
Parallel Actor Monitors

Christophe Scholliers
∗

Vrije Universiteit Brussel
Pleinlaan 2, Elsene, Belgium

cfscholl@vub.ac.be

Éric Tanter
†

PLEIAD Laboratory
DCC / University of Chile

etanter@dcc.uchile.cl

Wolfgang De Meuter
Vrije Universiteit Brussel

Pleinlaan 2, Elsene, Belgium
wdemeuter@vub.ac.be

ABSTRACT
While the actor model of concurrency is well appreciated
for its ease of use, its scalability is often criticized. Indeed,
the fact that execution within an actor is sequential pre-
vents certain actor systems to take advantage of multicore
architectures. In order to combine scalability and ease of
use, we propose Parallel Actor Monitors (PAM), as a means
to relax the sequentiality of intra-actor activity in a struc-
tured and controlled way. A PAM is a modular, reusable
scheduler that permits to introduce intra-actor parallelism
in a local and abstract manner. PAM allow the stepwise re-
finement of local parallelism within a system on a per-actor
basis, without having to deal with low-level synchronization
details and locks. We present the general model of PAM
and its instantiation in the AmbientTalk language. Initial
benchmarks confirm the expected scalability gain.

1. INTRODUCTION
The actor model of concurrency [1] is well recognized for

the benefits it brings for building concurrent systems. Ac-
tors are strongly encapsulated entities that communicate
with each other by means of asynchronous message passing.
Because there is no shared data and actors process messages
sequentially, there can be no data races in an actor system.
However, these strong guarantees come at a cost: efficiency.

Let us first illustrate the actor model by means of an ex-
ample (Figure 1). The example consists of four actors, one
of which is a dictionary actor. The three other actors are
client of the dictionary: one actor does updates, while the
others only consult the dictionary. The overall concurrency
obtained in an actor system stems from the concurrent exe-
cution of multiple actors. Each actor has only one thread of
execution which dequeues the pending messages of its inbox
and processes them one by one. Message passing between
actors is purely asynchronous. Responding to a message is
done either by sending another asynchronous message, or, if
supported by the actor system, by resolving a future [5].

The implementation of the dictionary example with actors
is easy because the programmer does not need to be con-
cerned with data races: reads and writes to the dictionary
are ensured to be executed in mutual exclusion. However,
the resulting application performs badly precisely because

∗Funded by a doctoral scholarship of the Institute for the
Promotion through Science and Technology in Flanders
(IWT-Vlaanderen).
†Partially funded by FONDECYT projects 11060493 &
1090083.

write

read

reply

read

Actor

Message

 Thread

Inbox

Figure 1: Actor model: Dictionary example

of the enforced serial execution of requests to the dictionary
actor: there are no means to process read-only messages in
parallel. In order to obtain scalability in such a scenario,
some form of intra-actor concurrency is needed: that is, it
may be worthwhile to consider relaxing the strong rules of
the actor model.

Although we are not the first ones to observe that the
actor model is too strict, current alternatives are unsatisfy-
ing for being too ad-hoc and unsafe. Some actor languages,
which are built on top of a thread-based concurrency sys-
tem, allow some sort of “escaping” to the implementing sub-
strate. For instance, AmbientTalk [6] supports symbiosis
with Java [8], which can be used to take advantage of multi-
threading. However, such a backdoor reintroduces the tra-
ditional concurrency problems and forces the programmer
to think in two different paradigms. Another approach is to
introduce heterogeneity in the system by allowing actors to
coexist with non-encapsulated, shared data structures. This
is the case for instance of the ProActive actor-based mid-
dleware for Java [2]. A ProActive implementation of the
dictionary example1 would make the dictionary a “naked”
data structure, that actors can access freely, concurrently.
Avoiding data races is then done by suggesting client actors
to request access through a coordinator actor (with meth-
ods such as enterRead, exitWrite, etc.), which implements
a typical multiple-readers/single-writer strategy. A major
issue with this approach is that the model does not enforce
clients to use the coordinator actor: nothing prevents an
actor to access the shared data structure directly, thereby
compromising thread safety.

