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Abstract

The design and implementation of a software system is often governed by a variety
of coding conventions, design patterns, architectural guidelines, design rules, and other
so-called structural regularities. To prevent a deterioration of the system’s source code,
it is important that these regularities are verified and enforced upon evolution of the
system. The Intensional Views Environment (IntensiVE), presented in this article, is a
tool suite for specifying relevant structural regularities in an (object-oriented) software
system and verifying them against the current and later versions of the system. At the
heart of the IntensiVE tool suite are (logic) program queries and the model of inten-
sional views and relations, through which regularities are expressed. Upon verification
of these regularities in the source code of the system, IntensiVE reports the code en-
tities (i.e. classes, methods, variables, statements, etc.) that violate these constraints.
We present IntensiVE and illustrate its application to the verification of an Abstract
Factory design pattern in the implementation of a software system.

Key words: software evolution, logic meta programming, structural regularities

1. Introduction

Coding conventions, best practice patterns, idioms [1, 7], design patterns [13] and
other design and stylistic guidelines have become widespread practices in the design
and implementation of modern (object-oriented) software systems. Inspired by Min-
sky’s definition of regularities in software systems [28], we refer to such structural
guidelines as structural regularities. The meticulous use of regularities throughout the
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entire software life-cycle explicitly molds the software system with design and cod-
ing principles that intend to improve its quality in terms of reusability, extensibility
and comprehensibility. A Visitor design pattern [13], for example, provides for exten-
sibility of the implementation with additional operations traversing over object trees.
Similarly, naming conventions render implementation concepts, such as accessor meth-
ods, explicit to improve the understandability of the source code, which is of specific
importance in collaborative development environments. In addition, many of today’s
frameworks, libraries and middleware suggest a number of stylistic guidelines and im-
pose crucial constraints on the system’s design and implementation (e.g. EJB, Ruby on
Rails).

In spite of their intended benefits, the consistent and meticulous application of
structural regularities in the source code of a software system is often problematic. The
reason for this is that most regularities are not an integrated part of the development
process and programming languages of current-day implementation practices. With
notable exceptions for particular kinds of regularities, such as stylistic conventions and
some bad practices, which can be specified and verified using tools like CheckStyle [4]
and Lint [20], the vast majority of regularities in an application remain informally de-
fined. Without any means to document and enforce regularities in the source code,
they can easily be violated, especially in subsequent evolutions of the system. In or-
der to prevent the quality of the source code from deteriorating, it is imperative that
regularities can be enforced, or at least verified, when the system evolves.

IntensiVE4, the Intensional Views Environment [25] is a tool suite for specify-
ing and enforcing a wide variety of structural regularities in the source code of a sys-
tem. Software engineers can define regularities by means of source-code queries that
gather specific source-code entities into intensional views, upon which constraints are
imposed. Key to this technique is that it provides a means for verifying application-
specific structural source-code regularities, much in the style of unit testing: developers
can specify the regularities they deem interesting and invoke their verification at any
time they desire. Typically, such structural verification is applicable following any
committed evolution or maintenance activity. Upon such verification, violations of the
regularities in the source code will be reported by the tool suite, allowing developers to
take appropriate corrective actions.

In this article, we give a comprehensive overview on how IntensiVE is used to de-
fine and enforce structural regularities. In comparison with previous articles on the
technique of intensional views [25, 26, 22], we specifically introduce the parameter-
ization and instantiation of intensional views. This recent addition to the technique
permits to parameterize the definition of a regularity such that it can be instantiated in
multiple locations, both in the same and in different software projects. In the former
case, it means that instances of the same regularity in the source code (such as multiple
instances of the same design pattern) rely upon the same regularity definition but are
verified as independent instances. In the latter case, it means that a regularity defini-
tion can be reused across different projects, eventually even facilitating the creation of
reusable libraries of “regularity verification rules”. In addition, while former articles

4http://www.intensional.be
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have presented IntensiVE in the context of Smalltalk projects, in this article we apply
IntensiVE to a Java project and demonstrate some of the new visualizations and possi-
ble customizations. Finally, we also outline IntensiVE’s architecture, we present how
IntensiVE itself applies to the verification of its own implementation and we discuss
the technical choices that were made in its implementation.

IntensiVE is implemented in Smalltalk [14] and integrates tightly with the Visu-
alWorks development environment 5, but can equally-well verify regularities in Cobol
programs [21], and Java projects through a loose integration with the Eclipse environ-
ment. In this paper, we demonstrate the application of IntensiVE to the documentation
and enforcement of a Java implementation of the Abstract Factory design pattern [13].
Section 2 elaborates on the importance of structural regularities and introduces the
important constraints of the Abstract Factory design pattern. Next, Sections 3 and 4
demonstrate the definition and verification of this pattern using IntensiVE. In Section 5,
we demonstrate the use of IntensiVE to express bad smells and Section 6 discusses the
extensibility of the IntensiVE tool suite with a visual reporting tool for the State design
pattern regularity. Section 7 gives an overview of a number of case studies that were
performed using IntensiVE and, subsequently, Section 8 elaborates on the architecture
and design choices taken in the implementation of IntensiVE as an extensible tool suite
and as a combination of integrated Smalltalk tools. Finally, an overview of related
work is given in Section 9.

2. Structural Regularities

A structural regularity is any decidable property of the structure of a software sys-
tem that must hold true for a well-defined part of it. In addition to commonly known
patterns and conventions, application-specific properties of the source code such as “all
classes in the hierarchy of the class Command must have a name starting with prefix
Command”, “accessor methods must all be implemented according to the same idiom”
and “entities in the presentation layer are not allowed to refer to entities in the database
layer” are structural regularities.

