
Language-Shifting Objects from Java to Smalltalk
An exploration using JavaConnect

Johan Brichau
Université catholique de Louvain

johan.brichau@uclouvain.be

Coen De Roover
Vrije Universiteit Brussel

cderoove@vub.ac.be

Abstract
Foreign-function interfaces enable programs in a host lan-
guage to interoperate with programs written in another lan-
guage and vice-versa. Two languages that feature such an
interface to a common language can even interoperate by
means of this common intermediate language. Smalltalk and
Java, for example, both offer an interface to C and can there-
fore interoperate through a connection of these interfaces.
However, the resulting interactions will need to occur at the
level of abstraction offered by the (low-level) C interfaces,
although both Java and Smalltalk are object-oriented lan-
guages. In this paper, we describe how the dynamic and
reflective facilities of the Smalltalk language permits us to
raise the level of abstraction of these inter-language interac-
tions to seamless message passing between objects. In ad-
dition, we introduce and explore the concept of language
shifting objects where Java objects are not only represented
in Smalltalk but can partially or completely migrate from
Java to Smalltalk. Language-shifting effectively migrates
Java methods to Smalltalk methods such that original Java
objects can end up “living” in the Smalltalk environment
without needing a connection to their originating Java en-
vironment.

1. Introduction
Language interoperability is the ability of a program written
in a host language to access constructs of a program that is
written in another language. Language interoperability en-
ables code reuse across language boundaries and therefore
can help to improve the efficiency of the development pro-
cess.

There are number of different techniques to language in-
teroperability. Quite recently, language interoperability has

[Copyright notice will appear here once ’preprint’ option is removed.]

been obtained by targeting languages to the same common
runtime infrastructure. The Common Language Runtime
(CLR), for example, is the execution environment for a va-
riety of different programming languages and it specifically
supports their interoperability. Similarly, there are several
efforts to target the Java VM as the execution platform for
other object-oriented languages, primarily to support inter-
operability with Java programs [1, 8, 7]. A less versatile ap-
proach is implemented by Corba and SOAP by running the
programs in their own execution environment and offering
support for communication and data exchange.

Another and more commonly adopted technique (that
will be used in this article), is a foreign-function interface
(FFI) that lets programs in a host language make calls to
programs written in another language. Such an FFI typically
targets interaction with programs in a single, specific for-
eign language, most often C. Some interfaces also provide a
means for the foreign language to call back into the host lan-
guage. As a result, whenever two different languages provide
such a FFI to a third language, language interoperability be-
tween the first two languages can be established via the third
language.

The JavaConnect system [3], that is presented in this pa-
per, effectively relies on such a combination of Smalltalk’s
FFI (such as Visualworks’ DLLCC [10]) and Java’s native
interface (JNI) [2] to allow Smalltalk programs to interact
with Java programs. We will demonstrate how JavaConnect
implements language interoperability through such a tran-
sitive combination of FFI’s and how Smalltalk’s dynamic
and reflective features permit a high-level integration of Java
objects in the Smalltalk environment. In particular, we de-
scribe and explore the concept of language shifting objects
where Java objects migrate across the language barrier into
Smalltalk such that a part or their entire set of methods of
their class effectively executes in the Smalltalk environment
rather than in the Java environment. To this end, Java meth-
ods are decompiled and translated to Smalltalk. Using such
language-shifting, we can partially or completely migrate
Java objects to Smalltalk to reduce the performance over-
head involved with the FFI’s and even “disconnect” an entire
Java object structure from the running JVM.

1 2009/9/11



The transitive combination of FFI’s is not a novel nor
unique feature exploited by the JavaConnect system. Several
other similar libraries exist for other (dynamic) languages
such as Lisp ([5]) and there are even alternative implementa-
tions in Smalltalk as well ([6, 4]). However, the JavaConnect
implementation deliberately chose to plug its implementa-
tion into Smalltalk’s meta-object protocol. The result is that
Java classes and objects appear to live seamlessly in all ex-
isting Smalltalk infrastructure that relies on the meta-object
protocol to perform its functionality.

In the following section, we provide an overview of the
JavaConnect system and describe how it allows Smalltalk
programs to interact with Java programs. Next, Section 4
introduces the concept of language shifting objects followed
by Section 5 that introduces a number of applications of that
technique.

