
Universidad de los Andes Vrije Universiteit Brussel
Faculty of Engineering Faculty of Science

Department of Department of
Systems and Computational Computer Science

Software Construction Group Software Languages Lab

Monitoring and Analysis of Workflow
Applications: A Domain-specific

Language Approach

Oscar González

September 2010

A dissertation submitted in partial fulfilment of the requirements for the
degree of Doctor of Sciences at Vrije Universiteit Brussel and Doctor of

Engineering at Universidad de los Andes

Promoters: Jury:
Prof. Dr. Rubby Casallas Prof. Dr. Wolfgang De Meuter
Prof. Dr. Viviane Jonckers Prof. Dr. Jorge Villalobos
Dr. Dirk Deridder Prof. Dr. Mario Südholt

Dr. Eric Tanter
Prof. Dr. Beat Signer
Dr. Dario Correal

Abstract

The increased focus of companies on improving their operational efficiency has
raised a demand for advanced systems to support the continuous monitor-
ing and analysis of business activities. These business activities are typically
automated into workflow applications which are modeled, implemented and
executed by workflow management systems (WFMS). The monitoring and
analysis solutions aim at giving organizations the opportunity to focus on
process improvement by detecting problematic properties of workflow applica-
tions. The focus of this research is to raise the level of abstraction for workflow
developers for monitoring and analyzing workflow applications during their ex-
ecution.

Contemporary solutions require a big effort from workflow developers to
materialize the needs of workflow analysts. First of all, these solutions fall
short because they do not treat monitoring and analysis as a first class en-
tity in the workflow implementation. As a result, workflow developers need
to build ad hoc infrastructures to instrument the workflow implementation
with monitoring and analysis concerns. This results in crosscutting and en-
tangled code that affects the maintainability of the workflow application and
the monitoring and analysis implementation. Another consequence is that
the implementation of monitoring and analysis concerns is not reusable across
different workflow platforms. Secondly, workflow variables and measurement
variables are difficult to localize, use and share between workflow developers.
As a result, there is limited support to base the monitoring and analysis on the
data of the workflow application domain (e.g., Banking). Thus, the expres-
siveness of monitoring and analysis concerns is limited to generic properties
defined in terms of the operational state of the workflow engine (e.g., the time
a workflow is running).

This dissertation presents two main contributions to solve these problems.
Our first contribution is the creation a domain-specific language named MonitA
to specify monitoring and analysis concerns in a uniform and workflow technol-

i

ii Abstract

ogy independent way. MonitA specifications make extensive use of the data
available in the workflow application and its constituents to tackle the lack
of expressiveness in these specifications. Our second contribution is a strat-
egy to generate monitoring and analysis code into different existing workflow
platforms. MonitA specifications generate monitoring code that is composed
with the existing workflow implementation in an automated fashion. The re-
sulting code artifacts correspond to an executable workflow implementation
instrumented with monitoring and analysis concerns that can be executed in
a particular workflow engine.

We provide a flexible approach that offers workflow developers the possibil-
ity to target different workflow platforms and different workflow applications.
The monitoring and analysis specifications are not tightly coupled to the work-
flow implementation since they make use of the process model concepts. The
MonitA specifications are modularized to ease their maintainability and to be
shared between workflow developers. This has a positive impact on evolvabil-
ity since these specifications can be re-generated and re-composed with a new
workflow implementation.

We have validated our approach by specifying monitoring and analysis
concerns into well known workflow applications by using MonitA. We used
our implementation strategy to automate the implementation of monitoring
and analysis concerns in two different workflow platforms (i.e., JPDL, BPEL).
These experiments evidence improvements in the time and effort that workflow
developers require to specify and implement monitoring and analysis concerns
in an existing workflow application. They also improve the specification time
in a new workflow application of a supported workflow platform. In addition,
the code required to maintain is less in MonitA and it is modularized to ease
its maintainability.

The MonitA language increases the expressiveness of monitoring and anal-
ysis concerns in terms of workflow relevant data to allow an analysis of the
workflow application in terms of the specific domain it is modeling. The im-
plementation of monitoring and analysis concerns is automatically generated
and composed into a specific workflow platform. This increases the productiv-
ity of application developers and decreases the complexity and time required
to implement monitoring and analysis concerns in workflow applications. This
also has a favourable impact for workflow analysts since there is a time re-
duction to materialize their requirements and to get feedback required to take
improvement decisions.

Resumen

El creciente interés de las empresas en el mejoramiento de su eficiencia oper-
ativa ha planteado una demanda de sistemas avanzados para apoyar el mon-
itoreo y análisis continuo de sus actividades de negocio. Estas actividades
de negocio suelen ser automatizados en aplicaciones de workflow las cuales
son modeladas, implementadas y ejecutadas en workflow management sys-
tems (WFMS). Las soluciones de monitoreo y análisis dan a las organizaciones
la oportunidad de centrarse en el mejoramiento de sus procesos mediante la
detección de propiedades problemáticas en las aplicaciones de workflow. El
objetivo de esta investigación es subir el nivel de abstracción para los desarrol-
ladores del workflow para soportar el monitoreo y análisis durante la ejecución
de estas aplicaciones.

Las soluciones actuales requieren un gran esfuerzo de los desarrolladores del
workflow para materializar las necesidades de los analistas. En primer lugar,
estas soluciones se quedan cortas porque no tratan el monitoreo y análisis como
una entidad representativa en la aplicación de workflow. Como resultado, los
desarrolladores necesitan construir infraestructuras diseñadas espećıficamente
para instrumentar la aplicación de workflow con preocupaciones de monitoreo
y análisis. Esto conlleva a código disperso y entrelazado que afecta la man-
tenibilidad de la aplicación de workflow y de la implementación de monitoreo
y análisis. Otra consecuencia es que la implementación de las preocupaciones
de monitoreo y análisis no es reutilizable a través de plataformas de work-
flow diferentes. En segundo lugar, las variables de workflow y las variables de
medición son dif́ıciles de localizar, utilizar y compartir entre los desarrolladores
del workflow. Como resultado, el soporte para basar el monitoreo y análisis
en los datos del dominio espećıfico de la aplicación de workflow (e.g., dominio
bancario) es limitado. Por lo tanto, la expresividad de las preocupaciones de
monitoreo y análisis se limita a propiedades genéricas acerca del estado del
motor de workflow (e.g., el tiempo que un workflow se está ejecutando).

Esta tesis presenta dos contribuciones principales para resolver estos prob-

iii

iv Resumen

lemas. Nuestra primera contribución es la creación de un lenguaje de do-
minio espećıfico llamado MonitA para especificar preocupaciones de monitoreo
y análisis de manera uniforme e independiente de tecnoloǵıas de workflow. Las
especificaciones en MonitA hacen un amplio uso de los datos disponibles en
la aplicación de workflow para hacer frente a la falta de expresividad de estas
especificaciones. Nuestra segunda contribución es una estrategia para generar
código de monitoreo y análisis en diferentes plataformas de workflow exis-
tentes. Las especificaciones en MonitA generan código de monitoreo que se
integra con el código de la aplicación de workflow de forma automatizada. El
código resultante corresponde a una aplicación de workflow ejecutable, la cual
está instrumentada con preocupaciones de monitoreo y análisis y puede ser
ejecutada en un motor de workflow concreto.

Proporcionamos un enfoque flexible que ofrece a los desarrolladores la posi-
bilidad de seleccionar diferentes plataformas y aplicaciones de workflow. Las
especificaciones de monitoreo y análisis no están estrechamente unidas a la
implementación del workflow ya que hacen uso de los conceptos del modelo
de proceso de alto nivel. Las especificaciones en MonitA son modulares para
facilitar su mantenibilidad y para ser compartidas entre los desarrolladores
del workflow. Esto tiene un impacto positivo en la capacidad de evolución ya
que estas especificaciones pueden ser generadas y integradas con una nueva
aplicación de workflow.

Hemos validado nuestro enfoque mediante el uso de MonitA para la especi-
ficación de preocupaciones de monitoreo y análisis en aplicaciones de workflow
conocidas. Utilizamos nuestra estrategia generativa para automatizar la im-
plementación de preocupaciones de monitoreo y análisis en dos plataformas de
workflow diferentes (i.e., JPDL, BPEL). El uso de las infraestructuras generati-
vas creadas para estas plataformas muestra mejoras en el tiempo y esfuerzo que
los desarrolladores requieren para especificar e implementar las preocupaciones
de monitoreo y análisis para una aplicación de workflow existente. También
mejora el tiempo de especificación para una nueva aplicación de workflow en
una plataforma soportada por la infraestructura. Además, el código para man-
tener es menor en MonitA y es modular para facilitar su mantenimiento.

El lenguaje MonitA aumenta la expresividad de las preocupaciones de mon-
itoreo y análisis en términos de los datos pertinentes al workflow. Esto permite
un análisis en términos del dominio espećıfico que la aplicación de workflow
está modelando. La implementación de preocupaciones de monitoreo y análisis
es automáticamente generada e integrada en una plataforma de workflow es-
pećıfica. Esto aumenta la productividad de los desarrolladores y reduce la
complejidad y el tiempo necesarios para implementar las preocupaciones de
monitoreo y análisis en las aplicaciones de workflow. Esto también tiene un
impacto favorable para los analistas de workflow ya que hay una reducción del
tiempo necesario para materializar sus necesidades y para obtener la retroali-
mentación necesaria para tomar decisiones de mejoramiento.

Samenvatting

Een belangrijk aandachtspunt voor bedrijven is de continue verbetering van
hun operationele efficiëntie. Hierdoor is er een stijgende vraag naar gea-
vanceerde systemen om bedrijfsprocessen te observeren, analyseren en control-
eren. Doorgaans worden bedrijfsprocessen geautomatiseerd door ze te mod-
elleren, programmeren en uit te voeren met behulp van workflow management
systemen (WFMS). De hulpmiddelen waarover men beschikt om deze work-
flows te observeren en te analyseren stellen organisaties in staat om prob-
lematische onderdelen te identificeren en vervolgens hun bedrijfsprocessen te
verbeteren. Het doel van het onderzoek in dit proefschrift is het verhogen van
het niveau van abstractie waarin ontwikkelaars deze vereisten voor observatie
en analyse kunnen implementeren.

Hedendaagse WFMS vragen een grote inspanning van ontwikkelaars om
de noden van workflow analisten te realiseren. In de eerste plaats behandelen
bestaande ontwikkelingsomgevingen het observatie- en analyse aspect niet als
volwaardige elementen van een WFMS. Hierdoor zijn ontwikkelaars genoodza-
akt om zelf de nodige infrastructuur te bouwen voor het instrumenteren van
workflow implementaties met de nodige observatie- en analysecode. Uitein-
delijk bekomt men zo een workflowimplementatie waarin deze code verweven
is met de code verantwoordelijk voor de definitie van het bedrijfsproces. Dit
heeft nadelige gevolgen voor de onderhoudbaarheid en de herbruikbaarheid
van het workflowsysteem in haar geheel. Ten tweede bieden bestaande WFMS
geen ondersteuning om observaties en analyses te baseren op data en metingen
die uitgedrukt zijn in termen van de waarden gebruikt in het bedrijfsproces
(domein-specifieke data). Meestal blijft de geboden ondersteuning beperkt tot
uitdrukkingen die gebruik maken van de operationele toestand van het WFMS
systeem (bijv. de uitvoeringstijd, het aantal actieve processen). In het alge-
meen kan dus gesteld worden dat huidige WFMS onvoldoende expressiviteit
bieden voor het uitdrukken van de analyse en observatienoden van workflow
analisten.

v

vi Samenvatting

Dit proefschrift bevat twee belangrijke bijdragen om de hogervermelde
problematiek aan te pakken. Een eerste bijdrage bestaat in het aanbieden
van een domein-specifieke taal (genaamd MonitA) waarin observatie- en analy-
segedrag kan worden uitgedrukt op een uniforme en technologie-onafhankelijke
manier. Bovendien kunnen specificaties in MonitA uitgebreid gebruik maken
van de domein-specifieke data die beschikbaar is binnen het workflowsysteem.
Hierdoor biedt MonitA een oplossing voor het gebrek aan expressiviteit van
bestaande WFMS. De tweede bijdrage omvat een generatiestrategie om, op
basis van een MonitA specificatie, de benodigde observatie- en analysecode te
genereren en te integreren in een bestaande workflowimplementatie. Uitein-
delijk zorgt deze generatiestrategie er voor dat men op het einde van de rit
een uitvoerbare implementatie heeft die uitgerust is met de nodige elementen
voor observatie en analyse. De aangeboden generatiestrategie is opgebouwd
op een manier die het mogelijk maakt om code te genereren voor verschillende
WFMS platformen. Dit zonder dat er nadelige gevolgen zijn voor de bestaande
MonitA specificaties. Bijgevolg kan men stellen dat de generatiestrategie ver-
antwoordelijk is voor het technologie-onafhankelijke aspect van onze bijdrage.

De voorgestelde aanpak is gevalideerd door het opstellen van MonitA spec-
ificaties voor observatie en analyse en dit voor verschillende gevalstudies. Hi-
erbij is de generatiestrategie succesvol ingezet om code te genereren voor ver-
schillende WFMS platformen (JPDL, BPEL). Deze experimenten hebben een
bewijs geleverd dat workflow ontwikkelaars op een snellere en minder arbei-
dsintensieve manier observatie- en analysegedrag kunnen toevoegen aan een
bestaande workflowimplementatie. Ook is gebleken dat nieuwe WMFS plat-
formen op een gemakkelijke manier ondersteund kunnen worden. Hierdoor
kan men dezelfde MonitA specificatie gebruiken om code te genereren voor
verschillende WMFS platformen. Hierdoor zijn workflow ontwikkelaars niet
langer gebonden aan een bepaalde technologie bij het uitdrukken van de vereis-
ten voor observatie en analyse. Verder is gebleken dat het gebruik van MonitA
resulteerde in compactere en beter gemodulariseerde code. Dit leverde een
niet te onderschatten voordeel op voor de algemene onderhoudbaarheid van de
workflowsystemen.

Acknowledgements

These few lines won’t be enough to express my thankfulness to all my advisers,
colleagues, friends and family, who have assisted me one way or another during
this long but enriching process. Therefore, I want to dedicate this thesis and
all its positive results to all people who have supported me all along ...

... To my advisers Rubby Casallas, Dirk Deridder, and Viviane Jonckers,
who gave me the opportunity to work with them as a PhD student. I am
immensely grateful to Rubby for introducing me into the research world, for
giving me all the support and advice required during these four years of re-
search, and for providing me with valuable feedback to improve this thesis.
I thank deeply Dirk for his critical advice, for his constant motivation that
encouraged me to keep a good performance, and for the enormous time spent
reading my texts in depth. I am grateful to Viviane for providing me with
constructive feedback on my work and for the coordination of the activities to
finish my thesis.

... To the committee members, for the significant time spent reading my
thesis and their rigorous comments to improve it: Wolfgang De Meuter, Jorge
Villalobos, Mario Südholt, Eric Tanter, Beat Signer, and Dario Correal.

... To the Flemish Interuniversity Council (VLIR) in the framework of the
CARAMELOS project and to Colciencias for providing me with the financial
support to carry out this work.

... To my colleagues and friends Andrés Yie and Mario Sánchez who gave
me support and help during the time living in Belgium, I feel very much
indebted.

... To the members of the TICSw research group for their collaboration in
my research. In particular, I thank to Marcial Moreno and William Cano who
collaborated in the implementation and validation of the MonitA generative
infrastructure.

... To my colleagues at Software Languages Lab for the scientific and pro-
ductive working environment. I thank deeply the experience and friendship

vii

viii Acknowledgements

from my colleagues at the past SSEL lab: Bruno De Fraine, Dennis Wage-
laar, Niels Joncheere, Bart Verheecke, Ragnhild Van Der Straeten, Mathieu
Braemand, and Eline Philips. I particularly want to thank Eline and Andy
Kellens to proof-read some of the chapters of my thesis, and Bruno and Dirk
for helping me with the Dutch version of the abstract. Additionally, I thank
to Thomas Cleenewerck for his guidance and discussions on DSLs, to Carlos
Noguera and Coen De Roover for their suggestions and valuable feedback to
improve my work, and to Elisa Gonzalez and Jorge Vallejos for their support
to coordinate the practical arrangements of my public defense.

... To all my friends who supported me during the different periods of time
living in Colombia and Belgium. Thanks to Rob Vanmeert, Adriana Manrique,
Isabel Michiels, Frank van der Kleij, Agustina Cibran, Jorge Vallejos, Sonia
Petitprez, Hugo Arboleda, Nicolas Cardozo, and Sebastian González for their
interest in my research and all-round support.

... To my parents, Buenaventura González and Flor Rojas, for the right
academic and personal guidance, and for their infinite support. Thanks to my
brother, sister, and family for their love and unit to face any challenge.

... To Diana, my eternal girlfriend, for supporting me in these years of
doctoral studies, for bearing my long periods of absence being abroad, and for
helping me find the balance in my life.

Thanks a lot !!!

Table of Contents

Abstract i

Resumen iii

Samenvatting v

Acknowledgements vii

Table of Contents ix

List of Figures xv

List of Tables xvii

Listings xix

List of Abbreviations xxi

I Problem Statement and Background 1

1 Introduction 3
1.1 Research Context . 3
1.2 Problem Statement . 5

1.2.1 A Trouble Ticket Workflow Scenario 6
1.2.2 The Need for Higher-level Mechanisms 7
1.2.3 An Overview of the Problem 10

1.3 Research and Assessment Goals 11
1.4 Approach . 13
1.5 Contributions . 16

ix

x TABLE OF CONTENTS

1.6 Outline of the Dissertation . 17

2 Background: Workflow Monitoring and Analysis 21
2.1 Workflow Management Systems 21

2.1.1 Perspectives on Workflow Applications 22
2.1.2 Process Models Specification 23
2.1.3 Workflow Implementation and Enactment 27
2.1.4 Workflow Monitoring and Analysis 29

2.2 Monitoring and Analysis of Workflow Applications 30
2.2.1 Workflow Monitoring and Analysis Taxonomy 31
2.2.2 Workflow Monitoring and Analysis Views 33
2.2.3 Workflow Monitoring and Analysis Dimensions 34
2.2.4 Workflow Monitoring and Analysis Technologies 35

2.3 Summary . 36

II Specifying Monitoring and Analysis Concerns in
Workflow Applications 37

3 Rationale and Background 39
3.1 Domain-Specific Languages . 41

3.1.1 Development Process . 41
3.1.2 Design Principles . 45

3.2 Requirements for the MonitA DSL 49
3.2.1 Monitoring and Analysis Desiderata 50
3.2.2 MonitA DSL Properties 52

3.3 Design Rationale for the MonitA DSL 54
3.4 Summary . 56

4 MonitA: The Monitoring and Analysis Language 57
4.1 Monitoring and Analysis Specification 57

4.1.1 Data Types Specification 58
4.1.2 Workflow Data Specification 59
4.1.3 Monitoring and Analysis Concerns Specification 62

4.2 Measurement Data Segment . 64
4.2.1 Measurement Variable Declaration 64
4.2.2 Measurement Variables Initialization 67
4.2.3 Navigation of Measurement Information 68

4.3 Monitoring Events Segment . 70
4.3.1 Workflow Events Monitoring 71
4.3.2 Analysis Functions Invocation 74
4.3.3 Execution Context Passing 75

4.4 Analysis Functions Segment . 77

TABLE OF CONTENTS xi

4.4.1 Measurement Actions . 78
4.4.2 Control Actions . 82

4.5 Discussion . 83
4.6 Summary . 84

5 Evaluation of the MonitA Language 85
5.1 Evaluation of Design Principles 85
5.2 Evaluation of Expressiveness and Learnability 89

5.2.1 Basic Study . 90
5.2.2 Results . 92

5.3 Data Modeling Characteristics 94
5.3.1 Relation to Workflow Data Patterns 94

5.4 Summary . 99

III Implementing Monitoring and Analysis Concerns
Using Generative Approaches 101

6 Rationale and Background 103
6.1 Requirements for the MonitA Implementation Strategy 104
6.2 Design Rationale for the MonitA Implementation Strategy . . . 105
6.3 Model-driven Engineering . 106

6.3.1 Metamodels, Models and Transformations 107
6.3.2 MDE and DSLs . 107
6.3.3 Traceability Models . 108

6.4 Aspect-Oriented Software Development 108
6.4.1 Aspect-Oriented Programming Languages 109
6.4.2 Aspect-Oriented Workflow Languages 109

6.5 Summary . 112

7 MonitA: The Generative Implementation Strategy 113
7.1 M&A Analysis Concerns Execution 114
7.2 Architecture for Creating a MonitA Generative Infrastructure . 115

7.2.1 Functional Decomposition Viewpoint 116
7.2.2 Generative Strategy . 117

7.3 Controlling the Workflow Generation Process 118
7.3.1 Transforming BPMN Models into Executable Workflows 119
7.3.2 Managing Traceability 119
7.3.3 Accessing Workflow Data 120

7.4 Generating the M&A Code . 120
7.4.1 Transforming MonitA Specifications into AOP Code . . . 121
7.4.2 Transforming MonitA Specifications into Workflow Code 122
7.4.3 Managing Measurement Data and Control Actions . . . 123

xii TABLE OF CONTENTS

7.4.4 Transforming Measurement Data 123
7.5 Composing the MonitA Code with Workflow Applications . . . 127

7.5.1 Selecting the Level of Abstraction 128
7.6 Summary . 129

8 MonitA: The Implementation and Execution Infrastructure 131
8.1 Selected Technology . 131
8.2 MonitA-JPDL Generative Infrastructure 132

8.2.1 JPDL Workflow Code Generator 132
8.2.2 MonitA Code Generator into JPDL 135
8.2.3 Composing MonitA Code with JPDL Applications . . . 142

8.3 MonitA-BPEL Generative Infrastructure 142
8.3.1 BPEL Workflow Code Generator 142
8.3.2 MonitA Code Generator into BPEL 144
8.3.3 Composing MonitA Code with BPEL Applications . . . 149

8.4 Infrastructure for Enacting MonitA Specifications 150
8.4.1 Specification Environment 151
8.4.2 Measurement Data Store System 151
8.4.3 Workflow Monitoring and Analysis Dashboard 154

8.5 Summary . 155

IV Validation and Conclusion 157

9 Validation 159
9.1 Scenario 1: Trouble Ticket Workflow Application 161

9.1.1 Monitoring and Analysis Requirements 161
9.1.2 Generative Implementation and Composition 166

9.2 Scenario 2: Loan Approval Workflow Application 166
9.2.1 Data Association Model 167
9.2.2 Monitoring and Analysis Requirements 168
9.2.3 Generative Implementation and Composition 169

9.3 Scenario 3: Trip Expenses Workflow Application 169
9.3.1 Data Association Model 170
9.3.2 Monitoring and Analysis Requirements 171
9.3.3 Generative Implementation and Composition 173

9.4 Study 1: Measuring Development Costs by Using MonitA 173
9.4.1 The Exploratory Study 174
9.4.2 Quantitative Results . 174
9.4.3 Discussion . 177

9.5 Study 2: Evaluating Maintainability and Understandability . . . 177
9.5.1 Evaluation Results . 178
9.5.2 Discussion . 178

TABLE OF CONTENTS xiii

9.6 Study 3: Evaluating DSL Success Factors in MonitA 179
9.6.1 Basic Study . 179
9.6.2 Results and Discussion 181

9.7 Summary . 182

10 Comparing MonitA with Related Work 183
10.1 Monitoring and Analysis Characterization 183
10.2 Workflow Monitoring and Analysis at Runtime 186

10.2.1 Architectures for Business Activity Monitoring 186
10.2.2 Model-driven Approaches 188

10.3 Workflow Monitoring and Analysis a Posteriori 190
10.3.1 Architectures for Workflow Applications 190
10.3.2 Business Process Intelligence 192
10.3.3 Semantic Business Process Management 192
10.3.4 Process Analysis based on Event logs 194
10.3.5 Tool Support . 196

10.4 Dynamic and Static Program Analysis 196
10.5 Process Data Models . 198

10.5.1 Data Modeling in Workflow Applications 198
10.5.2 Data Modeling on Other Domains 199

10.6 Domain-specific Aspect Languages 200
10.7 Service-Oriented Computing . 201
10.8 Discussion: Positioning our Approach 202
10.9 Summary . 204

11 Conclusion 205
11.1 Conclusions . 205
11.2 Limitations and Future Work 208

11.2.1 Composing M&A Concerns at the Conceptual Level . . . 208
11.2.2 Co-evolution of Process and MonitA Models 209
11.2.3 Managing Concerns Interactions 211
11.2.4 Expressiveness of the MonitA Language 213
11.2.5 Specification at a Higher-Level of Abstraction 214
11.2.6 Performance Evaluations 214

A Formal Grammar of the MonitA Language 215

B Semantics of MonitA Constructs 219

C Formal Grammar of the Data Association Language 223

D Model Transformations 225

Bibliography 229

xiv TABLE OF CONTENTS

Index 246

List of Figures

1.1 Simplified process model of a trouble ticket workflow application 6
1.2 An example of crosscutting analysis concerns. 8
1.3 Overall Workflow Monitoring and Analysis Approach. 13
1.4 Dissertation Structure Overview 18

2.1 Graphical BPMN Elements . 25
2.2 Taxonomy for Workflow M&A Adpated from [zMR00]. 32

3.1 Overall View for the MonitA Execution Platform. 40

4.1 Workflow Data Types for the Trouble Ticket Scenario. 58
4.2 Persistence Logic for Measurement Variables. 65
4.3 Persistence Information within Measurement Variables. 70

5.1 Questions 6 and 7 for Measuring the Expressiveness of MonitA. 92
5.2 Question 9 for Measuring the Expressiveness of MonitA. 93

7.1 MonitA Execution Platform. 113
7.2 Specification and Implementation of M&A Concerns using MonitA.115
7.3 Architecture for the MonitA Generative Infrastructure. 116
7.4 MonitA Generative Strategy. 117
7.5 Intercepting data interactions. 124
7.6 Intercepting data related events in the application code. 124
7.7 Intercepting workflow data events using annotations. 125
7.8 Intercepting workflow data events in the data entities represen-

tation code. 126

8.1 Traceability Model Generated in a Workflow Implementation. . 134
8.2 Generated handler to capture monitoring information. 137
8.3 Padus Weaver Architecture. 150
8.4 Architecture for Monitoring and Analysis Online 150

xv

xvi LIST OF FIGURES

8.5 Measurement Data Model. 152
8.6 Visualization of Monitoring and Analysis Concerns. 154
8.7 Architecture of Monitoring and analysis on demand 155

9.1 Relation between Problems, Goals, and Assessment Goals. . . . 159
9.2 Loan Workflow Application. 166
9.3 Trip Expenses Workflow Application. 170
9.4 Trend of Specification Time. 175
9.5 Empirical Evaluation in terms of Size Measures. 176

B.1 MonitA Syntax Diagram. 219

List of Tables

4.1 Default variables Initialization Values 68
4.2 Workflow Event Types . 72
4.3 Patterns for Events Context Definition 74
4.4 Operations Supported on Simple Data Types 79

5.1 Questions Used to Evaluate Expressiveness and Learnability in
MonitA . 91

5.2 Measuring the Learnability of MonitA. 94
5.3 Properties to modeling data in MonitA 95
5.4 Data Visibility Patterns in MonitA 96
5.5 Data Interaction Patterns in MonitA 96
5.6 Data Transfer Patterns in MonitA 98
5.7 Data-based Routing Patterns in MonitA 99

8.1 Mapping conceptual events to JPDL workflow events 136
8.2 Primitive Data Types Mapping between XML Schema and Java 139
8.3 MonitA specification into BPEL executable elements. 143
8.4 MonitA specification into a Padus aspect implementation. . . . 148

9.1 Questions Used to Evaluate DSL Success Factors in MonitA . . 180

10.1 Execution Environment Capabilities Evaluated on Related Work.203
10.2 Monitoring and Analysis Capabilities Evaluated on Related Work.204

B.1 Semantics of MonitA Constructs 221

xvii

Listings

4.1 Data Association Specification for the Trouble Ticket Scenario. . 60
4.2 MonitA Specification for the Trouble Ticket Scenario. 63
9.1 MonitA Specification: Processing Time in the Trouble Ticket

Scenario. 162
9.2 MonitA Specification: Monitoring Event Pattern in the Trouble

Ticket Scenario. 162
9.3 MonitA Specification: Temporal Analysis in the Trouble Ticket

Scenario. 163
9.4 MonitA Specification: Null Variable Values in the Trouble Ticket

Scenario. 164
9.5 MonitA Specification: Navigation on Measurement and Work-

flow Information in the Trouble Ticket Scenario. 164
9.6 MonitA Specification: Navigation on Indicators in the Trouble

Ticket Scenario. 165
9.7 Data Association Specification for the Loan Scenario. 167
9.8 MonitA Specification: Measuring Loans by Decision in the Loan

Approval Scenario. 168
9.9 Fragment of the Data Association Specification for the Trip Ex-

penses Scenario. 171
9.10 MonitA Specification: Rejected Requests in the Trip Expenses

Scenario. 172

xix

List of Abbreviations

AOM Aspect-oriented Modeling
AOP Aspect-oriented Programming
AOSD Aspect-oriented Software Development
AST Abstract Syntax Tree
BAM Business Activity Monitoring
BNF Backus-Naur Form
BOM Business Operations Management
BPA Business Process Analysis
BPEL Business Process Execution Language
BPI Business Process Intelligence
BPMI Business Process Management Institute
BPMN Business Process Modeling Notation
COTS Commercial Off-The-Shelf
DARE Domain Analysis and Reuse Environment
DSL Domain-specific Language
EBNF Extended Backus-Naur Form
EMF Eclipse Modeling Framework
FAST Family-oriented abstractions, Specification, and Translation
FODA Feature-oriented Domain Analysis
GPL General Purpose Language
jBPM Java Business Process Management
JPDL jBPM Process Definition Language
M&A Monitoring and Analysis
MDE Model-driven Engineering
MMC Monitoring, Measurement and Control
OCL Object Constraint Language
ODE Ontology-based Domain Engineering
OMG Object Management Group
PPI Process Performance Indicators

xxi

xxii List of Abbreviations

SoC Separation of Concerns
SOC Service-Oriented Computing
SOA Service-oriented Architecture
WfMC Workflow Management Coalition
WFMS Workflow Management Systems
WSDL Web Service Description Language
XML Extensible Markup Language
XPath XML Path Language
XPDL XML Process Definition Language
XQuery XML Query
XSD XML Schema Definition
XSL Extensible Stylesheet Language
XSLT XSL Transformations
YAWL Yet Another Workflow Language

Part I

Problem Statement and
Background

1

Chapter 1

Introduction

1.1 Research Context

The increased focus of companies on measuring and improving their opera-
tional efficiency has raised a demand for advanced systems to support the
continuous monitoring and analysis of their business activities. These business
activities are typically automated into workflow applications which facilitate
the coordination of human and technological sources of information in an or-
ganization according to a formally defined process model that contains a set
of linked activities that fulfill a policy goal [vdAtHW03] [zM04]. Workflow
applications are modeled, implemented, executed, and analyzed by workflow
management systems (WFMS) through the use of software, running on one or
more workflow engines [wfm99] [vdAvH04]. These four phases form a life-cycle
that drives the evolution of workflow applications. Nevertheless, the focus of
our research is on the workflow analysis phase. Workflow analysis solutions
aim at giving organizations the opportunity to focus on process improvement
by detecting problematic properties of workflow applications.

The analysis phase involves different monitoring and analysis techniques.
The monitoring can be performed a posteriori, at runtime, or with a com-
bination of both to capture measurement information. There are also differ-
ent analysis techniques such as verification and validation of process models
(e.g., conformance checking, correctness), debugging and profiling, predictions,
and the evaluation of measurement information. In that context, the type of
analysis supported by this work is limited to the evaluation of measurement
information against a set of expected quality properties defined in terms of the
workflow data.

We center our research on raising the level of abstraction for workflow devel-
opers for monitoring and analyzing workflow applications at runtime. Our goal
is to assess changes in the quality of workflow applications through strategic
measures defined early to provide feedback for workflow analysts. The work-

3

4 Chapter 1. Introduction

flow monitoring and analysis at runtime decreases the time required to identify
problematic aspects about critical properties in the workflow and to decide on
workflow improvements (e.g., re-assign resources, add activities). Continuous
workflow improvements address the requirement of companies to be adaptable
to internal and external changes. We consider that an accurate identification
of problematic aspects at runtime in workflow applications can be supported
by implementing monitoring and analysis concerns such as: monitoring, mea-
surement and control. These monitoring and analysis concerns are defined for
monitoring the actual workflow executions, building and managing measure-
ment information based on the data manipulated by the workflow application,
and applying notification actions based on the evaluation of those data.

The original goal of WFMS is to empower business users to make changes
in the workflow applications. Nevertheless, in reality they still have to ask IT
users to do it for them. The process modeling and workflow implementation
phases define the main infrastructure to enact and analyze workflow applica-
tions. BPMN [OMG06a] is currently the de facto standard to facilitate process
experts in the creation of process models at a conceptual level of abstraction
and independently of workflow technologies. These process models are used to
partially generate the workflow implementation towards a particular workflow
platform. Then workflow developers complement this workflow implementa-
tion by defining the actual code of the activities, their data management, and
the integration with external systems. Workflow developers create the exe-
cutable workflow application by using different workflow technologies such as
workflow languages (e.g., XPDL [XPD], BPEL [IBM02], JPDL [JPD]) and
workflow engines (e.g., Apache ODE, jBPM). This workflow generation pro-
cess defines the different levels of abstraction and stakeholders that have to be
considered to support the workflow monitoring and analysis at runtime.

The importance of workflow monitoring and analysis has been demon-
strated by the multiple tools and publications related to this topic [zMR00]
[MHH07]. This is also reflected by multiple emerging terms related to mon-
itoring and analysis of workflow applications such as Business Activity Mon-
itoring (BAM), Business Operations Management (BOM), Business Process
Intelligence (BPI), and Business Process Analysis (BPA).

Considering the relevance of workflow monitoring and analysis, workflow
technology should provide a mechanism with suitable flexibility to monitor and
analyze workflow applications. We consider that the main needs for a flexible
workflow monitoring and analysis approach are: understandability, expressive-
ness, maintainability, reusability, and productivity. First, the specification of
monitoring and analysis concerns must be expressed in terms of the workflow
monitoring and analysis domain to improve understandability. Second, the ex-
pressiveness in the specification of monitoring and analysis concerns needs to
be improved by involving the data managed by the workflow application to in-
corporate custom measurements specific to the domain of the workflow. Third,

1.2 Problem Statement 5

in the same way that the workflow applications evolve continuously as a con-
sequence of the business evolution, the monitoring and analysis specifications
need to be maintained and should co-evolve with the workflow specification.
Fourth, the monitoring and analysis specifications need to be reusable between
different workflow platforms and therefore should avoid a tight coupling with
the workflow implementation. Finally, whereas the goal of workflow analysts
is to identify potential improvements in workflow applications based on the
definition of custom monitoring and analysis needs, the goal of workflow de-
velopers is to implement these needs with low cost and high productivity.

The following sections illustrate the limitations that workflow technologies
have to monitor and analyze workflow applications at runtime and the chal-
lenges we face to tackle these limitations. We also introduce our approach for
a flexible and expressive workflow monitoring and analysis solution.

1.2 Problem Statement

This section describes the problems we have identified in WFMS to offer sup-
port to workflow developers for specifying monitoring and analysis concerns.
We first discuss the problems in detail by using a case study and then we
summarize these problems.

Despite the tools and techniques developed for monitoring and analysis
(M&A) at runtime, workflow developers have to manually intervene in the
workflow implementation to include code that implements custom M&A solu-
tions. This is a complex task to instrument each workflow application for each
different workflow platform. For example, several commercial workflow man-
agement products and architectures (e.g., Intalio, IBM, Oracle) offer solutions
for business activity monitoring (BAM) [MHH07]. These solutions offer rich
dashboards to visualize predefined measurements and to write queries on de-
mand to extract the information required for the reporting tools. Nevertheless,
typically workflow developers have to instrument the workflow platforms and
applications by adding adapters to generate custom workflow events, to add
custom measurements, and to send this information to the BAM architecture.

In contrast with the fact that workflow applications evolve continuously as
a consequence of business necessities, contemporary monitoring and analysis
solutions do not co-evolve with the workflow specification. Workflow technol-
ogy evidences the difficulty of analyzing the execution of workflow applications
from a conceptual perspective [HLD+05]. As described above, the automation
of a workflow application starts from a conceptual process model provided by
a process expert followed by a workflow implementation done by a workflow
developer. In contrast, the monitoring and analysis specifications are materi-
alized by workflow developers directly in the workflow implementation, thus
skipping the conceptual stage.

6 Chapter 1. Introduction

1.2.1 A Trouble Ticket Workflow Scenario

To illustrate the problems for specifying monitoring and analysis concerns in
workflow applications, we present a small extract of code of a trouble ticket
workflow application. The trouble ticket process model defines the activities
required to manage the processing of problem claims in a software product
within an organization [Nor98]. Figure 1.1 illustrates the trouble ticket process
model using BPMN notation.

Describe
Problem

TroubleTicket

Customer
Support

Reproduce
Problem

Communicate
Ticket Result

Audit Ticket
Handling

Verify
Resolution

Identify Problem
and Resolution

Select
User Type

Submit
Form

Select
Report Type

Process
Email

Process
Call

Quality
Assurance

Development
Team

Correct
Problem

+

-

Association
Flow

End Event

Start Event

Decision
Gateway

Split and
Merge

Legend

Pool
Lane

Task

Sub-Process

+

Figure 1.1: Simplified process model of a trouble ticket workflow application

A trouble ticket workflow involves multiple teams such as quality assur-
ance, customer support, and developers. A ticket is created when a problem
is detailed and recorded (Describe Problem sub-process). Then the record is
checked until it can be reproduced (Reproduce Problem sub-process), and the
intrinsic cause is identified and a resolution is provided (Identify Problem and
resolution activity). Once the resolution is verified (Verify Resolution activ-
ity), the result is communicated to the originator (Communicate Ticket Result
activity), and the problem and resolution are included in a knowledge reposi-
tory (Audit Ticket Handling activity). Data entities such as Problem, Report,
Originator, and Resolution are typically found in the trouble ticket application.
For example, a Problem entity involves attributes such as id, description, prod-
uct, expert, and area of expertise, with their data types. Consider for example
a ticket created with a problem provided by a customer such as “access denied
in product X”, which is associated to the area of expertise named “area1”.

The following example defines a set of monitoring and analysis concerns re-
quired to evaluate the workflow application at runtime and to provide feedback
for workflow analysts:

• Measuring. Create measures to accumulate the number of problems reported
by each area of expertise (e.g., area1). These are custom measures that have
to be defined and computed in terms of the workflow data and that span
multiple workflow instances.

1.2 Problem Statement 7

• Monitoring. Capture the area of expertise that is required to compute the
measures mentioned above. This information must be captured right after
the problem is recorded within the execution of the Submit Form activity and
when the expert is reassigned within the Identify Problem and Resolution
activity.

• Controling. Evaluate the number of problems reported by a specific area of
expertise. If this measure is more than 10, then an alarm must be generated
and visualized in a dashboard.

The goal of these concerns is to identify problematic areas of expertise
where a high number of problems is reported. These monitoring and analysis
concerns can be used to define potential improvements regarding a particular
business goal. For example, for a high number of problems reported in a spe-
cific area of expertise, the manager of that area can visualize this information
immediately and decide to stop the execution of the workflow application to
include a new quality assurance activity. This new activity can for example be
assigned to a new resource that can help to reduce the number of problems in
that specific area.

1.2.2 The Need for Higher-level Mechanisms

The Trouble Ticket process model presented above is implemented in the Java
Process Definition Language (JPDL) [JPD]. As a result, the workflow develop-
ers have no choice but to do the monitoring and analysis concerns specification
in JPDL as well. The JPDL workflow implementation consists of a workflow
definition (an xml file) artifact that describes how workflow entities must in-
teract, and the underlying application code (Java-classes) implementing these
workflow entities.

Figure 1.2 illustrates a small extract of code from the workflow application
implementation. In this code we distinguish between the workflow implemen-
tation code (dotted green line border) and analysis concerns (red line border)
code. The blue code (dashed line border) illustrates glue code between the
workflow implementation and the monitoring and analysis concerns.

This fragment of code shows that multiple monitoring and analysis concerns
occur at different places in the workflow definition file. This phenomenon is
commonly known as code scattering, which means that a single requirement
affects multiple design and code modules [TOHJ99]. In addition, this frag-
ment of code shows that analysis concerns are mixed with the workflow im-
plementation. This phenomenon is commonly known as code tangling, which
means that an element concerning multiple requirements is interleaved within
a single module [TOHJ99]. The phenomenon of tangled and scattered code
is known as crosscutting code in the area of Aspect-Oriented Programming
(AOP) [KLM+97].

8 Chapter 1. Introduction

!"#$%e''(de*+n+-+$n../01n'234#n567"08$#g56"d1(:8;3..n<0e23=#$471e.=+%>e-3?
..888..
..!'4"e#('-<-e.n<0e23@e'%#+7e.A#$71e03?
....888
....!*$#>.n<0e23*$#>;3?
......!-#<n'+-+$n.-$23B470+-.C$#03.888?!D-#<n'+-+$n?.888
....!D*$#>?.888
....
....!'-<-e.n<0e23Submit (orm3?
......!eEen-.-F"e23n$de(en-e#3?
........!<%-+$n.n<0e23%#e<-e=+%>e-3.%1<''237"<8==G%-+$nH<nd1e#3?
..........!nd?I#e<-e.=+%>e-!Dnd?
........!D<%-+$n?
......!DeEen-?
......!eEen-.-F"e23node-leave3?
........!<%-+$n.n<0e23Je-#+%A#$71e0G''+gned3.%1<''237"<8==G%-+$nH<nd1e#3?
..........!nd?NewAssignedProblem!Dnd?
........!D<%-+$n?
......!DeEen-?
......!-#<n'+-+$n.-$23=F"eK*Le"$#-e#3.888?!D-#<n'+-+$n?
....!D'-<-e?.888
..!D'4"e#('-<-e?

..!'4"e#('-<-e.n<0e23A#$E+de.A#$71e0.B$14-+$n3?

....!-<'>(n$de.n<0e23Identify Problem and ;esolution3?

......!-<'>.n<0e23'$14-+$n.-Me."#$71e03?

........!%$n-#$11e#?

..........!E<#+<71e.<%%e''23#e<dNO#+-eN#eP4+#ed3.n<0e23'$14-+$n3?!DE<#+<71e?

........!D%$n-#$11e#?

......!D-<'>?

......!eEen-.-F"e23task-end3?

........!<%-+$n.%1<''237"<8==G%-+$nH<nd1e#3.n<0e23endLe<''+gnQ/"e#-3?

..........!nd?end;eassignExpert!Dnd?

........!D<%-+$n?

......!DeEen-?

......!-#<n'+-+$n.-$23Re#+*F.Le'$14-+$n3.888?!D-#<n'+-+$n?

....!D-<'>(n$de?

....888

..!D'4"e#('-<-e?.888

!

"

#

$

%

&

(a) Workflow Definition File

!"#$%&'&$())'!!"#t%&'(a'd+,-'%*!$+*+,-)'.&-%/,0(,1$+2'3
''444
''!"#$%&'5/%1'+6+&"-+786+&"-%/,9/,-+6-'+6+&"-%/,9/,-+6-:'-;2/<)'86&+!-%/,'3
''''%=7,/1/4+>"($)7?92+(-+'@%&A+-?::3
''''''B-2%,C'-%&A+-DE'F'@2/"#$+@%&A+-G(,(C+24C+-D,)-(,&+7:4C+-H+<@2/#"#$+@%&A+-D17:I
''''''+6+&"-%/,9/,-+6-4)+-J(2%(#$+7?@%&A+-DE?K'-%&A+-DE:I
''''''(11H+<L2/#$+*7:I'444MM5+2%=N'%='+*(%$'&/,=%2*(-%/,'*")-'#+')+,-
''''O+$)+'%=7,/1/4+>"($)7?,'d.,a//%0'12p,-t?::3
''''''B-2%,C'/$186!+2-'F'7B-2%,C:'+6+&"-%/,9/,-+6-4C+-J(2%(#$+7?+6!+2-?:I
''''''B-2%,C',+<86!+2-'F'7B-2%,C:'+6+&"-%/,9/,-+6-4C+-J(2%(#$+7?,+<86!+2-?:I''''''
''''''B-2%,C'-%&A+-DE'F'7B-2%,C:'+6+&"-%/,9/,-+6-4C+-J(2%(#$+7?@%&A+-DE?:I
''''''P+!/2-'*NH+<P+!/2-'F'@@P+!/2-4C+-P+!/2-7+6+&"-%/,9/,-+6-K'-%&A+-DE:I''''''''
''''''*NH+<P+!/2-4C+-L2/#$+*7:4)+-86!+2-7,+<86!+2-:I
''''''@@P+!/2-4"!1(-+P+!/2-7+6+&"-%/,9/,-+6-K'*NH+<P+!/2-:I
''''''B-2%,C'(2+(F7B-2%,C:'+6+&"-%/,9/,-+6-4C+-J(2%(#$+7?,+<.2+(?:I
''''''@@G+-2%&)Q/CC+24,+<L2/#$+*RN.2+(7+6+&"-%/,9/,-+6-K(2+(:I
''''''444
''''O+$)+'%=7,/1/4+,1)S%-;7?4,5"//%0',d6-&7+,8?::3
''''''444
''''''B-2%,C'(2+(F7B-2%,C:'+6+&"-%/,9/,-+6-4C+-J(2%(#$+7?(2+(?:I
''''''@@G+-2%&)Q/CC+24,+<L2/#$+*RN.2+(7+6+&"-%/,9/,-+6-K(2+(:I
''''O'444
''O
''!"#$%&'5/%1'(11H+<L2/#$+*7':'3444O'444O

!"#$%&'&$())'@@G+-2%&)Q/CC+23'
''!"#$%&')-(-%&'5/%1',+<L2/#$+*RN.2+(786+&"-%/,9/,-+6-'+&K'B-2%,C'(2+(:'3
''''B-2%,C'*+-2%&H(*+'F'?L2/#$+*)RN.2+(?I
''''$/,C'%1'F')+(2&;G+-2%&7*+-2%&H(*+:I
''''%=7%1FFTU:3
''''''%,)+2-G+-2%&7*+-2%&H(*+K'V:I
''''''%1'F')+(2&;G+-2%&7*+-2%&H(*+:IO
''''%,-'*+-2%&D,)-(,&+'F'%,)+2-D,)-(,&+7%1:I
''''%,-'&"22+,-L2/!+2-N'F'VI
''''&"22+,-L2/!+2-N'F'(11L2/!+2-NJ($"+RNL(2(*+-+27%1K'*+-2%&H(*+KU:I
''''(11H+<G+-2%&L2/!+2-ND,)-(,&+P+$(-%/,7&"22+,-L2/!+2-NK'%1K'*+-2%&D,)-(,&+':I
''''&"22+,-L2/!+2-N'F'(11L2/!+2-NJ($"+RNL(2(*+-+27%1K?.2+(?K'(2+(:I
''''(11H+<G+-2%&L2/!+2-ND,)-(,&+P+$(-%/,7&"22+,-L2/!+2-NK'%1K'*+-2%&D,)-(,&+':I
''''%=7C+-H"*#+2W=L2/#$+*)RN.2+(7(2+(:XUV:3444O'444

A

"

D

C

(b) Delegated Application Code

Figure 1.2: An example of crosscutting analysis concerns.

1.2 Problem Statement 9

Crosscutting code compromises the comprehension and evolution of the
workflow application and its monitoring and analysis concerns. Thus, when
an analysis requirement changes, its implementation has to be repeated or
adapted in multiple artifacts of the workflow implementation. Since moni-
toring and analysis concerns are added manually in several locations into a
generated workflow implementation, the workflow generation mechanism can-
not be used anymore because it overrides the analysis implementation. There
are solutions that mark the manual code and avoid to override it. However,
this code has to be adapted in several locations to fit the new requirements.
Additionally, monitoring and analysis concerns can be seen as specific knowl-
edge about the workflow application. Thus, it is not appropriate to entangle
that knowledge in the workflow code where it is complex to identify and to
reuse. Moreover, making changes to the workflow implementation or the anal-
ysis concerns implementation might break the functionality of the other one.

The code snippet in Figure 1.2 (a) is responsible for implementing the
monitoring requirement of the trouble ticket application. This implementa-
tion intercepts workflow states where the required monitoring information has
to be captured. For the selected workflow elements (Figure 1.2 (a) parts 1 and
4), a new workflow element (e.g., event in Figure 1.2 (a) part 2 and 5) is cre-
ated to intercept the desired state in the workflow execution (e.g., node-leave).
If the new workflow event already exists for the regular workflow execution,
some properties (e.g., action in Figure 1.2 (a) part 3 and 6) need to be added
to this new element. These new workflow events are added in the workflow
definition for each workflow interaction that is to be intercepted for imple-
menting workflow and analysis code. A change done to these events can affect
several elements supporting the workflow implementation and the monitoring
and analysis implementation. These workflow execution states delegate the ex-
ecution of custom monitoring and analysis concerns to a Java-class (Figure 1.2
(b)).

The code snippet in Figure 1.2 (b) is responsible for implementing the mea-
surement and control requirements. In order to compute the metric (i.e., num-
ber of problems reported by area of expertise), the actual area of expertise
associated to the problem has to be queried and passed to the monitoring and
analysis concerns implementation (Figure 1.2 (b) part A and B). However,
this domain-specific information is not explicit in the workflow definition but
is managed in the execution context. We can observe duplication of code.
Thus, workflow developers require knowledge of the concrete workflow execu-
tion engine to be able to create and retrieve this information. Figure 1.2 (b)
part C and D, represents the application code required to manage the spec-
ified control requirements such as generate an alarm upon the evaluation of
an indicator. Note that the measurement variable is defined directly in the
application code (Figure 1.2 (b) part C). This analysis knowledge is entangled
with the workflow implementation, thereby it is complex to localize and reuse.

10 Chapter 1. Introduction

Adding new monitoring and analysis concerns to the workflow application
requires knowledge of the workflow implementation. This requires manual
adaptations in several locations of the workflow code. Nevertheless, adap-
tations done in the workflow application or in the analysis concerns should
not affect each other. Furthermore, workflow developers have to deal with the
complexity of technologies used in the workflow implementation (i.e., workflow
language, application code). The original goal of WFMS is to empower busi-
ness users to make changes in the workflow applications, however, in reality
workflow developers still have to do this task.

1.2.3 An Overview of the Problem

We can summarize the above problems as follows:

P1 Monitoring and analysis concerns result in an entangled low-
level implementation. Contemporary solutions fall short because they
do not treat M&A as a first class entity in the workflow implementation.
As a result, workflow developers need to build ad hoc infrastructures and
abstractions to instrument the workflow implementation with monitoring
and analysis concerns. This low-level implementation results in crosscut-
ting and entangled code that affects the maintainability of the workflow
application and of the monitoring and analysis implementation. The lack
of modularization has repercussions on evolvability since the monitoring
and analysis concerns cannot co-evolve with the fast business change.

Additionally, fragments of the code implementing the workflow are gen-
erated. This complicates the implementation of monitoring and analysis
concerns since it requires knowledge of the generated workflow elements
such as their names, attributes and state. This also means that the
monitoring and analysis implementation is tightly coupled to the nam-
ing conventions used by the selected platform.

A low-level implementation of monitoring and analysis concerns also re-
quires experts in the workflow language (e.g., JPDL, BPEL), in the un-
derlying implementation language (e.g., Java) used to implement the
activities, and in the workflow engine (e.g., jBPM, Apache ODE). For
example, the way to specify a set of monitoring and analysis concerns in
BPEL is different to the same specification in JPDL (e.g., access work-
flow instances, control flow constructs). Thus, monitoring and analysis
concerns are not reusable as specified across different workflow platforms.

P2 Workflow monitoring and analysis solutions do not provide sup-
port to base the analysis on the data used in the workflow
application. In traditional monitoring environments, workflow devel-
opers can specify analysis concerns only in terms of predefined measure-

1.3 Research and Assessment Goals 11

ments about the operational state of the workflow engine. For example,
the time a workflow is running, the number of workflow instances, the
utilization of workflow resources, and the current state of a workflow
instance. Nevertheless, when the analysis concerns have to be specified
in terms of the workflow relevant data, it is done a posteriori (e.g., by
data mining). This is because the internal workflow variables are not
always explicitly represented in the process models nor in the workflow
implementation. The workflow variables are encoded in the workflow
implementation, thereby they are difficult to localize and query.

Current business scenarios require identifying potential workflow im-
provements faster, depending on the online evaluation of custom mea-
surements. This need can be supported by increasing the expressiveness
of monitoring and analysis concerns to custom measurements specified in
terms of the particular domain of the workflow application (e.g., Banking,
Customer Support, Insurance). We refer to application-specific measure-
ments as custom measurements defined in terms of the data managed
by the workflow application. Application-specific measurements are re-
quired to evaluate a workflow application in terms of business goals.
However, workflow developers have to encode new custom measurements
in the workflow implementation. Thus, these custom measurements are
difficult to localize, use, and share with other workflow developers that
require to specify monitoring and analysis concerns based on this data.

1.3 Research and Assessment Goals

The main goal of this dissertation is to achieve improved separation of mon-
itoring and analysis concerns in workflow applications. Within the domain
of software engineering, the principle of separation of concerns is applied to
modularize software systems such that various modules of the system can be
treated in isolation of other system modules [Dij76]. Our main challenge is
dealing with the monitoring and analysis concerns specification that is in-
herently changeable in workflow applications. Thus identifying and managing
these monitoring and analysis concerns knowledge explicitly is crucial to main-
tain it according to the business needs and workflow application evolution.

The following are the specific goals we have defined and the challenges we
have identified to tackle the problems outlined in the previous section.

G1 Raise the level of abstraction for specifying monitoring and analysis con-
cerns. Workflow developers must be able to co-evolve the monitoring
and analysis specification along with the workflow evolution (see Prob-
lem P1). The monitoring and analysis concerns must be specified in a
uniform and workflow technology independent way to reuse them across

12 Chapter 1. Introduction

different workflow platforms. One challenge is to figure out how to map
implementation concepts into modeling concepts.

Our solution must automate the implementation of monitoring and anal-
ysis concerns to ease the maintainability of these specifications. This
requires to trace the mappings performed by the workflow generation
process to specify monitoring and analysis concerns in terms of process
models and also to incorporate them in the actual workflow implemen-
tation. The code that connects monitoring and analysis concerns with
the workflow application must be identifiable to ease its maintainability.

G2 Increase the expressiveness of monitoring and analysis in terms of work-
flow relevant data. Our solution must be able to support the specification
of monitoring and analysis concerns in terms of the domain the work-
flow application is modeling (see Problem P2). Thus, a mechanism to
expose a projection of this internal data to the outside world has to be
provided [Hel04]. In this way, a subset of the workflow variables and
internal information can be accessed and shared to involve them in mon-
itoring and analysis activities external to the regular workflow execution.

Our solution must be able to intercept not only workflow events in terms
of flow entities (e.g., activity finished) but also customize the instrumen-
tation of workflow applications to intercept fine-grained workflow events
in terms of data entities (e.g., workflow variable changed). Another chal-
lenge is to allow workflow developers to specify and manage custom mea-
surements that can be evaluated at runtime. The historic measurement
information and workflow data must be managed independently of the
workflow application.

The following summarizes a set of assessment goals to evaluate to which
extent the goals presented previously can be met in our solution. These as-
sessment goals correspond to an overview of the validation performed in this
dissertation. Chapters 8 and 9 present the experimentation and validation
conducted to achieve these evaluation goals in our solution.

AG1 Apply the proposed approach in different workflow platforms to evalu-
ate to which extent it is applicable in a workflow technology independent
way. It is necessary to evaluate our approach with respect to the time
of adaptation to new workflow platforms. The time required to imple-
ment monitoring and analysis concerns by using our approach must be
measured and compared with respect to the time in the context of a
low-level implementation in each workflow platform. Our approach must
be evaluated with respect to the effort of adaptation to the monitoring
and analysis concerns, namely, the number of lines of code (LOCs) that
have to be maintained. The evaluation of these criteria can determine to
which extent we achieve goal G1.

1.4 Approach 13

AG2 Use multiple workflow applications to assess the expressiveness offered
by the proposed approach in different domains. Multiple monitoring
and analysis concerns must be specified for each workflow application to
evaluate the expressiveness of these specifications in terms of workflow
relevant data. These specifications must be easily identified and shared
by multiple workflow developers. The evaluation of these criteria can
determine to which extent we achieve goal G2.

1.4 Approach

In the previous sections we identified a set of problems and goals to spec-
ify monitoring and analysis concerns in workflow applications. The research
presented in this dissertation concentrates on two fundamental topics: 1) the
specification and 2) the implementation of monitoring and analysis concerns.
The strategy used to conduct the research in these two topics presents a solu-
tion to the research goals described above.

Figure 1.3 illustrates our overall approach for specifying and implementing
monitoring and analysis concerns in workflow applications.

Target (ork!o+
Plat.orm n

1spects
1spects

5onit1Class 5easure
DataClass

5easure
DataClass

Data
entit:

;lo+Entit:Class
;lo+Entit:Class

DataEntit:Class
DataEntit:Class

!"#$%"&$#'()#*(
+#),-.$.(/"#01&#.(
2310$!0)%$"#

1 = C

;lo+Entit:Class

45!6(""7(1#%$%$1. !"#$%+(829

:"&;""7(<=3,1=1#%)%$"#

>?mlA
 >taskA >/taskA
 >transition CCC /A
>/?mlA

5&"01..(
>#'$#11&

:"&;""7(
81?1,"31&

:"&;""7(
81?1,"31&

Data
entit:

Data 1ssociation
model

/"#013%@),(91?1,
<=3,1=1#%)%$"#(91?1,

E+hat to monitorE

Eho+ to monitorE

1spects

!"#$%"&$#'()#*(+#),-.$.(0"*1

5easure
DataClass

5onit1Class

>eventA
 >actionA >/actionA
>/eventA

!e#en%
(ork!o+ Heneration
Process

Speci"cation
5odel

Target (ork!o+
Plat.orm J

Target (ork!o+
Plat.orm K

5anual
Composition

1utomatic
Composition

Process Data
Projection

Figure 1.3: Overall Workflow Monitoring and Analysis Approach.

Higher-level Monitoring and Analysis Concerns Specification

The main element of our approach is the creation of a domain-specific lan-
guage (DSL), named MonitA. MonitA eases the specification of monitoring

14 Chapter 1. Introduction

and analysis (M&A) concerns in terms of flow entities described in the process
models (i.e., at a conceptual level) and in terms of the data used by their
activities. A detailed description of MonitA and the data modeling strategy is
presented in chapter 4.

Workflow monitoring and analysis abstractions focus on what the moni-
toring and analysis concerns specify and not how they are implemented. We
created a DSL to ensure that monitoring and analysis concerns can be specified
in a uniform and technology-independent way. This is important since work-
flow developers, who implement a workflow application, should be able to write
and reuse the monitoring and analysis concerns across different workflow plat-
forms (cf. assessment goal AG1). MonitA allows workflow developers to specify
monitoring and analysis concerns in a modularized fashion. This facilitates the
localization and adaptation of monitoring and analysis concerns to ease their
evolution according to the evolution of the workflow application. MonitA uses
domain-specific notations from the beginning of the specification, raising the
level of abstraction in the monitoring and analysis specifications (cf. goal G1).

To actually support monitoring and analysis specifications in terms of the
data used by the workflow activities, we have defined a mechanism to model a
projection of the data entities used by the workflow application and to model
the new data required to measure it. The MonitA language also provides a
data association model that workflow developers use to describe the workflow
variables that are used by the flow entities and the operations that the flow
entities perform on these variables. The data association model facilitates the
monitoring of workflow relevant data being specified explicitly and captured
selectively. The data association model is specified externally to the monitor-
ing and analysis concerns model, thus, it can be reused in multiple MonitA
specifications.

The data modeling strategy facilitates workflow data and measurement
data to be localized, used, and shared by multiple workflow developers. This
data-centric specification facilitates workflow developers to specify monitoring
and analysis concerns driven by the domain the workflow is modeling (cf. goal
G2 and assessment goal AG2). The monitoring concerns specified in terms
of data entities customize the instrumentation of the workflow application to
capture workflow events in terms of data entities. The custom measurements
can be defined in terms of the workflow application domain and the control
concerns can be defined in terms of application-specific measurements.

Generative Implementation Strategy

The second element of our approach is the definition and implementation of a
strategy to integrate MonitA specifications with the implementation of work-
flow applications. One key characteristic in this strategy is to generate the
implementation of MonitA specifications for existing workflow languages and

1.4 Approach 15

engines. In this way, our approach can be highly adopted and integrated with
WFMS (cf. goal G1). A detailed description of the strategy for implementing
M&A concerns is presented in chapter 7.

