapping operations in the current names-
pace, such that they can be invoked as if they were part
of the current transformation definition. It is not clear
what happens if the imported transformation definition
contains a mapping operation with a signature that al-

ready occurs in the current transformation definition. If
mapping operations with the same signature in the ex-
tending transformation definition replace the operations
in the extended transformation definition, then the se-
mantics are similar to ETL’s module import construct
and QVT Operational Mappings extends is compara-
ble to module superimposition. The same observations
apply as for ETL module import versus module super-
imposition.

RubyTL is another rule-based transformation lan-
guage [4], which also supports a composition mechanism
that works on sets of rules. The mechanism is called
the phasing mechanism. By grouping rules together in a
phase, the execution order of the rules is defined. Group-
ing rules in phases has a similar effect as putting them
in separate transformation definitions: rules can trigger
on the output of the rules in a previous phase. There-
fore, the phasing mechanism essentially implements an
external composition mechanism (chaining of transfor-
mation executions) as an internal mechanism. RubyTL
supports another composition mechanism in the form of
refinement rules. A refinement rule specifies additional
assignments on top of any existing rules, and behaves like
an implicit form of ATL’s rule inheritance. Refinement
rules use implicit tracing information to find their from
and to elements, and then perform the additional assign-
ments. Refinement rules cannot override any previous
assignments made by the regular rules that they refine.
Refinement rules are therefore inherently safe, whereas
rule overriding in module superimposition can be un-
safe. The scenario in subsection 4.3 can be implemented
by prepending the “superimposed” phase to the “base”
phase in the execution order. Prepending the “superim-
posed” phase allows for a kind of overriding behaviour,
where the “overridden” rule’s trigger condition no longer
occurs after the “overriding” rule has been applied (com-
parable to critical pairs in graph transformation). We as-
sume here that the creation of one output model can be
spread over multiple phases. It is not clear whether the
implicit tracing information of a preceding phase is avail-
able in subsequent phases. If this is the case, then it is
possible to implement the scenario described in subsec-
tion 4.1 in a similar way, except that the “superimposed”
phase must be appended to the “base” phase, and only
refinement rules are used in the “superimposed” phase.
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The latter approach can only be used to perform strict
refinement, and no base behaviour can be overridden. It
can be difficult to understand the overriding behaviour
of the phasing mechanism, as one has to keep track of
which rule matches which elements.

In the domain of program transformation, the Con-
ditional Transformations approach (CTs) has a special
composition mechanism for combining multiple transfor-
mations into one transformation [10]. The CT approach
is similar to graph transformations in that each trans-
formation consists of one rule. Instead of negative ap-
plication conditions, CTs use logic conditions to narrow
down the scope of elements on which the rule triggers.
The CT composition mechanism allows for the compo-
sition of multiple CT rules. The result is a transforma-
tion with multiple rules, not unlike ATL or QVT Rela-
tions. The composed CT is a sequence of rules, where
the rule sequence may be an AND-sequence or an OR-
sequence. The AND and OR refer to the trigger condition
of the rules: in an AND-sequence, all rule conditions must
hold for the transformation to be executed. In an OR-
sequence, individual rules may trigger while others do
not. CT composition achieves the same goal as module
superimposition, since it can combine pre-existing trans-
formation rules in any way. Because the nature of CT
rules is very different from ATL rules, the composition
mechanisms are different as well. CT rules are indepen-
dently defined and may be applied in sequence, while
ATL rules are defined in combination and interact via
the implicit tracing mechanism. The same observations
as for graph transformation apply here.

9 Future work

We intend to investigate more use cases of module super-
imposition in the future. A candidate use case we are cur-
rently looking into is the leverage of ATL’s implicit trac-
ing mechanism to automatically “update” models that
refer to the model being transformed. When a source
model is transformed by ATL, the result is stored in
a separate target model. There are situations in which
other models contain references to this source model. On
many occasions, these references should be updated to
point to the target model instead. When using mod-
ule superimposition, one can superimpose copy trans-
formation modules for each model that references the
source model. The copy transformation normally results
in exactly the same model, but when it is superimposed,
ATL’s implicit tracing mechanism interacts with the
copy transformation, such that all references to “map-
ped” model elements from the source model are trans-
lated to their target model counterparts as soon as the
reference is assigned. This allows us to implicitly trans-
late all references to the source model to references to
the target model.

