
Predicated Generic Functions
Enabling Context-Dependent Method Dispatch

Jorge Vallejos1, Sebastián González2, Pascal Costanza1, Wolfgang De Meuter1,
Theo D’Hondt1, and Kim Mens2

1 Software Languages Lab – Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{jvallejo,pascal.costanza,wdmeuter,tjdhondt}@vub.ac.be
2 Département d’ingénierie informatique – Université catholique de Louvain

Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium
{s.gonzalez,kim.mens}@uclouvain.be

Abstract. This paper presents predicated generic functions, a novel
programming language abstraction that allows the expression of context-
dependent behaviour in a declarative and modular manner, providing
fine-grained control of method applicability and method specificity. Meth-
ods are guarded by predicates with user-defined orderings, thereby in-
creasing the expressiveness of existing method dispatching approaches.
We have prototyped our proposal in Lambic, an extension of the standard
Common Lisp Object System. We illustrate and motivate our approach
by discussing the implementation of a collaborative graphical editor.

1 Introduction

The lack of linguistic support for encoding context-dependent behaviour forces
programmers to scatter these dependencies throughout application code in the
form of conditional statements. In object-oriented programming, ad hoc poly-
morphism alleviates this problem by means of dynamic method dispatch, en-
abling behavioural variations based on a receiver argument. Methods and their
overriding relationships are driven by the inheritance hierarchies of the objects
received as arguments. Although an improvement, object-oriented dispatch has
been found to be limiting in many situations. A number of solutions have been
proposed, ranging from design patterns and multiple dispatch to those based on
metaobject protocols and aspects. Still, most approaches do not offer linguistic
abstractions to influence the semantics of method dispatch based on more general
criteria, while still preserving the benefits of encapsulation and polymorphism
—with one remarkable exception, predicate dispatch [11].

Predicate dispatch offers fine-grained control on method applicability by
means of logical predicates. Logical implication between predicates defines the
overriding relationship between corresponding methods. However, predicate dis-
patching has limited capacities to resolve method overriding ambiguities since
the logical implications between predicates cannot be decided in the general case.
Thus, the set of method predicates must be restricted to a well-chosen subset



and thus can be statically analysed. This leads to a viable approach, but can be
limiting in some circumstances, since users cannot extend predicate dispatching
with their own arbitrary predicates in a straightforward way. Predicates with-
out logical implications can still be added but they are treated as black boxes
and the overriding relationship between two syntactically different expressions
is considered ambiguous [5, 11].

This paper proposes a generic generic function-based multiple dispatch mech-
anism, called predicated generic functions, that alleviates the restrictions of
predicate dispatching to cope with method overriding ambiguities. Instead of
requiring a logical implication order between predicates, this model fosters the
definition of context-specific priorities. Predicated generic functions enable users
to establish a priority order between logically unrelated predicates. These pri-
orities are specified in a per-generic-function basis: predicated generic functions
contain not only the methods with a common name and argument structure
(as in standard generic function models [3, 7]), but also the predicates on which
such methods can be specialised. A method is selected for execution when its
predicate expression is satisfied, and the order of the predicates specified in a
generic function determines the order of applicability of its methods.

We implement the mechanism of predicated generic functions in Lambic [22],
a prototype extension of the Common Lisp [19] programming language. We il-
lustrate the benefits of predicated generic functions by developing a scenario of
context-aware computing. Lambic allows application developers to modularise
behavioural adaptations in methods and declaratively specify the context con-
ditions for these adaptations as predicates. Manual definition of predicate prior-
ities in generic functions provides developers with fine-grained control over the
composition of adaptations, ensuring that the “most suitable” composition of
behaviour is selected by the dispatch mechanism for any given method call.

2 Motivation: Context-Dependent Behaviour

Context dependency is the ability of software services to perceive and react
to changes in their execution environment, adapting their behaviour accord-
ingly [14]. This ability is already an integral part of some business applications,
but it is becoming even more critical in application domains such as mobile and
ubiquitous computing, in which context adaptability requirements play a central
role.

In this section we show the need for language constructs that ease the ex-
pression of context-dependent behaviour, discussing the suitability of existing
object-oriented approaches to cope with this requirement. We use as running
example a distributed graphical editor called Geuze. This editor can be used in
different hosts to work collaboratively on a same graphical document. For the
sake of simplicity, in this section we focus only on the graphic user interface
of Geuze, and discuss other cases of context dependency we have found in the
implementation of this editor, in Section 5.



