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Abstract—Annotations are a means to attach additional meta
data to the source code of a system. Nowadays, more and
more technologies rely on the presence of such annotations in
the source code: beyond their use for documentation purposes,
annotations impact the behaviour of the system. Since there
exists little or no support to make sure that upon evolution
of the system, the source code remains correctly annotated,
source code can become miss-annotated. This in turn, can
result in erroneous behaviour. In this paper we present Smart
Annotations, an approach for co-evolving source code and
annotations. Our approach enables developers to constrain the
use of annotations in the source code and offers tool support
to identify conflicts between source code and annotations. To
illustrate the use of our approach, we demonstrate its appli-
cability using examples from the domain of aspect-oriented
programming and Enterprise Java Beans.

I. INTRODUCTION

Many modern programming languages include the con-
cept of annotations, as is the case with .Net’s attributes
or Java’s own annotations. Annotations are a means to
introduce additional meta data at the level of the various
entities (classes, methods, fields, . . . ) that are present in
a program’s source code. The introduced meta data can
communicate a developer’s intent, or it can be leveraged by
software engineering tools. The Doxygen tool, for instance,
generates web pages that document source code based on
its annotations.

Since their inception, the use of annotations has gained
popularity within the software engineering community. More
and more, annotations are becoming an active part of the
system. Rather than being used solely for documentation
purposes, annotations are used to attach semantical proper-
ties to the source code of the system. Examples of such uses
are found in annotation-based frameworks, aspect-oriented
programming and pluggable type systems. Frameworks that
are widely used within the Enterprise Java Bean world,
such as Hibernate [1] and Spring [2], rely on annotations
to know at which places in the source code they need to
intervene. Similarly, within the aspect-oriented programming
community, annotations have been proposed to tackle the
so-called fragile pointcut problem [3] [4]. Within aspect-
oriented programming, pointcut expressions are used to de-
fine at which places during the execution of the program an

aspect should be triggered. Since there exists a tight coupling
between such pointcut expressions and the structure of the
source code, seemingly safe changes to the source code of
a system can result in erratic behaviour of the aspects. By
using annotations, one can decouple these aspects from the
structure of the source code, making them less fragile with
respect to evolution. A last example of technology that relies
on annotations are pluggable type systems. These systems
allow imposing additional constraints over the source code
of a system through annotations. If a particular field in the
system is not allowed to contain a null value, for example,
a developer can express this constraint by annotating the
field. A pre-compiler enforces the expressed constraints by
pointing out their violations.

Despite their benefits, annotations are fragile with respect
to evolution of the source code they annotate. Whenever
changes are made to the source code, existing annotations
may no longer apply. Likewise, newly introduced source
code entities may lack a required annotation. So far, develop-
ment environments do not provide any support to guarantee
that the source code remains annotated correctly whenever
it evolves. It is therefore possible that a developer fails to
annotate a particular source code entity, or that annotations
are placed on the wrong entities. As a system’s behaviour
can depend on whether or not its source code has been
annotated correctly, such annotation fragility can result in
erratic system behavior.

In this paper we present Smart Annotations, a tool for
co-evolving [5] source code and annotations. The goal of
our tool is to keep annotations and source code consistent
upon evolution of either artefact. Smart Annotations achieves
this goal by allowing developers to constrain the use of
annotations in a system’s source code. To this end, it offers
a declarative language in which developers can express
constraints on where annotations are applicable. Tool support
is offered to verify the validity of the annotated code with
respect to the specified constraints. This way, developers
can be informed about possible inconsistencies between the
source code and the annotations.

This paper is structured as follows. In Section II, we
introduce Smart Annotations. We discuss the declarative lan-
guage in which constraints can be expressed and the meta-



1 public class AccessorExample {
2 public Integer my_field;
3 public Integer another_field;
4
5 @Getter("my_field") //Correctly annotated
6 public Integer getMy_field() {
7 return my_field;}
8
9 //Annotation forgotten

10 public Integer getAnother_field()
11 {
12 return another_field;}
13
14 @Getter("my_field") //Incorrectly annotated
15 public Integer getMy_field(Integer my_field)
16 {
17 return my_field;}
18 }

Figure 1. A simple Java example using annotations.

annotations that allow configuring how these constraints are
to be enforced. In Section II-E, we discuss the prototype
implementation of Smart Annotations. To demonstrate its
utility, Section III applies our approach as a means to cope
with aspect fragility and as a means to validate persistency
specifications of Enterprise Java Beans. We discuss the
advantages and limitations of our approach in Section IV
and position it with respect to existing work in Section V.
Section VI concludes our exposition.

