
Tackling Pointcut Fragility with Dynamic Annotations

Carlos Noguera
Software Languages Lab
Vrije Universiteit Brussel

B-1050 Brussels, Belgium
cnoguera@vub.ac.be

Andy Kellens
Software Languages Lab
Vrije Universiteit Brussel

B-1050 Brussels, Belgium
akellens@vub.ac.be

Dirk Deridder
Software Languages Lab
Vrije Universiteit Brussel

B-1050 Brussels, Belgium
dderidde@vub.ac.be

Theo D’Hondt
Software Languages Lab
Vrije Universiteit Brussel

B-1050 Brussels, Belgium
tjdhondt@vub.ac.be

ABSTRACT
Within the aspect-oriented software development commu-
nity, the use of annotation-based pointcuts has been pro-
posed as a means to alleviate the fragile pointcut problem.
Expressing pointcuts in terms of source-code annotations
instead of the structure of the source code, decouples them
from the source code of the base system and makes them
more robust with respect to evolution. In this paper we
demonstrate that, while annotations are suitable to capture
static domain knowledge that can be leveraged by pointcut
expressions, these annotations are ill-suited to capture dy-
namic domain knowledge. Consequently, pointcuts that rely
on such dynamic knowledge still need to be defined in terms
of actual source-code entities, thereby rendering them frag-
ile again. As a means to alleviate this problem we propose
Dynamic Annotations, an extension to Java annotations
where the dynamic conditions under which the annotation
is valid can be embedded in the annotation itself. By ex-
pressing pointcuts in terms of such dynamic annotations,
these pointcuts are effectively decoupled from the structure
of the base program, and become less fragile with respect to
evolution.

Keywords
1. INTRODUCTION

In recent years, the use of metadata facilities has gained
momentum within the software engineering community. Lan-
guages such as C# and Java allow developers to attach ad-
ditional information to source-code entities by means of an-
notations. Such annotations have been leveraged by frame-
works (for example Spring [17] and Hibernate [2]) to config-
ure, document and influence the behavior of the annotated
applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAM-SE 2010
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Within the aspect-oriented software development commu-
nity, annotations have been proposed as a way to alleviate
the fragile pointcut problem [8, 12]. This problem states
that upon evolution of an aspect-oriented program, seem-
ingly safe changes to the base code of that system can have
an unexpected impact on the aspects that advise this base
code. The cause of this problem is the fact that, in order to
select the correct set of join points, pointcut definitions are
often tightly coupled to the structure of the base code. To
capture the correct intent of a pointcut definition, develop-
ers rely on the presence of (implicit) structural and naming
conventions. Consequently, if these conventions are violated
in the base code, the pointcut will capture an incorrect set
of join points.

Expressing pointcuts in terms of source code annotations
has been proposed [6, 10] as a means to tackle the fragile
pointcut problem. By annotating source code structures
(such as classes, fields, methods) developers can expose do-
main concepts in the source code of a system. This allows
pointcuts to be defined in terms of those domain concepts,
thereby decoupling the pointcut definitions from the code’s
structure. In other words, annotations introduce an indirec-
tion layer between the aspects and the advised base code,
making the pointcut definitions less fragile with respect to
changes of the base code.

However, pointcuts can also contain dynamic conditions
(i.e. using the if pointcut designator), which are matched
during the execution of the program. Since these dynamic
conditions are expressed in terms of the base language, they
inherently refer to base program source-code elements (vari-
able names, method signatures, . . .). For example, a point-
cut that needs to capture all adults will do so by an ex-
pression similar to p.age > 18. Although this is a dynamic
condition it is tightly coupled to the structure of the source
code (the age field in the class Person). As a result, dynamic
conditions are as tightly coupled to the source code’s struc-
ture as static pointcut designators, making them equally
fragile. Since annotations are associated with static source
code entities, they are well-suited for capturing the static
parts of pointcuts, but provide no help in avoiding fragility
of dynamic conditions.