Our strategy assists workflow developers to enhance a given workflow tech-
nology to support the automated implementation of monitoring and analy-
sis concerns and their composition with a workflow application. Our strat-
egy to support the above solution is to use multiple generative programming
approaches such as Model-Driven Engineering (MDE) and Aspect-Oriented
Programming (AOP). We use MDE technology [Sch06] to generate the imple-
mentation of monitoring and analysis specifications in the workflow language
(e.g., JPDL) that implements the control flow of the workflow application
and in a general-purpose language (e.g., Java) for implementing the required
underlying application code. The generated monitoring and analysis code is
modularized in the workflow implementation through the use of AOP technol-
ogy [KLM+97].

The elements in our generative strategy can be framed in three steps:

• The first step is to create a customized workflow generation process to gen-
erate a traceability model that stores the links between elements of a process
model and its workflow implementation. This traceability model facilitates
to infer the relation from source (BPMN) and target (workflow language)
elements of the workflow application. This information is required in the
model transformations to automatically determine the target of the moni-
toring and analysis specifications.

• The second step is to generate executable workflow code from the MonitA
specifications. This executable workflow code comprises: a) aspect code to
modularize the monitoring and analysis concerns implementation, b) work-
flow code with the monitoring and analysis concerns implementation, c)
application code with a representation of measurement data, and d) appli-
cation code required to manage the measurement information.

A model transformation instruments automatically the workflow implemen-
tation with additional workflow elements (e.g., events) required to support
the monitoring and analysis specifications. This instrumentation is done
through the information provided by the traceability model. We use AOP
technology as a mechanism to keep the generated monitoring and analysis
concerns modularized in the workflow implementation. We also use AOP as
a mechanism to customize where to intercept workflow events in terms of
flow entities as well as to intercept fine-grained workflow events in terms of
data entities (cf. goal G2).

• Finally, the third step is to compose the generated monitoring and analysis
code with the workflow implementation. We use AOP as a mechanism to

16 Chapter 1. Introduction

perform this composition automatically at the implementation level. The
artifacts required to compose the workflow application and M&A concerns is
generated according to the weaver engine provided by the aspect language.
In this way, the workflow applications stay oblivious of the monitoring and
analysis concerns and the existing workflow generation process can be used.

Once a MonitA generation infrastructure is created for a particular work-
flow platform, the specifications done by workflow developers are composed
with the existing workflow implementation in an automated fashion. The
resulting workflow application is instrumented with monitoring and analysis
concerns and can be executed in a workflow engine (e.g., Apache ODE, jBPM)
that supports the targeted workflow language (e.g., BPEL, JPDL).

Our generative implementation strategy facilitates workflow developers to
target different target workflow platforms for implementing the workflow mon-
itoring and analysis specifications (cf. assessment goal AG1). These specifica-
tions can be transformed into and composed with multiple executable workflow
implementations using an automatic generation process. This makes our DSL
and our overall approach reusable for a wide range of workflow platforms and
applications (cf. assessment goal AG2).

We present the solution to our research goals in two separate parts in this
document. Chapters 2, 4, and 5 present the rationale design to create our
MonitA language, its concrete syntax, and its evaluation. Chapters 6, 7, and 8
present the rationale design to create the generative implementation strategy,
the main elements involved in its architecture, and its evaluation.

1.5 Contributions

The main contributions of this research are:

• An Architecture for Workflow Monitoring and Analysis
We present a flexible workflow monitoring and analysis architecture
that serves as a common mechanism to specify and implement mon-
itoring and analysis concerns in workflow applications. Our archi-
tecture offers the possibility a) to specify monitoring and analysis
concerns independently of specific workflow platforms and in terms
of the workflow relevant data, and b) to target these specifications
into different workflow platforms and different workflow applications.
This work has been presented in [GCD08] [GCD09a] [GCD10].

1.6 Outline of the Dissertation 17

• A Monitoring and Analysis Language
We created a domain-specific language named MonitA to ensure that
monitoring and analysis concerns can be specified in a uniform and
technology-independent way. MonitA specifications refer to BPMN
process models for specifying monitoring and analysis concerns at a
conceptual level. We present how workflow variables can be mod-
eled to complement process models for supporting MonitA specifi-
cations in terms of application-specific measurements and workflow
data. This work has been presented in [GCD09b] [GCD10].

• A Generative Implementation Strategy
We present a generative strategy to create the infrastructure to enact
the MonitA specifications on a specific workflow platform. This gen-
erative infrastructure is used to integrate automatically the MonitA
specifications with the implementation of workflow applications. We
also present how the generative strategy can be used to create a new
MonitA infrastructure for different workflow platforms. This work
has been presented in [GCD09a] [GCD10].

• MonitA Execution Platform
We have developed the MonitA execution platform that imple-
ments monitoring and analysis concerns in workflow applications.
The MonitA execution platform allows the definition, storage, man-
agement, and visualization of measurement information. In ad-
dition, we developed two different MonitA generative infrastruc-
tures (i.e., MonitA-JPDL and MonitA-BPEL) to integrate automat-
ically MonitA specifications with BPEL and JPDL workflow appli-
cations. The MonitA execution platform tools are available at http:
//qualdev.uniandes.edu.co/bpa/ and are described in [GCD10].

1.6 Outline of the Dissertation

Figure 1.4 illustrates an overview of the structure of this dissertation. The
following chapter presents a background on workflow management systems to
provide the basis for our workflow monitoring and analysis approach. We
present our solution in two main parts: 1) the specification, and 2) the im-
plementation of monitoring and analysis concerns. Each one of these parts

http://qualdev.uniandes.edu.co/bpa/
http://qualdev.uniandes.edu.co/bpa/

18 Chapter 1. Introduction

contain three chapters which involve the background of the solution, the ap-
proach itself, and an evaluation on it. The next chapter presents the validation
performed on our workflow monitoring and analysis approach. This is followed
by a discussion our approach in comparison with related work. The final chap-
ter discusses the conclusions of this dissertation.

Part IV: Validation and Conclusion

Context

Contribution

Part III: SolutionPart II: Solution
Chapter 3:

Background DSLs,
Rationale in the specification

Chapter 6:
Rationale in the Implementation,

Background MDE and AOP

Chapter 4:
MonitA-DSL Syntax

Chapter 7:
Generative Implementation

Strategy

Chapter 8:
Impl. strategy evaluation: MonitA-

JPDL, MonitA-BPEL, exection
platform

Chapter 9:
Validation

Chapter 10:
Comparison with related work

Chapter 5:
DSL evaluation:

design properties,
expressiveness, data modeling

Chapter 11:
Conclusion

Part I: Problem and Background

Chapter 1:
Introduction

Chapter 2:
Workflow Monitoring and Analysis:

Background

Figure 1.4: Dissertation Structure Overview

Chapter 2 details the main concepts involved in the domain of workflow
monitoring and analysis. We start presenting the main elements of workflow
applications as it is our application domain. We distinguish the different levels
of abstraction and stakeholders involved in their development process, and how
workflow monitoring and analysis fits in the life-cycle of the workflow manage-
ment systems. We also present multiple definitions for workflow monitoring
and analysis and discuss why having an explicit specification is beneficial for
its implementation and evolution.

Chapter 3 presents the rationale and background behind the specification
strategy of our workflow monitoring and analysis approach. We present the
importance of a domain-specific language (DSL) tailored to an application do-
main, the phases for developing a DSL, and the criteria considered to evaluate

1.6 Outline of the Dissertation 19

the design of a DSL. We also describes the main requirements considered to
develop the MonitA DSL and the core concepts of the monitoring and analysis
model. Finally, we present the design decisions adopted to develop our DSL.

Chapter 4 introduces MonitA, a domain-specific language we have devel-
oped for monitoring and analyzing workflow applications. MonitA was de-
signed to specify monitoring and analysis concerns involving the data used
by the workflow application in these specifications. We describe the approach
and the characteristics for the specification of data entities used by a workflow
application, and how this data specification is required to support the moni-
toring and analysis in terms of the workflow relevant data. We also describe
the syntax of MonitA by presenting the abstractions required to monitor and
analyze workflow applications during their execution.

Chapter 5 presents the studies we performed to evaluate different elements
of the design and expressiveness of our domain-specific language. We also
evaluate our data modeling approach in relation with workflow data patterns.

Chapter 6 presents the rationale and background behind the implementa-
tion strategy of our workflow monitoring and analysis approach. The imple-
mentation strategy is related to generate the implementation of monitoring
and analysis concerns into different workflow platforms. We describe the main
requirements and challenges considered to develop a MonitA generative infras-
tructure. We also introduce a set of definitions of Model-Driven Engineering
for generation of code and separation of concerns at a conceptual level of
abstraction. Finally, we introduce a set of definitions of Aspect-Oriented Pro-
gramming for separation of concerns at an implementation level of abstraction.

Chapter 7 presents the generative strategy that we have defined to imple-
ment and execute the monitoring and analysis concerns specified with MonitA.
This chapter also illustrates the two types of developers required to take ab-
stract MonitA specifications to concrete implementations: application devel-
opers and MonitA infrastructure developers. We describe the process that
application developers have to follow to specify and execute monitoring and
analysis concerns for a workflow application. We also present the architecture
and strategy that we have defined to generate and compose automatically mon-
itoring and analysis code into an existing workflow application. We present
our general strategy that can be applied to target diverse workflow languages
and engines.

Chapter 8 presents the MonitA infrastructure that has been developed for
implementing and executing monitoring and analysis concerns in workflow ap-
plications. We present the elements of the MonitA execution platform required
to store and manage historic measurement information and to visualize this
information. We also present the implementation of two different MonitA
generative infrastructures (i.e., MonitA-JPDL and MonitA-BPEL) created to
validate our generative strategy.

Chapter 9 presents the evaluations performed using both qualitative and

20 Chapter 1. Introduction

quantitative criteria to determine to what extent we reached our research goals.
We present the application of our approach in a set of workflow applications
in order to validate its applicability for different domains. The application of
MonitA in different workflow scenarios validates the goal of increasing the ex-
pressiveness of monitoring and analysis concerns in terms of workflow relevant
data. We also discuss a number of case studies conducted to assess the goal
of raising the level of abstraction for specifying monitoring and analysis con-
cerns. We apply our approach to different workflow platforms to evaluate to
which extent the MonitA specifications are applicable in a workflow technology
independent way.

Chapter 10 presents a discussion about the main monitoring and analy-
sis features offered by different approaches and their main missing features.
We characterize current workflow monitoring and analysis approaches to de-
termine their characteristics in analyzing workflow applications. We discuss
the importance of data modeling in process models for higher-quality workflow
monitoring and analysis. We present different approaches to model data on
process models. We end this chapter by comparing our workflow monitoring
and analysis approach against related work.

Chapter 11 summarizes the work and contributions presented in this disser-
tation. We discuss on the results and strengths of our research work. Finally,
we discuss on limitations and future work.

Chapter 2

Background: Workflow Monitoring
and Analysis

The monitoring and analysis of workflow applications can be performed in
many ways. In order to position the contributions of this dissertation, we
dedicate this chapter to detail the main concepts involved in the domain of
workflow monitoring and analysis (M&A). We start presenting the main ele-
ments of workflow applications as it is our application domain. We also present
multiple definitions for monitoring and analysis.

Section 2.1 introduces a set of definitions for the automation of business
processes into workflow applications in relation with workflow management
systems. We present multiple approaches typically used to model and imple-
ment workflow applications. We distinguish the different levels of abstraction
and stakeholders involved in their development process. We also position how
the monitoring and analysis phase fits in the life-cycle of the workflow man-
agement systems and the problems to specify M&A concerns.

Section 2.2 introduces a number of definitions for workflow monitoring and
analysis. We position our approach with respect to the monitoring and analysis
of custom measurements at runtime.

2.1 Workflow Management Systems

Workflow management systems (WFMS) support the effective execution (en-
actment) and improvement of business processes through the automated co-
ordination of activities according to a formally defined process model [zM04].
These activities are transversal to the organizational areas (functional units)
of companies. The coordination between activities is essential in every or-
ganization to adjust to changing market conditions such as, among others,
the increasing market segmentation, shorter product life-cycles, non-repeating
tasks fulfillment, and higher product quality. We refer to business processes

21

22 Chapter 2. Background: Workflow Monitoring and Analysis

automated in a workflow management system as workflow applications .
Workflow applications are modeled, implemented, executed, and analyzed

by workflow management systems (WFMS) through the use of software run-
ning on workflow engines [wfm99] [vdAvH04]. These four phases form a life-
cycle that drives the evolution of workflow applications. A workflow applica-
tion is constructed based on a process model specified by process experts using
a process modeling notation. These process models are used to partially gen-
erate the executable workflow code into a particular workflow language. Then
workflow developers complement this generated workflow code by defining the
actual implementation of the activities, their data management, and the in-
tegration with external systems. Workflow developers create the executable
workflow application by using different workflow technologies such as work-
flow languages and workflow engines. The resulting workflow application can
be enacted by a workflow engine supporting the adopted workflow language.
This workflow generation process defines the different levels of abstraction and
stakeholders that have to be considered to support M&A at runtime. The
specification of M&A concerns done by application developers is at the same
level of abstraction than the specifications done by workflow developers.

From our point of view, the life cycle of a workflow application begins with
modeling it using a high-level notation. Another perspective is to start the life
cycle by the analysis phase, where event logs of existing applications are mined
to extract the corresponding workflow specification (re-engineering approach).

In the next sections we describe in detail the different phases of the workflow
generation process: process models specification, workflow implementation,
workflow enactment, and workflow monitoring and analysis.

2.1.1 Perspectives on Workflow Applications

Curtis et al. [CKO92] present a conceptual framework with the basic building
blocks of workflow applications: functional, organizational, behavioral, and in-
formational. The functional perspective represents the flow entities (e.g., activ-
ities, sub processes) which are performed during the execution of the workflow
application. The organizational perspective represents where and by whom
(e.g., organizational unit, role, human, automatic resource) flow entities are
performed. The behavioral perspective represents when (e.g., sequencing) and
how (e.g., loops, decision criteria, decision-making conditions) flow entities are
performed. The informational perspective represents the informational enti-
ties (e.g., data, artifacts, products, objects) produced or manipulated by flow
entities.

Typically process modeling languages allow the modeling of functional,
organizational, and behavioral perspectives of workflow applications at a con-
ceptual level of abstraction. The data involved in the informational perspective
is typically specified directly at the workflow implementation level.

2.1 Workflow Management Systems 23

According to the Workflow Management Coalition (WfMC), three types of
data in workflow management systems can be distinguished at runtime [wfm99]:

• Application Data is the data managed by external applications supporting
the enactment of a workflow instance. Typically this data is not visible to
the workflow management system. Examples of application data comprise
documents, e-mails and database records, whose content is not relevant to
the control flow of the workflow application.

• Workflow Relevant Data, also named process flow data, represents data used
to determine the control flow of the workflow application. This data can be
manipulated by the workflow application as well as by the workflow engine
and can be passed between the workflow management system and related
applications. Thus, workflow relevant data is made visible to elements in a
workflow instance and to other workflow instances. Typed data allows the
workflow management system to understand their structure and to ease their
processing (e.g., extract attribute values and determine a workflow partic-
ipant). Untyped data can not be processed by the workflow management
system but can be passed to the associated applications.

• Workflow Control Data, also named workflow engine state data, is the inter-
nal data managed by the WFMS system to represent the state of the work-
flow applications and their instances (e.g., activity state changes, resource
assignment). Typically this data is not visible to external applications, how-
ever, it is made persistent periodically to provide audit trail data and as a
mechanism for recovery the workflow execution state after a failure. Work-
flow management systems typically make this information visible to external
applications through application programming interfaces (APIs).

The functional, organizational, behavioral, and informational perspectives
of workflow applications can be specified and implemented by using differ-
ent modeling and workflow technologies. The following two sections describe
these technologies, which are framed in the phases of the workflow genera-
tion process described previously: process models specification, and workflow
implementation and enactment.

2.1.2 Process Models Specification

Within the process modeling phase, business process models can be constructed
and optimized by using available business process modeling notations, such as
UML activity diagrams (AD), Event-driven Process Chains (EPC), Petri Nets,
Integrated Definition Method 3 (IDEF3), or Business Process Modeling No-
tation (BPMN). These modeling notations facilitate multiple stakeholders to
align and create process models for the coordination of work that has to be

24 Chapter 2. Background: Workflow Monitoring and Analysis

performed by multiple roles (resources and applications). A complete eval-
uation of these process modeling languages is presented in multiple research
works [Hom04] [RRIG06] [zMI10].

We have used our approach for workflow applications specified with BPMN
models since it is currently the de facto standard.

Business Process Modeling Notation (BPMN)

BPMN was specified by the Business Process Management Initiative (BPMI)
[Whi04] with the goal of providing a standardized notation, which is easily
readable and understandable by both technical and business users. A BPMN
process model consists of a set of control flow constructs describing functional,
organizational, and behavioral perspectives of workflow applications.

The simplicity of the BPMN notation satisfies the needs of process ana-
lysts, while its semantics satisfies the needs of the IT developers. It bridges
the communication gap that frequently occurs between the design of a work-
flow application and its corresponding implementation. BPMN provides other
important elements such as workflow patterns, and events that are power-
ful mechanisms to increase the expressiveness and semantics of the process
models. BPMN facilitates process experts in the creation of process models
in a conceptual level of abstraction and independently of particular workflow
platforms [OMG06a]. BPMN enables interoperability and raises the level of
abstraction of process description facilitating its communication and valida-
tion. Examples of BPMN process models are presented in sections 1.2, 9.2,
and 9.3 which illustrate three different workflow scenarios used to motivate
and validate our research.

However, there are multiple drawbacks if the objective of the organization
is to automate a business process into an executable workflow application.
Firstly, each workflow provider interested in using BPMN has to translate
it in an ad-hoc manner since BPMN has no well-defined execution seman-
tics [Dub04]. For instance, Oracle [Oraa] or Intalio [Int] translate BPMN into
BPEL. Secondly, the data in BPMN is informally described through a graph-
ical representation but there is no notion of type, scope or protection. Thus,
BPMN leaves a gap for the definition of data manipulated by activities in-
volved in a workflow application. This is problematic since these elements
constitute a major source of information for monitoring and analysis. Thirdly,
usually the automation of activities is defined in the underlying implementa-
tion language (e.g., BPEL, Java) for a specific platform since BPMN does not
include a language to define the actual implementation of its activities (see
section 2.1.3). For example, a generated BPEL implementation only controls
the workflow execution state but requires custom development to manage the
data. In addition, BPMN requires advanced expressiveness mechanisms for
handling complex modeling concepts [OMG06a] such as monitoring.

2.1 Workflow Management Systems 25

Now that we have presented the advantages and drawbacks of BPMN,
the following presents the main elements of the BPMN metamodel that are
available to create process models. Figure 2.1 illustrates the graphical elements
of BPMN (version 1.1) used to model workflow applications.

Po
ol

Lane

Cancel Link MultipleMessage Timer RuleCompensation

End

Event Type

Start

Error TerminateGeneral

Intermediate

Events

Collapsed
subprocess

+

Activities

Expanded subprocess
Task Loop Task Multi-instance

Task

Loop
subprocess

+

Multi-instance
subprocess

+

Compensation
subprocess

+

Compensation
Task

Gateways

XOR (data) XOR (event) OR AND/JOIN COMPLEX

Connections Swimlanes Artifacts
Sequence

Association

Message

Data object

Annotation

GroupLane

Figure 2.1: Graphical BPMN Elements

The BPMN metamodel, provided by the Eclipse Foundation [The08], com-
prises four different elements:

• Flow objects such as activities, events, and gateways define the functional
and behavioral perspective of workflow applications.

Activities are the main elements of a BPMN process model and represent
particular pieces of work executed in the workflow application. The activ-
ities can be specialized in sub-processes and atomic tasks, which specify
the workflow application at different levels of granularity. A sub-process

represents an activity that is decomposed into other activities, whereas an
atomic task is not decomposed into more specialized tasks. Atomic tasks
and sub-processes can be specialized by adding specific attributes such as
loop, multi-instance, or compensation. The loop attribute models cycles in
a workflow application avoiding the use of gateways and connections, which
are explained later on. The multi-instance attribute constraints the number
of instances of an activity than can be executed. Finally, the compensation
attribute indicates that an activity will be executed when a cancellation
event is triggered by another activity [OMG06a].

Events describe an interaction that happens in the execution of the work-
flow application such as the initialization or finalization of an activity or the
timeout of an operation. Events are categorized into start, intermediate, and

26 Chapter 2. Background: Workflow Monitoring and Analysis

end events. Start events trigger the execution of a workflow application by
one of the following types: independently of particular events (none), based
on the finalization of other workflow applications (link), as a result of the
arrival of a message (message), dependent on multiple options (multiple),
based on the evaluation of a condition (rule), or at a specific date and time
(time). Intermediate events represent any event that may happen during the
execution of the workflow application. Intermediate events such as message,
timer, link, multiple, and rule are similar to the start event. In addition, a
none event represents any event between the initialization and finalization
of a workflow application, an error event receives a notification or notifies
about the presence of an error, a cancel event indicates the cancellation of
a transaction within an activity, and a compensation event initiates a com-
pensation handling activity. In contrast to intermediate events, end events
are generated at the finalization of the workflow application [OMG06a].

Gateways control the execution flow of a workflow application by defining
how to diverge or converge points in the workflow when a decision needs to
be made. Gateways are classified as exclusive, inclusive, parallel, or com-
plex. Exclusive gateways (XOR) model points in the process when a selection
of a single execution flow needs to be made. This selection is based on the
evaluation of a condition associated with each option (data-based gateways)
or on an event occurring at the execution time (event-based gateways). In-
clusive gateways (OR) represent points in the process in which condition ex-
pressions are evaluated to take one or more alternatives. Parallel gateways
(AND) represent diverging points where several activities can be executed
concurrently or converging points where the concurrent activities need to be
synchronized to follow the execution flow. Complex gateways model special
situations that have to be considered in order to continue with the workflow
execution [OMG06a].

• Connecting objects represent the connection between flow objects. Con-
necting objects are classified into three types: sequence flow, message flow,
and associations. Sequence flows define the order in the execution of the
activities defined in a workflow application. Message flows model the in-
terchange of messages between workflow applications. Association flows
associate flow objects with artifacts.

• Swimlanes define the organizational perspective of workflow applications.
Swimlanes model private workflow applications or inter-organizational work-
flow applications in which multiple workflows participate in a collaborative
manner [OMG06a]. Swimlanes are specialized into pools and lanes. A pool

represents a participant as a workflow application, whereas a lane is a sub-
partition within a pool that organizes and categorizes activities executed by
different roles in the same workflow application.

2.1 Workflow Management Systems 27

• Artifacts define the informational perspective of workflow applications.
BPMN distinguishes between three types of artifacts: data objects, text
annotations, and groups. These artifacts provide information about the
products used or produced by activities, but they do not have any direct
effect on the execution of the workflow application [OMG06a].

Most of these BPMN elements can be found in the process model of the
trouble ticket scenario (see Figure 1.1 in section 1.2).

2.1.3 Workflow Implementation and Enactment

Process models are implemented into executable workflow applications us-
ing a workflow language (e.g., XPDL [XPD], BPEL [IBM02], JPDL [JPD],
XPM [SJVD09]). The resulting workflow definition, that is obtained from
a process model, is complemented with corresponding underlying application
code (e.g., Java, WSDL). There are different types of workflow languages:
graph-based, script-based (workflow programming languages), state and ac-
tivity charts, and petri net-based [WV99].

A workflow application consists of a set of constructs describing its per-
spectives namely control, data, and resources, which are required to execute
an activity. The specific semantics of executing an activity can be a) the au-
tomatic call of a service implemented by some application, b) something a
human being has to do manually, or c) something a human has to do using an
external application.

A workflow implementation can be partially generated from a process model.
For example, automatically creating a BPEL description using the translation
described in [OvdADH]. Note that this transformation into the executable
language is only partial which means that developers still need to add ele-
ments afterwards (e.g., the particular class to be called if control is handed
over to an activity). This is due to the fact that the process modeling standard
(i.e., BPMN) is not expressive enough to contain all these details.

The executable workflow applications are deployed into a workflow engine
(e.g., Apache ODE, jBPM, Cumbia), which enacts instances of these workflow
applications. Workflow executions are stored by the workflow engine store
system, which refers to it by a workflow instance. Despite the wide range
of workflow languages developed so far, we present two well known workflow
languages that were used to validate our approach.

Business Process Execution Language (BPEL)

The Business Process Execution Language for web services (BPEL) [IBM02]
provides means to formally specify workflow applications and interaction pro-
tocols. BPEL is an XML programming language for specifying workflow appli-
cations behavior based on web services. BPEL applications export and import

28 Chapter 2. Background: Workflow Monitoring and Analysis

functionality by using web service interfaces exclusively. A workflow definition
in BPEL comprises a control flow diagram of activities where their execution
can invoke operations of other services (underlying application code) and re-
ceive messages from external sources.

A BPEL specification defines the name of the workflow application and the
name spaces used in its definition. A BPEL specification contains three main
blocks: partner links, variables and activities.

Partner Links refer to the web services and other BPEL specifications that
are involved in the orchestration defined in the workflow application. The main
attributes of a partner link are: a name that identifies the participating ser-
vice, a partnerLinkType that specifies the service offered, a processRole that
describes the service implemented, and a partnerRole that defines the web ser-
vice called by the workflow application.

Variables store the state of messages that are sent and received between
partners. The variables include messages passed from/to BPEL applications,
messages interchanged with external services, and local variables used in the
control flow of the workflow application. Each data block is an XML document
where the type of a variable can be a web service description language (WSDL)
message type, a simple type of an XML Schema, or an XML Schema element.

Activities contain the actions to be performed in a workflow definition. There
are two types of activities: structural and behavioral. Structural activities de-
fine the orchestration logic in the workflow application. The execution of a
BPEL application can be defined by using a set of primitives such as a) a
sequence for defining an execution order, b) a switch for conditional routing,
c) a while for looping, d) a pick for executing conditions based on timing or
external triggers, e) a flow for parallel routing, and f) a scope for grouping
activities [IBM02]. Behavioral activities are classified into: receive, assign, in-
voke, reply. A receive activity executes workflow operations when it receives
a message from a client (e.g., create a new instance of the workflow applica-
tion). An assign activity assigns the content of a variable into another one.
These data can be manipulated and transformed by multiple languages such
as XPath, XQuery, XSLT, or Java. An invoke activity enables a service invo-
cation (i.e., synchronous, asynchronous) and the operation it has to perform.
A reply activity sends a message as a response to a received message through
a receive activity.

A BPEL specification offers a clear execution semantics, and well defined
storage and interchange formats. There are several products that support the
definition and execution of BPEL applications [Orab] [Act]. Each workflow
product provides a workflow engine, which supports passing messages between
partners and the usage of events.

2.1 Workflow Management Systems 29

jBPM Process Definition Language (JPDL)

The jBPM Process Definition Language (JPDL) [JPD] is a graph-based lan-
guage (XML specification) used to specify workflow applications. A JPDL
implementation consists of multiple artifacts, which describe how workflow
entities must interact (workflow definition) and the application code imple-
menting these entities (underlying implementation). An example of the JPDL
implementation of the trouble ticket scenario is illustrated in Figure 1.1 in
section 1.2).

A workflow definition describes the control flow of workflow entities by
mean of nodes and transitions. A token represents one path of execution that
maintains a pointer to a node in the graph. The graph uses actions as an
underlying implementation mechanism to add technical details outside of the
workflow definition.

Each node has a type to determine the control flow in the workflow exe-
cution. There are five types of nodes: a) a task node represents a set of tasks
performed by humans, b) a state node represents when a process waits for an
external system execution (asynchronous communication), c) a decision node
specifies a condition on the transitions, d) a fork node splits the execution path
into multiple ones, and e) a join node merges all tokens created by the same
parent (fork node). A transition relates a source node with a destination node.

Actions are pieces of Java code that are executed upon events in the work-
flow execution [JPD]. Actions include predefined or custom Java code for the
execution of the workflow through delegation. The Java code is associated
with the graph without changing its structure. Actions are executed upon
workflow events in the process execution such as entering a node, leaving a
node and taking a transition. Events are the hooks for actions. Actions lo-
cated on events do not influence the control flow of the workflow application
since it works as an observer pattern [GHJV95]. In contrast, actions located
on a node propagate the workflow execution [JPD].

In addition to nodes, transitions and actions, a JPDL workflow definition
supports other artifacts such as superstates to group nodes, exception handling
managed by Java, and workflow composition.

A JPDL workflow implementation is executed in the jBPM engine [jBP],
which fires events (e.g., node-enter) during the graph execution. Events have
a list of actions that must be executed when the jBPM engine fires an event.

2.1.4 Workflow Monitoring and Analysis

Despite the role of workflow management systems on workflow improvement,
these systems are complemented with M&A tools and techniques to identify
problems occurring in workflow applications. These monitoring and analysis
techniques provide workflow management systems with the ability to continu-

30 Chapter 2. Background: Workflow Monitoring and Analysis

ously inform and apply business process optimizations.

The complexity for implementing M&A concerns depends on the complex-
ity of the workflow implementations. The evaluation of M&A solutions dif-
fers by the capabilities of the workflow products and by the complexity of
the workflow applications depending the application domain (e.g., banking &
investment, healthcare, insurance). There is not a complete benchmark for
evaluating M&A solutions in WFMS since there are many workflow products
without a consensus to describe executable business processes. Nevertheless,
the Workflow Patterns Initiative [vdAtHKB03] identifies workflow modelling
scenarios and solutions, and provides evaluations for benchmarking various
workflow products (commercial, open source, and proposed standards).

The workflow management systems and their associated M&A solutions
have been highly adopted in companies with different domains [Kas06] [Pal09].
For example, healthcare processes (e.g., organizational, medical treatment)
have a wide range of offerings, involve multiple distributed organizational ar-
eas, involve complex set of possible diagnostic paths, and need to be highly
structured. In this domain there is high demand for monitoring since health-
care providers require effectiveness, patient safety, high quality care, and extent
of care. Hofstede et al. [tHvdAAR10] introduces a workflow application auto-
mated in YAWL for managing a gynecological oncology process. This process
involved 230 tasks dependent on choice, and different perspectives (i.e., con-
trol, data, resources).

The next section presents the scope of monitoring and analyzing workflow
applications.

2.2 Monitoring and Analysis of Workflow Ap-

plications

The first wave of workflow management systems was focussed in re-engineering
the software systems into process-oriented organizational structures. In this
wave, the emphasis was on constructing process models and analyzing them.
Current WFMS have moved up to a second wave in which business processes
are executable to offer better control in the organizations. A third wave in
WFMS is monitoring and analyzing the execution of business processes to focus
on a continuous improvement process according to the business evolution.

The monitoring of workflow activities is required for auditing the opera-
tional efficiency of an organization. This fact is reflected by multiple emerging
terms related to the monitoring of business activities such as BAM (Business
Activity Monitoring), BOM (Business Operations Management), BPI (Busi-
ness Process Intelligence), and Business Process Analysis (BPA). The impor-
tance of measurement and control has been demonstrated by multiple tools

2.2 Monitoring and Analysis of Workflow Applications 31

and publications related to this topic [MHH07] [zM00]. The existing solutions
are presented in chapter 10 where we present a comparison with our approach.

The following sections describe the main concepts related to the monitoring
and analysis of workflow applications.

2.2.1 Workflow Monitoring and Analysis Taxonomy

Workflow monitoring and analysis (M&A) comprises multiple application fields
such as verification or validation of process models (conformance checking),
automatic generation of improved process models, predictions, and measure-
ments. In addition, there are multiple techniques for monitoring and analysis
such as analysis done a posteriori (e.g., process mining), and workflow moni-
toring at runtime (e.g., BAMs). In that context, the focus of our research is
on the monitoring and analysis of workflow applications at runtime to measure
and evaluate their execution. The M&A at runtime enables the assessment of
changes in the quality of workflow applications. This is done through strate-
gic measurements incorporated in the workflow applications to be analyzed
during their execution to provide feedback for workflow analysts. The M&A
at runtime decreases the time required to identify problematic aspects about
critical properties in the workflow and to decide on workflow improvements
(e.g., re-assign resources, add activities).

We consider that an accurate identification of problematic aspects at run-
time in workflow applications can be supported by implementing M&A con-
cerns such as: monitoring, measurement and control. These M&A concerns are
defined for monitoring the actual workflow executions, building and managing
measurement information based on the data manipulated by the workflow ap-
plication, and applying notification actions based on the evaluation of those
data. The measurement data must be stored to support further analysis by
accessing historical information.

Workflow M&A is a complex domain that requires a mapping between
process models and workflow implementations. It involves multiple artifacts
such as configuration files, descriptors, workflow code, and application code. In
addition, the extraction of data from the internals of the workflow application
for workflow analysis purposes is non-trivial since it involves information from
multiple external systems. The M&A domain comprises multiple fields and
meanings, thus its scope must be well defined.

The authors in [zMR00] outline some monitoring facilities provided by
workflow management systems. We took this information as a starting point
to create a customized taxonomy of types of M&A activities. Figure 2.2 il-
lustrates this customized taxonomy and shows different associated application
examples.

Broadly speaking there are two main perspectives:

32 Chapter 2. Background: Workflow Monitoring and Analysis

Monitoring Concerns Measurement
Concerns

Control
Concerns

Workflow Monitoring
and Analysis

Workflow
Monitoring
(runtime)

Active
monitoring

Passive
monitoring

Technical
Monitoring

Organizational
Monitoring

current state of
workflow
instances

generate
exception

reports

associate
interception

elements

obtain the
status of
an order

performance
measurement

system
response time,

system load

status on
running workflow

instances

idle times,
workload
analysis

efficiency
measures

application-
specific

measurement

quality
measurement

Domain
Monitoring

Workflow
Controlling

(a posteriori)

change
workflow data
and process

model

dynamic
adaptation

Adaptive
Monitoring

Dashboard,
email, event

log

notification
actions

Informative
Monitoring

conformance
measures

fitness,
Appropriateness

Detect long-term
developments

Review existing
workflow

implementations

updatable
process models

Analysis
Technique Analysis FieldLegend Element added

to the taxonomyApplicability

Measurement
Concerns

Identify
process execution

deviations

Supported in
our approach

Un-supported in
our approach

Figure 2.2: Taxonomy for Workflow M&A Adpated from [zMR00].

• Workflow monitoring, also named operative (interactive) process con-
trolling, deals with the monitoring and analysis of workflow instances at
runtime. The analysis in this technique can be characterized as active or
passive, as technical, organizational or application-specific, and as adaptive
or evaluative.

Active/Passive Monitoring. Active monitoring provides information of the
current state of workflow instances. This technique is useful for the gener-
ation of reports (e.g., exception, warnings) with the actual and potentially
overdue tasks (work items). We also consider this technique useful for as-
sociating interception elements that can be captured by external systems.
Passive monitoring provides status information about running workflow in-
stances upon request. This technique can be used to obtain the status of an
order inquired by a customer and to visualize it (e.g., dashboard).

Technical/Organizational/Application-specific Monitoring. Technical moni-
toring is used for performance measurement such as system response time,
and system load. Organizational monitoring measures the efficiency of
the workflow application (e.g., idle times, workload analysis). Application-
specific monitoring measures the quality of the workflow application (e.g., work-
flow data analysis).

Adaptive/Informative Monitoring. Adaptive monitoring is used for dynamic
adaptation of the workflow application (e.g., modify the process model,
change values of workflow variables). Informative monitoring is used to
evaluate the historical data of workflow execution instances and to notify
external entities of particular behaviors for identifying potential improve-
ments (e.g., create event log).

• Workflow controlling, also named strategic process controlling, aims at a
posteriori (ex-post) analysis of the logged audit trail data captured during

2.2 Monitoring and Analysis of Workflow Applications 33

the workflow enactment. It is useful a) to detect long-term developments
in workflow enactment, b) to review already existing workflow implementa-
tions, and c) to identify deviations in the workflow execution by comparing
audit trail data to target data derived from corresponding process models.

We limit the scope of our approach to the elements in the taxonomy that
are market with the “

√
” symbol. In general, we focus on monitoring and

analyzing workflow applications at runtime.

2.2.2 Workflow Monitoring and Analysis Views

Single workflow instances and the aggregation of them can be evaluated ac-
cording to different views to analyze the historical data of workflow instance
execution. Muehlen et al. [zMR00] identify three different but related views
required to reduce the complexity for the analysis of workflow applications.
These views comprise a) processes and functions, b) resources, and c) process
objects (data entities).

Process view. The process view evaluates a) all performance measurements
related to optimize the workflow application, and b) the conformance between
process models and workflow instances information stored in event logs. The
information gathered in this view can be used to change the elements associ-
ated to the different perspectives of the process models.

Performance measurements correspond to key performance indicators con-
cerning time, cost and quality. The following are different evaluation examples
in this view: a) average, maximum, and minimum process time, b) average,
maximum, and minimum execution costs of a process, c) the number of fail-
ures or loops, which evaluates the quality of a process by establishing necessary
rework.

Conformance measurements compare the process models and the workflow
instances information. The workflow instances are compared only if they have
the same execution path. For example, a workflow variant during the workflow
execution has to be identified. Thus, the processing time can be predicted in
an early stage of the workflow execution where the workflow variant is not yet
identified.

Process objects are associated with a state in a given time. These state
changes correspond to event types in the workflow management system (e.g., when
a process instance moves to a state completed).

Resource view. The resource view evaluates the usage of the available re-
sources (e.g., personnel). The evaluations in this view also correspond to
criteria such as time, cost, and quality. The costs of the involved resources
in a workflow application can be derived from applications associated to the

34 Chapter 2. Background: Workflow Monitoring and Analysis

workflow. The time dimension evaluates the availability of the resources.

Object view. A business relevant object (e.g., ticket, loan, order, inquire,
invoice) is processed by the logical sequence of functions (activities) that con-
form a workflow application at the instance level. This view facilitates the
identification of the value drivers of the workflow applications. A cost criteria
is related to the evaluation of costs to handle an object (e.g., calculation of
costs and revenues). The time criteria informs about the typical processing
time for these objects. Quality criteria measurements can inform about po-
tential problems related with an object. Basic evaluations inform about the
progress of a specific object.

We consider process and object views in our approach by evaluating time
and quality criteria. A business object can be associated with multiple work-
flow elements. Thus, we consider that this view must expose the workflow vari-
ables associated with the workflow elements. This enhances the capabilities
to monitor and analyze workflow applications, and to provide higher quality
measurements (e.g., in a loan process, the estimation of rejected requests per-
formed by a specific user). It must also provide support for the interception of
fine-grained state changes in the activities and workflow variables.

2.2.3 Workflow Monitoring and Analysis Dimensions

The most common requirement for workflow analysis is measuring performance
related to processes and activities in terms of generic measurements. Generic
measurements are predefined and can be computed for multiple workflow ap-
plications independently of their application domain (e.g., the time a workflow
instance is running, the number of instances of a workflow application, the uti-
lization of workflow resources, the current workflow execution state). A generic
dimension for monitoring and analysis comprises measurements within a pro-
cess view and an activity view. The process view evaluates all performance
measurements related to optimize the workflow application.

Although such generic measurements define useful analysis information,
they do not provide quality measurements specific to the application domain.
Therefore we emphasize another analysis dimension named application-specific
measurement, which is needed to create custom quality measurements required
to analyze the workflow applications. Application-specific measurements cap-
ture information that is specific to the particular domain of the workflow
application (e.g., loans rejected of a specific client in a banking context).
An application-specific monitoring and analysis dimension comprises measure-
ments within a data view combining generic measurements with workflow data
entities (e.g., loan, client).

Both dimensions for monitoring and analysis need to be considered to sup-
port the strategic goals required for workflow improvement.

2.2 Monitoring and Analysis of Workflow Applications 35

2.2.4 Workflow Monitoring and Analysis Technologies

Muehlen et al. [zMR00] also discuss evaluation methods and information pro-
vided by workflow technologies to support monitoring and analysis.

The first consideration is about the available information for M&A. This
information is provided by the selected workflow management system in differ-
ent ways. For example, some workflow systems record system events associated
with timestamps, whereas others also include the object processed within the
activity. The available information defines the quality and scope of the analysis
that can be performed.

Typically, the information that is recorded by a workflow management sys-
tem corresponds to a) state-changes in processes and activities, b) resources
involved in these state-changes, and c) timestamps of state-changes. Eval-
uating this information from the audit trail logs is useful for diverse types
of analyses (e.g., activity processing times) and predictions (e.g., potentially
overdue activities). All this measurement information is very useful to analyze
the operative effects of workflow executions, however, other advanced measure-
ments related to process quality (e.g., effects of workflow in time to market)
are required to analyze strategic effects in workflow application execution.

The second consideration is about the evaluation techniques for M&A. Sta-
tistical techniques are used to evaluate a measurement (e.g., processing time)
or a set of values against defined upper and lower levels of tolerance. Another
technique is the use of a model to identify who is actually performing what
type of work. Nevertheless, the latter kind of analysis is not considered in our
workflow monitoring and analysis approach.

The monitoring of workflow applications can be performed by multiple
solutions:

• Instrumenting the workflow implementations. The specification of the work-
flow application is enriched with code to capture particular events and with
new elements (e.g., activities) to send audit information to external services.

• Tracking control flow events (state changes) managed by the WFMS. Multi-
ple WFMSs use observer plug-ins to log state changes to access directly the
audit trail data. Then the observer plug-in is automatically invoked by the
WFMS when a workflow event (e.g., activity started) is performed.

• Tracking state changes not managed by the WFMS. These state changes
have to be captured in the systems supporting the underlying workflow im-
plementation (e.g., application code, database tables). Then these systems
can generate audit trail data when a state change (e.g., a record is inserted)
occurs.

• Querying audit trail data. Multiple workflow analysis approaches provide
mechanisms to gather information about all status changes of a workflow

36 Chapter 2. Background: Workflow Monitoring and Analysis

application execution, which is contained in an audit trail. Typically, this
information is gathered according to the time-sequenced record.

• Interception of web service requests. When using a service-oriented architec-
ture, a web service gateway can be used to intercept web service requests
and to extract the required auditing data.

The Workflow Management Coalition (WfMC) specifies through the Inter-
face 5 (administration and monitoring tools) the essential information about
workflow instances that a workflow management system must record [WfM98].
This historical information correspond to state changes of a workflow instance
from start to completion or termination. For example, historical information
such as date, time, and type of work performed per state changes may be
collected from log records. The log records must provide a minimum of infor-
mation to support workflow monitoring and analysis: unique object identifier
that is processed by a workflow instance, workflow instance that is being en-
acted, workflow application that is being enacted, resource that performed a
transition, source and target of the transition, and timestamp and time zone of
the transition. Additional information stored in the log records (e.g., customer,
product) are dependent of the domain the workflow application is modeling.
The WfMC standard provides the data format and guidelines to record work-
flow events, however, it gives no advice on how to evaluate this measurement
information.

2.3 Summary

This chapter has explained the main concepts involved in the domain of work-
flow monitoring and analysis. We presented the different levels of abstraction
and stakeholders involved in the development process of workflow applica-
tions. We identified how the lack of data modeling in BPMN process models is
problematic for specifying monitoring and analysis concerns to be analyzed at
runtime. The workflow monitoring and analysis phase was motivated as part
of the life-cycle of the workflow management systems. Multiple definitions for
workflow monitoring and analysis were presented to position our approach with
respect to the monitoring and analysis of custom measurements at runtime.
We have discussed the necessity to introduce application-specific measurement
as an analysis dimension for workflow applications.

The following chapter presents the decisions we made to tackle the problems
identified for monitoring and analyzing workflow applications.

Part II

Specifying Monitoring and
Analysis Concerns in Workflow

Applications

37

Chapter 3

Rationale and Background

We dedicate this chapter to present the rationale and background behind the
specification strategy of our workflow monitoring and analysis approach (see
section 1.4). As detailed in the introduction, the main problems to specify mon-
itoring and analysis (M&A) concerns in workflow applications are related to a)
high development costs, b) tight coupling with specific workflow platforms, c)
limited expressiveness, and d) complex maintainability. This is because work-
flow developers need to build ad hoc infrastructures into a particular workflow
platform to specify and implement M&A concerns. The main decision we made
to tackle these problems is to separate the solution in two main parts: 1) the
specification, and 2) the implementation of monitoring and analysis concerns.

First, the main contribution of our approach is the creation of a domain-
specific language (DSL) named MonitA to ensure that M&A concerns can be
specified in a uniform and technology-independent way. Moreover, the ra-
tionale to build a DSL was influenced by the needs to trade generality for
expressiveness in the monitoring and analysis domain, to ease the specifica-
tion in this particular application domain, to reduce the software maintenance
costs, and to open up this application domain to a larger group of application
developers. The MonitA DSL was conceived for raising the level of abstraction
to workflow developers for specifying M&A concerns (MonitA specification).

Second, the other contribution of our approach is the definition of a gener-
ative strategy to create the infrastructure to enact the MonitA specifications
on a specific workflow platform. This generative infrastructure is required to
integrate automatically the MonitA specifications with the implementation of
workflow applications. The decision to define this strategy is influenced by
the need to reuse MonitA specifications across different and existing workflow
languages and engines. The rationale to define the generative implementation
strategy is presented in chapter 6.

The investment in the development MonitA and of a particular generative
infrastructure for it is recovered by lower development and maintenance costs.

39

40 Chapter 3. Rationale and Background

The main elements involved in the MonitA execution platform are catego-
rized in three parts: specification, implementation, and enactment. Figure 3.1
illustrates the main parts and stakeholders of the MonitA execution platform.

2

Im
pl

em
en

ta
tio

n

MonitA
Infrastructure

Developer

En
ac

tm
en

t

Interact with
the Dashboard

Specify Monitoring
and Analysis

Concerns using
the DSL editor

Sp
ec

ifi
ca

tio
n

331
Application
Developers

331
Application
Developers

Create a MonitA
generative

infrastructure for
workflow platform 1

(MonitA-JPDL)

Create a MonitA
generative

infrastructure for
workflow platform n

(MonitA-BPEL)

Select a target
execution platform

(MonitA-JPDL)

Specify Monitoring
and Analysis

Concerns using
the DSL editor

Specify Monitoring
and Analysis

Concerns using
the DSL editor

Figure 3.1: Overall View for the MonitA Execution Platform.

There are two different types of developers required to take abstract MonitA
specifications to concrete implementations: application developers and MonitA
infrastructure developers.

The MonitA infrastructure developers are involved in the implementation
part by creating a generative infrastructure to automate the implementation
of MonitA specifications for a particular workflow platform. The elements of
the architecture defined for the implementation part of the MonitA execution
platform are presented in chapter 7.

The MonitA application developers use the MonitA DSL to specify M&A
concerns for a workflow application, and select a target workflow platform to
integrate automatically these concerns with the workflow application. The
different elements required for MonitA specifications are presented in chap-
ter 4. The application developers also interact with the enactment part in the
MonitA execution platform to analyze the monitoring information at runtime.
The different elements related to the execution part of the MonitA execution
platform are presented in section 8.4.

The following sections present the rationale to create the MonitA DSL.

Section 3.1 presents the importance of a DSL tailored to an application do-
main, the phases for developing a DSL, and the criteria considered to evaluate

3.1 Domain-Specific Languages 41

the design of a DSL. The design criteria are retaken in the validation chapter
to evaluate the design of our DSL (see Section 5.1).

Section 3.2 describes the main requirements considered to develop the
MonitA DSL and the core concepts for a MonitA specification.

Section 3.3 presents the design decisions adopted to develop our DSL.

3.1 Domain-Specific Languages

A domain-specific language (DSL) is a language designed to provide a specific
notation tailored to an application domain. These domain-specific notations
and constructs offer end-users gains in expressiveness, ease of use, productivity,
and maintenance costs.

DSLs can have multiple degrees of executability such as a) a DSL with
well-defined execution semantics (e.g., Excel spread-sheets), b) a DSL acting as
input language for an application generator (e.g., MonitA), c) a non-executable
DSL useful for application generation (e.g., BNF), and d) a non-executable
DSL (e.g., data structure representations).

3.1.1 Development Process

Mernik et al. [MHS05] presents a survey with the phases of a DSL development
and some patterns that can be identified in each phase. These development
phases of the DSL correspond to DSL decision, domain analysis, DSL design,
and DSL implementation. This study gives DSL developers a methodology
regarding when and how to develop a DSL from a qualitative validation per-
spective.

The development of a DSL is a hard and time consuming task since the
DSL developer requires domain knowledge and language development exper-
tise.This development effort can be reduced by using a language development
system (e.g., oAW, Spint, Stratego). These systems typically generate tools
from languages specifications such as consistency checkers and interpreters,
syntax editors, prettyprinters, analyzers, interpreter and compiler generators,
and a debugger. Although these systems provide support for the design and
implementation phases, typically there is no support in the analysis phase.
The development phases are described below.

DSL Decision

The main concerns to decide on a DSL are a) to obtain improved software
development and maintenance tasks, and b) to enable users with less domain
and programming expertise to enable these tasks [Nar93] [FGY+04]. Compar-
ing the advantages and disadvantages of creating a DSL aid in the decision
process.

42 Chapter 3. Rationale and Background

An advantage of using a DSL is that the solutions are expressed at the same
level of abstraction as the problem domain. Thus stakeholders can achieve the
understanding, validation and modification of these solutions [MHS05]. A
special DSL can be obtained by combining a GPL with an application library.
However, the benefits of DSLs are associated with their domain-specificity,
which is represented by domain-specific notations from the beginning of a
specification. Typically these domain-specific notations cannot be directly
mapped in artifacts allocated in a library. Therefore, the domain-specific con-
structs allow performing specialized actions such as verification, optimization,
and transformation over a DSL.

Kieburtz et al. [KMB+96] consider as an advantage of DSLs that they can
increase flexibility, productivity and reliability in software systems. A DSL can
lead to automatic code generation, which reduces the time for programming
repetitive tasks [JB88] and the complexity required to program new applica-
tions by using a general programming language (GPL). Spinellis [Spi01] also
describes reliability as an advantage since the correctness of generators can
be easily verified due to the small domain and limited possibilities of a DSL.
Other works [LR94] [Kru92] consider reusability as an advantage of DSLs.

There are multiple factors that can complicate the decision to develop a
DSL. A disadvantage of a DSL is the cost of their development, which requires
domain and language development expertise [KLBM08]. Typically, the effort
to consolidate a DSL in a large community is expensive in terms of time and
become complex since it is necessary to consider important issues such as train-
ing material, language support, standardization, and maintenance. Moreover,
it is necessary to consider existing software developments using a GPL to be
sure that concepts developing a DSL might be useful. The authors in [vDK98]
mention as a disadvantage the considerable cost for extending a DSL to sup-
port unanticipated changes. The authors in [BBH+94] and [SG97] consider
as a disadvantage the lack of knowledge of how to fit the DSL into a regular
development process.

Domain Analysis

In this phase, the problem domain is identified and the domain knowledge
is gathered. The inputs for domain analysis can be, among others, technical
documents, knowledge provided by domain experts, and existing code. The
output of the domain analysis phase is the domain-specific terminology, se-
mantics, and scope in an abstract way. This development phase contains a set
of associated patterns to aid in the domain analysis:

• Informal pattern. The domain analysis is performed in an informal way,
thereby without a specific methodology.

• Formal pattern. The domain analysis can be performed by using a method-

3.1 Domain-Specific Languages 43

ology such as feature-oriented domain analysis (FODA) [KCH+90], domain
analysis and reuse environment (DARE) [FDF98], family-oriented abstrac-
tions, specification, and translation (FAST) [WL99], and ontology-based
domain engineering (ODE) [dAFGD02].

• Extract from code pattern. In this scenario, the domain concepts are ex-
tracted from legacy general-programming language code by inspection or by
using mining tools.

The variabilities on terminology and concepts obtained in the domain anal-
ysis are used to guide the development of the actual DSL constructs. The com-
monalities of domain concepts are used to define the set of common operations
required in the execution model and the primitives of the language.

DSL Design

The approaches to design a DSL can be grouped in two dimensions: the rela-
tionship between the DSL and existing languages, and the nature of the design
description. The approaches for both are framed in the following patterns:

• Language exploitation pattern. The design of a DSL can be based on an
existing language to ease its implementation and to maintain familiarity for
users. The DSL design can follow a piggyback approach to use parts of an
existing language, a specialization approach to restrict the existing language
into a particular domain, or an extension approach to add new features to
an existing language to address the required domain concepts. The first two
approaches are typically used when the notation is widely known.

• Language invention pattern. In this pattern, a DSL is designed from scratch
with no commonalities with an existing language. Consequently, the design
can be difficult to characterize.

• Informal design pattern. In this design, the specification of the DSL is done
typically in a natural and illustrative language. The development of an
informal DSL specification cannot be validated before the DSL is actually
implemented.

• Formal design pattern. A formal design is specified using an existing se-
mantics definition method. These methods include regular expressions and
grammars for syntax specifications, and rewrite systems, abstract state ma-
chines, and attribute grammars for semantic specifications [SK95]. The de-
velopment of formal DSL specifications can be implemented automatically
by language development systems, which reduces the implementation effort.

44 Chapter 3. Rationale and Background

DSL Implementation Approaches

There are multiple approaches to implement a DSL such as interpretation, com-
pilation (application generator), preprocessing (e.g., macros, template meta-
programming in C++), embedding (e.g., subroutines), commercial Off-The-
Shelf (COTS) and extensible compilation/interpretation [KLBM08]:

• Preprocessing. In this approach, DSL constructs are translated into con-
structs in the base language. The preprocessing approach performs compile-
time generation of language-specific code achieving good performance. Nev-
ertheless, the generated code is limited to a static analysis provided by the
base language processor. Thus it is not possible to make optimizations at
the domain level and the error reporting is done in terms of base language
concepts.

• Embedding. This approach consists of defining domain-specific abstract
data types and operators by extending an existing general-purpose lan-
guage (GPL). The new language reuses all the host language power and
the compiler or interpreter of the host language is reused as is. However,
the DSL user has to become a programmer, it provides low expressiveness,
and domain-specific optimizations and transformations are hard to achieve.
Error messages are presented in terms of the host language concepts and not
in terms of domain-specific concepts.

• Compiler/Interpreter. Building a compiler/interpreter from scratch is costly.
However, this approach offers a domain-specific analysis on the DSL pro-
grams, a closer syntax to the notation used by domain experts, and good
error reporting. The compiler can be implemented by using compiler writing
tools to minimize the implementation effort.

• Extensible compiler/interpreter. A GPL compiler/interpreter can be ex-
tended to provide domain-specific optimization rules or code generation.
Nevertheless, extending a compiler is hard and requires to be extremely
careful to avoid any interference of domain-specific notations with existing
ones.

• Commercial Off-The-Shelf (COTS). A COTS approach builds a DSL based
on existing notations (e.g., XML), thereby this approach depends on domain
rules to apply (extract) the existing functionality.

A detailed study about multiple approaches that can be used to implement
DSLs is presented in [KLBM08] [MHS05]. Mernik et al. [MHS05] presents an
analysis from a qualitative point of view. Kosar et al. [KLBM08] presents some
partial quantitative results evaluating some DSL implementation approaches.
This study supports the claim that an embedding approach is the most appro-
priate in terms of implementation effort. Nevertheless, the authors claim that

3.1 Domain-Specific Languages 45

the end-user effort required to write rapidly correct programs can be, depend-
ing of the DSL, more important than the effort required to implement the DSL.
Therefore, when big groups of users are going to use a DSL and the notation
must be strictly adopted, then the recommended solution is to implement the
DSL using compiler generators.

Consel et al. [CLRC05] presents a methodology to develop DSL compilers to
translate the logic of a program into a GPL representation. This methodology
relies on generative programming tools such as AOP, annotations, and program
specialization to define a modular compilation of DSL programs. A compiler
developer chooses the most appropriate generative programming approach in
the program generation process.

3.1.2 Design Principles

The life expectancy of a DSL can be damaged by two threats for DSL degrada-
tion: domain absorption degradation and general-purpose absorption degrada-
tion [Cle10]. Domain absorption degradation is present when the DSL breaks
the borders of its initial domain resulting in inconsistent syntax and seman-
tics, and in restrictive and complex specifications. General-purpose absorp-
tion degradation is present when the DSL abstractions grow towards general-
purpose language concepts that are unfamiliar to DSL users and that can be
already offered by programming languages (e.g., libraries). In this case, the
creation and maintenance of a DSL introduces an overhead in the software
development process.

A set of design principles is described in [GC10]. The evaluation of these
design principles for a DSL facilitates the identification of its distinguishable
properties and avoids to get an ambiguous and useless DSL. We summarize
the main principles which we will use in chapter 5 to evaluate our DSL:

Representation

Representation deals with the syntax for specifying the DSL concepts. A DSL
with familiar syntax finds broad adoption and improves the rate at which the
language evolves [Cro08]. A DSL representation involves a concrete syntax
that enables DSL users to write unambiguous sentences and a code structure to
arrange the different grammatical sentences. The DSL syntactic representation
must adopt the most optimal syntax for DSL users. In order to validate this
principle, the following properties have to be evaluated:

• Domain syntax. The DSL is designed based on syntactic representations
common to the domain.

• Distinguishable syntax. The parts or blocks of a DSL specification can be
easily identified.

46 Chapter 3. Rationale and Background

• Familiar syntax. The DSL adopts an existing, related, and well established
syntax.

An optimal syntax representation improves readability by facilitating the
recognition of relevant parts of a DSL specification. An optimal representation
also improves the conciseness of a DSL specification making it more readable.
This is important since most of the time spent in the development process
goes to looking at the specification rather than actually writing it. An ad-
equate syntactic representation contributes to the consistency (“uniformity”)
depending on whether a set of constructs is indivisible or divisible into different
smaller constructs [Far85].

Absorption

DSLs must absorb the common practices within the specific domain and also
absorb these commonalities implicitly into the language to avoid generaliza-
tion in the specifications. Absorption allows DSL users to assume safely and
reliably how the DSL will behave and facilitates them to omit obvious details
for focusing on the actual problem. With absorption a DSL must be able to
deduce additional information concerning the required behaviour and structure
of a specification. In order to validate this principle, the following properties
have to be evaluated:

• Absorption by exploiting context. The implicit use of assumed structure and
behaviour is based on the structure of the surrounding code of a particular
construct.

• Absorption by automation. The DSL specification contains enough informa-
tion to allow a DSL processor to automate certain tasks.

Absorption improves the writeability and readability of DSL specifications
by omitting the necessity to write and read several times the obvious. Absorp-
tion also contributes to the reliability of a DSL rendering the specifications less
error prone by unexpected interactions between their elements.

Standardization

Standardization restricts the grammar and semantics of a DSL to assist users
in how to write a program that will solve their problem [McK76]. The DSL
must be restricted to the minimal set of possible alternatives that the DSL
expert requires to consider during a specification. This releases DSL users
to figure out how to solve a problem. In order to validate this principle, the
following properties have to be evaluated:

3.1 Domain-Specific Languages 47

• Restrictions on the grammar. The DSL grammar constraints the specifica-
tion to an explicit structure. This guides the DSL users to specify a solution
for their problem using different notations (e.g., conventions, idioms, pat-
terns).

• Restrictions via semantics. The DSL implementation performs semantic and
type checks on the specification declared by the DSL user.

Standardization improves reliability guiding DSL users during a specifica-
tion with a restricted set of elements but with mechanisms to detect semantic
errors. Restricted grammars contribute to improve readability and writability
facilitating users to write and read relevant DSL specifications. Standard-
ization contributes to locality within the specifications easing the localization
of their relevant details. Standardization restricting the grammar improves
the lexical coherence of the specifications by keeping related code physically
adjacent to ease its understanding.

Abstraction

Abstraction formalizes and structures new concepts on top of existing ones
to reduce the information available at a particular abstraction level [Gra01].
The concepts created by abstraction do not require the information that has
been left out to understand the DSL specifications. The DSLs have meta-level
abstractions that define the semantics of the specifications by interpretation or
by translation. In order to validate this principle, the following distinguishable
properties have to be evaluated:

• Abstractions from technical complexity. DSL specifications are released of
skills that transcend the boundaries of the tailored domain.

• Abstractions from irrelevant details. DSL specifications avoid information
that is not an essential part of the problem domain.

• Abstractions from redundant information. DSL specifications avoid possibly
confusing information (e.g., synonyms).

Abstraction reduces redundancy which contributes to a non-ambiguous
DSL design. This allows DSL users to focus on what is essential in a solu-
tion and to avoid information that causes confusion. Reducing redundancy
also contributes to parsimony by getting rid of two concepts with the same
meaning.

Compression

Compression (cf. brevity [Gra01], compactness [Wei98]) reduces the number
of lines of code in an specification but retains the amount of semantic details.

48 Chapter 3. Rationale and Background

Different design characteristics can guide compression such as: visualize a
unit of functionality within the programming editor, maintain the size of the
problems proportional to specifications, and give the frequently used constructs
a short name and more convenient syntax. Compression in DSLs must be fine-
tuned for all the abstractions. In order to validate this principle, the following
properties have to be evaluated:

• Compression by factorization to avoid reoccurring patterns in the code.

• Compression by increasing conciseness to remove elaborate statements, to
change the syntactic sugar, and to omit default statements.

• Compression by overloading notations to provide a specification analyzable
according to the execution context.

