
Orchestrating Nomadic Mashups using Workflows

Eline Philips
∗

ephilips@vub.ac.be
Andoni Lombide

Carreton
†

alombide@vub.ac.be
Niels Joncheere

njonchee@vub.ac.be
Wolfgang De Meuter

wdmeuter@vub.ac.be
Viviane Jonckers

vejoncke@vub.ac.be
Software Languages Lab

Department of Computer Science
Vrije Universiteit Brussel, Belgium

ABSTRACT
Middleware for mashups is currently not able to compose
the services residing in a nomadic network. Its transient
connections and connection volatility result in a highly dy-
namic environment where services can appear and disappear
at any point in time. The consequence is that these services
must be discovered at runtime in an ad hoc fashion and must
execute asynchronously to prevent a disconnected service
to block the execution of an entire mashup. Orchestrating
loosely coupled asynchronously executing services calls for
a process-aware approach. This paper proposes a workflow
language specifically sculpted to function in nomadic net-
works to allow a high level specification of the interactions
between mobile services constituting the mashup.

1. INTRODUCTION
Today’s society is characterised by the ubiquity of mo-

bile devices such as mobile phones, PDAs and handhelds.
The omnipresence of wireless communication facilities, for
instance WiFi, 3G and Bluetooth, enable us to connect these
devices in a mobile ad hoc network (MANET). Nomadic net-
works fill the gap between traditional networks and mobile
ad hoc networks as these nomadic environments consist of
a group of mobile devices that try to maintain a connec-
tion with a fixed infrastructure. For these kind of networks,
an abundance of interesting applications can be supported,
as these networks are ubiquitous (for instance in hospitals,
airports, shopping malls, ...). However, the development of

∗Funded by a doctoral scholarship of the “Institute for the
Promotion of Innovation through Science and Technology in
Flanders” (IWT Vlaanderen).
†Funded by a doctoral scholarship of the “Institute for the
Promotion of Innovation through Science and Technology in
Flanders” (IWT Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Mashups’09, October 25, 2009, Orlando, FL, USA
Copyright 2009 ACM 978-1-60558-364-8/08/12 ...$10.00.

such applications is not straightforward as special properties
of these kind of networks have to be taken in consideration.

A first characteristic that has to be taken into account
when composing a nomadic mashup is the connection volatil-
ity which is inherent to the environment. Nomadic mashups
consists of mobile mashup sources which are residing in the
physical world. While in conventional mashups the services
constituting the mashup are known beforehand (e.g. by a
fixed URL to a RSS feed) and are assumed to execute in
a reliable network infrastructure (e.g. a Web 2.0 environ-
ment), the services constituting a nomadic mashup have to
be dynamically discovered at runtime, since these services
can be hosted by mobile devices that can connect and dis-
connect at any point in time. Furthermore, such a mobile
service that became unavailable should not block the exe-
cution of an entire mashup. Nomadic mashup sources can
take many forms, ranging from small sensors on mobile de-
vices up to complex services running on a fixed backbone
infrastructure.

Although there exist middleware [5] and programming
languages, like AmbientTalk (explained in section 2.1), which
are developed to meet the specific properties of dynamically
changing environments, the composition between the differ-
ent services is still programmed in an ad hoc way. In order
to orchestrate the large heterogeneity of services in these
networks, reusable composition patterns are needed to spec-
ify the interactions between the different services at a higher
level. In classic networks, this orchestration can be achieved
by using workflow languages which support a parallel execu-
tion, the composition of services and the description of con-
trol flow. However, these existing languages are not really
suited to describe mashups for nomadic networks, because
they do not take the characteristics of nomadic networks
described above into account.

As AmbientTalk is specifically sculpted to deal with the
phenomena in mobile networks, such as connection volatility,
autonomy, natural concurrency and ambient resources [3],
we used this scripting language to build workflow patterns on
top of it. Hence, enabling the specification of the control flow
for mashups at a higher level and incoporating the specific
requirements of the environment.

This paper is organised as follows: first we describe some
related work before exhibiting our approach on orchestrating
services in a nomadic environment. In this section we first
introduce the programming language AmbientTalk, as this

language forms the corner stone of our nomadic workflows
solution. Thereafter, the implementation of these workflows
is discussed and exemplified. To conclude, some future work
and general conclusions are presented.