Table 1. Context conditions for Geuze operations

Context GUI events
Mouse down Mouse move Mouse up

Painting shape shape found, — —
brush selected

Moving shape shape found, drag status found, drag status found,
brush not selected brush not selected brush not selected

Drawing shape shape not found, drag status not found line status found
brush selected

Drawing selection — brush not selected, brush not selected,
drag status not found drag status not found

Selecting shape shape found — —
Deselecting shape shape not found — —

2.1 Handling User Interface Events

Consider some of the main graphical operations that Geuze can perform. The
editor allows creating, selecting, moving and painting shapes in a canvas. Each
operation has its own interaction pattern defined in handlers for Graphical User
Interface (GUI) events. A pattern can require a combination of GUI events, and
the same GUI event can be used in several patterns. For instance, the operation
for painting a shape is defined in a handler for the mouse-down event (clicking
inside a shape with the mouse pointer paints the shape). The operations for
drawing and moving a shape follow a drag-and-drop pattern, which is specified
in handlers for the mouse-down, mouse-move and mouse-up events.

The context of use plays a key role, as it determines the operation that
handles an event. This is illustrated in Table 1. For example, the operation that
should be executed upon a mouse-down event depends on context information
such as the x and y coordinates of the mouse pointer, on the shape found at
these coordinates (if any) and on the state of the editor’s brush (whether the
brush button is selected or not). Depending on this information, the operation
corresponding to the mouse-down gesture might be painting, moving and so
forth.

The mode of operation (painting, moving, etc.) is also part of the context.
Pressing the mouse button will trigger a different set of actions depending on the
currently active operation, as illustrated in Table 2. For instance, a same mouse-
move event provokes a displacement of the shape when the editor is in moving
mode, whereas a line is drawn —a completely different behaviour— when the
mode is drawing. Further, there are cases in which two operations correspond
to the same mouse-down event. If a deselected shape is painted, the shape is
first selected, and then painted. This order of operations, although not apparent
in Tables 1 and 2, is integral part of the normal behaviour of the editor and
needs to be properly encoded. We will come back to this when we discuss the
implementation in Lambic.



Table 2. Actions for Geuze operations

Context Actions
Mouse down Mouse move Mouse up

Painting shape paint shape — —
Moving shape set drag status update drag status, delete drag status

move shape
Drawing shape set line status, update line status, delete line status,

draw initial point draw line create a shape object
out of the drawn line

Drawing selection — draw selection square, remove selection square
select found shape

Selecting shape select shape — —
Deselecting shape deselect shape — —

2.2 Design Analysis of Running Example

At first sight, programming a basic graphical editor such as the one described
previously is straightforward. Nevertheless, a detailed analysis of the possible
solutions reveals that the programming tools we have at hand today fall short
of expressiveness to allow the production of a cleanly modularised solution.

Naive solution The most immediate implementation of the handler for the
mouse-down event is through conditional statements. Such a handler would
squeeze all the information contained in Tables 1 and 2 into one monolithic piece
of code: both the conditions that are necessary for execution of context-specific
behaviour, and the behaviour itself, for every operation of the editor that is con-
cerned by the mouse-down event. The downsides are clear —context conditions
would be hard coded using conditional statements, and the implementations of
the different context actions would be tangled in the handler. This solution is
unacceptable, as it hinders maintainability and code reuse [15].

Object-oriented solution In traditional object-oriented systems, method in-
vocation is triggered by messages being sent to objects where the objects then
decide which method to execute based on a mapping from message signatures
to actual methods. Typically, such mappings are fixed for specific types of ob-
jects, which means that the dynamic state of a running system cannot (easily)
influence the dispatch mechanism for a particular object anymore.

One solution is to use forwarding, which means that an object that receives a
message forwards it to another object, based on some arbitrary criteria. A popu-
lar example of that approach is the State pattern [12], which enables separation
of method definitions according to the state of a particular receiver object. Fig. 1
shows a diagram for a possible use of the State pattern in our example. Using
this architecture, the editor may behave differently according to whether it is in
the state painting, moving, and so forth.

A drawback of message forwarding is that it introduces object identity prob-
lems: the self or this reference in the method corresponding to the current state
is not the original receiver of the message (note in Fig. 1 that the first argument



mouse-down
mouse-up
mouse-move
...

Editor

mouse-down
mouse-up
mouse-move
...

EditorState

mouse-down
mouse-up
mouse-move
...