We propose the use of parallel actor monitors (PAM) in
order to provide the programmer with intra-actor concur-
rency, in a structured and high-level manner. In essence, a

1http://proactive.inria.fr/index.php?page=reader writers

write

read

reply

read
Actor

Message

 Thread

Inbox

Figure 2: PAM model: Dictionary example

PAM is a scheduler that expresses a coordination strategy
for the parallel execution of requests within a single actor.
Figure 2 sketches the implementation of the dictionary ex-
ample with a PAM. The dictionary actor has been changed
by plugging in a generic, reusable PAM that implements the
typical multiple-reader/single-writer coordination strategy.

There are four main advantages of using a PAM to over-
come the bottleneck introduced by traditional actor systems.

1. Efficiency. A PAM makes it possible to take ad-
vantage of parallel computation for improved scalabil-
ity. For the dictionary example, initial benchmarks
of our prototype implementation in AmbientTalk sug-
gest speedups that are almost linear to the number of
processors available (Section 4).

2. Modularity. A PAM is a modular, reusable sched-
uler that can be parametrized and plugged in an actor
without modification of the original code. This allows
generic well-defined scheduling strategies to be imple-
mented in libraries and reused as needed. There are no
intrusive changes needed in order to introduce intra-
actor concurrency in an existing application.

3. Locality. Binding a PAM to an actor only affects
the concurrency of that single actor. Other actors are
not affected in any way, other than by feeling they are
interacting with a more responsive actor. This is be-
cause a PAM does not break the strong encapsulation
boundaries between actors.

4. Abstraction. A PAM is expressed at the level of ab-
straction of actors: the scheduling strategy realized by
a PAM is defined in terms of a message queue, mes-
sages, and granting permissions to execute. A PAM
does not explicitly refer to threads and locks. It is the
responsability of the PAM system to hide the complex-
ity of allocating and handling several threads.

This paper first presents parallel object monitors in a gen-
eral way (Section 2), independent of a particular realization.
Section 3 then overviews how our implementation of PAM
on top of AmbientTalk is used to express some canonical
examples. Section 4 details the implementation of PAM in
AmbientTalk, and provides an initial assessment of the im-
plementation through a set of benchmarks. Section 5 con-
cludes.

2. PARALLEL ACTOR MONITOR
A parallel actor monitor, PAM, is a low-cost, thread-less,

scheduler controlling parallel execution of messages within
an actor. Recall that an actor encapsulates a number of

passive objects, accessed from other actors through asyn-
chronous method calls. A PAM is therefore a passive object
that controls the synchronization aspect of objects living
within an actor, whose functional code is not tangled with
the synchronization concern.

With this work, it is our objective to bring the benefits
of the model of parallel object monitors (POM) [4] to actor
programming. It is therefore unsurprising that the following
operational description and guarantees of a parallel actor
monitors closely ressemble that of POM. POM is formulated
in a thread-based, synchronous world: PAM is its adaptation
to an actor-based, purely asynchronous model.

2.1 Operational Description
A PAM is a monitor defining a scheduling method respon-

sible for specifying how messages in an actor queue should be
scheduled, possibly in parallel. A PAM also defines a leaving
method that is executed by each thread once it has executed
a message. These methods are essential to the proposed ab-
straction, making it possible to reuse functional code as it
is, adding necessary synchronization constraints externally.
An actor system that supports PAM allows the definition of
schedulers and the binding of schedulers to actors.

Figure 3 illustrates the operation of a PAM in more de-
tail. The figure displays an actor runtime system hosting
a single actor and its associated PAM, as well as a thread
pool, responsible for allocating threads to the processing of
messages. Of course, several actors and their PAMs can live
within the runtime system. When an asynchronous call is
performed on an object hosted by an actor (1), it is put in
the actor queue as a message object (2). Messages remain
in the queue until the scheduling method (3) grants them
permission to execute (4).

The scheduling method can trigger the execution of sev-
eral messages. All selected messages are then free to execute
in parallel, each one run by a thread allocated by the thread
pool of the runtime system (5). Note that, if allowed by
the scheduler, new messages can be dispatched before a first
batch of selected messages has completed. Parallel execu-
tion of selected messages in PAM is in sharp contrast with
the traditional actor model, where messages are executed
sequentially by the unique thread of the actor [10].

leave(msg)(2)
schedule()

(4)

ThreadPool

(5)

(7) Asynchronous call

(1)

(3)

Object

Thread executing
a message

Message

(6)

PAM

Actor

Runtime

Thread

execute(msg)

Message
(thread blocked)

Inbox

Figure 3: Operational sketch of PAM

Finally, when a thread has finished the execution of its
associated message (6), it has to run the leaving method
before leaving the PAM (7). To run the leaving method,
a thread may have to wait for the scheduler monitor to be
free (a PAM is a monitor): invocations of the scheduling
and leaving methods are always safely executed, in mutual
exclusion. Before leaving the monitor, a thread may have to
execute the scheduling method again. The fact that a thread

spends some time scheduling requests for other threads (re-
call that the scheduler itself is a passive object) allows for
a more efficient scheduling by avoiding unnecessary thread
context switches.