1.1 Related Work
Current mashup development tools target a reliable Web

2.0 environment. We can distinguish two approaches: one is
using a graphical representation of the service compostion,
the most representative one is Yahoo! Pipes [8]. The exe-
cution engines of such tools assume a stable network infras-
tructure to allow the server running the engine to coordinate
the different services (e.g. Yahoo! Pipes run on a dedicated
Yahoo! server and offer no runtime service discovery of ser-
vices but assume fixed URLs to reach services). These as-
sumptions cannot be made in nomadic networks where some
of the mashup components dynamically join and leave the
network while the mashup is executing and disconnections
are rather the rule than the exception.

The other approach is by expressing the composition of
remote services in web scripting languages, such as AJAX.
Expressing service compositions in AJAX happens using an
event-driven paradigm based on callbacks. This causes more
complicated event-driven applications to be very hard to un-
derstand, as we will show in section 2.1 for the AmbientTalk
language, which uses a similar paradigm but targeted to-
wards mobile ad hoc networks. There exist higher level co-
ordination languages based on Javascript and AJAX, such
as Ubiquity [1] and Orc [4]. Orc for instance uses a pro-
cess calculus to express coordination of different processes.
However, these languages also assume a stable network in-
terconnecting the services.

Other coordination languages are not specifically dedi-
cated at mashup development, but still could be used for
this purpose. Reo [2] is a glue language that allows the or-
chestration of different heterogeneous, distributed and con-
current software components. Reo is based on the notion
of mobile channels and has a coordination model wherein
complex coordinators, called connectors, are composition-
ally built out of simpler ones (where the simplest ones are
channels). These different types of coordinators dictate the
coordination of the simpler connectors, which eventually co-
ordinate the software components that they interconnect.
When software components are disconnected, one has to
manually invoke the migration of a component to a different
node, however the channels connecting the component are
automatically rebound.

Workflow languages can be used for the orchestration of
mashups. Although there exist workflow languages for dy-
namically changing environments, like mobile ad hoc net-
works and nomadic networks, they do not cope with all is-
sues inherent to nomadic network applications. CiAN [10]
is a workflow engine that was developed to work in a mobile
ad hoc network. As a centralised orchestration engine can
not be used in MANETs, CiAN decides the services to be
invoked a priori. In a dynamic changing environment where
services can come in and go out of reach at any possible
time, it is not possible to know all services beforehand. An
other workflow language, Workpad [6], is developed with no-
madic networks in mind. This language also lacks support
for disconnections caused by the volatilty that is inherent to
the mobile part a nomadic network consists of.

2. NOMADIC WORKFLOWS
In stable networks, workflows are used to model and or-

chestrate complex applications. The workflow architecture
is typically centralised and the interactions between the dif-
ferent services are synchronous. There also exist distributed
engines for workflows and more recently mobile ad hoc net-
works and nomadic networks are also targeted by the work-
flow community. However, these workflow languages have
almost no support for handling the high dynamicity of these
kind of networks. For instance, there’s no support for the
reconnections of services which happen frequenlty due to
the connection volatility. AmbientTalk is a programming
language which treats disconnections at the very heart of
its computational model. Moreover, this language supports
dynamic service discovery which is opportune for nomadic
networks. Although this language is suited for writing ap-
plications for mobile ad hoc and nomadic networks, the or-
chestration of these applications is still programmed in an
ad hoc manner. Complex applications or mashups that con-
sist of asynchronously executing distributed services become
hard to develop, understand and reuse. In this section, we
first briefly explain AmbientTalk and how it offers support
for scripting together mobile services. Subsequently, we in-
troduce our workflow abstractions that we built on top of
the language.

2.1 AmbientTalk
In this section, we briefly explain the programming lan-

guage support that we assume to build our workflow lan-
guage targeting mashups in nomadic networks. The ambient-
oriented programming paradigm [3] is specifically aimed at
such applications. For this reason we chose to build our
workflow language on top of an ambient-oriented program-
ming language. Ambient-oriented programming languages
should explicitly incorporate potential network failures in
the very heart of their computational model. Therefore,
communication between distributed application components
should happen without blocking the execution thread of the
different components such that devices may continue doing
useful work even when the connection with a communication
partner is lost.