Compression improves understandability since a short specification tends to
be more easily comprehended than a long one. However, compression increases
the semantic density, thus this density must be kept within the capabilities of
DSL users.

Generalization

Generalization is intended to minimize code duplication and to exploit qualities
such as maintainability, separation of concerns, and code compression. The
goal of generalization for DSLs is to reduce the amount of concepts by replacing
a group of more specific cases with a common case. In order to validate this
principle, the following properties have to be evaluated:

• Generalization by inducing forms a new concept to supplant a set of con-
crete concepts that cover fine-grained variations. The domain coverage of
a generalized concept is explicitly formalized and turned into a computable
form since the combination of variation points is made explicit.

• Generalization by collapsing searches for concepts which are more specific
than another one and collapses them into a new enriched concept (e.g., hy-
pernyms/hyponyms).

Generalization contributes to the longevity of a DSL by easing the in-
corporation and evolution of specifications that were not explicitly defined.
Generalization has an impact on simplicity allowing the solution of a general
problem instead of solving specific ones. Generalization improves writability
since the writer only needs to recall a single generalized concept and can apply
it in many different ways. Nevertheless, generalization decreases the readability
since the reader of a generalized specification has to interpret each time the
general case to the specific one.

3.2 Requirements for the MonitA DSL 49

Optimization

Optimization is intended to decrease the time to construct executable software
programs. Another dimension in optimization is intended to increase the ex-
ecution performance of DSL specifications. The parts of a software program
that are very frequently executed and consume a considerable proportion of
the total execution time must be optimized. In order to validate this principle,
the following properties have to be evaluated:

• Optimization by enhancing the language runtime. This is done by adding
new algorithms and functionalities.

• Optimization by tuning the semantics of the language. This is done by chang-
ing the execution order (e.g., permutations, caches, lazyness) or exploiting
performance peculiarities of the language runtime.

• Optimization by providing special-purpose constructs. This is giving the DSL
user the ability to use optimized constructs when appropriate.

Optimization contributes to the DSL portability since the abstract and
small specifications can more easily be automated to target other platforms.

3.2 Requirements for the MonitA DSL

The analysis of requirements for the MonitA DSL was done by extracting
domain knowledge from code and by defining formally the scope, terminology
and concepts description of the workflow monitoring and analysis domain.

Part of the domain knowledge was extracted by inspection of code from
BPEL, Java and JPDL workflow implementations. We defined a set of re-
quirements to monitor and analyze the execution of two workflow applications:
trouble ticket and loan approval. The trouble ticket workflow applications is
implemented in a JPDL platform, whereas the loan approval application was
implemented in a BPEL platform. The monitoring and analysis requirements
for each workflow application were implemented directly in these platforms to
analyze the abstractions provided by these workflow platforms and the level of
specification in the implementation.

According to these implementations, we identified the necessity to provide
abstractions for monitoring and analysis concerns to evaluate custom measure-
ments in workflow applications during their execution. The domain-specific
knowledge (terminology and semantics) was gathered from existing GPL code,
related tools and techniques, technical documents, and the analysis of domain-
specific necessities.

50 Chapter 3. Rationale and Background

3.2.1 Monitoring and Analysis Desiderata

The following are the general requirements identified to specify M&A concerns
in workflow applications:

• Multiple application developers must be able to specify M&A concerns for
an existing workflow application. Workflow analysts have different needs to
monitor and analyze a workflow application. Thus, all the MonitA specifi-
cations done by application developers to satisfy these needs must be incor-
porated into the target workflow application.

For example, in the trouble ticket workflow application introduced in sec-
tion 1.2, a workflow analyst can be interested in analyzing the workflow
application by using measurements such as the number of problems reported
by a specific area of expertise. At the same time, another workflow analyst
can be interested in analyzing the workflow application by using time-related
measurements such as average processing time.

• All the workflow variables used by a workflow application must be described
in a shared model. In this way, this workflow data model can be shared and
used by multiple MonitA application developers.

• An interface to access the actual value of the workflow variables and workflow
engine information must be available to be used by MonitA specifications.
This interface must provide access to the workflow instances under execution.

• The association between workflow variables and flow entities must be ex-
plicit in order to identify who (flow entity) is actually doing what type of
work with the data. The operations that flow entities perform on workflow
variables have to be identified to create custom quality measurements to
assess strategic effects on the execution of workflow applications.

The following are the specific requirements identified to specify M&A con-
cerns in workflow applications. These requirements are grouped into: moni-
toring concerns specification, measurement concerns specification, and control
concerns specification.

Measurement Concerns Specification

• Application developers must be able to access predefined measurements and
to define new custom measurements. Predefined measurements contain in-
formation about the workflow execution state (e.g., execution time, workflow
instances, state of flow entities, workflow variables) and are provided by the
workflow engine. Custom measurements are specified by combining infor-
mation provided by the workflow engine, by existing measurements, and by

3.2 Requirements for the MonitA DSL 51

workflow information. Custom measurements can be related to performance
measurements and application-specific measurements.

Performance measurements such as average, maximum, and minimum work-
flow execution time, number of failures and loops must be evaluated on flow
entities [zMR00]. Application-specific measurements (i.e., specific to do-
main the workflow is modeling) must be evaluated on workflow data entities
(e.g., ticket, loan, invoice) and on who (flow entities) affects the workflow
data.

• Application developers must specify how to create, update, delete and re-
trieve values of the custom measurements. All the measurement information
that is captured and built has to be persisted for further analysis.

• The persistent mechanism must associate each measurement value with the
workflow element that the measure is assigned with. A measurement value
can be assigned to a particular flow entity, to a workflow instance, or to a
set of workflow instances.

• Application developers must be able to navigate through all the measure-
ment information that has been captured and built on a workflow applica-
tion. The access to this information must support the navigation through
the use of temporal constraints.

• The measurement values have to be evaluated against predefined values.
When these values are reached, the measurements must be stored to keep
trace of these values and their associated execution information (i.e., tem-
poral information).

Monitoring Concerns Specification

• Application developers must be able to specify the workflow event types they
want to intercept. The monitoring specification must capture predefined and
custom workflow event types.

Predefined workflow events are related with flow entities and are typically
provided by the workflow engine (e.g., a transition is taken). Typically,
these predefined workflow events are captured by tracking log state changes
managed by the WFMS through observers to access directly the audit trail
data.

Custom workflow events are observed in terms of CRUD (create-read-update-
delete) operations on the data entities (e.g., a workflow variable is updated)
and in terms of who is affecting the data (e.g., a particular activity modifies
the workflow data).

52 Chapter 3. Rationale and Background

• Application developers must be able to specify the monitoring data that
must be gathered when the workflow events are captured.

• The specification of monitoring concerns must support the combination of
workflow events types to create new complex event types. For example, the
workflow events captured when an activity starts and when it finishes can
be combined into a single complex event type (e.g., start/finish) [MSzM06].

• Application developers must be able to specify the complementary measure-
ment and analysis code to be executed in response to a workflow event.

• Application developers must be able to define selectively the context (mon-
itoring subjects) on which a workflow event has to match to apply com-
plementary M&A concerns. The observation context has to be defined on a
specific flow element (e.g., by activity name), on all flow entities of a specific
type (e.g., for entities that are activities), and on all flow entities that use a
variable (e.g., for all activities that modify a specific workflow variable).

Control Concerns Specification

• Application developers must be able to specify a set of conditions to eval-
uate the measurement information in order to take complementary actions
required to identify problematic aspects on workflow applications. These
conditions must be evaluated during the execution of the workflow appli-
cation to reduce the time required evaluate critical properties and to take
decisions for workflow improvements.

• A set of notification mechanisms must be available to provide feedback to
workflow analysts as soon as a measurement reaches certain conditions.

3.2.2 MonitA DSL Properties

The following are the main properties considered to design and develop the
MonitA DSL:

• Domain specific. The design and development of MonitA is based on the
analysis of the domain of workflow monitoring and analysis at runtime.
MonitA defines a set of abstractions to support the specification of M&A
concerns described previously (see Section 3.2).

• Less developer effort. The abstractions provided by the DSL have to increase
the productivity of application developers for rapidly writing correct MonitA
programs for workflow applications.

3.2 Requirements for the MonitA DSL 53

• Workflow platform independence. Another characteristic in the design of
MonitA is to avoid concrete implementation details of the workflow appli-
cation during the specification of M&A concerns. The DSL has to provide
the mechanisms to specify the M&A concerns in terms of process model
elements. This higher-level specification allows the M&A concerns to be de-
clared in a uniform and technology independent way and to be reused across
different workflow platforms and different workflow applications.

• Data-centric specification. A MonitA specification has to involve the data
managed by the workflow application to provide an application-specific mon-
itoring and analysis approach. A mechanism to expose a subset of the in-
ternal workflow data to the outside world has to be provided to access and
involve this information in M&A activities that are external to the regular
workflow execution.

• Modularized specification. M&A concerns have to be modularized with the
workflow application. A modular specification offers application developers
the opportunity to evolve M&A concerns independently of the workflow
implementation and to reuse them. Application developers need to navigate
over process and data models to validate the MonitA specifications.

• Declarative. The MonitA DSL must offer a declarative specification in which
application developers describe what the specifications do instead of de-
scribing how it is implemented. This facilitates to specify M&A concerns
in terms of domain concepts. Application developers need to manage the
historic measurement information to improve the analysis that can be done
at runtime.

• Typed. The DSL constructs must be typed enabling consistency checking
of the data types during the composition of MonitA specifications with the
workflow implementation. The consistency of these specifications can be
checked in terms of the language syntax rules. The type of the variables
must be always clear.

• Executable implementation. The M&A concerns have to be translated into
executable code in the workflow platform in which the workflow application
is automated. MonitA specifications must be implemented into existing
workflow languages and engines to offer an approach highly adopted and
integrated with WFMS. The MonitA specifications must be processed during
the execution of the workflow applications. Application developers need
to map conceptual process model events with the actual workflow events
provided by the workflow engine. Application developers also need to map
conceptual workflow variables with the actual workflow variables used by
the workflow application and to customize its instrumentation to support
MonitA specifications done in terms of data entities.

54 Chapter 3. Rationale and Background

• Compositional. The MonitA specifications have to be composed automat-
ically with the workflow implementation. This facilitates the evolution of
the workflow application independently of the M&A concerns evolution. In
this way the existing workflow generation process can be used. Application
developers need to trace process model changes to automate the generation
and composition of M&A concerns.

3.3 Design Rationale for the MonitA DSL

The approach we use to design our MonitA DSL is based on a language inven-
tion technique (see section 3.1.1) with no commonality with existing languages
since there is no notation widely known in this application domain. We also
use a language exploitation technique to exploit concepts of existing languages
(piggyback) tailored towards different domains such as constraints modeling
and separation of concerns.

We specified a formal design of our DSL using grammars for syntax speci-
fications. A formal design has the advantages of a) detecting certain problems
before the DSL is implemented, and b) implementing the DSL automatically
by application generators, which reduce the implementation cost.

The following are the workflow domain entities to be used by the MonitA
specifications:

• Flow entities. Every flow element in a BPMN model is a flow entity in
MonitA. Every monitoring specification is done in terms of a flow entity. The
properties to be observed by MonitA on flow entities are identity, instance
information and state. The identity and instance information facilitate the
unique identification of a workflow element, whereas state refers to the exe-
cution point of the entity.

• Data Entities. A data entity in MonitA represents a workflow variable
that is used by a flow entity during the workflow execution. The properties
to be observed by MonitA on data entities are scope information, state and
performed interactions. The scope information facilitates the accessibility
from a flow entity, the state represents the current value during the workflow
execution, and the interaction refers to the operations performed by a flow
entity.

The following approaches and technologies were used and served as inspi-
ration for implementing MonitA. We describe the concepts and notations from
OCL and AOP that we have reused into our DSL in what follows.

3.3 Design Rationale for the MonitA DSL 55

Object Constraint Language (OCL)

The Object Constraint Language (OCL) is used to specify constraints and to
navigate over objects in UML models [OMG06b] [WK03]. The evaluation of
an OCL expression returns a value and it cannot change the state of a model
to avoid side effects. In OCL it is not possible to write program logic or flow
control. OCL is suitable to navigate through models, but OCL expressions
are not directly executable. Since OCL cannot alter the state of a model, a
transformation language should do it.

Similarly to OCL, MonitA is conceived as a navigational language, a query
language and a typed language. We have reused concepts and notations from
OCL regarding the navigation through elements in a model and the operations
on collections. The dot notation is used in our DSL to express navigations on
the properties of domain entities. We also use the arrow-syntax to specify
operations on collections.

In addition, MonitA acts as a transformation language to add M&A con-
cerns to workflow applications and to change the state of measurement infor-
mation that is external to the workflow application. Additionally, the MonitA
DSL requires to: a) navigate through multiple models, b) transform process
models to add M&A concerns, c) specify invariants on the additional M&A
elements, d) allow pattern-based model queries on domain entities, e) create
and manage new measurement data, and f) query instances of the workflow
data and measurement data.

Aspect-oriented Programming (AOP)

Aspect-oriented Programming (AOP) technology facilitates introducing cross-
cutting behavior to existing applications in a modularized way [KLM+97]. This
technology is good to transform a program by adding additional behavior and
is highly expressive. However, it is still a low-level mechanism which is not
adjusted to monitoring, measurement and control. Thus the implementation
of M&A concerns is a complex task since it requires high technical expertise
in the aspect-oriented language. Moreover, not all workflow languages support
an aspect-oriented workflow language to add crosscutting behavior. In these
cases the additional behavior has to be defined in terms of the underlying
implementation.

We conceive MonitA as an aspect-oriented language with capabilities for
a modular specification of M&A concerns. We offer modular constructs to
encapsulate where to intercept the workflow application and how to instrument
it with additional behavior. Breaking a program into functions offers multiple
advantages such as the reduction of duplication of code, the reuse of code
across multiple programs, and the distribution of MonitA specifications among
various application developers.

56 Chapter 3. Rationale and Background

We combine concepts from OCL and AOP since they can complement each
other. The constraints that are expressed at the modeling level by means of an
OCL-like language need to be satisfied at the implementation level. The M&A
concerns specified at the design level can be materialized at the implementation
level by using aspects technology. The modular implementation of constraints
can enable the automatic composition of M&A concerns at the implementation
level.

3.4 Summary

This chapter has explained the rationale and background behind the speci-
fication strategy of our approach. We have presented the importance of a
domain-specific language (DSL) tailored to the workflow monitoring and anal-
ysis domain, the phases during its development, and the criteria considered to
evaluate the design of our DSL. We have discussed how the MonitA DSL raises
the level of abstraction to workflow developers for specifying M&A concerns by
increasing their expressiveness, by easing their specification and maintenance,
and by involving a larger group of application developers.

The following chapter presents a detailed description of the elements and
syntax of the MonitA DSL.

Chapter 4

MonitA: The Monitoring and Analysis
Language

This chapter introduces MonitA (Monitoring and Analysis), a domain-specific
language we have developed for monitoring and analyzing workflow applica-
tions. MonitA was designed to specify monitoring and analysis (M&A) con-
cerns involving the data used by the workflow application in these specifica-
tions. The specification of M&A concerns involves different models such as:
a process model, a workflow data types model, a data association model, a
measurement data types model, and a MonitA model.

4.1 Monitoring and Analysis Specification

The M&A concerns must be specified in terms of process model elements to
avoid concrete workflow implementation details and to be reused across differ-
ent workflow platforms. In addition, the MonitA specifications must involve
the workflow data to provide an application-specific monitoring and analysis
approach (cf. design rationale in section 3.2.2). Nevertheless, to support the
specification of M&A concerns at the conceptual level, the BPMN process
model must provide a mechanism to describe the data types structure and the
workflow variables used by the activities. Because it is not always the case, we
offer an approach for setting the context for supporting MonitA specifications
in terms of workflow relevant data.

The elements of our specification strategy are presented in three main parts:
a) the specification of the data entities structure (complex data types) related
to workflow and measurement information (Section 4.1.1), b) the specification
of workflow variables used by a workflow application (Section 4.1.2), and c)
the specification of M&A concerns required to monitor, measure, and analyze
a workflow application during its execution (Section 4.1.3). The latter part
is the focus of this chapter, thereby we present their main segments in sepa-

57

58 Chapter 4. MonitA: The Monitoring and Analysis Language

rate sections. The specification of M&A concerns comprises three segments:
1) measurement data (Section 4.2), 2) monitoring events (Section 4.3), and
3) analysis functions (Section 4.4). We present a discussion about the main
features offered by the MonitA DSL (Section 4.6).

The workflow data types specification and workflow variables specification
are not automatically synchronized with the workflow implementation, thereby
they are a representation created at a given moment. A workflow developer has
to configure the access and link to the actual workflow data (see Section 7.4).

4.1.1 Data Types Specification

We use XML schemas [BM04] to represent the data types of the workflow
relevant data (workflow data types model) and of the measurement data that
is external to the workflow application (measurement data types model). A
data types model can contain complex data definitions and their associated
primitive data types. Complex data types are a composite of other data types,
which represent the structure of a data entity (entity data type) or a collection
of data types. An entity data type is an ordered collection of one or more
fields, which have a name and a data type. A collection data type is made up
of one or more elements with the same data type.

The purpose of the workflow data types model is to model the data types of
the variables that are manipulated and used by the workflow application. This
data types model corresponds to a subset of the actual workflow data types
that are made available to become involved in the MonitA specifications.

Figure 4.1 illustrates data entities such as Problem, Originator, Resolution
used in the trouble ticket scenario. Our data modeling approach is based on
the use of attributes as a mechanism to represent explicitly the structure of the
data entities used in a workflow application and the relations between them.

Ticket

string
int
int
Report

processName
instanceId
version
report

Resolution

string
string
date
date

id
description
dateResolved
dateVerified

Originator

string
string
string
string
string

UID
name
address
phone
email

Report

string
string
string
date
date
date
string
Problem
Originator

id
priority
sourceMail
dateReceived
dateClosed
dateLastContact
submitter
problem
originator

Problem

string
string
string
int
string
string
string
string
Resolution

id
synopsis
description
severity
product
area
attachedData
expert
resolution

Figure 4.1: Workflow Data Types for the Trouble Ticket Scenario.

These data entities define the structure of the information that can be
queried and interchanged from the workflow application. For example, in the

4.1 Monitoring and Analysis Specification 59

trouble ticket scenario (see Section 1.2) the schema representing the workflow
data types contains a complex data type Problem, which contains a sequence
of elements such as id, description, and area of expertise with their associated
primitive data types (e.g., string, double, boolean, integer).

The purpose of the measurement data types model is to model the data
types required to define new measurement variables used for the analysis of a
workflow application. For example, the measure associated to the measurement
requirement defined in the trouble ticket scenario (see Section 1.2) requires
the definition of a new measure data type. Thus the measurement data types
model contains a complex data type named ProblemsByArea, which contains a
sequence of attributes such as problems and area with their associated primitive
data types (i.e., int, string).

Measurement data types specified at the conceptual level in our approach
are mapped to implementation entities. This mapping is a simple one-to-one
link to an implementation entity (see Chapter 8).

A data types model is specified externally to the MonitA model and to the
BPMN process model to be reused in multiple MonitA specifications. A data
types model facilitates exchanging data between the workflow domain and the
monitoring and analysis domain. Note that it is not our goal to provide a full
modeling notation for data (e.g., ORM, EER, UML) and that we do not want
to discuss the usefulness of one modeling approach over another (e.g., EER
versus UML). We made a selection of existing approaches based on multiple
criteria such as the usage of standardized specifications widely accepted.

4.1.2 Workflow Data Specification

Flow and data entities are the core workflow elements used in the specifica-
tion of M&A concerns and in their composition with the existing workflow
application.

Flow entities correspond to the elements contained in a process model spec-
ified according to the BPMN metamodel such as activities, events, and gate-
ways. Each of these flow entities correspond to a FlowEntity type element that
contains a set of attributes such as identifier, name, and activityType (see Sec-
tion 2.1.2). Data entities correspond to workflow variables used by the flow
entities of a workflow application. Because, there is not a means to formally
define the workflow variables and their data types in BPMN, a process model
has to be complemented with the description of the data used by its activities.
Note that in a workflow generation process, the relation between flow entities
and data entities is implicit since this is determined by the way data entities
are implemented in the workflow.

We created a data association DSL to specify the workflow variables used
by a workflow application, and their association with the BPMN flow entities.
A data association specification (data association model) facilitates MonitA

60 Chapter 4. MonitA: The Monitoring and Analysis Language

specifications in terms of workflow relevant data and in terms of the oper-
ations performed on workflow variables. A data association specification is
performed explicitly to facilitate the navigation throughout the elements of
the workflow application. The data association model is specified externally
to the monitoring and analysis concerns model, thus, it can be reused in mul-
tiple specifications. The grammar of the data association DSL can be found
in Appendix C.

Listing 4.1 illustrates the data association model created to complement
the trouble ticket process model (see Section 1.2) with the variables used by
the flow entities in the workflow implementation.

process TroubleTicket import TroubleTicketBpmnModel , ProcessDataTypesModel

// Specify process variables

instanceScope Originator vOriginator

instanceScope Problem vProblem

instanceScope Report vReport

instanceScope Resolution vResol

// Associate data entities with flow entities

SubmitForm creates (vReport , vProblem , vOriginator)

IdentifyProblemandResolution creates(vResol) writes (vProblem) reads (vReport)

Listing 4.1: Data Association Specification for the Trouble Ticket Scenario.

In this example, all variable data types correspond to elements of the work-
flow data types model (ProcessDataTypesModel), whereas the activities corre-
spond to flow entities contained in the process model (TroubleTicketBpmnModel).
This illustrates, among others, a variable named vReport with Report data
type that is visible for all flow elements within a workflow instance. This ex-
ample also illustrates that the vReport variable is created by the SubmitForm

activity and read by the IdentifyProblemandResolution activity.

A data association model describes a) the workflow variables manipulated
by a workflow application, and b) the operations (i.e., create, read, update,
delete) that the flow entities perform on these variables.

First, to declare the workflow variables we assume the workflow data pat-
tern named global data store [RtHEvdA05] in which the activities share the
same data entities. Thus, when the value of a workflow variable is changed
by an activity, this new value is visible for all flow elements in the workflow
instance. We made this assumption since most of the workflow platforms do
not pass data from one activity to another (cf. streaming pipe and filter). We
assume that there is no direct access from external systems to change the value
of workflow variables, and that encapsulation and data integrity are preserved
by the workflow application. A complete discussion of the data modeling char-
acteristics in MonitA with respect to workflow data patterns is presented in
section 5.3.

4.1 Monitoring and Analysis Specification 61

Second, to associate the workflow variables with flow entities we do not
describe the transfer of data entities between flow entities. We describe the
operations that flow entities perform on data entities.

A data association specification is created with the process keyword fol-
lowed by the name of the workflow application. The BPMN process model
and the workflow data types model (Figure 4.1 in section 4.1.1) can be ref-
erenced in the data association model through the import keyword and the
name of the model to reference. The models referenced in the data association
model have to be separated by a comma.

The following sections describe the syntax of the two main elements that
are required to create a data association model: workflow variables declaration,
and workflow elements association.

Workflow Variables Declaration

A workflow variable is declared with the following properties: scope, data type,
and name. The data type has to be defined in the data types model. The scope
modifier defines the visibility that flow entities have on a workflow variable.

An instanceScope modifier means that the variable can be accessed during
the execution of a workflow instance (cf. instance variables in object-oriented
programming). For example, the following expression declares that there is
a variable named vProblem with a Problem data type (defined in the data
types model) for each workflow instance in the trouble ticket scenario (see
Section 1.2):

instanceScope Problem vProblem

A processScope modifier means that the variable can be accessed by ele-
ments of all workflow instances (cf. class variables in object-oriented program-
ming). For example, the following expression declares that there is a variable
named processCreation with a dateTime data type that can be accessed by
any flow entity in all workflow instances in the trouble ticket scenario (see
Section 1.2):

processScope dateTime processCreation

Workflow Elements Association

We require to model the operations that flow entities perform on the work-
flow variables to allow the specification of monitoring and analysis concerns
in terms of the data (e.g., evaluate all activities that modify a specific vari-
able). Data operations of interest are: create, change, delete and read. These
data operations are described by using the name of a flow entity specified in
the process model, followed by an operation keyword (i.e., creates, writes, re-

62 Chapter 4. MonitA: The Monitoring and Analysis Language

moves, reads), and between parentheses separated by a comma, the name of
the variables manipulated by the flow entity.

For example, the following specification declares that in the trouble ticket
scenario (see Section 1.2) the activity named SubmitForm creates the vReport,
vProblem, and vOriginator variables. This specification also declares that the
activity named IdentifyProblemandResolution modifies the vResol and vProb-
lem variables, and reads the vReport variable.

SubmitForm creates (vReport , vProblem , vOriginator)

IdentifyProblemandResolution writes (vResol ,vProblem) reads (vReport)

4.1.3 Monitoring and Analysis Concerns Specification

This section presents the main concepts to specify monitoring and analysis
(M&A) concerns related to monitoring, measurement and control (MMC). The
grammar of the MonitA language can be found in Appendix A, whereas the
semantics of the most relevant constructs of MonitA. A cross-is summarized
in appendix B.

A MonitA specification is created with the concern keyword followed by
a name assigned to the specification. The name of the concern defines the
goal of the MonitA specification. For example, a MonitA application devel-
oper can create a specification named timeAnalysis to analyze time-related
measures, whereas another MonitA application developer can create an spec-
ification named qualityAnalysis to analyze application-specific measures. The
following illustrates the structure of a monitoring and analysis specification:

concern <specName >

//Inter -Model references

import <ExternalModelName >,...

// Measurement variables

<PersistenceStateModifier > <PersistenceModifier > <DataType > <VariableName >

// Monitoring events

on <WorkflowEventType > [<MonitoringSubject >]

trigger <FunctionName(<ParameterName >=<ParameterValue >, ...)>, ...

// Analysis functions

mmcfunction <FunctionName > (<DataType > <ParameterName >, ...)

<MeasurementAction > | <EvaluationRule > | <NotificationAction >

endfunction

Each monitoring and analysis specification comprises a reference to the
data entities specification, a set of measurement variables, a set of monitoring
events, and a set of analysis functions, each one comprising a set of measure-
ment and control actions.

Different external models such as the process model, the data association
model, and the measurement data types model can be referenced into a MonitA
model through the import keyword followed by the model name. If there are

4.1 Monitoring and Analysis Specification 63

multiple external models, they have to be separated by commas. This inter-
model references define the elements that can be used within the monitoring
and analysis concerns specification. The BPMN process models are created
conform to the the BPMN metamodel (see section 2.1.2) by using a process
modeling tool (e.g., BPMN modeler project). A data association model is
created conform to the data association metamodel (see section 4.1.2). The
measurement data types model is created conform to the data types metamodel
(see section 4.1.1).

Listing 4.2 illustrates the specification in MonitA of the monitoring and
analysis concerns described in the trouble ticket scenario (see Section 1.2).

1 concern EfficiencyAnalysis import AssociationModel , MeasureDataTypesModel

2
3 persistent multiinstance Collection <ProblemsByArea > pba

4
5 on finish [root.SubmitForm]
6 trigger updateProblemsByArea(newArea=root.SubmitForm:vTicket.area)
7 on change [root.IdentifyProblemandResolution:vTicket.area]
8 trigger updateProblemsByArea(

9 newArea=root.IdentifyProblemandResolution:vTicket.area)
10
11 mmcfunction updateProblemsByArea (string newArea)

12 ProblemsByArea pro = pba ->select(ProblemsByArea p|p.area== newArea)->first ();

13 pro.problems = pro.problems +1;

14 i f pro.problems > 10

15 then alert (variable=pro , message=’ProblemsByArea >10 ’); endif
16 endfunction

Listing 4.2: MonitA Specification for the Trouble Ticket Scenario.

This MonitA specification references the external models defined for the
trouble ticket scenario such as the measurement data types model (Measurement
DataTypesModel), the process model (TroubleTicketBpmnModel), and the
data association model (AssociationModel).

Listing 4.2 line 3 specifies a collection of custom measures (ProblemsByArea)
to capture the number of problems reported by a specific area of expertise for
the trouble ticket scenario. The multiinstance modifier indicates that each
measure of the collection can be associated in persistence with multiple work-
flow instances. Each measurement instance is indexed by the area of expertise
attribute (defined in the measurement data types model) of the vTicket vari-
able associated with the workflow instances. These measures are defined in
terms of the workflow relevant data (area attribute of a ticket).

Listing 4.2 lines 5-9 illustrate two monitoring events which intercept the
workflow execution. The first one (line 5) intercepts when the SubmitForm

activity finalizes, whereas the second interaction (line 7) intercepts when the
workflow variable vTicket is updated in the IdentifyProblemandResolution
activity (requirement 2 in section 1.2). Both monitoring events trigger the
updateProblemsByArea analysis function by capturing the area associated

64 Chapter 4. MonitA: The Monitoring and Analysis Language

with the vTicket variable in both activities (lines 6 and 9). Thus an anal-
ysis activity has to be added after the SubmitForm activity and another one
after the IdentifyProblemandResolution activity.

For example, Listing 4.2 lines 11-16 illustrate an analysis function en-
capsulating the measurement and control requirement for the trouble ticket
scenario (requirements 1 and 3 in section 1.2). In this specification, the
updateProblemsByArea function requires a string type parameter to be ex-
ecuted (line 11). The measurement information is accessed through the pba

measurement variable. Lines 12 and 13 illustrate how to retrieve a specific
measure of the ProblemsByArea data type and how to increase the number
of problems reported by a specific area of expertise (requirement 1 in sec-
tion 1.2). Lines 14 and 15 illustrate an evaluation rule on the measurement
variable to generate an alarm to be visualized in the dashboard when the num-
ber of problems of a specific area of expertise is higher than ten (requirement
3 in section 1.2). Other examples can be considered for analyzing a workflow
application such as the classification of generic Service Level Agreement (SLA)
metrics [CCDS03].

The following three sections describe the syntax of the main elements that
are involved in a MonitA specification: a) measurement variables, b) monitor-
ing events, and c) analysis functions.

4.2 Measurement Data Segment

A measurement variable is declared in MonitA to specify custom measures
required to analyze the execution of a workflow application. All measurement
variables have an implicit global scope modifier (cf. process scope modifier
in process variables), thus, they have meaning in the context of the entire
workflow application. This means that the measurement variables are visible
to and can be accessed by all workflow instances.

The following sections describe measurement variable declaration, persis-
tence management, initialization, and navigation.

4.2.1 Measurement Variable Declaration

All measurement information persisted in the measurement data store system
(see Section 8.4.2) has to be declared as a measurement variable. All stored
measurement variables are indexed by a unique persistence context. The per-
sistence context corresponds to the workflow instances on which the M&A
concerns are specified and in certain scenarios to the name of the activity
associated with the measurement variable.

The following illustrates the structure of a measurement variable declara-
tion:

4.2 Measurement Data Segment 65

<PersistenceStateModifier > <PersistenceModifier > <DataType > <VariableName >

A measurement variable is declared with a persistence state modifier, a
persistence logic modifier, a data type, and the name of the measurement
variable. We illustrate the semantics of a set of measurement variables in
terms of the persistence mechanism, and then we detail the elements required
to declare a measurement variable.

Assume that a workflow application with 3 activities has 4 workflow in-
stances in execution. For 3 of these workflow instances a problem was reported
in the area of expertise named area1, whereas for the last workflow instance
the problem was reported in the area of expertise named area2. Figure 4.2
illustrates the MonitA specification of 4 measurement variables with differ-
ent persistence logic modifier and their corresponding representation in the
measurement data store.

A B C
instance4

A B C
instance3

A B C
instance2

A B C
instance1

persistent entity long activityProcessingTime

persistent instance long instanceProcessingTime

persistent multiinstance long processTime

persistent multiinstance Collection<ProblemsByArea> pba

{ (instance1, A, 20), (instance1, B, 30), ... , (instance4, C, 12) }

{ (instance1, 90), (instance2, 60), (instance3, 240), (instance4, 180) }

{ ((instance1, instance2, instance3, instance4), 570) }

{ ((instance1, instance2, instance4), area1, 3), (instance3, area2, 1) }

Measurement data store systemMeasurement variables specified in MonitA-DSL

Workflow Application

Figure 4.2: Persistence Logic for Measurement Variables.

The measurement variable named activityProcessingTime in Figure 4.2 cor-
responds to a collection of measure values of type long, which are indexed by
the workflow instance and by the activity name. The measurement variable
named instanceProcessingTime in Figure 4.2 corresponds to a collection of
measure values of type long, which are indexed only by the workflow instance.
The measurement variable named processTime in Figure 4.2 corresponds to a
collection with only one measure value of type long, which is indexed by the set
of all workflow instances. The measurement variable named pba in Figure 4.2
corresponds to a collection of measure values of type ProblemsByArea, which
are indexed by a subset of workflow instances.

First, a persistence state modifier (i.e., persistent, transient) defines whether
the measure is temporal or it has to be made persistent in our external mea-
surement data store system.

66 Chapter 4. MonitA: The Monitoring and Analysis Language

Persistent variables are defined for measures that are built to be per-
sisted in our measurement data store system. For example, the following
expression illustrates the specification of a collection of custom measures of
a ProblemsByArea data type, which implement the measurement requirement
defined in the trouble ticket scenario (see Section 1.2). Each of these mea-
sures capture the number of problems reported by a specific area of expertise.
These measures are defined in terms of the workflow relevant data such as
the “area” attribute within a Problem data entity. The persistent modifier
means that each measurement variable that is changed within the collection is
made persistent in our measurement data store system.

persistent multiinstance Collection <ProblemsByArea > problemsByArea

Transient variables are intermediate measures that are used for the com-
putation of another measure. For example, the following expression illustrates
a transient measure, which is alive during the execution of each activity:

transient entity dateTime startTime

Second, the persistence modifier defines the correspondence of a measure
with a workflow entity, a workflow instance, or a set of instances. An entity
modifier means that the value of the measurement variable is assigned to a
specific flow entity within a workflow instance. An instance modifier means
that the value of the measurement variable is assigned to a workflow instance.
A multiinstance modifier means that the value of the measurement variable is
assigned to multiple or to all workflow instances of a workflow application.

The persistence logic modifier for transient variables indicates when the
variables are created and destroyed during the workflow execution. However,
MonitA does not allow the specification of transient variables with a multiin-
stance modifier since these variables would remain alive indefinitely until the
workflow engine stops running.

For example, the following expressions illustrate a set of measurement vari-
ables related with the trouble ticket scenario:

persistent multiinstance long processTime

persistent instance long instanceProcessingTime

persistent entity long activityProcessingTime

In this example, the processTime measurement variable stores the time
spent executing a workflow application, thereby this measure is related to all
instances of the workflow application. An instanceProcessingTime measure-
ment variable is created for each workflow instance to store the value of the
time spent executing the set of activities within a workflow instance. Finally,
an activityProcessingTime measurement variable is created for each and every
activity within a workflow instance to store its execution time.

Third, a measurement data type can be a simple data type, a complex data
type, or a collection data type. Simple data types corresponds to the built-
in primitive and derived types provided by an XML schema such as string,

4.2 Measurement Data Segment 67

boolean, double, duration, dateTime, and long. Complex data types for the
measurement variables must correspond to one of the data structures defined in
the measurement data types model (see section 4.1.1). A collection data type
is made up of one or more elements with the same data type and it is specified
with the Collection<DataTypeName> notation. Although certain measure-
ment data types are similar to a dictionary, we only consider the collection
data type to define a set of elements.

For example, the following expression illustrates a measurement variable
with a collection data type which is parameterized with a ProblemsByArea
complex data type:

persistent multiinstance Collection <ProblemsByArea > pba

Finally, the variable name is a unique identifier (persistence root) used
to access the values of the measurement variables. For example, an applica-
tion developer can use the variable named instanceProcessingTime, which is
declared above, to access the set of measure values that correspond to the
execution time of each workflow instance.

The measurement variables can be used to declare generic measures as well
as application-specific measures. A generic measure applies to any workflow
application since it does not refer to the data of a particular workflow ap-
plication but to generic workflow engine information. For example, a generic
measure to capture the processing time of each workflow instance. A domain-
specific measure applies to a particular workflow application since it refers
to specific data associated to it. The declaration of application-specific mea-
sures can also contain a set of properties. Each property consists of a name
and a data type. For example, a application-specific measure of type Prob-
lemsByArea to capture the number of problems reported by a specific area of
expertise.

The automation of the entire business of a company typically involves a
complex interaction of many interconnected (self-contained) workflow applica-
tions. In our work we limit ourselves to the construction of measurements that
are not enterprise-wide. In essence we focus on the definition of measurements
that do not cross the boundaries of a single workflow application specification.

Note that measures are only declared, thereby the definition of how mea-
surements are computed/calculated is done in the analysis functions specifica-
tion (see section 4.4).

4.2.2 Measurement Variables Initialization

All measurement variables are initialized with a default value when the work-
flow application is started and the workflow variables are created. The default
value depends on the data type of the measurement variable either simple data
type, complex data type, collection data type.

68 Chapter 4. MonitA: The Monitoring and Analysis Language

Table 4.1 summarizes the different data types associated to a measurement
variable and their corresponding initial default values.

Data type Default value
Complex null
Collection null
int 0
long 0
double 0
boolean false

Table 4.1: Default variables Initialization Values

4.2.3 Navigation of Measurement Information

The MonitA language uses specific operators to navigate through the measure-
ment and workflow information. We distinguish between intra and inter model
navigation, navigation of collections, and navigation of measurement variables.

Inter and Intra Models Navigation

We use a specific operator depending on the type of navigation that has to be
performed: intra model and inter model navigation. Intra model navigations
stay in the same model, whereas inter model navigations combine elements
from two different models.

The “.” operator is used for intra model navigations. In the case of flow
entities, the “.” operator localizes by name the flow entities contained in the
root element of the process model. For example, the following expression
localizes the flow entity named SubmitForm in the process model:

root.SubmitForm

In the case of workflow variables, the “.” operator access the attributes
contained in the data type associated to a workflow variable that is defined
in the association model. For example, the following expression retrieves the
value of the attribute area for the variable vProblem:

vProblem.area

The “:” operator is used for inter model navigation. The navigation starts
from an element of the process model towards a workflow variable (linked
through the data association model, see section 4.1.2). This operator is used
to retrieve the value of the workflow variables that are accessed by a flow entity
in the workflow application. For example, the following expressions access a)
the value of the data entity vProblem in the activity SubmitForm, and b) the
value of the area field of a Problem data type named vProblem:

4.2 Measurement Data Segment 69

root.SubmitForm:vProblem
root:vProblem.area

Navigation of Data Collections

The “->” operator can be applied on a measurement variable of a collection
data type to access the value of each element in the collection and to retrieve
the value of certain related properties. The value or set of values that can be
accessed from a collection are retrieved by using the following operations:

• The size() operation returns the number of elements in the collection.

• The notEmpty() operation returns true if the collection is not empty, other-
wise false.

• The isEmpty() operation returns true if the collection is empty, otherwise
false.

• The select(DataType iteratorVariable— <expression>) operation returns a
subset of a collection. The collection is filtered by the attributes of the
elements contained in the collection.

• The first() operation returns the first element of a collection.

For example, in the trouble ticket scenario (see Section 1.2), the following
expression retrieves a measurement entity with ProblemsByArea data type
from a measurement variable named setProblemsByArea that was defined of
a collection data type. The expression selects a subset of elements in the
collection whose area attribute has the value Area1, and then the first element
is selected:

setProblemsByArea ->select(ProblemsByArea pba| pba.area==’Area1 ’)->first ()

Navigation of Measurement Variables

The allInstances() operator returns a collection with all measure value in-
stances that are related with a measurement variable in persistence. Mea-
surement variables of a collection data type returns directly a collection of all
measure value instances from persistence.

For example, the following MonitA expression returns all measure value
instances of the measurement variable named activityProcessingTime, which
was declared with an entity persistence logic modifier and with a long data
type:

activityProcessingTime.allInstances ()

70 Chapter 4. MonitA: The Monitoring and Analysis Language

MonitA offers a built-in Measure data type that can be used as data type
of the iterator variable in the select operation when the values of the collection
correspond to simple data types. In this scenario, the iterator variable does
not contain additional attributes to navigate it.

Figure 4.3 illustrates persistence attributes that can be retrieved from mea-
surement information. These persistence attributes such as instanceId, activi-
tyName, timestamp, and processVersion are read-only.

name: string
value: long
description: string
timestamp: dateTime

IndicatorinstanceId: long
processId: long
activityName: string
processVersion: string
timestamp: dateTime

Measure

Measurement
Variable

 0..*1

Figure 4.3: Persistence Information within Measurement Variables.

For example, the following expression retrieves a subset of the measure
value instances related to measurement variable named activityProcessing-
Time, which are created in the last month:

activityProcessingTime.allInstances ()
->select(Measure m| m.timestamp > dateTime.now (). month (1-))

The navigation on measurement variables applies for the same workflow
application (persistence space) where the monitoring and analysis concerns
are specified. If the expression for navigating measurement variables cannot
be evaluated, the MonitA execution platform returns a null value. The mea-
sure value instance for the current persistence context of a measurement vari-
able (e.g., workflow instance) can be retrieved by using the current() function
(e.g., activityProcessingTime.current()).

4.3 Monitoring Events Segment

A monitoring event is a point in time during the execution of the workflow
application when something interesting for monitoring happens and where ad-
ditional analysis functions are added to the workflow application. Monitoring
events also specify the information that has to be captured and passed to
the analysis function. The monitoring events allow quantification for multiple
monitoring points in a workflow application.

The following illustrates the structure of a monitoring event specification:

on <WorkflowEventType > [<MonitoringSubject >]

trigger <FunctionName(<ParameterName >=<ParameterValue >, ...)>, ...

4.3 Monitoring Events Segment 71

The following three sections describe the main elements required to specify
monitoring events: workflow events monitoring, analysis functions invocation,
and execution context passing.

4.3.1 Workflow Events Monitoring

The first element to specify a monitoring event is the definition of the workflow
events (state changes) to be intercepted in a workflow application. Workflow
developers define the desired workflow event types associated to a particular
flow entity that they want to be aware of. The workflow event types represent
the execution state of a particular domain entity (i.e., activity, workflow data
variable) and are defined at a higher level without any specific implementation
dependency. The workflow events correspond to basic abstractions such as
starting or finishing a flow element, reading or writing properties of a data
entity, and the creation of new data entities.

The workflow events are specified by using the on keyword, a workflow event
type identifier, and between brackets, the monitoring subject which refers to
a particular workflow entity or to a set of them. Each workflow event type is
qualified with a workflow application context (workflow subject) such as the
workflow application itself, the name of a flow entity, and the names of the
flow entity and data entity context. These subjects identify the status of the
domain entity or set of domain entities according to the workflow event types.

The workflow events fall into two dimensions:

1. Flow events. A flow event is the representation of the execution state of a
particular flow entity (i.e., activity, gateway). Workflow event types such as
start, finish are defined in terms of flow entities. Flow events can be mapped
to predefined events provided by the workflow engine (see Chapter 8).

For example, the following expression illustrates a fragment of a monitoring
event containing a workflow event that intercepts the start of an activity:

on start [root.ActivityName]

2. Data events. A data event represents a workflow variable that was produced,
changed, read, or deleted during the execution of a particular workflow in-
stance. Workflow event types such as change, delete, create, read are defined
in terms of workflow variables. Data events have to be mapped to customized
mechanisms that allow the interception of these data events in the workflow
implementation (see Section 7.4.4).

For example, the following expression illustrates a fragment of a monitoring
event containing a workflow event that intercepts when a workflow variable
is updated by a particular activity:

on change [root.ActivityName:processVariableName]

72 Chapter 4. MonitA: The Monitoring and Analysis Language

Table 4.2 summarizes the different workflow event types that can be inter-
cepted by MonitA specifications.

Event type MonitA Event description
Activity
started

on start Start of the workflow root or a flow entity when
it is reached by a transition

Activity fin-
ished

on finish Finalization of the workflow root or a flow en-
tity when it triggers a transition

Variable read on read Read of a workflow variable directly in the
workflow root or through a flow entity

Variable write on change Value assignment to a workflow variable in the
workflow root or through a flow entity

Variable create on create Creation of a workflow variable directly in the
workflow root or through a flow entity

Variable delete on delete Elimination of a workflow variable directly in
the workflow root or through a flow entity

Table 4.2: Workflow Event Types

We have defined patterns to combine these workflow events (e.g., start
and finish) to gather and process information from multiple state changes of
the same entity. New event patterns can be constructed by using the “/”
operator that acts as an “or” logical operator between two event types. The
combination of event types results in a new event pattern that can be used to
define a monitoring event that must match both workflow event types.

For example, computing the processing time of an activity requires the
combination of two workflow events activity started and activity finished :

on start/finish [root.ActivityName]

We have also defined a set of patterns to define how to intercept a work-
flow event type in a particular monitoring subject and in multiple monitoring
subjects. The following patterns are considered in terms of flow events and
data events:

i. Intercept the workflow application on a specific domain entity. This pattern
corresponds to the identification of a unique workflow element on a specific
workflow event type.

For example, in the trouble ticket scenario (see Section 1.2), the following
expressions illustrate different workflow events whose workflow event type
matches a particular monitoring subject:

on start [root.SubmitForm]
on start [root]
on change [root.SubmitForm:vProblem]

4.3 Monitoring Events Segment 73

In the first scenario a flow event type matches a flow entity by its name.
The second scenario shows a flow event type that matches the root element
in the workflow. Finally, the third scenario shows a data event type that
matches a workflow variable by its name.

ii. Intercept the workflow application on all flow elements and on multiple flow
elements regarding their type. This pattern corresponds to the identification
of a set of flow entities on a particular workflow event type. The “*” opera-
tor denotes a navigation through all the flow elements in the process model,
whereas the “!” operator denotes a process model navigation through the
flow elements of certain type (i.e., Activity, Gateway). MonitA provides a
built-in process data type named FlowEntity, which is used to capture prop-
erties of the flow elements intercepted in a monitoring event. A FlowEntity
data type contains a set of attributes such as identifier, name, and activity-
Type (e.g., Process, Activity, Gateway)).

For example, in the trouble ticket scenario (see Section 1.2), the following
expressions illustrate different workflow events whose workflow event type
matches a set of flow entities of a specific type:

on start [FlowEntity ite| root.*]
on start [FlowEntity ite| root.! Activity]
on change [FlowEntity ite| root.*: vProblem]
on change [FlowEntity ite| root.! Activity:vProblem]

In the first scenario, the flow event type (start) matches all the flow entities
in the process model. The second scenario shows a flow event type (start)
that matches a set of flow entities of type Activity. In the third scenario, a
data event type (change) matches all flow entities that write the vProblem
variable. The last scenario shows a data event type (change) that matches
a set of flow entities of type Activity that write the vProblem variable.

iii. Intercept the workflow application on all flow elements that use a variable.
This pattern corresponds to the identification of a particular flow event type
of a set of flow entities that operate workflow variables. The “/” operator
denotes the combination of data operations that must be satisfied in order
to match a flow entity.

For example, in the trouble ticket scenario (see Section 1.2), the following
expressions illustrate different workflow events whose workflow event type
matches a set of flow entities that operate on workflow variables:

on start [FlowEntity ite| root.* writes vProblem]

on start [FlowEntity ite| root.! Activity writes/reads vProblem]

The first scenario shows a flow event type that matches all the flow entities
that write the vProblem variable. In the second scenario, the flow event
type matches a set of flow entities of type Activity that write and read the
vProblem variable.

74 Chapter 4. MonitA: The Monitoring and Analysis Language

Table 4.3 summarizes the patterns for specifying (quantifying) the context
(monitoring subjects) that matches with the workflow event types.

MonitA pattern Pattern description
Flow patterns (applicable on flow events)

[root] Expression to match against the workflow root
[root.EntityName] Expression to match against a specific flow entity
[root.*] Expression to match against any flow entity in the

workflow root
[root.!FlowEntityType] Expression to match against any flow entity of a

specific type in the workflow root
[root.*<operation>
VariableName]

Expression to match against any flow entity that
performs an operation (e.g., reads) or a set of them
(e.g., writes/deletes/reads/creates) on a workflow
variable

[root.!FlowEntityType
<operation>
VariableName]

Expression to match against any flow en-
tity of a specific type that performs an
operation (e.g., writes) or a set of them
(e.g., writes/deletes/reads/creates) on a workflow
variable.

Data patterns (applicable on data events)
[root:VariableName] Expression to match against the workflow root

when it operates on a workflow variable
[root.EntityName:
VariableName]

Expression to match against a flow entity that op-
erates on a workflow variable

[root.*:VariableName] Expression to match against any flow entity in the
workflow root that operates on a workflow variable

[root.!FlowType:
VariableName]

Expression to match against any flow entity of a
specific type in the workflow root that operates on
a workflow variable

Table 4.3: Patterns for Events Context Definition

4.3.2 Analysis Functions Invocation

The second element in the specification of a monitoring event is the invocation
of analysis functions , which can be incorporated in the workflow application
at the points specified by a workflow event. Each analysis function is invoked
before, after or in the associated monitoring subject depending on the workflow
event specification.

The invocation of an analysis function or a set of them is done through the
trigger keyword, followed by the name of the analysis function(s) separated by
commas.

4.3 Monitoring Events Segment 75

For example, the following monitoring event illustrates how the analysis
function named updateProblemsByArea is applied when the SubmitForm ac-
tivity finalizes:

on finish [root.SubmitForm] trigger updateProblemsByArea ()

An analysis function invocation defines the instrumentation point in the
workflow application depending on the workflow event types specified in the
workflow events:

• A start workflow event type means that the analysis functions are incorpo-
rated into the workflow application just before each flow entity specified in
the monitoring subject (e.g., on start [monitoringSubject] trigger analysis-
FunctionName()).

• A finish workflow event type means that the analysis functions are incorpo-
rated into the workflow application just after each flow entity specified in
the monitoring subject (e.g., on finish [monitoringSubject] trigger analysis-
FunctionName()).

• A data event type (i.e., create, change, delete, read) means that the analysis
functions are incorporated into the workflow application just after the flow
entity that uses the workflow variable is finished (e.g., on change [dataMon-
itoringSubject] trigger analysisFunctionname()). In some cases it is possible
to incorporate the analysis functions into the workflow application just after
the workflow variable is affected and before the flow entity affecting this
variable is finalized. However, this depends on the target language where
MonitA specifications are automatically generated.

Multiple monitoring events can refer to the same monitoring subject, thus
multiple analysis functions can be incorporated at the same point in the work-
flow application. The order to incorporate these analysis functions at the same
workflow application point is not defined in MonitA. Although this can be
problematic, we have evaluated the possible inconsistencies and interferences
that can arise (see Section 11.2.3).

4.3.3 Execution Context Passing

The third element in a monitoring event specification is passing the execution
context required by the analysis functions. An analysis function can require a
set of properties to be executed. The value of these properties can be passed by
gathering predefined measurements (i.e., provided by the workflow engine) and
custom measurements (i.e., stored in our measurement data system). MonitA
instruments the workflow applications to capture information from the moni-
toring subject to invoke the analysis function with this information. This in-
formation is passed to the analysis function as a set of values that are assigned

76 Chapter 4. MonitA: The Monitoring and Analysis Language

to the properties required by the function, which are separated by a comma
and between parenthesis. The captured information is passed to the analysis
function through named parameters. If the parameters are not named, the
number and types of properties are passed by order according to the analysis
function specification.

The value of workflow and measurement variables is accessed through
their name. The “.” operator can be applied on a workflow variable to in-
voke its attributes (e.g., vProblem.expert), whereas the “->” operator can
be applied on a collection data type to access each element of the collection
(e.g., problemsByArea->size()). The “:” operator is used to navigate through
workflow variables associated to a flow entities that are specified in a different
model (e.g., root.SubmitFormF:vProblem.area).

Predefined measurements correspond to the information available during
the workflow execution context such as flow entities and workflow variables
information. Flow entities comprise information such as process name, process
identifier, workflow instance identifier, and user. Workflow variables comprise
the information associated with the flow entities. The navigation is always
done through a flow element.

For example, the following expressions illustrate different scenarios to gather
and pass data to analysis functions:

trigger functionName(property1=root.ActivityName)
trigger functionName(property1=root.ActivityName:variableName)
trigger functionName(property1=root.ActivityName:variableName.attributeName)

The first scenario shows how to localize a flow entity by its name for passing
an Activity entity type to the analysis function. In the second scenario, the
value of a workflow variable used by an activity is passed to the analysis
function. The third scenario shows how to gather the value of a workflow
variable property for passing it to the analysis function.

Custom measurements correspond to the information that can be captured
from the measurement variables, which is stored in an external persistent sys-
tem. This information corresponds to elements that are not dependent of the
workflow execution. This information can be associated with measurement
information previously captured.

For example, for the problemsByArea measurement variable that is of col-
lection data type, the value of its collection size can be retrieved and assigned
to a property of the analysis function:

trigger functionName(property1=problemsByArea ->size ())

The information captured is mapped or stored as a monitoring event that
contains the information required by the analysis functions. A monitoring
event captures the information associated to general properties such as process,
version, instance.

4.4 Analysis Functions Segment 77

4.4 Analysis Functions Segment

Measurement and control actions are encapsulated into an analysis function.
Each analysis function has a name and a set of properties to distinguish the
set of actions to be applied as a consequence of a particular workflow event.
Each monitoring event is associated with one or more analysis functions. If
multiple analysis functions are associated to the same monitoring event the
order in which they get invoked is not defined.

We decouple the generation of monitoring events from analysis functions.
Thus analysis functions are defined once and reused by multiples analysis con-
cern specifications. Conceptually this is supported since a new MonitA spec-
ification can refer to existing analysis functions. However both models are
integrated in only one specification. Separating analysis activities from their
connections allows reusing both parts independently.

An analysis function is specified through the keyword mmcfunction followed
by the name of the analysis function, and optionally a set of properties. These
properties are specified through the set of variables (data type and name) that
parametrize the analysis function, which are specified between parenthesis an
separated by commas.

The following illustrates the structure of an analysis function specification:

mmcfunction <FunctionName > (<DataType > <ParameterName >, ...)

<MeasurementAction > | <ControlAction >

endfunction

The properties of an analysis function facilitate reusing the measurement
and control logic for multiple monitoring events that only vary their values.
This avoids analysis functions to evaluate measurement and control actions
against hard-coded values or values captured directly from the execution con-
text.

When multiple analysis functions require the same properties to be ex-
ecuted, a measurement data type specified in the measurement data types
model can be used to describe the structure of the data used to parametrize
an analysis activity. This avoids the repetition of code by parametrizing the
analysis activities with the set of properties. The creation of a variable of
this type is specified through the name of the measurement data type and,
between parenthesis and separated by commas, the assignment of values to its
properties.

For example, the following expression represents the definition of an anal-
ysis function named updateProblemsByArea which is parameterized with a
property name newArea of string data type:

mmcfuntion updateProblemsByArea(string newArea)

and the following illustrates the invocation of the analysis function param-
eterized with the value of creating an entity of type MeasurementDataType

78 Chapter 4. MonitA: The Monitoring and Analysis Language

that is parameterized with two strings:

trigger analysisFunctionName(prop=MeasurementDataType(p1=’string ’,p2=’string ’))

Analysis functions represent the desirable measurement and control actions
required a) to measure the workflow application, and b) to evaluate workflow
application-specific measurements, and c) to perform notification actions ac-
cording to the analyzed information. The following two sections describe the
MonitA constructs defined to specify measurement an control actions.

4.4.1 Measurement Actions

A measurement action computes the previously declared custom measures, and
defines the mechanisms to query and to manage the measurement information
in our persistent measurement system.

MonitA offers a set of measurement expressions that can be evaluated in
the measurement and control actions:

• Access data values. The workflow information and measurement informa-
tion can be navigated through the name of the variable and, separated
by “.” or “->”, the name of the property or operation to be accessed
(e.g., variableName->operationOnCollections). This depends on the data
type associated to the variable (complex type, primitive, or collection). The
value accessed through a workflow variable name corresponds to the value
assigned in the current workflow instance.

• Date time invocation. The operations now() and today() on the dateTime
data type can be used to assign a date and time value to a variable. The
values of a variable with dateTime data type can be accessed through a
set of operations such as year(), month(), day(), hour(), min(), and sec()
(e.g., dateTime.now().min()).

• Literals. A measurement expression can be a literal such as a string (e.g., ‘this
is an string’), an number (e.g., 23), or a name (e.g., variableName).

• Engine invocation. There are predefined measurements that can be gathered
from the execution context and that correspond to the information provided
by the workflow engine. This information is accessed through the engine
keyword and the name of the property (i.e., instances, instance, wfEvent)
to be retrieved. The instance property retrieves the identifier of the current
workflow instance (i.e., engine.instanceId), the instances property retrieves
the number of workflow instances (i.e., engine.instances), and the wfEvent
property retrieves the name of the last workflow event that was triggered
(i.e., engine.wfEvent).

4.4 Analysis Functions Segment 79

• Measurement entity creation. A measurement entity is created with the
name of a complex data type and, between parenthesis and separated by
comma, the assignment of the values to its attributes through named pa-
rameters. A complex data type corresponds to an element defined in the
data types model (see section 4.1.1).

Table 4.4 summarizes the operations supported on the variables according
to their data types.

Action Operations
Operate Integers +, -, *, /, +=
Operate Booleans and, or, not
Operate Strings +
Access DateTime values year(), month(), day(), hour(), min(), sec()
Assign DateTime object now(), today()
Compare values <, <=, >, >=, ==, < >

Table 4.4: Operations Supported on Simple Data Types

The operations to access the date and time values of a dateTime data type
can be parameterized with a negative or positive number to indicate a past or
future value respectively. For example, the following expressions illustrate a)
the navigation on a collection of problems to retrieve the problems created in
the last 2 days, and b) the assignment of the date and time values within a
month to a temporary variable named deadline:

Collection <Problem > recent;

recent = problems ->select(Problem p, p.timestamp > dateTime.now(). day(-2));

dateTime deadline = dateTime.now(). month (+1);

The following subsections describe the measurement actions supported by
MonitA: measurement data creation and persistence, temporary variables dec-
laration, and indicators creation.

Measurement Variables Creation

A measurement variable is given a default value in its initialization (see sec-
tion 4.2) and it is created/computed explicitly with an assignment through
the “=” operator and a measurement expression. The name of a measurement
variable (persistence root) must be used to retrieve its value and to add a new
value from/to the persistence space. A measurement expression is evaluated
in the current workflow execution.

For example, the following expressions illustrate how to evaluate measure-
ment expressions to assign their values to measurement entities :

activityStartTime = dateTime.now ();

proByExpert = ProblemByExpert(problems=1, expert=’Expert1 ’);

80 Chapter 4. MonitA: The Monitoring and Analysis Language

ProblemsByArea pro = problemsByArea ->select(ProblemsByArea p| p.area==’Area1 ’)

->first ();

In this example, the measurement variables activityStartTime and proBy-
Expert are declared externally to the analysis function (in the measurement
variables segment). The first expression assigns the current date and time to a
measurement variable named activityStartTime. The second expression cre-
ates a measurement entity with a ProblemByExpert data type and assigns its
value to a measurement variable named proByExpert. The ProblemByExpert

data type is specified in the measurement data types model (see Section 4.1.1)
and contains a sequence of elements such as problems, and expert with their
associated primitive data types (i.e., integer, string). The Third expression
specifies how to retrieve persistence measurement information through the
persistence root named problemsByArea. The measurement information is
filtered to assign the value to a temporary variable named pro.

If an expression specified to navigate and retrieve the value of the mea-
surement data cannot be evaluated, the MonitA execution platform returns a
null value. An evaluation rule (see section 4.4.2) must be defined to validate
if the measurement data does not exist to proceed to create it. For example,
in the trouble ticket scenario (see section 1.2), the information about the areas
of expertise to compute the number of problems by area is not known before
execution. Thus, the MonitA application developer must specify when and
how to create this measure. The following expression illustrates this scenario:

ProblemsByArea pro = pba ->select(ProblemsByArea p| p.area==’Area7 ’)->first ();

i f pro==null then
pro = ProblemsByArea(problems=1, area=’Area7 ’);

pba ->add(ProblemsByArea pi| pi=pro);

else
pro.problems = pro.problems +1;

endif

A new measure value instance can be added to the collection of measure
value instances in persistence by using the add collection operation. The
add(DataType iteratorVariable | <assignment>) operation is parameterized
with an assignment of the new measure value to the iterator variable of the
collection.

The information referenced by a persistent measurement variable is re-
trieved and persisted in each transactional instance (i.e., measurement data
read, created, and updated). In MonitA there is no need to call a particular
function (e.g., save(), load()) to make the modifications on measurement data
persistent.

Temporary Variables Declaration

MonitA allows the creation of temporary variables to ease the manipulation
of domain entities in the monitoring and analysis concerns specification. A

4.4 Analysis Functions Segment 81

temporary variable is defined with a measurement or process data type (see
section 4.1.1) and with a variable name. A temporary variable must be explic-
itly given a value before it is used. The variables defined within an analysis
function are only alive during its execution.

For example, the following expression denotes a temporary variable named
tempProblem that is created with the value of the workflow variable named
vProblem.