This paper introduces Dynamic Annotations. Our ap-
proach augments annotations with dynamic conditions that
govern their activation in contrast to regular annotations

public class Bank {
Collection <Account > accounts = new ArrayList <Account >();

public Account openAccount (){
Account a = new Account ();
accounts.add(a);
return a;}

@Financial
public void withdraw(double amount , Account a){
a.balance -= amount ;}

@Financial
public void transfer(double amount , Account from ,

Account to){
from.balance -= amount;
to.balance += amount ;}

@Financial
public void deposit(int amount ,Account a){
a.balance += amount ;}

}

Figure 1: Motivating example – Bank system

that are statically associated with source code elements.
This mechanism allows developers to use annotations to rep-
resent both static and dynamic domain knowledge. A devel-
oper can expose the concept of adults by annotating the Per-
son class with the dynamic annotation @Adult(target.age

> 18). By basing pointcut definitions on Dynamic Anno-
tations, we can further reduce pointcut fragility, decoupling
dynamic conditions in pointcuts from the structure of the
base code.

The rest of the paper is structured as follows: in the next
section we will present and discuss an example that high-
lights the shortcomings of current aspect and annotation
technologies when dealing with crosscutting concerns that
depend on dynamic conditions in terms of the evolvability
of the system. In Section 3 we will present our approach and
its current implementation. The example is revisited in Sec-
tion 3.2 where Dynamic Annotations is used. Section 4
presents existing work which relates to our approach, and
Section 5 summarizes the paper and concludes.

2. MOTIVATING EXAMPLE
As a motivating example, consider the implementation

of a simple bank system, part of which is shown in Fig-
ure 1. This banking system keeps track of a number of ac-
counts, and offers operations to open accounts, deposit and
withdraw money from an account, and transfer funds be-
tween two accounts. Methods that manipulate the amount
of money in an account (withdraw, transfer, deposit) are
annotated in the source code of the system with the annota-
tion @Financial. These annotations expose part of the do-
main knowledge regarding the annotated methods, namely
that they implement a financial operation.

Now suppose that we want to extend this system to ask
approval of certain financial operations, that — due to the
amount of money involved — are considered risky. Because
of legislation regarding money laundering we consider with-
drawals over 500 euros and transfers over 1500 as risky. Ad-
ditionally, any transfers below 1 cent are also considered sus-
picious, as they might indicate a salami attack where very
small amounts of money are siphoned from a number of ac-
counts. Since the approval functionality cross-cuts the im-

plementation of various financial operations, implementing
it as an aspect is natural choice. We will begin by imple-
menting this aspect using traditional techniques, and then
elaborate on the issues raised by such an implementation.
Afterwards we will introduce Dynamic Annotations that
provide a more elegant solution to the problem.

2.1 AspectJ Implementation
Figure 2 shows the aspect that implements the approval

of risky financial operations. This aspect is implemented
by three pointcuts to select risky financial operations and
an around advice that will ask for their approval. The first
pointcut financialOp captures all the financial operations
in the system. It is defined in terms of the @Financial an-
notation and selects execution join points corresponding to
methods that are annotated with this annotation, and that
take as a first argument a double which will be bound to the
variable amount of the pointcut. While this pointcut allows
to capture all financial operations in the system, it needs
to be further refined to capture risky financial operations.
Since the condition for being a risky financial operation de-
pends on the type of operation, i.e. a withdrawal or a trans-
fer, we cannot describe them in a single pointcut. Rather, we
specify two pointcuts limitwithdraws and limittransfer

that use the financialOp pointcut. The limitwithdraws

pointcut captures all executions of the withdraw method
where the withdrawn amount is larger than 500 euro; limit-
transfer captures the executions of transfer where the
amount is either larger than 1500 euro or lower than 1 cent.
The actual approval of risky operations is implemented by
an around advice that requires a user to confirm the opera-
tion before allowing the call to proceed() to happen.

2.2 Discussion
The implementation of the ApprovalOfRiskyOps aspect

is fragile. Although it relies on annotations to select finan-
cial operations, it is still coupled to the base code struc-
ture for the selection of risky amounts. The first pointcut
(financialOp) is defined in terms of the @Financial anno-
tation and, because of this, it is loosely coupled with the
source code. Given that knowing which methods implement
financial operations does not depend on runtime informa-
tion, it can be easily exposed by an inherently static source
code annotation. If new methods that implement financial
operations are added to the base code, the pointcut will cor-
rectly capture them, provided that they carry the correct
annotation. This is possible because the definition what
constitutes a financial operation (i.e., the withdraw, deposit
and transfer methods) is transferred from the pointcut ex-
pression to the base code, thus decoupling aspect and base
code.