The current implementation of ATL rule inheritance
is based on inlining of the super-rule into the sub-rule. In
the future, this implementation may be changed to use
dynamic look-up of super-rules after a transformation
module has been compiled. This allows superimposition
of super-rules as well as rule inheritance across super-
imposed modules, since all super- and sub-rules are still
available at load-time. Dynamic look-up of super-rules
also alleviates the limitation of rule overriding in module
superimposition, where an overriding rule cannot reuse
behaviour of the overridden rule. Instead of overriding
a rule, one could add a new sub-rule in the superim-
posed module that reuses and extends the behaviour of
the super-rule in the base module.

The current state of the QVT Relations tools did not
allow us to provide executable semantics for QVT Rela-
tions superimposition. As soon as a fully functional QVT
Relations engine with support for higher-order transfor-
mation becomes available, we intend to work on an exe-
cutable semantics for QVT Relations superimposition. It
is not expected that such an executable semantics can be
applied to all QVT Relations implementations, as the of-
ficial specification is not well-defined. This is illustrated
by the developers of the Medini QVT tool in section 7,
who have indicated that they needed to make certain as-
sumptions about the semantics where the specification
gave no information. The most practical solution to this
problem is for the Object Management Group to provide
a reference implementation for their QVT standard, as is
commonly done for computing standards. An executable
semantics for module superimposition based on a refer-
ence implementation is by definition transferable to other
implementations.

The Eclipse M2M Declarative QVT tool mentioned
in section 7 uses the ATL virtual machine as its execu-
tion platform. Our module superimposition implemen-
tation for ATL operates on the bytecode that goes into
the ATL virtual machine. This makes it easier to port the
implementation of ATL module superimposition to the
Eclipse M2M Declarative QVT tool, as it uses the same
bytecode format. We plan to follow the development of
the Eclipse M2M Declarative QVT tool closely and in-
vestigate when it is possible to port our implementation
of module superimposition for this tool.

10 Conclusion

This paper has presented an approach for internal com-
position of model transformations written in a rule-based
model transformation language. By a rule-based model
transformation language, we mean a model transforma-
tion language that has the concept of modules contain-
ing a number of rules. Our composition approach, called
module superimposition, allows for the composition of
two or more transformation modules in one single trans-
formation execution. It therefore allows one to split up a



20 Dennis Wagelaar et al.

model transformation into multiple, reusable and main-
tainable transformation modules that can later be com-
posed. Module superimposition is implemented for ATL,
but is also applicable to the QVT Relations language.
Module superimposition has been applied in our MDE
case study11 on UML 2.x refinement transformations,
Java API model to platform ontology transforma-
tions [19] as well as the build script generators for our
case study’s configuration language.

One main use case of module superimposition is to
achieve a base behaviour from the transformation engine.
By default, ATL does not transform anything in the in-
put models and will give back an empty output model.
For refinement or refactoring transformations, most ele-
ments should simply be copied and only a few elements
are modified. In ATL, this means that every refinemen-
t/refactoring transformation consists mostly of copying
rules. ATL refining mode has been introduced to tackle
this issue, but it cannot deal with customised copying re-
quirements. Module superimposition allows one to mod-
ularise all copying rules into a separate copying transfor-
mation. That copying transformation may include any
special conditions that can be expressed in ATL. By sep-
arating the base behaviour from the specific behaviour,
we achieve better maintainability through reduced code
duplication in the transformation modules. Finally, re-
usability is improved by the ability to extend and adapt
general transformation modules.

As module superimposition is a load-time composi-
tion technique, operating on the compiled ATL byte-
code, it improves ATL’s scalability. When changing one
ATL transformation module, one only has to re-compile
that particular module. This means that compiler perfor-
mance no longer has to degrade with increasing transfor-
mation code size, as long as transformation code is sep-
arated into multiple transformation modules. The per-
formance overhead of the superimposition itself is mini-
mal. Module superimposition updates the internal ATL
rule/helper look-up table as new modules are loaded on
top of the previously loaded modules.