2.2 Illustration
To further illustrate the working of a PAM, let us consider

an actor whose PAM implements a simple join pattern coor-
dination: when both a message a and a message b have been
received by the actor, both can proceed in parallel. Other-
wise, the messages are left in the queue. Figure 4 shows a
thread diagram of the scenario. A thread diagram pictures
the execution of threads according to time by picturing the
call stack, and showing when a thread is active (plain line) or
blocked waiting (dash line). The diagram shows two threads
T1 and T2, initially idle, available for the activity of the
considered actor. The state of the actor queue is initially
empty.

o<-b()

schedule()

leave()

schedule() o<-a()

schedule()

leave()

(1)

(2)

(4)

(5)

(6)

T1 T2

a b

schedule()(3)

execute(b)

ba

execute(a)

Figure 4: A simple join pattern coordinated by a
PAM. (underlined method calls are performed in mu-
tual exclusion within the scheduler)

When a message a is received in the queue, T1 runs the
scheduling method (1). Since there is no message b in the
queue, nothing happens, T1 remains idle (2). When a mes-
sage b is received, T1 runs again the schedule method (3).
This time, both messages a and b are found in the queue, so
they are both dispatched in parallel. First a is dispatched,
then b. T1 finishes the execution of the schedule method,
while T2 starts processing the b message. Then, both T1 and
T2 are executing, in parallel, their respective messages (4).
When T1 finishes processing a, it calls the leave and then
the schedule methods, in mutual exclusion (5). (Note that
the schedule method is only called at this point if there are
pending messages in the queue.) Meanwhile, T2 also finishes
processing its message but has to wait until the PAM is free
in order to execute both methods itself (6).

2.3 Guarantees
An actor system supporting PAM should provide a num-

ber of guarantees to programmers. These guarantees are
summarized below:

PAM Guarantees

1. Any asynchronous messages send to an object en-
capsulated by a actor which is bound to a PAM is
guaranteed to be scheduled by this PAM.

2. The schedule and leave method of a PAM are
guaranteed to be executed in a thread-safe manner
within the PAM, but in parallel with the messages
being executed

3. The scheduling method is guaranteed to be executed
if a message may be scheduled and guaranteed not
to be executed when there are no pending messages

4. As soon as the scheduler method instructs the ex-
ecution of a message it will be executed in parallel
with the PAM or as soon as the schedule method is
finished

5. When a message has finished processing it is guar-
anteed that it will call the leave method once, and
the schedule method at most once

2.4 Binding and Reuse
A scheduler is a passive object that defines a scheduling

strategy. To be effective, it must be bound to an actor. Af-
ter binding a scheduler to a specific actor, all the guarantees
listed above hold. In order to enhance reuse of schedulers,
it is important for a scheduler to be as independent as pos-
sible from the actors it can be bound to. More precisely,
the scheduler has to abstract over the actual message names
to coordinate. For example, a reusable reader-writer sched-
uler should work not only with dictionaries whose methods
have particular names, and should also be used for actors
encapsulating other data structures.

In order to support the definition of abstract, reusable
schedulers, PAM adopts the notion of message categories,
also found in POM. A scheduler is defined in terms of cat-
egories, rather than actual message names. This makes it
possible to define for instance a reader-writer scheduler by
just using a reader and a writer message category. Actual
message names are then associated to specific categories at
scheduler binding time. In the case of a dictionary, a query
message would belong to the reader category, while a put
message would belong to the writer category. The use of
categories is further illustrated in the following section.

3. CANONICAL EXAMPLES
In this section, we first introduce our implementation of

PAM in AmbientTalk, from the point of a view of a program-
mer. To illustrate its use, we then give the implementation
of two classical schedulers and how to bind them to actors
in a program. The first example is purely didactic, since it
re-introduces sequentiality within an actor: a standard mu-
tual exclusion scheduler. The second example is the classical
multiple-reader/single-writer scheduler.