Decoupling the definition of what constitutes a risky op-
eration in the same manner is, however not possible. A
financial operation is considered risky based on the type
and the dynamic context of the operation. A withdrawal
is risky if the amount is larger than 500 euro; transfers are
risky if the amount is larger than 1500 euro or smaller than
1 cent. These dynamic conditions cannot be easily cap-
tured by means of annotations. Therefore, different point-
cuts (limitwithdraws and limittransfer) are necessary to
identify and discern between the various types of risky op-
erations. As can be seen in Figure 2, these pointcuts re-
fer directly the particular base source-code entities and are

public aspect ApprovalOfRiskyOps {
pointcut financialOp(double amount) : execution(@Financial * *.*(double ,..)) && args(amount ,..);
pointcut limitwithdraws(double amount) : financialOp(amount) && execution (* *. withdraw (..)) && if(amount > 500);
pointcut limittransfer(double amount) : financialOp(amount) && execution (* *. transfer (..))

&& if(amount > 1500 || amount < 0.01);

void around(double amount) : limitwithdraws(amount) || limittransfer(amount) {
// ask approval
if(answer.equalsIgnoreCase("y"))

proceed(amount);}
}

Figure 2: AspectJ implementation of approval of risky financial operations

therefore tightly coupled with these entities, rendering the
pointcuts brittle with respect to evolution and negating the
benefits of the use of @Financial in the financialOp point-
cut. For example, the addition of new risky financial opera-
tions in the base code requires one of the pointcut definitions
to be extended (in case the dynamic conditions of the new
operation are identical to those of an existing one) or a new
pointcut for this operation to be defined. Notice that the
introduction of an annotation that exposes potentially risky
operations does not solve this problem, since the actual con-
ditions that determine whether an operation is risky differ
for each of the various kinds of operations, something which
cannot be captured by the annotations.

3. DYNAMIC ANNOTATIONS
The above example demonstrates the limited capabilities

of static Java annotations to expose domain knowledge that
is inherently dynamic. To overcome this limitation, we in-
troduce Dynamic Annotations. Dynamic annotations ex-
tend the concept of regular Java annotations with a means
to incorporate the dynamic conditions that govern their ac-
tivation. A dynamic annotation is defined as a regular Java
annotation type with a special member, denoted by a marker
annotation @ObjectExpression. An annotation’s object ex-
pression evaluates to true when the annotation should be
active. Context information is passed to the expression by
means of a target metavariable. This variable is bound to
the object instance on which the annotation is placed. Note
that, because of this, Dynamic Annotations are not allowed
on methods.

To illustrate the concept of dynamic annotations, consider
an annotation @Adult defined in Figure 3. The Adult anno-
tation type contains a single member, value that serves as
the annotation’s object expression. By default, all uses of
the annotation are active, as expressed by the default object
expression true. The @Adult annotation is used to expose
that particular instances of the Person class are considered

@Retention(RetentionPolicy.RUNTIME)
public @interface Adult {

@ObjectExpression
String value() default "true";}

@Adult("target.age > 18")
public class Person {

String name;
private int age;}

Figure 3: Adult Dynamic Annotation and its use on
the Person class

adults, i.e., those whose age field is greater than 18. To ex-
press this dynamic condition, the Person class carries the
dynamic annotation @Adult(target.age > 18). The use of
a dynamic annotation to express the domain-concept of a
person being an adult serves as a data-driven interface to
aspects, who are now shielded from changes on the internal
structure of the Person class.

3.1 Implementation
We have implemented a first prototype of Dynamic An-

notations1 as a library that uses the Java reflection API
and Groovy [11] as an object expression language. The Dy-
namic Annotations runtime defines an AnnotationMan-

ager class with a single static method, isActive(Object,
Annotation) to check whether a dynamic annotation is ac-
tive on a given object. This method uses the reflection API
to find out the object expression defined in the annotation.
Then, it uses Groovy’s shell to evaluate the object expres-
sion in the context of the queried object. We use Groovy
because of its symbiosis with Java, and the ability to eval-
uate groovy expressions dynamically. In principle, any lan-
guage that allows this is a viable choice to describe object
expressions. Groovy has the advantage of having a syntax
similar to Java’s, which enhances the understandability of
dynamic annotations embedded in the source code.

