
Flikken: Programming a Mobile Game with
Context-Aware Tuples

Elisa Gonzalez Boix, and Christophe Scholliers
{egonzale | cfscholl}@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel, Belgium

Abstract. This document describes the implementation of Flikken, a
mobile game implemented using context-aware tuples in which players
equipped with mobile devices interact in a physical environment aug-
mented with virtual objects. Coordination and interaction between play-
ers is fully specified by means of context-aware tuples and reactions to
some of these tuples e.g. to show on the GUI the virtual objects spread
around the city. We describe the game functionality and the context-
tuples used in its implementation. Before concluding, we provide code
snippets for the relevant parts of the game implementation.

This document assumes the reader understands the Context-Aware Tu-
ples model and knows the operations it provides.

1 Description

Flikken1 is a mobile game implemented using context-aware tuples inspired by
an industrial-strength game called The Target2). Flikken is a so-called virtually
augmented game in which players equipped with mobile devices interact in a
physical environment (i.e. a city) augmented with virtual objects. Players are
organized in two teams which determine their role in the game. The policemen
work together to shoot down a dangerous gangster on the loose before he achieves
his goal of earning 1 million euro by committing crimes. In order to commit a
crime and get the reward, the gangster needs to collect burgling equipment
around the city (e.g knives, explosives, guns, etc.).

Figure 1 shows the gangster’s and a policeman’s mobile device at the time
the gangster has just burgled the local casino. As shown in the screenshots, the
gangster knows the location of places with big amounts of money (e.g banks,
casinos, etc.). When a gangster commits a crime, policemen are informed of the
crime location and the amount of money stolen. Policemen, on the other hand,
can see the position of all nearby policemen. Further they can send messages to
1 Flikken is available for download as a context-aware tuples program with the Am-
bientTalk language at htttp://soft.vub.ac.be/amop.

2 http://www.lamosca.be/en/the-target

2

Fig. 1.

each other in order to coordinate their movements. Both the gangster and police-
men are periodically informed of each other positions. Policemen and gangster
can also shoot at each other. At the beginning of the game the gangster gets four
additional virtual objects for his defense: a mine (which kills anybody who steps
on it), a gas bomb (which kills anybody in a determined radius for a period of
time), a radio jammer (which disrupts the connectivity of the nearby policemen,
preventing them to know his location) and a bulletproof vest (which protects
him for a time interval against one single shot).

Flikken is an ideal case study for context-aware tuples as it epitomizes a mo-
bile ad hoc networking application that has to react to context changes on the
environment such as changes on player’s location, appearance and disappear-
ance of other players, or the discovery of virtual objects while moving about.
Moreover, how to react to these changes highly depends on the receivers of the
contextual information, e.g. virtual objects representing burgling items should
only be perceived by the gangster when he is nearby the item’s location while
they should not be perceived at all by policemen. In the remainder of this sec-
tion, we illustrate how the Flikken game uses context-aware tuples. Coordination
and interaction between players is fully specified by means of context-aware tu-
ples and reactions to some of these tuples e.g. to show on the GUI the virtual
objects spread around the city. Thanks to the language symbiosis capabilities of
AmbientTalk, our application can call upon Java for GUI construction. Hence,
the game GUI is implemented in Java. Before diving into the discussion of the
distributed coordination aspects of the game we briefly describe the setup.

3

2 Implementation

In contrast to The Target, Flikken do not rely on a centralized server to play
the game. When a player starts the game, a CAT system is created in his mobile
device. This CAT system is used for all distributed aspects of the game, e.g.,
to communicate periodically his positions to the opposite team. At the start of
the game, policemen and gangster are waiting in their headquarters. A head-
quarter (HQ) also has a tuple space which injects set of tuples to the players:
the gangster’s HQ injects four tuples representing the above mentioned weapons
that the gangster has for his defense, while the policemen’s HQ injects 3 tu-
ples representing the charge of their guns. Each policeman gets three bullets at
the start of the game but they can reload their guns by returning to their HQ.
The chase starts once the gangster leaves his headquarter. Throughout the city
various context providers (i.e. CAT systems) are placed to inform the gangster
about virtual objects (additional weapons or burgling equipment) or crime lo-
cations by injecting the necessary tuples. Once the chase starts, policemen and
the gangster communicate player to player by means of the CAT network.