II. SMART ANNOTATIONS

We introduce the concepts underlying Smart Annotations
using a straightforward running example. Figure 1 depicts a
Java class named AccessorExample with two fields and
three methods. We want to annotate all getter methods of
this class with the Getter annotation.

Method getMy_field()(lines 5–7) corresponds to the
prototypical implementation of a getter for the my_field
field. It follows the Java naming convention (namely
that the method name starts with the prefix ’get’)
and returns the value of the field my_field. It has
therefore been annotated correctly with the annotation
@Getter("my_field").

Method getAnother_field() (lines 10–12) is a get-
ter method for field another_field. However, it has not
been annotated as such. Clearly, this is incorrect.

Finally, the method named getMy_field( Integer
my_field ) is depicted on lines 15–17. This method
consists of a single statement that returns the method’s
parameter my_field. While this method is not a getter
method (the parameter shadows the field of the same name),
it has been annotated as one. Clearly, this is incorrect as well.

The Smart Annotations tool enables enforcing constraints
on the use of annotations in the source code of a system.
To do this, the source code entities to which an annotation
is applicable need to be characterized first. For our running

1 @Target(ElementType.METHOD)
2 @TargetVariable("method")
3 public @interface Getter {
4 @Necessary
5 public static final String NAMING_CONVENTION
6 = "?method methodDeclarationHasName: {get*}";
7
8 @Sufficient
9 @Necessary

10 public static final String STRUCTURAL =
11 "?method isMethodDeclaration, " +
12 "?class definesMethod: ?method, " +
13 "?class definesVariable: ?field, " +
14 "?method returns: ?field";
15
16 @TargetVariable("field")
17 String value();
18 }

Figure 2. Smart Annotations applied to the Getter annotation.

example, this entails characterizing the concept of a getter
method. For instance, by stating that getter methods start
with the prefix ’get’ (i.e. they follow the typical naming
convention). Or by stating that all getter methods are meth-
ods that return the value of a field. In the next section, we
show how these characterisations can be used to impose
constraints on the use of the Getter annotation.

A. Declaring Smart Annotations

Figure 2 illustrates how the Getter annotation can be
specified using Smart Annotations. Note that our approach
does not require an extension of the Java language, but rather
is compatible with standard Java annotations. In Java, an
annotation is represented as a special kind of interface dec-
laration (called an annotation interface). Smart Annotations
integrates directly with these annotation interfaces and does
not require any new language constructs. A Java annotation
interface is made ‘Smart’ by using meta-annotations and
by embedding logic queries into its declaration. While the
latter express constraints on the use of the annotation, the
former specify how these constraints are to be enforced.
We will start by explaining the logic language in which the
annotation constraints are described.

B. Logic Program Queries

Constraints in Smart Annotations are expressed as logic
queries. Each query describes the characteristics that should
be exhibited by annotated source code entities. Each use of
an annotation is expected to satisfy each of the annotation’s
queries. Annotated entities that do not satisfy a query are
flagged as violations of the constraint.

Logic queries are embedded into the annotation interface
by means of static fields. For the Getter annotation,
Figure 2 defines two logic queries that characterize getter
methods. The queries correspond to the two different char-
acterisations of a getter method identified above: by means



of the convention after which they are named or by means
of their structural shape.

Smart Annotations uses SOUL [6] as its language to
express logic queries in. SOUL is a Prolog-like logic pro-
gramming language with specialized features for reasoning
about the source code of Smalltalk [7], [8], Java [8], [9],
C [10] and Cobol [11] programs. The syntax of SOUL differs
slightly from the one of Prolog.

To illustrate these differences, consider the
NAMING_CONVENTION query (lines 5–6) in our toy
example. This query consists of a single condition that
expresses that the name of the annotated method should
start with the prefix ‘get’. The first difference with
Prolog is that variable names in SOUL are indicated by
means of a question mark. The naming convention query
contains one logic variable, namely ?method1. The
second syntactic difference with Prolog is the fact that we
do not use a classic predicate logic notation, but rather
a Smalltalk-like keyword-based notation. This notation
improves the readability of the resulting logic queries.
The constraint on lines 5–6 uses one predicate, namely
methodDeclarationHasName: which verifies whether
its first argument (in our case the variable ?method) is
a method declaration whose name matches the second
argument (the pattern ‘get*’).

The second query (lines 9–14) characterizes getter meth-
ods by means of their structural shape. It consists of four
logic conditions. The first condition (line 11) checks whether
the binding for variable ?method is a method declaration.
The second condition (line 12) subsequently binds variable
?class to the class that defines this method. The third
condition (line 13) verifies whether this class also defines
a field ?field. Finally, the last condition verifies that the
return statement of the method ?method returns the value
of the field ?field.