Structural regularities play an important role in the development process. As ob-
served by Minsky [28], the proper and meticulous use of regularities in software sys-
tems can be considered as a kind of engineering principle that aids in dealing with the
inherent complexity of software systems [3]. Developers can, for example, commu-
nicate certain concepts that are only implicitly available in the source code to other
developers by consistently using intention-revealing names or patterns in the source
code to characterize this concept and thus make it explicit. Furthermore, regularities
aid in obtaining stylistically uniform source code, leading to a more comprehensible
and maintainable implementation [1]. Next to the aforementioned stylistic reasons for
introducing regularities, the correct functioning of the system can depend on whether
developers correctly adhere to certain regularities. For example, when making use
of technology such as object-oriented frameworks, when applying design patterns, or

5http://www.cincomsmalltalk.com
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Figure 1: Abstract Factory Design Pattern

when particular platforms such as EJB are employed, developers must adhere to cer-
tain architectural or design rules imposed by these technologies. When regularities
expressing such architectural or design rules are violated, this can result in erratic and
incorrect behavior of a system.

2.1. Example Regularity: The Abstract Factory Design Pattern

The Abstract Factory design pattern is a widely used, yet simple example of a struc-
tural regularity in object-oriented systems. This design pattern insulates the creation
of objects (products) from the client code that uses them. Its implementation consists
of an abstract class that defines an interface of product-creation methods, and several
concrete subclasses (concrete factories) that implement these methods. Figure 1 il-
lustrates the structure of the design pattern, applied to the creation of event objects.
Instead of creating product objects directly, clients create these objects by invoking the
product-creation methods. In addition, client code must remain independent of the ac-
tual type of the product objects created by the individual concrete factories. Therefore,
each concrete product object is a subtype of a corresponding abstract product type. In
Figure 1, two “families” of events are distinguished: default events and debug-mode
events. Each of these event-product families is a specific implementation of the set of
abstract event products. An Abstract Factory pattern makes it possible to interchange
the family of product objects that is created and used throughout the application by
switching between different concrete factories.

Constraints

The Abstract Factory design pattern regularity imposes the following constraints
over the source code:

1. The most important constraint is that product objects instantiated by the factory
should not be instantiated outside the factory. If they are instantiated outside the
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factory, the main reason for using the pattern is lost. It would mean that product
objects of different families can co-exist at runtime, probably resulting in faulty
behavior.

2. Each concrete factory needs to define product-creation methods for each abstract
product. This constraint is already partially enforced because of the abstract
methods in the factory superclass, imposing an implementation in each of the
concrete factories. However, it is not enforced that the abstract superclass de-
fines an (abstract) creation method for each abstract product and that the con-
crete factory effectively creates an instance of such a product. An evolution of
the application may easily introduce a new kind of product, for which no cre-
ation method is implemented in the factory. We thus need to enforce that a
product-creation method exists for each abstract product and that such a method
effectively creates a new instance of that product’s type.

3. In addition, the set of products created by each concrete factory must be of the
same product family. In typical implementations of the pattern, this means that
product objects created by one concrete factory must be of different classes than
product objects created by other factories.

4. Finally, developers often use several naming conventions for the factories and
the products. Factories have names that are typically suffixed with “Factory”,
for example. We therefore also include such naming constraints in the example.

Although each of the constraints above will most probably be adhered to when the
Abstract Factory pattern is first implemented, subsequent evolutions of the software
implementation can easily break one or more constraints of the regularity. In the sub-
sequent sections, we focus how IntensiVE can be used to document these constraints
and verify them with respect to the source code.

3. Expressing Regularities using IntensiVE

The heart of the IntensiVE framework harbors the model of intensional views and
relations, through which individual constraints of a regularity are expressed. The tool
suite can verify these constraints in the source code of the application and identify the
source-code entities that violate them, providing feedback to the developers such that
they can take appropriate corrective measures. In each of the following subsections,
we explain the definition of a regularity using intensional views, alternative views and
intensional relations in detail and apply them to the definition and verification of the
Abstract Factory design pattern regularity.

3.1. Regularity Definitions
A regularity definition is the top-level concept in the model of intensional views.

Each regularity definition is essentially a module that groups all the intensional views
and relations that together define a single structural regularity. In the context of our
example, it means that we create one regularity definition named Abstract Factory that
will contain all the intensional views and relations needed to define the constraints of
this structural regularity. This definition is illustrated in Figure 2 featuring a group of
(intersecting) ellipses for each intensional view and arrows to represent the intensional
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Figure 2: An illustration of the model of IntensiVE, applied to the Abstract Factory design pattern.

relations. The meaning of this visual representation and of the individual parts (views
and relations) is explained in each of the corresponding subsections below.

3.2. Intensional Views
An intensional view represents a set of source-code entities (such as methods,

classes, functions, and so on) in the software’s implementation that make up the imple-
mentation of a concept of interest. In many cases, this concept of interest is revealed
by the fact that these entities share a structural property (for example a coding con-
vention). Therefore, typical intensional views are, for example, “all getter methods in
the implementation”, “all methods that invoke database operations” or “all exception
handlers that only perform a logging operation”. More precisely, an intensional view is
a set of tuples of source-code entities. The idea of a tuple is that a view that represents
all getter methods may also need to contain the instance variable that is referred to by
the getter method. Each tuple of the view will then consist of the getter method and its
corresponding instance variable. The size of the tuple and the code entities it contains,
is part of the definition of the intensional view.

Intensions
The most important characteristic of intensional views is that these sets of tuples

are not defined by enumeration but by means of an intension. Similar to set theory, an
intension is an executable description that yields, upon evaluation, the set of tuples of
entities belonging to the view (this set is called the extension of the view). Although
IntensiVE is independent of the query language used, our tool tightly integrates with the
logic (meta)programming language SOUL [32] (a derivative of Prolog). Its declarative
source-code queries are a powerful means for the definition of intensional views and
we use them throughout this article.