Problem tempProblem = root:vProblem;

Temporary variables enable MonitA application developers to refer to them
by their name several times within an analysis function where that domain
entity is required.

Indicators Creation

The values of the measurement variables are not reset. They are computed
during all the execution of a workflow application. An indicator stores a copy
of a measurement variable value when the corresponding measurement variable
reaches critic values defined to analyze a workflow application. The values of
the indicators are used to trace and evaluate the behaviour of the measurements
in time. For example, an indicator can be created each time a measurement
variable (e.g., m) increases in 10 its value (e.g., m - m.indicators->last() >=
10). The created set indicators (e.g., {(i1,m,10), (i2,m,20), ..., (i20,m,200)})
facilitate the evaluation of a measurement variable against its behaviour in
time (e.g., frequency to reach a critic value).

An indicator is declared by using an Indicator data type, and the name of
the indicator. An Indicator data type is a built-in data structure provided by
MonitA, which has attributes such as measure, value, and description. These
attributes have data types such as Measure, long, and string respectively.

An indicator must be explicitly given a value when it is declared. The
indicators are typically created when the condition of an evaluation rule is sat-
isfied. A measurement expression can be used to create an indicator by using
the Indicator data type and, between parenthesis and separated by comma, the
assignment of the values required by data type attributes through named pa-
rameters. An indicator cannot be associated directly to measurement variables
with collection data type since an indicator must correspond to a particular
measure value instance in persistence.

When an indicator is created, it is persisted with the information such as
the persistence context (e.g., workflow instance) associated to the measurement
variable, the name of the indicator, and a timestamp. Figure 4.3 illustrates the
information that can be used to navigate on an indicator associated to a mea-
surement variable. An indicator becomes persistent only if the corresponding
measurement variable has persistent state, otherwise the indicator is only alive

82 Chapter 4. MonitA: The Monitoring and Analysis Language

during the analysis function execution.
For example, the following expression creates an indicator named i1 when

the processing time of the current workflow instance is higher than 240 minutes.
The measurement variable named instancePTime was declared as persistent
and its value had to be computed before the indicator is created:

long temp1 = instancePTime.current();
i f temp1 > 240

then Indicator i1 = Indicator(measure=instancePTime , value=temp1 ,

description=’Processing time > 240 minutes ’);

endif

A collection of indicator value instances with Indicator data type is accessed
through the indicators attribute of a measurement variable. For example, the
following expression retrieves the number of times that a workflow instance
has been executed in more than 240 minutes (i.e., indicator named i1) in the
last 5 days:

int temp = instancePTime.current(). indicators ->select(Indicator i| i.name==’i1’

and i.timestamp > dateTime.now ().day(5-))->size ();

4.4.2 Control Actions

A control action comprises the definition of evaluation rules and the corre-
sponding notification actions to be taken in response to these evaluations. The
following two subsections describe the control actions supported by MonitA:
notification actions and evaluation rules.

Notification Actions

The notification actions help identifying potential improvements in a workflow
application by calling an external function such as:

• Sending an email to communicate relevant information:

notify(destination=’string ’, subject=’string ’, content=’string ’)

• Generating an alarm to be visualized in a dashboard:

alert (variable=measureObject , message=’string ’)

• Creating event logs with the analysis information for further evaluation:

trace(path=’string ’, message=’string ’)

Note that the control actions are not intended to be used to alter the control
flow of the workflow application at runtime (e.g., to dynamically adapt the
workflow application at runtime).

4.5 Discussion 83

Evaluation Rules

An evaluation rule represents prescribed states established on measurement
information based on the occurrence of a specific condition. When a prescribed
state is reached, the evaluation rule triggers the measurement and notification
actions associated to it. The evaluation rules can be specified over 1) the
measurement variables, 2) the indicators related to a measure variable, 3) the
workflow execution information, and 4) the workflow variables.

An evaluation rule is specified with an if-then conditional expression:

i f <conditionExpression >

then <actionExpression >

else <actionExpresion > endif

The condition block denotes a boolean expression that can involve multiple
elements such as: invocations from workflow events, gather information, refer-
ence domain entities, comparison expressions. These elements can be combined
in logical expressions and in nested expressions. The action block is defined
according to measurement actions (see section 4.4.1) and notification actions
(see section 4.4.2).

For example, the following expression illustrates an evaluation rule with a
condition expression that denotes the result of two comparisons that are related
with an and expression. Both comparisons involve the result of navigating
through a variable named pro with ProblemsByArea data type. The attributes
problems and area correspond to the properties of the measurement data type
named ProblemsByArea:

i f pro.problems > 10 and pro.area==’Testing ’

then alert (variable= pro , message=’ProblemsByArea >10’);

endif

4.5 Discussion

The MonitA language is targeted to workflow developers and not to business
experts. This is because there are still concepts that require to be moved to a
higher level of abstraction. For example, data management concepts for defin-
ing, creating, persisting, and navigating collections of measurement data have
to be abstracted to hide technical complexity. MonitA provides abstractions to
define and persist measurement variables releasing application developers from
learning a complete model to manage the persistence. Although the manage-
ment of measurement information do not require a deep technical background
or programming skills, there is always a possibility to create tools that facilitate
it specification and navigation.

The evaluation rules in MonitA are basic if-then-else statements which just
perform actions (measurement and control) without returning a value as a
result. We use the evaluation rules only for the evaluation of measurement

84 Chapter 4. MonitA: The Monitoring and Analysis Language

information, thereby MonitA does not require all capabilities (e.g., nested
expressions) of a programming language. In terms of business rules, our eval-
uation rules correspond to action enabler rules which check conditions at a
certain event and upon finding them true apply an action. MonitA does not
have an engine, thereby the execution of MonitA specifications depends on the
workflow execution.

4.6 Summary

This chapter has explained MonitA, a domain-specific language we have de-
veloped for monitoring and analyzing workflow applications in a uniform and
technology-independent way. MonitA provides an expressive medium to spec-
ify M&A concerns in terms of workflow relevant data by describing the work-
flow variables associated to flow elements in a BPMN process model. This
allows an analysis of the workflow application in terms of the specific busi-
ness domain it is modeling (e.g., Trouble Ticket). Specifically, the monitoring
is based on the declaration of data entities interactions, the measurement is
driven by the declaration of custom measurements related to workflow rele-
vant data, and the control specification defined in terms of the measurements
performed.

An advantage of MonitA is the use of domain-specific notations from the
beginning of the specification, thereby raising the level of abstraction for spec-
ifying M&A concerns. The MonitA specifications are not tightly coupled to
the workflow implementation since they are specified in terms of the process
model. The modularized nature of MonitA specifications improves maintain-
ability since the M&A concerns are easy to locate and no longer crosscut the
workflow implementation. MonitA specifications can be shared between work-
flow developers to improve reusability. Although the dependency now lies
with MonitA, the specification of M&A concerns is simpler since application
developers use a single domain-specific language staying away from implemen-
tation technologies (i.e., workflow language, workflow engine, instrumentation
language).

The following chapter presents the studies we performed to evaluate differ-
ent elements of the design and expressiveness of our domain-specific language.

Chapter 5

Evaluation of the MonitA Language

This chapter presents the studies we performed to evaluate different elements
of the design and expressiveness of our domain-specific language. We also
evaluate our data modeling approach in relation with workflow data patterns.

Section 5.1 presents the evaluation of our domain-specific language against
a set of design principles typically associated with DSLs.

Section 5.2 presents a workshop and questionnaire developed to evaluate
the expressiveness and learnability of the MonitA DSL. These properties are
evaluated by considering criteria such as suitability for users, strengths and lim-
itations to specify monitoring and analysis (M&A) concerns, and complexity
in the specification. The workshop purpose was the identification of potential
improvements to the expressiveness of MonitA, of which some were introduced
directly in MonitA and other ones are considered for future work. This is a
preliminary study which needs to be repeated with a larger user base.

Section 5.3 summarizes the key properties of our approach for modeling
data in high-level workflow models and in the associated MonitA specifica-
tions on that workflow. We also analyze workflow data patterns to describe
the relation between data management in workflow applications and our data
modeling approach.

5.1 Evaluation of Design Principles

We evaluated our domain-specific language based on the following 7 design
principles [Cle10] [GC10] described in section 3.1.2. These principles capture
the essence of a good DSL design. This is why we evaluated them on MonitA
to identify its distinguishable properties and to avoid to get an ambiguous
and useless DSL. We present a short explanation of these principles and the
distinguishable properties observed in MonitA.

85

86 Chapter 5. Evaluation of the MonitA Language

Representation

This principle is related to the use of the most optimal syntax to specify
monitoring and analysis concerns. The main idea is to express things using
domain-syntax. However, there is no a standardized and common syntax in
the workflow monitoring and analysis community. The following are the dis-
tinguishable properties observed in MonitA according to this design principle:

• An example of the domain syntax property is the use of conceptual moni-
toring event types (i.e., on start, on finish) for representing workflow event
types (e.g., node-enter, node-leave, task invocation). This facilitates to spec-
ify M&A concerns at a higher level of abstraction.

• An example of the distinguishable syntax property is the use of named ar-
guments in MonitA (cf. Python programming language). They ease the
specification of M&A concerns since the information required to execute a
set of analysis functions is distinguishable.

• An example of the familiar syntax property is the reuse of certain OCL
elements for models navigation in MonitA. MonitA looks more familiar to
certain users by using the arrow-syntax to navigate over collections, and the
dot notation to access and retrieve values of the properties of a model.

Absorption

This principle is related with the implicit use of assumed structure and be-
havior in the MonitA language to avoid tedious specifications. Absorption by
exploiting context means to hide and derive information, whereas absorption
by automation means to avoid the execution of certain manual tasks. The
following are the distinguishable properties observed in MonitA according to
this design principle:

• An example of absorption by exploiting context in MonitA specifications is
the support for implicit references to the data association model and to the
data types model. The import keyword is used to reference these models.

• Multiple examples of absorption by automation are observed in MonitA.
MonitA automates the implementation of observers in the workflow appli-
cation reducing the specification effort. MonitA persists automatically the
measurement information contained in a workflow variable of collection data
type when it is modified. This allows the consistency of the measurement in-
formation. MonitA also provides implicit accessor methods for the workflow
and measurement variables. Finally, the management of workflow instances
during the specification of M&A concerns is transparent for workflow devel-
opers.

5.1 Evaluation of Design Principles 87

Standardization

This principle is related to offering a structured and standardized way of solving
a problem to reduce erroneous specifications. Standardization by restrictions
on the grammar enforces the way M&A concerns are specified. Standardiza-
tion by restrictions on semantic checks for domain-specific errors (e.g., type
checking, correct programs, variable referencing) at compilation time. The
following are the distinguishable properties observed in MonitA according to
this design principle:

• Standardization by restrictions on the grammar is identified in different
parts of MonitA. Before specifying M&A concerns, workflow developers are
required to set up the process specification by defining a data association
model. A new measurement variable must be declared with a set of ordered
modifiers and attributes (i.e., persistent modifier, persistence association
modifier, data type, variable name). MonitA restricts the data types that
can be used in the specifications to those defined in the data types model
decreasing the errors that can be introduced by DSL users. The grammar of
MonitA enforces the structure (standard) to specify monitoring concerns: all
the workflow subjects to be observed are selected, then the analysis functions
required to instrument the workflow application are indicated, followed by
passing data to the analysis functions.

• Standardization by restrictions on semantics can be easily observed when
the MonitA specifications are implemented and integrated within a workflow
application. Different semantic checks can be performed to identify when:
data types mismatch, invoked measures do not exist, undeclared variables
are referenced, data entities not defined in the association model are refer-
enced, analysis functions invoked by a monitoring event are not declared,
and when imported models do not exist. MonitA application developers
must declare the measurement variables before they can be used. MonitA
can exploit information beyond what is written in the specification by nav-
igating through the data association model and the data types model.

Abstraction

This principle is related to constructing new abstractions on top of existing
ones to reduce the information available at a particular abstraction level. Ab-
stractions from technical complexity hide complexity, abstract information in
the domain, and remove repetition. Abstractions from irrelevant details remove
details which are not important to know about. Abstractions from redundant
information get rid of similar information that causes confusion. The following
are the distinguishable properties observed in MonitA according to this design
principle:

88 Chapter 5. Evaluation of the MonitA Language

• Abstractions from technical complexity. MonitA abstracts the information
involved in the observation of workflow events within specific monitoring
subjects into a monitoring event. MonitA removes the data types’ definition
from its specifications to reduce their verbosity. MonitA provides persistence
modifiers to define measurement variables in order to hide the complexity of
the persistency management. The impact if MonitA does not provide these
persistence modifiers is that application developers need to learn a complete
model to manage the persistence.

• Abstractions from irrelevant details. MonitA removes irrelevant details from
the specifications such as: the use of a “new” keyword for the creation of new
objects, and an explicit “of” keyword for defining the workflow monitoring
context (i.e., monitoring subjects).

• Abstractions from redundant information. MonitA encapsulates the mea-
surement and control actions into an analysis function. This avoid repeti-
tion.

Compression

This principle is related to reducing the code footprint while retaining the
same semantic details. Compression by restructuring defines patterns and com-
presses from them, whereas compression by increasing conciseness combines
concepts into one. The following are the distinguishable properties observed
in MonitA according to this design principle:

• Compression by restructuring. MonitA defines different patterns to com-
press the specifications such as: quantification of the workflow subjects that
are instrumented with analysis concerns, and composition of event types to
specify monitoring events. This reduces the number of monitoring events
that have to be specified by application developers.

• Compression by increasing conciseness. MonitA provides the “on” and “trig-
gers” keywords to combine three concepts (workflow events observation,
analysis function invocation, gathering data) into a single concept named
monitoring event. The monitoring events increase conciseness instead of us-
ing if-then statements. MonitA also provides operations on collections to
increase conciseness.

Generalization

Generalization is related to inferring a common case from specific cases, and
to deal with 2 similar concepts. In contrast to abstraction, in generalization
the new concepts can be decomposed into the former ones. The following are
the generalization properties observed in MonitA:

5.2 Evaluation of Expressiveness and Learnability 89

• Generalization by inducing. MonitA induces the analysis function concept
to group different kinds of measurement and control actions together. The
domain coverage of an analysis function is explicitly formalized and turned
into a computable form since the combination of measurement and control
actions are made explicit.

Optimization

This principle is related to performance improvements to write and execute
MonitA specifications faster. The following are the optimization properties
observed in MonitA:

• Optimization by tuning the semantics of the language. The execution se-
mantics of the MonitA language, defined in the application generator, can
be easily changed to improve the performance of the DSL specifications at
runtime.

• Optimization by providing special-purpose constructs. MonitA provides fil-
tering constructs and abstractions to customize the points in the workflow
application where additional M&A concerns must be added (i.e., monitoring
subjects). The quantification mechanism associated to monitoring events fa-
cilitates the identification of a set of particular monitoring subjects (i.e., flow
entity, data entity) that are interesting for monitoring. Thus, there is no ne-
cessity to add intercept every workflow event generated by the workflow
application.

The evaluation of these principles in MonitA give us an indication of a
good design. We observed a consistent syntax and semantics in the MonitA
specifications, which are scoped within the borders defined in the DSL anal-
ysis. MonitA is nonrestrictive to specify M&A concerns and allows simpler
specifications. We identified the main distinguishable properties of MonitA to
get an unambiguous and useful DSL.

5.2 Evaluation of Expressiveness and Learn-

ability

We conducted a study by means of a workshop and questionnaire among po-
tential users of MonitA to evaluate its expressiveness and learnability. We
based this study on the questionnaire presented by Hermans et al. [HPvD09].
We took this questionnaire as a reference since it presents the identification
of a number of DSL success factors and how they can be assessed. We com-
plemented this questionnaire with questions specific to the interaction with
MonitA.

90 Chapter 5. Evaluation of the MonitA Language

The goal of this study was to determine the main advantages and weak-
nesses of MonitA to identify potential improvements for its expressiveness.
Several outcomes and suggestions obtained in this study were incorporated in
the MonitA language, whereas other ones were considered for future work.

5.2.1 Basic Study

We conducted the study in an academic environment by asking a group of
8 master students in computer science to participate in the workshop and
questionnaire1. Even though the number of users is too low, it gave us the
opportunity to get early feedback. So this study should not been seen as a
final assessment, but as a starting point to improve MonitA. The workshop
contains 1) a BPMN model with a general description of the trouble ticket
workflow application, 2) the data types involved in this application, 3) a data
association model with the description of the operations performed by the
activities on the data, 4) an overview of MonitA, 5) a number of examples of
MonitA specifications, and 6) a set of exercises to specify M&A concerns. The
questionnaire allowed us to evaluate expressiveness issues in MonitA such as
what is/is-not possible to specify, what is difficult to specify, and what is not
clear.

The 8 students work as developers for software companies and they are
experts in MDE, however, they have limited experience with workflows. Two
of these students have used the MonitA language in two different projects,
whereas the other 6 students have no experience with MonitA. These students
received 1 hour training on MonitA and the purpose of the study. We esti-
mated that the time needed to answer the workshop and questionnaire was
180 minutes since there is no experience with MonitA.

Different factors can decrease the success of this study such as the fact
that developers did not use the DSL editor to specify the M&A concerns. This
would facilitate the specification, however, it was important to validate the
expressiveness of MonitA without a tool kit. Another factor that complicates
this study is the short time spent for training.

Table 5.1 illustrates the questions adopted and defined to evaluate the
expressiveness and learnability in MonitA.

The DSL success factors under consideration in this study are expressive-
ness and learnability:

• When using a DSL, Expressiveness is the ability to implement domain-
specific features compactly [MHS05]. This is the briefness for specifying
M&A concerns uniformly in different levels of abstraction. A DSL limits the
scenarios that can be expressed since the language is specific to a domain.

1The complete workshop and questionnaire for MonitA application developers can be
found at https://soft.vub.ac.be/soft/members/oscargonzalez/research

https://soft.vub.ac.be/soft/members/oscargonzalez/research

5.2 Evaluation of Expressiveness and Learnability 91

Id Question DSL Success
Factor

Q1 How much time did you spent specifying the exer-
cises?

Learnability

Q2 How much time did you spent developing the work-
shop?

Learnability

Q3 How many years have you worked as a professional
software developer?

Learnability

Q4 How much experience do you have with MonitA? Learnability
Q5 How much time did it take you to get to know

MonitA?
Learnability

Q6c Is MonitA powerful? Expressiveness
Q7 Did you deny a requirement because you knew you

would not be able to implement it using MonitA?
Expressiveness

Q8 What was not possible to specify in MonitA? Expressiveness
Q9a Is MonitA difficult to use? Expressiveness
Q9b Does MonitA restrict your freedom as programmer? Expressiveness
Q9c Does MonitA have all features you need? Expressiveness
Q10 What kind of monitoring and analysis requirements

would you like to specify with MonitA?
Expressiveness

Q11 What changes or additions to MonitA do you pro-
pose?

Expressiveness

Q12 Do you have any other remarks regarding MonitA? Expressiveness

Table 5.1: Questions Used to Evaluate Expressiveness and Learnability in
MonitA

The expressiveness of the MonitA language is evaluated according to the
analysis of requirements presented in section 3.2.

To measure the expressiveness of MonitA we asked the level of agreement / dis-
agreement, by using a five-point scale, with a set of statements to investigate
whether MonitA: is a powerful DSL (Q6c), is difficult to use (Q9a), restricts
their freedom as programmers (Q9b), and provides all constructs to specify
monitoring and analysis concerns (Q9c). We also asked the frequency, by
using a five-point scale, with which the student had to deny a requirement
since it could not have be specified in MonitA (Q7).

• Learnability refers to the time and effort that developers invest in learning
an extra language [Spi01]. The learnability of MonitA is evaluated by the
time invested in actually learning our DSL.

To measure learnability we asked different questions to identify the effort
(number of days of 8 working hours) invested in learning MonitA.

92 Chapter 5. Evaluation of the MonitA Language

The measurement of various success factors is done through two five-point
Likert [Lik32] scales used by Hermans et al. [HPvD09], which have an addi-
tional neutral option [PK01]. The frequency scale ranges from strongly dis-
agree, disagree, neutral, agree, to strongly agree. The level of agreement/dis-
agreement ranges from very often, often, sometimes, seldom, and never.

5.2.2 Results

The results show that using our DSL, the M&A concerns can be implemented
compactly. The following illustrates the results after measuring the expres-
siveness and learnability in MonitA.

Expressiveness

The responses of the students to question 6c show that they can specify M&A
through a powerful expressiveness mode (Figure 5.1a). 62,5% of them agree
that MonitA is powerful to write expressive M&A concerns, 25% are strongly
convinced of that, whereas 12,5% have no opinion.

The students indicated that they had to deny a requirement since it could
not be specified in MonitA (Figure 5.1b). They also expressed that they did
not review the documentation but only the training material.

0

1

2

3

4

5

6

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Application Developers

a) Q6c. Do you consider MonitA
powerful?

0

1

2

3

4

5

6

Very Often Often Sometimes Seldom Never

Aplication Developers

b) Q7. Did you deny a monitoring
requirement?

Figure 5.1: Questions 6 and 7 for Measuring the Expressiveness of MonitA.

The responses to question 9 show that MonitA is not difficult to use since
none of the students indicate that (Figure 5.2 question 9a). The students
do not consider MonitA restrictive for their programming freedom. Thus the
limited scope imposed by the DSL is not a problem for MonitA specifications
(Figure 5.2 question 9b).

Different application developers indicated that MonitA requires more fea-
tures (Figure 5.2 question 9c):

5.2 Evaluation of Expressiveness and Learnability 93

0

1

2

3

4

5

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Q9a. MonitA is difficult to use Q9b. MonitA is restrictive for developers
Q9c. MonitA needs more features

Figure 5.2: Question 9 for Measuring the Expressiveness of MonitA.

• Initialize measurement data collections. This feature was incorporated to
the DSL.

• Analyze measurement information considering future dates (e.g., deadline).
This feature was incorporated to the DSL.

• Validate that the measurement information has not been created. This
feature was incorporated to the DSL.

• Navigate on indicators. This feature was incorporated to the DSL.

• Specify monitoring events in terms of workflow transitions to support more
interception points in the workflow application. This feature is considered
as future work.

• Define the execution order of the M&A concerns. This feature is considered
as future work.

• Compare the previous value of a measurement with its current value (e.g., old
and new functions). This feature is considered as future work.

We can observe that many students do not have an opinion about the
difficulty and restrictiveness of MonitA. This is probably due to not take the
time to review the documentation of the MonitA language.

The main threat to expressiveness validity is that a wider range of enterprise
workflow scenarios and workflow developers has to be considered to evaluate
the expressiveness of MonitA.

94 Chapter 5. Evaluation of the MonitA Language

Learnability

The responses indicate that the students did not spend enough time to learn
about MonitA (Table 5.2).

Learning Time (hours) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Application developers 0 3 3 0 0 0 0 1 0 0 0 0 0 1

Table 5.2: Measuring the Learnability of MonitA.

Most students were able to develop the workshop with the training material
plus a couple of hours extra. However, the users that spent more time learning
MonitA specified the exercises adequately.

5.3 Data Modeling Characteristics

We have defined a set of management interactions to create, retrieve, and up-
date measurement data entities. In addition, we have defined a set of workflow
events to request notification when data changes. The latter interactions ex-
change data representations to support monitoring specifications. We monitor
interactions on data to capture relevant information to these events in order to
assure workflow execution integrity. We focus on supporting events and rela-
tions in terms of data interactions that are important for a particular MonitA
specification.

The management interactions are simplified for the workflow variables since
we do not want to alter the state of the workflow application. Nevertheless,
we provide the complete set of interactions on the measurement variables to
support data access according to the requirements defined for monitoring and
analysis.

Table 5.3 summarizes the key properties of our approach to modeling data
on high-level workflow models and on the associated monitoring specifications.
We present if the property is supported and the corresponding implementation
technology.

5.3.1 Relation to Workflow Data Patterns

The well-known workflow data patterns of Russell et al. [RtHEvdA04] aim
at capturing the various ways in which data is represented and utilized in
workflows. They also present the evaluation of a set of workflow products
according to the evaluation criteria of each pattern. We analyzed these patterns
to describe the relation between data management in workflow applications and
our measurement data.

5.3 Data Modeling Characteristics 95

Property Workflow Measurement
Variables Variables

Variable declaration DSL MonitA
Data types XSD XSD
Access variables WSDL WSDL
Variable representation XML, Object-based XML
Intercept data interactions AOP N/A
Create variable No Yes
Retrieve variable Yes Yes
Update variable No Yes
Delete variable No Yes

Table 5.3: Properties to modeling data in MonitA

Modeling data in workflow management systems comprises the following
characterization: data visibility, data interaction, data transfer, and data-
based routing. We consider this data characterization to establish a relation
with our data association model and measurement variables model.

Data Visibility

These patterns define how data elements can be viewed by various components
of a workflow application. Data elements can be accessed a) by the context
of individual execution instances of a task (Task Data pattern), b) by each
of the components of the corresponding subprocess (Block Data pattern), c)
by a subset of the tasks in a workflow instance (Scope Data pattern), d) by
multiple task instances within a single workflow instance (Multiple Instance
Data pattern), e) by a workflow instance (Case Data pattern), f) by multiple
workflow instances on a selective basis (Folder Data pattern), g) by all the
components in each and every workflow instance (Workflow Data pattern),
and h) by components of the workflow application when they exist in the
external operating environment.

Most of these patterns are supported by the scope modifier for the work-
flow variables and by the persistence modifier for the measurement variables.
Table 5.4 summarizes the data visibility patterns supported in MonitA.

Typically workflow management systems do not support multiple instance
tasks. In the structural model, data elements are scoped at the workflow level
and instance level. We do not include the notion of multiple instance tasks,
thereby multiple instances data is not supported. However, a measure can
have multiple instances for a workflow instance. The workflow data can be
stored in an external system as is the case with the measurement information.

96 Chapter 5. Evaluation of the MonitA Language

Visibility Workflow Measurement
Patterns Variables Variables
Task Data No Yes
Block Data No No
Scope Data No No
Multiple Instance Data No Yes
Case Data Yes Yes
Folder Data No No
Workflow Data Yes Yes
Environment Data Yes Yes

Table 5.4: Data Visibility Patterns in MonitA

Data Interaction

These patterns define how data is communicated between elements within a
workflow application and between a workflow application element with the
external environment. Table 5.5 summarizes the data interaction patterns in
terms of the interactions between workflow data and measurement data.

Interaction Workflow and Measurement
Patterns Variables Relation
Task to Monitoring Task Global data store
Block Task to Sub-Workflow Decomposition No
Sub-Workflow Decomposition to Block Task No
to Multiple Instance Task No
from Multiple Instance Task No
Case to Case Yes
External Data Interaction Yes

Table 5.5: Data Interaction Patterns in MonitA

The following are the set of internal data interaction patterns:

• Task to Monitoring Task : data elements can be communicated between one
task instance and another within the same workflow instance.

In the data association model, we do not consider the specification of the
data flow that is integrated with the control flow using the same channels
(ports), neither the data flow that is passed through tasks with dedicated
channels different than the control flow channels. Instead, the data asso-
ciation model specifies how tasks share the same data elements, which can
be accessed in a global data store. An explicit data passing between ac-
tivities in not required in our approach. The data association model is an
approach to data sharing by providing knowledge of the naming and loca-
tion of workflow variables. It corresponds to the Global Data Store Pattern

5.3 Data Modeling Characteristics 97

presented in [RtHEvdA05]. We assume that the workflow implementation is
able to deal with potential concurrency issues that may arise when several
task instances access the same data element.

Although we model the operations performed by flow entities on data, this
specification does not affect the workflow implementation neither the exe-
cution semantics of MonitA. In the specification, these operations increase
the type of analysis that can be performed (e.g., evaluate all activities that
modify a particular variable).

• Block Task to Sub-Workflow Decomposition: data elements from a block
task instance can be passed to the corresponding subprocess that defines
its implementation. This pattern is not supported since the monitoring is
defined in terms in terms of atomic tasks.

• Sub-Workflow Decomposition to Block Task : data elements can be passed
from the underlying subprocess back to the corresponding block task. This
pattern is not supported since our level of granularity is monitoring atomic
flow entities such as tasks, events, and gateways.

• Data Interaction from/to Multiple Instance Task : data elements can be
passed from a preceding task instance to a subsequent task which is able
to support multiple execution instances. This pattern is not supported since
there is no support for multiple instance tasks.

• Case to Case: data elements can be passed from one workflow instance
during the workflow application execution to another workflow instance that
is executing concurrently. This pattern is supported since the data can be
captured during a workflow state change or transition and passed indirectly
through an external repository (measurement data system).

External data interaction patterns depend of the workflow management
system. These patterns define how data elements can be passed between a
workflow element with the external environment. We evaluate data interac-
tions when they occur internally in the workflow, this is if they are described
in the data association model.

Data Transfer

These patterns consider the mechanisms by which the actual transfer of data
elements occurs between workflow elements and describe the multiple mecha-
nisms by which data elements can be passed across the interface of a workflow
component (e.g., by value, by reference). Table 5.6 summarizes the data trans-
fer patterns considered for workflow variables and measurement variables.

The following are the set of data transfer patterns:

98 Chapter 5. Evaluation of the MonitA Language

Transfer Workflow Measurement
Patterns Variables Variables
by Value - Incoming No Yes
by Value - Outgoing No Yes
Copy In/Copy Out No Yes
by Reference - Unlocked No No
by Reference - With Lock No No
Data Transformation - Input No Yes
Data Transformation - Output No Yes

Table 5.6: Data Transfer Patterns in MonitA

• Data Transfer by Value: a workflow application element receives/passes in-
coming/outgoing data elements by value. This avoids the need to have
shared names or a common address space with the component(s) from which
it receives them. This pattern is not supported for workflow variables since
we do not consider explicit data passing between monitoring activities to
workflow activities. In contrast, it is supported by the measurement vari-
ables since the monitoring data receives data from external sources. The
measurement data is passed explicitly by value between the process activi-
ties and the monitoring activities through monitoring events.

• Data Transfer - Copy In/Copy Out : a workflow component copies the val-
ues of a set of data elements from an external source into its workspace and
at the end of the execution the activity copies their final values back. The
measurement data is stored temporarily in the analysis functions (monitor-
ing activities) and as soon as they are computed the information is stored
in the measurement data store.

• Data Transfer by Reference: data elements can be communicated between
process components by utilizing/passing a reference to the location of the
data element in some mutually accessible location. Nevertheless, MonitA
does not transfer data by reference.

• Data Transformation: a transformation function is applied to a data element
prior to it being passed/passed-out to a workflow component. The process
data can be transformed before is passed to the monitoring component. The
process data can be transformed after the completion of a task to be passed
to the monitoring component.

Data-based Routing

These patterns characterize the manner in which data elements can influence
the operation of the control flow of the workflow application. Table 5.7 summa-

5.4 Summary 99

rizes the data routing patterns considered to evaluate and specify constraints
on the workflow and measurement data.

Workflow Measurement
Application Actions

Task Precondition-Data Existence No Yes
Task Precondition-Data Value No Yes
Task Postcondition-Data Existence No Yes
Task Postcondition-Data Value No Yes
Event-based Task Trigger No Yes
Data-based Task Trigger No No
Data-based Routing No No

Table 5.7: Data-based Routing Patterns in MonitA

These patterns are not supported for the workflow application since we do
not alter its control flow. The following are the set of data routing patterns:

• Task Precondition: data-based preconditions are specified for tasks based
on the presence/value of data elements at the time of execution. MonitA
can verify if the data has not being created yet. MonitA also supports task
preconditions on data value by defining evaluation rules (if-then expressions)
for evaluating the value of a field or a variable.

• Task Postcondition: data-based postconditions are specified for tasks based
on the presence/value of data elements at the time of execution. MonitA
verifies postconditions when a task finalizes.

• Event-based Task Trigger : a task can be initiated from an external event by
passing data elements to the task. MonitA does not influence the control flow
of the workflow application. However, a monitoring task (analysis function)
is applied statically when a workflow event occurs.

• Data-based : a specific task can be triggered when an expression based on
data elements in the workflow instance evaluates to true. We do not alter
the state of a workflow instance based on measurements evaluation.

5.4 Summary

This chapter has explained the studies we performed to evaluate different el-
ements of our domain-specific language. We evaluated our domain-specific
language against a set of design principles typically related with DSLs to
present the distinguishable properties of MonitA. A workshop and question-
naire was developed to evaluate the expressiveness and learnability of MonitA

100 Chapter 5. Evaluation of the MonitA Language

DSL. We identified a set of improvements for the MonitA expressiveness. We
incorporated some of these improvements in MonitA, whereas the others were
presented as possibilities for future work. We have analyzed workflow data pat-
terns in MonitA to describe the relation between data management in workflow
applications and our measurement data.

The following chapter presents the decisions we made to generate the im-
plementation of MonitA specifications. This corresponds to the second part of
our solution to tackle the problems for workflow monitoring and analysis.

Part III

Implementing Monitoring and
Analysis Concerns Using
Generative Approaches

101

Chapter 6

Rationale and Background

We dedicate this chapter to present the rationale and background behind the
implementation strategy of our approach (see section 1.4). As detailed in the
introduction, the workflow developers need to build ad hoc infrastructures and
abstractions for specific workflow platforms to implement monitoring and anal-
ysis (M&A) concerns. This low level implementation creates multiple problems
such as a) high development costs, b) tight coupling with specific workflow plat-
forms, and c) complex maintainability due to the amount of scattered code.
The second part of our solution to tackle these problems is to generate the
implementation of MonitA specifications.

We defined an implementation strategy to create the infrastructure to enact
the MonitA specifications on a specific workflow platform. The decision to
define this strategy is influenced by the need to reuse MonitA specifications
across different and existing workflow languages and engines. This decision is
also supported by considering that the implementation of workflow applications
typically uses a transformation approach, and that this implementation is not
easy to extend with the required monitoring and analysis characteristics.

A MonitA generative infrastructure is required to integrate automatically
the MonitA specifications with the implementation of workflow applications.
This increases the productivity of application developers and decreases the
complexity and time required to implement M&A concerns. This has a favourable
impact for workflow analysts since they need less time to materialize their
requirements and get feedback to take improvement decisions. This is also
beneficial for evolvability since MonitA specifications can be re-generated and
re-composed with a new workflow implementation.

Section 6.1 describes the main requirements and challenges considered to
develop a MonitA generative infrastructure.

Section 6.2 present the main decisions to create a generative implementa-
tion infrastructure.

Section 6.3 introduces a background on Model-Driven Engineering for gen-

103

104 Chapter 6. Rationale and Background

eration of code and for separation of concerns at a higher level of abstraction.
Section 6.4 introduces a set of definitions of Aspect-Oriented Programming

as compositional mechanisms at the implementation level. We focus on de-
scribing the concepts of aspect-oriented workflow languages.

6.1 Requirements for the MonitA Implemen-

tation Strategy

This section describes the main requirements and challenges considered to de-
velop the MonitA generative infrastructure. The following challenges are taken
into account in our strategy to compose automatically the implementation of
M&A concerns with a workflow application:

IC1 Target diverse execution platforms. If the workflow developers use the JPDL
workflow language and the jBPM workflow engine (or e.g., the BPEL work-
flow language and the Apache ODE workflow engine) to implement and
execute a workflow application, we have to provide a solution to translate
the MonitA specifications into executable code for that workflow platform.
This is important to support the different workflow platforms adopted by
companies to automate their business processes, and to support the migra-
tion to new workflow platforms due to new expected necessities or alliances
between companies.

Specifically, the MonitA specifications have to be mapped to elements in the
workflow language that implements the workflow application (e.g., JPDL)
and to elements in a general-purpose language (GPL) (e.g., Java) that im-
plements the underlying delegated code (e.g., handlers, services). The links
between the source and target elements in the transformation from BPMN
to a workflow language must be stored automatically in a traceability model.
This traceability information determines the target of the model transfor-
mation that generates workflow code from MonitA specifications.

IC2 Composition of MonitA code. The translational semantics of MonitA spec-
ifications, which can be specified with different tools (e.g., model trans-
formation language), requires taking into account diverse target workflow
language constructs. This is because the mapping of MonitA specifications
is not equivalent between different target workflow platforms. The workflow
generation process (e.g., to transform BPMN to BPEL) and the implemen-
tation of the workflow application must stay oblivious of the M&A concerns
implementation.

A mechanism to support the composition of M&A concerns with the work-
flow application should be reused to automate their composition in different
locations of the workflow application. To this end, the MonitA code can be

6.2 Design Rationale for the MonitA Implementation Strategy 105

translated into a mechanism for separation of concerns (e.g., aspect code)
supported by the workflow implementation language.

IC3 Customization of workflow code. If the MonitA specifications cannot be
translated into workflow aspects code for a particular workflow platform,
the transformation rules must define how to add additional elements to
the workflow implementation. Specifically, the workflow implementation
must be instrumented to support the interception of workflow data events
(e.g., when a workflow variable changes) declared in the MonitA specifica-
tions. Moreover, multiple flow entities can operate on the same workflow
data and we require to intercept only workflow data events caused by a
particular flow entity during the workflow execution (i.e., when the area of
expertise is updated by the Provide Problem Solution activity). Thus the
workflow implementation must also be instrumented to capture which flow
entity operates the data entity.

The translational semantics of the MonitA DSL must instrument the work-
flow specification when the implementation of the activities is defined di-
rectly in a workflow language (e.g., BPEL). Otherwise, the underlying work-
flow code must be instrumented when the implementation of the activities
is delegated to code specified in a programming language (e.g., Java).

IC4 Navigation through workflow data. The generation of MonitA code requires
to establish a mechanism to access and navigate the workflow variables used
by a workflow application. A connection link must be established between
the workflow variables defined in the data association model and the actual
workflow data.

6.2 Design Rationale for the MonitA Imple-

mentation Strategy

One of the target requirements defined for developing our DSL is its exe-
cutability, thus, it is necessary to define a suitable implementation approach
to minimize the effort required to implement MonitA specifications.

We adopted a source-to-source transformation (preprocessing) approach for
MonitA to target existing workflow platforms. We translate MonitA specifi-
cations into source code of an existing workflow language (i.e., BPEL, JPDL,
Java) to increase the spectrum of potential users that are going to use our DSL
(cf. section 3.1.1).

Our strategy to generate and compose automatically the implementation of
MonitA specifications into the implementation of the workflow application in-
volves multiple generative programming approaches. We have adopted Model-
Driven Engineering (MDE), and Aspect-Oriented Programming (AOP) for this

106 Chapter 6. Rationale and Background

purpose. The usage of these paradigms is hidden for workflow developers who
are specifying M&A concerns. Only the MonitA infrastructure developer has
to know about them.

We use MDE to generate the implementation of MonitA specifications over
diverse workflow platforms (e.g., JPDL workflow language and JPDL engine).
A traceability mechanism is incorporated in the MonitA generative infrastruc-
ture to compose automatically the generated code with an existing workflow
implementation. We use a DSL development system (i.e., OpenArchitecture-
Ware) and model transformations to automate the DSL processor construction,
thereby minimizing the usual effort required to implement it.

We use AOP as a mechanism to keep the implementation of MonitA spec-
ifications modularized and to compose this modular code automatically with
the workflow implementation. We decide to transform the MonitA specifica-
tions into workflow aspects in a particular workflow language to preserve the
existing workflow applications.

A different approach that could be used for implementing M&A concerns
is to override the workflow engine to trigger new workflow events. However,
since one of the desirable properties is to target multiple workflow platforms,
workflow developers may not have control over the engine. Moreover, this
has to be done carefully in order to avoid damaging other concerns. Our
approach facilitates application developers to create custom events to monitor
and measure the workflow application according to the necessities of workflow
analysts. We instrument source code by considering the M&A concerns as a
development environment and not to develop debugging environments.

The following sections present the background of our generative implemen-
tation strategy: model-driven engineering and aspect-oriented programming.

6.3 Model-driven Engineering

Model-driven engineering (MDE) technology uses language definitions to sup-
ply the effective expression and creation of complex platforms at a high-level
of abstraction [Sch06]. MDE focuses on shifting the software development
process from coding to modeling to decrease the complexity, and to increase
the productivity and maintainability. This brings new possibilities to define,
implement, maintain, analyze, and reason about software systems at a high-
level of abstraction. The aim of MDE is to develop and maintain high-quality
software systems with the least possible effort.

MDE defines the structure and behavior of applications within a particular
domain using models and model transformations.

6.3 Model-driven Engineering 107

6.3.1 Metamodels, Models and Transformations

The domains that define the structure and behavior of applications are anal-
ysed and engineered by means of a metamodel, which is a coherent set of
interrelated concepts. The constraints between domain concepts are expressed
at the meta-level.

A model is expressed by the concepts defined in the metamodel. Models are
the primary assets of MDE to capture designs at a higher-level of abstraction.
This contrast with technical documentation which has a fragile connection to
the implementation of a software system. The models are meant to be auto-
matically transformed to an executable implementation. Thereby, the effort
of producing a new software system can decrease and the maintenance can be
reduced to model maintenance. Models can be specified at different levels of
abstraction and with different modeling languages (e.g., UML, BPMN).

A model transformation is a set of transformation rules that describe how
multiple source models can be transformed into multiple target models [KWB03].
The existing techniques and languages for model transformation enable several
different automated activities such as translating models expressed in different
modeling languages, generating code from models, refining models, extracting
models, composing models, restructuring models, and evolving models. This
is the reason to consider model transformations the backbone of MDE [SK03].
The taxonomy of model transformations presented by Mens et al. [MCG04]
helps in deciding which model transformation approach (i.e., vertical, horizon-
tal, rephrasing, translation) is best suited to deal with a particular problem.

6.3.2 MDE and DSLs

Model-driven engineering is highly related to the field of domain-specific lan-
guages and both have complementary strengths. For example, whereas mod-
els are typically represented with a graphical notation, DSLs use typically a
textual representation. Moreover, the models describe structures that DSLs
complement by describing their business logic. MDE incorporates the experi-
ence from work on code generation and domain-specific languages to provide
a systematic approach to the construction of modeling languages that can be
integrated in the software development process.

The increase of productivity can be achieved by code generation. The ap-
plication code is replaced by DSL programs that capture the variability in
a software system and by code generators that produce the application code
automatically. The DSL defines the architecture to compose specialized appli-
cation code with a software system. An advantage of a DSL is the possibility
for targeting a generator to a new architecture or platform, without changing
the DSL programs. Specifications written in a DSL can automatically generate
system families by using generative software development [Cza04] [GS03].

108 Chapter 6. Rationale and Background

6.3.3 Traceability Models

Model transformations may store the links between their source and target
elements for multiple purposes such as a) analyzing how the changes done to
one model affect other related models, b) synchronizing models, c) mapping
the stepwise execution of an implementation back to its high-level model, and
d) determining the target of a transformation [CH03].

The following are the common approaches to incorporate traceability on
model transformations:

• The transformation platform provides dedicated support for traceability. In
this approach, the traceability links are created automatically thereby a
traceability model is generated at a low cost since it does not require addi-
tional effort from the developers. Nevertheless, the level of granularity of the
traceability information differ among different transformation engines since
the traceability metamodel is fixed. Certain transformation engines may of-
fer support to limit the amount of traceability information that is generated
with mechanisms to control which traceability links must be created.

• The traceability rules are encoded in the transformation model. The trace-
ability rules are encoded by developers who can use the same mechanisms
used for adding transformation rules to generate a regular output model of
the transformation. The main advantage is that the developer can customize
the traceability metamodel independently of the transformation engine. One
disadvantage is that the model transformation gets polluted with the trans-
formation rules, which require additional effort from the developers.

• The traceability rules are added to the original transformation using high
order transformations (HOTs). A HOT is a transformation that generates
another transformation. The main advantage of this approach is that the
traceability rules are automatically generated.

A traceability model can be also produced manually, however, it is benefi-
cial to incorporate the traceability generation into the model transformations
to automate the traceability model creation.

6.4 Aspect-Oriented Software Development

In the Aspect-Oriented Software Development (AOSD) [JN04] approach, a
modularization way in the software development cycle is applied by means
of crosscutting concerns separation. In addition, AOSD allows describing the
relation of multiple concerns to the system, and provides the mechanisms to
compose them into a coherent product [GBNT01].

6.4 Aspect-Oriented Software Development 109

Aspect-oriented Programming (AOP) facilitates introducing crosscutting
behavior to existing applications in a modularized way [KLM+97]. The cross-
cutting mechanisms provided by AOP break with the ”tyranny of the dominant
decomposition” [TOHJ99].

AOP introduces a unit of modularity named aspect. An aspect module
consists of pointcuts, joinpoints, advices, and bindings. Pointcuts define the
specific points during the process execution where additional behavior has to
be added. For example, different pointcuts in object-oriented programs are
method calls, constructor calls, field read/write. A joinpoint indicates where
the new behavior is introduced before, after, or around the interception point
defined in the pointcut. For example, it is possible to select related method
execution points by pattern matching, by the type of the return values of
these points, and by the type of their parameters. An advice contains the
extra behavior that requires to be inserted to the base program. The advice
code is executed when a joinpoint is reached in the set specified by a pointcut.
Finally, bindings are used to combine the behavior of the base program with
the new behavior defined in the advice.

6.4.1 Aspect-Oriented Programming Languages

AspectJ [Asp] is the most popular aspect-oriented programming language cre-
ated as extension to the Java programming language. AspectJ has a joinpoint
model, a pointcut language, and an advice language.

The joinpoint model of AspectJ defines points in the execution of object-
oriented Java programs such as method calls and field reading/writing. The
pointcut language provides a predefined set of pointcut designators such as
call that selects a set of method call joinpoints, execution that selects a set of
method execution joinpoints, and get and set that select read/write field access
joinpoints. The advice language of AspectJ is the same as the programming
language (i.e., Java) and defines the advice types before, after, and around.
AspectJ supports a static weaving approach, in which the weaver transforms
the byte code of Java classes to integrate aspects. The AspectJ weaver gen-
erates classes that have plain Java byte code, thereby they can be interpreted
by any Java interpreter.

6.4.2 Aspect-Oriented Workflow Languages

Although most available aspect-oriented languages are extensions to program-
ming languages, aspect orientation is also applicable for workflow languages.
The aspect-oriented workflow languages introduce the concepts of aspect-oriented
software development to workflow languages in order to improve the modular-
ity of crosscutting concerns in the workflow specifications [CM06] [Cha07].

110 Chapter 6. Rationale and Background

The modular specification of crosscutting concerns within a workflow ap-
plication, also named workflow aspects, involves the different perspectives of
workflow applications (i.e., functional, informational, behavioral, operational,
and organizational). The workflow logic is encapsulated in a process module,
whereas the the non-functional concerns are encapsulated in aspect modules.
Workflow aspects provide a view on how a certain concern is handled within
different workflow applications. Thus, the workflow developer has to modify
only one aspect module when he needs to modify a crosscutting concern.

The aspect-oriented workflow languages provide concepts for crosscutting
modularity such as pointcuts, joinpoints, advices, and aspects. These lan-
guages also provide a weaving mechanism to compose workflow aspects with
workflow applications.

Aspects. A workflow aspect contains pointcut and advice declarations and
defines the activities, the variables, the transitions, the participants declara-
tion, and the application declarations that implement a crosscutting concern.
Workflow aspects are complementary to programming aspects. For example,
whereas workflow aspects can be specified in scenarios at the workflow level
(e.g., workflow-level data persistence), programming aspects can be used for
a Java-based implementation of an artifact to persist the data. The workflow
aspects developer is responsible to take care on the effects that the aspect can
cause to the different workflow perspectives (e.g., control flow, data flow).

Joinpoints. Joinpoints specify a point in the execution of the workflow ap-
plication when the advices should join. The advices and the workflow applica-
tion are defined separately. There are two types of joinpoints in aspect-oriented
workflow languages: activity joinpoints and internal joinpoints. Activity join-
points (workflow-level joinpoints) correspond to the execution of activities to
capture their start and completion. Internal joinpoints (interpretation-level
joinpoints) capture internal points during the execution of an activity to sup-
port a crosscutting concern. Typically, the aspect-oriented workflow languages
only support activity joinpoints, thus other fine-grained points are not exposed
to be capture. For example, internal joinpoints such as as the creation or ter-
mination of a workflow instance, the assignment or change of a participant
to an activity, and the operating of workflow variables are needed to add a
crosscutting concern.

Pointcuts. Pointcuts specify a selection of related joinpoints. For exam-
ple, to select a joinpoint where an activity is executed. This selection must
support quantification [FF00] to span different elements of a workflow applica-
tion. A limitation of current aspect-oriented workflow languages is that they
do not provide support to enable the direct joinpoint selection according to
the workflow perspectives such as behavioral, organizational, informational
and operational. For example, for allowing a pointcut to select all joinpoints
where an activity modifies certain variable.

Advices. An advice is a workflow activity that implements the crosscut-

6.4 Aspect-Oriented Software Development 111

ting functionality that needs to be executed at the set of joinpoints specified
by a pointcut. An advice activity can be executed before, after, or instead
of the selected joinpoints. It is also possible to define different orders of ex-
ecution (e.g., sequence, parallel) between joinpoint activities and the advices
according to the workflow control patterns [RAvdAM06]. The advice language
is the same as the workflow language to avoid incompatibilities in the workflow
specification between workflow developers. The aspect-oriented workflow lan-
guages can extend the workflow language with special constructs to collect the
context, to access the meta-data, and to avoid incorrect behaviors about the
current joinpoint activity. These extensions include constructs to define advice
precedence and to access the input and output variables, the participants, the
applications, the activity name, the activity type related to the joinpoint ac-
tivity and its parent workflow specification. The advice may also provide the
constructs to specify if a workflow aspect is applied to all workflow instances
of the workflow application or only to some of them.

Weaving. The composition of workflow aspects with workflow applications
can be performed before deploying the workflow application (statically) or
during the execution of the workflow (dynamically).

In the static approach, the composition tool takes the workflow application
and the workflow aspects as inputs and generates an instrumented workflow
application as output. The generated workflow application can be deployed in
any workflow engine that supports the workflow language, however, the com-
position cannot be performed at runtime to incorporate/remove un-anticipated
workflow aspects. The workflow aspects are not first-class runtime entities in
the workflow engine but only in the workflow specification.

In the dynamic approach, interpretation of the workflow engine is modified
to check for workflow aspects when executing an activity. The composition can
be performed at runtime what improves the flexibility of workflow applications,
however, the composition is dependent of the workflow engine breaking the
portability of the workflow application. The workflow aspects are first-class
entities at the workflow specification as well as the workflow execution level.

Whereas the static approach requires to add custom hooks to the workflow
specification, the dynamic approach requires to modify the workflow engine to
support these custom hooks.

The following aspect-oriented workflow language was used in our case stud-
ies to implement crosscutting concerns in BPEL workflow applications.

Padus Language

Padus allows introducing crosscutting behaviour to an existing BPEL process
in a modularized way [BVJ+06].

The workflow aspects in Padus are written in separate XML files. The
Padus language facilitates defining the specific points during the workflow ex-

112 Chapter 6. Rationale and Background

ecution where additional behaviour has to be added to the BPEL specification.
These points can be selected as needed by using a logic pointcut language. The
Padus weaver can be used to combine statically the behaviour of the core work-
flow application with the behaviour specified in the workflow aspects. Similar
to traditional aspect-oriented systems, the new behaviour can be introduced
by inserting it before or after certain joinpoints defined by the pointcut or
it can replace existing behaviour by using an around advice. The Padus lan-
guage introduces the concept of in advice to add new behaviour to existing
process elements and provides an explicit deployment construct to specify as-
pect instantiation to specific workflow specifications. The advice code contains
the extra behaviour that should be inserted, which is specified using standard
BPEL elements.

Padus contains a construct named using to specify the workflow global
information required by the advices. This information corresponds to a) the
namespaces of the web services to be invoked, b) the partner links that de-
fine the interaction between services, and c) the BPEL variables that are
global to the workflow application. AO4BPEL is another aspect-oriented work-
flow language that supports the modularization of crosscutting concerns in
BPEL [CM07]. The implementation of AO4BEL is based on a dynamic weav-
ing approach.

Despite that current implementations of aspect-oriented workflow languages
are applicable to domain-specific workflow languages (e.g., BPEL), the con-
cepts of aspect-oriented workflow languages can be generalized to general-
purpose workflow languages.

6.5 Summary

This chapter has explained the elements considered to develop a MonitA gener-
ative infrastructure. We presented the requirements for implementing MonitA
specifications such as a) target diverse workflow platforms, b) modularize the
generated MonitA code, c) instrument the workflow applications, and d) access
and navigate the workflow data. We presented how the adoption of multiple
generative programming approaches such as MDE and AOP facilitates generat-
ing and composing automatically the implementation of MonitA specifications
into the implementation of a workflow application. We have discussed how the
usage of these paradigms is hidden for workflow developers who are specifying
M&A concerns.

Our goal for the next chapter is to describe in detail the architecture and
strategy to create a new MonitA generative infrastructure to target MonitA
specifications into a new workflow platform. The implementation requirements
presented in this chapter are solved in the next one.

Chapter 7

MonitA: The Generative
Implementation Strategy

This chapter presents the generative strategy that we have defined to imple-
ment and execute the MonitA specifications. Despite their platform indepen-
dence, these specifications require to target a particular workflow platform
(e.g., BPEL platform, JPDL platform) to be executable. The main goal in
our strategy is to generate and compose automatically the implementation of
MonitA specifications into the implementation of the workflow applications.
Consequently, MonitA specifications can be executed in the same workflow
platform (e.g., BPEL-workflow language and BPEL-engine) than the workflow
application. In this way, our workflow monitoring and analysis architecture can
be adopted and integrated with existing WFMS.

Figure 7.1 illustrates the main elements involved in our MonitA execution
platform. This figure presents an example for executing MonitA specifications
into two different workflow platforms (i.e., JPDl, BPEL).

Dashboard

MonitA
Model (DSL)

Data Association
Model (DSL)

Process Model
(BPMN Modeler)

BPEL - Engine

BPEL-Workflow
application

Specification

MonitA-BPEL
generative

infrastructure

Execution Dashboard
libraries

Dashboard
libraries

Dashboard
libraries

Implementation

JPDL - Engine

JPDL-Workflow
application

MonitA-JPDL
 generative

infrastructure

Figure 7.1: MonitA Execution Platform.

The specification part was explained in chapter 4, by considering the spec-
ification of different models such as: a process model, a data types model,
a data association model, a measurement data types model, and a MonitA

113

114 Chapter 7. MonitA: The Generative Implementation Strategy

model. In the execution part, a workflow engine is used to execute the work-
flow application that is instrumented with monitoring and analysis (M&A)
concerns. The goal of this chapter is to explain a generic strategy to create a
MonitA generative infrastructure (the arrow in Figure 7.1) required to derive
executable workflow applications instrumented with M&A concerns.

The automatic generation and composition of MonitA specifications into
executable workflow applications is a complex task that requires: a) to imple-
ment the workflow generation process (e.g., to transform BPMN into BPEL)
taking into account the access to workflow data and the traceability of BPMN
to workflow code mappings, b) to generate MonitA code taking into account
the modularization of M&A concerns and the management of measurement
data, and c) to compose automatically M&A concerns with the workflow ap-
plication.

This chapter also illustrates the different types of developers required to
take abstract MonitA specifications to concrete implementations: application
developers and infrastructure developers. Although we briefly describe the role
of application developers, the focus of this chapter is on the role of MonitA
infrastructure developers. The MonitA infrastructures developers use our gen-
erative strategy to create a generative infrastructure required to automate the
implementation of M&A concerns.

Section 7.1 describes the process that application developers have to follow
to specify and execute M&A concerns for a workflow application.

Section 7.2 presents the architecture and strategy that we have defined to
generate and compose automatically MonitA code into an existing workflow
application. We present our general strategy that can be applied to target
diverse workflow languages and engines. The instantiation that MonitA in-
frastructure developers perform on our strategy to target concrete workflow
platforms is presented in chapter 8.

Sections 7.3, 7.4, and 7.5 detail the main elements within the three blocks
defined in the architecture of a MonitA generative infrastructure. The instan-
tiation of these elements creates a new MonitA generative infrastructure to
target MonitA specifications into a new workflow platform.

7.1 M&A Analysis Concerns Execution

The monitoring and analysis requirements defined by workflow analysts have
to be implemented by MonitA application developers.

Figure 7.2 summarizes the process that an application developer must fol-
low to specify and implement M&A concerns using MonitA.

An application developer starts by selecting a workflow application and
defining the workflow variables associated to its activities. This association
between activities and workflow variables is done only once. An applica-

7.2 Architecture for Creating a MonitA Generative Infrastructure115

Specify Monitoring and
Analysis Concerns s

Deploy the
Instrumented

Workflow Application

Interact with the
Dashboard and Analyze
the Workflow Execution

Application Developers

MonitA Generative Infrastructure

Generate Executable
BPEL code

Generate Executable
JPDL code

Compose Workflow
and MonitA code

Select target
platform

Figure 7.2: Specification and Implementation of M&A Concerns using MonitA.

tion developer specifies the M&A concerns by using the DSL editor, and also
specifies the new measurement data types required to support these concerns.
The MonitA application developer has to select an existing MonitA platform
(e.g., MonitA-BPEL platform) to automatically generate and compose M&A
concerns into an existing workflow application (e.g., BPEL workflow appli-
cation). The MonitA platform generates and composes automatically the
MonitA code with the workflow application code that is implemented with
a workflow language (e.g., BPEL workflow language). Consequently, the code
of the workflow application is instrumented with M&A concerns and can be
executed in a corresponding workflow engine (e.g., BPEL engine). Then, the
application developer has to deploy the instrumented workflow application into
a particular workflow engine to start the workflow execution and the moni-
toring and analysis of the workflow instances. Once the workflow application
instrumented with M&A concerns is under execution, an application developer
interacts with the dashboard to visualize the monitoring information, and uses
the existing libraries to customize his queries (e.g., queries on demand).

Now, suppose that the workflow application has to be executed in another
workflow platform (e.g., JPDL workflow language and JPDL engine) that is
not supported by MonitA. Then, the application developers have to contact
the MonitA infrastructure developer to create a new MonitA generative infras-
tructure. This is required to execute M&A concerns with workflow applications
into this new workflow platform. The following sections describe the strategy
to target M&A concerns into new workflow platforms.

7.2 Architecture for Creating a MonitA Gen-

erative Infrastructure

This section presents the architecture defined for creating the generative infras-
tructure (the arrow in Figure 7.1) required to automate the implementation of

116 Chapter 7. MonitA: The Generative Implementation Strategy

MonitA specifications into a workflow application. It also presents a strategy
to target MonitA specifications into diverse workflow platforms.

7.2.1 Functional Decomposition Viewpoint

A MonitA infrastructure developer creates the generative infrastructure re-
quired to automate the implementation of MonitA specifications for a new
workflow platform. Each MonitA infrastructure developer focuses on the in-
stantiation of the components defined in our architecture for the generative
infrastructure. For example, he creates the artifacts (e.g., model transforma-
tions) required to transform and compose automatically MonitA specifications
into JPDL workflow applications (see Section 8.2).

Figure 7.3 illustrates the main elements involved in the architecture for the
MonitA generative infrastructure.

Sp
ec

ific
at

io
n

Into different Workflow Languages
<BPEL, JPDL, XPM, ... >

Workflow code Generator

MonitA Model
(DSL)

Data Association
Model (DSL)

Process Model
(BPMN)

Data Types
Model (XSD)

generates

2
Creates the Infrastructure to Automate the Implementation of M&A Concerns

Traceability
manager

Process data
manager

BPMN
translator

MonitA code Generator

Measurement and
control actions manager

AOP code
generator

Using different Aspect-oriented Languages
<Padus, AO4BPEL, AspectJ, ... >

Im
pl

em
en

ta
tio

n
En

ac
tm

en
t

Workflow code
generator

Composition Controller
Measurement
data translator

MonitA
Infrastructure

Developer

Weaver

Measurement Data
Store SystemWorkflow Engine Dashboard

Measurement Data
Types Model (XSD)

Figure 7.3: Architecture for the MonitA Generative Infrastructure.

The main components to create a MonitA generative infrastructure are:
the workflow code generator, the MonitA code generator, and the composition
controller. The workflow code generator contains modules that define how
to: translate BPMN models into different workflow languages, store the link
between source (BPMN) and target (workflow) elements, and access workflow
data. The MonitA code generator contains modules that define how to: mod-
ularize the implementation of MonitA specifications, translate measurement
data, manage measurement and control actions, and instrument the workflow
application. The composition controller defines how to compose the generated
MonitA code with an existing workflow application implementation.

7.2 Architecture for Creating a MonitA Generative Infrastructure117

The modules defined in these components differ for each workflow platform
that a MonitA infrastructure developer is targeting.

7.2.2 Generative Strategy

Figure 7.4 illustrates the set of models and model transformations used in our
strategy to generate the implementation of M&A concerns into a particular
executable workflow implementation.