Logic program queries enable characterizing software
entities in a declarative manner. Developers can focus on
what they want to compute (i.e. an entity’s characteristics)
instead of how this is to be computed (i.e. the operational
search for each characteristic). The same predicate can
furthermore be used in a condition that checks whether the
bindings for its variables are in a particular relation, as well
as in conditions that quantify over this relation (i.e. establish
bindings for unbound variables). The queries of our example
can therefore be used not only to check whether an annotated
method exhibits the characteristics of a getter method, but
also to retrieve all methods that exhibit these characteristics
and should therefore be annotated. For a more in-depth
discussion of the advantages of logic program queries, and
other applications of the technique, we refer to [12].

1This variable, as will be explained in the next section, will be
bound to the method actually annotated. We specified this using the
@TargetVariable annotation in line 2 of the example.

SOUL provides a library of predicates for reasoning over
Java programs [8], [9]. These predicates quantify over an
abstract syntax tree representation of the program which
stems from the Eclipse JDT Core Component [13]. For each
subclass of org.eclipse.jdt.core.dom.ASTNode,
the library provides a unary predicate (e.g.
isClassDeclaration/1) that quantifies over
all nodes of this kind. Binary predicates (e.g.
classDeclarationHasName:/2) quantify over
the relations between each node and its children. In
addition, the library provides higher-level predicates that
quantify over relations between AST nodes that are not
explicit in the AST representation. Examples include the
aforementioned binary predicate returns:/2 and binary
predicate inheritsFrom:/2 which quantifies over the
inheritance relation between types. Table I lists some of the
predicates in this library.

C. Meta-Annotations for Smart Annotations

Smart annotations are declared in three steps: specifying
the annotation scope, embedding the constraints of the
annotation (i.e. its logic queries), and binding the values
of the annotation to logic variables. Specifying the scope
of the annotation entails stating to which types of source
code entities the annotation is applicable. Line 1 of Figure 2
illustrates that this is achieved by using the @Target
annotation, which is part of the standard Java annotation
system. For our running example, we specified that the
Getter annotation is applicable only to methods. An
annotation’s usage constraints are specified by embedding
logic queries into the annotation interface using static
String fields. The queries that characterize getter methods
by means of their name and by means of their structural
shape are assigned to the fields NAMING_CONVENTION and
STRUCTURAL respectively.

Through a meta-annotation called @TargetVariable,
developers can provide information about an annotation’s
context of use to the logic queries. On line 2 of Fig-
ure 2, the entire annotation interface is annotated using
@TargetVariable("method"). This meta-annotation
states that the actual annotated methods can be accessed
from within the logic queries through a variable named
method. In our example, the @Getter annotation has a
single parameter representing the name of the accessed field.
The values of these parameters may be necessary in the
definition of a logic query. The @TargetVariable meta-
annotation can therefore also be used to bind logic variables
to the value of one of an annotation’s parameters. Line 15
of Figure 2 uses a @TargetVariable annotation to bind
the value of the @Getter annotation to the logic variable
field.

Smart Annotations supports two kinds of constraints,
namely sufficient and necessary constraints. A developer in-



Predicate Description
?class isClassDeclaration if ?class is a class declaration
?class classDeclarationHasName: ?name if ?name is the name of the class declaration ?class
?class isAnonymousClassDeclaration if ?class is an anonymous class declaration
?type inheritsFrom: ?anotherType if ?type inherits from ?anotherType
?class definesConstructor: ?const if ?class defines a constructor ?const
?class definesVariable: ?var if ?var is a variable (field) declared by ?class
?class classDeclarationHasAnnotation: ?a named: ?aName if an annotation ?a, named ?aName is placed on ?class
?anno annotationHasValue: ?val if the annotation ?anno has a member whose value is ?val
?meth methodDeclarationHasBody: ?body if the block ?body is the body of the method ?meth
?meth returns: ?exp if a method declaration ?meth returns an expression ?exp
?if ifStatementHasExpression: ?exp if the expression ?exp is the condition for a Java if-statement ?if

Table I
SAMPLE OF SOUL PREDICATES FOR REASONING ABOUT JAVA SOURCE CODE.

dicates the kind of constraint a logic query represents by an-
notating the query with @Sufficient or @Necessary.

@Necessary: : When a query is annotated as neces-
sary, this means that every annotated location in the source
code should exhibit the characteristics it describes. In our
example, we have annotated the naming-based query as
necessary. As a result, all method declarations that are an-
notated as a getter method should start with the prefix ‘get’.
Necessary queries allow identifying source code entities that
have been annotated improperly.