The use of a logic programming language to query programs has several well-
established advantages [6, 32]. In imperative programming languages, programmers
specify exactly how the solution to a problem is to be found using step-by-step algo-
rithms. In contrast, logic programming languages allow the problem itself to be speci-
fied. The program will find a solution on its own, relying on a specific problem-solving
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Figure 3: Definition of the Concrete Factories view in IntensiVE.

strategy defined by the language. In such an approach, program queries are expressed
as logic conditions over the program’s parts.

Consider, for example, the Concrete Factories intensional view that gathers all
classes that implement the concept -or role- of a concrete factory. Figure 3 shows
the definition of this intensional view in IntensiVE. The tuple of the view consists only
of a single entity represented by the ?factory variable and its intension is defined using
the following SOUL query:

if ?factory isClassDeclaration,
?factory inSubClassHierarchyOf: AbstractEventFactory,
not(?factory isAbstractClass)

This query expresses all conditions that a source-code entity must fulfill to be part of
the intensional view. We present queries such that each condition is shown on a separate
line. Also note that variables start with ? and that the syntax of the logic predicates fol-
lows Smalltalk’s messages syntax. In this simple example, the first condition expresses
that an entity belonging to the view (captured by the logic variable ?factory) must be a
class declaration, which is expressed by the logic predicate isClassDeclaration.
The following conditions specify that such a class must be a non-abstract subclass
of the AbstractEventFactory class. The evaluation of this intension yields all
classes in the source code of the system that satisfy all these conditions and, con-
sequently, populate the Concrete Factories intensional view. In our example, these
classes are DefaultEventFactory and DebugEventFactory.
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Open Unification and LiCoR: In IntensiVE, views are populated with the actual
source-code entities. This is because SOUL queries reason over a program by manip-
ulating actual abstract syntax parse trees (ASTs). This entails that an intension can
express any machine-verifiable condition over the program’s structure. In addition, to
hide as much as possible all the low-level peculiarities involved with direct reasoning
over parse trees, SOUL’s open unification technique is used to customize its reason-
ing process for each programming language [2]. SOUL also comes with an extensive
library of logic rules, called Library for Code Reasoning (LiCoR), that can be used
to define an intension. Nevertheless, any developer can implement new rules because
SOUL is a complete logic programming language.

In addition to the aforementioned view, the definition of the Abstract Factory regu-
larity consists of two more views that align with the roles performed by the different
source-code entities in the pattern’s implementation. As illustrated by means of sets in
Figure 2, they are the Abstract Products and Concrete Products views. In this Figure,
all three views are described using multiple (intersecting) sets, each having a different
intension shown in natural language. These are called alternative views and they are
explained next.

3.3. Alternative Views

Often an intensional view on an implementation concept can be defined in a number
of alternative and equivalent ways. In our example, the Concrete Factories view is not
only definable as all classes in the hierarchy of AbstractEventFactory, but can
also be defined as all classes whose name ends with “EventFactory”. Furthermore, the
same view can also be defined as all classes that instantiate concrete products.

In the model of intensional views and relations, such alternative intensions that
define the same view are explicitly supported through alternative views. They are es-
sential to express a first kind of constraint over the source-code entities contained by
a view: alternative views impose that each (alternative) definition of the same view
must yield the exact same set of tuples of source-code entities. This means that the
source-code entities contained in the view must adhere to all conditions imposed by
each alternative view. These conditions are verified by IntensiVE, which permits to de-
tect violations of constraints that involve multiple equivalent descriptions of the same
code concept. Figure 2 visually represents the idea of violations in alternative views:
all classes that are situated at the intersection of the three alternative views of the Con-
crete Factories view are considered consistent entities. All other classes, that are absent
from at least one alternative are considered inconsistent. For example, if a class instan-
tiates products and is part of the AbstractEventFactory hierarchy, but it does
not follow the naming convention, it is detected as an inconsistency.

The natural language definitions of the alternative views described above and shown
in Figure 2 translate to the following two SOUL queries:

if ?factory classDeclarationHasName:{*EventFactory}

if ConcreteProducts(?abstractProduct,?product),
?factory isClassDeclaration,
?factory createsInstanceOf: ?product
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The second query that is shown above also demonstrates another aspect of the tight
integration of the SOUL language with IntensiVE. Its first condition retrieves the con-
crete product classes as they are defined by the Concrete Products intensional view.
This is possible because the extension of an intensional view can be accessed as a
predicate from within any SOUL query.

We can now summarize the essence of alternative views as follows: each alter-
native view should be defined as a sufficient, yet incomplete, set of conditions that a
source-code entity must fulfill to implement the concept represented by the intensional
view. The conjunction of all alternative intensions must yield a complete definition that
all such entities must adhere to. The result is that IntensiVE will detect source-code
entities that partially adhere to the complete definition of the implementation concept,
and thereby detect inconsistencies in the source-code. This idea is represented in Fig-
ure 2 illustrating which parts of the intersecting sets (i.e. alternative views) contain the
source code entities that are consistent with the regularity and which contain the ones
inconsistent with the regularity.

Alternative views are defined in IntensiVE using a tab widget containing a tab for
each alternative view, as is shown in Figure 3.

3.4. Intensional Relations

In addition to the definition of alternative views, the model of intensional views
supports the definition of a second kind of constraint, namely intensional relations. An
intensional relation can impose a quantified constraint over an intensional view (i.e. a
unary relation) or between the entities contained in two intensional views (i.e. a binary
relation). Any intensional relation is defined by a condition and pre-defined quantifiers.
The condition expresses the actual constraints that need to be satisfied by the entities
of the view(s) and the quantifiers express for which elements the condition must hold
(i.e. for all, for exactly one, etc. . . ). This condition can be specified using any query
language but we again use SOUL to specify the condition of an intensional relation.