Tc

Process/Data
association model

Traceability
model

Workflow
Implementation

T1

Workflow Application Implementation Monitoring and Analysis
Concerns Automation

Workflow-Analysis Composition

BPMN
model

Instrumented
Executable Workflow

Implementation

Workflow
Implementation model

T2

Workflow
Engine

DataTypes
model

MonitA model
Measure entities

M&A concerns

MM4

MM6MM1

MM3

MM2

Tc

Tb

Process Data
Interface

MM5

Runtime Level

Dashboard

Workflow
Developer

Conceptual Level

Implementation Level

(refined) Workflow
Implementation model

Legend

Metamodel Model Model to Model
Transformation

Model to Text
Transformation

Aspects
code

Measurement
Data Interface

Application
code

M&A Concerns
Implementation

Figure 7.4: MonitA Generative Strategy.

In this figure, the elements in the MonitA generation strategy can be framed
in three components according to our MonitA implementation architecture.

The first component manages the workflow generation process to establish
the correspondence between elements of a process model and its workflow im-
plementation (see Section 7.3). We complement a BPMN model by declaring, in
a data association model, the data entities used by the workflow application.
A partial workflow implementation is generated from a process model. We
extended this workflow generation process by defining a set of model trans-
formations (T1 and T2) to generate a) the workflow implementation code
of the target workflow platform, and b) a traceability model to trace the
mapping done in the transformation.

The second component generates workflow executable code from the MonitA
specifications (see Section 7.4). M&A specifications are rooted in a MonitA

118 Chapter 7. MonitA: The Generative Implementation Strategy

model referring to conceptual workflow specification models, which describe
flow entities and data entities in the workflow application. Our generative
strategy defines the creation of a model transformation (Tc) to generate the
M&A code (workflow, aspect, data management, application) for implementing
the M&A concerns. This model transformation uses the traceability model

to automatically obtain the relations between the MonitA specifications and
the actual workflow implementation.

Finally, the third component customizes the instrumentation of the work-
flow implementation by adding custom MonitA code automatically (see Sec-
tion 7.5). The composition between the generated M&A code and the workflow
application code is performed automatically at the implementation level by us-
ing the weaver engine of the used aspect language. The resulting code artifacts
correspond to an executable workflow implementation instrumented with

M&A concerns. The resulting code can be executed in a existing workflow en-
gine and interacts with external systems (dashboard, measurement data store)
to manage measurement information.

The elements of each of these three phases are characterized according to
their role in the infrastructure: specification artifact, transformation artifact,
and generation artifact.

7.3 Controlling the Workflow Generation Pro-

cess

This section details the workflow code generator component illustrated in Fig-
ure 7.3.

There are existing tools to translate BPMN process models into a workflow
language (e.g., BPMN2BPEL [BPM]), however, the MonitA infrastructure de-
veloper has to create a new transformation to manage the traceability between
BPMN to workflow code mappings. This section presents how to control the
workflow generation process to transform BPMN into a workflow language
(e.g., BPEL) in order to access the workflow data and to generate a traceabil-
ity model containing the BPMN to workflow code mappings.

In those cases where a BPMN process model is not provided, the M&A
concerns can be specified directly in terms of elements of the workflow appli-
cation (e.g., BPEL activities). Nevertheless, we consider that the typical life
cycle of a workflow applications starts by specifying a process model using a
high-level notation.

The following sections detail the three modules contained in the workflow
code generator component (Figure 7.3): BPMN translator, traceability man-
ager, and process data manager.

7.3 Controlling the Workflow Generation Process 119

7.3.1 Transforming BPMN Models into Executable Work-
flows

A process model is created conform to the BPMN metamodel [The08] (MM1 in
Figure 7.4). A description of the elements involved in the BPMN metamodel
was presented in section 2.1.2. A model transformation (T1 in Figure 7.4)
generates a) a specific workflow platform model, and b) a traceability model
to trace the mapping done in the transformation.

In some cases the target workflow platform provides a workflow implemen-
tation model (MM5 in Figure 7.4), which has a direct mapping with the actual
workflow implementation code. When an implementation model is provided,
then the process model is transformed into a workflow implementation model.
Otherwise, the process model is translated directly to workflow implementation
code. This transformation (T2 in Figure 7.4) generates the workflow definition
file (e.g., JPDL file) and the underlying application code (e.g., Java code).

A workflow developer uses a DSL to specify the workflow variables used
by the workflow application and their association with the flow entities. This
data association model (MM3 in Figure 7.4) complements the BPMN process
models with a data view required to model a workflow application to be eval-
uated from a high-level of abstraction. The data types model associated with
the workflow variables is specified according to an XML schema (XSD) meta-
model created from the XSD specification (MM2 in Figure 7.4). The data
association model is specified according to the data association metamodel
provided by MonitA (MM3 in Figure 7.4).

7.3.2 Managing Traceability

We store the links between source and target elements in the model transfor-
mation for determining the target of other model transformations.

We use the TraceComponent metamodel (MM5 in Figure 7.4) used by the
transformation language of the OpenArchitectureWare models framework [Ope]
to link process model elements with workflow implementation ones.

The traceability models created with this metamodel store a) a set of rela-
tions between source elements (BPMN model) and target elements (workflow
implementation), b) the references to these elements, and c) the type of trans-
formation. Thus, information such as names and types of model elements can
be queried from both models to establish their correspondence. A traceability
model can be generated in a model-to-model transformation as well as in a
model-to-text transformation.

To build the traceability model, the MonitA infrastructure developer, who
is implementing the transformations, must specify explicitly where to create a
trace in the transformation. These traces are specified by using the methods
and extensions provided by the traceability mechanism. For example, to create

120 Chapter 7. MonitA: The Generative Implementation Strategy

a trace the workflow developer must invoke the method createTrace(source,
target,”m2m”) in the transformation code. This method invocation adds an
item element (M2MTraceItem) with the information provided. The extraction
of data from the traceability model requires the navigation through these items.
The traceability mechanism resolves the references to the source and target
models, thereby the properties of the model elements can be queried.

As in any specification, the reference to the metamodels, the source model,
and the target model must be well defined to localize the elements referenced in
the traceability model. The MonitA infrastructure developer must know all the
involved metamodels in order to apply the object conversions (e.g., castings)
required to access the elements information in the traceability model.

All the details about the workflow implementation have to be exposed.
However, the workflow generation process only contains the basic informa-
tion (e.g., naming convention) and not the code added manually by workflow
developers to implement the activities. Thus the workflow developer has to
complement this information with the actual implementation of the activities
(e.g., data, invocations, operations). The data view is covered by our ap-
proach, which models a projection of workflow data and their association with
flow entities.

When the traceability model cannot be generated automatically and when
it does not contain all necessary information about the workflow implementa-
tion, this traceability has to be described manually by the workflow developer.

7.3.3 Accessing Workflow Data

We use web services and method invocation implementations for exchanging
one-way messages to access workflow data and to satisfy our MonitA require-
ments. All the workflow variables used by the workflow application must be
exposed to be shared by the workflow developers who are specifying M&A
concerns (process data interface in Figure 7.4).

The only requirement that has to be implemented to access the workflow
variables is the read operation. The workflow data access is simplified since
we do not want to alter the state of the workflow application from the MonitA
specifications during execution.

7.4 Generating the M&A Code

This section details the MonitA code generator component illustrated in Fig-
ure 7.3. This section presents how to generate MonitA code taking into account
the modularization of MonitA specifications and the management of measure-
ment data.

7.4 Generating the M&A Code 121

The MonitA specifications correspond to a model that conforms to the
MonitA metamodel (MM4 in Figure 7.4). The MonitA models are transformed
into MonitA code specified in the workflow language used by the workflow
application (e.g., JPDL). The MonitA models also generate MonitA code,
specified in a programming language (e.g., Java), that is delegated by the
workflow application (e.g., notification actions).

A model transformation (Tc in Figure 7.4) generates the executable MonitA
code in a specific workflow platform. This model transformation uses as input
the information provided by the MonitA models and by the traceability model
created in the workflow generation process. This traceability model is used to
automatically obtain the relations between the elements in the process model
and in the actual workflow implementation. The output of this model trans-
formation comprises: a) aspect code to modularize and compose the M&A
concerns, b) workflow code with the M&A concerns implementation, c) ap-
plication code with a representation of measurement data, and d) application
code (e.g., web services) required to manage the measurement information in
the persistent system. These artifacts are explained in the next subsections.

A model transformation (Tb in Figure 7.4) automatically instruments the
workflow implementation model by adding the workflow elements (e.g., events)
required to support the MonitA specifications. The workflow implementation
model is instrumented since this model is directly transformed to code and
avoids the necessity to add the workflow elements to the generated workflow
implementation (e.g., processdefinition.xml). This model transformation ap-
plies only when there is not an aspect-oriented workflow language that manages
crosscutting concerns in the target workflow language. Thus the refinements
done to the workflow implementation model instrument the workflow applica-
tion with monitoring events, which delegate its execution to application code.
This code can be then used to introduce M&A concerns by using a regular
aspect-oriented language. The input for this model transformation consists of
the workflow implementation model and the MonitA model, whereas the out-
put is a workflow implementation model instrumented with monitoring con-
cerns.

The following sections detail the four modules contained in the MonitA
code generator component (Figure 7.3): AOP code generator, workflow code
generator, measurement data translator, and measurement and control actions
manager.

7.4.1 Transforming MonitA Specifications into AOP Code

We use AOP as a composition mechanism at the implementation level to fa-
cilitates the automatic addition of M&A concerns in multiple points of the
workflow application. This facilitates to bring the MonitA specifications up
to date each time the workflow implementation changes. In addition, the

122 Chapter 7. MonitA: The Generative Implementation Strategy

generated MonitA code remains modularized from an existing workflow im-
plementation. Thus, the existing workflow implementation can be maintained
independently of the generated MonitA code. Moreover, an evaluation of the
impact of the MonitA code on the workflow implementation can be performed
when the M&A concerns have complex interactions and realizations at the
implementation level.

Our workflow monitoring and analysis generation process generates an as-
pect for each MonitA specification, which is composed of monitoring, measure-
ment and control concerns. In general, the monitoring events in MonitA are
translated into pointcut and joinpoint elements, which describe how the aspect
has to interact with a workflow entity (e.g., activity). The analysis functions
in MonitA are translated into advices containing the implementation of the
measurement and control actions. The implementation of these actions is gen-
erated into code using the workflow language of the target workflow platform.

A data association model offers a representation of the workflow variables
that can be accessed and shared. The interception of custom workflow data
events is materialized by using aspects.

There are scenarios where using an aspect-oriented workflow language is not
enough to customize the workflow implementation to support the interception
of workflow data events. This is, when the activities implementation is done in
workflow code, and when the aspect-oriented workflow languages do not offer
support to intercept events in terms of data or functions inside the activities.

When the workflow data is represented in the application code, the acces-
sor methods associated with the workflow variables can be intercepted by an
aspect-oriented language (e.g., AspectJ). When the monitoring specification is
done in terms of workflow data events, the joinpoint in the generated aspect
intercepts the invocation of a class that contains the definition of the data
(e.g., Problem class in the trouble ticket scenario). As soon as the data entity
class is invoked, the aspect captures the information (e.g., performer, instance)
required to execute the monitoring and control concerns.

7.4.2 Transforming MonitA Specifications into Work-
flow Code

Different elements of a MonitA specification are translated into workflow code
depending on the target workflow platform. The normal case in our gen-
erative strategy is to translate monitoring events into pointcut elements in
the aspect-oriented workflow language supported by the workflow language.
Nevertheless, not all workflow languages provide an aspect-oriented workflow
language (e.g., JPDL). In these cases the workflow specification must be in-
strumented with additional flow elements that delegate the implementation of
M&A concerns to application code.

7.4 Generating the M&A Code 123

The MonitA generation process generates an object class (e.g., ActionHan-
dler) to capture execution information when the implementation of MonitA
actions is delegated to an object instead of being executed directly by the
workflow language. Thus the monitoring events can be translated into point-
cut elements of a general-purpose aspect-oriented language, which intercepts
the methods associated with these actions.

In this way, the implementation of the MonitA actions can be generated
directly into workflow code or into the underlying application code.

7.4.3 Managing Measurement Data and Control Actions

The MonitA code generator generates a class (i.e., ActionManager) to manage
the notification actions that can be applied (i.e., email notification, log cre-
ation, alarm visualization) and to connect with external systems (e.g., dash-
board).

A DataManager class is generated to access and manage the measurement
data from our measurement data store system.

7.4.4 Transforming Measurement Data

Each complex data type associated with the measurement variables specified
in the M&A concerns is translated into a Java class to provide a represen-
tation of the data that can be accessed and shared. We use a web services
implementation for performing the set of operations (i.e., read, update, cre-
ate, delete) provided to manage the measurement data. The measurement data
is identified through the workflow application identifier, the worflow instances
identifier, and in certain cases with a flow entity identifier.

MonitA supports the specification of monitoring events in terms of work-
flow data events to support a more advanced analysis activity (i.e., in terms
of workflow data). These specifications require to modularize monitoring con-
cerns at the level of local variables (workflow variables used by a particular
activity) and not only at the workflow instance or activity level. Nevertheless,
the workflow data events can be triggered by multiple flow entities and also
by external systems. This is problematic since the workflow developer is inter-
ested only in the interception of workflow data events when they are triggered
by a specific flow element (e.g., activity). Figure 7.5 illustrates this scenario.

In this scenario, the activities A and C update the variable x, whereas
the activity B uses the variable y. An external system also modifies the vari-
able x. However, a workflow developer is only interested in intercepting when
the variable x is updated by the activity C. The aspect-oriented languages
(e.g., AspectJ) and the ones specialized in workflows (e.g., Padus) do not sup-
port the modularization of crosscutting concerns at the level of local variables.

124 Chapter 7. MonitA: The Generative Implementation Strategy

! " #

$%&'%()*+,
$%&'%()*+-+

./%&*0+1%2%

340%2*5 340%2*535*5

!44)'6%2'78+
1*$*)74*&

97&:!7;+%44)'6%2'78

<,2*&8%)+5-52*=

Figure 7.5: Intercepting data interactions.

Thus a monitoring concern defined in terms of data related events cannot be
encapsulated and reused.

We defined a set of possible solutions to allow the interception of data
related events triggered by specific flow entities. These solutions can be applied
depending on the technologies and characteristics of the workflow platform in
which the workflow application is automated.

Solution 1: Instrument the workflow implementation and use aspects
to intercept the generated application code

This solution can be used in workflow platforms where the implementation of
the activities is delegated to application code. In this case, the monitoring and
analysis specification generates a handler to capture the execution information
and an aspect that intercepts when the execute method or the class attributes
are accessed in the handler. This aspect also contains the MonitA code that
has to be added when the activity involved finishes its execution. Figure 7.6
illustrates this scenario.

public class MonitoringData implements ActionHandler{
 public void execute(ExecutionContext executionContext) {...}
 ...
}

Process Definition
...
<task-node>
 <event type=‘node-leave’>
 <action handler=‘MonitoringData’>
 </event>
 <transition to="Verify Resolution" ...></transition>
</task-node>
...

Application code

Intercepting
data events

Aspect

Figure 7.6: Intercepting data related events in the application code.

This solution allows the aspect to recover (from the handler) the informa-
tion of the activity such as instance, process name, and process identifier. This

7.4 Generating the M&A Code 125

information is required to execute the M&A concerns. This solution also allows
to add information about the activity, which is required by the measurement
and control aspect. We use this solution to manage control flow events in the
MonitA platform created for JPDL applications (see Section 8.2).

Using an aspect for intercepting the handler is enough to detect a workflow
event in the class, in a method, or in a class attribute, but not in local variables.
A drawback of this solution is that it allows to intercept an operation performed
on a workflow variable, but not to intercept particular operations performed by
different flow entities (e.g., intercepts only when the variable x is updated by
the activity C). Another drawback is that the advice contained in the aspect
has to be executed when the activity finalizes and not when data is changed.
This is problematic since there could be a big gap of time between the data
related event and the activity finalization.

Solution 2: Annotate the workflow implementation

Another solution to allow the interception of workflow data events in finer-
grained execution points is to annotate the workflow definition or its underlying
implementation. Figure 7.7 illustrates this scenario.

public class LoanProcess{
 @DataEvent(performer=“NotifyDecision”,
 event = DataEvent.SET)
 private boolean loanResult;
 ...

...
<bpel:assign bpmn:label="Approve Request">
 <bpel:copy>
 <bpel:from>Approval</bpel:from>
 <bpel:to>$approval</bpel:to>
 </bpel:copy>
 <!-- $approval updated -->
</bpel:assign>
...

Process Definition

Application code

Intercepting
data events

Aspect

Intercepting
data events

Aspect

Annotations

Figure 7.7: Intercepting workflow data events using annotations.

In this case, the MonitA specification has to generate an aspect to intercept
these annotations. Although this approach would facilitate the interception of
fine-grained execution points, the following drawbacks have to be considered:

• The workflow code is contaminated with annotations complementing the
MonitA code. This is not a problem if the annotations are generated and
added automatically to the workflow code. However, this requires a very
detailed traceability model to know exactly where to instrument workflow
code with data interaction annotations.

126 Chapter 7. MonitA: The Generative Implementation Strategy

• If the annotations are added manually, the workflow developers require de-
tailed knowledge of the workflow implementation to add the annotations in
the right location. The workflow variables are not always explicit in the
control flow specification but in the underlying implementation. Thus, this
solution can be used in workflow platforms where there is access to the
underlying implementation of the activities.

• An additional formalism has to be defined to add annotations that allow to
describe the relevant functionality that is executed. Nevertheless, this for-
malism is already provided by the MonitA specifications, thus, an additional
formalism introduces synchronization and maintainability problems.

• The workflow specification can restrict certain workflow elements to add
additional code into it (e.g., into an assign in BPEL). If the monitoring
code is added outside the workflow element, then it behaves as the workflow
definition instrumentation presented in the first approach.

This is why we do not consider this as a viable solution since it would break
our base objectives.

Solution 3: Use aspects to intercept the data representation entities
in the underlying implementation

This solution can be adopted where there is access to the underlying implemen-
tation of the activities. In particular to the classes that contain a representation
of the data entities. Figure 7.8 illustrates this scenario.

 public class Problem {
 private string area;
 private String id;
 ...

public class MonitoringData
implements ActionHandler{
 public void execute
(ExecutionContext
executionContext) {...}
 ...
}

Process Definition
...
<task-node
 <event type=‘node-leave’>
 <action handler=‘MonitoringData’>
 </event>
 <transition to="Verify Resolution" ...></transition>
</task-node>
...

Application code

Intercepting
data events

Aspect

Workflow Data Representation

Figure 7.8: Intercepting workflow data events in the data entities representa-
tion code.

When there is access to the underlying implementation, the pointcut inter-
cepts when the data is changed in the data representation entity (Java class).
Additionally, the aspect requires to recover the information of the activity

7.5 Composing the MonitA Code with Workflow Applications 127

(e.g., instance, process identifier) that operated on the variable. However, this
information is not contained in the data entity class (e.g., Problem).

The main drawback with this solution is that it is not possible to intercept
workflow data events in the underlying implementation when there is no access
to it (e.g., when the activities are implemented by external services).

Solution 4: Extend the workflow languages and aspect languages to
manage workflow data related events

A workflow language can be extended to provide the generation of events in
terms of the workflow variables in such a way that these state changes can be
intercepted and processed manually or by external systems (e.g., AOP tech-
nology). At the same time, the workflow aspect languages can be extended to
support the interception and composition of crosscutting concerns in interme-
diate points of the activities.

The main drawback with this solution is that the workflow applications
have to be re-implemented to incorporate the management of workflow data
events in the workflow code. If these extensions are incorporated in the work-
flow application, they are not supported by existing workflow engines.

None of these solutions satisfy the requirements for implementing custom
monitoring events (e.g., data events triggered by specific flow entities) in work-
flow applications. Thus, a new flexible mechanism must be created to allow the
interception of custom monitoring events in a multi-platform workflow engine.
In our approach, we used MonitA for the specification of high level monitoring
events and an AOP pointcut language for capturing these events in the work-
flow implementation. However, most AOP languages do not offer the ability
to reason about a function’s (activities’) body. We require to define a different
approach (e.g., a new compiler) to support the implementation of monitoring
events defined in MonitA.

7.5 Composing the MonitA Code with Work-

flow Applications

In addition to transforming M&A models (specifications) into code, these spec-
ifications must be composed to produce and executable application. This sec-
tion details the composition controller component illustrated in Figure 7.3. The
composition controller defines how to compose automatically MonitA specifi-
cations with the workflow application.

The composition between the generated MonitA code and the workflow
code is performed automatically at the implementation level (i.e., workflow
definition and underlying implementation). The code required to compose the

128 Chapter 7. MonitA: The Generative Implementation Strategy

workflow application and M&A concerns is generated according to the weaver
engine provided by the aspect language (e.g., Padus, AspectJ).

The resulting code artifacts correspond to an executable workflow imple-
mentation instrumented with M&A concerns.

7.5.1 Selecting the Level of Abstraction

The composition of M&A concerns requires the integration of multiple models
(i.e., MonitA model, process model, workflow data model) specified in different
languages. The composition between these models can be performed at the
conceptual level or at the implementation level by defining the link between
concepts in the different models.

The composition of heterogeneous models at a conceptual level requires the
definition of the composition semantics between concepts of two metamodels.
At the conceptual level, the complexity to define the composition semantics
increases for each metamodel added to the specification since the new meta-
model could not have a well defined semantics. Moreover, each time a new
concept is added to a metamodel or a new metamodel is incorporated for the
specification of M&A concerns, the composition mechanism has to be adapted
affecting the evolution of the resulting applications. Nevertheless, the main
motivation to compose MonitA specifications and workflow applications at a
high-level of abstraction is to validate their consistency before execution. A
possible validation scenario is to identify potential M&A concerns interferences
and interactions between MonitA specifications declared by different applica-
tion developers. This facilitates the detection of conflicts independently of the
technology, therefore the validation is performed only once ensuring that the
MonitA specifications are going to execute correctly in every execution tech-
nology. An evaluation of potential conflict between MonitA specifications is
presented in section 11.2.3.

We delay the composition between the workflow application and the MonitA
specifications at the implementation (application) level to reuse existing com-
position mechanisms. At the implementation level, the semantics of the gen-
erated M&A code is well defined and the composition semantics is already
defined around uniform composition concepts. Thus, each time a new concept
is added to a metamodel or a new metamodel is incorporated for the spec-
ification of M&A concerns, the composition mechanism is not affected. We
performed a composition at the implementation level by considering that the
code of the workflow applications already exists. The advantages at this low-
level of abstraction are that a) the semantic gap is smaller since both domains
converge to one abstraction, b) the models are richer in implementation details,
which allows fine grained composition, and c) the existing assets (metamodels,
models, and model transformations) can be reused.

The MonitA specifications cannot be fully mapped to elements of the

7.6 Summary 129

BPMN process model. This is mainly because the MonitA specifications not
only add new activities to workflow specification but they also require to add
elements to the underlying implementation of the activities. Consequently,
MonitA specifications are not longer executable. Specifically the measurement
and control actions such as the declaration, creation, navigation, and persis-
tence of measurement information cannot be expressed in terms of process
models. A first effort for composing MonitA specifications at the conceptual
level and the required research work is presented in section 11.2.1.

Analyzing the advantages and disadvantages of these composition approaches,
the best decision to compose M&A concerns with a workflow application seems
to be the combination of both levels of abstraction.

7.6 Summary

The architecture and strategy outlined in section 7.2 is used by MonitA in-
frastructure developers to automate implementation of MonitA specifications
into a new target workflow platform. The target workflow platform requires
a mechanism to support separation of concerns in order to generate accurate
monitoring and analysis implementations according to the specifications. An
aspect-oriented workflow language (e.g., Padus) can be used to modularize
M&A concerns when it is supported by the workflow implementation language
(e.g., BPEL). Otherwise, an AOP language (e.g., AspectJ) supported by the
underlying implementation language (e.g., Java) can be used to modularize
the M&A concerns.

A MonitA infrastructure developer of a new MonitA generative infrastruc-
ture must define the mappings from the MonitA model to the language ab-
stractions in the target workflow platform.

Model transformations in a Model-Driven Engineering (MDE) context are
used to translate the MonitA specifications into executable workflow language
code. The generated code is modularized and composed with a workflow ap-
plication by using aspect-oriented programming (AOP) technology. The gen-
erative strategy for MonitA specifications offer some maintainability possibil-
ities. For example, if the workflow specification changes, the M&A concerns
implementation can be re-generated and composed with the new workflow im-
plementation without loosing the MonitA specification and reducing the time
to implement M&A concerns.

Our generation strategy offers support for transforming different model-
ing languages, implementation languages, and workflow engines. We used this
strategy to automate the implementation of MonitA specifications into two dif-
ferent executable workflow platforms: a) the JPDL workflow language [JPD]
with the jBPM engine, and b) the BPEL workflow language with the Apache
ODE engine. AspectJ and Padus were used as languages for separation of con-

130 Chapter 7. MonitA: The Generative Implementation Strategy

cerns in these platforms respectively. The next chapter presents the realization
of these two MonitA generative infrastructures.

Chapter 8

MonitA: The Implementation and
Execution Infrastructure

This chapter presents the MonitA infrastructure that has been developed for
deploying MonitA specifications in workflow applications.

Section 8.1 presents the technologies used to implement the MonitA plat-
form.

Sections 8.2 and 8.3 present the validation done with two different MonitA
infrastructure developers to implement two different MonitA generative infras-
tructures (i.e., MonitA-JPDL and MonitA-BPEL). These implementations are
an instantiation of the generative strategy described in the previous chapter.
For each infrastructure we detail the same components presented in the archi-
tecture for the MonitA generative infrastructure (cf. Figure 7.3 in section 7.2).
The model transformation approach used to transform the MonitA models
workflow code is described in detail in appendix D.

Section 8.4 presents the infrastructure for enacting monitoring and analysis
(M&A) concerns at runtime. The enactment involves elements to store and
manage historic measurement information, and to visualize this information in
a dashboard.

8.1 Selected Technology

The following technologies have been used to implement the MonitA platform:

• Language Implementation. We use Xtext [Ope] version 4.3.1 as a framework
for the development of our DSLs. Xtext provides an EBNF grammar lan-
guage and a generator that creates automatically the implementation of the
parsers. Xtext also generates an AST-meta model (implemented in EMF)
as well as an Eclipse text editor. Xtext is an intermediate language, whereas
antlr is the language that provides the grammar syntax. The language is
compiled into Java.

131

132
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

• Model transformations. We use the Xpand generator framework (version
4.3.1) to implement different assets in our model-driven development pro-
cess. These assets correspond to checks, extensions, code generation, and
model transformations. The Xpand generator framework provides textual
languages (e.g., Check , Xtend , and Xpand) to specify these assets.

• Workflow languages. We use BPEL 1.1 and JPDL 3.2.3 for the implemen-
tation of workflow applications.

• Workflow engines. We use ApacheODE 1.2 and jBPM 3.2.3 for the enact-
ment of workflow instances.

• Aspect languages. We use the Padus weaver (build 2009.09.15) and AspectJ
1.6.5 for the implementation of monitoring and analysis aspects.

• Programming languages. We use Java 1.5 for the core implementation of the
monitoring and analysis framework.

• Graphical user interface. We use Google Web Toolkit (GWT) 1.6.4 to create
the graphical interface to provide feedback to workflow analysts about the
online workflow monitoring and analysis. GWT allows developers to create
JavaScript front-end applications in the Java programming language.

8.2 MonitA-JPDL Generative Infrastructure

This section presents the instantiation of our generative strategy (chapter 7)
to implement and compose MonitA specifications with JPDL workflow appli-
cations (cf. goal G1 and assessment goal AG1 in section 1.3).

The following sections detail the three components we defined in the ar-
chitecture for creating a MonitA generative infrastructure: the workflow code
generator, the MonitA code generator, and the composition controller.

8.2.1 JPDL Workflow Code Generator

We control the workflow generation process in order to store the traceability
information between the source (i.e., process model) and target (i.e., workflow
implementation) elements (cf. generative strategy described in section 7.3).
In order to do so, we need a) to create a transformation to generate JPDL
workflow applications from BPMN process models, b) to create a traceability
model storing the corresponding mappings, and c) to access workflow data.

The following three sections detail the instantiation of the modules con-
tained in the workflow code generator component (Figure 7.3 in section 7.2).

8.2 MonitA-JPDL Generative Infrastructure 133

The modules within the workflow code generator correspond to: BPMN trans-
lator, traceability manager, and process data manager (cf. implementation
challenges IC1 and IC4 in section 6.1).

BPMN Translator to JPDL

We created a model-to-model transformation (T1 in Figure 7.4) for mapping
a subset of BPMN elements into JPDL elements. The BPMN models are
created conform to the the BPMN metamodel provided by the BPMN mod-
eler project [The08]. In the particular case of JPDL we generated an ecore
JPDL implementation metamodel from the XSD specification provided in the
JPDL project1. A description of the elements involved in these metamodels
are presented in sections 2.1.2 and 2.1.3.

This transformation generates a traceability model to capture the mapping
between the BPMN and JPDL models. We do not provide a complete trans-
formation between BPMN to JPDL since there are tools (e.g., JBoss BPMN
Convert module2) focussed on that. However, it is important to incorporate
the traceability model into the existing workflow generation tools in order to
trace the naming convention used by each one of them. A MonitA infrastruc-
ture developer created this transformation to extract a traceability model by
controling the workflow generation process.

This model-to-model transformation translates automatically the BPMN
specification into flow elements in the workflow definition file of JPDL and
into the structure of two handlers (Java classes). An action handler is created
to implement the workflow application actions triggered by workflow events.
A decision handler is created to manage the control flow of the workflow ap-
plication in the decision nodes elements depending on the information used by
the workflow. The actual implementation code of the activities is implemented
manually in Java by the workflow developers.

All the mappings between the BPMN model and the JPDL implementation
model are one to one mappings since the considered BPMN elements have a
corresponding JPDL representation. The transformation between BPMN and
JPDL covers only the basic elements of BPMN (i.e., activity, task, split, start
node, end node, decision nodes, transitions) that facilitates the process repre-
sentation. Complex structures such as subprocesses and other element types
were not taken into account in this model-to-model transformation. Neverthe-
less, these mappings are not difficult to add.

1http://docs.jboss.org/jbpm/xsd/jpdl-3.1.xsd
2http://docs.jboss.org/tools/3.1.0.M2/en/jboss bpmn convert ref guide/html single/

134
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

Traceability Model Generator

We encoded a set of traceability rules in the aforementioned model-to-model
transformation in order to generate a traceability model. The traceability
model contains a reference to source and target elements in the BPMN to
JPDL transformation. These references facilitate the localization of elements
in both models to extract their name and type.

Figure 8.1 illustrates the traceability model generated in the transforma-
tion from the trouble ticket BPMN model (see section 1.2) to a JPDL model.
The traceability model contains the type and name of the source and target
elements of the model transformation. For example, the Activity named Sub-
mit Form in the BPMN model was translated into a Task Node with the same
name in the JPDL model.

Figure 8.1: Traceability Model Generated in a Workflow Implementation.

This information can be used by another model transformation to automat-
ically extract the correspondence between elements in the BPMN specification
and elements in the JPDL implementation. M&A concerns are specified in
terms of BPMN elements but they have to be translated into JPDL elements
to be executed. For example, if a monitoring event is specified to monitor all
activities in the BPMN process model (on start [root.!Activity]), a node-event
workflow event must be added for all flow entities of type TaskNode in JPDL.

8.2 MonitA-JPDL Generative Infrastructure 135

Process Data Manager in JPDL

In JPDL all the workflow information is accessed through the ExecutionCon-
text class provided by the API of the jBPM engine. We developed an interface
(Java class) to encapsulate the available methods that can be used by the
MonitA specification to access the workflow data (Process Data Interface in
Figure 7.4). The methods provided by the interface invoke a subset of the ones
provided by the ExecutionContext. This is done to get read-only access to the
workflow variables since we do not want to alter the state of the workflow
application. The methods provided by the interface facilitates to retrieve a) a
workflow variable, b) the identifier of a workflow instance, c) the identifier of
the workflow application, and d) the name of the workflow application.

The workflow variables specified in the data association model are accessed
through this interface from the workflow engine. Each time a MonitA con-
cern references a workflow variable, defined in the data association model, the
MonitA platform uses the interface to extract its data type, to define the re-
quired casting, and to return the value of the workflow variable. The value of
a workflow variable is retrieved for the workflow instance where the MonitA
specifications is being executed. In the current implementation, we assume
that the data association model reflects the actual workflow variables, how-
ever, if both specification and implementation are not synchronized then there
can be inconsistency problems (see Section 11.2.3).

8.2.2 MonitA Code Generator into JPDL

According to our generative strategy described in section 7.4, we generate
MonitA code taking into account the modularization of MonitA specifications
and the management of measurement data (cf. implementation challenges IC2
and IC3 in section 6.1). This section validates our generative strategy by
implementing a set of model transformations to generate executable monitoring
and analysis JPDL code from the MonitA specifications.

We created a model-to-model transformation that takes as input the MonitA
model, the JPDL model and the traceability model to generate a new JPDL
model instrumented with the elements required for monitoring and analysis.

The following four sections detail the instantiation of the modules con-
tained in the MonitA code generator component defined in our architecture
for creating a MonitA generative infrastructure (Figure 7.3 in section 7.2).
The modules within the MonitA code generator component correspond to:
workflow code generator, AOP code generator, measurement data translator,
and measurement and control actions manager.

136
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

JPDL Code Generator

This module defines how to translate monitoring concerns into control flow
entities in the JPDL workflow language. We created a model transformation
(Tb in Figure 7.4) to instrument the original JPDL model with JPDL events
required to implement the monitoring events specified in the MonitA-DSL. The
JPDL model is instrumented only with the control flow related events types
(i.e., node-enter, node-leave) since data related events are not supported by the
workflow language. The MonitA monitoring events that require to intercept
data related event types are implemented as AspectJ aspects, which intercept
the Java classes that represent the workflow variables when they are accessed
by a workflow activity. This is detailed later in this section.

The main input in this transformation are the monitoring events specified
in a MonitA model, which represent the interception of a workflow event to
execute complementary measurement and analysis code. Monitoring events
in MonitA describe the moment to generate the event (workflow event type),
the element or set of BPMN elements (monitoring subject) that must match
the event type, and the additional actions (function invocation) that must
be executed. A monitoring event in MonitA generates an event element in
JPDL, which is added to each JPDL node that corresponds to the monitoring
subject specified in the monitoring event. The generated JPDL event contains
information about the moment in which the workflow subject is intercepted
(e.g., node-leave) and the action (Java class) that must be executed at this
moment. The link between the workflow subject defined in terms of BPMN
activities and the corresponding JPDL node automatically established through
the traceability model.

Table 8.1 summarizes the mappings between conceptual MonitA workflow
event types and implementation JPDL event types.

MonitA model JPDL model
Event type Workflow subject type Event type Node type
start Task node-enter TaskNodeType
start EventEndEmpty node-enter EndStateType
start EventStartEmpty node-enter StartStateType
start GatewayParallel node-enter ForkType
start GatewayDataBaseExclusive node-enter DecisionType
finish Task node-leave TaskNodeType
finish EventEndEmpty node-leave EndStateType
finish EventStartEmpty node-leave StartStateType
finish GatewayParallel node-leave ForkType
finish GatewayDataBaseExclusive node-leave DecisionType

Table 8.1: Mapping conceptual events to JPDL workflow events

8.2 MonitA-JPDL Generative Infrastructure 137

We created a model-to-text transformation (T2 in Figure 7.4) to generate
the workflow specification (xml file) and the handlers (Java code) required
to manage the workflow application. The input of this transformation is the
JDL implementation model that is instrumented with monitoring events as
explained previously. This transformation generates the workflow specifica-
tion in the JPDL workflow language (processdefinition.xml) and three action
handlers. An action handler is created to implement the workflow application
actions triggered by workflow events. A decision handler is created to manage
the control flow of the workflow application in the decision nodes elements
depending on the information used by the workflow. The actual implementa-
tion code of the activities is implemented manually in Java by the workflow
developers.

Our MonitA generative strategy (see section 7.4) defines the creation of a
set of to transformations required to generate MonitA executable code. Conse-
quently, we created a model-to-text transformation (Tc in Figure 7.4) to gen-
erate the delegated application code required to manage the monitoring events
contained in the workflow specification. The input of this transformation are
the MonitA model (MonitA-DSL specifications) and the traceability model.
The output of this transformation are the handlers (Java classes) required to
implement the M&A concerns that must be executed when a monitoring event
is triggered in the workflow application.

A handler is generated to implement the actions associated to the JPDL
events regarding monitoring activities. The methods associated with the gen-
erated handler can be intercepted by the aspect language to execute the mea-
surement and control actions defined in each analysis function. Figure 8.2
illustrates a fragment of the handler generated from the MonitA model.

!"#$%&'&$())'MMCAction)andler'%*!$+*+,-)'.&-%/,0(,1$+2'3

 ""This method is called when an event is configured for a node
''public void'+4+&"-+564+&"-%/,7/,-+4-'+4+&"-%/,7/,-+4-8'thro5s'64&+!-%/,'3
''''7/,-+4-9(,(:+2'&/,-+4-9(,(:+2';',+<'7/,-+4-9(,(:+25+4+&"-%/,7/,-+4-8=

''''%>5processAction?+@"($)5ATimeCapturedA883
''''''B%*+7(!-"2+1'+C+,-D#E+&-';',+<'B%*+7(!-"2+158=

''''''%>5processNode?+@"($)5AF"#*%-G/2*A83
''''''''+C+,-D#E+&-?)+-B%*+5,+<'H(-+5FI)-+*?&"22+,-B%*+9%$$%)5888=
''''''''+C+,-D#E+&-?)+-BI!+5A)-(2-A8=
''''''J
''''''-%*+7(!-"2+15&/,-+4-9(,(:+2K'processNodeK'+C+,-D#E+&-8=
''''J
''J

''!"#$%&'C/%1'timeCaptured57/,-+4-9(,(:+2'&/,-+4-9(,(:+2K'F-2%,:',/1+L1K'
'''B%*+7(!-"2+1'+C+,-D#E+&-8'3'???J

Data
Interchange
Object

Analysis?unction

MonitoringEvent

Figure 8.2: Generated handler to capture monitoring information.

138
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

Each monitoring event in MonitA generates a conditional in the action
handler to process the action (processAction in Figure 8.2) when the gener-
ated event matches the monitoring event. Each conditional contains nested
conditionals to validate the activity that generated the event (processNode
in Figure 8.2) and to capture the information required to create the objects
(timeCaptured(...) in Figure 8.2) that allow the interchange of information.
The object type is generated with the name of the analysis function specified
in MonitA. This handler processes all events generated in the workflow ap-
plication. Consequently, this is the central point that AspectJ aspects use to
intercept and to associate the M&A concerns.

Another model-to-text transformation (Tc in Figure 7.4) was created to
generate a set of Java classes that represent the information that has to be
interchanged between the handlers and aspects. This model-to-text transfor-
mation generates a Java class for each analysis function defined in a MonitA
specification. For each parameter of an analysis function, a class attribute is
generated with its corresponding name, data type, and accesor methods.

Measurement Data Translator

This module defines how to map the MonitA measurement variables into work-
flow data entities.

A measurement variable is mapped to a variable in Java, which is declared
by using the name and type of the measurement variable. Measurement vari-
ables are declared in XML, but their JPDL implementation are not; therefore,
we need a mapping between XML and Java. The measurement data types are
declared according to the XML schemas data typing, which include support for
Java primitive datatypes. A XML schema specification admits a processor in
which particular schemas are compiled into executable Java code. This proces-
sor can be said to be minimally conforming but not necessarily in conformance
to the XML Representation of Schemas [BM04].

The MonitA-JPDL infrastructure provide support to map primitive data
types (e.g., string) into built-in Java types and to generate Java classes for
measurement complex types (e.g., ProblemsByArea).

Table 8.2 summarizes the automatic mapping between XML schema and
Java primitive data types.

The MonitA-JPDL infrastructure maps the primitive measurement data
types to either primitive or object types in Java. The mapping between prim-
itive measurement data types to JPDL data types can be adapted if required.

The complex measurement data types, which are defined in an external
XML Schema (XSD) file (measurement data types model in section 4.1.1),
are mapped into a Java class. The Java class is generated with the set of
Java variables (names and data types) corresponding to the elements of the
measurement variable data type, and with the set of getter and setter methods

8.2 MonitA-JPDL Generative Infrastructure 139

XML schema data type Java data type
xs:string Java.lang.String
xs:int int or Java.lang.Integer
xs:long long or Java.lang.Long
xs:short short or Java.lang.Short
xs:float float or Java.lang.Float
xs:double double or Java.lang.Double
xs:Boolean boolean or Java.lang.Boolean
xs:dateTime Java.util.Calendar

Table 8.2: Primitive Data Types Mapping between XML Schema and Java

to access and modify these elements. For example, the measurement data
type ProblemsByArea, defined for the trouble ticket scenario (see Section 1.2),
contains a set of elements such as problems and area with their associated
primitive data types (i.e., int, string). For this complex measurement data
type, the MonitA-JPDL infrastructure generates an interface and a Java class
to access and modify the elements (problems, name) of a ProblemsByArea
measurement variable.

Measurement Data and Actions Manager

This module defines how to access and manage the measurement information,
and how to generate notification actions.

We generate a set of Java artifacts named Managers to access and manage
the measurement information. These managers communicate with the per-
sistence systems through a set of interfaces. The workflow developer has to
provide these interfaces and to connect them with the managers. The following
describes the role of each one of these managers:

• The DataManager artifact is a singleton class that manage the measurement
information such as measures, indicators and workflow records. The persis-
tence management of measurement information within the workflow engine
is delegated to Hibernate [KEvS+05].

• The ContextManager is a singleton class that encapsulates the JPDL exe-
cution context to restrict the services to manage workflow variables to only
read-only access.

• The ControlManager is a singleton class that offers the methods to execute
the notification actions such as sending an email, creating an event log trace,
and sending events to external systems (i.e., dashboard).

The measurement data manager, the measurement actions manager, and
the measurement data translator components can be reused by a MonitA in-

140
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

frastructure developer that requires to create a new MonitA generative infras-
tructure (e.g., MonitA-BPEL).

MonitA Translator to AspectJ Aspects

This module defines how to modularize the implementation of MonitA speci-
fications into the workflow application implementation.

We created a model-to-text transformation (Tc in Figure 7.4) to generate
the aspect code required to implement the MonitA specifications. The input
of this transformation is the MonitA model, which contains references to the
measurement data model, and to the data association model.

Each monitoring event that triggers an analysis function in MonitA gen-
erates an AspectJ aspect. The following scenarios present the transformation
of different MonitA elements to AspectJ elements:

• Flow-based monitoring events. These monitoring events correspond to the
ones defined in terms of a flow event (i.e., start, finish) related to a flow
entity (e.g., activity, gateway). For example, the on start [root.SubmitForm]
triggers functionName() monitoring event triggers an analysis function when
the activity named SubmitForm starts.

The main artifact to be intercepted is the generated monitoring handler
(Java class) that contains the methods delegated by the workflow specifi-
cation (JPDL file) to implement the analysis functions. The name of the
analysis function defines the name of the method invoked by the generated
AspectJ pointcut. The workflow event type and the monitoring subject in a
monitoring event defines the AspectJ joinpoint to instrument the workflow
application before or after the execution of the method.

• Data-based monitoring events. These monitoring events correspond to the
ones defined in terms of a data event (i.e., change, create, read, delete)
related to a data entity (e.g., workflow variable, variable attribute). For
example, the on change [root:vProblem] triggers functionName() monitoring
event triggers an analysis function when the workflow variable vProblem is
modified in the workflow application. The main artifact to be intercepted is
the class that contains the representation of the workflow variable referenced
in the monitoring subject.

If the monitoring event is defined in terms of an attribute of a data entity
(e.g., on read [root.SubmitForm:vProblem.area]), the attribute name defines
the name of the method invoked by the generated AspectJ pointcut. The
data type of the monitoring subject (data entity) and the attribute name in
a monitoring event defines the joinpoint to instrument the workflow appli-
cation after the execution of the method associated to the pointcut.

8.2 MonitA-JPDL Generative Infrastructure 141

When the monitoring event is defined in terms of a workflow variable (e.g., on
change [root.SubmitForm:vProblem]), all the methods associated with the
workflow event type (setter methods) are going to be invoked by the gener-
ated pointcut. The data type of the monitoring subject (data entity) in a
monitoring event defines the joinpoint to instrument the workflow applica-
tion after the execution of each method associated to the pointcut.

This mechanism to intercept data related events can be used when the work-
flow data is managed by the execution context or by an external system. This
is because the interception is done on the data object directly.

The information about the activity that perform an operation on a data
entity, the type of operation, and the activity user are not captured directly
in the aspect. This is because of the aspect is observing a data object directly
and this object does not know about this information. Thus, the advice uses
the ContextManager interface to retrieve this information if required by the
MonitA specification.

• Analysis Functions. Each analysis function generates an AspectJ advice
that contains the code to implement the measurement and control actions
and to evaluate the monitoring and measurement information. The code of
the advice corresponds to Java code.

First, a MonitA measurement action is used to manage the monitoring and
measurement data. The measurement variables are computed through a
set of operations between invocations. The elements in the invocation are
analyzed to determine if it is necessary to query or compute other data
previously. The operations (addition, substraction, multiplication, division)
between these invocations have a direct mapping to Java. Each invocation
has a particular transformation to Java code that uses the managers gener-
ated to access and manage the monitoring and workflow information. Once
the value of a measurement is computed through the assignment function,
this value is stored in the measurement data store system.

Second, a MonitA control action is used to notify specific events after eval-
uating the value of a measurement. These notifications are used for sending
an email, creating an event log trace, and sending events to a dashboard.
These elements correspond to the invocation of a method of the generated
ControlManager interface.

Finally, an evaluation rule is used to evaluate the monitoring and measure-
ment information in order to take some notification actions. An evaluation
rule is represented with the if-else statement in Java. The set of invocations
involved in a condition are evaluated through logic and boolean operators,
which have a direct representation in Java. The set of actions correspond to
the measurement and control actions describe previously.

142
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

8.2.3 Composing MonitA Code with JPDL Applications

We compose automatically MonitA specifications with the workflow applica-
tion (cf. generative strategy described in section 7.5). This section validates
our generative strategy by generating the code required to compose M&A con-
cerns with JPDL workflow applications (cf. implementation challenge IC2 in
section 6.1). This section also describes the instantiation of the weaver module
contained in the composition controller component defined in our architecture
for creating a MonitA generative infrastructure (Figure 7.3 in section 7.2).

We use the generated traceability model to identify the flow elements in the
JPDL workflow implementation that must be instrumented according to the
monitoring events defined in MonitA. These elements are instrumented with
additional workflow events to capture state changes during its execution. The
AspectJ weaver integrates the generated aspects and classes (i.e., handlers and
data representation) associated to these events to generate a woven class. The
weaver integrates the aspects into the locations specified in the joinpoints.

In JPDL applications, the analysis functions are added inside an activity
when using workflow events. Analysis functions are not added before or after
the monitored activity. It would require to modify the transitions of the origi-
nal workflow application. Analysis functions are also added inside an activity
when using aspects in terms of the data.

8.3 MonitA-BPEL Generative Infrastructure

This section presents the instantiation of our generative strategy (chapter 7)
to implement and compose MonitA specifications with BPEL workflow appli-
cations (cf. goal G1 and assessment goal AG1 in section 1.3).

We created a set of model transformations to automatically generate the
implementation of MonitA specifications into a BPEL platform. The input
of these transformations are the MonitA specifications, whereas the output is
workflow code in BPEL and aspects code in Padus. The MonitA specification is
translated into multiple artifacts in order to get an executable implementation.

Table 8.3 presents an overview of the transformations from MonitA to
artifacts in a BPEL platform.

The following sections detail the three components we defined in the ar-
chitecture for creating a MonitA generative infrastructure: the workflow code
generator, the MonitA code generator, and the composition controller.

8.3.1 BPEL Workflow Code Generator

According to our generative strategy described in section 7.3, we control the
workflow generation process in order to store the traceability information in

8.3 MonitA-BPEL Generative Infrastructure 143

MonitA ele-
ment

Output ar-
tifact

Description

MonitA
model

Padus as-
pect

- It contains several advices representing the
crosscutting M&A concerns
- It contains Bpel code referencing the workflow
application

Weaver
Java class

It is the weaving engine that composes the
workflow application and the aspects

Monitoring
events

Deployment
file

It specifies how the Padus aspects are instanti-
ated and composed to the workflow application

Measurement
and control
actions

WSDL file It describes the web services created to manage
the measurement data and to send notifications

Measurement
data types

XSD ele-
ments

It describes the measure data types specified in
the language

Measurement
variables

BPEL
variables

It defines a global variable to be added during
the weaving process

Workflow
variables

BPEL
code

It references the message definitions

Table 8.3: MonitA specification into BPEL executable elements.

the mapping between BPMN process model and BPEL workflow implementa-
tion elements. In the creation of the MonitA platform to BPEL we did not
implement the generation of JPDL workflow applications from BPMN pro-
cess models. We took into account the mapping of BPMN to BPEL that
has been defined in a number of references [GTP07] [Whi05] and that has
been implemented in a number of tools such as the open-source tool known as
BPMN2BPEL [BPM] and Intalio [Int].

The following three subsections detail the instantiation of the modules con-
tained in the workflow code generator component defined in our architecture
for creating a MonitA generative infrastructure (Figure 7.3 in section 7.2). The
modules within the workflow code generator correspond to: BPMN translator,
traceability manager, and process data manager (cf. implementation challenges
IC1 and IC4 in section 6.1).

BPMN Translator to BPEL

We validated our workflow monitoring and analysis approach into a workflow
application implemented in BPEL (see section 9.2). This workflow application
was specified in BPMN through the Intalio business process platform [Int].
This platform generates partially the workflow application in BPEL.

144
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

Traceability Model Generator

The MonitA infrastructure developer has to control the workflow generation
process in order to store the links between the source (i.e., process model)
and target (i.e., workflow implementation) elements. Nevertheless, in this
implementation we did not use a traceability model since we do have control
over the existing workflow generation process. However, the automatic creation
of a traceability model can be performed if the MonitA infrastructure developer
gets access to the BPMN to BPEL generation system to customize it (see
Section 8.2.1).

We identified and adopted the naming conventions used by Intalio to encode
in our transformations the way to determine the link between BPMN elements
and BPEL elements.

Process Data Manager in BPEL

For the BPEL platform we assumed that the workflow variables are managed
externally to the workflow engine. We developed a web service to encapsulate
the available methods that can be used by the MonitA specification to manage
the workflow data (Process Data Interface in Figure 7.4). The web service
manage the collection of workflow applications, the process scope variables
defined for each workflow application, and the instance scope variables for
each workflow instance.

Each time a MonitA concern references a workflow variable, specified in the
data association model, the MonitA platform uses the web service to extract
its data type, to define the required casting to access the value of the variable,
and to return its value. The value of a workflow variable can be retrieved from
a particular workflow instance and for the all workflow application.

8.3.2 MonitA Code Generator into BPEL

According to our generative strategy described in section 7.4, we generate
MonitA code taking into account the modularization of M&A concerns and the
management of measurement data (cf. implementation challenges IC2 and IC3
in section 6.1). This section validates our generative strategy by implementing
a set of model transformations to generate executable monitoring and analysis
BPEL code from the MonitA specifications.

We created a model-to-text transformation that takes as input the MonitA
model to generate new BPEL elements required to instrument the existing
BPEL code with the elements required for monitoring and analysis.

The following four subsections detail the instantiation of the modules con-
tained in the MonitA code generator component defined in our architecture for
creating a MonitA generative infrastructure (Figure 7.3 in section 7.2). The

8.3 MonitA-BPEL Generative Infrastructure 145

modules within the MonitA code generator component correspond to: work-
flow code generator, AOP code generator, measurement data translator, and
measurement and control actions manager.

BPEL Code Generator

This module defines how to translate monitoring concerns into control flow
entities in the BPEL workflow language.

The BPEL workflow application is fully instrumented through aspects.
This is because of the aspects language that allows the specification of cross-
cutting concerns directly on BPEL elements.

We created a model-to-text transformation (Tc in Figure 7.4) to gener-
ate the BPEL code required to implement the MonitA specifications. The
following are the considerations taken to determine the outputs of this trans-
formation:

• The properties defined for an analysis function are mapped into a BPEL
variable in the same way that measurement variables. The value for these
properties are assigned at the moment a monitoring event is generated. An
assign element in BPEL is created for each property that parametrizes an
analysis function. The name of the property is mapped into the “To” ele-
ment of the assign. The expressions for collection of data in a monitoring
event are mapped to the “From” element of the assign.

• A measurement action consisting of an assignment to a measurement vari-
able has multiple considerations. Only if the assignment is done through a
measurement variable with multiinstance persistence modifier, its value is
retrieved from the measurement data store system. The value of this variable
is queried through an assign activity by assigning the retrieved values of the
variable (e.g., process name, variable name). At the same time, an invoke
activity is executed to invoke the services provided by the data manager to
manage this information. Then, each invocation in the assignment expres-
sion is defined with an assign activity to retrieve their value and to compute
the new value for the measurement. The new value of the measurement is
stored in the measurement data store system.

• The control actions are mapped into invocations to services provided by the
ControlManager interface. The parameters of the invocation are extracted
from the control action (e.g., send an email).

• The evaluation rules defined to evaluate workflow and measurement infor-
mation are mapped to bpel conditionals (i.e., bpel:if). The set of conditions
are encapsulated into the bpel:condition element. All the actions defined in
the evaluation rule are encapsulated into a bpel:sequence element. An else

146
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

expression in the evaluation rule is mapped into a bpel:else element and the
set of actions of this conditional are mapped into bpel activities encapsulated
in a sequence element.

An invocation in MonitA can correspond to one of the following:

• An invocation associated with a data entity is used to access the workflow
variables through a flow entity. This invocation is represented in Java as an
invocation of an object attribute previously declared. This object is accessed
through a method in the class who manages the workflow information.

• An invocation associated with a literal element is used to specify basic ele-
ments such as a string or a number. These literals are represented in BPEL
by Xpath expressions or directly by a literal as an XML expression (e.g., an
integer object).

• An invocation associated with a engine invocation element is used to ac-
cess the information in the workfow engine. The functions provided by
the workflow engine are defined by a namespace and indicated by a prefix
(e.g., $ode:). An engine.instanceId expression in MonitA can be translated
into a $ode:pid expression in the apache ode engine, which retrieves the
identifier of the workflow instance.

• An invocation associated with a date time invocation element is used to ac-
cess the current date time and to retrieve properties of a variable with date-
Time data type. The functions related to a dateTime data type (e.g., now())
in MonitA are mapped to the BPEL XPath functions for assigning date or
time (e.g., getCurrentDateTime).

Measurement Data Translator

This module defines how to map the MonitA measurement variables into work-
flow data entities. The measurement variables are transformed into BPEL
variables, which are declared by using the name and type of the measurement
variable. The generated BPEL variable are contained in the using structure
of a Padus aspect, which are global to the workflow application. Measurement
variables are declared according to XML schemas (XSD) data types, therefore,
there is a one-to-one mapping of data types and names between the measure-
ment and BPEL variables.

When a measurement variable uses a primitive data type (e.g., int), the
BPEL variable is generated with this primitive data type. The complex data
types associated to measurement variables are represented in the external XML
schema file (measurement data types model in section 4.1.1) that is generated
to define complex measurement data structures. A complex measurement data

8.3 MonitA-BPEL Generative Infrastructure 147

type is created with the set of property names and data types associated to
the measurement variable data type.

The MonitA-BPEL infrastructure generates an interface and Java class
to access and modify the elements of a measurement variable. For example,
the elements (problems, area) of the ProblemsByArea variable, defined for the
trouble ticket scenario (see Section 1.2), can be accessed and modified through
interface generated by the infrastructure.

Measurement Data and Actions Manager

This module defines how to access and manage the measurement information,
and how to generate notification actions.

The measurement data manager and the measurement actions manager
described in the MonitA-JPDL generative infrastructure are reused by the
MonitA infrastructure developer that creates the MonitA-BPEL infrastruc-
ture. The following describes the role of each one of these managers:

• The DataManager artifact is a singleton class that manage the the mea-
surement information such as measures, indicators and workflow records.
The persistence management of measurement information is external to the
workflow engine and is done through a web service.

• The ContextManager is a singleton class that encapsulates the BPEL invoca-
tions to restrict the services to manage workflow variables to only read-only
access. The workflow developer has to provide the interface to communicate
with the workflow data persistence system and to connect this interface with
the manager.

• The ControlManager is a singleton class that offers the methods to execute
the notification actions such as sending an email, creating an event log trace,
and sending events to external systems (i.e., dashboard).

MonitA Translator to Padus Aspects

This module defines how to modularize the implementation of MonitA speci-
fications into the workflow application implementation.

We present the automatic transformations performed from MonitA speci-
fications to executable aspects. We represent these transformations by mean
of Padus, an aspect-oriented extension to BPEL, which aims to overcome its
lack of support for modularization of crosscutting concerns.

The Padus language facilitates the separation of M&A concerns from the
workflow implementation. The monitoring events in MonitA describe how an
analysis function has to interact with a workflow element, acting as a pointcut
and joinpoint statement. The measurement and control concerns specified in

148
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

MonitA define what actions the analysis function (aspect) does according to
the event, thus acting as an advice.

Table 8.4 illustrates the most relevant transformations from MonitA ele-
ments to Padus elements.

MonitA Output : Padus Implementation
MonitA model Aspect defining the MonitA specification

<pad:aspect name=”” xmlns:xsi=”” xmlns:bpel=”” xmlns:pad=””> ... </pad:aspect>

Measurement BPEL variables within the using element of an aspect
variable <pad:using> <!– namespaces, partnerLinks, variables–> </pad:using>

Analysis Advice
function <pad:advice name=””> <!–Bpel code–> </pad:advice>

Workflow Pointcut
subject <pad:pointcut name=”” pointcut=””/>

Monitoring
event

Joinpoint

- start workflow - Before advice
event type <pad:before joinpoint=”” pointcut=””> <bpel:advice name=””/> </pad:before>

- finish workflow - After advice
event type <pad:after joinpoint=”” pointcut=””> <bpel:advice name=””/> </pad:after>

- data (CRUD) - In advice or after advice
event type <pad:in joinpoint=”” pointcut=””> <bpel:advice name=””/> </pad:in>

Table 8.4: MonitA specification into a Padus aspect implementation.

We created a model-to-text transformation (Tc in Figure 7.4) to generate
the aspects code required to implement completely the monitoring and analysis
concerns defined in MonitA. The input of this transformation is the MonitA
model, whereas the output is a set of Padus aspects that contain using, point-
cut, joinpoint and advices elements.

Using element. The measurement variables in MonitA are transformed in
BPEL variables, which are encapsulated in the using element of a Padus as-
pect that is represented in a XML file. A MonitA specification also generates
the Padus code with the namespaces and partnerlinks required to invoke the
services provided by the generated managers (measurement data manager and
actions manager).

Pointcut element. A Padus pointcut is generated for each monitoring sub-
ject specified in a monitoring event in MonitA. The pointcut contains the
property name and the property pointcut defining the joinpoint. The name
property of the pointcut element corresponds to the name of the monitoring
subject. The pointcut property of the pointcut element, which references the

8.3 MonitA-BPEL Generative Infrastructure 149

bpel activity and their properties, is generated according to the type of the
bpel activity related to the monitoring subject.

If the activity type is an invoke then the pointcut corresponds to an invok-
ing construct (e.g., pointcut=“invoking(Jp,[operation(’operationName’)])”),
which references an operation of the activity. In the activity type is an
assign then the pointcut corresponds to an assigning construct (e.g., point-
cut=“assigning(Jp,[name(’assignName’)])”). If the activity type is task then
the pointcut corresponds to a doingNothing Padus construct (e.g., pointcut=“
doingNothing(Jp,[name(’TaskName’)])”), which references all the empty ac-
tivities. If the activity type is loop then the pointcut corresponds to a scoping
Padus construct, which references a cyclic activity (e.g., poincut=“scoping(Jp,
[name(’CyclicActivityName’)])”).

Joinpoint element. Each monitoring subject defined in a monitoring event
generates a joinpoint element in Padus. If the workflow event type defined in
the monitoring event is start, the relative position in the joinpoint is before.
If the workflow event type defined in the monitoring event is finish, the rel-
ative position in the joinpoint is after. If the workflow event type defined in
the monitoring event is a data event type (e.g., create, change), the relative
position in the joinpoint can be in or after depending the bpel element.

The pointcut property in the joinpoint element corresponds to the name of
one of the pointcut elements previously generated from the workflow subjects.
The properties associated with the analysis function specified in a monitoring
event correspond to bpel assignations (assign element).

Advice element. Each analysis function in MonitA generates an advice,
which is encapsulated in a Padus aspect along with the pointcut and joinpoint
elements. The name of the analysis function defines the name of the advice.
A Padus advice encapsulates the MonitA BPEL code to be included in the
workflow application. The measurement and control actions specified in an
analysis function are mapped to a set of BPEL activities as described before.

8.3.3 Composing MonitA Code with BPEL Applica-
tions

We compose automatically MonitA specifications with the workflow applica-
tion (cf. generative strategy described in section 7.5). This section validates
our generative strategy by generating the code required to compose M&A con-
cerns with BPEL workflow applications (cf. implementation challenge IC2 in
section 6.1). This section describes the instantiation of the weaver module
contained in the composition controller component defined in our architecture
for creating a MonitA generative infrastructure (Figure 7.3 in section 7.2).