PaintingState
mouse-down
mouse-up
mouse-move
...

MovingState
mouse-down
mouse-up
mouse-move
...

DrawingState

(mouse-down state shape x y)

state

Fig. 1. Architecture of the Geuze editor using the State pattern.

passed to mouse-down is the state attribute of the editor). This is typically
referred to as the object schizophrenia problem [6]. There are a number of sug-
gestions to solve certain aspects of this problem, for example by rebinding self
or this to the original receiver in delegation-based languages [16], or by group-
ing delegating objects in split objects and letting them share a common object
identity [1]. However, the core problem remains, namely that it is not straight-
forward to unambiguously refer to a single object anymore. The programmer
must ensure that the right object in a delegation chain is being referred to, and
even in split objects, the correct role of an object has to be selected.

Predicate dispatching Predicate dispatching [11] is very convenient for the
declaration of method applicability constraints: the conditions —or context—
under which a method can be invoked. However, it falls short in helping to
express method specificity in the general case —that is, when methods should be
invoked, taking precedence over other applicable methods. Precedence by logical
implication is a natural choice, but it sometimes cannot be established by mere
static analysis of the predicates. Unfortunately, predicate dispatching does not
support user-defined orderings of predicates for cases that cannot be decided
solely on the grounds of the structure of the predicates. Furthermore, automatic
disambiguation of methods by means of logical implication does not always yield
the desired semantics. For instance, in Table 1 the condition for moving shape is
stronger than (implies) that of selection. Predicate dispatching will thus consider
moving behaviour more specific than selection behaviour. However, in Geuze the
selection behaviour must be performed before the moving behaviour.3 Lambic
allows to encode this semantics, as will be shown in the explanation of Listing 1.

In this section we have shown that it is difficult to cleanly encode context-
dependent behaviour within the traditional object-oriented paradigm. We have

3This requirement has to do with the distributed part of the editor, not explained in
this paper. The selection of a shape is used for control access. Selecting a shape means
obtaining a lock from the leader that coordinates the interaction in the network.



identified predicate dispatching as a possible solution path, but have discussed
its shortcomings when it comes to defining method specificity. Next we introduce
our answer to still use the underlying idea of predicated applicability, albeit in
an adapted form that also allows fine-tuning of specificity.

3 Predicated Generic Functions
Predicated generic functions are an extension of the generic function-based mech-
anism of the Common Lisp Object System (CLOS) [3]. CLOS supports multiple
dispatch semantics by detaching methods from classes, allowing developers to
specialise methods on the classes of all received arguments, as opposed to only
the first argument in singly dispatched languages. We extend such mechanism
by enabling methods to also specialise on predicates. In this section, we briefly
explain the syntax and informal semantics of predicated generic functions, show-
ing a small example of use. To this end, we use Lambic [22], our extension of the
Common Lisp programming language that implements predicated generic func-
tions. In the remainder of this paper we refer to predicated generic functions
and to Lambic interchangeably.

3.1 Syntax and Semantics
This section describes the very essentials of Lambic’s syntax and semantics for
the definition and invocation of predicated generic functions and methods. Fur-
ther details of this mechanism are available in Section 5.
Defining Generic Functions and Methods In Lambic, as in CLOS, a generic
function is a container of methods with a common name and a parameter list
the methods can specialise. Additionally, Lambic’s generic functions can contain
a list of predicate declarations. The definition of such generic functions follows
the syntax:

(defgeneric function-name function-parameters
[(:predicates {pred-symbol | (pred-name pred-params pred-body)}∗)])

A generic function is defined with the defgeneric construct which receives as
arguments a name, a parameter list and an optional list of predicate declara-
tions (denoted with the :predicates keyword). Predicates are standard (CLOS)
functions with a boolean-valued expression as body, following an arbitrary user-
defined specificity order represented by the order of the predicate declarations in
the generic function: the first predicate of the list is the most general predicate
and the last one the most specific. A predicate can be defined either outside or
inside the generic function. In the former case it suffices to indicate only the sym-
bol associated to the predicate’s definition (which can correspond to an already
existing function). Internally defined predicates, on the other hand, should in-
dicate the predicate’s name, parameter list and body. These internal predicates
are available exclusively for the methods belonging to the generic function.