Aspects that want to take Dynamic Annotations into
consideration in their pointcuts can use the AnnotationMan-
ager to query for the state of an annotation in a given object.
This can be achieved by capturing the dynamic annotation
and the object that is annotated using existing pointcut de-
scriptors, and querying the AnnotationManager means of
the if() PCD. In the case of instances of the class Person

and the @Adult annotation, a possible pointcut would look
like this:

pointcut foo(Person p, Adult a) :
execution (* *(..)) && target(p) && @annotation(a)
&& if(AnnotationManager.isActive(p,a))

Although this way of selecting joinpoints based on dy-
namic annotations has the advantage of using existing As-
pectJ semantics, PCDs specific to dynamic annotations would
enhance the readability of aspects that use them. Introduc-
ing such PCDs, even as syntactic sugar, remains a task for
future work.

3.2 Example Revisited
To illustrate the applicability of dynamic annotations, we

update the implementation of the banking system to use our

1that can be downloaded from http://soft.vub.ac.be/
soft/research/sustainablecode/dynamicannotations.

@Financial
public void withdraw(@Risky("target >500") double amount ,

Account a){
a.balance -= amount ;}

@Financial
public void transfer(

@Risky("0.01< target || target >1500") double amount ,
Account from , Account to){

from.balance -= amount;
to.balance += amount ;}

Figure 4: Updated bank system code (fragment)

public aspect ApprovalOfRiskyOps {
pointcut riskyOperations(double amount , Risky risky) :

execution(@Financial * *(..))
&& args(amount ,..)
&& @annotation(risky)
&& if(AnnotationManager.isActive(amount ,risky)) ;

void around(double amount , Risky risky) :
riskyOperations(amount , risky) {

// ask approval
if(answer.equalsIgnoreCase("y"))
proceed(amount ,risky);}

Figure 5: Updated aspect to implement the approval
of risky financial operations (fragment)

approach. Figure 4 shows the updated source code of the
base code of the system, where the domain concept of risky
financial operations is now exposed using the dynamic an-
notation @Risky. For the withdraw and transfer methods,
the first argument (representing the amount of the financial
operation) is annotated with the @Risky annotation2. For
both methods, this dynamic annotation contains a boolean
expression that exposes under which conditions the opera-
tion can be considered risky. For example, the execution of
the withdraw method is considered risky if the value of the
amount (target) is larger than 500.

The updated version of the ApprovalOfRiskyOps aspect
can be found in Figure 5. Rather than requiring three dif-
ferent pointcuts as was the case with the standard AspectJ
solution, this aspect consists of a single pointcut named
riskyOperations. This pointcut selects all execution join
points of methods that are annotated with the @Financial

annotation for which the @Risky annotation (dynamically)
holds. The actual verification of whether the @Risky anno-
tation is active or not in the context of a given join point
is performed by the last line of the pointcut definition. The
pointcut consults the AnnotationManager class which is part
of the implementation of Dynamic Annotations. Given an
instance of the annotation (risky) and the concrete value
of the annotated object (amount), this AnnotationManager

evaluates the dynamic conditions corresponding to the an-
notation with respect to the annotated object, and returns
whether or not the annotation applies. Note that the amount
and risky objects are exposed in the pointcut not because

2While Java allows arguments to be annotated, AspectJ
does not allow such argument annotations to be captured
in pointcuts (AspectJ Bug #259416). As a consequence,
in our concrete implementation we annotated the transfer
and withdraw methods with the @Risky annotation. This is
however a limitation of AspectJ and not of our approach.

they are necessary to the advice execution, but because As-
pectJ requires all values bound in the pointcut to be ex-
posed.

3.3 Discussion
The use of dynamic annotations to express the concept of

financial operations on risky values brings benefits to both
the aspect that implements their approval and the base pro-
gram.