150
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

After the MonitA specification is generated into BPEL code, the Padus
weaver engine integrates this generated code with the existing workflow imple-
mentation. This composition is triggered through the execution of the aspect
deployment file that was generated automatically according to the generated
aspects. The resulting artefact, after the automatic composition, is a BPEL
workflow application that can be deployed on a BPEL execution engine.

Figure 8.3 illustrates the Padus weaver architecture.

!"#$%&'
($#)*+,$-&'
($"%./#&/*-

!"#$%&'
($!-/&/*-!"#$%&'
($!-/&/*-!"#$%&'
($!-/&/*-

0$"1)&/-2'
3456'
#.*%$""

7&8-98.'3456'
5:$%1&/*-'5-2/-$

7&8&/%'
;$8<$.

3456'
4.*%$""

Figure 8.3: Padus Weaver Architecture.

In BPEL applications, the analysis functions are added before or after an
activity, thereby the control flow of the workflow application is changed.

8.4 Infrastructure for Enacting MonitA Spec-

ifications

We present the overall strategy for enacting the MonitA specifications by in-
troducing the main components involved in the technical approach.

Figure 8.4 illustrates the main elements of the technical approach when
executing M&A concerns incorporated in the workflow application.

provides notification
feedback

WS
WS

queries process data
and measurement data

manage data

generate monitoring
and measurement data

execute control
actions

Process
Data

Action
manager
(external)

Measurement
Data Store

Data
manager
(external)

CRUD interactions

access and correlates
measurement data

WS

transforms data and
provides online feedback

3

2

Workflow M&A Dashboard communicates with

Legend

WS web service

external component

MonitA elements

data repository

workflow activity

Workflow
Engine

A

B

C

1

4 5

6

Figure 8.4: Architecture for Monitoring and Analysis Online

8.4 Infrastructure for Enacting MonitA Specifications 151

While workflow instances are in execution within a workflow engine (Fig-
ure 8.4 part 1), the M&A concerns are part the workflow application instances.
The M&A concerns access to an interface to manage the measurement data
(Figure 8.4 part 2) and to an interface to execute notification actions (Fig-
ure 8.4 part 3). These interfaces interact with the workflow engine to access
execution information (Figure 8.4 part 2), with a workflow data system to
retrieve the workflow application information (Figure 8.4 part 4), a measure-
ment data system to manage analysis information (Figure 8.4 part 5), and
a dashboard to visualize the M&A concerns (e.g., measurements, alarms) for
identifying potential workflow improvements (Figure 8.4 part 6).

The following sections detail the different systems and environments in-
volved in the MonitA execution platform such as: the specification environ-
ment, the measurement data store system, and a dashboard.

8.4.1 Specification Environment

We created a textual editor to specify M&A concerns by using our MonitA
DSL. The editor allows the navigation between process model elements and
data model elements.

The MonitA-DSL editor offers the tool support required to navigate through
the flow entities of the BPMN process model. When an element is selected, the
name is displayed without spaces. However, this imposes some naming con-
vention restrictions such as that the elements in the process model cannot have
duplicated names or that the element has to be selected with a combination
of properties (e.g., name-id, name-reference).

8.4.2 Measurement Data Store System

Ensuring analyzability through workflow applications requires the creation of
a data store system that covers the relevant aspects of the monitoring and
analysis activities. We created a measurement data store system to record rel-
evant monitoring and measurement information regarding monitoring events,
reference to workflow entities, measurement variables, indicators, and pro-
duced notification actions into a centralized measurement data store. We do
not consider a data integration solution since it would be heavyweight. This
measurement data store is easily accessible.

The information is stored using timestamps as a mechanism to reason about
the history. The information stored in the measurement data store is associated
to common properties such as the workflow application identifier and instance
identifier.

Figure 8.5 illustrates the measurement data model that we created to store
the monitoring and measurement information relevant to the execution of
workflow applications.

152
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

1

recordId: string
entityId: string
entityName: string
timestamp: dateTime

WorkflowRecord

elementType: string
FlowEntity

1..*1

id: string
name: string
valueType: string
xmlRepresentation: string

Property

processName: string
processId: long
instanceId: long

WorkflowAnalysisSubject

value: long
description: String

Alarm
type: String
performer: String

DataEntity

timestamp: dateTime
type: string

Action

subject: String
destination: String
content: String

Email

path: String
content: String

Log

name: string
value: long
timestamp: dateTime
description: string

Indicator

id: string
timestamp: dateTime
wfEvent: string

MonitoringEvent

id: string
scope: string
name: string
value: long
unit: string
description: string

Measure

0..*

1..*1

operation: string
timestamp: dateTime
xmlRepresentation: string

DataChanges
1 0..*

 0..*

 0..*1

0..*1

 0..*

name: string
query: string

Query

1..*

 0..*

Figure 8.5: Measurement Data Model.

The information stored in the measurement data store falls into the follow-
ing dimensions:

• Workflow Analysis Subjects. A workflow analysis subject represents each
workflow instance that was monitored. Each workflow subject is identified
by the process name, the process identifier, and a workflow instance iden-
tifier. These attributes are used to identify and classify the information
stored in the measurement data model by referring to characteristics of the
corresponding workflow elements.

• Workflow Records. A workflow record represents the execution of a flow
entity or an operation performed on a data entity during the execution of
a workflow analysis subject. Each workflow record references the actual
domain entity with an entity name, entity type, and the information of the
workflow analysis subject. When the entity type is a flow entity, the type
of element (Activity, Event, Gateway) is also stored, whereas the data type
and performer are stored when the entity type is a data entity.

• Monitoring Events. A monitoring event represents an intercepted work-
flow event and the data captured in it. Each record is associated with the
workflow subject and entity involved in the workflow event, the event type
(e.g., start, create, read, update), and a timestamp.

• Data Changes. A data change record represents a data entity that was
produced or changed during the workflow execution. Multiple records are
stored for the same data entity representing each captured workflow event

8.4 Infrastructure for Enacting MonitA Specifications 153

of such data entity. Each record is associated with an operation performed,
a timestamp, the reference to the flow entity involved in the event, and the
representation of the information affected in the data entity.

When the data is managed by an external system to the workflow engine,
the data related event can not be intercepted at a fine-grained level since we
can not enhance the external systems with the monitoring concerns. Thus,
the specific changes on attributes of data entities can not be captured. In
these scenarios, the workflow data is captured when the activity finalizes and
the complete data entity is stored as a DataChanges record. One possibility
to avoid storing multiple copies of the same workflow data is to keep only a
record of the last modification done in this data.

When the workflow data is managed by the workflow management system,
we provide support to intercept fine-grained data events and to store only
this information as a DataChanges record.

• Measurements. A measurement represents a measure or metric gathered
from the workflow enactment. A performance measure represents a unit of
measurement by comparing to a standard (e.g., lines of code, seconds). A
performance metric represents a composite indicator based upon multiple
properties to filter or query the metrics. Each record contains a representa-
tion (e.g., xml document) of the data processed. A measurement is composed
of one or multiple workflow analysis subjects or a workflow record.

• Indicators. An indicator represents comparisons done in a measurement ac-
cording to evaluation rules. Indicators are represented when a measurement
is set to a prescribed state based on the occurrence of a specific condition
(i.e., a flag is one example of an indicator). For example, the generation of
an alarm to be visualized in a dashboard if a measurement exceeds the spec-
ified conditions for which the evaluation rule is set. An indicator is stored
with a measurement value and a timestamp.

• Actions. An action record represents a notification action that was produced
during the workflow execution. These control actions include e-mails, logs
and alarms, which are associated to a workflow analysis subject and a time
stamp where they were generated.

• Queries. A query record represents the structure of a query related to one
or multiple workflow analysis subjects.

The information in the measurement data model is created by the mon-
itoring activity that captures information from the workflow execution. The
measurement information is also created during the execution of the analysis
functions.

154
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

8.4.3 Workflow Monitoring and Analysis Dashboard

We designed and implemented an interactive web-based dashboard to facilitate
workflow analysts to be aware of the changes in the quality of workflow appli-
cations through the strategic measures defined and evaluated on them. These
workflow execution quality changes can de established through the evaluation
of application-specific measurements.

Figure 8.6 illustrates the visualization of the M&A concerns defined for the
trouble ticket scenario.

!

"

#

$

Figure 8.6: Visualization of Monitoring and Analysis Concerns.

The following describes the set of functionalities provided by the dashboard:

1. Display measurements by capturing information from the measurement data
store, workflow engine and workflow variables. These measurements are
visualized in a pie and chart representation.

2. Display alerts associated with indicators defined in the MonitA specifica-
tions.

3. Select and display a representation of the workflow application with analysis
information associated with each activity (e.g., activities are highlighted to
indicate performance measures evaluated in true).

4. Build queries on-demand by combining information from the workflow engine
(e.g., workflow instances), workflow variables (e.g., expert assigned to a

8.5 Summary 155

problem), and measurement information previously defined (e.g., number of
problems reported by area of expertise). The dashboard offers a drag and
drop functionality to build measurements that were not incorporated in the
first place, in the M&A concerns implementation.

This information helps identifying potential improvements to workflow ap-
plications. For example, for a high number of problems reported in a specific
area of expertise, the manager of that area can visualize this information imme-
diately and decide to stop the execution of the workflow application to include
a new quality assurance activity.

Figure 8.7 illustrates the main elements of the technical approach when
specifying M&A concerns from the dashboard.

Monit&
models

T.

Anal%sis)oncerns
onDemand

manages
data

e1ecute control
actions

5or6!o7
Engine 9ata Measurement

9ata

:rocess
Varia.les

&ction
manager
<e1ternal=

Measurement
Varia.les

9ata
manager
<e1ternal=

CR@9
 interactions

access

&nalysis
Rules

<5S9C=

:rocess 9ata

Ta

Work!ow M5A
Das6board

Figure 8.7: Architecture of Monitoring and analysis on demand

All the measurement that is queried on demand through the dashboard is
not incorporated into the workflow application. We developed a set of com-
ponents that access and retrieve directly the measurement data. The MonitA
workflow developer provides the libraries required to interact with the dash-
board.

8.5 Summary

The validation of the defined architecture for creating a MonitA generative in-
frastructure was performed by targeting two different workflow platforms. We

156
Chapter 8. MonitA: The Implementation and Execution

Infrastructure

used our generative strategy to create the infrastructure required to automate
the implementation of MonitA specifications into JPDL workflow applications
and into BPEL workflow applications. The implementation of these MonitA
infrastructures are an instantiation of the generative strategy described in
the previous chapter. This validates the challenges defined for implement-
ing MonitA specifications. These challenges correspond to: a) target diverse
execution platforms (i.e., BPEL, JPDL), b) modularize the MonitA code, c)
customize the workflow code, and d) access and navigate through workflow
data and measurement data.

We have presented the elements of the infrastructure created for enacting
MonitA specifications. We created a DSL editor to specify M&A concerns, a
measurement data store system to manage historic measurement information,
and a dashboard to visualize this information.

The following chapter presents the evaluations performed to validate our
our research goals.

Part IV

Validation and Conclusion

157

Chapter 9

Validation

Now that we have detailed our approach to specify monitoring and analysis
(M&A) concerns in workflow applications, we dedicate this chapter to present
whether our approach fulfills the goals we defined in section 1.3.

Figure 9.1 illustrates an overview of the problems, goals and assessment
goals that are involved in this research and the relation between them.

P1: Monitoring and analysis concerns result in an entangled low-level implementation

G1: Raise the level of abstraction to specify M&A
concerns in a workflow technology independent way

AG1: Evaluate multiple quality attributes by executing M&A
concerns for two different workflow platforms

P2: Workflow monitoring and analysis solutions do not provide support to base the analysis on the data used in the workflow
application

G2: Increase the expressiveness in terms of
workflow relevant data

AG2: Evaluate multiple expressiveness features by specifying
M&A concerns for different workflow scenarios

1.1 Study 1: Cost of MonitA specifications
 Lines of code that are generated
 Study 3: Survey on DSL success factors
1.2 Study 2: - Are M&A concerns easily adapted?
 - Are M&A concerns easily implemented?

1.1 Productivity (Generative implementation)

1.2 Maintainability (Modularized specification)

1.3 Understandability (Domain specificity)

2.1 Access workflow relevant data
2.2 Declare application-specific measurements
2.3 Intercept workflow data events
2.4 Create measurement data
2.5 Navigate on measurement data
2.6 Support temporal analysis
2.7 Manage indicators
2.8 Define complex event types
2.9 Support selective monitoring
2.10 Access workflow engine data

1.3 Study 2: - Are M&A concerns easily identified?
 - Do M&A concerns hide technical complexity?

2.1 Scenario 1(R3, R4, R6), Scenario 2(R1), Scenario 3(R1)
2.2 Scenario 1(R3, R5), Scenario 2(R1), Scenario 3(R1)
2.3 Scenario 2(R1)
2.4 Scenario 1(R1, R4), Scenario 2(R1), Scenario 3(R1)
2.5 Scenario 1(R3, R5), Scenario 2(R1), Scenario 3(R1)
2.6 Scenario 1(R3, R6), Scenario 3(R1)
2.7 Scenario 1(R6), Scenario 3(R1)
2.8 Scenario 1(R1)
2.9 Scenario 1(R1, R2), Scenario 2(R1)
2.10 Scenario 1(R1, R5)

1.4 Study 3: Survey on DSL success factors1.4 Reusability (Workflow platform-independent)

Figure 9.1: Relation between Problems, Goals, and Assessment Goals.

We evaluate our research goals by using both qualitative and quantitative
criteria.

159

160 Chapter 9. Validation

Sections 9.1, 9.2, and 9.3 present the application of our approach in a set of
workflow applications in order to validate its applicability in different domains.
The application of MonitA in different workflow scenarios validates the goal of
increasing the expressiveness of M&A concerns in terms of workflow relevant
data (i.e., G2). There are mainly 10 sub-goals that are associated the goal G2
to evaluate the expressiveness of MonitA specifications.

Our assessment goal (i.e., AG2) is to determine a large set of possible M&A
concerns that can be specified in terms of workflow relevant data. We used the
MonitA language to express M&A concerns into three workflow applications:
two well known and documented, and one used in a University. These scenarios
are of great relevance because they correspond to typical and real workflow
applications. We implemented two of these workflow applications in different
workflow platforms to validate our approach, whereas the third application
was implemented by external people.

Sections 9.4, 9.5, and 9.6 discuss a number of case studies conducted to
assess the goal of raising the level of abstraction for specifying M&A concerns
(i.e., G1). For each case study we present the context, design, execution, and
the results obtained in connection with our assessment goals. The goal G1 is
composed of 4 sub-goals such as productivity, maintainability, understandabil-
ity, and reusability.

Our assessment goal (i.e., AG1) is to apply our approach to different work-
flow platforms to evaluate to which extent the M&A concerns are applicable
in a workflow technology independent way and whether they can be specified
compactly. We have validated the quantitative criteria (i.e., Study 1) related
to the sub-goals against the following three hypotheses:

• The use of the MonitA language results in a decreased development time for
specifying M&A concerns.

• The initial setup cost of a MonitA infrastructure for a new workflow platform
can be neglected if more than five M&A requirements are specified.

• The lines of code of a monitoring and analysis specification is smaller when
using the MonitA language and thus reduces the code base to be maintained.

These hypotheses were assessed in the context of two separate implementa-
tions of the MonitA generative infrastructure. One MonitA execution infras-
tructure was created for a JPDL workflow platform, whereas another execution
infrastructure was created for a BPEL workflow platform. These implemen-
tations were performed with the purpose of analyzing the genericity of our
approach to be adapted to a number of workflow applications and platforms.

There are a number of threats to the validation of the assessment goals. We
describe and analyze these in each case study. The threats we discuss are cur-
rently under investigation and will be used as drivers for future improvements

9.1 Scenario 1: Trouble Ticket Workflow Application 161

to the MonitA execution platform. On a side note it should be mentioned that
most of the threats we report also manifest themselves in environments where
MonitA is not used. As such we think it is fair to say that the assessment
goals were adequately validated by the different case studies.

9.1 Scenario 1: Trouble Ticket Workflow Ap-

plication

A short description of the trouble ticket application [Nor98] and its graphical
representation in BPMN were presented in section 1.2. In this section we
present a more detailed description of this workflow application.

A Trouble Ticket workflow starts when a problem is identified by an internal
or an external user (originator) in a software product. The originator uses a
form in the Describe Problem activity to detail and record the problem. This
generates a new workflow instance. An instance ID allows customer support
(CS) to check the progress of work on a particular trouble ticket. Once the
problem details are provided, quality assurance (QA) checks the trouble ticket
report in the Reproduce Problem activity. If the problem can be reproduced
the workflow continues in the Provide Problem Solution activity, otherwise the
workflow goes to the Correct Problem Description activity. If the problem has
a known solution, it can be added at this stage and the workflow continues to
the Communicate Ticket Result activity. If the problem is identical to another
one, it is recorded as its corresponding duplicate and the workflow continues
with the Verify Problem Solution activity.

If the Correct Problem Description activity is reached, the originator must
clarify the problem and the workflow gets back to the Reproduce Problem ac-
tivity. When the workflow reaches the activity Provide Problem Solution, a
development expert ensures that the problem belongs effectively to this area
of expertise. If not, the problem is reassigned, the responsible of the activity
changes, and the trouble ticket stays in this state until a resolution is deter-
mined. Once there is a resolution, the Verify Problem Solution activity is exe-
cuted by QA to proceed to communicate the results, or to get back to identify
the problem and resolution in case it is not solved. The Communicate Ticket
Result activity notifies the results of the workflow to the originator. The Au-
dit Trouble Ticket Handling activity, which is executed in parallel, determines
whether the problem has to be included in a knowledge repository.

9.1.1 Monitoring and Analysis Requirements

Additionally to the M&A requirements presented in the preliminary sections,
the following are a set of M&A concerns defined for the trouble ticket applica-
tion. These M&A concerns cover the main monitoring and analysis situations:

162 Chapter 9. Validation

• R1: Capture the processing time for each activity (Listing 9.1).

concern myConcerns import AssociationModel , MeasureDataTypesModel

transient entity dateTime startTime

persistent entity duration pTime

on start/finish [root.! Activity]
trigger computeProcessingTime(t=dateTimeType.now(), type=engine.wfEvent ())

mmcfunction computeProcessingTime (dateTime t, string type)

i f type==’start ’

then startTime = t;

else pTime = t - startTime; endif
endfunction

Listing 9.1: MonitA Specification: Processing Time in the Trouble Ticket
Scenario.

The main important characteristics in the specification of this requirement
are quantification, compositional events, and declaration of measurements.
Both measurements indicate that each value of the measure is associated
to a particular flow entity within a workflow instance. The measurement
variable named pTime is persisted in the measurement data store system.
This MonitA specification declares how to compute the processing time for
all activities in the workflow application. The use of quantification to refer
to a set of monitoring subjects decreases the necessity to create a monitor-
ing event for each monitoring subject involved in the workflow application.
In the same way, the compositional event (i.e., start/finish) reduces the
specification code that would be necessary to observe the workflow applica-
tion at the beginning and at the end of each activity.

• R2: Add an event log each time the severity of a problem is changed for any
activity (Listing 9.2).

on finish [FlowEntity fe | root.! Activity writes vProblem.severity]

trigger auditProblems(fe)

mmcfunction auditProblems(FlowEntity act)

trace(path=’/log ’, message=’severity modified in activity ’+act.name);

endfunction

Listing 9.2: MonitA Specification: Monitoring Event Pattern in the Trouble
Ticket Scenario.

The main important characteristic in the specification of this requirement
is quantification. This MonitA specification declares how to monitor only
the activities that modify the value of a particular attribute in a data entity

9.1 Scenario 1: Trouble Ticket Workflow Application 163

(i.e., vProblem). The use of quantification to refer to a set of monitoring
subjects (i.e., activities) facilitates the specification of monitoring events
in terms of data events. This set of monitoring events is independent of
the changes that can be done on the workflow application (e.g., remove an
activity).

• R3: Send a notification if the number of reports generated by a user in the
last month is higher than 5 (Listing 9.3).

persistent instance Collection <Report > reports

on finish [root.SubmitForm]
trigger ticketByUser(user=root.SubmitForm:vReport.submitter)

mmcfunction ticketByUser(string user)

int numbertickets = reports ->select(Report r | r.originator.name == user

and r.dateReceived >dateTimeType.now(). month (1-));

i f numbertickets > 5

then notify(destination=’xx@yy.com ’,subject=’high number of tickets ’,

content=’the tickets generated by the user ’+

user + ’ in the last month is higher than 5’);

endif
endfunction

Listing 9.3: MonitA Specification: Temporal Analysis in the Trouble Ticket
Scenario.

The main important characteristics in the specification of this requirement
are navigation on measurement data, temporal analysis, and creation of
application-specific measurements. The measurement variable named reports

is declared in terms of workflow relevant data such as a data entity with Re-
port data type. This variable indicates that each value of the measure is
associated to a workflow instance. The navigation on the historic measure-
ment information is done through the reports variable. Using this variable
it is possible to retrieve the collection of data entities with Report data type
that have been persisted in the measurement data store system. This spec-
ification selects a subset of the collection of reports by filtering those ones
reported by a specific user and created in a specific interval of time. The
collection of reports is filtered by considering the measurement created in
the last month.

• R4: Trigger an alarm if a ticket is assigned to a developer with more than 3
tickets without resolution (Listing 9.4).

The main important characteristic in the specification of this requirement
is the management of variables that have not been created. A measurement
action in this MonitA specification declares how to navigate on the collection
of data entities with Problem data type assigned to a particular developer.

164 Chapter 9. Validation

persistent instance Collection <Problem > problems

on finish [root.SubmitForm]
trigger ticketAssigned(developer=root.SubmitForm:vProblem.expert)

mmcfunction ticketAssigned(string developer)

int numberProblems = problems ->select(Problem p | p.expert == developer

and p.resolution ==null);
i f numberProblems > 3

then alert (variable=numberProblems , message=’the ’+developer

+’ developer has more than 3 tickets assigned without resolution ’);

endif
endfunction

Listing 9.4: MonitA Specification: Null Variable Values in the Trouble Ticket
Scenario.

The null expression is used to filter the collection of problems without
resolution.

• R5: Notify if the processing time for providing a resolution is twice the aver-
age processing time to identify a problem and provide a resolution. Consider
that the processing time was computed in the requirement R1 (Listing 9.5).

// persistent entity duration pTime

on finish [root.IdentifyProblemandResolution] trigger avTime ()

mmcfunction avTime ()

duration av = pTime.allInstances ()->select(Measure m |

m.activityName ==’ IdentifyProblemandResolution ’) / engine.instances;
i f pTime >= 2*av

then notify(destination=’yy@xx.com ’, subject=’high resolution time ’,

content=’too much time providing a resolution ’);

endif
endfunction

Listing 9.5: MonitA Specification: Navigation on Measurement and Workflow
Information in the Trouble Ticket Scenario.

The main important characteristics in the specification of this requirement
are navigation on measurement information, usage of workflow engine infor-
mation, and definition of measurements on top of existing measurements.
This MonitA specification declares how to retrieve the collection of measure
values associated with the pTime variable. The allInstances expression
is used to access the collection of values of the pTime variable for all the
flow entities executed by the workflow instances. This collection is filtered
by the measurements associated with the IdentifyProblemandResolution

activity. The information about the number of workflow instances executed
by the workflow engine (i.e., engine.instance) and the pTime variable are
used to compute a new measurement named av.

9.1 Scenario 1: Trouble Ticket Workflow Application 165

• R6: Trigger a notification if the indicator that evaluates when the number of
problems reported by area of expertise is higher than 10 has been triggered
more than 3 times in the last month. Evaluate this indicator when a problem
is created (SubmitForm activity) (Listing 9.6).

on finish [root.SubmitForm]
trigger evaluateIndicators(area=root.SubmitForm:vProblem.area)

mmcfunction evaluateIndicators(string area)

ProblemsByArea p1 = pba.current();
// The indicator i1 was created previously

int temp = p1.indicators ->select(Indicator ind | ind.name==’i1’

and ind.timestamp > dateTimeType.now(). month(1-))->size ();

i f temp > 3

then notify(destination=’yy@xx.com ’, subject=’indicator triggered frequently ’,

content=’indicator triggered frequently in the last month ’);

endif
endfunction

Listing 9.6: MonitA Specification: Navigation on Indicators in the Trouble
Ticket Scenario.

The main important characteristics in the specification of this requirement
are the access to information under execution and the evaluation of indi-
cators. This MonitA specification declares how to retrieve the value of the
measurement of the pba variable for the workflow instance under execution.
A collection of indicators associated to this measurement is retrieved and
filtered by the name of the desirable indicator and a temporal constraint.

These M&A concerns can be used to evaluate the workflow application at
runtime and to provide feedback to workflow analysts. These M&A concerns
can be used to define potential improvements regarding a particular business
goal. For example, for a high number of problems reported in a specific area of
expertise, the manager of that area can visualize this information immediately
and decide to stop the execution of the workflow application to include a new
quality assurance activity. This new activity can for example be assigned to a
new resource that can help to reduce the number of problems in that specific
area.

Other examples of M&A concerns can be targeted to reduce the time spent
fixing a problem. This requires capturing the operational workflow execution
time (measuring), right after the execution of the Create Ticket activity (mon-
itoring). Then, a timer must be started to evaluate when this time is higher
than 1 day and to notify this performance information by email (control). For
execution times higher than 1 day, the workflow analyst can decide to scale the
problem by reassigning responsibilities, by changing the priority of the ticket,
or by involving a new resource into the process to solve problem tickets.

166 Chapter 9. Validation

9.1.2 Generative Implementation and Composition

The trouble ticket workflow application is implemented in JPDL. Thus we use
the MonitA-JPDL infrastructure to generate and compose automatically the
MonitA specifications into the JPDL implementation code (see Section 8.2).

The MonitA specifications are automatically translated into aspect code
by using the aspect language AspectJ. This aspect language can be integrated
with Java as the underlying implementation language for JPDL activities.
The implementation of M&A concerns and the workflow implementation are
composed to generate a new trouble ticket application instrumented with M&A
concerns. Finally, this instrumented workflow application was executed in an
jBPM workflow engine to start analyzing its execution.

9.2 Scenario 2: Loan Approval Workflow Ap-

plication

This section describes another workflow application used to validate the ex-
pressiveness of our workflow analysis approach. This workflow application
corresponds to a typical and real life loan process [IBM02] used to manage
loans in a financial company.

Figure 9.2 illustrates the specification of the BPMN process model for the
loan workflow application.

Verify Viability

LoanApproval

Evaluate
Request

Validate
Credit History

Validate Data

Reject Credit
Viability

Approve
Credit Viability

Notify
Decision

-

Receive
Request Association

Flow

End Event

Start Event

Decision
Gateway

Split and
Merge

La
ne

Po
ol

Legend

Figure 9.2: Loan Workflow Application.

A Loan workflow application starts with a loan request, where a client uses
the bank web page to introduce his personal information and the amount re-
quested. Then, the workflow application executes a set of activities to decide
whether the loan is approved or rejected. The first task evaluates the informa-
tion provided by the client by using a set of rules defined by the bank (e.g., if
the client income is less than 10% of the requested amount). At the same time,
a subprocess validates the loan viability by evaluating the risk associated with
the requester. One task in this subprocess validates the qualification of the
client against a credit entity, and then another one validates the authenticity

9.2 Scenario 2: Loan Approval Workflow Application 167

of the data provided by the client. Finally, the loan expert bases the approval
decision on the information gathered in the previous activities and the client
is notified.

This example introduces many process elements such as splits, merges, a
sub-process, activities, and decision gateways. We will use this example to
illustrate the data association model, which describes the workflow variables
used by the workflow application and their use by each flow entity.

9.2.1 Data Association Model

Listing 9.7 illustrates the data association model created to complement the
loan approval process model with the variables used by the flow entities in
the workflow implementation. This specification illustrates how a workflow
developer uses our data association DSL to define the variables manipulated
by the workflow application and the operations that flow entities perform on
these variables. The activities correspond to flow entities contained in the
process model (LoanApprovalBpmnModel).

process LoanApproval import LoanApprovalBpmnModel , LoanApprovalDataTypesModel

// Specify process variables

instanceScope Client vClient

instanceScope Request vRequest

instanceScope Evaluation vEvaluation

// Associate data entities with flow entities

ReceiveRequest creates(vClient , vRequest)

EvaluateRequest reads (vClient) writes (vRequest)

ValidateCreditHistory reads (vClient) creates (vEvaluation)

ValidateData reads (vClient) writes (vEvaluation)

RejectCreditViability writes (vRequest)

ApproveCreditViability writes (vRequest)

NotifyDecision writes (vRequest)

Listing 9.7: Data Association Specification for the Loan Scenario.

This specification illustrates that there are 3 workflow variables that can
be accessed by each workflow instance and that are visible for all flow elements
within a workflow instance. All variable data types (e.g., Client) correspond
to data entities defined in the data types model (i.e., xml schema) named
LoanApprovalDataTypesModel. The vClient variable is declared with a com-
plex data type named Client, which contains a sequence of elements (i.e., int
identification, int annualEntrance, string lastName, string firstName, int age)
with their associated primitive data types. The vRequest variable is declared
with a complex data type named Request, which contains a sequence of ele-
ments (i.e., int requestAmount, boolean loanResult, string description) with
their associated primitive data types. The vEvaluation variable is declared

168 Chapter 9. Validation

with a complex data type named Evaluation, which contains a sequence of el-
ements (i.e., int creditHistory, boolean criminalRecord) with their associated
primitive data types.

This data association model also illustrates the association between activi-
ties and workflow variables. For example, the above specification indicates that
vClient variable is created by the ReceiveRequest activity, and read by other
3 activities (i.e., EvaluateRequest, ValidateCreditHistory, ValidateData).

9.2.2 Monitoring and Analysis Requirements

A strategic analysis goal defined by a workflow analyst is to increase the num-
ber of approved loan requests to more than 50% of the total requests. The
MonitA application developers have to identify and specify the M&A concerns
that support this goal. The following illustrates the requirement identified by
a MonitA application developer and its corresponding specification:

• R1: Compute the rate of loans grouped by a specific decision (i.e., approved
or rejected). This decision must be captured for every workflow instance
when the corresponding workflow variable (i.e., loanResult) is changed in
the NotifyDecision activity. Then, a measurement action must evaluate if
the rejected requests rate is higher than 50%, which means that the causes
for the rejection (e.g., the requested amount is too high) must be verified.
When this condition is triggered, a control action must be taken to notify
via email such situation to the quality assurance area (Listing 9.8).

concern WF1 import LA_DataAssociationModel

presistent multiinstance int approvedLoan

presistent multiinstance int rejectedLoan

on change [root.NotifyDecision:vRequest.loanResult]
trigger af1(root.NotifyDecision:vRequest.loanResult)

mmcfunction af1(boolean decision)

i f decision ==true then
rejectedLoan = rejectedLoan +1;

else
approvedLoan = approvedLoan +1;

endif
i f (rejectedLoan / (rejectedLoan+ approvedLoan)) > 0.5

then notify(destination= ’quality@xx.co’, subject= ’Requests Rejected ’,

content=’High Rejected Requests Rate ’);

endif
endfunction

Listing 9.8: MonitA Specification: Measuring Loans by Decision in the Loan
Approval Scenario.

This requirement is associated with application-specific measurements since
they involve information that the workflow is modeling. The measurement

9.3 Scenario 3: Trip Expenses Workflow Application 169

variables named approvedLoan and rejectedLoan are dependent of work-
flow relevant data such as the workflow variable loanResult. The mea-
surement variables indicate that each value of the measure is associated to
multiple workflow instances. The navigation on the historic measurement in-
formation is done through the measurement variables to retrieve and persist
the information in the measurement data store system.

The information provided by the execution of the M&A concerns allows
the identification of potential improvements (e.g., adapting workflow data con-
straints, reordering the control flow, reassigning responsibilities) on the work-
flow application.

9.2.3 Generative Implementation and Composition

In contrast with the trouble ticket workflow application, described in the in-
troduction, the loan approval workflow application was implemented in BPEL.
This implementation consists of 25 activities specified in 366 BPEL LOCs. We
use the MonitA-BPEL infrastructure to generate and compose the MonitA
specifications automatically into the BPEL code (see Section 8.3).

The MonitA specifications are automatically translated into aspects de-
scribed in the aspect language Padus [BVJ+06], which can be integrated with
the BPEL language. The implementation of analysis concerns and the work-
flow implementation are composed to generate a new instrumented loan work-
flow application with analysis concerns. Finally, this instrumented workflow
application was executed in an Apache ODE workflow engine to start analyzing
the execution of the workflow application.

9.3 Scenario 3: Trip Expenses Workflow Ap-

plication

This section presents the third workflow application we used to validate the
expressiveness and usability of MonitA. This workflow application was defined
to manage the trip expenses for researchers and professors in a university.

Figure 9.3 illustrates the complete set of activities involved in such a work-
flow, which is specified in BPMN.

The trip expenses workflow application involves different stakeholders such
as: professors, department head, research group head, associate dean, finan-
cial director, and financial assistant. In the first activity (Perform Request),
a professor performs a funding request by filling a web form with the infor-
mation about the target event and the required budget (i.e., plane tickets,
event registration, and trip fees). Then, the request has to be reviewed by the
department head related to the originator department to decide on approval

170 Chapter 9. Validation

TripExpenses

Perform
Request

Approve
Request DH

Approve
Request AD

Review
Request

Process
Request

Apply
Request

Complete
Request

Adjust
Data

Adjust
Data

Researcher

Department
Head

Associate
Dean

Financial Director

Financial
Assistant

Additional
Data?

yes

no

no

yesapproved2?

approved1?

no

yes

Figure 9.3: Trip Expenses Workflow Application.

or rejection (Approve Request DH activity). The department head can asso-
ciate observations to the request to indicate the information that has to be
fixed by the professor before the request is approved. The activity to fix the
observations made to the request is performed until the request is approved
(Adjust data activity). The requests that are approved have to be reviewed by
the associate dean, who decides on making observations or on approving the
request (Approve Request AD activity). If the request is rejected, the financial
director has to review the request and to add additional observations regarding
the available budget (Review Request activity). If the request is approved the
financial director has to process the request and indicate if additional infor-
mation is required (Process Request activity). When additional information is
required, the professor has to provide this information, otherwise the request is
processed by the financial assistant and a tracking number has to be assigned
for each budget item (Apply Request activity). Once the tracking number has
been generated for each budget item (i.e., plane tickets, event registration, trip
fees), the request is finished.

Every time a request is assigned, rejected, or approved, a notification is
generated and sent to the responsible of the activity activated in the workflow
application. The notification is sent daily until the request is handled. A web
interface allows all the stakeholders to visualize the requests that have been
assigned and processed and the state of each one of them.

9.3.1 Data Association Model

Listing 9.9 illustrates a fragment of the data association model created to
complement the trip expenses process model with the variables used by the

9.3 Scenario 3: Trip Expenses Workflow Application 171

flow entities in the workflow implementation. This specification illustrates how
a workflow developer uses our data association DSL to define the variables
manipulated by the workflow application and the operations that flow entities
perform on these variables. The activities correspond to flow entities contained
in the process model (LoanApprovalBpmnModel).

process TripExpenses import TripExpensesBpmnModel , TripExpensesDataTypesModel

// Specify process variables

instanceScope Request vRequest

instanceScope RequestUserInfo vRequestUserInfo

...

// Associate data entities with flow entities

PerformRequest creates (vRequest , vRequestUserInfo)

ApproveRequestDH reads (vRequest) writes (vRequest)

AdjustData writes (vRequest)

...

Listing 9.9: Fragment of the Data Association Specification for the Trip Ex-
penses Scenario.

This specification illustrates that there are 2 workflow variables that can
be accessed by each workflow instance and that are visible for all flow el-
ements within a workflow instance. All variable data types (e.g., Request)
correspond to data entities defined in the data types model (i.e., xml schema)
named TripExpensesDataTypesModel. For example, the complex data type
named Request contains a sequence of elements (i.e., dateTime date, string
id, string generalState, RequestUserInfo rui, Observation [0..*] obs, BudgetRe-
quest [0..*] br, RequestType rt, DivulgationInfo di) with their associated
primitive and complex data types. This data association model also illus-
trates the association between activities and workflow variables. For exam-
ple, the above specification indicates that the vRequest variable is created
by the PerformRequest activity, and modified by other activities such as
ApproveRequestDH and AdjustData.

9.3.2 Monitoring and Analysis Requirements

The following are a set of M&A concerns defined for the trip expenses appli-
cation:

• In the workflow application, a request is automatically rejected if more than
2 requests have been created by the same professor in the current year.
In terms of monitoring and analysis, a notification has to be sent to the
professor and to the associate dean if this rejection scenario is generated
more than 3 times in the same year (Listing 9.10).

172 Chapter 9. Validation

concern RequestsManagement import TE_AssociationModel , TE_MeasureDataTypesModel

persistent multiinstance Collection <RejectedByProfessor > rbp

on finish [root.PerformRequest]
trigger requestsControl(root:vProfesor.externalId)

mmcfunction requestsControl(string id)

RejectedByProfessor rejected = rbp ->select(RejectedByProfessor r |

r.professorId ==id)->first ();

// Measurement data creation

i f rejected ==null then
rejected = RejectedByProfessor(number=1, professorId=id);

rbp ->add(RejectedByProfessor t| t=rejected);

else
rejected.number = rejected.number +1;

endif

// Indicator creation

int temp1 = rbp ->select(RejectedByProfessor r| r.professorId ==id

and r.timestamp.year ()== now (). year())->size ();

i f temp1 > 2

then Indicator i1 =

Indicator(measure=rbp ,value=temp1 ,description=’Requests > 2’); endif

// Indicator evaluation

int temp2 = rejected.indicators ->select(Indicator i | i.name==’i1’

and i.timestamp.year() == now (). year())->size ();

i f temp2 > 3

then notify(destination=’xx@yy.com ’,subject=’the request is not allowed ’,

content=temp2+’times the maximum requests per year has been exceeded ’);

endif
endfunction

Listing 9.10: MonitA Specification: Rejected Requests in the Trip Expenses
Scenario.

The main important characteristics in the specification of this requirement
are a) declaration and creation of application-specific measurements, b) nav-
igation on measurement data, c) creation and evaluation of indicators, and
d) temporal analysis. Although this specification contains all these char-
acteristics within the same analysis function, they could be specified in
different analysis functions. The measurement variable data type corre-
spond to a data structures defined in the measurement data types model
(TE MeasureDataTypesModel). The workflow variables that can be refer-
enced within this specification correspond to the data entities contained in
the data association model (TE AssociationModel).

The measurement variable named rbp is declared in terms of workflow rele-
vant data since the RejectedByProfessor data type involves workflow-specific
information (i.e., externalId attribute of the vProfesor workflow variable).
This measurement variable indicates that each value of the measure is asso-
ciated to multiple workflow instances. The navigation on the historic mea-

9.4 Study 1: Measuring Development Costs by Using MonitA 173

surement information is done through the rbp variable. Using this variable is
possible to retrieve the collection of data entities with RejectedByProfessor
data type that have been persisted in the measurement data store system.
This specification selects a subset of the collection of rbp by filtering those
ones generated by a specific professor. The measure value is created if it
does not exist, otherwise its value is increased.

This specification defines a temporary variable (i.e., temp1) to store the
number of requests performed by a a professor in the current year. The rbp

variable is used to navigate on this historic measurement information by
filtering the requests created in a specific interval of time (i.e., current year).
An indicator is created if the value of the temporary variable temp1 is higher
than 2. A collection of indicators associated to the filtered measurement
(i.e., rejected variable) is retrieved, which are filtered by the name of the
desirable indicator and a temporal constraint. If this specific indicator has
been created more than 3 times in the current year, a notification action is
triggered.

Additional M&A requirements identified for these workflow scenarios can
be found at https://soft.vub.ac.be/soft/members/oscargonzalez/research.

9.3.3 Generative Implementation and Composition

The trip expenses workflow application was implemented in JPDL. We used
the MonitA-JPDL infrastructure to generate and compose automatically the
MonitA specifications into the JPDL code (see Section 8.2).

The MonitA specifications are automatically translated into AspectJ as-
pects, which can be integrated with the Java code specified for the underlying
implementation. The implementation of analysis concerns and the workflow
implementation are composed to generate a new trip expenses workflow appli-
cation instrumented with M&A concerns. The resulting workflow application
was executed in a jBPMN workflow engine to start analyzing the execution of
the workflow application.

9.4 Study 1: Measuring Development Costs

by Using MonitA

This section presents the case study performed to reason about the success for
reducing the development costs of MonitA specifications.

The development costs (productivity) in DSLs helps developers to specify
domain requirements that are normally time-consuming to implement [JB88].
Typically, the DSL specifications generate automatically the corresponding
source code to reduce development costs and time-to-market. The measures

https://soft.vub.ac.be/soft/members/oscargonzalez/research

174 Chapter 9. Validation

associated to productivity quantify the monitoring and analysis specification
inputs required to produce the output artifacts in the workflow implementa-
tion. We selected the following quantitative criteria to measure productivity:

• Measure the time required to specify and implement M&A concerns.

• Measure the number of generated lines of code (LOCs) against the LOCs
added manually.

9.4.1 The Exploratory Study

We evaluated our approach against two different research experiments for each
target workflow platform (i.e., BPEL, JPDL). In the first research experiment,
application developers specify the M&A concerns directly in the workflow im-
plementation. In the second research experiment, the same application devel-
opers use MonitA to specify the M&A concerns. In both research experiments,
we evaluated the above criteria related to productivity. These research exper-
iments were performed in two different workflow applications (i.e., trouble
ticket, loan approval).

Set-up for the JPDL Workflow Platform

We asked 5 workflow developers to perform these research experiments for the
trouble ticket workflow application. These workflow developers were experts
in workflow applications implemented in JPDL. The manual specification in
JPDL of the M&A concerns involved the five developers, whereas the specifi-
cation of M&A concerns in MonitA was performed by one of these developers.

Set-up for the BPEL Workflow Platform

We asked 1 workflow developer to perform these research experiments for the
loan approval workflow application. This workflow developer was expert in
workflow applications implemented in BPEL. This workflow developer per-
formed the manual specification in BPEL of the M&A concerns as well as the
specification of M&A concerns by using MonitA.

Despite the programming skills of these workflow developers, they had to
learn about the workflow technologies and about MonitA.

9.4.2 Quantitative Results

The following illustrate the results after reasoning about the productivity prop-
erties according to the defined quantitative criteria.

9.4 Study 1: Measuring Development Costs by Using MonitA 175

Development Costs in Terms of Time Criteria

Figure 9.4 illustrates the empirical results obtained in terms of time criteria.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 1 2 3 4 5 6 7
Requirements specification

T
im

e
 (

h
o

u
rs

)

Workflow configuration MonitA-JPDL infrastructure
Encoded specification MonitA specification

a) JPDL platform

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

0 1 2 3 4 5 6 7
Requirements specification

T
im

e
 (

h
o

u
rs

)

Workflow configuration MonitA-BPEL infrastructure
Encoded specification MonitA specification

b) BPEL platform

Figure 9.4: Trend of Specification Time.

Results for the JPDL Workflow Platform. The manual implementation in
JPDL of the three initial M&A requirements for the trouble ticket workflow
application (see section 1.2) took around 51 hours. These requirements com-
prise around fifteen M&A concerns. In contrast, the implementation of these
M&A requirements by using the MonitA generative infrastructure took around
2 hours. In order to stablish a more realistic comparison between both research
experiments, we took into account the time spent to create the MonitA-JPDL
generative infrastructure involved in the second research experiment. The cre-
ation of the MonitA-JPDL generative infrastructure took around 117 hours
and facilitates the automatic implementation of M&A concerns into JPDL
workflow applications.

Results for the BPEL Workflow Platform. The manual implementation in
BPEL of the M&A requirement for the loan approval workflow application
(see section 9.2) took around 50 hours. In contrast, the implementation of the
corresponding M&A concerns by using the MonitA generative infrastructure
took around 1 hour. In order to stablish a more realistic comparison between
both research experiments, we took into account the time spent to create the
MonitA-BPEL generative infrastructure involved in the second research ex-
periment. The creation of the MonitA-BPEL generative infrastructure took
around 140 hours and facilitates the automatic implementation of M&A con-
cerns into BPEL workflow applications.

These results show that there is a high implementation time to create the
generative infrastructure for a new workflow platform. Nevertheless, this cre-
ation cost can be recovered after five MonitA specifications. Our approach
improves the efficiency for specifying and implementing M&A concerns by
avoiding wasted time and effort. This is illustrated by the lower time im-
plementing M&A concerns in an existing workflow application and in a new

176 Chapter 9. Validation

workflow application of a supported workflow platform. The automatic gen-
eration of the corresponding monitoring code reduces development costs and
shortens time-to-market.

Development Costs in Terms of Size Criteria

Figure 9.5 illustrates the productivity empirical results in terms of LOCs cri-
teria.

! "! #!!

$%$

&'!
(!

!

&!!

(!!

#!!

$!!

"!!

'!!

)enerated Manual)enerated Manual

3ncoded in t8e
9or:flo<

=sing Monita

@i
n
es

 o
f

C
o
d
e

(@
C

C
s)

9or:flo< definition =nderlying implementation

a) Manual vs Generated Code in
the JPDL platform

!

"#!
$%!

&!!

'!

((

!

&!!

)!!

$!!

"!!

(!!

'!!

*enerated Manual *enerated Manual

Encoded in the
:or;flo=

>sing Monita

Ai
n
es

 o
f

C
o
d
e

CA
D

C
sE

:or;flo= definition >nderlying implementation

b) Manual vs Generated Code in
the BPEL platform

Figure 9.5: Empirical Evaluation in terms of Size Measures.

Results for the JPDL Workflow Platform. Around 49 JPDL LOCs and
474 Java LOCs were manually added in the JPDL workflow implementation
to specify the initial M&A requirements of the trouble ticket scenario (see
section 1.2). In contrast, the number of lines of code generated from the
MonitA specification is 30 JPDL LOCs plus 160 Java LOCs in the underlying
implementation. 20 Java LOCs were added manually, thus, the reduction of
manually encoded LOCs in JPDL is around 95%.

Results for the BPEL Workflow Platform. Around 490 BPEL LOCs and
60 Java LOCs were manually added in the BPEL workflow implementation to
specify the M&A requirements of the loan approval scenario (see section 9.2).
In contrast, the number of lines of code generated from the MonitA specifica-
tion is 370 BPEL LOCs plus 55 Java LOCs in the underlying implementation.
10 BPEL LOCs were added manually, thus, the reduction of manually encoded
LOCs in BPEL is around 98%.

These results show that the MonitA generation process improve the imple-
mentation of M&A concerns since the generated code is optimized to deliver
higher quality software. The automation of large parts of the development
process for M&A concerns leads to fewer errors in their implementation.

9.5 Study 2: Evaluating Maintainability and Understandability 177

9.4.3 Discussion

The time for specifying M&A concerns and for automating the analysis infras-
tructure depends on the practices used for programming and the experiment
or learning curve in the languages. We have to evaluate the impact on time to
specify M&A concerns when some element in our approach evolves (e.g., gram-
mar, workflow language).

The main threat to productivity validity is that the M&A generation pro-
cess has to be evaluated to identify and deliver potential optimizations on it.
We have to evaluate the impact that each element in our generative infrastruc-
ture (e.g., transformation) has over the development costs of implementing
M&A concerns.

The measurements taken from our research experiments depend on the
developers’ discipline in programming M&A concerns. Nevertheless, we believe
the results are sufficiently reliable since the research experiments show similar
results on development costs.

If the workflow implementation is changed and the process model is not
updated, the analysis specification is not going to correspond with the workflow
implementation. Thus, inconsistencies can arise between the M&A concerns
specification and their implementation. This issue is described in detail in the
future work section.

9.5 Study 2: Evaluating Maintainability and

Understandability

We have analyzed maintainability and understandability in our approach against
a set of qualitative attributes.

Maintainability helps workflow developers to add or to alter M&A con-
cerns in workflow applications. We evaluated maintainability by analyzing the
following criteria:

• Validate the simplicity to adapt M&A concerns.

• Validate that the specification of M&A concerns is modularized from their
implementation.

Understandability helps workflow developers to express M&A concerns in
terms of the workflow monitoring and analysis domain to offer a higher-level
of abstraction during their specification. We evaluated understandability by
analyzing the following criteria:

• Evaluate if the M&A concerns are easily identified.

• Evaluate if the specification of M&A concerns hide technical complexity to
workflow developers.

178 Chapter 9. Validation

9.5.1 Evaluation Results

Maintainability. Our workflow M&A generation process modularizes the
M&A concerns specification and its implementation to enhance their maintain-
ability. The M&A concerns specification can be easily identified and adapted
since they are separated from the workflow specification. We have implemented
the M&A concerns of both workflow scenarios manually and using MonitA. We
saw duplication of code in the manual implementation, which is detrimental
for the maintainability by compromising the reliability of the workflow imple-
mentation. When changes to M&A concerns are required, their specification is
modified in a single place and its implementation can be re-generated and com-
posed with the existing workflow implementation. Thus, there are no clones in
the MonitA specification and the implementation of M&A concerns is reliable.

Additionally, the code required to maintain is less in MonitA and it is mod-
ularized to ease its maintainability.

Understandability. At a conceptual level the language constructs allow
workflow analysts to identify the M&A concerns specification that satisfies the
business requirements. At the implementation level, workflow developers easily
identify which module implements a MonitA specification. This increases un-
derstandability and facilitates reasoning about the specification (syntax) and
implementation (semantics) of M&A concerns.

9.5.2 Discussion

Maintainability. Although the MonitA specifications can evolve indepen-
dently from the workflow specification, when the language grammar is up-
dated, the changes in all existing analysis specifications have to be identified
to ensure their consistency. Consequently, the existing MonitA specifications
should fit into the new syntax and semantics. Moreover, multiple versions of
a process model can be in execution, thus it is necessary to determine which
version of the analysis specifications are suitable for each process model. This
is for example when there are still workflow instances in execution and the pro-
cess model is changed for creating instances of the new workflow application.

Understandability. This quality property of the software depends on the
intended audience: business manager, domain expert, workflow developer, or
user. In our approach the intended stakeholders are workflow developers and
workflow analysts. For these stakeholders, understandability is related to hid-
ing technical complexity by increasing the level of abstraction in the specifi-
cation of M&A concerns. Although understandability is achieved for workflow
developers, there is still a big gap to specify M&A concerns directly by work-
flow analysts.

9.6 Study 3: Evaluating DSL Success Factors in MonitA 179

9.6 Study 3: Evaluating DSL Success Factors

in MonitA

We conducted a case study to evaluate DSL success factors in MonitA by
means of a questionnaire 1

9.6.1 Basic Study

The survey was conducted with 2 experimented users of MonitA (i.e., MonitA
infrastructure developers) to investigate, in addition to expressiveness and
learnability (see section 5.2), DSL success factors such as usability, produc-
tivity, and reusability. Both users acted as MonitA application developers.

Table 9.1 illustrates the questions adopted and defined to evaluate multiple
DSL success factors in MonitA.

These questions facilitates the measuring of the DSL success factors men-
tioned in this section. The following explains the considerations adopted for
measuring these DSL success factors:

• Reusability. To evaluate the reusability of MonitA specifications we asked
the MonitA application developers whether they reuse specifications of other
projects or they create a new specification (Question 13 and 14). We evaluate
if for a MonitA specification application developers create a new MonitA
model, or if they look at old models to create a new one, or if they copy an
existing model and modify it.

• Usability. To evaluate the usability of MonitA we evaluated whether ap-
plication developers decided for a manual implementation instead of using
MonitA (Question 17). We also asked the level of agreement/disagreement,
by using a five-point scale, with a set of statements to investigate whether
MonitA: eases the specification of M&A concerns (Question 6a), eases the
implementation of M&A concerns (Question 6b), is powerful (Question 6c),
and if it is difficult to use (Question 9a).

• Productivity. We asked a set of questions to application developers in order
to measure the productivity of MonitA. The first question was to estimate
the percentage of time spent on implementing tasks without using MonitA
(Question 18). These tasks correspond to: design M&A concerns, write
monitoring events, write analysis function classes, write measurement data
representation classes, write configuration files, write M&A logic, and con-
nect M&A code with workflow code. Then we asked the time spent on imple-
menting tasks when using MonitA (Question 19). These tasks correspond to:

1The complete questionnaire for MonitA infrastructure developers can be found at https:
//soft.vub.ac.be/soft/members/oscargonzalez/research

https://soft.vub.ac.be/soft/members/oscargonzalez/research
https://soft.vub.ac.be/soft/members/oscargonzalez/research

180 Chapter 9. Validation

Id Question DSL Success
Factor

Q13 Was this a new MonitA project or build on an ex-
isting version?

Reusability

Q14 If you start a new MonitA project, how do you
proceed?

Reusability

Q15 Did the MonitA user interface help you modeling? Usability
Q16 Did you use other tools for modeling in this project,

next to the MonitA interface?
Usability

Q17 Did you ever consider to use MonitA but decided
against?

Usability

Q6a Did you easily specify the monitoring and analysis
requirements using MonitA?

Usability

Q6b Does MonitA ease the implementation of monitor-
ing and analysis concerns?

Usability

Q9a Do you agree with the statement: MonitA is diffi-
cult to use ?

Usability

Q18 Please estimate the percentage of time spent on the
following tasks without using MonitA?

Productivity

Q19 How much time did you approximately spend on
the following the tasks when using MonitA?

Productivity

Q20 Please estimate the percentage of code that was
generated

Productivity

Q21 How many lines of code did this project consist of? Productivity
Q22 Do you think the use of MonitA increases the qual-

ity of the delivered code?
Productivity

Table 9.1: Questions Used to Evaluate DSL Success Factors in MonitA

(a) design M&A concerns, (b) generate monitoring events, analysis function
classes, measurement data representation classes, configuration files, and (c)
write M&A logic. Finally, we asked application developers to estimate the
percentage of code that was generated (Question 20) to be compared with
the number of lines of code in each MonitA project (Question 21).

We asked application developers the level of agreement/disagreement, by
using a five-point scale, with a set of statements to investigate whether
the use of MonitA increases the quality of delivered code (Question 22).
Specifically we asked if they consider that the code is more readable, that
fewer errors occur, and that the product complies better with customer
requirements.

The measurement of various success factors is done through two five-point
Likert [Lik32] scales used by Hermans et al. [HPvD09], which have an addi-

9.6 Study 3: Evaluating DSL Success Factors in MonitA 181

tional neutral option [PK01]. The first scale ranges from strongly disagree,
disagree, neutral, agree, strongly agree. The second scale ranges from very
often, often, sometimes, seldom, and never.

9.6.2 Results and Discussion

Reusability

There are multiple elements in our approach that can be reused at the model
level:

• The association data model that contains the declaration of the workflow
variables and their association with the flow entities is specified externally
to the M&A concerns model. Thus, it can be reused in multiple MonitA
specifications.

• The analysis functions in MonitA are defined once, thus they can be reused
by multiple MonitA specifications.

• Generic measurements can be reused in many workflow applications and
in many points within a workflow application, whereas application-specific
measurements can be reused in many points within a workflow application
for a specific domain.

This makes it easier to reuse partial or entire solutions rather than pieces of
code. Despite that MonitA specifications are conceptually reused, we observed
that MonitA specifications are never reused directly.

Currently monitoring events and analysis functions in MonitA are inte-
grated in a single specification. Separating analysis activities from their con-
nections allows reusing both parts independently. Thus, a mechanism to im-
port and export partially or completely MonitA specifications (e.g., analysis
functions) is required to actually reuse MonitA models. This would improve
the reusability of MonitA specifications.

The MonitA application developers indicated that the specification of M&A
concerns is independent of particular workflow platforms. The existing MonitA
generative infrastructures (i.e., MonitA-JPDL, MonitA-BPEL) can be used to
integrate M&A concerns for two different workflow platforms.

Usability

Both MonitA application developers indicate that the MonitA editor helped
them to specify M&A concerns at a higher abstraction level. Nevertheless, they
indicated the necessity to improve the tool support to facilitate the navigation
on process and data models.

182 Chapter 9. Validation

Productivity

The answer to the questions indicate that the use of the MonitA language and
infrastructure reduces the time for implementing M&A concerns. The main
reason indicated by both application developers is that using MonitA improves
the time implementing repetitive and irrelevant tasks. According to the an-
swers we observe that the time spent on implementing the M&A concerns is
reduces from 85% to 40%. This is basically due to application developers con-
centrate on the domain-specific M&A requirements. This complements the
results observed in the case study 2 (see section 9.4) about development costs
of M&A concerns. The application developers feel that the MonitA execution
platform decreases the complexity to specify and implement M&A concerns,
thereby reducing the time and effort to perform these tasks. Moreover, they
agree that the use of MonitA increases the quality of M&A code since this code
is more readable and complies better with customer requirements. One of the
MonitA application developers considers that the workflow application instru-
mented with M&A concerns becomes less error prone since most monitoring
and analysis tasks are automated.

9.7 Summary

Assessing the expressiveness of our DSL requires to use it in multiple scenar-
ios. As mentioned previously, we have used MonitA to declare M&A concerns
in three workflow applications. These applications are well known and docu-
mented scenarios, which are typically used as a reference to assess work in the
domain of workflow management systems. In these scenarios it was possible
to specify how to capture information during the workflow execution, how to
define and compute application-specific measurements, and how to evaluate
these measurements to notify quality issues in the execution of the workflow
application. The application of MonitA in different workflow scenarios vali-
dated our goal of increasing the expressiveness of M&A concerns in terms of
workflow relevant data.

We have discussed a number of case studies to assess our goal of raising the
level of abstraction for specifying M&A concerns. We used our approach for
different workflow platforms to evaluate that M&A concerns are applicable in
a workflow technology independent way.

The definition and materialization of the above experiments resulted in sev-
eral suggestions to improve the MonitA DSL and its implementation platform.
Several suggestions were improved in the current implementation, whereas
other ones are considered for future work.

The following chapter compares our workflow monitoring and analysis ap-
proach against related work.

Chapter 10

Comparing MonitA with Related
Work

This section presents the analysis of various related proposals involving the
monitoring and analysis of workflow applications.

We present the definition of multiple characteristics required to understand
and evaluate the related work (section 10.1). Although we present an approach
for workflow monitoring and analysis at runtime (section 10.2), we discuss re-
lated work which specify different techniques to monitor and analyze workflow
applications (section 10.3). We also present related work involving data man-
agement in process models (section 10.5) and domain-specific languages in
other application domains (section 10.6). Finally, we compare our workflow
monitoring and analysis approach against related work based on the defined
characteristics (section 10.8).

10.1 Monitoring and Analysis Characterization

We distinguish several monitoring and analysis (M&A) characteristics for posi-
tioning our approach against related work. These characteristics are a synthesis
of existing works. These characteristics are only described in this section, but
they are evaluated at the end of this chapter. The characteristics considered to
study the related work are characterized according to their nature: execution
environment capabilities, and monitoring and analysis capabilities.

Execution Environment Capabilities

• External specification of M&A concerns with respect to the workflow appli-
cation specification. This is required to provide companies with an inde-
pendent mechanism to capture measurement information, which can help to
identify efficiency constraints and to audit workflow applications accuracy.
Moreover, M&A specifications must be easily evolved according to the ever

183

184 Chapter 10. Comparing MonitA with Related Work

changing business requirements. The M&A approach must be able to react
and adjust to these changes.

• Domain-specific notations for monitoring and analyzing workflow applica-
tions at a higher-level of abstraction. This enables workflow analysts to
specify M&A concerns uniformly and independently of particular workflow
technologies.

• Conceptual level specification to express M&A concerns in terms of the pro-
cess model rather than in terms of its workflow implementation. Thus, a
conceptual specification can be applied to multiple workflow technologies.

• Events correlation of workflow events intercepted for the processing of mea-
surements. For example, computing the processing time of a set of activities
requires the correlation of two events activity started and activity finished
for each activity instance involved in the measurement. Thus, some patterns
to describe this event correlation must be provided.

• Custom measurements specification to define the structure of new custom
measures required to analyze a workflow application.

• Custom measurements processing to define how measurements are comput-
ed/calculated.

• Control actions specification to define a response to a special situation during
the execution of the workflow application.

• Executable M&A specification along with the workflow application execu-
tion.

• Generative implementation of the M&A concerns for a workflow application.

• Modularized implementation of M&A concerns along with the workflow ap-
plication implementation to avoid code duplication.

• Automatic composition of M&A concerns with the workflow application
when the specification of these concerns is done externally to the workflow
application.

• Automatic event instrumentation of the workflow management system to
monitor a workflow application.

• Centralized measurement storage to provide a unified interface to access and
manage this information. In this way, the measurement information can be
accessed by multiple workflow applications and analysis parties. Users can
use measurement information on demand, which enables multiple users to
define how and when to use this information.

10.1 Monitoring and Analysis Characterization 185

• Flexible measurement interface to ease the access and management of mea-
surement data and its integration with other systems.

• External processing of the logic to analyze workflow applications with respect
to the workflow management system.