2. JavaConnect
JavaConnect is a Smalltalk library that allows a seamless in-
teraction with Java code from within Smalltalk. A Smalltalk
application can manipulate any Java object and send mes-
sages to it, just as if it were a Smalltalk object. Its imple-
mentation relies on a connection between the Smalltalk and
Java environments through their respective foreign-function
interfaces. Smalltalk’s FFI allows Smalltalk programs to in-
teract with C programs and Java’s JNI offers the ability for
C programs to interact with Java programs. The transitive
connection of these interfaces permits Smalltalk-Java inter-
action, as shown in Figure 1. The Java code thus executes
on a regular Java VM and the Smalltalk code executes on a
regular Smalltalk VM. Messages passed between Smalltalk
and Java objects are actually translated into invocations of
the FFI of both environments.

Figure 2 shows a Smalltalk code excerpt that implements
exactly the same functionality as the Java code in Figure 3.
The Smalltalk code excerpt can be executed in Smalltalk
when the JavaConnect system is installed in the environ-
ment. JavaConnect is currently only available for Visual-
works [10] but a port to Pharo/Squeak [9] is in preparation.

Although the technical ability to send messages across
language boundaries merely requires the presence of a FFI,
the seamless integration of Java objects in a Smalltalk envi-
ronment was made possible because of the advanced reflec-
tive protocol in Smalltalk, allowing to wrap foreign (Java)
values and make them behave like Smalltalk objects. In this
section we outline the conceptual mapping of Java constructs
into Smalltalk, which make the Java-Smalltalk interoperabil-
ity seamless.

2.1 Language Interoperability
Although there are differences between the Smalltalk and
Java languages, they both are class-based object-oriented
programming languages with single inheritance and auto-
matic memory management. In essence, Smalltalk and Java

Smalltalk 
program

Java 
program

Smalltalk 
FFI

Java
JNI

message

VM
operation

C function call

VM 
operation

Figure 1. Smalltalk interacts with Java through the lan-
guages’ FFI interfaces with C.

buf := JavaWorld.java.io.BufferedReader new_Reader:
(JavaWorld.java.io.FileReader new_String: ’sometext.txt’).

[((s := buf readLine) = nil) not]
whileTrue:

[line_count := line_count + 1.
st := java.util.StringTokenizer new_String: s String: ’ ,;.’.
[st hasMoreTokens]

whileTrue:
[word_count := word_count + 1.
s := st nextToken.
char_count := char_count + s length]]

Figure 2. Smalltalk code interacting with Java objects for
counting chars, words and lines of a file

buf = new BufferedReader(new FileReader(s));
while((s=buf.readLine())!=null) {

line_count++;
st=new StringTokenizer(s," ,;:.");
while(st.hasMoreTokens()) {

word_count++;
s=st.nextToken();
char_count+=s.length();

}
}

Figure 3. Java code implementing the same functionality as
Figure 2.

share the common object-oriented execution model where
objects interoperate by sending messages. Therefore, lan-
guage interoperability can best be established at this level,
allowing Smalltalk objects to communicate with Java ob-
jects through message sending. Even Java’s native types, in-
stance creation operators and other Java peculiarities can be
accomodated in this same model of interoperability, as we
will demonstrate later on. We briefly outline the mapping
for each Java language concept into Smalltalk.

Packages: Java packages define a name scope and, there-
fore, are very similar to Smalltalk namespaces. Given that
namespaces are available in the Smalltalk at hand, JavaCon-
nect will automatically define a namespace for each package
that is available in the Java environment. In order to distin-
guish them from the regular Smalltalk namespaces, they are

2 2009/9/11



harboured beneath the JavaWorld root namespace (as op-
posed to the Smalltalk root namespace). The java package
java.lang.util, for example, is therefore accessible from
Smalltalk as the JavaWorld.java.lang.util namespace.
In a Smalltalk where no namespaces are available (such
as Squeak), a dictionary could be created to simulate the
namespaces for the Java packages.