Module superimposition works at the granularity of
transformation rules in ATL and relations in QVT Re-
lations. It allows one to add new rules/relations and to
override existing ones. As ATL already supports decom-
position of transformation rules into helpers and called
rules, our module superimposition approach can lever-
age this decomposition. In addition to overriding and
adding standard matched rules, it is possible to override
and add helpers and called rules as well. Deletion of rules
and helpers is not directly supported, but it is possible to
replace the trigger condition with a condition that never
triggers.

As ATL is currently implemented as a dynamically
typed language, the effects of module superimposition
on a static type checker haven’t been discussed explic-

11 http://ssel.vub.ac.be/ssel/research:mdd:
casestudies

itly. However, we have discussed the notion of safe rule
overriding in section 3, where we specified the conditions
for an overriding rule to be a safe replacement for the
overridden rule. This notion of safety basically refers to
type safety. As module superimposition in principle al-
lows for unsafe rule overriding, a statically typed trans-
formation language that supports module superimposi-
tion must still perform type checking after superimpo-
sition. Our higher-order transformation from section 5
specifies the module superimposition semantics in terms
of a single, combined transformation module. A module
superimposition composition is type correct if and only
if this single, combined transformation module is type
correct.

ATL supports rule inheritance as another composi-
tion mechanism, which can be freely combined with mod-
ule superimposition in principle. In its current implemen-
tation, however, it is not possible to separately superim-
pose sub- and super-rules in ATL rule inheritance. Only
the sub-rules can be manipulated by module superimpo-
sition, because the ATL compiler in-lines the super-rules
into the sub-rules. This is a limitation that is caused
purely by the current ATL compiler implementation and
affects only our implementation of module superimposi-
tion for ATL. The executable semantics provided in this
paper are not affected by this limitation.
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Appendix A: ATL meta-model

This appendix contains an excerpt of the ATL meta-
model that is relevant to the ATL transformation code
given in section 5. Fig. 8 shows a graphical representation
of the ATL meta-model excerpt. The meta-model is writ-
ten in the Ecore language[3]. The complete ATL meta-
model can be found at http://tinyurl.com/2t5mcp.

Appendix B: Superimpose.atl

This appendix contains the full source code of the Super-
impose.atl transformation module discussed in section 5:

module Superimpose;

create OUT: ATL from IN: ATL , SUPER: ATL;

helper def: inElements:
Set(ATL!ATL:: LocatedElement) =

ATL!"ATL:: LocatedElement"
.allInstancesFrom(’IN ’)
->reject(o|o.isOverridden ())->asSet ()

->union(ATL!"ATL:: LocatedElement"

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://tinyurl.com/2t5mcp
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Fig. 8 ATL meta-model excerpt.

.allInstancesFrom(’SUPER ’)
->reject(s|

i f s.oclIsKindOf(ATL!"ATL::Rule")
or s.oclIsKindOf(ATL!"ATL:: Helper ")
then s.isOverriding ()
else false endif ));

helper def: realInElements:
Set(ATL!"ATL:: LocatedElement ") =

ATL!"ATL:: LocatedElement"
.allInstancesFrom(’IN ’);

-- ************ isOverridden ************

helper context ATL!"ATL:: LocatedElement"
def: isOverridden (): Boolean =

l e t owner: ATL!"ATL:: LocatedElement" =
self.refImmediateComposite () in

i f owner.oclIsUndefined () then false
else owner.isOverridden () endif;

helper context ATL!"ATL::Rule"
ATL!"ATL::Rule"
.allInstancesFrom(’SUPER ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

helper context ATL!"ATL:: Helper"
ATL!"ATL:: Helper"
.allInstancesFrom(’SUPER ’)
->exists(r|

r.definition.feature.name =

self.definition.feature.name
and
r.definition.feature.oclType () =

self.definition.feature.oclType ()
and
i f r.definition.context_

.oclIsUndefined ()
or self.definition.context_

.oclIsUndefined () then
r.definition.context_ =

self.definition.context_
else

r.definition.context_
.context_.name =

self.definition.context_
.context_.name

endif );

helper context
ATL!"OCL:: VariableDeclaration"
def: isOverridden (): Boolean =

l e t owner: ATL!"ATL:: LocatedElement" =
self.refImmediateComposite () in

let variableExpOverridden: Boolean =
self.variableExp ->exists(e|

e.isOverridden ()) in
i f owner.oclIsUndefined () then

variableExpOverridden
else

owner.isOverridden () or
variableExpOverridden

endif;
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helper context ATL!"OCL:: OclModel"
def: isOverridden (): Boolean =