In our running example, the constraint that all concrete factories should be complete
(i.e. that all concrete factories instantiate all types of products) is specified using a
binary intensional relation. As shown in Figure 2, this relation is imposed between the
Concrete Factories and Abstract Products views. The Abstract Products view collects
the (abstract) types of all products that must be created by a factory. The relation itself
is defined as follows:
∀ source ∈ Concrete Factories, ∀ target ∈ Abstract Products :

factory source instantiates a subtype of product target
Translated to SOUL, this becomes:
∀ ?source ∈ Concrete Factories : ∀ ?target ∈ Abstract Products :

?source.factory createsInstanceOfType: ?target.abstractproduct
The logic condition verifies whether the binding of the logic variable ?factory from the
source view of the relation (i.e. Concrete Factories) creates an instance of the binding
for the variable ?product from the target view (Abstract Products). As expressed by
the quantifiers, the relation is considered valid if for all possible pairs of a concrete
factory and an abstract product, the above predicate holds. All other pairs are reported
by IntensiVE as (possible) inconsistencies.
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3.5. Regularity Instances

In a single software application, there are often multiple instances of the same
structural regularity. In the context of our example, this means that besides an abstract
factory for “Events”, our software implementation may very well include another in-
stantiation of the Abstract Factory design pattern, targeted at the creation of UI widgets,
for example. In general, many structural regularities have multiple instantiations in the
same software application. Since such different instantiations of the same structural
regularity are subject to the same set of constraints, they should also be defined using
the same set of intensional views and relations. However, since they pertain to a differ-
ent part of the source code, some variations will be required. The abstract superclass of
the Abstract Factory pattern, for example, differs from one instantiation of the pattern
to the other.

IntensiVE explicitly supports that a single regularity definition describes and en-
forces multiple instantiations of the structural regularity in the source code. To achieve
this, the regularity definition module can be parameterized with the points of varia-
tion between the different instantiations of the regularity. The idea here is that, rather
than expressing an intensional view directly in terms of a particular instantiation of the
regularity, all the instance-specific information is extracted from the view into input
parameters. To illustrate this, let us take a look at the Concrete Factories intensional
view. The first alternative of this view expressed that all classes in the hierarchy of
the AbstractEventFactory are concrete factories. Rather than specifying this
intension directly in terms of the specific abstract class, we define it as:

?factory isClassDeclaration,
?factory inSubClassHierarchyOf: ?abstractFactoryRoot,
not(?factory isAbstractClass)

In this intension, the actual abstract factory root class is made a parameter of the inten-
sional view (i.e. ?abstractFactoryRoot), and thereby also becomes a parameter of the
regularity definition. The instance-specific information (i.e. the AbstractEventFactory
class) is removed from the intension of the intensional view. This can be done for all
other intensional views and relations in exactly the same way.

Figure 4 illustrates how the regularity definition of the Abstract Factory design pat-
tern can be parameterized. In addition to the ?abstractFactoryRoot, it is also parame-
terized by the ?factorySuffix, ?productSuffix and ?abstractProductsView variables. The
two former variables capture the actual suffix of the naming convention to be adhered
by the concrete factory classes and concrete product classes, respectively. The latter
variable captures the entire intension for one of the alternative views of the Abstract
Products view. This mechanism allows to express the Abstract Products view in terms
of a view that is defined externally to the regularity definition. Indeed, the way actual
abstract products are characterized differs from one instance of the pattern to another.

For such a parameterized regularity definition, input arguments must be passed to
describe the actual instances of the structural regularity present in the source code.
Figure 4 illustrates those parameters for the instance of the pattern we have described
throughout this article. Regularity definitions can be instantiated by passing actual
arguments (i.e. code entities) for the parameters of the views and relations. These
arguments are the extension of an intensional view, meaning that for each tuple of code
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Figure 4: The parameterized regularity definition of the Abstract Factory design pattern.

entities in an intensional view, an instance of the regularity is created. In our example,
such a tuple must contain the actual root class, the intended class name suffix, the root
class of the products, and so on.

Figure 5 demonstrates the definition of the Abstract Factory regularity in the In-
tensiVE tool suite. The right-hand (definition) window features the set of views and
relations that make up the regularity as well as the (input) view that defines each in-
stance of the regularity. By selecting a mapping for the appropriate tuple variables in
each view and relation, the user of IntensiVE effectively instantiates the different reg-
ularities shown in the left-hand side tree-view. A regularity instance is created for each
tuple of the input view.

4. Verifying Regularities using IntensiVE

Similar to how unit testing is used to verify the functionality of a software system
after evolution or maintenance, IntensiVE is used to verify the consistency of the struc-
tural regularities in the source code following an evolution. Using the intensional views
and relations described in the previous section, IntensiVE can enforce the constraints
of the abstract factory regularity, such as they are described in Section 2.1. For each of
those constraints, we describe which intensional views and relations participate in their
verification and how the consistency checking tools of IntensiVE provide developers
with feedback on the violation of the constraints. Next, we show how inconsistency
exceptions can be documented.

4.1. Detecting Inconsistencies

The Concrete Factories intensional view enforces constraints (1) and (4) of Sec-
tion 2.1. Indeed, the conditions of the different alternative views express exactly these
constraints. We already discussed that, if a source-code entity is not present in the
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extension of all alternatives, it is considered to be a possible inconsistency. Figure 6
shows how IntensiVE reports on the (in)consistency of an intensional view. The rows
in the table list the source-code entities belonging to the intensional view (i.e. the con-
crete factories). For each alternative view, a separate column is shown. The presence,
or absence, of each of the source-code entities in each of the alternatives is indicated
by a green (presence) or red (absence) circle in its corresponding column. For ex-
ample, in the figure we can see that the DefaultEventFactory and DebugEventFactory
classes are a member of all three alternative intensions. These classes thus respect
constraints (1) and (4) expressed by the view. However, the Figure also shows other
classes that are only present in the third alternative. These classes thus instantiate
concrete products but do not follow the naming convention nor are they part of the
AbstractEventFactory hierarchy. These classes are clearly a violation of con-
straint (1).