Ambient-oriented languages also deal with the dynami-
cally changing network topology in nomadic and mobile ad
hoc networks. The fact that in such networks devices spon-
taneously join with and disjoin from the networks means
that the services these devices host cannot be discovered
using a fixed, always available name server, but instead re-
quire dynamic service discovery protocols (e.g. broadcasting
advertisements to discover nearby services).

Both the runtime discovery of and the non-blocking com-
munication between distributed application components in
nomadic and mobile ad hoc networks give rise to an event-
driven architecture, where there is a natural form of concur-
rency among the distributed application components. Such
architectures can greatly benefit from process-aware tech-
nologies such as workflows to allow a separate and higher
level orchestration of the concurrent processes in the mashup.

AmbientTalk [12, 11] is a distributed programming lan-
guage embedded in Java1. The language is designed as a
distributed scripting language that can be used to compose
Java components which are distributed across a nomadic or

1The language is available at prog.vub.ac.be/amop

even mobile ad hoc network. The language is developed on
top of the J2ME platform and runs on handheld devices such
as smart phones and PDAs. Even though AmbientTalk is
embedded in Java, it is a separate programming language.
The embedding ensures that AmbientTalk applications can
access Java objects running in the same JVM. These Java
objects can also call back on AmbientTalk objects as if these
were plain Java objects.

The most important difference between AmbientTalk and
Java is the way in which they deal with concurrency and
network programming. Java is multithreaded, and provides
either a low-level socket API or a high-level RPC API (i.e.
Java RMI) to enable distributed computing. In contrast,
AmbientTalk is a fully event-driven programming language.
It provides only event loop concurrency [7] and distributed
objects communicate by means of asynchronous message
passing. Event loops deal with concurrency similar to GUI
frameworks (e.g. Java AWT or Swing): all concurrent activ-
ities are represented as events which are handled sequentially
by an event loop thread.

AmbientTalk offers direct support for the different char-
acteristics of the ambient-oriented programming paradigm
described above.

1. In an ad hoc network, objects must be able to dis-
cover one another without any infrastructure (such as
a shared naming registry). Therefore, AmbientTalk
has a service discovery engine that allows objects to
discover one another in a peer-to-peer manner. Java
interfaces act as the common pieces of information by
means of which objects are advertised and discovered.

2. In an ad hoc network, objects may frequently dis-
connect and reconnect because of network partitions.
Therefore, AmbientTalk provides fault-tolerant asyn-
chronous message passing between objects: if a mes-
sage is sent to a disconnected object, the message is
buffered and resent later, when the object becomes
reconnected. Other advantages of asynchronous mes-
sage passing over standard RPC is that the asynchrony
hides latency and that it keeps the application respon-
sive (i.e. the event loop is not blocked during remote
communication and is free to process other events).

2.2 Distributed Programming in AmbientTalk
AmbientTalk uses a classic event-handling style by rely-

ing on blocks of code that are triggered by event handlers.
Event handlers are (by convention) registered by a call to a
function that starts with when.

The following code snippet illustrates how AmbientTalk
can be used to discover a LocationService and WeatherService in
the ad hoc network. Once the LocationService is discovered,
it is sent a message along with the current GPS coordinates
to determine the current location of the user. As soon as
a reply is received, the lookup for the WeatherService starts.
When such a service is discovered, it is sent the getWeather

message along with the current location that was received
from the LocationService.

when: LocationService discovered: { |locationSvc|
when: locationSvc<-getLocation(gpsModule.getCoordinates())
becomes: { |myLocation|
when: WeatherService discovered: { |weatherSvc|
when: weatherSvc<-getWeather(myLocation)
becomes: { |weatherInfo|
// update weather information in

// the user interface
}

}
}

}

The above code consists of four event handlers. The first
event handler, registered by means of the when:discovered:

control structure, is invoked when the language runtime
discovers a LocationService component. Here, LocationService

refers to a Java interface. The discovered object is acces-
sible via the locationSvc variable, which denotes a remote
AmbientTalk object that wraps a Java component imple-
menting the location service. The syntax obj<-msg() denotes
an asynchronous message send and is used here to query
the LocationService object for the current location of the user
(e.g. city) given his GPS coordinates.