Although we have implemented more canonical examples
with PAM (e.g. dining philosophers) these two problems
clearly show the typical use of PAM. Note that because PAM
is a reincarnation of POM within actors, it also allows the
implementation of more advanced coordination mechanisms,
like guards [7] and chords [3, 4].

3.1 PAM in AmbientTalk

executeLetter(Letter) executeOldestLetter()
executeAll() is:taggedWithCategory:
executeYougest() Category(type)
excuteOlderThan(*,*) listIncomingLetters
executeAllOlderThan(*,*) annotateMethod:with:on:
executeYoungerThan(*) bindScheduler:on:
executeAllYougerThan(*)

Table 1: PAM API

AmbientTalk [6] is an actor language with an event loop
concurrency model adopted from E [9]. In this model, an
actor encapsulates a number of passive objects, which can
be referenced by objects living in other actors. Communica-
tion between objects can only be conducted by sending asyn-
chronous messages. A PAM takes care of the scheduling of
these messages. Note that AmbientTalk is a prototype-based
language, that is, objects are created ex-nihilo or by cloning
existing objects, rather than by instantiating classes.

A PAM in AmbientTalk is created by using the scheduler:
constructor function. Every scheduler in AmbientTalk has
to implement at least a schedule and a leave method. Inside
a PAM the programmer can examine the inbox of the actor,
which contains letters. A letter contains a message and a re-
ceiver. The receiver is the (passive) object that lives inside
the actor to which the message was sent. The API of PAM
(Table 1) supports a number of methods to execute letters,
i.e. to trigger the processing of the message contained in the
letter. It is possible to execution a single letter or a group
of letters. executeLetter, executeOldestLetter and exe-

cuteYoungestLetter return a boolean indicating wether a
letter was effectively triggered for execution or not. The
other execution methods all return an integer indicating the
number of letters triggered for execution. The PAM API
also includes methods to declare and introspect message cat-
egories, as well as to bind a given scheduler to an actor. The
rest of this section illustrates their use.

3.2 Mutual Exclusion
Listing 1 shows a simple mutual exclusion scheduler, for

the sake of illustration. mutex is a constructor function that
returns a new scheduler when applied. The scheduler keeps
track of whether a message is currently being processed
through an instance variable working, initialized to false.
The schedule method only triggers a message execution if it
is not working already. If so, it executes the oldest letter in
the inbox, if any. Its state is updated to the result of invok-
ing executeOldestLetter, which indicates if a message was
actually triggered or not. The leave method changes the
state of the scheduler accordingly after a message has been
processed. Finally the scheduler is instantiated and bound
to the dictionary actor by the bindScheduler method. Note
that the definition of the scheduler is simple and does not
deal with low-level synchronization and notification details.

def mutex() { scheduler: {
def working := false;
def schedule () {
i f : !(working) then: {
working := super.executeOldestLetter ();

};
};
def leave(letter) { working := false; };
};

};

bindScheduler: mutex() on: dictionaryActor ();

Listing 1: Mutual exclusion PAM

def RWSched () { scheduler: {
def R := Category ();
def W := Category ();
def writing := false;
def readers := 0;
def schedule () {
i f : !(writing) then: {
def executing := super.executeAllOlderThan(R,W);
readers := readers + executing;
i f : (readers == 0) then: {

writing := super.executeOldest(W);
};

};
};
def leave(letter) {
dispatchCategory: letter as:
[[R, { readers := readers - 1 }],
[W, { writing := false }]];

};
};};

Listing 2: Reader/Writer example

3.3 Parallel dispatch
The reader-writer scheduler for coordinating the parallel

access to a shared data structure is shown in Listing 2. Like
before, RWSched is a constructor function that, when applied,
returns a fresh scheduler. The scheduler defines two method
categories readers (R) and writers (W). In order to keep track
of how many readers and writers are executing, the sched-
uler maintains two variables writing (boolean) and readers

(integer). When the scheduler is executing a write letter, no
further message can be processed. In case the scheduler is
not executing a write letter, the scheduling method triggers
the parallel execution of all the read letters that are older
than the oldest write letter, if any, using executeAllOld-

erThan(R,W). This call returns the number of dispatched
readers, used to update the readers state. If there were
no reader letters to process (older than the oldest writer),
the scheduler dispatches the oldest writer using schedule-

Oldest(W). This method returns true if the processing of a
letter was actually dispatch, false otherwise. Note that this
scheduler uses a typical strategy, and could easily be mod-
ified to give priority to writers, for instance. Finally, the
leave method updates its state according to which message
has finished executing, by either decreasing the number of
readers, or turning the writer flag to false. Note the use of
a convenience syntax for dispatching on message categories.