Methods are defined independently from their containing generic functions,
using the defmethod construct:



(defmethod method-name method-parameters
[(:when {(pred-name arguments)}∗)]
method-body)

A method is defined with a name, a parameter list and an optional predicate ex-
pression (specified with the :when keyword). This expression is composed of one
or more invocations to the predicates declared in the method’s generic function,
using one or more parameters of the method as arguments.

Invoking Generic Functions In Lambic, as in CLOS, object-oriented pro-
grams are written in terms of generic function invocations rather than messages
exchanged between objects. Yet, both approaches result in the invocation of a
method or a method chain. When a generic function is called with particular
arguments, it selects the methods to be executed —known as the applicable meth-
ods— by evaluating each of the method’s predicate expressions. This evaluation
occurs in the lexical environment of the method, augmented with the generic
function’s parameters bound to the received arguments. The applicable meth-
ods are those whose predicate expression evaluates to true, and the methods
that do not specify any predicate.

The execution order of the applicable methods is determined by the specificity
of their predicates: the method with the most specific predicate is executed first.
A method without predicate expression is considered more general than any
method with predicates and thus it is always executed at last.

Finally, the most specific method is called. The other methods can be invoked
by the programmer inside of method definitions by way of call-next-method,
much like with super calls in other object-oriented languages.

3.2 Example of Use

Consider as illustrative example the factorial function. In this function we want
to distinguish between negative and positive numbers, and the number zero. We
therefore define a factorial generic function using as predicates the functions
for aritmethic comparison <, =, and >. Since these are already defined in Com-
mon Lisp, we just need to declare them as predicates for the factorial generic
function, indicating the corresponding symbols as follows:
(defgeneric factorial (n)

(:predicates < = >))

We can now define methods for this generic function:
(defmethod factorial (n)

(:when (> n 0))
(* n (factorial (- n 1))))

(defmethod factorial (n)
(:when (= n 0))
1)



(defmethod factorial (n)
(:when (< n 0))
(error ”Factorial not defined for negative numbers.”))

Each of these methods indicates one of the predicates declared in the generic
function using the :when keyword. The first method is called if the argument n is
a positive number and computes the general case of the factorial function. The
second method is called if n is 0 and returns 1. The third method will be called
if n is a negative number and signals an error.

4 The Geuze Editor in Lambic

We now describe the development in Lambic of the scenario introduced in Sec-
tion 2, the Geuze drawing editor. First, we focus on the implementation of a
GUI event handler to illustrate the benefits of the predicated generic functions
in terms of modularity and reusability. We then show that by supporting method
dispatch based on the state of received arguments, Lambic enables expressing
State-like patterns without object identity problems.

4.1 Context-Dependent Event Handlers

Listing 1 shows the implementation in Lambic of the actions that handle the
mouse-down event in the Geuze drawing editor. Each of these actions correspond
to (part of) a graphical operation, which is selected depending on a number of
context conditions, detailed in Table 1. In Lambic, we can cleanly separate such
actions in methods specialised on predicates representing the different graphical
operations. These methods act as context-dependent handlers which can conve-
niently associate actions to context conditions. For instance, the first method
definition in Listing 1 describes how to handle the mouse-down event when the
editor is in the painting context (indicated by means of the painting predicate).4

All the methods in Listing 1 are contained in the mouse-down generic func-
tion which declares the predicates with the context conditions for the graphical
operations. Listing 2 shows the definition of such generic function with the mov-
ing and drawing predicates defined internally. The other three predicates are
defined as external functions as in the case of the selecting predicate shown in
Listing 2. Section 4.2 explains the reason for this difference in the declaration of
the predicates.

Combining Context-dependent Handlers In Section 2, we discuss the sit-
uation in which an event is handled by more than one operation, e.g. painting
a deselected shape results in the shape first being selected and then painted.
In Lambic, the selection and proper combination of methods is internally com-
puted in accordance to the predicates and their order of declaration in the generic

4For the sake of clarity, the handling action in this case is reduced to the invocation
of a paint-shape method.