Compared to the traditional AspectJ implementation of
the ApprovalOfRiskyOps aspect, the version that uses dy-
namic annotations is less fragile with respect to evolution of
the base code. Rather than referring to concrete base source-
code entities, the pointcut definition leverages the domain
concepts that were exposed in the base system by the static
@Financial and the dynamic @Risky annotations. By re-
lying on these domain concepts instead of on how the base
program is structured, the ApprovalOfRiskyOps aspects will
capture the correct set of join points upon evolution of the
system, under the premise that the base code developer
correctly annotates all (risky) financial operations. While
the incorrect use of annotations can be a source of pointcut
fragility, tools have been proposed such as [9, 18] that offer
support to co-evolve source code and annotations.

At the level of the base program, dynamic annotations
extend the expressiveness of standard Java annotations. In
the example, this translates into the explicit expression of
what constitutes a risky operation. The semantics of such
operations is further refined by the dynamic annotations into
operations that deal with risky values. Since in this version
of the Banking system, amounts are represented as primi-
tive types, it is not possible to delegate the responsibility
of deciding whether an amount is risky to the object that
represents it. The addition of the @Risky annotation also
serves as explicit documentation of the concept. As the ex-
ample demonstrates, the use of dynamic annotations offers
base code developers an elegant means to expose domain
concepts that are dynamic in nature. By allowing devel-
opers to parameterize annotations with the conditions that
define whether or not the annotation is active at runtime,
annotations become context-sensitive and can express con-
cepts that not only depend on the annotation being present
in the source code, but also on the runtime context of the
system.

Using dynamic annotations also enhance the evolvability
of the system. Changes to what constitutes a risky value,
or to the way in which amounts are represented, are local to
the base code.

4. RELATED WORK
In this section we compare Dynamic Annotations to ex-

isting work, both on the annotation and the aspect-oriented
community. Annotations in Java have been used to as a
means to express a pluggable type system [14]. In this sense,
Dynamic Annotations are close to pluggable dependent
types, since the annotation of an object depends on the value
of the object. The Checker framework [15], built using type
annotations [4], provides the notion of dependent annota-
tion types, by conditioning the annotation type of an object
to the presence of another annotation type. The difference
between our approach and dependent types in the Checker
framework lays in that Dynamic Annotations are not used
to check the validity of a program, but they are used to ex-

pose (dynamic) domain concepts.
Decorating classes and methods with runtime expressions

is usually the approach taken in Design-by-contract frame-
works such as JML [16], J-LO [3] and Contract4J [13]. In the
two former frameworks, annotations with boolean expres-
sions are added to methods and classes in order to specify
pre/post conditions and class invariants. Dynamic Anno-
tations can be used to specify such contracts defining a
dynamic annotation that represents the concept of a valid
state, and an aspect that throws an exception whenever a
method that is not in a valid state (i.e., a method whose
dynamic annotation is not active) is executed.

The use of Dynamic Annotations to deal with fragile
pointcuts does so at the expense of obliviousness of the base
code. Approaches like Open Modules [1] and Crosscutting
interfaces (XPI) [5] also forgo obliviousness by specifying
rules on how should aspects interact with the base code to
tackle the problem of aspect interaction. Both these ap-
proaches allow base-code developers to express an aspect
interface on which aspects and base code agree in order to
enhance the modularization of the composed system. To
our knowledge, however, neither XPI or Open Modules al-
low the explicit definition of dynamic conditions as part of
the aspect interface.

In terms of pointcut fragility, annotations [6, 10] and ex-
plicit joinpoints [7] embed references to crosscutting con-
cerns in the base code itself. In the case of annotations this
is achieved by exposing domain concepts. Explicit joinpoints
directly reference the aspects that should intervene at a par-
ticular location in the base code. These explicit joinpoints
however do not allow for capturing dynamic context.