When the query message is received by the remote locationSvc

object, that object’s getLocation method is invoked. The re-
turn value of this method is used as the reply to the query.
This reply is signalled asynchronously to the caller. The
when:becomes: control structure is used to install an event han-
dler that can process this reply. The return value is passed
to this event handler (cf. the myLocation variable in the exam-
ple). As soon as this value is received, this event handler reg-
isters two new event handlers (following the same pattern)
to query a WeatherService about the weather at myLocation, and
as soon the reply to this query is received update the user
interface.

As can be seen from the above example, service discovery
and replies of remote queries are represented in AmbientTalk
as events that trigger the appropriate event handlers. Care
must be taken when coordinating and synchronizing asyn-
chronous invocations: nesting callbacks (like in the exam-
ple presented above) introduces simple synchronization, but
more complex synchronization and coordination patterns re-
quire more complicated structures (e.g. the lookup of a
WheatherService could happen in parallel without waiting for
the LocationService to reply). While in this simple example
the control flow remains apparent enough to understand,
the control flow of large-scale event-driven applications can
quickly become puzzling. In the following sections we discuss
how to add a process-aware layer of abstraction on top of
AmbientTalk (which uses messages/events as the level of ab-
straction) such that the asynchronously executing processes
can be orchestrated by means of workflows.

2.3 Workflow Patterns in AmbientTalk
This section describes the implementation of some work-

flow patterns on top of AmbientTalk. Consider the example
that was given in section 2.1 where a user interface is up-
dated with the current weather at the user’s location. This
example could be expressed as a sequence pattern as is de-
picted in figure 1. The circle at the end of the pattern de-
notes a stop node, whereas the rectangles represent the used
services.

First, we explain how these services are implemented in
AmbientTalk and thereafter we describe how these workflow
patterns, with an emphasis on the sequence pattern that is
used in the example, are implemented and can be used as an
abstraction layer for describing the control flow. Afterwards
we describe how more complex workflows can be expressed
by combining several workflow patterns.

In AmbientTalk, services are implemented as distributed

LocationService WeatherService GUI

Figure 1: Workflow representation for a mashup
consisting of three services.

objects that advertise themselves by means of a service type
tag. Currently, services have a fixed interface and must im-
plement a start method which performs the actual execution
of the service. This start method has one argument which
allows passing data between the different services. The code
snippet below illustrates the implementation of the Weath-
erService in AmbientTalk. Important to note is that this is
code running on the service host. The mashups making use
of this service are oblivious to it, they should only match on
the service type tag under which the service is advertised.

deftype WeatherService;

def service := object: {
def start(args) {

// Check if args is a location,
// if not throw an error.
// Otherwise, determine the weather
// at this location and return it.

};
};

export: service as: WeatherService;

In order to retrieve the forecast information of the user’s
location, we need to compose the two services, LocationService
and WeatherService, by making use of a sequence pattern. This
sequence pattern must first send the asynchronous start mes-
sage to the first service, and afterwards invoke the
WeatherService by passing the result of the invocation of the
LocationService to it. The result of the WeatherService invoca-
tion is afterwards passed to the stop pattern, which ends
the workflow. Hence, the implementation of this small ex-
ample uses two control flow patterns, namely sequence and
stop. These workflow patterns are implemented as Ambi-
entTalk objects which are tagged. These tags are used to
distinguish between normal patterns, patterns that signal
multiple replies (such as a simple merge) and service type
tags (that denote yet to be discovered services). In order
to enable a transparent nesting of patterns and services, we
need to make sure that these interfaces match. Therefore,
workflow patterns also implement a start method.

The code below presents the implementation of a sequence
pattern. This pattern is initialised with a table of compo-
nents componentsTable (service type tags or workflow patterns).
When invoking its start method, all components of that ta-
ble are invoked sequentially and the last component of the
sequence is returned. Important to note is that this sequen-
tial execution can be achieved by explicitly waiting for the
output of a service before starting the following one, with-
out having to manually synchronize asynchronously execut-
ing process by nesting callbacks in the correct way. After
the workflow pattern’s execution has finished, the stop pat-
tern will use this last component to listen for its reply and
eventually end the workflow when this reply (which is asyn-
chronously computed) is received.