Listing 1. Untangled GUI event handlers in Lambic. Application concerns are
indicated on the right side.
(defmethod mouse-down (editor shape x y)

(:when (painting shape editor)) → context
(paint-shape editor shape)) → painting

(defmethod mouse-down (editor shape x y)
(:when (moving shape editor)) → context
(set-drag-status editor x y)) → moving

(defmethod mouse-down (editor shape x y)
(:when (drawing shape editor)) → context
(set-line-status editor x y)
(draw-point editor x y)) → drawing

(defmethod mouse-down (editor shape x y)
(:when (selecting shape editor)) → context
(select-shape editor shape) → selection
(call-next-method))

(defmethod mouse-down (editor shape x y)
(:when (deselecting shape editor)) → context
(deselect-shapes editor)) → deselection

function. Hence, in the Geuze editor, such case is transparently handled by the
mouse-down generic function, which selects for execution the methods defined for
selecting and painting shapes (shown in Listing 1), denoted with the selecting
and painting predicates respectively. Since the selecting predicate is declared
more specific than the painting predicate (the latter predicate appears first in
the list of predicates of the mouse-down generic function), the method for select-
ing the shape is executed first. Finally, as we explained in Section 3, by default
only the most specific method is executed. Therefore, we need to include the
call-next-method construct in the method specialised on the selecting predi-
cate, so that the one specialised on painting is invoked next.

4.2 State Pattern without Object Schizophrenia

Lambic enables developers to express State-like patterns without object identity
problems. As example, assume that the graphical operations of the Geuze editor
represent its different states, just like in the original State pattern. Each state
groups the behaviour required by an operation to handle one or more GUI events,
as detailed in Table 2 of Section 2. In Lambic, this corresponds to describing
a state as a number of methods using the same predicate expression. Simple
examples are the states representing the operations for selecting, deselecting
and painting shapes, which only require one method definition to handle the
mouse-down event, shown in Listing 1. A bigger example is the moving state



Listing 2. The mouse-down generic function.
(defgeneric mouse-down (editor shape x y)

(:predicates painting
(moving (shape editor)

(and shape (not (brush-active? editor))))
(drawing (shape editor)

(and (not shape) (brush-active? editor)))
selecting
deselecting))

(defun selecting (shape)
shape)

Listing 3. The moving state.
(defmethod mouse-down (editor shape x y)

(:when (moving shape editor))
(set-drag-status editor x y))

(defmethod mouse-move (editor shape x y)
(:when (moving shape editor))
(move-shape shape editor x y))

(defmethod mouse-up (editor shape)
(:when (moving shape editor))
(delete-drag-status editor))

presented in Listing 3 which defines its behaviour in the methods mouse-down
(to set a drag status used during the move), mouse-move (to move the shape)
and mouse-up (to remove the drag status at the end of the move).

Notice how this way of specifying the behaviour of the Geuze editor cleanly
separates the definition of its several states (embodied by the predicates) from
the behaviour corresponding to those states. This State-like idiom avoids any
object identity problems: a particular editor always retains its identity, no matter
what state it is in. Since the state of the editor is automatically derived from
the current context conditions, one does not have to worry about managing
an explicit state with explicit state switches in the corresponding mouse-down,
mouse-move and mouse-up event handlers.

Finally, note in Section 2 that Table 1 identifies different context condi-
tions that characterise the operation for moving a shape at the different mouse
events. In particular, there is a set of conditions for the mouse-down event and
another set for the mouse-move and mouse-up events. However, we can still
define the moving state in terms of the three methods using the moving predi-
cate. In Lambic, this is possible by enabling predicates to be defined inside the
generic functions which are only available to the generic function’s methods.
Thus, the mouse-move and mouse-up generic function refer to a globally defined
moving predicate (as shown in Listing 4) whereas the mouse-down generic func-



Listing 4. Reuse of the moving predicate.
(defun moving (shape editor)

(and (drag-status? editor) (not (brush-selected?))))

(defgeneric mouse-move (editor shape x y)
(:predicates ... moving ...))

(defgeneric mouse-up (editor shape x y)
(:predicates ... moving ...))

tion defines its own version of such predicate (shown in Listing 2). This example
makes clear that the State pattern in Lambic is mostly a naming convention for
the predicate used to identify the state. Further, this example shows the fined-
grained control that developers have to influence the applicability of methods
based on the context.

5 Validation and Discussion

Lambic’s predicated generic functions allow methods to specialise on programmer-
defined predicates, providing fine-grained control of method applicability, as
predicate dispatching also does. Additionally, method dispatch is driven by the
predicates’ specificity order declared in generic functions which avoids the prob-
lems caused by potential ambiguities when comparing arbitrary predicates that
do not designate instance subsets of each other.