@Sufficient: : Sufficient queries are dual to neces-
sary queries. If a query is annotated as being sufficient, this
implies that all entities that exhibit the specified characteris-
tics should also be annotated. We have annotated the second
query of our example, STRUCTURAL, as being sufficient.
This means that all method declarations that return the value
of a field should also be annotated with the @Getter
annotation. Sufficient queries allow identifying source code
entities that are missing an applicable annotation. In our
example, this is the case for the getAnother_field()
method. Note that a single query can be annotated with both
the @Necessary and the @Sufficient annotation. In
our example, this is the case for the STRUCTURAL query. As
a result, all entities that exhibit the characteristics described
by this query should be annotated with the @Getter
annotation. Conversely, all entities that are annotated with
the @Getter should exhibit the characteristics described
by this query.

D. Declaring exceptions on the constraints

Sometimes, the usage constraints of an annotation can
have been declared too generic or specific. Also, particular
source code entities to which an annotation is applicable
might be exceptions to the general rule. In these cases,
verification of the annotation should not flag these excep-
tions as violations. Smart Annotations explicitly supports
such exceptional cases. Two annotations are provided to this
end; namely @DoesApply and @DoesNotApply. These
annotations take a single argument (an annotation interface)

1 @DoesNotApply(Getter.class)
2 public Integer getAnother_field()
3 {
4 return another_field;}
5
6 @DoesApply(Getter.class)
7 @Getter("my_field")
8 public Integer doNothing()
9 {

10 return null;}

Figure 3. Example of the use of the @DoesApply and @DoesNotApply
annotations.

and can be used to explicitly indicate that the annotation
interface does, or does not apply for a source-code entity.

Figure 3 demonstrates the definition of exceptions to our
running example:

• The first method of Figure 3 is the
getAnother_field() method introduced above.
While this method is conceptually a getter method,
we forgot to annotate it as such. It therefore
triggers a violation of the constraints that govern
the use of the @Getter annotation. Now suppose
that method getAnother_field() is actually
an exception to the rule: we do not want the
@Getter annotation to apply, even though the
method exhibits all sufficient characteristics. We
can achieve this by annotating the method with the
@DoesNotApply(Getter.class) annotation. As
a result, the method will no longer be indicated as an
entity that is missing the annotation.

• Conversely, using the @DoesApply
(Getter.class) annotation, we can also indicate
that a particular annotation does apply to a source code
entity —even though the entity does not comply with
the annotation’s usage constraints. This is illustrated
by the method doNothing() on lines 8-10 in
Figure 3. While this method is conceptually not a
Getter method, it is annotated as such. Since it neither
matches the naming convention nor the structural



pattern of the Getter annotation, it is flagged as an
exception using Smart Annotations. However, by using
the @DoesApply annotation, we can still document
this method as an exception.

Note the @SupressWarning annotation can be lever-
aged to indicate that any violations occurring at a particular
source code entity should be ignored. Instead, annotations
@DoesApply and @DoesNotApply make it explicit to
developers that a particular source code entity has been
documented as being an exception to the annotation’s usage
constraints.

E. Tool support

We provide rudimentary tool support for Smart Anno-
tations by means of an Eclipse plugin. From within this
Eclipse plugin, a developer can trigger a verification of
the annotation constraints with respect to the source code
of a system. Feedback is given by means of the default
warning system of Eclipse: if a source code entity violates a
constraint, this will be reported both in the list of warnings
as well as by means of a marker in front of the line in the
code that violates the annotation constraint. Furthermore, we
also provide two quick fixes that allow for adding/removing
a particular annotation and declaring a particular source code
entity as an exception to the constraints for a particular
annotation.

III. EXAMPLES

In order to illustrate the utility of Smart Annotations, we
consider two possible applications: the use of annotation
constraints to tackle aspect fragility in AJHotDraw, and
the validation of Enterprise Java Beans annotations for
persistence using the Java Persistence API (JPA).

A. Tackling aspect fragility

As a first example of the use of Smart Annotations, we
take a look at an example from the domain of aspect-
oriented programming. We already mentioned in the intro-
duction that aspects are a new kind of module that aims
at the modularization of cross-cutting concerns. To this
end, aspects employ the concept of pointcut expressions:
expressions that capture particular points in the execution
of a system, at which time aspects can alter the behaviour
of the system. As a concrete case study, we consider the
AJHotDraw system [14]. AJHotdraw is an aspect-oriented
refactoring of the popular JHotDraw open-source drawing
application that was developed originally as a demonstrator
for design patterns and object-oriented frameworks. AJHot-
Draw refactors some of JHotDraw’s crosscutting concerns
into aspects using AspectJ [15]. In this paper we take a
look at one particular such crosscutting concern, namely the
validation of the contract for the execution of commands.
Within JHotDraw, all actions are implemented by means of
a Command Pattern [16]. Before the actual action is allowed

to be executed, it should be verified that the view on which
the command is to operate is not null. Within JHotDraw, this
check is performed by all non-anonymous implementations
of a command. Since it is scattered throughout the entire
command implementation, it is a suitable candidate to be
expressed using aspects.