As can be seen in the abstract implementation (the real
implementation is out of the scope of this paper) of the
execute method, a test is performed to check on the type

of the sequence’s current component. By hiding the differ-
ent implementation of a service or pattern component in the
patterns, we allow composition of nested workflow patterns
at an abstract level.

def Sequence := object: {
def componentsTable;

// Constructor of the Sequence pattern.
def init(table) {

componentsTable := table;
};

def start(args) {
// Creates a notification object on which when-callbacks
// can be registered.
def result := makeFuture();

def execute(idx, args) {
def component := componentsTable[idx];
if: (is: component taggedAs: Service) then: {

// Send service the asynchronous start message.
// After service signalled a reply, check if the
// sequence is ended.
// If so, return the notifier object that will
// signal the reply event from the service
// invocation, such that other patterns can be
// notified when the sequence is done executing.
// If not, call execute with an increased index (idx).

} else: {
// Invoke the start message of the pattern.

}
}

}
} taggedAs: [Pattern];

The stop pattern and its rationale is explained later on.
The code below shows the implementation of our small ex-
ample. The last line of the code fragment invokes the exe-
cution of workflow.

sequence := Sequence.new([LocationService, WeatherService]);

stop := Stop.new(sequence);

when: stop.start() becomes: { |weatherInfo|
GUI.updateWithWeatherInfo(weatherInfo);

};

We introduce a more advanced mashup example which
combines several workflow patterns and can be used to ex-
plain the composition of these patterns. Consider an airport
where passengers benefit from the support the airport infras-
tructure provides them with. For instance, passengers get
a reminder on their PDA five minutes before boarding time
of their flight starts. This can be achieved by orchestrat-
ing several services, namely a ETicketService, DigitalClock,
BoardingService and ReminderService. This mashup both
uses services residing on the backbone infrastructure and the
mobile parties of a nomadic network. The ETicketService
is a service on the passenger’s mobile phone which contains
all the information of the electronic ticket he/she bought.
The other services are part of the fixed infrastructure of the
nomadic network and respectively are able to retrieve the
current time, information of the boarding time of a flight
and send reminders to certain passengers. Figure 2 depicts
the workflow representation for this mashup. This workflow
uses both a parallel split and synchronize pattern to describe
the orchestration of the different services.

A parallel split diverges a single branch into two or more
concurrently executing branches. As can be seen in the fig-
ure above, the DigitalClock and BoardingService are two parallel
branches that can be executed independently of each other.

ETicketService

DigitalClock

BoardingService

ReminderService

Figure 2: Workflow representation for a mashup us-
ing a parallel split and synchronize.

Note that the synchronization of the two processes executing
in parallel cannot be expressed by nesting callbacks, such as
in the example in section 2.2. Although it is possible to ex-
press such a synchronization in AmbientTalk, it requires the
extensive use of the reflective and metaprogramming facili-
ties of the language and leads to very complicated and diffi-
cult to reuse code. The implementation of this pattern has
as input a tag which can be either an intentional description
of a service or a pattern. The output of the parallel split
is a table of components that can contain intentional de-
scriptions of services by means of a type tag or objects that
implement a start methods, for instance a workflow pat-
tern. A synchronization pattern converges several branches
that have all succeeded into one subsequent branch. Con-
cretely, when both the DigitalClock and BoardingService have
terminated, the ReminderService is activated. The input of
this pattern is a table of components (possibly the output
of a parallel split pattern) and has as output a type tag to
a service or a pattern. The implementation of our mashup
example by making use of these patterns is given by the
following code.

def parallelSplit :=
ParallelSplit.new(ETicketService,

[DigitalClock, BoardingService]);

def synchronization :=
Synchronization.new(parallelSplit, ReminderService);

def stop := Stop.new(synchronization);

stop.start();

Note that a stop pattern is also necessary in order to com-
plete this workflow. The typeTag variable of the pattern can
be instantiated with an intentional description of a service
(for instance a tag DigitalClock) or a workflow pattern. The
start method of the stop pattern needs to start this service
or pattern. In case of a pattern, the output of this pattern
can be either a type tag of a service or a table (when the
pattern was for instance a parallel split). This output also
needs to be started in order to have a correct termination of
the workflow.

def Stop := object: {
def typeTag;

// Constructor of the Stop pattern.
def init(tag) {

typeTag := tag;
};

def start() {
if: (is: typeTag taggedAs: Service) then: {

// Start the service.
} else: {

// Start the component and after it’s completed,

// invoke the start method of the output (reply).
when: serviceTag.start() becomes: { |reply|

if: (is: reply taggedAs: Table) then: {
// Start each component of the table.
reply.each: { |cmp| cmp.start(); };

} else: {
// Start the service.