We have illustrated the benefits of predicated generic functions by discussing
the implementation of the graphical user interface of the Geuze editor. How-
ever, this is only part of our current implementation of Geuze.5 As mentioned
in Section 2, Geuze is an application for collaborative edition that enables its
users to create peer-to-peer drawing sessions. Predicated generic functions have
contributed significantly to define context-dependent behaviour for this appli-
cation, allowing a clean separation of the code required for collaborative work
from the plain editor logic, a clear distinction between the behaviour for the
roles required for the coordination of the session (the session leader and the rest
of the participants), and the modularisation and dynamic composition of the
graphical operations (which is discussed in this paper). In the implementation of
Geuze we have used 4 instances of the State-like idiom described in Section 4.2
to handle events related to network connection (to deal with network failures),
synchronisation (to control edition locks), replication (to ensure a consistent col-
laborative edition), and graphic user interface (partially shown in Section 4.2).
None of these instances require additional infrastructure beyond the methods
associated to states by means of context predicates. Geuze is composed of 44
methods grouped in 16 generic functions. None of these methods contain entan-
gled concerns in their body.

5The full implementation is available at http://soft.vub.ac.be/lambic.



5.1 Predicated Generic Functions and CLOS

In the current implementation of predicated generic functions in Lambic we have
adopted a rather conservative approach which preserves the method dispatching
semantics of CLOS. For instance, Lambic still enables the methods to specialise
on the classes of the arguments, and to use qualifiers (e.g. :around, :before and
:after). We achieve this compatibility by reflectively introducing our predicate
dispatch mechanism as an internal step in the method selection and ordering
process, leaving unchanged the rest of the semantics of CLOS that computes ap-
plicable methods and their ordering. Actually, predicate expressions correspond
to implicit generic function arguments which are added at the end of the pa-
rameter list. Each predicate is associated to a type, and the predicate ordering
is encoded by means of subtyping. Given this encoding, behaviour selection is
performed following normal CLOS dispatch semantics. In particular, a generic
function containing methods specialised on classes and predicates, selects and
sorts the methods according to the classes first, and then according to predicates.
Our current implementation of Geuze5 illustrates this case.

5.2 Limitations

Although Lambic can help in tackling some of the challenges for modelling
generic functions with context-specific predciates, a number of challenging is-
sues needs to be further explored. Currently, predicated generic functions are
implemented using the Meta-Object Protocol (MOP) of CLOS, and can be used
only in the LispWorks® Enterprise Edition6 development environment for Com-
mon Lisp. We have not considered efficiency issues in detail yet, and have not
explored more general implementation techniques. However, efficient implemen-
tation techniques for generalised predicate dispatch have been investigated in
detail in the past [5] and can probably be adapted to the implementation of
predicated generic functions as well.

In this paper, we propose an alternative to logical implication order used by
existing predicate dispatching approaches to disambiguate method overriding.
However, there are situations in which such approach would still be desired,
e.g. to disambiguate methods using the same predicate expression. For instance,
using predicated generic functions the method definitions

(defmethod foo (n)
(:when (> n 1))
(print “Number bigger than 1”))

(defmethod foo (n)
(:when (> n 2))
(print “Number bigger than 2”))

would lead to an ambiguous situation if foo is invoked with n greater than 2, as
both methods would be selected for execution but none of them is more specific

6See http://www.lispworks.com.



than the other. While Lambic avoids this problem by not allowing the definition
of methods with the same predicate expression, this is clearly a case in which
the inclusion of logical implication in Lambic would increase its expressiveness.

6 Related Work

We divide related techniques in two categories, according to whether they pro-
mote flexible method dispatch or flexible software composition to enable be-
haviour adaptability.

6.1 Flexible Behaviour Selection Schemes

Predicated generic functions build on previous work on filtered dispatch [9],
which in turn draws inspiration from specialisation-oriented programming [18].
Filtered dispatch sticks to inheritance for the definition of specialisation relation-
ships between objects, and introduces filter expressions that map actual argu-
ments to representatives of equivalence classes. Filtered arguments are then used
in place of the original arguments for method selection and combination. The
chosen method is invoked using the original arguments.7 As Lambic’s predicates,
filters are associated to generic functions.

Filter expressions can function as plain dispatch predicates, by returning t
(true) to signal applicability, and nil (false) to prevent execution of a method,
much as the predicates of Lambic do. There are however significant differences
in both approaches. Firstly, even though many filters can be defined for a given
generic function in filtered dispatch, corresponding methods can use only one of
those filters at a time. As a consequence, each possible combination of the filters
that could prove useful needs to be anticipated and encoded as an additional
filter in the generic function. Secondly, filtered expressions are parametrised
exclusively on the argument they filter; they cannot depend on the value of
other arguments of the method. This restriction renders filtered dispatch less
amenable to express context adaptations, because the conditions for applicability
(the predicates) cannot harness all available contextual information —namely,
the information contained directly or indirectly in the arguments for which the
method invocation is being requested.