Constraint (2) is enforced by the binary relation between the Concrete Factories
and the Abstract Products views, defined in Section 3.4, namely: for each abstract
product, each concrete factory must implement a method that effectively creates an
instance of (a subtype of) the abstract product. In exactly the same way, constraint (3)
is enforced using a unary relation over concrete factories.

Figure 7 demonstrates how IntensiVE provides feedback on the verification of the
first intensional relation. On the left hand side of the figure, we see a rectangle (contain-
ing smaller rectangles) representing the extension of the Concrete Factories intensional
view, which consists of two factories (that are consistent). The second factory is indi-
cated to be a violation since it does not instantiate 6 particular kinds of products. This
result is indicated with red arrows to the elements of the second intensional view (i.e.
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Figure 6: Verification of the Concrete Factories intensional view.

the Abstract Products view). Developers can move the mouse over these squares to
find out what source-code entities these squares represent or they can divert to a tex-
tual listing of all inconsistent entities. It can also be observed in the screenshot that
this reporting tool features a number of options that a developer can use to discover
the violations and/or consistent elements of the target and source views as well as the
respective violating tuples.

4.2. Documenting Exceptions

In many cases, detected inconsistencies are accepted by the developers as devia-
tions to the general rule. For example, it may be acceptable that some specific class
in the system creates product objects directly, i.e. without passing through a factory.
Since such a class will always be detected as an inconsistency in the verification of the
Concrete Factories view, IntensiVE allows developers to explicitly flag a code entity as
an exception to the rule. In the case of alternative views, a code entity can be marked
as included or excluded from a particular alternative view. Such exceptions are persis-
tently stored and actually become part of the definition of the view itself. As a result,
it will no longer be detected as an inconsistency in verifications of the view over later
versions of the system but it will be reported as an exception to the general rule. This
is of importance since IntensiVE is designed to support the verification of structural
regularities throughout the evolution of a software application, and having the same
(irrelevant) inconsistencies pop up at every verification would be undesirable.

The screenshot in Figure 8 demonstrates how such exceptions are shown when In-
tensiVE reports the result of the verification of the Concrete Factories view. Following
the verification shown in Figure 6, the developer has marked the Main class as an
exceptional inclusion in the first two alternative views (a green tick symbol in the red
bullet). The result is that only the class TreatmentComponent is still an explicit
violation.
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Figure 7: Verification of the binary intensional relation expressing completeness of each factory.

Figure 8: The Main class is documented as an exception to the general rule of the Concrete Factories view.
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5. Support for Bad Smell and Bug Detection

Many code smells and bug patterns are much alike structural regularities, except
that they are undesirable properties of the code. IntensiVE explicitly supports the cre-
ation of intensional views that expose such undesired structural properties. From within
the user interface, an intensional view can be marked as a view for a “bad smell”. This
implies that any entity contained in the view is reported as a possible inconsistency.

For example, subtle errors can occur in Java when a constructor calls a non-final
method of its class. In particular, an error occurs when the called method is overridden
in a subclass and it references instance fields. These fields have not yet been initial-
ized by the constructor of the subclass and thus contain the default initialization values,
which is often an unexpected result. Although this bug is not very common, knowing
that it exists in the code can save valuable time. Therefore, we define an intensional
view using the following query that gathers the classes ?class, their constructors ?con-
structor, the called method(s) ?aMethod and instance fields ?var involved in the potential
bug pattern. In summary, the query will find constructors that (transitively) invoke a
method that is defined in the same class or any of its subclasses and which reads but
does not write to a field defined on the same class.

1 ?class isClassDeclaration,
2 ?class definesConstructor: ?constructor,
3 ?constructor callsTransitiveOnSelf: ?aMethod,
4 ?subclass definesMethod: ?aMethod,
5 ?subclass isSubClassOf: ?class,
6 ?subclass definesVariable: ?var
7 ?aMethod reads: ?var,
8 not(?aMethod writesTo: ?var)

SOUL queries provide a versatile means to express bad smell and bug detectors.
For example, note that the above query is, in comparison to bug-finding tools such
as FindBugs [19], not restricted to only detecting calls to non-final methods but also
verifies that the called methods actually reference an instance field. Moreover, a user
of IntensiVE can further fine-tune the above query by reasoning over the method’s
control flow such that when the assignment to the variable occurs inside a null-checking
conditional expression, the method is not detected as a bad smell 6.

6. An IntensiVE Extension: Visualized State Diagrams

Until now, we have shown how IntensiVE reports on (broken) structural regulari-
ties in terms of the source-code entities that implement or violate them. Although this
works well for many regularities, often more customized feedback is desired by the
development team. For example, in a particular project in which IntensiVE is applied,
State design patterns [13] are used to implement state machines. These state machines
are documented using state diagrams in the team’s design documentation. The regular-
ities that must be enforced in the implementation are the states and transitions as they

6An example of this, and more examples of bad smells, can be found on the website:
http://www.intensional.be
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Figure 9: The State diagram of a sample State Pattern implementation.

are described in the design documentation. In other words, the developers understand
these regularities in terms of state diagrams and they also desire to have IntensiVE
provide them feedback at that level.