};
};

};
};

} taggedAs: [Pattern];

2.4 Discussion
The workflow patterns discussed in this section are just

a small selection of the workflow patterns that we have
adapted to the characteristics of nomadic networks and mashups
running on top of them. Although we only have presented
toy examples of mashups, by making use of this selection of
workflow patterns, we have shown that:

• Services constituting the mashup can be hosted on mo-
bile devices and are discovered at runtime in a peer-
to-peer manner based on an intentional description.

• Communication among the different services in a mashup
happens without blocking other concurrently running
services, even if some of them moved out of range. This
allows these services to remain responsive and perform
other useful tasks when interacting with components
of a different mashup.

• Communication between services is fault tolerant. The
underlying runtime system guarantees message deliv-
ery by buffering messages that were not received by
the destination service and attempting to resend them
when the destination service becomes available again.

These properties allow us to use standard reusable workflow
patterns to describe the coordination between concurrently
running distributed application components in nomadic net-
works without having to manually coordinate the interac-
tions among these components using explicit callbacks.

3. FUTURE WORK
At this moment, the research of workflow patterns for no-

madic networks is in its earliest phase of development, hence
we were already able to define some issues that have to be
handled in the near future.

Firstly, the current implementation of workflow patterns
is restricted to the control flow patterns defined by van der
Aalst2 [9]. We would like to extend them by also supporting
the data flow patterns and enable data to be passed between
several services. By enabling this data flow, we would be
able to express more advanced mashups.

Currently, the naming and discovery of services happens
via Java interfaces (wrapped in AmbientTalk type tags). Al-
though this already allows describing services intentionally
(by means of simple type tags), the assumption is made
that these type tags represent a unique service and that it
is known by all mashup participants. The discovery mecha-
nism for instance does not take versioning into account. For
example, if the WeatherService from the example in section 2.3

2These workflow patterns are described at www.
workflowpatterns.com

is updated, older clients may discover the updated service,
and clients that want to use only the updated service may
still discover older versions. Clients and services are thus
themselves responsible for checking versioning constraints.

A shortcoming of today’s status is that the services have
a restricted interface. At the moment, services are imple-
mented as distributed objects which implement a start method.
To allow more flexible service compositions, we are working
towards patterns where services can have their own interface.
Currently, calls to such an interface have to be wrapped in
the single start method (e.g. an AmbientTalk object dele-
gating calls to Java components in its start method).

Additionally, we would like to come up with some more
advanced patterns that cope with some specific properties
of the dynamic changing environment. Van der Aalst [9]
describes a synchronisation pattern which succeeds when all
branches have succeeded. In a dynamically changing envi-
ronment, like nomadic and mobile ad hoc networks, 100%
synchronization will not always be possible. Although van
der Aalst presents some synchronisation patterns (like static
partial join for multiple instances), these patterns are not
sufficient. For instance, we would like to let synchronisation
succeed when a selection of the results are available (after
a certain percentage of answers is retrieved, after a certain
period of time, at a predefined timestamp, ...).

Furthermore, as disconnections are inherent to nomadic
networks it seems appropriate to build in support for com-
pensating actions. As disconnections are the rule rather
than the exception, we want to be able to specify for in-
stance a timeout whenever a certain service is no longer
available. These compensating actions are tightly coupled
to the relaxed synchronisation that can succeed when not
all branches of a workflow were realised.

Finally, we would like to extend our framework by build-
ing a graphical interface on top of our implementation. Most
workflow languages have such an interface which facilitates
the usage of the workflow patterns by end users. By intro-
ducing a graphical interface we provide a graphical repre-
sentation of the mashup which will make it easier to express
the orchestration of services in a dynamically changing en-
vironment.