In order to use this scheduler with a dictionary actor, one
should just annotate the methods of the dictionary with the
appropriate categories, and then instantiate and bind the
scheduler to the dictionary (Listing 3).

annotateMethod: ‘get with: RWSched.R on: dictionary;
annotateMethod: ‘put with: RWSched.W on: dictionary;
bindScheduler: RWSched () on: dictionaryActor ();

Listing 3: Instantiating and binding

4. MICRO-BENCHMARKS
We now report on micro-benchmarks of our PAM imple-

mentation for AmbientTalk. The aim is to measure both the
overhead of PAM by contrasting plain AmbientTalk with
PAM using a mutual exclusion scheduler (Listing 1), and
to measure the speedup obtained by using the reader-writer
PAM scheduler (Listing 2). The results depicted on Fig-
ure 5 were obtained on an Intel Core 2 Duo with a processor
speed of 1.8 GHz running Mac OS X (10.5.8). We measured
the processing time of reading one hundred items from a
dictionary actor of varying size. For each measurement, we
take the average of 30 tests, discarding the extremes. These
results show the low overhead of PAM (< 6%) and the ex-
pected speedup (1.9x for the 32K and 150K dictionary), tak-
ing almost full advantage of the 2 cores. In addition, we
have performed preliminary tests with a two-dualcore ma-
chine running Linux. For a dictionary size of 32K we obtain
a 3x speedup, although it seems the overhead of PAM plays
a bigger role. To date, we have not been able to obtain iso-
lated access to the quadcore machine, so we have not been
able to analyze further these preliminary results yet. This
should be addressed in the very near future.

Figure 5: PAM benchmarks.

5. CONCLUSION
In order to address the strict restriction of sequentiality

inside actors, we have proposed the model of Parallel Actor
Monitors. Using PAM, there can be intra-actor concurrency,
thereby leading to better scalability by making it possible for
a single actor to take advantage of real concurrency offered
by the underlying hardware. PAM offers a particularly at-
tractive alternative to introduce concurrency inside actors,
because it does so in a modular, local, and abstract man-
ner: modular, because a PAM is a reusable scheduler; local,
because only the internal activity of an actor is affected by
using a PAM; abstract, because the scheduler is expressed
in terms of messages, queues and granting permission to
execute. Although more in-depth measurements are in or-
der, in particular with quadcore machines (or more), initial
benchmarks confirm the expected speedup.

6. REFERENCES
[1] G. Agha. Actors: a Model of Concurrent Computation

in Distributed Systems. MIT Press, 1986.

[2] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,
M. Morel, and R. Quilici. Grid Computing: Software
Environments and Tools, chapter Programming,
Deploying, Composing, for the Grid. Springer-Verlag,
January 2006.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern
concurrency abstractions for C]. ACM Transactions
on Programming Languages and Systems,
26(5):769–804, Sept. 2004.

[4] D. Caromel, L. Mateu, G. Pothier, and É. Tanter.
Parallel object monitors. Concurrency and
Computation—Practice and Experience,
20(12):1387–1417, Aug. 2008.

[5] A. Chatterjee. Futures: a mechanism for concurrency
among objects. In Proc. of the 1989 ACM/IEEE conf.
on Supercomputing, pages 562–567. ACM Press, 1989.

[6] J. Dedecker, T. Van Cutsem, S. Mostinckx,
T. D’Hondt, and W. De Meuter. Ambient-oriented
Programming in Ambienttalk. In D. Thomas, editor,
Proceedings of the 20th European Conference on
Object-oriented Programming (ECOOP), volume 4067
of Lecture Notes in Computer Science, pages 230–254.
Springer, 2006.

[7] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications
of the ACM, 18(8):453–457, August 1975.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. GOTOP Information Inc., 1996.

[9] M. Stiegler. The E language in a walnut.
www.skyhunter.com/marcs/ewalnut.html, 2004.

[10] A. Yonezawa, editor. ABCL: An Object-Oriented
Concurrent System. Computer Systems Series. MIT
Press, 1990.