IntensiVE was specifically designed to be extensible with additional reporting tools.
In this case, we implemented a reporting tool that visualizes the state diagram of each
State design pattern as it is implemented in the source code. To achieve this, the classes
implementing the “State” roles of the pattern and the state transitions (as implemented
in the source code) were gathered into intensional views. The query that defines the
view of “State” classes is relatively straightforward: it collects all subclasses of a (user-
identified) abstract superclass. The view that collects all state transitions is a set of
tuples of “State” classes. Each tuple thereby represents a possible state transition from
one state to another state. The query that extracts this view reasons over the methods
implemented on each state class (the source state) and detects the creation of instances
of other state classes in the call-flow of these methods as possible destination states.
This query requires only a few lines of code since (higher-order) logic predicates for
iterating over the expressions in the control-flow of a method and the matching of
instance-creation statements are part of the pre-defined library of logic rules.

Instead of portraying these intensional views as a collection of tuples of source-
code entities, we passed on these entities to a visualization script that draws their
corresponding state diagrams. Figure 9 presents such a state diagram as it is shown
in IntensiVE. These diagrams reflect the actual state machine behavior as it is imple-
mented in the source code using the State design pattern. The names of the states in
the figure are the names of the classes that implement each state. At this time, devel-
opers can visually verify if the implementation corresponds to the documented state
diagram. In the future, we envision that this visual reporting tool immediately reports
on inconsistencies between the documented design and the implementation, which was
not possible at this time because the design documentation of the state diagrams was
not available in a structured format.

7. Case Studies

IntensiVE has been applied in the context of several different software projects,
ranging from small academic open-source Smalltalk and Java projects to large propri-
etary Java and Cobol systems. In this section, we provide a brief overview of the most
important case studies performed using IntensiVE, detailing context, size and results.
More complete descriptions can be found on the IntensiVE website.
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SmallWiki is a collaborative wiki system implemented in Smalltalk by Lukas Renggli.
It is the precursor of the popular Pier wiki system. We documented some of
the naming conventions, design pattern instances and design dependencies that
govern SmallWiki using 27 views and relations. Particular points of interest in
this case study are:

• All the various actions that can be invoked on wiki pages are implemented
by means of a Command design pattern. The use of this Command pattern
results in a number of interesting constraints that should be satisfied by the
implementation of concrete wiki actions. First, the implementation of ac-
tions is governed by a number of naming conventions. Second, all concrete
actions should follow a particular implementation strategy.

• The structure of a wiki document is represented as a tree of objects. One of
the key properties of the implementation of SmallWiki is that all operations
(such as visualization, storage, . . . ) are implemented by means of a Visitor
design pattern. For this design pattern, we documented various rules that
should be respected in the source code: all Visitors should be able to accept
all the different kinds of wiki page nodes, all visit actions should implement
the correct double dispatch protocol, and so on.

AmbientTalk is an experimental programming language to develop applications for
mobile ad-hoc networks. AmbientTalk is an academic open-source project in
Java for which we documented 12 regularities using 35 views and relations in
IntensiVE. Here are some of the highlights:

• AmbientTalk’s implementation has the concept of “native methods” which
are identified by a naming convention: native method names must always
start with meta or base. The naming convention of these methods is
of importance because they are invoked via reflection in other parts of the
implementation. We created a view containing these methods, since several
constraints are imposed on them (see below).

• A design rule in AmbientTalk is that all subclasses of the class ATObject
that implement their own “native methods” are obliged to declare to imple-
ment a Java interface that declares these “native methods”. This regularity
is implemented as a relation between the view of all “native methods” and
a view describing these interfaces.

• The developers of AmbientTalk have established that exception handlers
that handle the SelectorNotFound exception (part of the implementa-
tion of AmbientTalk), must invoke the catchOnlyIfSelectorEquals
method inside the catch block to verify if the exception must be handled or
propagated to another handler. This regularity is implemented as a view on
all such exception handlers and a unary relation that verifies if the method
invocation is found in the control-flow of the catch block.

• The signature of any native method may contain only subtypes of ATObject.
This regularity is implemented using unary constraints on the “native meth-
ods” view.
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• AmbientTalk has a notion of synchronous and asynchronous methods, each
identified with a naming convention: syncevent and event respec-
tively. The use of this naming convention is coupled to the implementa-
tion of the method itself which must use the synchronous or asynchronous
message handling machinery of the AmbientTalk implementation. For this
regularity, alternative views verify if the naming convention corresponds
with its implementation and vice-versa.

Proprietary Java System is a relatively large Java application exhibiting a number of
design regularities that have been expressed and verified using IntensiVE. This
includes the Abstract Factory design pattern, very similar to the one outlined in
the previous sections of this article and the state-machine extraction and visual-
ization, also described above.

Proprietary Cobol System is a large business application for one of the larger Bel-
gian banks. Although the development of the system started in 2005, for tech-
nical and historical reasons it was opted for to implement the system in Cobol.
From the start, a lot of effort was invested in specifying a component-based de-
sign that was easily translatable into Cobol. Here is a token of the regularities
we verify in this implementation:

• A Cobol system is divided in a number of different programs. In this case
study, each such program implements a number of use cases that is spread
out over a number of sections (cfr. procedures). In order to encode the
flow of these use cases in the structure of these programs an implicit layer-
ing was introduced in the system by prefixing the names of sections. E.g.
the top-level sections in a program are prefixed with an A, second-level
sections with a B, and so on. In order to ensure that this layering is not
violated, sections can never call another section in the program if that sec-
tion’s prefix precedes the prefix of the caller. For example, a section with
prefix C can only call other sections prefixed C, or sections prefixed D,E,
and so on.

• The documentation of the project’s component-based structure is expressed
using class diagrams and sequence diagrams in Rational Rose. Since it was
required to assess whether the specified control flows are present in the
system, we extended IntensiVE with dedicated facilities to translate these
class and sequence diagrams into intensional views and relations. By pro-
viding a simple call-graph analysis over the Cobol code, we were then able
to verify these sequence diagrams with respect to the actual implementa-
tion. We also provided a visual feedback of the intended sequence diagram
along with calls that violate the intended sequence.