Mode classes [20] enable dispatching on the explicit state of an object. Predi-
cate classes [4] extend this idea by dispatching on computed states. Mode classes
correspond to an explicit management of state, while predicate classes compute
state implicitly. Predicate classes were a precursor to generalised predicate dis-
patch [11], discussed in Section 2.2.

Clojure8 is a recent dialect of Lisp that provides a generic dispatch frame-
work that can accommodate many different semantics. A Clojure multimethod

7This corresponds to the lookup ◦ apply decomposition of method dispatch inves-
tigated by Malenfant et al. [17]. In filtered dispatch, lookup receives the filtered argu-
ments, and apply receives the unfiltered (original) ones.

8See http://clojure.org.



is a combination of a dispatching function and one or more methods with the
same name. The dispatching function maps passed arguments to arbitrary values
which are associated to methods. The ordering of values combines Java’s typ-
ing mechanism with Clojure’s own ad-hoc hierarchy system. When no method
dominates the others, Clojure provides a means to manually disambiguate mul-
tiple matches. An implementation of predicated generic functions in the dispatch
framework of Clojure seems feasible.

Ambience [13] proposes a prototype-based object system that reifies the con-
text as an object, and exploits multiple dispatch to enable selection of context-
dependent behaviour. Ambience does not propose however a predefined mech-
anism to choose which context should be activated; in contrast, in Lambic the
conditions that enable different behaviours are readily encoded in the method
predicates.

6.2 Dynamic Composition Schemes

Classboxes [2] are a mechanism for lexically-scoped structural refinements. Sim-
ilar to open classes, refinements in classboxes make it possible to extend a class
definition from the outside, with new fields and methods, as well as extending
methods with a mechanism similar to overriding in standard object-oriented pro-
gramming. However, while changes made with open classes are globally visible,
classboxes introduce a dynamic scoping mechanism based on import relations
between modules: a refinement to a class is only visible for all execution that
originates from a client of the module in which the refinement is defined.

Aspect-Oriented Programming (AOP) [15] allows the programmer to en-
capsulate concerns that cross-cut modularisation boundaries (e.g. classes) in a
construct called an aspect. Aspects are designed to supplement the basic compo-
sition mechanisms provided by the host language. There are three main binding
times for aspects: compile time, load time and run time. Dynamic aspect weav-
ing occurs at run time. Dynamic aspect weaving can be thought of as a tool
for dynamic behaviour adaptation, since it allows for base application logic to
change at run time —for instance, to be adapted to non-functional concerns such
as security or low power computation. Dynamic aspects can be woven and un-
woven according to context. Context-Aware Aspects explore this idea [21]. The
idea is to extend pointcut languages with context-specific restrictions, allowing
both parameterization of context definitions and exposure of context state to
the aspect action. This and other aspect weaving approaches are related to ours
insofar as the applicability of advice is determined by dynamically evaluated
pointcut definitions —advice is analog to filtered methods, and pointcuts are
analog to predicates which limit the applicability of advice to specific contexts.

Costanza [8] argues that the advantages of (dynamic) AOP can be obtained
with less conceptual and technical burden thanks to dynamic scoping of func-
tions. This idea has been integrated reflectively into CLOS, and the result is
ContextL [10]; ContextL features a form of dynamic scoping of methods to en-
able adaptation to context.



7 Conclusion and Future Work

In this paper we have introduced predicated generic functions, a novel mechanism
to allow flexible behaviour selection according to context. This mechanism has
been realised in Lambic, an extension of CLOS. Lambic method definitions can
be guarded by predicates, which are used to decide on the applicability of the
method for a list of actual arguments. If more than one predicated method is
applicable, the order in which the predicates are declared in the corresponding
generic function is used as tiebreaker. These are the main tools Lambic offers
for fine-grained control of applicability and specificity of methods.

The development of Geuze, a non-trivial application for the collaborative
edition of graphical objects, has shown us that predicated generic functions allow
the modular implementation of various concerns. The modes of operation of the
application (whether it is working on painting, moving or some other mode) can
be regarded as contexts, and behaviour is specialised on such contexts.