Figure 4 shows part of the aspect-based implementation
of this concern taken from AJHotDraw. Without going
into too much details, we see the pointcut selects the
execution of all execute() methods in the hierarchy
of AbstractCommand. Since this expression would also
capture the execution of anonymous classes (for which the
contract verification should not happen), the pointcut explic-
itly excludes these anonymous classes means of !within
primitive pointcut expressions: all the classes that contain
anonymous classes are enumerated within the pointcut as
a means to prevent the aspect from intervening at these
classes. It is not hard to see that this pointcut expression
is not robust with respect to evolution: if a developer
adds a new anonymous class in the AbstractCommand
hierarchy without also updating the pointcut, the pointcut
will erroneously capture this new class, possibly leading
to erratic behaviour. This problem, where seemingly safe
changes to the base code of an aspect-oriented system can
have an unexpected and unwanted effect is dubbed the
fragile pointcut problem [4], [17].

This problem of aspect fragility is well documented, and
annotations have been proposed as a way to deal with
this problem [18], [19]. Instead of directly referring to
actual source-code entities from within the pointcut, such
schemes propose to write the pointcut expression in terms
of annotations that are present in the source code. If we
have correctly annotated for example all the Commands
in JHotDraw using the @CommandClass annotation, we
can rewrite the above pointcut (see Figure 5). This pointcut
no longer needs to list an explicit list of exceptions and
thus avoids the fragility of the original pointcut. Instead, it
captures the execution of all execute() methods within
a class that is annotated as being a Command.

However, the pointcut in Figure 5 can still suffer from
the fragile pointcut problem: while the pointcut itself is
decoupled from the implementation details of the base
code, it relies on the fact that the source code is correctly
annotated. If this however is not the case (e.g. if a developer
forgot to annotate a particular Command), then the pointcut
is equally brittle as the original AJHotDraw pointcut. In
other words, the use of annotations to decouple a pointcut
from the base code’s structure does not solve the fragile
pointcut problem; it only shifts the problem to another level
of abstraction.

In order to overcome this problem, we propose to use
a Smart Annotation CommandClass, shown in figure 6.
This marker annotation will be placed on all classes that
extend AbstractCommand, and are not anonymous. Thus



1 public aspect CommandContracts {
2 //Check the view’s reference before command execution
3 pointcut commandExecuteCheckView(AbstractCommand acommand) :this(acommand)
4 && execution(void AbstractCommand+.execute())
5
6 //exclude the anonymous commands - no clean way to do it, so go for the enclosing types
7 && !within(*..DrawApplication.*)
8 && !within(*..CTXWindowMenu.*)
9 && !within(*..WindowMenu.*)

10 && !within(*..JavaDrawApp.*);
11 }

Figure 4. CommandContracts aspect

1 pointcut commandExecuteCheckView(
2 AbstractCommand acommand)
3 :this(acommand)
4 && execution(void AbstractCommand+.execute())
5 && within(@CommandClass)

Figure 5. CommandContracts pointcut using annotations

1 @Target(ElementType.TYPE)
2 @TargetVariable("item")
3 public @interface CommandClass {
4 @Sufficient
5 @Necessary
6 public static String COMMAND_RULE =
7 "?command isClassDeclaration, " +
8 "?command classDeclarationHasName:
9 {AbstractCommand}," +

10 "?item isClassDeclaration," +
11 "?item inheritsFrom:?command," +
12 "not(?item isAnonymousClassDeclaration)";
13 }

Figure 6. Source code of the @CommandClass Smart Annotation

a sufficient and necessary usage constraint is embedded in
the annotation’s interface definition (lines 4 – 12). The query
takes all subclasses of the AbstractCommand class, and
selects those that are not anonymous. If a class is annotated
as being a Command class, but it is not in the correct
hierarchy, or it is an anonymous class, Smart Annotations
will flag it as a violation. Conversely, if a developer acciden-
tally omits the annotation of a non-anonymous Command
class, this will be detected using the Smart Annotation
and reported to the developer. In combination with the
annotation-based pointcut depicted in Figure 5, we are able
to identify evolutions of the base code that would lead to
aspect fragility.