Table 7 provides some figures about the size of each case study and the time re-
quired to execute a full verification of all defined regularities on a Mac Book Pro
2.8Ghz with 4Gb Ram running Visualworks 7.6nc. However, please mind that the
performance of the verification depends a lot on the kind of queries used in the defini-
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Project Code Size Regularities Performance
SmallWiki 108 classes, 6 regularities 48s

1219 methods (27 views and relations)
AmbientTalk 191 classes, 12 regularities 720s

2347 methods (35 views and relations)
Proprietary Java System 3468 classes, 8 regularities

25652 methods (20 views and relations) 30m
Proprietary Cobol System 1000 KLoc 9 regularities 826s

(24 views and relations)

Table 1: Case Studies performed using IntensiVE.

tion of views and relations. Since each project has its custom-defined regularities, the
performance of the verification of each project is highly different.

8. IntensiVE’s Architecture

In this section we take a brief look at the architecture of IntensiVE and a number
of regularities that pertain to it, which are enforced using IntensiVE itself.

IntensiVE’s implementation does not only integrate a number of different tools,
its architecture is conceived as a framework that accommodates for extension and ex-
perimentation with different source-code query languages (e.g. Smalltalk, Soul), code
models (e.g. Smalltalk, Java, C, Cobol), reporting tools (e.g. separate web and desktop
interfaces) and visualizations (e.g. extent of regularity in Moose polymetric views).
The choice of a framework architecture and the enforcement of structural regularities
are motivated by the nature of IntensiVE as the core research platform of researchers at
two different universities. To explore new research directions rapidly, it was required
that the tool suite could be extended by new prototype tools using minimal develop-
ment effort. In addition, because many parts of the framework make assumptions about
other parts of the framework (often developed by different researchers), we actively
enforce these assumptions using structural regularities defined in IntensiVE itself. In
combination with functional unit testing, the verification of these structural regularities
provided more confidence that extensions adhere to the framework’s rules and thereby
prevents its implementation from deteriorating.

The Choice of Smalltalk

Smalltalk’s dynamic and reflective characteristics have made it a natural choice to
implement the IntensiVE tool suite. First of all, reasoning over Smalltalk programs
comes naturally in such a highly reflective programing language. In addition, dynamic
typing facilitated the implementation of intensional views to hold any kind of Smalltalk
program fragment, Java program fragments, runtime values, or even a mixture of any
of those. Also, the framework itself uses reflection to dynamically reconfigure the
IntensiVE tool, depending on which plugins are loaded or not. In essence, IntensiVE
reasons about its own implementation to retrieve the plugins, installed at particular
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hot spots in its framework. Besides this traditional use of reflection, IntensiVE also
exploits the Smalltalk reflection mechanism in the opposite way to achieve persistence
of data in the form of programs. More precisely, the definition of an intensional view is
stored as a Smalltalk program such that the VisualWorks storage mechanisms can make
these views persistent. The open nature of the Smalltalk environment also allowed us
not only to achieve a seamless integration of the IntensiVE tool suite with the IDE
but also with the Smalltalk language itself. For example, we were able to extend the
Smalltalk namespace mechanism to provide programmatic access to views defined in
the IntensiVE tool.

An Integrated Tool Suite

In addition to the tight integration of its proper tools with the VisualWorks Smalltalk
IDE, IntensiVE also integrates with the following Smalltalk tools:

StarBrowser: IntensiVE builds upon the StarBrowser [33] classification frame-
work. This framework offers basic functionality for the creation and manipulation of
classifications (i.e. sets) of objects. Since intensional views are one special kind of
classification, the entire IntensiVE tool suite is conceived as an extension to the Star-
Browser.

SOUL: Although it has become a standard part of IntensiVE itself, the SOUL
program-query language 7 [32] is also an independent logic-based programming lan-
guage, implemented in Smalltalk, that is used for meta-programming and inter-language
reflection.

JavaConnect and Penumbra: JavaConnect 8 enables the seamless communi-
cation between Smalltalk and Java programs. In particular, it allows VisualWorks
Smalltalk to use any Java library transparently, as if it would be a Smalltalk library.
Penumbra is a Smalltalk application that uses JavaConnect to communicate with the
Eclipse Java environment, which ultimately permits IntensiVE to work with the source
code of any Eclipse-based (Java) project. In other words, as a meta-model for Java
source code, our tool uses the Eclipse DOM/AST directly.

Moose and Mondrian: IntensiVE also integrates with the Moose 9 [10] reverse
engineering environment in general and the Mondrian [27] visualization framework
in particular. First of all, IntensiVE uses Mondrian to visualize the consistency of
intensional relations (as shown in Figure 7). Secondly, intensional views and relations
can be related to Moose models, and the associated source-code visualizations that
are incorporated in Moose. This allows, for example, to visualize the extension of an
intensional view into polymetric views provided by Moose [23].

Regularities in IntensiVE

The extensibility of IntensiVE relies upon the integrity of a number of structural
regularities in its implementation. Evidently, we have applied IntensiVE to verify
these regularities in its own implementation, which is continuously evolving. While

7http://prog.vub.ac.be/SOUL
8http://www.info.ucl.ac.be/˜jbrichau/javaconnect.html
9http://moose.unibe.ch
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an overview of all of these regularities lies out of the scope of this paper, we give an
overview of the major categories of regularities in the current version of the tool suite10:

• Design patterns are essential to the framework’s extensibility. The Command,
Abstract Factory, Strategy and Visitor design patterns are among the most im-
portant regularities that are to be respected in the implementation.

• Framework specialization constraints are regularities imposed on (specializ-
ing) subclasses of certain classes of the framework. IntensiVE’s saving mecha-
nism, for example, relies on several naming conventions in the implementation.
Another example can be found in the caching of the extension of intensional
views, which can only work well if all tools that trigger the verification of an
intensional view or relation also trigger the invalidation of the caching.