Table 1 shows an overview of the tuples used in the game and its context
rule. The tuples are divided in five categories depending on the entity which
injects them in the environment, i.e. all players, only gangster, only policemen
or city context provider (which includes the ones injected by headquarters). A
tuple is denoted by the term τ . As usual, the first element of a tuple indicates
its type. We use capitals for constant values.

The CAT system on the player’s device carries a vital private tuple τ(Team-
Info, ?name, ?team) indicating to which team he belongs. Every player trans-
mits its location to the CAT network by means of the tuple τ(PlayerInfo, ?na-
me, ?team, ?location). These tuples are often used in other tuple’s context rules
to identify the current whereabouts of a player and his team. The context rule is
defined by a set of templates and constraints on those templates which needs to
be satisfied. For example, the context rule for the VirtualObject tuple indicates
that this tuple goes in context when the receiver is a gangster whose location
(extracted from the PlayerInfo tuple) should be in communication range with
the virtual object. As a concrete example, consider the following VirtualObject
tuple for a granade.
cat.inject: tuple(VirtualObject , grenade)
inContext: [tuple(TeamInfo , ?u, GANGSTER),

tuple(PlayerInfo , ?u, GANGSTER , ?loc),
inRange(grenadeLocation , ?loc)]

The tuple (V irtualObject, grenade) should be only perceived if the receiver
is a gangster whose location (given by ?loc in the PlayerInfo tuple) is in
physical proximity with that virtual object. The inRange function builds the
constraint that checks if the gangster location is in euclidian distance with the
location of the grenade (stored in the grenadeLocation variable). Upon re-
moval of a VirtualObject tuple, a private tuple (hasV irtualObject, ?object)
is inserted in his CAT system. hasVirtualObject tuples are used in the con-
text rule of CommitCrime tuples which notify the gangster of a crime that can

4

Tuple Content Tuple Context Rule Tuple Description
All Players

τ(TeamInfo,
uid, gip)

n/a Private tuple denoting the player’s team.

τ(PlayerInfo,
uid, gip, location)

[τ(TeamInfo, ?uid, ?team), ?team 6=
gip]

Injected every 6 minutes to notify the po-
sition of a player to opposite team mem-
bers. Location is a 2-tuple indicating the
(GPS) coordinates of the player.

τ(InHeadquarters,
location)

[τ(PlayerInfo, ?u, ?team, ?loc),
inRange(location, ?loc)]

Notifies HQ that the player moved in its
communication. Used to detect the start
of the chase (when this tuple goes out of
context for the HQ of the gangster) and
the arrival of policemen to their HQ (to
reload guns).

Only The Gangster
τ(CrimeCommitted,
name,location,
reward)

[τ(TeamInfo, ?uid, POLICEMAN)] Notifies policemen that the gangster com-
mitted a crime.

Only Policemen
τ(PlayerInfo,
uid, gip, location)

[τ(TeamInfo, ?u, gip)] Notifies the position of a policemen to his
colleagues.

City Context Providers
τ(VirtualObject,
id, location)

[τ(TeamInfo, ?u, GANGSTER),
τ(PlayerInfo,?u, GANGSTER,?loc),
inRange(location, ?loc)]

Notifies the gangster of the nearby pres-
ence of a virtual object. inRange is a helper
function to check that two locations are in
euclidian distance.

τ(CrimeTarget,
name, location)

[τ(TeamInfo, ?u, GANGSTER)] Notifies the gangster of the position of
crime targets.

τ(CommitCrime,
name,location,
reward, vobj)

[τ(TeamInfo, ?u, GANGSTER),
τ(PlayerInfo,?u, GANGSTER,?loc),
inRange(location,?loc), hasVirtu-
alObjects(vobj)]

Notifies the gangster of the possibility
of committing a crime. hasVirtualObjects
takes an array of virtual object ids and
checks that the gangster has the required
VirtualObject tuples.