B. Enterprise Java Beans

Enterprise Java Beans (EJBs) is one of the most popular
component frameworks for business application develop-
ment in the Java ecosystem. In its third version, annotation
are introduced as an additional way to encode the meta
data required by the framework for the configuration of the

services provided by the EJB runtime. One of the services
that heavily relies on annotations is that of persistence. This
service is known as the Java Persistence API [20]. It consists
of the set of annotations defined in the EJB3 specification
that deal with the Object-Relational mapping for entities.
The JPA defines 64 annotations that are used by application
developers to specify how their entities will be persisted
in a database. The correct use of the annotations defined
in the JPA depends on the developer’s knowledge of the
complex constraints that involve not only properties of the
annotated source-code entities, but also other annotations
present in the application. We will illustrate the utility
of Smart Annotations by embedding usage constraints on
three JPA-defined annotations: @Entity, @Table and
@AttributeOverride. These three annotations, as well
as their usage constraints, are explained below.

@Entity: Classes that carry the @Entity annotation
represent entity beans in the EJB framework. Entities are
mappable to tables when persisted. Each entity has a name
which defaults to the name of the class. The JPA runtime
relies on Java reflection to map entities to tables in the
database. Because of this, the JPA specification imposes a
number of restrictions on the modifiers and characteristics
of the entity classes. In particular, it is required that:

1) Entity classes must define a public or protected con-
structor without arguments;

2) Entity classes cannot be final;
3) Methods belonging to entity classes must not be final.

The source code of the @Entity annotation interface
is shown in figure 7. In it, each constraint is translated
into a necessary query for uses of annotation to be cor-
rect. First off, the class on which the @Entity annota-
tion is placed is bound to the ?class logic variable using
the @TargetVariable annotation on line 2. The first
constraint is expressed in the NO_ARGS_CONSTRUCTOR
(Lines 5 – 11) logic query. The query is divided into two
parts: lines 7 – 9 verify that there exists a constructor
for ?class that does not have any arguments; lines 10 and
11 check whether the constructor is either public or
protected. The second constraint (lines 13–16) does a
similar check to ensure that the class is not declared final.



1 @Target(ElementType.TYPE)
2 @TargetVariable("class")
3 public @interface Entity {
4
5 @Necessary
6 public static final String NO_ARG_CONSTRUCTOR =
7 "?class definesConstructor: ?c," +
8 "?c methodDeclarationHasParameters: ?params," +
9 "?params isEmpty," +

10 "?c methodDeclarationHasModifiers: ?mods," +
11 "or(?mods isPublic, ?mods isProtected)";
12
13 @Necessary
14 public static final String NO_FINAL_CLASS =
15 "?class classDeclarationHasModifiers: ?mods," +
16 "not(?mods isFinal)";
17
18 @Necessary
19 public static final String NO_FINAL_METHODS =
20 "forall(?class definesMethod: ?meth," +
21 "and(
22 ?meth methodDeclarationHasModifiers: ?mods,
23 not(?mods isFinal)" +
24 "))";
25
26 @Sufficient
27 public static final String TABLE_REQUIRES_ENTITY=
28 "?class classDeclarationHasAnnotation: ?
29 named: {Table}";
30
31 String name() default "";
32 }

Figure 7. @Entity Smart Annotation

Finally, the third constraint (the NO_FINAL_METHODS
field) uses SOUL’s forall predicate to iterate over the meth-
ods that are declared in ?class and checking that each one is
not declared final. Note that these constraints are marked
as being necessary constraints: they need to hold in all
locations where the @Entity annotation is used.

A fourth usage constraint (lines 26–29) is added to specify
the relation between the @Entity and @Table annota-
tions. First, the @Table annotation can only be placed
on classes that are already annotated with @Entity. A
class annotated with @Table but not with @Entity, will
possibly lead to load-time errors. Therefore, this constraint
is marked as being a @Sufficient constraint. All places
annotated with @Table should also carry the @Entity
annotation.

@Table: The @Table annotation configures the table
to which a given entity will be persisted in relational
database. As explained above, the correct use of the @Table
annotation on a class requires the class to already carry the
@Entity annotation. Restrictions on the relations between
annotations, such as conditioning the use of an annotation
to the presence of another one, are not uncommon in large
annotation-based libraries such as the JPA. However, in
the specification of the JPA, when certain conditions of
the source entities are met, the framework behaves as if

1 @Target(ElementType.TYPE)
2 @TargetVariable("class")
3 public @interface Table {
4 @Sufficient
5 public static final String IMPLICIT_TABLE_IN_ENTITY =
6 "?class classDeclarationHasAnnotation: ?
7 named: {Entity}";
8 //...
9 }

Figure 8. @Table Smart Annotation

those entities were annotated. In section 9.1.1 of the JPA
specification it is stated that “If no Table annotation is
specified for an entity class, the default values defined [for
the Table annotation] apply.” These implicit annotations
hinder the comprehension of EJB applications, and thus
complicate their maintenance. Using Smart Annotations, we
can alleviate this problem by including a constraint in the
definition of the @Table annotation interface, shown in
figure 8 lines (4–8), that says that if a class is annotated
with @Entity, the @Table annotation should also be
applied. By doing this, all the places in which the @Table
annotation is implicit are flagged by the Smart Annotation
toolset.