• Common design constraints: Finally, common mistakes that should avoided
and rules-of-thumb that should be respected in the implementation of IntensiVE
are also expressed using intensional views and relations. Typical examples of
these are the fact that classes implementing an equality operation should also
provide a hash function and vice versa, that overridden initialization methods
must make a super send, or that for all classes in our implementation preferably
there should exist a corresponding unit test class.

To document these regularities, we created 34 intensional views and 19 intensional
relations that verify the regularities in IntensiVE. In order to frequently identify vi-
olations of the structural regularities in IntensiVE, the verification of the regularities
occurs simultaneously with the verification of the unit tests.

9. Related Work

A substantial body of research has been devoted to supporting regularities. In gen-
eral, our tool discerns itself from other approaches in that we offer an open framework
for documenting and verifying structural regularities that is largely independent of the
underlying code model that is used. Furthermore, this framework offers a declara-
tive query language along with a vast library of logic predicates for reasoning about
object-oriented programs. In what follows, we discuss five different groups of related
approaches that we can discern in literature:

Code checkers: Lint [20], P 3 [8], CheckStyle [4], FindBugs [19] and many others
provide developers a means to verify a wide range of applicable regularities to avoid
common mistakes, bad smells, bad programming style, violations of platform-specific
constraints and so on. These tools provide a dedicated and often highly optimized
means to identify locations in the source code that infringe on such regularities and
can provide additional support, such as (semi-)automated correction of the detected
infringements. While IntensiVE does not provide the same kind of dedicated support
as code checkers, our tool suite is sufficiently versatile to express the same kinds of

10These regularities are also present in the tool when you install it
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regularities as those verified by code checkers, as exemplified in Section 5. In addition,
IntensiVE is not limited to verifying the regularities supported by code checkers, but
also is able to document and verify a broad scope of e.g. non-stylistic and domain-
specific regularities.

Architectural and design conformance checkers: are dedicated tools that aim at
verifying a high-level description of a software system (e.g. design patterns, architec-
tural descriptions, dependencies between components, . . . ) with respect to the actual
implementation of that system. Examples of these tools are Reflexion Models [30],
Ptidej [15] and RevJava [12]. As illustrated by the Factory design pattern documenta-
tion in Section 2.1, IntensiVE can also be used to document regularities at the archi-
tectural and design level. Similar to the comparison to code checkers, IntensiVE is not
specifically dedicated nor limited to these kinds of regularities but provides a general
framework for documenting and verifying regularities.

Meta-programming systems: CCEL [9], Law-governed systems [28], IRC [11],
GOOSE [5], CodeQuest [16], SCL [18], and many more offer developers languages for
writing meta-programs that reason about programs. One application domain of these
meta-program systems is the implementation of meta-programs that verify source-code
regularities or that allow for imposing constraints on the source code of a system. In-
tensiVE is related to this group of tools in that the intension is specified by means of
a meta-program, expressed using the meta-language SOUL. In contrast to these ap-
proaches however, IntensiVE aims at offering a framework at the conceptual and tool
level that builds on top of the usage of a query language. Complementary to this query
language, our tool offers a general metaphor for expressing structural regularities, and
provides dedicated tool support for reporting violations of these regularities.

Metric-based systems: A large body of work exists that uses metrics to identify
design defects or to aid in the reengineering process. Examples of such approaches are
iPlasma [24], Decor [29], and RevJava [12]. While these tools aim at identifying design
defects, our tool focusses on the specification and verification of application-specific
structural source-code regularities. The goal of IntensiVE is to document the design of
an application and verify it with respect to the source code; conversely, metric-based
systems aim at identifying common defects in the design of a system by measuring its
source code. The MOOSE reengineering environment [10] shares a similar goal with
these approaches, namely the visualization of source-code metrics, but also offers the
FAMIX meta-model for object-oriented languages that can be queried using regular
Smalltalk programs. As such, MOOSE can be integrated with IntensiVE by using
the FAMIX meta-model as an underlying representation of the entities that belong to
intensional views. While both IntensiVE as MOOSE offer a query mechanism, our
tool differentiates itself by a set of dedicated concepts (intensional views, relations,
. . . ) — built on top of the query mechanism — for expressing and verifying structural
regularities.

Pluggable type systems: Pluggable type systems [17, 31] are a means to verify
additional typing constraints on the source code of a system using annotations. For
example, a developer can annotate a statement indicating that the result of the statement
should not be the null. The pluggable type system will — based on these annotations
— verify the validity of these constraints in the source code. Most pluggable type
systems come with a set of pre-defined annotations that can be used to detect common
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typing mistakes in a program, along with a framework for developers to implement
their own type checkers. The main difference with our approach is that IntensiVE does
not rely on developers to manually annotate the source code in order to indicate where a
particular constraint should apply, but rather uses declarative program queries to group
sets of related source-code entities to which a constraint applies. It would be interesting
to investigate how our tool framework can be used to implement the type checkers of a
pluggable type system.

Conclusion

Structural regularities are omnipresent in the source-code of software applications
in the form of coding conventions, design patterns, idioms, design constraints, and
so on. In this paper we have presented IntensiVE, an extensible tool suite that allows
developers to describe the regularities that pertain to their software application and ver-
ify these upon evolution. Although IntensiVE is tightly integrated with VisualWorks
Smalltalk, it is not limited to Smalltalk projects. IntensiVE also supports the Cobol lan-
guage and, through a looser integration with the Eclipse environment, the verification
of Java projects. In order to define intensional views and relations, IntensiVE features
a tight integration with the program query language SOUL, which offers a declarative
and expressive means to reason about programs. IntensiVE can be downloaded from
http://www.intensional.be.
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