Classes: Java classes are represented as Smalltalk classes
with the same name. JavaConnect will dynamically gener-
ate such a “proxy” class in Smalltalk for each available Java
class and add it to the namespace that represents its proper
Java package. The Java Date class, for example, is accessi-
ble from Smalltalk as JavaWorld.java.lang.util.Date.
From a user point-of-view, there is no observable difference
between the manipulation of a normal Smalltalk class and
such a “proxy” class that represents a Java class. For obvi-
ous reasons, JavaConnect uses a lazy generation mechanism,
only generating the necessary “proxy” classes when they are
referenced.

Inheritance: All of the aforementioned “proxy” classes
that represent Java classes in Smalltalk are organized in an
inheritance hierarchy that corresponds to the one defined by
the original Java classes. The root of this inheritance tree is
a convenience class named JavaObject.

Member classes: Java member classes are also repre-
sented as Smalltalk classes but their name is prefixed with
their parent class(es) name(s) and includes the separator “ ”
between all the names. For example, the Iterator class,
member class of the List class in the java.lang.util
package, is represented in Smalltalk by the
JavaWorld.java.lang.util.List Iterator proxy class.

Methods: All methods declared by a Java class are rep-
resented as regular Smalltalk methods whose selector is an
automatic conversion of the Java method name syntax into
Smalltalk’s message syntax. Furthermore, similar to any
Smalltalk class, the static methods of the Java class can only
be invoked on the corresponding proxy class itself, while the
virtual methods can only be invoked on instance objects of
that proxy class.

The conversion of Java method names to Smalltalk selec-
tors occurs as follows:

• A Java method without arguments is trivially represented
as a Smalltalk method with a unary selector. That se-
lector is identical to the Java method name. For exam-
ple, the Java method with signature int length() is
represented in Smalltalk by the method with selector
#length.

• A Java method with one or more arguments is mapped
onto a Smalltalk method with a keyworded header. The
first keyword is the concatenation of the Java method
name and the short name of the type of the first ar-
gument, separated by a “ ”. The remaining keywords
are the short names of the types of the remaining ar-
guments. For example, the Java method with signa-

ture int lastIndexOf(String,int) is represented
by the Smalltalk method that implements the selector
lastIndexOf String:int: .

• In some cases, notably in the case of overloaded meth-
ods, this naming conversion can result in different Java
methods having the same header in Smalltalk. JavaCon-
nect prevents this from happening and expands the sim-
ple names of the types in each keyword with their corre-
sponding package name. Note that this only happens on
rare occasions where methods are overloaded using types
from different packages that have the same simple name.

Constructors: The public constructors of a Java class are
represented using Smalltalk class methods. The name con-
version scheme for constructors is identical to the one for
methods, but the name of a constructor is always mapped
onto “new”. This means that zero-argument constructors are
mapped onto the class method “new” and multiple argu-
ment constructors are mapped onto keyworded messages
of which the first keyword is prefixed with “new ”. For
example, the Java constructor Date(int, int, int) is
represented as the Smalltalk class method with selector
new int:int:int: (implemented on the Date class).

Instantiation: Java objects can be created from within
Smalltalk by invoking the aforementioned constructors, or
they can be obtained as return values from the invocation of
any Java method. In Smalltalk, any Java object is represented
by a Smalltalk object that is an instance of the appropriate
proxy class (that represents a Java class). As a result, Java
objects can be manipulated like any Smalltalk object. To en-
sure the correct functioning of object comparison, JavaCon-
nect guarantees that identical Java objects are uniquely rep-
resented in the Smalltalk image.

Fields: Since Smalltalk does not have a mechanism for
public instance variables, the public fields of a Java class are
made available by automatically generated accessors meth-
ods. The accessor methods’ selectors consists of the name
of the field, prefixed with “get ”’ and “put ”. Static fields
are accessible via class methods, while instance fields are
accessible via instance methods.

Exceptions: Java exceptions are mapped onto Smalltalk
exceptions. Smalltalk code can therefore reference and even
throw a Java exception just like any Smalltalk exception.

Native types: The Java native types (int, boolean, float,
char, . . . ) are transparently mapped onto instances of their
Smalltalk equivalents (Integer, Boolean, Float, Character,
. . . ) and vice-versa.

Callbacks: Smalltalk objects can be passed as arguments
to Java methods only when the Java method has declared
that argument using an interface type. This is because of
a limitation of the Java language. Smalltalk objects are
represented in Java by instances of dynamically generated
java.lang.Proxy classes. Such proxy classes can only be
generated for interface types, hence the restriction. Method
invocations on these java.lang.Proxy instances trigger a

3 2009/9/11



message send on the original Smalltalk object, using the
same (but inverse) name conversion scheme as message
sends from Smalltalk to Java.