ATL!"OCL:: OclModel"
.allInstancesFrom(’SUPER ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

helper context ATL!"ATL:: LibraryRef"
def: isOverridden (): Boolean =

ATL!"ATL:: LibraryRef"
.allInstancesFrom(’SUPER ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

-- ************ isOverriding ************

helper context ATL!"ATL:: LocatedElement"
def :isOverriding (): Boolean =

l e t owner: ATL!"ATL:: LocatedElement" =
self.refImmediateComposite () in

i f owner.oclIsUndefined () then false
else owner.isOverriding () endif;

helper context ATL!"ATL::Rule"
def: isOverriding (): Boolean =

ATL!"ATL::Rule"
.allInstancesFrom(’IN ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

helper context ATL!"ATL:: Helper"
def: isOverriding (): Boolean =

ATL!"ATL:: Helper"
.allInstancesFrom(’IN ’)
->exists(r|

r.definition.feature.name =
self.definition.feature.name

and
r.definition.feature.oclType () =

self.definition.feature.oclType ()
and
i f r.definition.context_

.oclIsUndefined ()
or self.definition.context_

.oclIsUndefined () then
r.definition.context_ =

self.definition.context_
else

r.definition.context_
.context_.name =

self.definition.context_
.context_.name

endif );

helper context ATL!"OCL:: OclModel"
def: isOverriding (): Boolean =

ATL!"OCL:: OclModel"
.allInstancesFrom(’IN ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

helper context ATL!"ATL:: LibraryRef"
def: isOverriding (): Boolean =

ATL!"ATL:: LibraryRef"
.allInstancesFrom(’IN ’)
->exists(r|

r.name = self.name and
r.oclType () = self.oclType ());

-- ************ overriddenBy ************

helper context ATL!"ATL::Rule"
def: overriddenBy (): ATL!"ATL::Rule" =

l e t selfInSuper:
Sequence(ATL!"ATL::Rule") =

ATL!"ATL::Rule"
.allInstancesFrom(’SUPER ’)
->select(r|

r.name = self.name and
r.oclType () = self.oclType ()) in

i f selfInSuper ->isEmpty () then self
else selfInSuper ->first() endif;

helper context ATL!"ATL:: Helper"
def: overriddenBy (): ATL!"ATL:: Helper" =

l e t selfInSuper:
Sequence(ATL!"ATL:: Helper ") =

ATL!"ATL:: Helper"
.allInstancesFrom(’SUPER ’)
->select(r|

r.definition.feature.name =
self.definition.feature.name

and
r.definition.feature.oclType () =

self.definition.feature.oclType ()
and
i f r.definition.context_

.oclIsUndefined ()
or self.definition.context_

.oclIsUndefined () then
r.definition.context_ =

self.definition.context_
else

r.definition.context_
.context_.name =

self.definition.context_
.context_.name

endif) in
i f selfInSuper ->isEmpty () then

self
else

selfInSuper ->first()
endif;

helper context ATL!"OCL:: OclModel"
def: overriddenBy (): ATL!"OCL:: OclModel" =

l e t selfInSuper:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"OCL:: OclModel"
.allInstancesFrom(’SUPER ’)
->select(r|

r.name = self.name and
r.oclType () = self.oclType ()) in

i f selfInSuper ->isEmpty () then self
else selfInSuper ->first() endif;

-- ************ rules ************

rule Module {
from s : ATL!"ATL:: Module" (

thisModule.realInElements ->includes(s))
using {

superElements:
Sequence(ATL!"ATL:: ModuleElement ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
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->collect(m|m.elements
->select(e|not e.isOverriding ()))