The assessment of predicated generic functions presented in this paper leads
us to believe that they are well suited to the expression of behaviour that de-
pends non-trivially on context. However, some work remains. Among our next
steps, we plan to look into efficient implementation techniques to avoid unneces-
sary computation when deciding method applicability. Also, we will consider the
formalisation of the semantics of predicated generic functions. Finally, we will
continue exploring the possibilities of predicated generic functions in combina-
tion with distribution —one of the flagships of Lambic, offering many possibilities
yet to be explored.

References
1. Bardou, D., Dony, C.: Split objects: A disciplined use of delegation within objects.

ACM SIGPLAN Notices 31(10), 122–137 (1996)
2. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Classboxes: Controlling visibility

of class extensions. Journal of Computer Languages, Systems and Structures 31(3),
107–—126 (Dec 2005)

3. Bobrow, D., DeMichiel, L., Gabriel, R., Keene, S., Kiczales, G., Moon, D.: Common
Lisp Object System specification. Lisp and Symbolic Computation 1(3/4), 245–394
(1989)

4. Chambers, C.: Predicate classes. In: Proceedings of the European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science, vol. 707, pp.
268–296. Springer-Verlag (1993)

5. Chambers, C., Chen, W.: Efficient multiple and predicated dispatching. In: Pro-
ceedings of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. pp. 238–255. ACM Press (1999)

6. Chandra Sekharaiah, K., Janaki Ram, D.: Object schizophrenia problem in object
role system design. In: Lecture Notes in Computer Science. vol. 2425, pp. 1–8.
Springer-Verlag (2002)

7. Clifton, C., Leavens, G., Chambers, C., Millstein, T.: MultiJava: Modular open
classes and symmetric multiple dispatch for Java. In: Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions. pp. 130–145. ACM Press (2000)



8. Costanza, P.: Dynamically scoped functions as the essence of AOP. ACM SIG-
PLAN Notices 38(8), 29–36 (2003)

9. Costanza, P., Herzeel, C., Vallejos, J., D’Hondt, T.: Filtered dispatch. In: Proceed-
ings of the Dynamic Languages Symposium. ACM Press (Jul 2008), co-located with
ECOOP’08

10. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming: an overview of ContextL. In: Proceedings of the Dynamic Languages Sym-
posium. pp. 1–10. ACM Press (Oct 2005), co-located with OOPSLA’05

11. Ernst, M., Kaplan, C., Chambers, C.: Predicate dispatching: A unified theory of
dispatch. In: Proceedings of the European Conference on Object-Oriented Pro-
gramming. Lecture Notes in Computer Science, vol. 1445, pp. 186–211. Springer-
Verlag (1998)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series, Addison-
Wesley (1995)

13. González, S., Mens, K., Heymans, P.: Highly dynamic behaviour adaptability
through prototypes with subjective multimethods. In: Proceedings of the Dynamic
Languages Symposium. pp. 77–88. ACM Press (Oct 2007), co-located with OOP-
SLA’07

14. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3), 125–151 (March–April 2008)

15. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proceedings of the European Confer-
ence on Object-Oriented Programming, Lecture Notes in Computer Science, vol.
1241, pp. 220–242. Springer-Verlag (1997)

16. Lieberman, H.: Using prototypical objects to implement shared behavior in object-
oriented systems. ACM SIGPLAN Notices 21, 214–223 (1986)

17. Malenfant, J., Dony, C., Cointe, P.: A semantics of introspection in a reflec-
tive prototype-based language. In: LISP and Symbolic Computation. vol. 9, pp.
153–179. Springer Netherlands (May 1996)

18. Newton, J., Rhodes, C.: Custom specializers in object-oriented Lisp. Journal of
Universal Computer Science 14(20), 3370–3388 (2008)

19. Steele, G.: Common Lisp: The Language. Digital Press, second edition edn. (1990)
20. Taivalsaari, A.: Object-oriented programming with modes. Journal of Object-

Oriented Programming 6(3), 25–32 (Jun 1993)
21. Tanter, E., Gybels, K., Denker, M., Bergel, A.: Context-aware aspects. In: Software

Composition. vol. 4089, pp. 227–242. Springer-Verlag (2006)
22. Vallejos, J., Costanza, P., Van Cutsem, T., De Meuter, W.: Reconciling Generic

Functions with Actors. In: ACM SIGPLAN International Lisp Conference, Cam-
bridge, Massachusetts (2009)