Automatic Memory Management: Since both Java and
Smalltalk have automatic memory management, a coordina-
tion mechanism needs to be set up such that each garbage
collector knows which objects are still being referenced in
the other language environment. This means that any Java
object that is passed on to Smalltalk will be signaled to the
Java environment as being retained in the Smalltalk environ-
ment, preventing its removal from memory. Whenever a Java
“proxy” object is reclaimed from memory in Smalltalk, the
Java VM is also informed that the corresponding Java object
is no longer being retained in Smalltalk.

3. Reflection at Work
The previous section has outlined the mapping of Java lan-
guage concepts onto Smalltalk language concepts to en-
able an interoperability between Java and Smalltalk at the
object level. Although such an interoperability can be re-
alized in Smalltalk without integrating the Java “proxy”
classes in Smalltalk’s meta-object protocol (MOP), Java-
Connect has specifically chosen to pursue this implementa-
tion strategy. This means that JavaConnect represents Java
classes in Smalltalk using exactly the same structure as the
one used for Smalltalk classes (i.e. classes and their meta-
classes). The result is that existing Smalltalk code will im-
mediately be able to treat Java “proxy” classes as regular
Smalltalk classes (given the appropriate method specializa-
tions, of course). In this section, we outline this implemen-
tation choice and reflect on the implications.

Figure 4 illustrates the implementation of JavaConnect as
an extension of existing Smalltalk meta-objects. The Java-
Connect classes are tinted gray while the original Smalltalk
classes are left white. A first, simple part of the extension
concerns the JavaPackage and JavaCompiledMethod
classes, subclasses of Namespace and CompiledMethod re-
spectively. These new meta-objects will represent Java pack-
ages and Java methods in the Smalltalk environment.

Next, JavaConnect integrates the Java “proxy” classes
into Smalltalk as instances of the JavaClass class, which
is a subclass of the existing Class class. More precisely,
each such “proxy” class is an instance of its meta-class,
which is actually a subclass of the JavaClass class (see
Figure 4). These meta-classes of Java “proxy” classes are
instances of the JavaMetaclass class. The example Java
“proxy” class (java.io.File) that is included in the Figure
illustrates this structure, which is exactly the way Smalltalk
represents its own classes (also included in the Figure). It
goes without saying that there is more to the implementation
of JavaConnect than what is shown in Figure 4, but in the
same way that this diagram forms the heart of Smalltalk’s
MOP, the shown extensions to the MOP are the core of how
JavaConnect represents Java objects in Smalltalk.

This implementation strategy had some immediate ad-
vantages:

• Because Java packages are modeled as Smalltalk names-
paces, all Java packages are immediately available in
Smalltalk tools that reason about namespaces, such as the
syntax highlighter and, of course, the namespaces lookup
mechanism of the Smalltalk runtime environment. En-
abling this interoperability required overriding only a sin-
gle method on the JavaPackage class.

• Representing Java “proxy” classes using subclasses of
the existing Smalltalk Class and MetaClass classes,
has immediately enabled that Java “proxy” classes can
be navigated with standard Smalltalk development tools.
In addition, the instances of these classes can accessed
and manipulated in exactly the same way as for normal
Smalltalk instances and one can even create subclasses
of a Java “proxy” class, using the standard tools and/or
meta-object messages.

• The explicit representation of Java classes as a class–
meta-class pair in Smalltalk does not only entail that Java
static methods are implemented on the meta-class and
Java virtual methods are implemented on the class itself.
More importantly, it has allowed us to explicitly connect
the Smalltalk meta-class with the java.lang.Class in-
stance that reifies that class in Java. The meta-class of
any Java “proxy” class therefore directly represents its
Java counterpart as well.

4. Language Shifting
Although the ability to interact with Java from within the
Smalltalk environment opens up the access to a vast array of
Java libraries, there is a fair amount of runtime overhead in-
volved with such external calls, compared to calling libraries
native to the same language. A Smalltalk program that uses
a data structure implemented in Java will eventually oper-
ate slower than an equivalent Smalltalk program that uses
a Smalltalk data structure instead. In addition, the memory
footprint will be larger as well since for each Java object
that is manipulated by Smalltalk code, a corresponding Java
“proxy” object needs to exist in the Smalltalk environment.