@AttributeOverride: Finally, we consider the
@AttributeOverride annotation. This annotation is
used on entity classes that wish to override the Object-
Relational mapping of an attribute defined on a super class
by stating the name of the attribute to override, and the
new column to which it will map. This information is ex-
pressed in the @AttributeOverride’s members name
and column on the source code listing in figure 9. Notice
that the name member of the @AttributeOverride
annotation is linked to the name of a field defined on the
entity’s super-class. Thus, if the referred super-class field is
changed by means of a rename refactoring for example, the
link is silently severed and the @AttributeOverride
annotation becomes invalid. We capture this link in the
necessary constraint embedded on the annotation’s interface
in lines 5–10. The first line of the constraint binds the
logic variable ?super to the parent class of the anno-
tated class ?class. The second line retrieves all possi-
ble variables (fields) that are defined by this super class
and binds them to the variable ?variable. Finally, the
last condition of the constraint checks whether the name
of the variable ?variable matches the value of the
name argument of the annotation. In other words, the
OVERRIDES_SUPER_FIELD constraint verifies whether
the overridden properties’ name matches the name of a
variable in the super class ?super.

IV. DISCUSSION

Discussion: The two case studies above demonstrated
the use of Smart Annotations. The goal of these two case



1 @Target(ElementType.TYPE)
2 @TargetVariable("class")
3 public @interface AttributeOverride {
4
5 @Necessary
6 public static final String OVERRIDES_SUPER_FIELD =
7 "?class extends: ?super," +
8 "?super definesVariable: ?variable," +
9 "?variable

10 variableDeclarationFragmentHasName:?name" ;
11
12 @TargetVariable("name")
13 String name();
14
15 Column column();
16 }

Figure 9. @AttributeOverride Smart Annotation

studies is to illustrate that Smart Annotations provide a
useful means to translate the constraints that are often
implied by the use of annotations — and that are only
implicitly available — into a set of explicitly verifiable
rules. By verifying these rules, Smart Annotations is able
to pinpoint locations in the source code that are possibly
either incorrectly annotated, or where a particular annotation
is lacking. Although a full discussion of the merits of the
use of a logic query language lies outside the scope of this
paper, it is worth mentioning that this declarative means
for expressing annotation constraints is vital to the usability
of our approach. As we tried to show using the examples
above, the logic query language offers an intuitive and
expressive means to write down the constraints that apply
to an annotation in a succinct way. Another key feature
of our approach is the fact that we allow for declaring
explicit exceptions to the annotations. While the above case
studies did not illustrate an example of the use of these
constructs, it is not hard to imagine situations where they can
be useful. For example, in the second case study we required
all classes annotated with the @Entity annotation to also
carry the @Table annotation. While this is considered good
practice, it is however not a formal requirement of the
specification. If a developer wants to indicate for a particular
class annotated with @Entity that the @Table annotation
does not have to present, the developer can explicitly mark
this exception using the @DoesNotApply construct of
Smart Annotations.

Limitations: Our current implementation suffers from
the following technical limitations. First, since we rely on
the standard Java annotation framework, we are not able
to support annotations at every level of detail in the source
code. Currently, we can only annotate types, fields and meth-
ods. In order to express particular annotation constraints,
this might be too coarse-grained. Especially since our logic
query language offers support for reasoning at the level of
individual statements and expressions, we plan to extend

Smart Annotations to also allow the annotation of individual
Java statements.

Second, our existing tool support for Smart Annotations
is very limited. While it allows us to declare constraints
from within the body of an annotation declaration, these
constraints are expressed as static String fields. This support
for writing down the logic programming queries is fairly
limited. We plan to extend it by providing dedicated tools
on top of the current implementation that integrate the logic
query language with Eclipse, offering debugging and syntax
highlighting capabilities for the SOUL language.

Finally, our current implementation requires access to the
actual source code of the annotation declarations. When
applying our technique to libraries or frameworks that define
annotations, this is not a reasonable assumption. One way
of solving this problem would be to separate the definition
of the Smart Annotations from the actual annotation decla-
rations, for example by means of a dedicated tool.

V. RELATED WORK

There are three categories of approaches that are related
to Smart Annotations, namely Annotation Validators, Plug-
gable Type Systems and Code Checkers. In what follows, we
discuss each of these categories.