4. CONCLUSION
Complex distributed applications (such as mashups) run-

ning in nomadic networks have to be conceived as concur-
rently running activities to allow the different application
components to remain responsive and keep doing useful work
in the face of the frequent network partitions inherent to
these kinds of networks. The orchestration of these concur-
rent activities into meaningful applications currently hap-
pens in an ad hoc way, usually by means of a callback-based
paradigm. Workflows and workflow patterns provide an ad-
ditional layer of abstraction such that interaction patterns
among application components can be specified on a higher
level and be reused because of their loose coupling with the
fine-grained application logic. Unfortunately, current work-
flow systems do not meet all the requirements for the kinds
of applications that we envision in nomadic networks. In
this paper, we have presented the implementation of work-
flow patterns on top of a runtime system that does allow the
orchestration of distributed services in a nomadic network,
thanks to both a peer-to-peer and dynamic service discovery
mechanism and communication primitives resilient to the

volatile connections inherent to such networks. Now that
a number of workflow patterns are implemented, we have
hinted at some future work, most notably the introduction
of new workflow patterns specifically designed for nomadic
networks and a graphical workflow language that allows to
chain together these workflow patterns together graphically
and providing a visual view on the orchestration of the dif-
ferent application components.

Acknowledgements
This research is partly funded by Alcatel-Lucent Belgium
and the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen) through
the DIY-SE project.

5. REFERENCES
[1] Ubiquity, 2005-2009.

http://labs.mozilla.com/blog/2008/08/introducing-
ubiquity/.

[2] Farhad Arbab. Reo: a channel-based coordination
model for component composition. Mathematical.
Structures in Comp. Sci., 14(3):329–366, 2004.

[3] J. Dedecker, T. Van Cutsem, S. Mostinckx,
T. D’Hondt, and W. De Meuter. Ambient-Oriented
Programming. In OOPSLA ’05: Companion of the
20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications. ACM Press, 2005.

[4] David Kitchin, Adrian Quark, William Cook, and
Jayadev Misra. The orc programming language. In
FMOODS ’09/FORTE ’09: Proceedings of the Joint
11th IFIP WG 6.1 International Conference
FMOODS ’09 and 29th IFIP WG 6.1 International
Conference FORTE ’09 on Formal Techniques for
Distributed Systems, pages 1–25, Berlin, Heidelberg,
2009. Springer-Verlag.

[5] Cecilia Mascolo, Licia Capra, and Wolfgang
Emmerich. Mobile computing middleware. In In
Advanced lectures on networking, pages 20–58.
Springer-Verlag, 2002.

[6] Massimo Mecella, Michele Angelaccio, Alenka Krek,
Tiziana Catarci, Berta Buttarazzi, and Schahram
Dustdar. Workpad: an adaptive peer-to-peer software
infrastructure for supporting collaborative work of
human operators in emergency/disaster scenarios. In
CTS ’06: Proceedings of the International Symposium
on Collaborative Technologies and Systems, pages
173–180, Washington, DC, USA, 2006. IEEE
Computer Society.

[7] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan
coordination. In R. De Nicola and D. Sangiorgi,
editors, Symposium on Trustworthy Global Computing,
volume 3705 of LNCS, pages 195–229. Springer, April
2005.

[8] Mark Pruett. Yahoo! pipes. O’Reilly, 2007.

[9] Nick Russell, Arthur, Wil M. P. van der Aalst, and
Natalya Mulyar. Workflow control-flow patterns: A
revised view. Technical report, BPMcenter.org, 2006.

[10] Rohan Sen, Gruia-Catalin Roman, and Christopher D.
Gill. Cian: A workflow engine for manets. In
COORDINATION, pages 280–295, 2008.

[11] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De
Meuter. Linguistic symbiosis between event loop
actors and threads. Computer Languages Systems &
Structures, 35(1), 2008.

[12] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez
Boix, Jessie Dedecker, and Wolfgang De Meuter.
Ambienttalk: object-oriented event-driven
programming in mobile ad hoc networks. In
Proceedings of the XXVI International Conference of
the Chilean Computer Science Society (SCCC 2007),
pages 3–12. IEEE Computer Society, 2007.