In order to reduce the overhead involved with using Java
objects in a Smalltalk program, we introduce the concept of
language shifting objects. In contrast to normal Java “proxy”
objects, language-shifted objects have part (or all) of their
original behavior executed in Smalltalk rather than in Java.
In other words, some of the methods that can be invoked on
it have shifted from Java to Smalltalk: they have been trans-
lated and can now execute in the Smalltalk VM. The result
is that Java objects that are manipulated by a Smalltalk pro-
gram do not always require to invoke behavior implemented
in Java: the method executes entirely in Smalltalk, effec-
tively eliminating the communication infrastructure over-
head.

4 2009/9/11



Object

JavaObject Behavior

Java-
MetaclassJavaClass

Object class

Class-
Description

Class Metaclass

class of

java.io.File

Collection Collection class

java.io.File 
class

is a

Namespace

JavaPackage

CompiledMethod

Java-
CompiledMethod

Figure 4. JavaConnect extends the Smalltalk MOP.

Evidently, the performance benefit does not hold for any
Java method that is translated to Smalltalk code. If the trans-
lated Smalltalk code performs more calls to Java methods,
the runtime overhead will increase. Therefore, language
shifting often involves the translation of multiple Java meth-
ods that collaborate. At this time, the decision of which
methods to translate lies in the hands of the Smalltalk de-
velopers.

The implementation of language shifting consists of two
parts: translating method behavior and handling state of
fields.

4.1 Translating Java methods
The translation process itself is implemented as follows. A
Java decompiler decompiles the bytecode of the loaded Java
class for which we want to perform language-shifting. The
decompiled source-code is then parsed into a convenient
abstract syntax tree from which the translated Smalltalk
source for the desired Java methods is generated 1. The
generated Smalltalk source code is then compiled and the
JavaCompiledMethod instance in the method dictionary is
replaced by the resulting Smalltalk compiled method.

The source-to-source translation of Java to Smalltalk
code is based on the conceptual mapping of language con-
structs employed by JavaConnect itself, which we described
in Section 2.1. Here are the most important principles ap-
plied by the translation process:

• Invocations of public java methods are translated to
Smalltalk messages according to the name translation
scheme described in Section 2.1.

1 The parsing step could be omitted if the decompiler supplies a reasonable
Java AST.

• Invocations of private java methods are translated in the
same way but to ensure that the invocation will fol-
low Java semantics (i.e. private methods are statically
bound), the name of the declaring class is prepended
to the Smalltalk selector. The corresponding method is
added to the class as well.

• References to Java fields are replaced by calls to the
(generated) Smalltalk accessor methods. If the fields are
private or protected, accessor methods are also generated
since the JNI allows to retrieve values of private and
protected fields.

• References to Java class names are trivially translated to
the corresponding references in Smalltalk.

• Uses of Java-specific values, such as all native types
and null, are translated to the regular Smalltalk (object)
counterparts.

• The use of Java arrays will be translated to the use of
JavaConnect’s representation for Java arrays in Smalltalk.
This means that there is no mapping of Java arrays to
Smalltalk collections.

• Java control-flow constructs such as if-then-else,
for,while,repeat, etc. are translated to the equivalent
Smalltalk idioms using messages such as ifTrue:ifFalse,
whileTrue:,to:do:,etc.

• Java’s try-catch construct is mapped to equivalent (nested)
on:do: construct in Smalltalk.

At this time, some Java constructs that can be found in
Java method bodies, such as type declaration statements and
switch statements, are not handled. Similarly, synchroniza-
tion primitives and break/continue statements require some-
what more complex transformations that probably can be

5 2009/9/11



implemented correctly, but they are not handled at this time.
In such cases, the language-shifting fails. It is also important
to note that generics are not an issue in this translation since
they are a Java compiler facility and are not present in the
bytecode of the loaded classes.