Annotation Validators: There exist a number of ap-
proaches that aim at validating the use of annotations.
First, in [21] Cepa et al. propose a tool called ADC
to validate dependencies between of custom attributes in
the .NET platform. ADC offers meta-attributes to encode
requires/excludes dependencies between attributes. In [22],
Eichberg et al. propose to validate annotation constraints
in Java programs by representing a program as an XML
document, and representing the constraints as XPath queries.
This allows the annotation developer to express constraints
on the characteristics of the source-code entities that carry
annotations. AVal [23], [24] offers a set of meta-annotations
to express both dependencies between annotations and de-
pendencies between annotations and the source code entities
on which they lay. Additional constraints can be expressed
using OCL queries over a meta-model of the source code.

With regard to the current state of the art in annotation
validation, our approach offers a number of advantages: first,
Smart Annotations is an extensible framework which allows
annotation developers to include their own constraints using
a declarative language. As we illustrated above, this use of a
declarative language allows us to succinctly and expressively
write down annotation constraints, in contrast to the use of
imperative languages such as OCL and XPath. Second, in
Smart Annotations two kinds of constraints are presented:
those necessary for an annotation to be correct where it is
used, and those that make a source code entity amenable to
be annotated. So far, the approaches discussed above only
support necessary constraints. The examples presented in
section III reflect the need for sufficient annotations. Third,



in our approach, the application developer is allowed to state
exceptions to the constraints expressed in the Smart Annota-
tions. This is beneficial, since explicit documentation of this
exceptions is kept embedded in the source code by means
of @DoesNotApply and @DoesApply annotations.

Pluggable Type Systems: A second group of ap-
proaches that is related to Smart Annotations are pluggable
type systems [25], [26]. These systems allow developer
to add additional typing constraints to the source code of
a system by annotating that source code. A prototypical
example of the use of a pluggable type system is the
annotation of particular statements in a system with a
@NotNull annotation, indicating that the value of the
annotation should never be null. Most of these approaches
come with a predefined library of annotations that can be
used to express common typing constraints in the source
code. Furthermore, some pluggable type systems offer an
interface to extend this set of predefined annotations.

Smart Annotations can be considered to be a sort of
extensible pluggable type system. Using our approach, a
developer can define annotations along with a set of con-
straints that should be satisfied by the annotated source code.
However, pluggable type systems do not offer the possibility
to express sufficient conditions (i.e. identify locations that
should be annotated) and do not provide explicit support for
exceptions to the annotation constraints.

Code Checkers: Smart Annotations is also related to
code checking tools such as FindBugs [27], CheckStyle [28],
PMD [29] and Lint [30]. These tools offer facilities to
detect a wide variety of common mistakes and errors in
source code. Next to an extensive catalogue of possible
bugs, some of these approaches – such as PMD – offer
facilities to extend the set of detectable errors. To this
end, they allow developers to implement their own analysis
by providing access to the underlying parse trees of the
analyzed programs.

Smart Annotations allow developers to specify and check
annotation-using code making Smart Annotations similar to
these approaches. However, Smart Annotations attach checks
to the definition of the elements they check. Because of
this, constraints defined for Smart Annotations are closely
related to the semantics of the concepts represented by the
annotations, in contrast to the more general programming
mistakes checked by traditional frameworks, which stem
from characteristics of the programming language.

The constraints defined in Smart Annotations link the use
of an annotation to the presence of naming conventions,
structural patterns or other annotations in the application.
In this regard, Smart Annotations is also related to some
of our previous work, namely the IntensiVE tool suite [31].
IntensiVE provides a formalism and tool support to express,
verify and visualize a wide range of so-called regulari-
ties: naming conventions, design patterns, implementation
idioms, and so on. Similar to Smart Annotations, IntensiVE

leverages the Soul language to query the structure of pro-
grams, while providing dedicated support to deal with co-
evolving annotations and source code.

VI. CONCLUSION

In this paper we have introduced Smart Annotations.
Smart Annotations is an approach that enables developers
to co-evolve annotations and source code. Our approach
introduces the concept of imposing necessary and sufficient
constraints on how the annotations should be related to
the source code, our approach can suggest locations in the
source code that are either incorrectly annotated, or where
a particular annotations is missing. As a means to express
these constraints, we employ the logic language Soul, that
offers a declarative medium to write fine-grained queries
about Java code. Furthermore, our approach recognizes the
need to deal with exceptions to where the annotations should
apply and offers explicit support for documenting such
exceptions.

To illustrate the benefits of our approach, we applied it to
examples from the domain of aspect-oriented programming
and Enterprise Java Beans. In particular, we demonstrated
how — using Smart Annotations — we can alleviate
the fragile pointcut problem by having pointcuts rely on
evolution-robust annotations. Second, we also demonstrated
how we can make the implicit constraints that are imposed
by the Java Persistence API explicit and verifiable with
respect to the source code.
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