->flatten ();
superInModels:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.inModels)
->flatten ();

superOutModels:
Sequence(ATL!"OCL:: OclModel ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.outModels)
->flatten ();

superLibraryRefs:
Sequence(ATL!"ATL:: LibraryRef ") =

ATL!"ATL:: Module"
.allInstancesFrom(’SUPER ’)
->collect(m|m.libraries)
->flatten (); }

to t : ATL!"ATL:: Module" (
location <- s.location ,
commentsBefore <- s.commentsBefore ,
commentsAfter <- s.commentsAfter ,
name <- s.name ,
isRefining <- s.isRefining ,
libraries <- s.libraries

->union(superLibraryRefs),
inModels <- s.inModels

->union(superInModels),
outModels <- s.outModels

->union(superOutModels),
elements <- s.elements

->union(superElements ))
}

rule OverriddenMatchedRule {
from s : ATL!"ATL:: MatchedRule" (

i f thisModule.realInElements
->includes(s) then
s.oclIsTypeOf(ATL!"ATL:: MatchedRule ")
and s.isOverridden ()

else false endif)
using {

o : ATL!"ATL:: MatchedRule" =
s.overriddenBy (); }

to t : ATL!"ATL:: MatchedRule" (
location <- o.location ,
commentsBefore <- o.commentsBefore ,
commentsAfter <- o.commentsAfter ,
name <- o.name ,
isAbstract <- o.isAbstract ,
isRefining <- o.isRefining ,
isNoDefault <- o.isNoDefault ,
outPattern <- o.outPattern ,
actionBlock <- o.actionBlock ,
variables <- o.variables ,
inPattern <- o.inPattern ,
children <- o.children ,
superRule <- o.superRule)

}

rule OverriddenLazyMatchedRule {
from s : ATL!"ATL:: LazyMatchedRule" (

i f thisModule.realInElements
->includes(s) then
s.isOverridden ()

else false endif)
using {

o : ATL!"ATL:: LazyMatchedRule" =
s.overriddenBy (); }

to t : ATL!"ATL:: LazyMatchedRule" (
location <- o.location ,
commentsBefore <- o.commentsBefore ,
commentsAfter <- o.commentsAfter ,
name <- o.name ,
isAbstract <- o.isAbstract ,
isRefining <- o.isRefining ,
isNoDefault <- o.isNoDefault ,
isUnique <- o.isUnique ,
outPattern <- o.outPattern ,
actionBlock <- o.actionBlock ,
variables <- o.variables ,
inPattern <- o.inPattern ,
children <- o.children ,
superRule <- o.superRule)

}

rule OverriddenCalledRule {
from s : ATL!"ATL:: CalledRule" (

i f thisModule.realInElements
->includes(s) then
s.isOverridden ()

else false endif)
using {

o : ATL!"ATL:: CalledRule" =
s.overriddenBy (); }

to t : ATL!"ATL:: CalledRule" (
location <- o.location ,
commentsBefore <- o.commentsBefore ,
commentsAfter <- o.commentsAfter ,
name <- o.name ,
isEntrypoint <- o.isEntrypoint ,
isEndpoint <- o.isEndpoint ,
outPattern <- o.outPattern ,
actionBlock <- o.actionBlock ,
variables <- o.variables ,
parameters <- o.parameters)

}

rule OverriddenHelper {
from s : ATL!"ATL:: Helper" (

i f thisModule.realInElements
->includes(s) then
s.isOverridden ()

else false endif)
using {

o : ATL!"ATL:: MatchedRule" =
s.overriddenBy (); }

to t : ATL!"ATL:: Helper" (
location <- o.location ,
commentsBefore <- o.commentsBefore ,
commentsAfter <- o.commentsAfter ,
definition <- o.definition)

}

rule OclModelElement {
from s : ATL!"OCL:: OclModelElement" (

thisModule.inElements ->includes(s))
to t : ATL!"OCL:: OclModelElement" (

location <- s.location ,
commentsBefore <- s.commentsBefore ,
commentsAfter <- s.commentsAfter ,
name <- s.name ,
type <- s.type ,
model <- s.model.overriddenBy ())

}
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