τ(VirtualObject,
BULLET)

n/a Represents the bullets of the gun of gang-
ster’s and policemen’s gun. The gangster
only gets three at the start of the game,
while policemen can get three more when
they return to their HQ.

Table 1. Overview of the Context Aware Tuples used in Flikken

be committed. As crimes can only be committed when the gangster has cer-
tain burgling items, the context rule of the CommitCrime tuple requires that
certain V irtualObject tuples are present in his CAT system. For example, in
order for the gangster to perceive the CommitCrime tuple for the grandCasino,
a (hasV irtualObject, grenade) tuple is needed as shown below.
cat.inject: tuple(CommitCrime , grandCasino , location , reward)
inContext: [tuple(TeamInfo , ?u, GANGSTER),

tuple(PlayerInfo , ?u, GANGSTER , ?loc),
inRange(location , ?loc),
tuple(hasVirtualObject , grenade)];

Each player also registers several reactions to (1) update his GUI (e.g. to show
the hasVirtualObject tuples collected), and (2) inject new tuples in response
to the perceived ones, e.g. when a gangster commits a crime, he injects a tuple
(CrimeCommited, ?name, ?location, ?reward) to notify policemen. The code
below shows the reaction on PlayerInfo tuples installed by the application.

5

def makePlayer(username , team) {
...
cat.whenever: tuple(PlayerInfo , ?uid , ?tid , ?location) read: {

GUI.displayPlayerPosition(tid , uid , location);
} outOfContext: {

//grey out a player if there exists no update of his coordinates.
def tuple := cat.rdp(tuple(PlayerInfo , uid , tid , ?loc));
if: (nil == tuple) then: { GUI.showOffline(uid) };

};
};

Whenever a PlayerInfo tuple is read, the player updates his GUI with the
new location of that player. As PlayerInfo tuples are injected with a timeout,
they are automatically removed from the tuple space after its timeout elapses
triggering the outOfContext: handler. In the example, this handle greys out the
GUI representation of a player if no other PlayerInfo tuple for that player is
in the CAT system. If the rdp operation does not return a tuple, the player is
considered to be offline as he did not transmit his coordinates for a while.

2.1 Evaluation

Flikken demonstrates how context-aware tuples aid the development of context-
aware applications running on mobile ad hoc networks and address the tuple
perception issues shown in section ?? by introducing two key abstractions: (i)
the context rule of a tuple which determines the conditions that a receiving CAT
system should have in order to perceive the tuple, and (ii) the rule engine which
takes care of inferring tuple perception before applications can access a tuple. A
tuple space model with such abstractions has the following benefits.

1. Decomposing a tuple into content and context rule leads to separation of
concerns (i.e. increased modularity).

2. Since context rules can be developed separately, it enables programers to
reuse the rules to build different kinds of tuples (i.e. increased reuse). For
example, in Flikken, we used a inRangeOfGangster(?loc) function to build
the rule for the different VirtualObject tuples which was also reused to
build the three first conditions of CommitCrime tuples.

3. Programmers do not need to add computational code to infer tuple percep-
tion as the rule engine takes care of it in an efficient way, making the code
easier to understand and maintain.

Without context-aware tuples, tuple perception needs to be computed at the
application after a tuple is read. Determining that a tuple is appropriate for the
context situation of the receiver is significantly complex due to two reasons. First,
programmers need to register numerous event handlers to manually infer tuple
perception. More concretely, programers need to install event handlers to observe
the presence or absence of every tuple that is currently used in the context rules.
Those event handlers may be triggered independently requiring complex code to
compose them together. Such an explicitly event-driven architecture is difficult
to program, understand and maintain [1]. Secondly, the content of the tuple has
to be polluted with meta data to be able to infer tuple perception. For example,

6

the VirtualObject tuple should also contain the team information, which is
clearly not part of its functionality. In conclusion, programmers need to write
complex computation code which actually deals with coordination in order to
compensate the lack of expressiveness of the coordination model.

References

1. P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In Inter.
Conf. on Architectural Support for Programming Languages and Operating Systems,
October 2002.