• Standard based specification and communication of measurement data to
facilitate its interoperability with other systems.

Monitoring and Analysis Capabilities

• Monitoring at runtime provides information on how the workflow application
is changing continuously. This proactive monitoring of workflow applications
integrates several events at runtime to support gathering performance mea-
surements and applying reactive improvement actions without lag time.

• Monitoring a posteriori is performed offline for non critical monitoring re-
quirements based on historical information.

• Fine-grained monitoring for the intercepting state changes in the workflow
variables. These fine-grained complement the interception of state changes
in flow entities at the instance level (e.g., when an activity instance moves
to a state finished).

• Active monitoring to capture the measurement information in response to
an event occurred during the workflow application execution.

• On-demand monitoring to gather the measurement information and running
workflow instances information upon request.

• Technical measurement to support the analysis of measurements such as
system response time, and system load.

• Organizational measurement is used for measuring and analyzing the effi-
ciency of the workflow application (e.g., idle times, workload analysis).

• Application-specific measurement to support the analysis in terms of the
data managed by the workflow application. Application-specific workflow
analysis measures the quality of the workflow application (e.g., workflow
data analysis).

• Inter-organizational measurement involves a complex interaction of many in-
terconnected (self-contained) workflow applications. The definition of mea-
surements crosses the boundaries of a single workflow application.

186 Chapter 10. Comparing MonitA with Related Work

• Operational decision-making analyses the monitoring and measurement in-
formation during the workflow application execution. The operational eval-
uation of service level agreements (SLAs) help to improve the speed and
effectiveness of workflow applications. This also helps to detect operational
bottlenecks faster.

• Informative analysis provides feedback through notification actions (e.g., send
email) about the operational evaluation of monitoring and measurement in-
formation. An informative analysis facilitates the identification of potential
improvements to prevent problems in the future.

• Adaptive analysis uses the operational evaluation of monitoring and mea-
surement information to modify the state of a workflow application to fix a
problematic situation during its execution.

10.2 Workflow Monitoring and Analysis at Run-

time

The monitoring and analysis at runtime is typically performed by using the
logged audit trail data provided by the workflow management systems. The
approaches in this area focus on real-time access to workflow performance in-
dicators, interactive and real-time dashboards, and proactive alert generation.
An error detection mechanism can be defined by evaluating the loops in the
workflow application.

The following sections illustrate different solutions for monitoring and ana-
lyzing workflow applications at runtime. These solutions are grouped according
to their approach.

10.2.1 Architectures for Business Activity Monitoring

One possibility for analyzing workflow applications is the use of workflow audit
trail information. The first survey on analytical opportunities by using audit
trail information was provided by McLellan in 1996 [McL96]. McLellan dis-
cussed the analysis of historical workflow data stored by evaluating audit trail
data in terms of workflow metrics. These metrics perform statical evaluations
and detect late cases and overdue tasks at runtime. In addition to the techni-
cal M&A dimension presented in this work, our approach deals with the M&A
from an application-specific dimension.

Several commercial business process management products and architec-
tures offer solutions for Business Activity Monitoring (BAM) [MHH07] [vdDB06]
[LPY07] [JSC03] [MS04]. These solutions offer rich dashboards to visualize

10.2 Workflow Monitoring and Analysis at Runtime 187

predefined measurements and to write queries on demand to extract the in-
formation required for the reporting tools. The information is extracted from
audit trails, in which workflow metrics are added to the workflow architectures
for analysis. Typically, workflow developers have to instrument the workflow
platforms and applications by adding adapters to generate custom workflow
events, to add custom measurements, and to send this information to the BAM
architecture. These BAM architectures instrument the IT systems that man-
age workflow applications for supporting their monitoring, measurement and
analysis. Nevertheless, the instrumentation of the workflow system is very time
consuming since it has to be performed manually for each workflow language
and execution engine. Typically, M&A tools use proprietary workflow plat-
forms, thereby these solutions are difficult to use in a wide range of contexts.

The following subsections present different architectures for business activ-
ity monitoring.

Monitoring Frameworks

The Process Performance Manager [AG00] is a commercial tool that ana-
lyzes performance by calculating predefined ratios, which are both frequency
and time-related [vdDB06]. McGregor et al. [MS04] propose a framework
based on web services for measuring and analyzing business performance. In
this approach, the whole BAM is encapsulated in a decision making system,
named Solution Manager framework, which provides a standardized interface
for workflow monitoring and analysis. Nevertheless, the workflow platform
(i.e., BPEL) has to be extended to transfer the information required by the
framework for evaluating performance measurements. We include a data as-
sociation model in our approach to declare explicitly the data used by the
workflow models for easing application-specific M&A specifications.

The work presented in [JSC03] illustrates an agent-based framework that
aims at providing continuous analytics for workflow applications. This frame-
work can detect exceptions or special situations in a business environment to
compare them with desired management goals. This framework comprises five
components for a) analytical processing, b) real-time transformation of work-
flow events, c) storing workflow-base process metrics, d) tracking all manage-
ment agents incorporated within the business environment, and e) the visual-
ization of metrics and analytical results in a dashboard. The instrumentation
of the workflow system can be very time consuming since it has to be performed
manually for each workflow application and execution engine. The implemen-
tation is based on proprietary technologies, which restricts the monitoring to
inter-organizational workflow applications. Similar to the agent-based frame-
work, our approach incorporates M&A concerns into the code of workflow
applications to analyze them at runtime. Furthermore, we provide a solution
to automate the implementation of monitoring and analysis specifications into

188 Chapter 10. Comparing MonitA with Related Work

an existing workflow implementation. The M&A at runtime can support a
business intelligence process to monitor, measure, evaluate, and notify special
situations during the execution of workflow applications in a timely fashion.

Monitoring by Re-Engineering Workflow Applications

BizAgi [Biz] applies a re-engineering process to the applications and their data
models to convert them into a workflow application. A workflow application
is defined around the data model, and XPath is used to access the data that
is shared by all workflow elements. The workflow variables are defined at
modeling time and they correspond to a field in the database. BizAgi offers
a rich visual framework to define business rules and execution process rules.
They also have a set of templates to send emails, and to create forms. In
contrast to BizAgi, our approach provides independence of the process models,
a separated data model for monitoring purposes, independence of the workflow
engine, and explicit analysis functions modularized of the workflow application.

In contrast to these approaches, we propose a domain-specific language to
specify M&A concerns independently of specific implementation languages.

Separation of Monitoring Concerns

The idea of separating crosscutting monitoring code is not new and is present
in some approaches [VCJ04] [Sch07]. However, they do not provide the mech-
anisms to specify and access the information inside the workflow activities.
These approaches investigate how concepts from monitoring activities relate
to AOP concepts. However, they do not provide adequate support for all the
required monitoring concepts since their specifications of monitoring activities
are specified using AOP languages instead of monitoring languages.

10.2.2 Model-driven Approaches

The following subsections present different workflow M&A approaches which
use a model-driven strategy.

High-level Business Process Measurement

The idea of high-level abstraction in business process measurement is presented
by Valdis in [Vit04]. This approach presents a methodology for defining busi-
ness process measures based on meta-modeling. The measures are related to
business concepts using Unified Modeling Language (UML) activity diagrams
with extensions to associate object measures. However, we observe that this
approach only considers definitions of typical process measures in the initial
model. In contrast, Our DSL provides abstractions to specify new measure-
ments based on existing measurement and workflow data. In our approach

10.2 Workflow Monitoring and Analysis at Runtime 189

we specify M&A concerns in terms of BPMN process models, which provide a
standardized formalism to model workflow applications.

Model-driven Development of Monitored Processes

Momm et al. [MMA07] present a model-driven methodology for a top-down
development of monitored processes based on a service-oriented architecture.
The authors acknowledge the problem of a time consuming effort to manually
implement the instrumentation for triggering business events. This is due to
the fact that IT systems for workflow applications are very specific to each
company, thus the monitoring implementation is specific to the employed IT
system and execution engine. The authors consider Service-oriented Architec-
ture (SOA)) platforms such as BPEL and web services, or other SOA platforms
(e.g., CORBA and a workflow engine). This work presents how to systemati-
cally develop a BPEL instrumentation in a top-down approach to automate the
generation of monitored workflow applications. The authors introduce meta-
models a) to create models for the monitoring of workflow applications, and
b) to create models to define process performance indicators (PPI) (based on
a UML profile) into specific monitoring points. The models created with these
metamodels are transformed into process models, which contain the required
monitoring activities.

The PPI model retrieves monitoring information (e.g., state changes) for a
specified monitored object (i.e., process instance, flow object instance) and de-
termines a PPI value by means of predefined monitoring metrics. The monitor-
ing information is retrieved by using the events fired by the process execution
engine (EventProbes). To support these EventProbes, Momm et al.present cer-
tain extensions to instrument a BPMN-based orchestration model (closer to
BPEL concepts) with monitoring messages and monitoring tasks. Monitoring
messages hold information about the current state, whereas monitoring tasks
send this information to the associated monitoring infrastructure. However,
the monitoring tasks have to be placed appropriately in the process model.

In contrast, our DSL facilitates the specification of a set of monitoring
events indicating where to capture information and what to do with this in-
formation. We discuss the problem of crosscutting M&A concerns in workflow
applications and present an approach to keep these concerns modularized and
to compose them automatically with the workflow implementation. Thus, the
required instrumentation can be added in multiple places of the process model
and in the workflow implementation by using AOP to retrieve state informa-
tion. We use model transformations to control the generated artifacts. We
keep trace of the mappings done between the process model and workflow
implementation to automate the MonitA generation process. We also make
workflow variables explicit in process models, which enables to specify and
gather application-specific information. The PPI model can be compared with

190 Chapter 10. Comparing MonitA with Related Work

our model for specifying measurement variables. In addition to this measure-
ment variables specification, we provide a model, as part of our DSL, to specify
how to compute and evaluate this information.

In the work of Momm et al. [MMA07], the composition of workflow activ-
ities and monitoring activities is performed at the domain level, rather than
at the implementation level. Since the process is not orthogonal to the M&A
concerns, it has to be evolved at the same time than monitoring requirements.
In contrast, we delay the composition between both domains at the imple-
mentation level. Section 7.5.1 details the advantages and disadvantages for
composition depending the level of abstraction.

The approach presented by Momm et al. [MMA07] supports the monitoring
and measurement in a platform-independent way. In addition, we provide a
concrete syntax and notations to specify the M&A concerns. This approach is
supported into a SOA platform based on BPEL and web services. In addition
to this SOA platform we also target platforms that are not based on SOA such
as the jBPM platform based on JPDL and Java.

10.3 Workflow Monitoring and Analysis a Pos-

teriori

The monitoring and analysis a posteriori is typically based on the event logs
created in the execution of workflow applications. Multiple techniques can be
identified in this approach such as data mining, process mining, and semantics
business process mining.

10.3.1 Architectures for Workflow Applications

Solution Manager Service

The authors in [MSzM06] present the Solution Manager Service (SMS), which
is a web service-based system for on-demand workflow management. This
work states that monitoring and analyzing information about the performance
of workflow applications, especially the one crossing the organizational bound-
aries, is complex due to the lack of a common infrastructure to capture, trans-
form, and accumulate audit trails from distributed workflow applications. The
SMS infrastructure condenses the information gathered in a centralized repos-
itory. All the interactions with this system are via a set of web services: define
web service, log web service, and monitor web service.

The “define web service” provides services with a way to describe a web
service of the process with performance measurements information. They use
BPEL to define workflow applications. This corresponds to a low-level spec-
ification since it involves a language that is not targeted at monitoring and

10.3 Workflow Monitoring and Analysis a Posteriori 191

analysis, and since the measures get combined with the process information.
In addition, to publish the web service, the workflow developer has to pro-
vide the service description containing details of its data types, operations,
bindings, and network location. This web service enables the specification of
general performance measures for both the web service and for a partner group
that participates in the web service.

The “log web service” provides a mechanism to gather all state changes of
a workflow application, which are recorded in an audit trail. The state of a
workflow application is constituted by the messages that are exchanged, which
are held in BPEL variables. When a message is received, the variables are
populated and the subsequent requests can access data. An auditing mecha-
nism must be implemented and incorporated in the workflow application, or
by using probes in the engine to track the state changes. When invoking an
external service within the workflow definition to log audit information, a log
request can be executed in any stage of the BPEL application. However, the
overhead of invoking the external service for each state change can be a poten-
tial bottleneck. When considering the interception of web service requests to
extract the data needed for auditing, only an incomplete audit trail data can
be extracted. This is due to the fact that the BPEL web service requests have
limited visibility to internal workflow information. Information such as work-
flow instances or variables used by the workflow engine to control the workflow
execution are not included in the web service requests. This typically results
in complex and expensive audit trail processing for gathering the complete
information. When tracking BPEL flows in a WFMS, it is possible to access
the complete runtime data and contextual information about the workflow ap-
plication. Typically, WFMS provide listener interfaces that get invoked when
particular flow-related events (e.g., when a process starts, when an activity
finishes) take place. When workflow applications are not managed by WFMS,
the option to track workflow state changes is to add sensors (probes) in the
source systems (e.g., database layer, business logic layer, presentation layer)
to capture information and generate audit data.

The “monitor web service” enables the definition or modification of sensors.
These sensors observe periodically the performance data from the data ware-
house. The monitor web service can be used to define sensors for a web service
and for partners. This system enables management for inter-organizational
workflow applications and the ability to share the monitoring infrastructure
among business partners. This infrastructure also provides an approach for
processing events in near real-time trying to make the performance information
available earlier than ETL (extraction, transformation, and load) approaches.
It integrates and transforms events buried in the audit trails of workflow ap-
plications at runtime. One advantage of this approach is the outsourcing of
data processing to external parties to handle data intensive operations.

In contrast, we propose a mechanism to intercept events related to state

192 Chapter 10. Comparing MonitA with Related Work

changes in workflow variables to capture execution context information and
to invoke an analysis action. In our approach, flow-related and data-related
events are captured by means of aspects technology. The performance of the
M&A code can be improved since the aspects are generated.

In our approach, the monitoring and measurement information is captured,
processed, and analyzed at runtime for improving the decision-making pro-
cess. This analyzable information can quickly increase to a sizable amount and
could impact the operational performance of the workflow execution [LR99].
However, we consider our approach suitable to evaluate critical performance
measurements during the workflow execution. We consider that the Solution
Manager Service system can be used to complement ours by outsourcing the
analysis of the measurement information that is non-crucial at runtime to ex-
ternal parties.

We present an approach of general applicability that can be used in mul-
tiple workflow platforms. Both approaches target similar goals, however, the
specifics of each one are different such as the abstractions for the specification
of M&A concerns, our generative approach, and the technique to gather in-
formation. Similar to the SMS approach, we have a centralized measurement
storage system to store and collect measurement information.

10.3.2 Business Process Intelligence

Certain approaches use data mining and data warehousing techniques to re-
cover the workflow execution information and to discover structural patterns
for identifying the characteristics that contribute to determine the value of
a metric [GCC+04] [CCDS04]. These approaches present a set of integrated
tools for managing workflow execution quality, which are referred to as Business
Process Intelligence. Casati et al. [CCD+02] at HP laboratories use process
mining algorithms to derive patterns from workflow audit trail data. Time-
based workflow attributes (e.g., activities processing time) can be captured
and illustrated by using the Business Process Cockpit [SCDS02] front-end.

In our approach, there is an explicit definition of the relations between
existing metrics and workflow data to built new application-specific metrics.
This information is captured and analyzed during the execution of a workflow
application. We could benefit from these approaches since they can provide
values for new measures that were not specified and implemented as part of
the workflow application.

10.3.3 Semantic Business Process Management

Other works [GCC+04] [HLD+05] introduce the idea of using semantics to per-
form business process management (BPM). Grigori et al. [GCC+04] present an
architecture for the analysis, prediction, monitoring, control and optimization

10.3 Workflow Monitoring and Analysis a Posteriori 193

of workflow execution using taxonomies to capture semantic aspects. Hepp et
al. [HLD+05] propose an approach for building Semantic BPM (SBPM) sys-
tems through the combination of BPM, semantic web, and web services.

The following subsections present different approaches that use ontologies
for workflow M&A a posteriori.

Ontologies for Business Process Management

Other approaches [PDB+08] [dMPvdA+07] [PD07] use ontologies to capture
the semantic aspects and process mining techniques for retrieving informa-
tion. Ontologies capture semantics information, which allows reasoning about
workflow applications and its execution. Process Mining aims at automati-
cally discovering analysis information based on event logs [vdAW05]. These
logs contain information about the workflow execution, in which it is assumed
that the workflow instances are identified and the tasks are registered in the
order they were performed. Most of the process mining techniques are freely
available in the open source tool ProM [vDdMV+05]. The work by Medeiros
et al. [dMPvdA+07] presents the opportunities and challenges for semantic
process mining and monitoring. The work by Pedrinaci et al. [PD07] shows an
ontology for process mining.

This work is aligned with ours because the authors also consider analysis
capabilities at the conceptual level, the definition of application-specific met-
rics, and subsumption relations between measurement information. The main
difference, apart of using ontologies, is that our approach is focused on process
management through the M&A of workflow activities instead of using process
mining techniques. Thus we provide the mechanisms to extract application-
specific information according to a special behavior in the workflow execution.

In addition, we introduce the idea of a DSL dedicated to workflow M&A,
using a generative approach to automate the implementation of M&A concerns
into particular workflow languages and engines. We provide a practical way to
use the semantic knowledge for M&A. We complement the high-level process
models with the description of process data and the interactions with work-
flow entities required to perform a application-specific analysis (data-centric
analysis). Our approach facilitates to perform a similar performance analysis
(measures) to the ones using a mining approach. Our DSL can be used to
support process mining approaches by specializing the control action trace to
provide the facilities necessary for creating event logs with structured analy-
sis information. Moreover, our DSL allows defining explicit relations between
monitoring data and workflow data to build new measurements

194 Chapter 10. Comparing MonitA with Related Work

Strategy-driven Business Process Analysis

Pedrinaci et al. [PMHD09] present an approach for supporting strategy-driven
business process analysis by using an ontology to capture strategic concerns.
This approach is similar to ours in the sense that M&A concerns (or strategic
concerns in terms of this strategy-driven approach) are declared at a conceptual
level of abstraction. In our approach, we complement this conceptual M&A
specification by defining explicitly its execution semantics with a set of model
transformations to generate code into a specific workflow platform.

At the conceptual level, a close relation can be established between the
concepts defined in both approaches. They use a business motivation ontology
to describe a strategy for business process analysis referring to ends, means,
metrics and influences. These abstractions are comparable to those we use for
workflow M&A considering the definition of high-level analysis goals (ends),
M&A requirements (means), measurements specification (metrics), and an im-
plicit explanation while defining the M&A concerns (influencer). We use our
DSL to capture monitoring events, whereas the strategy-based approach uses
an events ontology to capture monitoring logs. We use our DSL to declare and
compute measurements, whereas the strategy-based approach uses an opera-
tional analysis ontology. In addition, we offer mechanisms to declare complex
measurement data facilitating the specification of application-specific metrics
and to declare control actions over these data. At the implementation level,
the strategy-driven approach is based on process mining to recover the strate-
gic information, whereas in our approach we recover, build, and analyze the
measurement information at runtime by combining M&A concerns with work-
flow code. Our implementation approach for conceptual M&A specifications
using our DSL could be used as a validation for the strategy driven approach.

10.3.4 Process Analysis based on Event logs

The following sub sections present different approaches that use event logs for
workflow M&A a posteriori.

Business Provenance

The authors in [CDM+08] present business provenance as a technology for
tracking and correlating relevant aspects of business end-to-end operations
(workflow applications). In this way, a typical data and process re-engineering
is not required since relevant aspects such as the data that is produced, the
resources that are involved, and the tasks that were executed are discovered
and correlated to provide a representation of the workflow application. These
relevant aspects (tasks, resources, data, relations) are stored in a generic data
model in order to utilize the operational data. Thus, provenance technologies

10.3 Workflow Monitoring and Analysis a Posteriori 195

help understanding what actually happened during the life cycle of a workflow
application. The visibility of all related aspects to a workflow application is
required to manage compliance against a set of business rules.

This technology is also related with Business Activity Monitoring (BAM)
since business provenance traces operations to extract relevant information.
These traces are based on specific instrumentation through appropriate con-
figuration of recorders (probes), which are adapter components that are able
to listen to events of the underlying information systems. The construction of
these adapter components can be time demanding and costly. Business prove-
nance is similar to process mining [RvdA08] since both allow process analysis
based on event logs.

In contrast, we generate the code to capture M&A information by us-
ing the adopted workflow infrastructure (e.g., workflow language constructs)
and underlying implementation language (e.g., aspect language, programming
language). Whereas business provenance supports monitoring by using rules
that enrich the workflow application (provenance graph), we offer an approach
for the explicit specification of M&A concerns modularized with respect to
the workflow implementation. Business provenance, as we do, treats data as
first class entities since they outrun the life cycle of the workflow application.
That is why we focus on supporting events and relations in terms of data
interactions that are important for a particular specification. This business
provenance technology could complement our approach by adding a historical
perspective for enabling root cause analysis by providing time series naviga-
tional views (e.g., events, user’s actions) over the execution of workflows. In
this way, it would be possible to realize, when a particular behavior occurs, the
resource responsible for it and why this took place. In the business provenance
approach, the interaction with the provenance data could be improved using
our domain-specific language to create, browse, and query this information.

In our approach, the monitoring of workflow relevant data can be specified
and captured selectively and explicitly in order to reduce the complexity of
analysis activities at processing large volumes of workflow data.

Conformance Checking

The authors in [RvdA08] present an approach to check the conformance of a
process model and an event log. Conformance checking is measured by two dif-
ferent types of metrics: fitness and appropriateness. Fitness metrics measure
the extent to which the log traces can be associated with valid execution paths
specified by a process model. In addition, appropriateness metrics measure the
degree of accuracy in which the process model describes the observed behav-
ior, combined with the degree of clarity in which it is represented. In contrast,
the focus of our approach is on monitoring and analyzing performance and
efficiency measurements rather than monitoring (un)desirable behavior on the

196 Chapter 10. Comparing MonitA with Related Work

workflow application.

10.3.5 Tool Support

There are multiple architectures and prototypes created for monitoring and
analyzing workflow applications. Casati et al. [CCF+00] introduce a language
named Chimera-Ex to model and monitor exceptions in workflow management
systems. The exceptions that can be monitored are specified at workflow build-
time and are integrated with a specific workflow management system.

The authors in [zMR00] present the PISA (Process Information System
based on Access) tool, which extracts performance metrics by analyzing work-
flow event logs. This work presents monitoring facilities for three different
analysis views: processes and functions, resources, and process objects (data).
The available information defines the quality and scope of the analysis that can
be performed on a workflow application. To support the analysis in terms of an
object-view in the PISA tool, the workflow model was modified by adding an
activity for creating a log-entry into the audit trail with the relation between
a workflow instance ID and the process object ID.

In contrast, we keep explicit and external the M&A specifications, which
can be combined with data from multiple information sources. We enhance the
workflow implementation by adding automatically M&A concerns required to
evaluate the workflow applications at runtime. We propose a uniform workflow
M&A approach to be applied in diverse workflow management systems. In ad-
dition to the data recorded by the workflow management system (state-changes
in processes and activities), we acknowledge the need to capture state-changes
regarding workflow variables and to construct application-specific measure-
ments. This information must be stored to support specialized analysis.

We enhance the analysis of workflow applications since we evaluate quality
criteria on the data associated with multiple workflow elements. We provide
an explicit specification of workflow and measurement variables to analyze a
workflow application. In contrast to the approach of the PISA tool, we perform
the M&A at runtime. In our approach, the information required for analysis is
always available since M&A concerns are integrated with the workflow infras-
tructure. If we need to add a concern to the workflow, it is not added directly
to the process model, but it is specified externally and incorporated automati-
cally to the workflow application. This allows traceability and maintainability
facilities when adding or changing M&A concerns.

10.4 Dynamic and Static Program Analysis

The behavioral information in a program can be obtained through program
analyses techniques such as dynamic analysis and static analysis. In dynamic

10.4 Dynamic and Static Program Analysis 197

analysis the behavioral information can be obtained by monitoring the pro-
grams behavior at runtime, whereas in static analysis the behavioral informa-
tion can be predicted by analyzing the program’s code at compile-time.

The focus of this dissertation is on dynamic analysis of measurement in-
formation in workflow applications. We present a general overview of dif-
ferent dynamic analysis approaches in general programs since they are re-
lated with our research work. Each of these approaches follow different goals
such as program verification through assertion checking [SB06], debugging
through event-related breakpoints [GDJ02] [Duc99], program testing and pro-
filing [GOA05] [DFW04], program understanding [DGD05] [Ric02], and pro-
gram events monitoring [KF04].

We instrument source code with customized monitoring events by consid-
ering the development of M&A concerns as part of the life cycle of workflow
applications and not a debugging environment. We do not consider program
verification and understanding such as checking safety properties, design re-
covery, or visualization of a program’s behavior. Nevertheless we provide an
static analysis in terms of the data types of MonitA specifications along with
the workflow implementation. In contrast to the object-oriented and procedu-
ral language paradigms used by the above approaches, our approach is used in
workflow languages to analyze workflow applications.

In dynamic analysis the means for events selection are typically performed
by stepwise program execution and by instrumentation. A debugger performs
a stepwise program execution to skip events that are not important to the
program analysis. The events can be selected by instrumenting an entire pro-
gram [GOA05] or by a selective instrumentation by using enumeration of indi-
vidual methods [DFW04], regular expressions on bytecode operations [KF04],
an AspectJ-like pointcut language [SB06], annotations, and runtime events re-
lated to programming language constructs. Our approach supports a selective
instrumentation of flow and data related events by using an aspect-oriented
pointcut language and by using workflow language constructs to create run-
time events. Our approach instruments automatically the workflow application
source code in order to monitor only the requirements of workflow analysts.

The approaches for dynamic analysis offer a different language support for
reasoning over the monitored events. For example, the above approaches sup-
port the expression of a) assertions in temporal logic over AspectJ joinpoints,
b) user-defined monitors for passively processing events, c) behavioral tests in
a logic programming language, d) partial matches against program traces in a
fuzzy logic programming language, e) visualizations of query results in Prolog,
and f) behavioral debugging or profiling queries in Prolog or in a SQL-like
query language. Our approach offers a DSL to specify user-defined measure-
ment and control actions for reasoning over the monitored events. The DSL
includes quantifiers and aggregate operations over workflow events to incorpo-
rate M&A concerns over the workflow application.

198 Chapter 10. Comparing MonitA with Related Work

10.5 Process Data Models

Although, BPMN provides basic support for an informational perspective,
these process models suffer from the lack of support to specify the data used by
their activities [Dub04]. This drawback is of special interest in our approach
to support M&A specifications in terms of workflow relevant data.

10.5.1 Data Modeling in Workflow Applications

Several works have acknowledged the importance of a data-centric perspective
in business process modeling [dlVFS+09] [NC03] [RLVDA03] [SZNS06].

Data Models in Business Process Diagrams

The authors in [dlVFS+09] present a requirements engineering approach to
complement business process diagrams with a data perspective for modeling a
workflow application. Functional requirements are defined by the specification
of the task descriptions of a workflow application by customized BPMN process
diagrams. These diagrams indicate the behavioral perspective (control flow)
of the system. Data models indicate the storage perspective of a system.
These data models are derived from functional requirements by customizing
an existing approach named info cases, which model use cases and domain
data models in an integrated model. These use cases are used to describe the
information flows between an information system and its actors (i.e., domain
entities that are used in the task descriptions). These information flows capture
a specification of the composition of flows, and a dictionary of elementary items
of information (domain class diagram).

In contrast, we use standardized specifications widely accepted and sup-
ported by interoperable tooling to specify process models (i.e., BPMN) and
data models (i.e., XSD). We use an XML schema (XSD), conceived as a data
type model, to represent explicitly the structure of the workflow data hidden
in the internals of the workflow application. We complement this data types
specification with a workflow variables model, which captures and describes the
information used by the workflow activities. We use model transformations to
integrate process models and data models and to provide an automatic gener-
ation process for deriving M&A executable code.

Business Artifacts

Nigam et al. [NC03] introduce the notion of business artifact to manage data.
They use graphical elements to specify artifacts, which are business entities
(e.g., insurance claim, order, financial deal) guiding the operation of the busi-
ness. A business artifact includes specifications to hold relevant data about
the artifact as it moves through the workflow, and the possible life-cycles it

10.5 Process Data Models 199

might follow. Each artifact has a unique identifier. This approach could be
used to support our target of intercepting state changes over the data since it
models the possible life-cycles of business artifacts. A business artifact can be
compared with data entities in our approach.

Data-Flow Perspective for Business Process Management

Sun et al. [SZNS06] address the issue of detecting data flow anomalies such
as missing, redundant, and conflicting data. This approach includes a frame-
work that enables the specification of data flows and their analysis. Data
flow specifications associate the operations done by an activity over a datum
and represent the input and output data of an activity. This input/output
representation is supported by an extension of UML activity diagrams. The
specification of data flow analysis provides a notation to establish a depen-
dency between activities, and also provides an algorithm to implement a data
flow verification artifact in workflow managements systems. This algorithm
detects anomalies such as usage of data that have not been created, conflicts
when multiple activities create different instances of the same datum and they
known which one to use, and the creation of unnecessary data.

This approach can complement ours by adopting an algorithm to detect
anomalies in terms of data (e.g., creation, duplication). Sun et al. [SZNS06]
acknowledge that it becomes illegible when combining control and data flow
elements in a single model. We modularize the specification of workflow vari-
ables with respect to the process model to improve understandability.

Framework for Document-Driven Workflow Systems

The framework for document-based workflow systems presented by Wang et
al. [WK05] focusses mainly on passing documents between activities. Typi-
cally, these workflow systems provide a model of event adapters to capture the
data flow based on database triggers. However, they do not concentrate on
the processing of a document inside an activity.

In contrast to this approach, we model explicitly the data entities that shall
be part of the workflow application and the possible interactions with the flow
entities rather than data flow through tasks. This data entities specification
complements the BPMN process models providing a mechanism to describe
enriched M&A concerns.

10.5.2 Data Modeling on Other Domains

Foster et al. [FPWM08] discuss the problem about how to define interactions
among web services to support operations on state. This issue discusses how
to model and implement service state and the associated interactions in that

200 Chapter 10. Comparing MonitA with Related Work

state. The state is related to the data values associated with a service that
persists across interactions. State interactions are related to name state, access
that state, modify that state, and destroy it. This work presents four different
approaches (i.e., Web Services Resource framework (WS-RF), WS-Transfer,
HTTP, and no-conventions) for modeling state in web service interactions.
Modeling state refers to modeling a projection of the underlying system state
that is exposed externally.

Although this work is focussed in a web services domain, we tackle a similar
problem since we acknowledge the necessity to explicitly define and implement
data variables (workflow and measurement) among the flow entities of a work-
flow specification. In addition, we discuss the issue about how to intercept
CRUD (create, read, update, delete) interactions (state changes) on the data
entities. This is useful to support the monitoring related to the data values
associated with an activity. These interactions are used to exchange data rep-
resentations between the workflow application and monitoring concerns.

10.6 Domain-specific Aspect Languages

Business Rules on Business Processes

The authors in [PCl+07] present a Rule-based AOP framework for separating
and executing business rules contained in business processes. This approach
presents a way to integrate a business rule engine (BRE) with BPEL processes
and a strategy to adapt changes of business rules dynamically at runtime.
The business rules are separated using the BRE instead of an existing AOP
programming language. However, one limitation is that if the BRE does not
support an event condition action (ECA) mechanism, then an event-based (for-
ward chaining) mechanism has to be implemented. Generic monitoring and
control specifications can be associated with business rules in this approach.
In our current implementation approach, the method to accept changes is to
stop the currently running workflow application, modify the M&A concerns or
create new ones, and re-generate the analysis implementation that is automat-
ically composed with the workflow implementation. Although, our generative
implementation process offers a greater agility to evolve the monitoring and
analysis concerns, this adaptation requires to redeploy the workflow applica-
tion into a workflow execution engine. This work could be used as a basis
to create a mechanism to offer dynamic workflow changes for supporting the
specification and implementation of unanticipated M&A concerns.

10.7 Service-Oriented Computing 201

10.7 Service-Oriented Computing

Service-Oriented Computing (SOC) [Pap03] [HS05] is a paradigm for dis-
tributed computing. SOC is composed of different elements such as ser-
vices, service compositions, a service inventory, a service-oriented architecture
(SOA), and a service-oriented solution logic [PTDL07]. These elements are
inter-related with the goal of creating and assembling services for developing
software applications that span organizations and heterogeneous computing
environments. This inter organizational network of services in the applications
can be materialized by using the service-oriented architecture. SOA defines a
way of designing a software system to provide services.

A service is the fundamental unit in SOC and is a platform-independent,
autonomous, and self-describing software program. Services can be described,
published, discovered, invoked, and composed using standard languages and
protocols. A service can reply simple requests but also can execute complex au-
tomated business process that deliver and consume multiple software services.
Web services are the most known technology to implement a SOC platform.

Web Services Specification

A web service uses XML-based standard specifications such as a) the Simple
Object Access Protocol (SOAP) for transmitting data, b) the Web Services
Description Language (WSDL) for defining services, and c) the Universal De-
scription, Discovery and Integration (UDDI) specification for publishing and
discovering services [WCL+05].

A SOAP message consists of message headers containing non application-
dependent information (e.g., quality of service information), and a message
body containing application data. A WSDL document defines port types,
which specify the messages that a web service sends or receives and its opera-
tions (abstract description). A WSDL also defines the mapping of a port type
to a transport protocol using a data encoding format and a physical address
to access the web service (concrete description). A UDDI registry contains
information about organizations that provide web services, and the technical
and legal meta-data about those services (e.g., binding templates, technical
models).

There are important web services issues such as service composition, secu-
rity, reliable messaging, and transactions that are not addressed by the basic
web service specifications. Thus, additional WS-* specifications have been
proposed to provide mechanisms quality of service (e.g., WS-Security, WS-
ReliableMessaging) and for service composition (e.g., BPEL).

The following subsection presents the specification of web services compo-
sition, which is relevant to our research work.

202 Chapter 10. Comparing MonitA with Related Work

Web Services Composition

Multiple web services can be combined to solve a complex problem, to achieve a
policy goal, or to provide a new service. The goals of web services composition
are to increase reusability and to reduce complexity to integrate applications
in intra and inter enterprise settings.

The web services composition involves the specification by means of a com-
position language and the execution by means of a runtime environment. The
specification of a web services composition defines the control and data flow
between the participants (i.e., web services and their clients) involved in the
composition. A web services composition can be specified by using different
approaches such as activity diagrams, state charts, petri nets, process alge-
bra, programming languages, and workflow languages. Nevertheless, workflow
languages oriented to web services composition such as WSFL [Ley01] and
BPEL [IBM02] provide high-level constructs to focus the specifications in terms
of the business process logic. The BPEL workflow language was presented in
section 2.1.3. These specialized workflow languages free the programmers from
handling low-level concerns such as converting program data from and to XML,
creating SOAP messages and setting their payload, handling faults, and as-
signing messages to different conversations. These languages define the web
service composition using a workflow process specification (workflow schema).

Our approach was scoped to monitor and analyze the control and data flow
of workflow applications that support not only web service participants, but
also participants such as humans, automatic tasks, and external applications.
In our approach, the monitoring and analysis is performed in terms of the
data defined in the workflow process specification, and not in terms of the
data contained in the individual participants.

10.8 Discussion: Positioning our Approach

This section evaluates our approach by considering the M&A characteristics
presented in section 10.1. We split the evaluation of these characteristics by
characterizing them according to their nature: execution environment capabil-
ities and M&A capabilities. The following two tables summarize the charac-
teristics provided by the analyzed related work. A “+” means that the char-
acteristic is supported, a “-” means that the characteristic is not supported,
and a “±” means that the characteristic is partially supported. We highlight
the main features of the general approaches, without presenting particular
variations in specific works.

Table 10.1 illustrates a summary of the execution environment capabilities
provided by our approach and by the related work.

In this table we can observe that the approaches for workflow monitor-

10.8 Discussion: Positioning our Approach 203

1. Business Activity Monitoring 4. Service-oriented Architecture 7. Process Mining

2. Model-driven 5. Process Intelligence

3. MonitA DSL 6. Semantic BPM

Approach 1 2 3 4 5 6 7

Specification
External M&A specification - + + - + + +
Domain-specific abstractions - + + - - + -
Conceptual Level - ± + - - + -
Event correlation - - + + - - -
Custom measurements specification - + + + + + +
Custom measurements processing - - + + + - +
Control actions - - + + + + +
Implementation
Executable + + + + - - -
Generative (analysis infrastructure) - + + - - - -
Modularized M&A implementation - - + - - - -
Automatic composition - - + - - - -
Automatic event instrumentation - + + - - - -
Unified measurement interface + + + + +
Flexible measurement interface - - + + + + +
External processing infrastructure + + ± + + + +
Standard based - - + + - + ±

Table 10.1: Execution Environment Capabilities Evaluated on Related Work.

ing and analysis a posteriori are suitable to manage measurements. We can
observe that our approach supports these measurement capabilities but in a
runtime monitoring context. A main feature in our approach is to support the
modularized specification and automatic composition of monitoring and anal-
ysis concerns with workflow applications. This facilitates the maintainability
of the M&A specifications.

Table 10.2 illustrates a summary of the M&A capabilities provided by our
approach and by the related work.

We can observe that the approaches for M&A a posteriori allow the analysis
of application-specific measurements in contrast to runtime approaches. One of
the main contributions of our approach is to support this essential feature but
in a runtime context. Another, main feature of our approach is the capability
to intercept fine-grained workflow events to support the M&A of workflow
data events. Nevertheless, MonitA requires to adopt mechanisms to support a
robust analysis a posteriori, inter-organizational analysis, and the management
of organizational measurements. This can be done by adopting mechanisms
already provided by the other approaches. An opportunity to future work is

204 Chapter 10. Comparing MonitA with Related Work

1. Business Activity Monitoring 4. Service-oriented Architecture 7. Process Mining

2. Model-driven 5. Process Intelligence

3. MonitA DSL 6. Semantic BPM

Approach 1 2 3 4 5 6 7

Monitoring
Monitoring at runtime + + + ± - - -
Monitoring a posteriori ± - ± + + + +
Fine-grained monitoring - - + - - - -
Active monitoring + + + ± - - -
On-demand monitoring + + + + + + +
Measurement
Technical measurement + + + + + + +
Organizational measurement + + ± + + + +
Application-specific measurement - - + + + ± ±
Inter-organizational measurement - - - + + - +
Control
Operational measurement analysis - - + ± - - -
Informative analysis + - + + + + +
Adaptive analysis - - - - - -

Table 10.2: Monitoring and Analysis Capabilities Evaluated on Related Work.

on supporting the specification of adaptive control actions on the workflow
applications as response to the evaluation of M&A concerns at runtime.

10.9 Summary

This chapter has discussed the main features offered by different monitoring
and analysis approaches and their main missing features. We have presented
different approaches related to workflow monitoring and analysis at runtime,
monitoring a posteriori, data management in process models, and domain-
specific languages in other application domains. A comparison of our workflow
monitoring and analysis approach against related work was presented based
on a set of relevant characteristics for monitoring and analyzing workflow ap-
plications. The following chapter summarizes our research work, results and
contributions presented in this dissertation.

Chapter 11

Conclusion

This chapter first summarizes and discusses the problems addressed, the re-
sults, and the strengths of our research work (see Section 11.1). Finally, we
discuss on limitations and future work (see Section 11.2).

11.1 Conclusions

The goal of this research is on raising the level of abstraction for workflow
developers for monitoring and analyzing workflow applications at runtime.
To this end, we have defined and validated an approach for the specification
and implementation of monitoring and analysis (M&A) concerns in workflow
applications.

The main contributions of this research are: (1) an architecture for work-
flow monitoring and analysis, which offers the possibility to specify M&A con-
cerns independently of specific workflow platforms and to target these speci-
fications into different workflow platforms; (2) a domain-specific language to
specify M&A concerns in terms of the workflow relevant data and application-
specific measurements; (3) a generative implementation strategy to create the
infrastructure to automate the implementation of M&A concerns on a spe-
cific workflow platform.; and (4) a MonitA execution platform that integrates
automatically the M&A specifications with the implementation of workflow
applications for two different workflow platforms.

Our approach is based on five pillars: maintainability, reusability, expres-
siveness, productivity, and understandability.

Understandability

The first pillar of our approach is on improving understandability of moni-
toring and analysis specifications. Current solutions require a low-level imple-
mentation of M&A concerns by using concepts from the workflow language,

205

206 Chapter 11. Conclusion

the underlying implementation language, and the workflow engine.
To tackle this limitation we created a domain-specific language named

MonitA that provides a set of abstractions for the workflow monitoring and
analysis domain. We improve understandability of monitoring and analysis
code by hiding technical complexity to workflow developers who are the in-
tended audience. These abstractions extract essential properties and omit
non-essential details required to move the specification of the M&A concerns
to a higher level. Workflow monitoring and analysis abstractions focus on what
the M&A concerns specify and not how they are implemented.

Maintainability

The second pillar of our approach is on the maintainability of the MonitA
specifications. This pillar is motivated by the lack of support for the sepa-
ration of M&A concerns observed in the current state-of-the-art on workflow
applications. The need for separation of concerns is due to the fact that con-
temporary monitoring and analysis approaches do not evolve accordingly to the
continuous evolution of workflow applications as a consequence of the business
evolution. Existing approaches fail at separating M&A concerns from workflow
applications, thus, their implementation results in crosscutting and entangled
code that affects the maintainability of the workflow application and of the
monitoring and analysis implementation.

In order to tackle this limitation, we modularize M&A concerns to be
treated in isolation of the workflow application. In this way, we identify,
manage and maintain the domain knowledge of M&A concerns, that is in-
herently changeable in workflow applications, according to the business needs
and workflow application evolution. We consider the workflow application to
be specified using BPMN and to be implemented using any workflow language.
We also consider M&A concerns to be decoupled and implemented using the
MonitA DSL and the underlying AOP technology.

Reusability

The third pillar of our approach is on the reusability of MonitA specifica-
tions across multiple workflow platforms. Currently, the specification of M&A
concerns is different between workflow platforms. Contemporary solutions fall
short because they do not treat monitoring and analysis as a predominant el-
ement in the workflow implementation. As a result, workflow developers need
to build ad hoc infrastructures and abstractions to instrument the workflow
implementation with M&A concerns.

To overcome this limitation, our DSL eases the specification of M&A con-
cerns in terms of flow entities described in the BPMN process models. This

11.1 Conclusions 207

ensures that M&A concerns can be specified in a uniform and technology-
independent way. Thus, workflow developers are able to write and reuse these
concerns across different workflow platforms.

Expressiveness

The fourth pillar of our approach is on improving the expressiveness in the
specification of M&A concerns. This requires to involve the workflow data to
incorporate custom measurements specialized in the business domain the work-
flow is modeling. In traditional monitoring environments, the M&A concerns
are specified only in terms of predefined measurements about the operational
state of the workflow engine (e.g., the time a workflow is running, the number
of workflow instances) and not in terms of the workflow relevant data. This is
because the internal workflow variables are encoded in the workflow implemen-
tation, thereby they are difficult to localize, use, and share with other workflow
developers that require to specify M&A based on this data.

We tackle this limitation by providing mechanisms to model a projection
of the internal workflow data and to model the workflow variables that are
used by the flow entities and the operations that the flow entities perform on
these variables. These data specifications are accessed and shared by multiple
workflow developers during the specification of M&A concerns. MonitA cus-
tomizes the instrumentation of workflow applications to intercept fine-grained
workflow events in terms of data entities (e.g., workflow variable changed).
In this way, MonitA supports the specification of M&A concerns in terms of
the domain the workflow application is modeling by referring to the work-
flow variables used by their activities. MonitA also allows workflow developers
to specify and manage custom measurements that can be evaluated at runtime.

Productivity and Simplicity

The last pillar in our approach is on increasing the productivity and reducing
the complexity to specify and implement M&A concerns. Despite the tools and
techniques developed for workflow monitoring and analysis at runtime, work-
flow developers have to manually intervene in the workflow implementation to
include code that implements custom workflow monitoring and analysis solu-
tions. This is a complex task and requires a big effort from workflow developers
since the instrumentation has to be performed manually for each workflow plat-
form. This requires a thorough knowledge of the underlying implementation
technology.

To overcome this limitation, the MonitA DSL offers improvements to write
faster MonitA specifications. We also defined a strategy to allow MonitA spec-
ifications to be executable. This means that the MonitA specifications can be
automatically composed with an existing workflow application to be executed

208 Chapter 11. Conclusion

in a workflow engine. To this end, the MonitA platform automatically gener-
ates executable implementations from MonitA specifications. We consider that
the traceability link between process model elements (BPMN) and workflow
implementation elements is made explicit. In this way, the automatic genera-
tion of M&A concerns facilitates workflow developers to remain indifferent to
the low-level workflow implementation details. The MonitA platform incorpo-
rates ideas from MDE to support the generative and traceability approaches,
and from AOP as target of the M&A concerns transformation. The use of AOP
allows us to keep the implementation of the M&A concerns with non-invasive
changes to the existing workflow application.

11.2 Limitations and Future Work

This section describes a detailed analysis of a set of potential scenarios and
limitations in which our approach has to be improved. Although these prob-
lematic scenarios are not covered in this dissertation, we acknowledge and de-
scribe them for introducing the kind of experiments that are to be developed
in the near future.

11.2.1 Composing M&A Concerns at the Conceptual
Level

The creation of a generative infrastructure using our generative strategy eases
the implementation of M&A concerns to MonitA application developers. How-
ever, the implementation of a generative infrastructure is a complex and time-
consuming task for a MonitA infrastructure developer. This requires a high ex-
pertise in the target implementation platforms (i.e., workflow language, work-
flow engine, aspect language). Moreover, the mappings to create the transla-
tional semantics (model transformations) of the MonitA specifications have to
be redefined for a new target implementation platform. Thus the semantics of
executing MonitA specifications can vary between workflow platforms.

One of a our main research directions is to define an approach to compose
the M&A concerns, which are modularized in the MonitA specifications, with
the workflow application at the conceptual level. This involves a mechanism to
represent the composition between M&A concerns, process models, workflow
data entities, and measurement data entities.

We consider that our generative strategy can be improved by defining an
implementation metamodel and a mapping that enable the composition of
M&A concerns concerns at the conceptual level. This implementation meta-
model must define the execution semantics for the MonitA specifications in
terms of concepts associated to multiple domains such as: process model-
ing [OMG06a] [KV06], aspect-oriented modeling (AOM) [SSK+06], and data

11.2 Limitations and Future Work 209

modeling [FPWM08]. This implementation metamodel represents the relations
between these domains to generalize the execution semantics of the MonitA
language and avoids having knowledge of the specific target languages and plat-
forms where the MonitA specifications are going to be implemented (e.g., work-
flow language, aspects language, data management). Thus, an implementation
model can be specialized to generate M&A code for specific workflow platforms.

Whereas the MonitA specifications describe a need for M&A of workflow
applications, the M&A implementation model describes uniformly the way to
realize the M&A concerns.

Our first approach towards the composition of M&A concerns at a concep-
tual level was the definition of a M&A concerns implementation model based
on the pivot model presented by Correal et al. [Cor07]. The pivot model incor-
porates viewpoints in process models by using aspect-oriented modeling con-
cepts, and facilitates the detection of interference problems between multiple
viewpoints. We extend this pivot model by adding concepts for data model-
ing and the interception of elements associated with the workflow underlying
implementation.

A model transformation must generate a MonitA implementation model.
The concepts in the MonitA implementation model are closely related to the
elements of the specific workflow platform. Thus, the mapping between them
can be more easily established than going directly from the MonitA model to
the particular workflow platform. The latter case is not desirable since it re-
quires workflow infrastructure developers to redefine the execution semantics
of MonitA models in terms of workflow code, aspect code, and data represen-
tation each time a new workflow platform is targeted.

The M&A concerns implementation model also motivates the necessity
to build our own compiler and/or engine to validate the execution of M&A
concerns. This can validate MonitA specifications related to a workflow appli-
cation, independently of the workflow platform that will execute it.

11.2.2 Co-evolution of Process and MonitA Models

Even though our approach offers some evolution facilities, we have identified
a number of subtleties and problems related to co-evolution and consistency
when M&A concerns are modularized from the workflow specification.

We have identified different scenarios that need to be considered to cope
with evolution when there is a delta in: a) process models, b) workflow imple-
mentation, c) workflow data, d) measurement data, e) MonitA specifications,
f) MonitA grammar, g) target language, and h) workflow engine. These scenar-
ios can be classified into intra-model and inter-model dimensions. Intra-model
is related with the consistency rules defined within the same model, whereas
inter-model involves multiple models.

Intra-model dimension. The evolution of the workflow specification

210 Chapter 11. Conclusion

should result in the evolution of the workflow implementation. Thus, if the
BPMN model is changed after the workflow implementation (e.g., BPEL) was
instrumented with the M&A concerns, then regenerating the BPEL code from
the BPMN model is not going to contain the M&A concerns. Although with
our workflow approach these concerns can be re-generated in case the workflow
changes, the M&A concerns specification has to be coordinated with the newly
defined high-level process model. However, if the workflow implementation is
changed and the workflow specification is not updated, the analysis specifica-
tion is not going to correspond with the workflow implementation. Thus, the
process model represents a design point of view that is different from its repre-
sentation in the workflow implementation. Consequently inconsistencies arise
between the monitoring and analysis specification and its implementation.

A common solution for this problem is to unidirectionally synchronize the
process model with its workflow implementation by using forward or reverse
engineering. These approaches typically create new artifacts, replacing the old
versions [SK04]. In these approaches, only one part is updated, however, if the
changes are present in both artifacts (model and source code) then information
might be lost. There are other approaches that consider round-trip engineering
as a solution to keep source and target artifacts synchronized by taking both
artifacts into account [AC06]. Nevertheless, a big effort has to be done to
create tools supporting this approach.

We also have to consider the problem of co-evolving the MonitA specifica-
tions when the language grammar evolves. The changes in all existing MonitA
specifications need to be identified to ensure their consistency. This requires
versioning techniques to update models conforming to the changed metamod-
els for preserving models compliant and valid to the metamodel. To deal
with this problem we have considered the approach presented by Cicchetti et
al. [CREP08], which deals with the co-evolution problems in the models when
the metamodels evolve. This approach is based on a model difference repre-
sentation to express the metamodel changes in a difference model. The dif-
ference model contains the differences of two versions of the same metamodel.
The co-evolution (co-adaptation) is done by a higher-order model transforma-
tion, which receives as input the difference model and generates another model
transformation for producing the model’s co-evolution.

Inter-model dimension. The evolution of the process model should re-
sult in the evolution of the MonitA specifications. However, the main problem
is that the changes in the high-level process model can affect the corresponding
MonitA specifications. Therefore, the generated MonitA code are not going
to fit into the new generated workflow implementation. Consequently, it is
necessary to define how the changes in the process model can be notified to its
corresponding MonitA specifications and how to keep them updated.

Our initial idea to tackle these problems is to use the same approach that
we propose to monitor and analyze workflow applications. This is a) creating

11.2 Limitations and Future Work 211

an intermediate model for tracing the changes done over the original workflow
specification and MonitA specifications, and b) offering capabilities to notify
the required control actions over these models. The traceability model would
be used to detect and propose solutions to solve evolution problems between
the workflow and MonitA models.

When multiple changes are expressed in a process model, workflow develop-
ers are not aware of potentially conflicting situations with the MonitA model.
To detect inconsistencies of this type, we plan to use the traceability model,
proposing actions to keep the consistency. This strategy takes advantage of the
model transformations created to support the automated implementation of
M&A concerns into a workflow implementation. During this transformation,
we could analyze the dependency among the new process model, the MonitA
model, and the original process model.

11.2.3 Managing Concerns Interactions

The specification of M&A concerns crosscut the specification of the workflow
application. This can lead to interactions and interferences between analysis
functions that have to be composed at the same point in the workflow appli-
cation. This can affect the composition with the workflow application and the
regular workflow execution. Thus, a mechanism to detect possible interactions
and interferences is required to validate the resulting workflow application be-
fore it is executed.

We have found similar problems analyzing concern interactions using our
language to those faced by the Aspect Oriented Modelling (AOM) commu-
nity [SSK+07]. These problems are related with the fact that two analysis
functions (aspects) could be applied to the same joinpoint, resulting in inter-
ference between them. In addition, there could be dependencies such as two
analysis functions interacting with each other (circular referential dependency)
or loops in the interactions between analysis functions.

We have identified a set of interaction scenarios that can generate conflicts
and inconsistencies when workflow developers specify M&A concerns. Some
of these interference problems can be associated with the constructs defined
by Nagy, I., et al. [NBA05] such as: not ordering, precedence relation, and
condition relation.

• Validate the specification of analysis functions. Two different analysis func-
tions can be specified with the same name. In this case there can be an
erroneous composition of an analysis function in the workflow implementa-
tion.

• Two different application developers can define the same measurement vari-
able with a different name (e.g., problemByArea, pba). Thus, the same infor-

212 Chapter 11. Conclusion

mation is stored in two measurement variables and none of them can contain
a consolidated value to be used by other workflow developers.

• The name of the workflow variables declared in the association model can
be different from the actual variables in the workflow implementation. In
this scenario, the MonitA specifications defined in terms of the workflow
variables cannot be composed with the actual implementation. Thereby, the
measurements associated with the workflow data cannot be built accordingly
to the monitoring necessities.

• Not ordering. This case occurs when two different analysis functions are
defined for the same workflow event (e.g., on finish [root.SubmitForm]). If
the two different analysis functions do not depend on each other, then the
ordering between them is not important.

• Precedence relation. This case occurs when the computation of a measure-
ment variable within an analysis function depends on the execution of an-
other analysis function. In this case, the dependent analysis function must
be executed after the analysis function with the independent measurement
data.

• Condition relation. In some cases there are problems that cannot be solved
by ordering the analysis functions. This is when the execution of an analysis
function depends on the outcome of another analysis function in the same
joinpoint. In this case, the invoked function should be executed first.

An initial approach towards the detection of interferences is the creation of
an intermediate implementation model for MonitA (see Section 11.2.1). This
can be used to detect interferences before the MonitA specifications are trans-
lated and composed with the target workflow platform. This offers the follow-
ing advantages:

* The interferences and interactions between analysis functions can be vali-
dated and resolved before the workflow is in execution. This allows to detect
conflicts independently of the target workflow technology. This verification
of interferences is performed once to ensure that the MonitA specifications
are going to be instrumented correctly in every workflow execution technol-
ogy.

* Workflow developers can analyze how the workflow application it is going
to behave according to the MonitA specifications. Thus, it is possible to
identify risks according to quality requirements related with the data man-
agement.

11.2 Limitations and Future Work 213

11.2.4 Expressiveness of the MonitA Language

There is a set of improvements that can be considered to enhance the expres-
siveness of MonitA without loosing its domain specificity.

Temporal Constructs

The MonitA language does not allow the specification of M&A concerns with
time-dependent constraints. Nevertheless, during the MonitA specifications
application developers require to capture the time dependencies between the
different monitoring events and analysis functions. For example, temporal
constructs such as previous, most recent, or in the past can be useful to cap-
ture behavioral patterns about the execution of M&A concerns in workflow
applications.

Advanced Control Actions

We envision extending the MonitA language by offering support for more spe-
cialized control actions. The MonitA language could be extended to provide
special constructs to express actions such as opening a file, running a script,
or executing an application. Moreover, similar to the way that functions are
supported in Excel, the MonitA language could support the specification of
functions (e.g., mathematical, statistical) to enhance the analysis that can be
performed on the measurement information.

Monitoring Events

The current MonitA language allows specifying monitoring events in terms of
flow entities (e.g., on finish [activityName]). However, the MonitA language
must consider the specification of monitoring events in terms of the transitions
in the workflow application to avoid conflicts. For example, consider a moni-
toring event type (on finish) specified in terms of an activity with two output
control flows (i.e., split). With the current expressiveness support, the set
of analysis functions associated with a monitoring event are invoked for each
possible execution path. To facilitate the correct execution of M&A concerns,
a pattern mechanism must be provided to refer to specific transitions or to a
set of them. The same can arise when a monitoring event is specified in terms
of an activity with two input control flows (i.e., loop).

Measurements Management

We envision extending the MonitA language to support the specification of
measurement variables that cross the boundaries of a single workflow appli-
cation. The main research direction is to support the enterprise-wide and

214 Chapter 11. Conclusion

cross-enterprise workflow analysis by using a common MonitA specification.
Another improvement that must be supported by MonitA is the association of
measure scale types (e.g., nominal, ordinal, interval, ratio) during the specifi-
cation and management of measurement variables.

11.2.5 Specification at a Higher-Level of Abstraction

The specification of M&A concerns with the MonitA language still requires
programming skills. This is due mainly to the support for managing the mea-
surement and in particular for the support of collections. A possible research
direction is to define a higher abstraction syntax for the MonitA language.

11.2.6 Performance Evaluations

We consider that our approach introduces an overhead on the operational
performance of the workflow execution since measurement data is captured,
processed, and analyzed at runtime. We require to evaluate the impact on
runtime performance on whether the analysis functions are interleaved with
the workflow application or if they are performed after workflow execution.
The execution performance of MonitA specifications matters but we can op-
timize how these concerns are implemented in our generation process. For
scenarios with a high amount of measurement data, we consider to integrate
our approach with approaches specialized in analysis on-demand to delegate
the processing of non-crucial measurement data to external parties.

Appendix A

Formal Grammar of the MonitA
Language

Non-Terminals

< MonitaModel > ::= concern < ID >

< Data > (< MeasureV ariable >)∗

(< AnalysisFunction > | < MonitoringEvent >)+

< Data > ::= import[< Path >] < ID > [as < ID >]
(“, ” < ID > [as < ID >])∗

< Path > ::= < ID > (“/” < ID >)∗“/”
< MeasureV ariable > ::= (persistent|transient)

< ID >< DataType >< ID >

< TransientV ariable > ::= (< DataType > | < ID >) < ID >

< IndicatorV ariable > ::= < INDICATORTY PE >< ID >

< V ariableReference > ::= < ID > | < ID > | < ID >

< MonitoringEvent > ::= on < WorkflowEventType > “[” < MonitoringSubject > “]”
trigger < FunctionInvocation >

< WorkflowEventType > ::= < ID > [“/” < ID >]
< MonitoringSubject > ::= [< ID >< ID > “|”]

(< FlowEntityRef > | < DataEntityRef >)
< FlowEntityRef > ::= root(< FlowEntityNavigation > | < FlowEntityPattern >)

< FlowEntityNavigation > ::= (< DOT >< ID >)∗

< FlowEntityPattern > ::= < DOT > (“ ∗ ”|“!” < ID >)
[< ID > (“/” < ID >)∗ < V ariableNavigation >]

< DataEntityRef > ::= < FlowEntityNavigation > “ : ” < V ariableNavigation >

215

216 Chapter A. Formal Grammar of the MonitA Language

< V ariableNavigation > ::= < ID > (< DOT >< ID >)∗

< FunctionInvocation > ::= < ID >< LPAR > [< DataCollection >] < RPAR >

(and[< AnalysisFunction > | < ID >]
< LPAR > [< DataCollection >] < RPAR >)∗

< DataCollection > ::= < PropertyV alue > (“, ” < PropertyV alue >)∗

< PropertyV alue > ::= < ID >< ASSIGNMENT >

(< Invocation > | < DataEntityCreation >)
< DataEntityCreation > ::= < ID >< LPAR >< DataCollection >< RPAR >

< Invocation > ::= < MeasureV ariableRef > | < DataEntityRef >

| < Literal > | < EngineInvocation >

| < DateT imeInvocation > | < NULL >

< MeasureV ariableRef > ::= < V ariableReference >

(“− > ” < CollectionOperationCall >

| < DateT imeOperation > | < DOT >< ID >

| < DOT > (allInstances|current) < LPAR >< RPAR >)∗

< CollectionOperationCall > ::= (size|notEmpty|isEmpty|first) < LPAR >< RPAR >

| < SelectOperation > | < AddOperation >

< SelectOperation > ::= select < LPAR >< TransientV ariable > “|”
< ConditionSet >< RPAR >

< AddOperation > ::= add < LPAR >< TransientV ariable > “|”
< AssignmentFunction >< RPAR >

< Literal > ::= < INT > | < ID > | < STRING >

< EngineInvocation > ::= engine < DOT >< ID >< LPAR >< RPAR >

< DateT imeInvocation > ::= dateT imeType < DOT > (now|today)
< LPAR >< RPAR > [< DateT imeOperation >]

< DateT imeOperation > ::= < DOT > (year|month|day|hour|min|sec)
< LPAR > [< INT > (“ + ”|“− ”)] < RPAR >

< AnalysisFunction > ::= mmcfunction < ID >

< LPAR > [< PropertySet >] < RPAR >

(< MeasurementAndControl >)+endfunction

< PropertySet > ::= < TransientV ariable > (“, ” < TransientV ariable >)∗

< MeasurementAndControl > ::= (< Action > | < EvaluationRule >)“; ”
< Action > ::= < ControlAction > | < MeasurementAction >

< ControlAction > ::= (notify|alert|trace) < LPAR >

(ID < ASSIGNMENT >< STRING >)+ < RPAR >

< MeasurementAction > ::= (< AssignmentFunction > | < MeasureV ariableRef >)
< AssignmentFunction > ::= (< MeasureV ariableRef >

| < TransientV ariable > | < IndicatorV ariable >)
< ASSIGNMENT >< DomainExpression >

217

< EvaluationRule > ::= if < ConditionSet > then(< Action >)+

[else(< Action >)+]endif

< ConditionSet > ::= < AndCondition > (or < AndCondition >)∗

< AndCondition > ::= < EvalCondition > (and < EvalCondition >)∗

< EvalCondition > ::= < NotCondition > | < LogicExpression >

< NotCondition > ::= not < LPAR >< ConditionSet >< RPAR >

< LogicExpression > ::= < DomainExpression >

(< OPERATOR >< DomainExpression >)∗

< DomainExpression > ::= < Invocation > (< OPER >< Invocation >)∗

< DataType > ::= (< ID > | < CollectionType > |Indicator)
< CollectionType > ::= Collection“ < ”(< ID > |Indicator)“ > ”

Terminals

< ID > ::= [“”](“”|“a”− “z”|“A”− “Z”)
(“”|“a”− “z”|“A”− “Z”| < DIGIT >)∗

< INT > ::= [“− ”] < DIGIT >

< STRING > ::= “””(< ID > |“”)∗“””
< DIGIT > ::= (“0”− “9”)

< DOT > ::= “.”
< LPAR > ::= “(”
< RPAR > ::= “)”

< ASSIGNMENT > ::= “ = ”
< OPERATOR > ::= “ == ”|“ < ”|“ <= ”|“ > ”|“ >= ”

< OPER > ::= “ + ”|“− ”|“ ∗ ”|“/”
< KEY WORD > ::= concern, import, persistent, transient, on, triggers,

notify, alert, trace, if, then, else, endif, null, Indicator,

mmcfunction, endfunction, Collection, engine, as, root

< NAV KEY WORD > ::= allInstances, current, size, notEmpty,

isEmpty, first, select, add

< DATEKEY WORD > ::= dateT imeType, now, today,

day,month, year, hour, min, sec

Appendix B

Semantics of MonitA Constructs

This appendix describes the semantics of the most relevant constructs of MonitA.
Section 4.1.3 points to attributes, the specific syntax, and more specific infor-
mation about each specific element.