4.2 Handling Java fields
In addition to translating Java methods, JavaConnect allows
to mark any method on a Java “proxy” class as a “cached”
method. This means that the method will remember its return
value and merely return that same value every time it is
invoked on the same receiver, with the same arguments. This
is particularly useful for accessor methods when we know
that the values will remain constant. Such situations are
not imaginary, as we discuss in the following section. The
cached methods can also be applied when all Java methods
of a class have been shifted to Smalltalk and when we know
that manipulation of the values only occurs from within
Smalltalk itself.

5. Applications of Language Shifting
Language-shifting is particularly useful when we can use
it to reduce the amount of communication between the
Smalltalk and Java environments. In this section, we briefly
present a number of example applications in which we have
applied the technique.

5.1 Static utility methods
Static Java methods often provide utility operations on val-
ues that are passed via the arguments only. The Eclipse JDT
classes, for example, implement static methods that expose
the meaning of flags encoded in integer numbers. Such meth-
ods have a typical signature like: boolean isStatic(int).
By language-shifting such methods, we were able to avoid
the unnecessary call to Java code and keep the execution in
the Smalltalk environment. In this particular case, the utility
methods are frequently invoked by our Smalltalk code and
since they operate on native integers, which are represented
in Smalltalk by Integer instances, their internal execution
therefore did also not require any communication with the
Java environment anymore.

5.2 Visitor pattern on tree structures
The Visitor design pattern [11] relies on the implementa-
tion of so-called “accept” methods defined by all “visitable”
classes. These methods implement a double-dispatch proto-
col: they invoke the appropriate visit method on the argu-
ment (i.e. the visitor). By language-shifting such “accept”
methods, we can use a Smalltalk object as the visitor instead
of the (foreseen) Java object and speed up visitations of en-
tire tree structures. We applied this technique to language-
shift the AST objects of the Eclipse JDT dom library and
use a Smalltalk implementation for the expected ASTVisitor.
This solution allowed us to reuse the existing accept meth-
ods (although automatically translated to Smalltalk) when

we otherwise needed to implement them ourselves on the
Java “proxy” classes.

5.3 Navigating tree structures
In the same context as the previous application, tree struc-
tures (such as ASTs) are frequently navigated through the
invocation of getParent() to navigate to a node’s ances-
tor and the invocation of (class-specific) methods to obtain a
node’s children. When the objects that make up the tree are
implemented in Java and the traversal code is implemented
in Smalltalk, the navigation process suffers some perfor-
mance overhead. Fortunately, many tree structures (such as
ASTs) will not change their structure. Every node will al-
ways have the same set of children. Therefore, we have
cached those navigation methods, thereby eliminating the
mentioned overhead. In addition, several other methods of
the classes of the objects that make up the tree could be
language-shifted.

Although we have not yet reached the point where all
methods of the concerned classes have been language-
shifted, when this happens we foresee that we can con-
sider the entire language-shifted tree structure as completely
Smalltalk-based and can theoretically “decouple” it from the
Java environment.

6. Conclusion
We have presented how the JavaConnect system combines
the foreign-function interfaces of Smalltalk and Java to per-
mit Smalltalk code to interact with Java programs. Its im-
plementation integrates with the Smalltalk meta-object pro-
tocol to achieve a seamless language interoperability. Using
this system, we have explored the concept of language shift-
ing objects where Java methods are translated to Smalltalk
code, resulting in the ability to retain the execution of the
interaction with Java objects in the Smalltalk environment
itself. Such language shifting has some interesting applica-
tions and particularly targets runtime optimization but care
must be taken which methods to shift since the translated
Smalltalk implementation may require even more interac-
tions.

References
[1] Clojure. http://clojure.org.

[2] Java native interface. http://java.sun.com.

[3] JavaConnect. http://www.info.ucl.ac.be/ jbrichau/javaconnect.html.

[4] JavaInSt. http://www.smalltalking.net/Goodies/VisualSmalltalk/.

[5] Jfli - A foreign language interface for Lisp.
http://jfli.sourceforge.net/.

[6] JNIPort. http://jniport.wikispaces.com/.

[7] JRuby. http://www.jruby.org.

[8] st/JVM. http://www.smalltalkmigrations.com/stjvm.htm.

[9] The Pharo Project. http://www.pharo-project.org.

[10] Visualworks Smalltalk. http://www.cincomsmalltalk.com.

6 2009/9/11



[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns, Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

7 2009/9/11