Figure B.1 illustrates different constructs of the language and those ones
that are relevant to detail their semantics.

MonitAModel

MonitoringEvent WorkflowEventType
start, finish, create, read,
change, delete, start/finish

MonitoringSubject FlowEntityRef

rootEntity

FlowEntityNavigation flowEntityName

DataEntityRef FlowEntityNavigation VariableNavigation

DataType SimpleType

CollectionType

ComplexType

FlowEntityPattern all DataOperation

flowType

DataCollection Invocation

DataEntityCreation

functionRef

MeasureVariable persistenceModifier persistent, transient

concern

scopeModifier multiinstance, instance, entity

int, string, ...

PropertySet Property

variableName

DataType

measureName

trigger

AnalysiFunction functionName

on

Notification notify

alert

trace

Action

Measurement Assignment

VariableNavigation

EvaluationRule Conditionif

then Action

CollectionOperation
size, notEmpty, isEmpty,
first, select, add

DateTimeOperation now, today, year, month, day,
hour, min, sec

engine instanceId, instances

Figure B.1: MonitA Syntax Diagram.

Table B.1 describes the semantics of the selected MonitA constructs pre-
sented above.

219

220 Chapter B. Semantics of MonitA Constructs

Constructs Semantics
MonitoringEvent specifies what workflow event to observe, how to capture data,

and the invocation of analysis functions
WorkflowEventType

start intercepts the start of the workflow root or a flow entity when it
is reached by a transition

finish intercepts the finalization of the workflow root or a flow entity
when it triggers a transition

create intercepts the creation of a workflow variable directly in the work-
flow root or through a flow entity

read intercepts when a workflow variable is read directly in the work-
flow root or through a flow entity

change intercepts when a value is assigned to a workflow variable in the
workflow root or through a flow entity

delete intercepts when a workflow variable is eliminated directly in the
workflow root or through a flow entity

MonitoringSubject
FlowEntityPattern defines how to qualify a workflow event type with a workflow ap-

plication context such as: the workflow root element, a specific
flow entity, any flow entity in the workflow root, any flow en-
tity of a specific type (Activity, Event, Gateway), any flow entity
that operates a workflow variable, any flow entity type that oper-
ates a workflow variable, the workflow root when it operates on a
workflow variable, a specific flow entity that operates a workflow
variable, any flow entity that operates a workflow variable, any
flow entity type that operates a workflow variable

FlowEntityNavigation navigates through flow entities in the process model
VariableNavigation navigates through data entities and their properties in the associ-

ation data model
FunctionInvocation

trigger defines the instrumentation point (before, after, in) in a monitor-
ing subject depending on the workflow event specification

MeasureVariable define how to specify custom measures required to analyze the
execution of a workflow application

persistenceModifier
persistent defines a measure that has to be made persistent in a external

measurement data store system
transient defines an intermediate measure that is used for the computation

of another measure
scopeModifier

multiinstance defines that the value of a measurement variable is assigned to
multiple or to all workflow instances of a workflow application

instance defines that the value of a measurement variable is assigned to a
workflow instance

entity defines that the value of a measurement variable is assigned to a
specific flow entity within a workflow instance

DataType
SimpleType corresponds to the built-in primitive and derived types provided

by an XML schema

221

ComplexType defines the data structure of new measurement information
Collection defines a set of elements (flow, workflow data, measurement data)

with the same data type
measureName defines the persistence root used to access the values of the mea-

surement information
AnalysisFuntion defines how to instrument the workflow application

NotificationAction
notify sends an email to communicate relevant information
alert generates an alarm to be visualized in a dashboard
trace creates event logs with the analysis information

MeasurementAction
Assignment defines how to compute the value of a measurement variable
size returns the number of elements in the collection
notEmpty returns true if the collection is not empty, otherwise returns false
isEmpty returns true if the collection is empty, otherwise returns false
select returns a sub set of a Collection (measurement information)
first returns the first element of a collection
allInstances returns a collection with all measure value instances that are re-

lated with a measurement variable in persistence
engine returns predefined measurements (instance identifier, number of

instances) from the execution context provided by the workflow
engine

now, today assign a date and time value to a variable
DateTimeOperation returns the values (year, month, day, hour, min, sec) of a variable

with dateTime data type
EvaluationRule

if evaluates prescribed states established on measurement informa-
tion

then defines the measurement and notification actions to be executed
based on the occurrence of a specific condition

Table B.1: Semantics of MonitA Constructs

Appendix C

Formal Grammar of the Data
Association Language

Non-Terminals

< ProcessDataModel > ::= process < ID >< ModelRef >

(< V ariableDeclaration >)+(< AssociationData >)+

< ModelRef > ::= import[< Path >] << ID >> [as << ID >>]
(“, ” << ID >> [as << ID >>])∗

< Path > ::= << ID >> (“/” << ID >>)∗“/”
< V ariableDeclaration > ::= < ScopeModifier >< DataType >< DataSet >

< ScopeModifier > ::= processScope|instanceScope

< DataSet > ::= < ID > (“, ” < ID >)∗

< DataType > ::= < ID > |Collection“ < ” < ID > “ > ”
< AssociationData > ::= (root| < ID >)(< OperationOnData >)+

< OperationOnData > ::= (writes|reads|removes|creates) < V ariableReference >

< V ariableReference > ::= “(” < ID > (“, ” < ID >)∗“)”

Terminals

< ID > ::= [“”](“”|“a”− “z”|“A”− “Z”)
(“”|“a”− “z”|“A”− “Z”| < DIGIT >)∗

< DIGIT > ::= (“0”− “9”)
< KEY WORD > ::= process, import, processScope, instanceScope, as, Collection,

writes, reads, removes, creates, root

223

224 Chapter C. Formal Grammar of the Data Association Language

Appendix D

Model Transformations

This appendix contains a set of model transformations specified in the Xpand
transformation language. This subset of transformations describe how to gen-
erate automatically AspectJ code from MonitA models. We chose to use these
model transformations to transform MonitA models into AspectJ code when
the workflow application is implemented in JPDL.

mmc2AspectJ.xpt

�IMPORT bpm_mmc�
�IMPORT datammc_bpm�
�IMPORT processdatammc_bpm�

�EXTENSION template :: extensions :: mmcUtil�
�EXTENSION template :: extensions :: namesUtil�

�DEFINE root(BPADataModel bpaDataModel , ProcessDataModel processDataModel) FOR MMCModel�
�EXPAND aspect(this ,bpaDataModel ,processDataModel) FOREACH this.controlFlowEvents ()-�

�ENDDEFINE�

�DEFINE aspect(MMCModel model ,BPADataModel bpaDataModel , ProcessDataModel processDataModel) FOR
LogicEvent -�

�FILE getAspecJFileName ()-�
package �getAspectPackage ()�;

import java.util.LinkedList;

import �getAspectJPackage ()-�.�this.eventName.toFirstUpper ()-�;

import �getManagersPackage ()-�.�getMonitAManagerName ()-�;

import �getManagersPackage ()-�.�getContextManagerName ()-�;

import �getHandlersPackage ()-�.�getActionHandlerClassName ()-�;

import �getObjectsPackage ()-�.*;

public aspect �getAspectClassName ()� {

�EXPAND Pointcut :: pointcuts(model ,bpaDataModel ,processDataModel) FOR this -�
}

�ENDFILE�
�ENDDEFINE�

Pointcut.xpt

�IMPORT bpm_mmc�
�IMPORT datammc_bpm�
�IMPORT processdatammc_bpm�
�IMPORT ecore�

�EXTENSION template :: extensions :: mmcUtil�
�EXTENSION template :: extensions :: namesUtil�

225

226 Chapter D. Model Transformations

�DEFINE pointcuts(MMCModel model ,BPADataModel bpaDataModel , ProcessDataModel processDataModel) FOR
LogicEvent -�

�EXPAND pointcut(model ,bpaDataModel ,processDataModel) FOR this -�
�ENDDEFINE�

�DEFINE dataPointcuts(MMCModel model ,BPADataModel bpaDataModel , ProcessDataModel processDataModel ,

EPackage dataSpecModel) FOR MMCModel -�
�EXPAND dataPointcut(model ,bpaDataModel ,processDataModel , dataSpecModel) FOR this -�

�ENDDEFINE�

�DEFINE pointcut(MMCModel model ,BPADataModel bpaDataModel , ProcessDataModel processDataModel) FOR
LogicEvent -�

pointcut �this.getPointCutName ()-�(�getActionHandlerClassName ()� handler): target(handler) && call

(�this.getProcessMethodBody ()�);

�EXPAND Advice :: advice(model ,this.getPointCutName (),bpaDataModel ,processDataModel) FOR this�
�ENDDEFINE�

�DEFINE dataPointcut(MMCModel model ,BPADataModel bpaDataModel , ProcessDataModel processDataModel ,

EPackage dataSpecModel) FOR MMCModel -�
�LET searchDataProcessEvents(model) AS events�
�FOREACH events AS event -�
�LET event.getEventDataEntity () AS dataEntity -�
pointcut �event.getDataPointCutName ()-�(�dataEntity.toFirstUpper ()� �dataEntity.toFirstLower ()�)

: target(�dataEntity.toFirstLower ()�) && execution(public * �event.getEventMethod ()-�);

�ENDLET-�
�EXPAND Advice :: dataEventAdvice(model ,event.getDataPointCutName (),bpaDataModel ,processDataModel ,

dataSpecModel) FOR event�
�ENDFOREACH�
�ENDLET-�

�ENDDEFINE�

Advice.xpt

�IMPORT bpm_mmc� �IMPORT datammc_bpm� �IMPORT ecore� �IMPORT processdatammc_bpm�

�EXTENSION template :: extensions :: mmcUtil� �EXTENSION template :: extensions :: mmcDataUtill�
�EXTENSION template :: extensions :: namesUtil� �EXTENSION org:: openarchitectureware ::util:: stdlib ::io�

�DEFINE advice(MMCModel model ,String pointcut ,BPADataModel bpaDataModel , ProcessDataModel

processDataModel) FOR LogicEvent -�
�LET model.searchMMCRules(this.eventName) AS rules -�
�FOREACH rules AS rule -�

before (�getActionHandlerClassName ()-� handler) : �pointcut -�(handler){

Object [] objects = thisJoinPoint.getArgs ();

ContextManager contextManager = (ContextManager)objects [0];

String nodeId = (String)objects [1];

�pointcut.toFirstUpper ()� refObject = (�pointcut.toFirstUpper ()-�)objects [2];

long instance = contextManager.getProcessInstanceId ();

long process = contextManager.getProcessId ();

String processName = contextManager.getProcessName ();

�FOREACH rule.actionSet.actionStatement AS act -�
�EXPAND ConditionAction :: extractParametersForNew(bpaDataModel) FOR act -�

�ENDFOREACH-�

�LET (List[String]) {} AS measuresNames -�
�EXPAND ActionStatement :: actionStatement(bpaDataModel ,processDataModel ,null ,null) FOREACH rule.

actionSet.actionStatement -�
�FOREACH rule.actionSet.eAllContents.typeSelect(AssignmentFunction) AS actionSt -�
�LET actionSt.eAllContents.typeSelect(Measure) AS measures -�
�LET measuresNames.add(actionSt.mmcDataModelIdentifier.measure.measureName) AS temp2��ENDLET-�
�LET fillList(measuresNames ,measures) AS temp1��ENDLET-� �ENDLET-� �ENDFOREACH-�
�LET rule.actionSet.eAllContents.typeSelect(MMCDataFunctions) AS dataFunctions -�
�LET dataFunctions.eAllContents.typeSelect(Metric) AS notValidMetrics -�
�LET rule.getValidMetricsList(notValidMetrics) AS metrics -�
�EXPAND ConditionAction :: conditionAction(bpaDataModel ,processDataModel ,measuresNames ,metrics ,model)

FOREACH rule.conditionActions -�
�ENDLET-� �ENDLET-� �ENDLET-� �ENDLET-�

}

�ENDFOREACH� �ENDLET-� �ENDDEFINE�

�DEFINE dataEventAdvice(MMCModel model ,String pointcut ,BPADataModel bpaDataModel , ProcessDataModel

processDataModel , EPackage dataSpecModel) FOR ProcessEvent -�
�LET model.searchMMCRules(this.interactionEvent.eventName) AS rules -�
�FOREACH rules AS rule -�
�LET getActionHandlerClassName2 () AS actionHandler -�
�LET this.getEventDataEntity () AS dataEntity -�
�LET this.getEventAttribute1 () AS attribute -�
before (�dataEntity.toFirstUpper ()� �dataEntity.toFirstLower ()�) : �pointcut -�(�dataEntity.

toFirstLower ()�){

�getAttributeDataTypeE(dataSpecModel ,dataEntity ,attribute)-� �dataEntity.toFirstLower ()-

��attribute.toFirstUpper ()-� = �dataEntity.toFirstLower ()�.get�attribute.toFirstUpper ()

�();

227

�LET searchLogicEvent(model ,this.interactionEvent.eventName) AS logicEvent -�
�logicEvent.eventName.toFirstUpper ()-� refObject = new �logicEvent.eventName.toFirstUpper ()-�();

�EXPAND eventObjectAttributes2(this) FOR logicEvent -�
�ENDLET-�

�getContextManagerName ()� contextManager = �actionHandler -�.getInstance ().contextManager;

String nodeId = �actionHandler -�.getInstance ().processNode;

long instance = contextManager.getProcessInstanceId ();

long process = contextManager.getProcessId ();

�LET (List[String]) {} AS measuresNames -�
�EXPAND ActionStatement :: actionStatement(bpaDataModel ,processDataModel ,null ,null) FOREACH rule.

actionSet.actionStatement -�
�FOREACH rule.actionSet.eAllContents.typeSelect(AssignmentFunction) AS actionSt -�
�LET actionSt.eAllContents.typeSelect(Measure) AS measures -�
�LET measuresNames.add(actionSt.mmcDataModelIdentifier.measure.measureName) AS temp2��ENDLET-�
�LET fillList(measuresNames ,measures) AS temp1��ENDLET-�
�ENDLET-� �ENDFOREACH-�

�LET rule.actionSet.eAllContents.typeSelect(MMCDataFunctions).eAllContents.typeSelect(Metric) AS
notValidMetrics -�

�LET rule.getValidMetricsList(notValidMetrics) AS metrics -�
�EXPAND ConditionAction :: conditionAction(bpaDataModel ,processDataModel ,measuresNames ,metrics ,model)

FOREACH rule.conditionActions -�
�ENDLET-� �ENDLET-� �ENDLET-�

}

�ENDLET-� �ENDLET-� �ENDLET-�
�ENDFOREACH� �ENDLET-� �ENDDEFINE�

�DEFINE eventObjectAttributes2(ProcessEvent processEvent) FOR LogicEvent -�
�FOREACH this.parameterSet.parameter AS param ITERATOR it-�
�EXPAND seter2(processEvent ,it.counter0) FOR param -�

�ENDFOREACH-�
�ENDDEFINE�

�DEFINE seter2(ProcessEvent processEvent ,Integer param) FOR Parameter -�
�IF this.type!=null -�
�IF this.type.simpleType !=null -�

refObject.set�this.parameterName.toFirstUpper ()-�(�EXPAND template :: aspectj :: ConditionAction ::

invocation FOR processEvent.interactionEvent.parameterValueSet.parameterValue.get(param)-�);

�ENDIF-�
�ENDIF-� �ENDDEFINE�

Bibliography

[AC06] Michal Antkiewicz and Krzysztof Czarnecki. Framework-
specific modeling languages with round-trip engineering. In Os-
car Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio,
editors, MoDELS, volume 4199 of Lecture Notes in Computer
Science, pages 692–706. Springer, 2006. 11.2.2

[Act] ActiveBPEL Open Source BPEL Engine.
http://www.activebpel.org/. 2.1.3

[AG00] IDS Scheer AG. Process performance manager. White paper,
2002-01-17 2000. 10.2.1

[Asp] AspectJ Team. The aspectj programming guide.
http://www.eclipse.org/aspectj. 6.4.1

[BBH+94] Jeffrey M. Bell, Françoise Bellegarde, James Hook, Richard B.
Kieburtz, Alex Kotov, Jeffrey Lewis, Laura McKinney, Dino
Oliva, Tim Sheard, L. Tong, Lisa Walton, and Tong Zhou.
Software design for reliability and reuse: a proof-of-concept
demonstration. In Proceedings of the conference on TRI-Ada,
Baltimore, Maryland, USA, pages 396–404. ACM, 1994. 3.1.1

[Biz] BizAgi. Bizagi bpm. http://www.bizagi.com/. 10.2.1

[BM04] Paul V. Biron and Ashok Malhotra. Xml schema part 2:
Datatypes second edition. W3C Recommendation, October
2004. 4.1.1, 8.2.2

[BPM] BPMN-to-BPEL Eclipse plugin.
http://code.google.com/p/bpmn2bpel/. 7.3, 8.3.1

229

230 BIBLIOGRAPHY

[BVJ+06] Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Van-
derperren, Ragnhild Van Der Straeten, Eddy Truyen, Wouter
Joosen, and Viviane Jonckers. Isolating process-level concerns
using padus. In Schahram Dustdar, José Luiz Fiadeiro, and
Amit P. Sheth, editors, Business Process Management, volume
4102 of Lecture Notes in Computer Science, pages 113–128.
Springer, 2006. 6.4.2, 9.2.3

[CCD+02] Fabio Casati, Malú Castellanos, Umeshwar Dayal, Ming C.
Hao, Mehmet Sayal, and Ming-Chien Shan. Business opera-
tion intelligence research at hp labs. IEEE Data Eng. Bull.,
25(4):32–35, 2002. 10.3.2

[CCDS03] Malú Castellanos, Fabio Casati, Umeshwar Dayal, and Ming-
Chien Shan. Intelligent management of slas for composite web
services. In Nadia Bianchi-Berthouze, editor, DNIS, volume
2822 of Lecture Notes in Computer Science, pages 158–171.
Springer, 2003. 4.1.3

[CCDS04] Malú Castellanos, Fabio Casati, Umeshwar Dayal, and Ming-
Chien Shan. A comprehensive and automated approach to in-
telligent business processes execution analysis. Distributed and
Parallel Databases, 16(3):239–273, 2004. 10.3.2

[CCF+00] Fabio Casati, Silvana Castano, Maria Grazia Fugini, Isabelle
Mirbel, and Barbara Pernici. Using patterns to design rules in
workflows. IEEE Trans. Software Eng., 26(8):760–785, 2000.
10.3.5

[CDM+08] Francisco Curbera, Yurdaer N. Doganata, Axel Martens, Nir-
mal Mukhi, and Aleksander Slominski. Business provenance - a
technology to increase traceability of end-to-end operations. In
Robert Meersman and Zahir Tari, editors, OTM Conferences
(1), volume 5331 of Lecture Notes in Computer Science, pages
100–119. Springer, 2008. 10.3.4

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model
transformation approaches. In OOPSLA03 Workshop on Gen-
erative Techniques in the Context of Model-Driven Architecture,
2003. 6.3.3

[Cha07] Anis Charfi. Aspect-Oriented Workflow Languages: AO4BPEL
and Applications. PhD thesis, 2007. Mira Mezini and Gustavo
Alonso. 6.4.2

BIBLIOGRAPHY 231

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling.
Commun. ACM, 35(9):75–90, 1992. 2.1.1

[Cle10] Thomas Cleenewerck. Design principles for domain-specific
languages. Technical Report vub-tr-soft-10-11, Software Lan-
guages Lab, Vrije Universiteit Brussel, 2010. 3.1.2, 5.1

[CLRC05] Charles Consel, Fabien Latry, Laurent Réveillère, and Pierre
Cointe. A generative programming approach to developing dsl
compilers. In Robert Glück and Michael R. Lowry, editors,
GPCE, volume 3676 of Lecture Notes in Computer Science,
pages 29–46. Springer, 2005. 3.1.1

[CM06] Anis Charfi and Mira Mezini. Aspect-oriented workflow lan-
guages. In Robert Meersman and Zahir Tari, editors, OTM
Conferences (1), volume 4275 of Lecture Notes in Computer
Science, pages 183–200. Springer, 2006. 6.4.2

[CM07] Anis Charfi and Mira Mezini. Ao4bpel: An aspect-oriented
extension to bpel. World Wide Web, 10(3):309–344, 2007. 6.4.2

[Cor07] Dario Correal. Definition and execution of multiple viewpoints
in workflow processes. PhD thesis, 2007. 11.2.1

[CREP08] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Al-
fonso Pierantonio. Automating co-evolution in model-driven
engineering. In Proceedings of the 12th International IEEE
Enterprise Distributed Object Computing Conference (ECOC
2008), Munich, Germany, pages 222–231. IEEE Computer So-
ciety, September 2008. 11.2.2

[Cro08] Douglas Crockford. The world’s most popular program-
ming language has fashion and luck to thank, March
2008. http://www.insideria.com/2008/03/the-worlds-most-
misunderstood.html. 3.1.2

[Cza04] Krzysztof Czarnecki. Overview of generative software devel-
opment. In Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis
Giavitto, and Olivier Michel, editors, UPP, volume 3566 of
Lecture Notes in Computer Science, pages 326–341. Springer,
2004. 6.3.2

[dAFGD02] Ricardo de Almeida Falbo, Giancarlo Guizzardi, and Ka-
tia Cristina Duarte. An ontological approach to domain engi-
neering. In Proceedings of the 14th international conference on

232 BIBLIOGRAPHY

Software engineering and knowledge engineering (SEKE 2002),
Ischia, Italy, pages 351–358. ACM, 2002. 3.1.1

[DFW04] Stéphane Ducasse, Michael Freidig, and Roel Wuyts. Logic and
trace-based object-oriented application testing. In Proceedings
of the International Workshop on Object-Oriented Reengineer-
ing (WOOR04), 2004. 10.4

[DGD05] Coen De Roover, Kris Gybels, and Theo D’Hondt. Towards
abstract interpretation for recovering design information. In
Proceedings of the First International Workshop on Abstract
Interpretation of Object-oriented Languages (AIOOL05), vol-
ume 131 of Electronic Notes in Theoretical Computer Science,
pages 15–25, May 2005. 10.4

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976. 1.3

[dlVFS+09] José Luis de la Vara, Michel Heluey Fortuna, Juan Sánchez,
Cláudia Maria Lima Werner, and Marcos R. S. Borges. A re-
quirements engineering approach for data modelling of process-
aware information systems. In Witold Abramowicz, editor, BIS,
volume 21 of Lecture Notes in Business Information Processing,
pages 133–144. Springer, 2009. 10.5.1, 10.5.1

[dMPvdA+07] Ana Karla Alves de Medeiros, Carlos Pedrinaci, Wil M. P.
van der Aalst, John Domingue, Minseok Song, Anne Rozinat,
Barry Norton, and Liliana Cabral. An outlook on semantic
business process mining and monitoring. In Robert Meersman,
Zahir Tari, and Pilar Herrero, editors, OTM Workshops (2),
volume 4806 of Lecture Notes in Computer Science, pages 1244–
1255. Springer, 2007. 10.3.3

[Dub04] Jean-Jacques Dubray. The seven fallacies of business process
execution. (December), 2004. InfoQ,http://www.infoq.com/.
2.1.2, 10.5

[Duc99] Mireille Ducassé. Coca: an automated debugger for c. In
Proceedings of the 21st International Conference on Software
engineering (ICSE99), Los Angeles, California, United States,
pages 504–513, 1999. 10.4

[Far85] David K Farkas. The concept of consistency in writing and
editing. Journal of Technical Writing and Communication,
15(4):353–364, 1985. 3.1.2

BIBLIOGRAPHY 233

[FDF98] William B. Frakes, Rubén Prieto Dı́az, and Christopher J. Fox.
Dare: Domain analysis and reuse environment. Ann. Software
Eng., 5:125–141, 1998. 3.1.1

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented
programming is quantification and obliviousness. Technical re-
port, 2000. 6.4.2

[FGY+04] Gerhard Fischer, Elisa Giaccardi, Yunwen Ye, Alistair G. Sut-
cliffe, and Nikolay Mehandjiev. Meta-design: a manifesto for
end-user development. Commun. ACM, 47(9):33–37, 2004.
3.1.1

[FPWM08] Ian T. Foster, Savas Parastatidis, Paul Watson, and Mark Mck-
eown. How do i model state?: Let me count the ways. Commun.
ACM, 51(9):34–41, 2008. 10.5.2, 11.2.1

[GBNT01] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck.
Handling crosscutting constraints in domain-specific modeling.
Commun. ACM, 44(10):87–93, 2001. 6.4

[GC10] Sebastian Günther and Thomas Cleenewerck. Design princi-
ples for internal domain-specific languages: A pattern catalog
illustrated by ruby. In Proceedings of the 17th Conference On
Pattern Languages Of Programs (PLOP 2010), Reno/Tahoe,
Nevada, USA, 2010. 3.1.2, 5.1

[GCC+04] Daniela Grigori, Fabio Casati, Malu Castellanos, Umeshwar
Dayal, Mehmet Sayal, and Ming-Chien Shan. Business process
intelligence. Computers in Industry, 16(3):321–343, April 2004.
10.3.2, 10.3.3

[GCD08] Oscar González, Rubby Casallas, and Dirk Deridder. Mod-
ularizing monitoring rules in business processes models. In
Robert Meersman, Zahir Tari, and Pilar Herrero, editors, OTM
Workshops, volume 5333 of Lecture Notes in Computer Science,
pages 22–23. Springer, 2008. 1.5

[GCD09a] Oscar González, Rubby Casallas, and Dirk Deridder. Automat-
ing the implementation of analysis concerns in workflow appli-
cations. In Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009),
Auckland, New Zealand, pages 585–589. IEEE Computer Soci-
ety, November 2009. 1.5

234 BIBLIOGRAPHY

[GCD09b] Oscar González, Rubby Casallas, and Dirk Deridder. Mmc-
bpm: A domain-specific language for business processes anal-
ysis. In Witold Abramowicz, editor, BIS, volume 21 of Lec-
ture Notes in Business Information Processing, pages 157–168.
Springer, 2009. 1.5

[GCD10] Oscar González, Rubby Casallas, and Dirk Deridder. Monitor-
ing and analysis concerns in workflow applications: From con-
ceptual specifications to concrete implementations. Submitted
to International Journal of Cooperative Information Systems,
2010. 1.5

[GDJ02] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra Jussien.
No Java without Caffeine – A tool for dynamic analysis of Java
programs. In Proceedings of the 17th Conference on Automated
Software Engineering (ASE 2002), pages 117–126, September
2002. 10.4

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995. 2.1.3

[GOA05] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Rela-
tional queries over program traces. In Proceedings of the 20th
annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA05),
San Diego, CA, USA, pages 385–402, 2005. 10.4

[Gra01] Paul Graham. Five questions about language design, May 2001.
Notes made for a panel discussion on programming language de-
sign at MIT, http://www.paulgraham.com/langdes.html. 3.1.2,
3.1.2

[GS03] Jack Greenfield and Keith Short. Software factories: assembling
applications with patterns, models, frameworks and tools. In
Ron Crocker and Guy L. Steele Jr., editors, OOPSLA Com-
panion, pages 16–27. ACM, 2003. 6.3.2

[GTP07] Pau Giner, Victoria Torres, and Vicente Pelechano. Bridg-
ing the gap between bpmn and ws-bpel. m2m transformations
in practice. In Nora Koch, Antonio Vallecillo, and Geert-Jan
Houben, editors, MDWE, volume 261 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, July 2007. 8.3.1

BIBLIOGRAPHY 235

[Hel04] Pat Helland. Data on the outside vs. data on the in-
side. MSDN Library, 2004. http://msdn.microsoft.com/en-
us/library/ms954587.aspx. 1.3

[HLD+05] Martin Hepp, Frank Leymann, John Domingue, Alexander
Wahler, and Dieter Fensel. Semantic business process manage-
ment: A vision towards using semantic web services for business
process management. In Francis C. M. Lau, Hui Lei, Xiaofeng
Meng, and Min Wang, editors, ICEBE, pages 535–540. IEEE
Computer Society, 2005. 1.2, 10.3.3

[Hom04] Bart-Jan Hommes. The Evaluation of Business Process Mod-
eling Techniques. PhD thesis, 2004. 2.1.2

[HPvD09] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Domain-specific languages in practice: A user study on the
success factors. In Andy Schürr and Bran Selic, editors, MoD-
ELS, volume 5795 of Lecture Notes in Computer Science, pages
423–437. Springer, 2009. 5.2, 5.2.1, 9.6.1

[HS05] Michael N. Huhns and Munindar P. Singh. Service-oriented
computing: Key concepts and principles. IEEE Internet Com-
puting, 9(1):75–81, 2005. 10.7

[IBM02] IBM. Business process execution lan-
guage for web services, July 2002.
http://www.ibm.com/developerworks/library/specification/ws-
bpel/. 1.1, 2.1.3, 2.1.3, 9.2, 10.7

[Int] Intalio, The Open Source Business Process Platform.
http://www.intalio.com/. 2.1.2, 8.3.1, 8.3.1

[JB88] Robert M. Herndon Jr. and Valdis Berzins. The realizable ben-
efits of a language prototyping language. IEEE Trans. Software
Eng., 14(6):803–809, 1988. 3.1.1, 9.4

[jBP] jBPM homepage. http://www.jboss.org/jbossjbpm/. 2.1.3

[JN04] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software De-
velopment with Use Cases (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2004. 6.4

[JPD] JPDL homepage. http://www.jboss.org/jbossjbpm/jpdl/. 1.1,
1.2.2, 2.1.3, 2.1.3, 7.6

236 BIBLIOGRAPHY

[JSC03] Jun-Jang Jeng, Josef Schiefer, and Henry Chang. An agent-
based architecture for analyzing business processes of real-time
enterprises. In Proceedings of the 7th International Enterprise
Distributed Object Computing Conference (EDOC 2003), Bris-
bane, Australia, pages 86–97. IEEE Computer Society, Septem-
ber 2003. 10.2.1, 10.2.1

[Kas06] Peter S. Kastner. The business process management benchmark
report. Technical report, Aberdeen Group, 2006. 2.1.4

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. S. Peterson. Feature-oriented domain analysis (foda) fea-
sibility study. Technical Report CMU/SEI-90-TR-21, Pitts-
burgh, PA, USA, November 1990. 3.1.1

[KEvS+05] Gavin King, Steve Ebersole, Anton van Straaten, Mikheil Ka-
panadze, Greg Luck, Emmanuel Bernard, Mathias Bogaert, Ja-
son Carreira, Doug Currie, Gabe Hicks, David Channon, Helge
Schulz, Steve Molitor, Colm O’ Flaherty, and etc. Hibernate
api documentation. Web, 2005. 8.2.2

[KF04] Murat Karaorman and Jay Freeman. jmonitor: Java runtime
event specification and monitoring library. In Proceedings of
the Fourth International Workshop on Run-time Verification
(RV04), volume 113 of Electronic Notes in Theoretical Com-
puter Science, pages 181–200, 2004. 10.4

[KLBM08] Tomaz Kosar, Pablo E. Mart́ınez López, Pablo A. Barrientos,
and Marjan Mernik. A preliminary study on various implemen-
tation approaches of domain-specific language. Information &
Software Technology, 50(5):390–405, 2008. 3.1.1, 3.1.1

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-oriented programming. In ECOOP, volume 1241
of Lecture Notes in Computer Science, pages 220–242. Springer,
1997. 1.2.2, 1.4, 3.3, 6.4

[KMB+96] Richard B. Kieburtz, Laura McKinney, Jeffrey M. Bell, James
Hook, Alex Kotov, Jeffrey Lewis, Dino Oliva, Tim Sheard, Ira
Smith, and Lisa Walton. A software engineering experiment in
software component generation. In Proceedings of the 18th in-
ternational conference on Software engineering (ICSE), Berlin,
Germany, pages 542–552. IEEE Computer Society, 1996. 3.1.1

BIBLIOGRAPHY 237

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992. 3.1.1

[KV06] Audris Kalnins and Valdis Vitolins. Use of uml and model
transformations for workflow process definitions. CoRR, ab-
s/cs/0607044, 2006. 11.2.1

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Ex-
plained: The Model Driven Architecture: Practice and Promise.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003. 6.3.1

[Ley01] F Leymann. Web services flow language (wsfl 1.0). Technical
report, IBM Corporation, 2001. Stuttgart. 10.7

[Lik32] R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 22(140):1–55, 1932. 5.2.1, 9.6.1

[LPY07] Christina Lau, Scott Peddle, and Shili Yang. Gathering moni-
toring metrics to analyze your business process. Technical re-
port, IBM, December 2007. 10.2.1

[LR94] David A. Ladd and J. Christopher Ramming. Two appli-
cation languages in software production. In Proceedings of
the USENIX Very High Level Languages Symposium (VHLLS
1994), Santa Fe, New Mexico, pages 10–10. USENIX Associa-
tion, 1994. 3.1.1

[LR99] Frank Leymann and Dieter Roller. Production Workflow: Con-
cepts and Techniques. Prentice Hall PTR, September 1999.
10.3.1

[MCG04] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp.
04101 discussion - a taxonomy of model transformations.
In Jean Bézivin and Reiko Heckel, editors, Language
Engineering for Model-Driven Software Development, vol-
ume 04101 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2004. 6.3.1

[McK76] William M. McKeeman. Programming language design. In
Friedrich L. Bauer and Jürgen Eickel, editors, Compiler Con-
struction, volume 21 of Lecture Notes in Computer Science,
pages 514–524. Springer, 1976. 3.1.2

238 BIBLIOGRAPHY

[McL96] M. McLellan. Workflow Metrics - One of the great benefits of
workflow management, pages 301–318. Praxis des Workflow-
Management. Braunschweig, 1996. 10.2.1

[MHH07] Derek Miers, Paul Harmon, and Curt Hall. The 2007 bpm
suites report. Technical report, BPTrends, 2007. 1.1, 1.2, 2.2,
10.2.1

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When
and how to develop domain-specific languages. ACM Comput.
Surv., 37(4):316–344, 2005. 3.1.1, 3.1.1, 3.1.1, 5.2.1

[MMA07] Christof Momm, Robert Malec, and Sebastian Abeck. Towards
a model-driven development of monitored processes. In An-
dreas Oberweis, Christof Weinhardt, Henner Gimpel, Agnes
Koschmider, Victor Pankratius, and Björn Schnizler, editors,
Wirtschaftsinformatik (2), pages 319–336. Universitaetsverlag
Karlsruhe, 2007. 10.2.2

[MS04] Carolyn McGregor and Josef Schiefer. A web-service based
framework for analyzing and measuring business performance.
Inf. Syst. E-Business Management, 2(1):89–110, 2004. 10.2.1,
10.2.1

[MSzM06] Carolyn McGregor, Josef Schiefer, and Michael zur Muehlen.
A shareable web service-based intelligent decision support sys-
tem for on-demand business process management. Interna-
tional Journal of Business Process Integration and Manage-
ment, 1(3):156–174, 2006. 3.2.1, 10.3.1

[Nar93] Bonnie A. Nardi. A Small Matter of Programming: Perspec-
tives on End User Computing. MIT Press, Cambridge, MA,
USA, 1993. 3.1.1

[NBA05] István Nagy, Lodewijk Bergmans, and Mehmet Aksit. Com-
posing aspects at shared join points. In Robert Hirschfeld,
Ryszard Kowalczyk, Andreas Polze, and Mathias Weske, edi-
tors, NODe/GSEM, volume 69 of LNI, pages 19–38. GI, 2005.
11.2.3

[NC03] Anil Nigam and Nathan S. Caswell. Business artifacts: An
approach to operational specification. IBM Systems Journal,
42(3):428–445, 2003. 10.5.1, 10.5.1

BIBLIOGRAPHY 239

[Nor98] Nortel. Workflow scenario: Trouble ticket. Technical Report
OMG Document Number bom/98-03-10, March 1998. 1.2.1,
9.1

[OMG06a] OMG. Business process modeling notation, v1.1. Technical
Report OMG Document Number formal/2008-01-17, February
2006. 1.1, 2.1.2, 2.1.2, 11.2.1

[OMG06b] OMG. Object constraint language, v2.0. Technical Report
OMG Document Number formal/2006-05-01, May 2006. 3.3

[Ope] OpenArchitectureWare (oAW) website.
http://www.openarchitectureware.org. 7.3.2, 8.1

[Oraa] Oracle Business Process Management.
http://www.oracle.com/technologies/bpm/index.html. 2.1.2

[Orab] Oracle BPEL Process Manager. http://otn.oracle.com/bpel.
2.1.3

[OvdADH] Chun Ouyang, Wil M. P. van der Aalst, Marlon Dumas,
and Arthur H. M. Ter Hofstede. Translating bpmn to bpel.
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/
BPM-06-02.pdf. 2.1.3

[Pal09] Nathaniel Palmer. 2009 bpm state of the market report. Tech-
nical report, BPM.com, 2009. 2.1.4

[Pap03] Mike P. Papazoglou. Service-oriented computing: Concepts,
characteristics and directions. In Proceedings of the 4th Inter-
national Conference on Web Information Systems Engineering
(WISE 2003), Rome, ItalyWISE, pages 3–12. IEEE Computer
Society, December 2003. 10.7

[PCl+07] Chankyu Park, Ho-Jin Choi, Danhyung lee, Sungwon Kang,
Hyun-Kyu Cho, and Joo-Chan Sohn. Knowledge-based aop
framework for business rule aspects in business process. ETRI
Journal, 29(4):477–488, 2007. 10.6

[PD07] Carlos Pedrinaci and John Domingue. Towards an ontology
for process monitoring and mining. In Martin Hepp, Knut
Hinkelmann, Dimitris Karagiannis, Rüdiger Klein, and Nenad
Stojanovic, editors, SBPM, volume 251 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007. 10.3.3

240 BIBLIOGRAPHY

[PDB+08] Carlos Pedrinaci, John Domingue, Christian Brelage, Tammo
van Lessen, Dimka Karastoyanova, and Frank Leymann. Se-
mantic business process management: Scaling up the manage-
ment of business processes. In Proceedings of the 2th IEEE In-
ternational Conference on Semantic Computing (ICSC 2008),
Santa Clara, California, USA, pages 546–553. IEEE Computer
Society, August 2008. 10.3.3

[PK01] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Princi-
ples of survey research. SIGSOFT Softw. Eng. Notes, 26(6):16–
18, 2001. 5.2.1, 9.6.1

[PMHD09] Carlos Pedrinaci, Ivan Markovic, Florian Hasibether, and John
Domingue. Strategy-driven business process analysis. In Witold
Abramowicz, editor, BIS, volume 21 of Lecture Notes in Busi-
ness Information Processing, pages 169–180. Springer, 2009.
10.3.3

[PTDL07] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-oriented computing: State of the art
and research challenges. IEEE Computer, 40(11):38–45, 2007.
10.7

[RAvdAM06] Nick Russell, Arthur, Wil M. P. van der Aalst, and Natalya
Mulyar. Workflow control-flow patterns: A revised view. Tech-
nical Report BPM-06-22, BPMcenter.org, 2006. 6.4.2

[Ric02] Tamar Richner. Recovering Behavioral Design Views: a Query
Based Approach. PhD thesis, Universität Bern, Philosophisch-
naturwissenschaftlichen Fakultät, May 2002. 10.4

[RLVDA03] Hajo A. Reijers, Selma Limam, and Wil M. P. Van Der Aalst.
Product-based workflow design. J. Manage. Inf. Syst.,
20(1):229–262, 2003. 10.5.1

[RRIG06] Michael Rosemann, Jan Recker, Marta Indulska, and Peter
Green. A study of the evolution of the representational ca-
pabilities of process modeling grammars. In Eric Dubois and
Klaus Pohl, editors, CAiSE, volume 4001 of Lecture Notes in
Computer Science, pages 447–461. Springer, 2006. 2.1.2

[RtHEvdA04] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P.
van der Aalst. Workflow data patterns. Technical Report QUT
number FIT-TR-2004-01, Queensland University of Technol-
ogy, Brisbane, 2004. 5.3.1

BIBLIOGRAPHY 241

[RtHEvdA05] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and
Wil M. P. van der Aalst. Workflow data patterns: Identifica-
tion, representation and tool support. In Lois M. L. Delcambre,
Christian Kop, Heinrich C. Mayr, John Mylopoulos, and Oscar
Pastor, editors, Proceedings of the 24th International Confer-
ence on Conceptual Modeling (ER 2005), Klagenfurt, Austria,
volume 3716 of Lecture Notes in Computer Science, pages 353–
368. Springer, October 2005. 4.1.2, 5.3.1

[RvdA08] Anne Rozinat and Wil M. P. van der Aalst. Conformance check-
ing of processes based on monitoring real behavior. Inf. Syst.,
33(1):64–95, 2008. 10.3.4, 10.3.4

[SB06] Volker Stolz and Eric Bodden. Temporal assertions using
aspectj. Electronic Notes in Theoretical Computer Science
(ENTCS), 144(4):109–124, 2006. 10.4

[SCDS02] Mehmet Sayal, Fabio Casati, Umeshwar Dayal, and Ming-
Chien Shan. Business process cockpit. In Proceedings of
the 28th international conference on Very Large Data Bases
(VLDB 2002), Hong Kong, China, pages 880–883. VLDB En-
dowment, 2002. 10.3.2

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven
engineering. IEEE Computer, 39(2):25–31, 2006. 1.4, 6.3

[Sch07] Arno Schmidmeier. Aspect oriented dsls for business pro-
cess implementation. In Proceedings of the 2nd workshop on
Domain specific aspect languages (DSAL 2007), Vancouver,
British Columbia, Canada, page 5. ACM, 2007. 10.2.1

[SG97] Diomidis Spinellis and V. Guruprasad. Lightweight languages
as software engineering tools. In Proceedings of the Confer-
ence on Domain-Specific Languages, Santa Barbara, Califor-
nia, USA, pages 67–76. USENIX, October 1997. 3.1.1

[SJVD09] Mario Sánchez, Camilo Jiménez, Jorge Villalobos, and Dirk De-
ridder. Building a multimodeling framework using executable
models. In Manuel Oriol and Bertrand Meyer, editors, TOOLS
EUROPE 2009, volume 33 of LNBIP, pages 157–174, Berlin -
Heidelberg, July 2009. Springer-Verlag. 2.1.3

[SK95] Kenneth Slonneger and Barry Kurtz. Formal Syntax and Se-
mantics of Programming Languages: A Laboratory Based Ap-
proach. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995. 3.1.1

242 BIBLIOGRAPHY

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transforma-
tion: The heart and soul of model-driven software development.
IEEE Software, 20(5):42–45, 2003. 6.3.1

[SK04] Shane Sendall and Jochen Küster. Taming model round-trip
engineering. In Proceedings of the Workshop on Best Practices
for Model-Driven Software Development, Vancouver, Canada,
2004. 11.2.2

[Spi01] Diomidis Spinellis. Notable design patterns for domain-specific
languages. Journal of Systems and Software, 56(1):91–99, 2001.
3.1.1, 5.2.1

[SSK+06] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsam-
mer, Werner Retschitzegger, and Manuel Wimmer. Towards
a common reference architecture for aspect-oriented modeling.
In Proceedings of the 8th International Workshop on Aspect-
Oriented Modeling (AOM), 2006. 11.2.1

[SSK+07] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsam-
mer, Werner Retschitzegger, Manuel Wimmer, and Gerti Kap-
pel. A survey on aspect-oriented modeling approaches. Tech-
nical report, Business Informatics Group, Institute of Soft-
ware Technology and Interactive Systems, Vienna University
of Technology, 2007. 11.2.3

[SZNS06] Sherry X. Sun, J. Leon Zhao, Jay F. Nunamaker, and Olivia
R. Liu Sheng. Formulating the data-flow perspective for busi-
ness process management. Info. Sys. Research, 17(4):374–391,
2006. 10.5.1, 10.5.1

[The08] The Eclipse Foundation. SOA Tools Platform (STP) project,
2008. BPMN Modeler. 2.1.2, 7.3.1, 8.2.1

[tHvdAAR10] A. M. ter Hofstede, W. M. P. van der Aalst, M. Adamns,
and N. Russell, editors. Modern Business Process Automation:
YAWL and its Support Environment. Springer, 2010. 2.1.4

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stan-
ley M. Sutton Jr. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the 21st international
conference on Software engineering (ICSE 1999), Los Angeles,
California, USA, pages 107–119. ACM, 1999. 1.2.2, 6.4

BIBLIOGRAPHY 243

[VCJ04] Bart Verheecke, Maŕıa Agustina Cibrán, and Viviane Jonckers.
Aspect-oriented programming for dynamic web service moni-
toring and selection. In Liang-Jie Zhang, editor, ECOWS, vol-
ume 3250 of Lecture Notes in Computer Science, pages 15–29.
Springer, 2004. 10.2.1

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek
Kiepuszewski, and Alistair P. Barros. Workflow patterns. Dis-
tributed and Parallel Databases, 14(1):5–51, 2003. 2.1.4

[vdAtHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Math-
ias Weske. Business process management: A survey. In Wil
M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias
Weske, editors, Proceedings of the Business Process Manage-
ment International Conference (BPM 2003), Eindhoven, The
Netherlands, volume 2678 of Lecture Notes in Computer Sci-
ence, pages 1–12. Springer, June 2003. 1.1

[vdAvH04] Wil M. P. van der Aalst and Kees M. van Hee. Workflow
Management : Models, Methods, and Systems, volume 1 of MIT
Press Books, Cooperative Information Systems. The MIT Press,
December 2004. 1.1, 2.1

[vdAW05] Wil van der Aalst and A.J.M.M. (Ton) Weijters. Process Min-
ing, chapter 10, pages 235–255. Process Aware Information
Systems: Bridging People and Software Through Process Tech-
nology. Wiley-Interscience, September 2005. 10.3.3

[vdDB06] Markus von den Driesch and Tobias Blickle. Operational, Tool-
Supported Corporate Performance Management with the ARIS
Process Performance Manager, pages 45–64. Corporate Per-
formance Management. Springer, aris in practice edition, 2006.
10.2.1, 10.2.1

[vDdMV+05] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W.
Verbeek, A. J. M. M. Weijters, and Wil M. P. van der Aalst.
The prom framework: A new era in process mining tool sup-
port. In Gianfranco Ciardo and Philippe Darondeau, editors,
ICATPN, volume 3536 of Lecture Notes in Computer Science,
pages 444–454. Springer, 2005. 10.3.3

[vDK98] Arie van Deursen and Paul Klint. Little languages: little main-
tenance? Journal of Software Maintenance, 10(2):75–92, 1998.
3.1.1

244 BIBLIOGRAPHY

[Vit04] Valdis Vitolins. Business process measures. Computer Sci-
ence and Information Technologies, Databases and Information
Systems Doctoral Consortium, Scientific Papers University of
Latvia, 673:186–197, 2004. University of Latvia. 10.2.2

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann,
Tony Storey, and Donald F. Ferguson. Web Services Platform
Architecture : SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall
PTR, March 2005. 10.7

[Wei98] Gerald M. Weinberg. The psychology of computer programming
(silver anniversary ed.). Dorset House Publishing Co., Inc.,
New York, NY, USA, 1998. originally published in 1971. 3.1.2

[WfM98] WfMC. Workflow management coalition: Audit data specifi-
cation, 1998. Draft 1.1.a. Document Number WfMC-TC-1015.
Winchester. 2.2.4

[wfm99] Workflow Management Coalition Terminology & Glossary,
1999. Workflow Management Coalition, Document Number
WFMC-TC-1011, Document Status - Issue 3.0. 1.1, 2.1, 2.1.1

[Whi04] Steven A. White. Business process modeling notation (bpmn).
version 1.0 - may 3, 2004. Technical report, BPMI.org, 2004.
2.1.2

[Whi05] Stephen A. White. Using bpmn to model a bpel process, Jan-
uary 2005. IBM, http://www.ibm.com/us/. 8.3.1

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Lan-
guage: Getting Your Models Ready for MDA. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003. 3.3

[WK05] Jianrui Wang and Akhil Kumar. A framework for document-
driven workflow systems. In Wil M. P. van der Aalst, Boualem
Benatallah, Fabio Casati, and Francisco Curbera, editors, Busi-
ness Process Management, volume 3649, pages 285–301, 2005.
10.5.1

[WL99] David M. Weiss and Chi Tau Robert Lai. Software product-
line engineering: a family-based software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999. 3.1.1

BIBLIOGRAPHY 245

[WV99] Mathias Weske and Gottfried Vossen. Workflow Languages,
pages 359–379. Handbook on Architectures of Information
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999. 2.1.3

[XPD] XPDL homepage. http://www.wfmc.org/xpdl.html. 1.1, 2.1.3

[zM00] Michael zur Muehlen. Workflow-based Process Controlling -
Or: What You Can Measure You Can Control, pages 61–77.
Workflow Handbook 2001. Future Strategies, 2000. 2.2

[zM04] Michael zur Muehlen. Workflow-based Process Controlling.
Foundation, Design, and Implementation of Workflow-driven
Process Information Systems., volume 6 of Advances in Infor-
mation Systems and Management Science. Logos, Berlin, 2004.
1.1, 2.1

[zMI10] Michael zur Muehlen and Marta Indulska. Modeling languages
for business processes and business rules: A representational
analysis. Inf. Syst., 35(4):379–390, 2010. 2.1.2

[zMR00] Michael zur Muehlen and Michael Rosemann. Workflow-based
process monitoring and controlling - technical and organiza-
tional issues. In Proceedings of the 33rd Hawaii International
Conference on System Science (HICSS), volume 6, pages 1–
10. IEEE Computer Society, 2000. (document), 1.1, 2.2.1, 2.2,
2.2.2, 2.2.4, 3.2.1, 10.3.5

Index

control action
evaluation rule, 83
notification actions, 82

monitoring event
workflow events

monitoring subject, 71
workflow event type, 71

analysis functions invocation, 74
execution context passing, 75
workflow events, 71

workflow elements
Data entities, 59
Flow entities, 59

workflow engine
Apache ODE, 27
Cumbia, 27
jBPM, 27

workflow language
BPEL, 27
JPDL, 27
XPDL, 27
XPM, 27
YAWL, 30

analysis function, 77
Application Data, 23
application-specific measurements, 11
Aspect-oriented Programming, 109
Aspect-Oriented Software Development,

108

behavioral perspective, 22
Business Activity Monitoring, 186
Business Operations Management, 4
Business Process Analysis, 4
Business Process Intelligence, 4
Business Process Management Initia-

tive, 24
Business Process Modeling Notation,

24

control action, 82

data association DSL, 59
data association model, 59
data entity, 54
data event, 71
domain-specific language, 41

executable workflow code, see work-
flow implementation

flow entity, 54
flow event, 71
functional perspective, 22

informational perspective, 22

measurement action, 78
measurement data types model, 58
measurement variable, 64
Model-driven engineering, 106
MonitA application developers, 40

246

INDEX 247

MonitA execution platform, 40
MonitA Generative Infrastructure, 116
MonitA infrastructure developers, 40
MonitA model, see MonitA specifica-

tion
MonitA specification, 39
monitoring and analysis concerns, 31,

62
monitoring event, 70
monitoring, measurement and control,

62

organizational perspective, 22

persistence context, 64
persistence root, 67
persistence space, 70
process model, 22

Service-oriented Architecture, 189
Service-Oriented Computing, 201

underlying application code, 27

workflow application context, see work-
flow subject

workflow applications, 22
Workflow Control Data, 23
workflow data types model, 58
workflow definition, 27
workflow elements, 59
workflow engine, 27
workflow generation process, 22
workflow implementation, 4
workflow language, 27
Workflow Management Coalition, 23
Workflow management systems, 21
workflow monitoring and analysis, 21
Workflow Relevant Data, 23
workflow variable, see data entity

	Abstract
	Resumen
	Samenvatting
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	I Problem Statement and Background
	1 Introduction
	1.1 Research Context
	1.2 Problem Statement
	1.2.1 A Trouble Ticket Workflow Scenario
	1.2.2 The Need for Higher-level Mechanisms
	1.2.3 An Overview of the Problem

	1.3 Research and Assessment Goals
	1.4 Approach
	1.5 Contributions
	1.6 Outline of the Dissertation

	2 Background: Workflow Monitoring and Analysis
	2.1 Workflow Management Systems
	2.1.1 Perspectives on Workflow Applications
	2.1.2 Process Models Specification
	2.1.3 Workflow Implementation and Enactment
	2.1.4 Workflow Monitoring and Analysis

	2.2 Monitoring and Analysis of Workflow Applications
	2.2.1 Workflow Monitoring and Analysis Taxonomy
	2.2.2 Workflow Monitoring and Analysis Views
	2.2.3 Workflow Monitoring and Analysis Dimensions
	2.2.4 Workflow Monitoring and Analysis Technologies

	2.3 Summary

	II Specifying Monitoring and Analysis Concerns in Workflow Applications
	3 Rationale and Background
	3.1 Domain-Specific Languages
	3.1.1 Development Process
	3.1.2 Design Principles

	3.2 Requirements for the MonitA DSL
	3.2.1 Monitoring and Analysis Desiderata
	3.2.2 MonitA DSL Properties

	3.3 Design Rationale for the MonitA DSL
	3.4 Summary

	4 MonitA: The Monitoring and Analysis Language
	4.1 Monitoring and Analysis Specification
	4.1.1 Data Types Specification
	4.1.2 Workflow Data Specification
	4.1.3 Monitoring and Analysis Concerns Specification

	4.2 Measurement Data Segment
	4.2.1 Measurement Variable Declaration
	4.2.2 Measurement Variables Initialization
	4.2.3 Navigation of Measurement Information

	4.3 Monitoring Events Segment
	4.3.1 Workflow Events Monitoring
	4.3.2 Analysis Functions Invocation
	4.3.3 Execution Context Passing

	4.4 Analysis Functions Segment
	4.4.1 Measurement Actions
	4.4.2 Control Actions

	4.5 Discussion
	4.6 Summary

	5 Evaluation of the MonitA Language
	5.1 Evaluation of Design Principles
	5.2 Evaluation of Expressiveness and Learnability
	5.2.1 Basic Study
	5.2.2 Results

	5.3 Data Modeling Characteristics
	5.3.1 Relation to Workflow Data Patterns

	5.4 Summary

	III Implementing Monitoring and Analysis Concerns Using Generative Approaches
	6 Rationale and Background
	6.1 Requirements for the MonitA Implementation Strategy
	6.2 Design Rationale for the MonitA Implementation Strategy
	6.3 Model-driven Engineering
	6.3.1 Metamodels, Models and Transformations
	6.3.2 MDE and DSLs
	6.3.3 Traceability Models

	6.4 Aspect-Oriented Software Development
	6.4.1 Aspect-Oriented Programming Languages
	6.4.2 Aspect-Oriented Workflow Languages

	6.5 Summary

	7 MonitA: The Generative Implementation Strategy
	7.1 M&A Analysis Concerns Execution
	7.2 Architecture for Creating a MonitA Generative Infrastructure
	7.2.1 Functional Decomposition Viewpoint
	7.2.2 Generative Strategy

	7.3 Controlling the Workflow Generation Process
	7.3.1 Transforming BPMN Models into Executable Workflows
	7.3.2 Managing Traceability
	7.3.3 Accessing Workflow Data

	7.4 Generating the M&A Code
	7.4.1 Transforming MonitA Specifications into AOP Code
	7.4.2 Transforming MonitA Specifications into Workflow Code
	7.4.3 Managing Measurement Data and Control Actions
	7.4.4 Transforming Measurement Data

	7.5 Composing the MonitA Code with Workflow Applications
	7.5.1 Selecting the Level of Abstraction

	7.6 Summary

	8 MonitA: The Implementation and Execution Infrastructure
	8.1 Selected Technology
	8.2 MonitA-JPDL Generative Infrastructure
	8.2.1 JPDL Workflow Code Generator
	8.2.2 MonitA Code Generator into JPDL
	8.2.3 Composing MonitA Code with JPDL Applications

	8.3 MonitA-BPEL Generative Infrastructure
	8.3.1 BPEL Workflow Code Generator
	8.3.2 MonitA Code Generator into BPEL
	8.3.3 Composing MonitA Code with BPEL Applications

	8.4 Infrastructure for Enacting MonitA Specifications
	8.4.1 Specification Environment
	8.4.2 Measurement Data Store System
	8.4.3 Workflow Monitoring and Analysis Dashboard

	8.5 Summary

	IV Validation and Conclusion
	9 Validation
	9.1 Scenario 1: Trouble Ticket Workflow Application
	9.1.1 Monitoring and Analysis Requirements
	9.1.2 Generative Implementation and Composition

	9.2 Scenario 2: Loan Approval Workflow Application
	9.2.1 Data Association Model
	9.2.2 Monitoring and Analysis Requirements
	9.2.3 Generative Implementation and Composition

	9.3 Scenario 3: Trip Expenses Workflow Application
	9.3.1 Data Association Model
	9.3.2 Monitoring and Analysis Requirements
	9.3.3 Generative Implementation and Composition

	9.4 Study 1: Measuring Development Costs by Using MonitA
	9.4.1 The Exploratory Study
	9.4.2 Quantitative Results
	9.4.3 Discussion

	9.5 Study 2: Evaluating Maintainability and Understandability
	9.5.1 Evaluation Results
	9.5.2 Discussion

	9.6 Study 3: Evaluating DSL Success Factors in MonitA
	9.6.1 Basic Study
	9.6.2 Results and Discussion

	9.7 Summary

	10 Comparing MonitA with Related Work
	10.1 Monitoring and Analysis Characterization
	10.2 Workflow Monitoring and Analysis at Runtime
	10.2.1 Architectures for Business Activity Monitoring
	10.2.2 Model-driven Approaches

	10.3 Workflow Monitoring and Analysis a Posteriori
	10.3.1 Architectures for Workflow Applications
	10.3.2 Business Process Intelligence
	10.3.3 Semantic Business Process Management
	10.3.4 Process Analysis based on Event logs
	10.3.5 Tool Support

	10.4 Dynamic and Static Program Analysis
	10.5 Process Data Models
	10.5.1 Data Modeling in Workflow Applications
	10.5.2 Data Modeling on Other Domains

	10.6 Domain-specific Aspect Languages
	10.7 Service-Oriented Computing
	10.8 Discussion: Positioning our Approach
	10.9 Summary

	11 Conclusion
	11.1 Conclusions
	11.2 Limitations and Future Work
	11.2.1 Composing M&A Concerns at the Conceptual Level
	11.2.2 Co-evolution of Process and MonitA Models
	11.2.3 Managing Concerns Interactions
	11.2.4 Expressiveness of the MonitA Language
	11.2.5 Specification at a Higher-Level of Abstraction
	11.2.6 Performance Evaluations

	A Formal Grammar of the MonitA Language
	B Semantics of MonitA Constructs
	C Formal Grammar of the Data Association Language
	D Model Transformations
	Bibliography
	Index