5. SUMMARY
In this paper we present Dynamic Annotations, an ex-

tension to the Java metadata facility. Dynamic annotations
allow the developer to attach metadata to source code enti-
ties, and to condition the activation of the metadata to the
runtime context. Dynamic annotations address the issue of
pointcut fragility in AspectJ by allowing developers to an-
notate base-code entities with domain concepts that depend
on runtime values. These annotations can then be leveraged
by aspects, avoiding if point cut designators that refer to
the structure of the base code, and replacing them with ref-
erences to the dynamic annotations instead. We illustrate
the kind of situations in which Dynamic Annotations are
useful by means of an example that implements the approval
of risky financial operations on a banking system. The mod-
ularization of these kind of operations on an aspect results
in a fragile pointcut if dynamic annotations are not used.

6. ACKNOWLEDGMENTS
Andy Kellens is funded by a research mandate provided by

the “Institute for the Promotion of Innovation through Sci-
ence and Technology in Flanders” (IWT Vlaanderen). This
research is supported by the IAP Programme of the Belgian
State.

7. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In European Conference on Object-Oriented
Programming (ECOOP), volume 3586 of LNCS, pages
144–168. Springer, 2005.

[2] C. Bauer and G. King. Java Persistence with
Hibernate. Manning Publications, 2006. ISBN
978-1932394887.

[3] E. Bodden. A lightweight LTL runtime verification
tool for Java. In Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2004, October 24-28,, pages 306–307, 2004.
Student Research Competition.

[4] M. D. Ernst. Type Annotations specification (JSR
308). http://types.cs.washington.edu/jsr308/,
September 12, 2008.

[5] W. Griswold, K. Sullivan, Y. Song, M. Shonle,
N. Teware, Y. Cai, and Rajan.H. Modular software
design with crosscutting interfaces. IEEE Software,
Special Issue on Aspect-Oriented Programming,
23(1):51–60, January/February 2006.

[6] W. Havinga, I. Nagy, and L. Bergmans. Introduction
and derivation of annotations in AOP: Applying
expressive pointcut languages to introductions. In
European Interactive Workshop on Aspects in Software
(EIWAS), 2005.

[7] K. Hoffman and P. Eugster. Bridging java and aspectj
through explicit join points. In PPPJ ’07: Proceedings
of the 5th international symposium on Principles and
practice of programming in Java, pages 63–72, New
York, NY, USA, 2007. ACM.

[8] A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the evolution of aspect-oriented software
with model-based pointcuts. In European Conference
on Object-Oriented Programming (ECOOP), number
4067 in LNCS, pages 501–525, 2006.

[9] A. Kellens, C. Noguera, K. De Schutter, C. De
Roover, and T. D’Hondt. Co-evolving annotations and
source code through smart annotations. In European
Conference on Software Maintenance and
Reengineering (CSMR), pages 119–128. IEEE
Computer Society Press, 2010.

[10] G. Kiczales and M. Mezini. Separation of concerns
with procedures, annotations, advice and pointcuts. In
European Conference on Object-Oriented
Programming (ECOOP), LNCS, pages 195–213.
Springer Verlag, 2005.

[11] D. Koenig, A. Glover, P. King, G. Laforge, and
J. Skeet. Groovy in Action. Manning publications,
2007. ISBN: 1-932394-84-2.

[12] C. Koppen and M. Stoerzer. Pcdiff: Attacking the
fragile pointcut problem. In European Interactive
Workshop on Aspects in Software (EIWAS), 2004.

[13] I. A. Krizsan. Getting started with contract4j.
http://polyglotprogramming.com/papers/Getting_

Started_with_Contract4J.pdf.

[14] S. Markstrum, D. Marino, M. Esquivel, T. Millstein,
C. Andreae, and J. Noble. Javacop: Declarative
pluggable types for java. ACM Trans. Program. Lang.
Syst., 32(2):1–37, 2010.

[15] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins,
and M. D. Ernst. Practical pluggable types for Java.
In ISSTA 2008, Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pages
201–212, Seattle, WA, USA, July 22–24, 2008.

[16] E. Poll, P. Chalin, D. Cok, J. Kiniry, and G. T.

Leavens. Beyond assertions: Advanced specification
and verification with jml and esc/java2. In In Formal
Methods for Components and Objects (FMCO) 2005,
Revised Lectures, volume 4111 of LNCS, pages
342–363. Springer, 2006.

[17] Spring Application Framework.
http://www.springframework.org.

[18] E. Tilevich and M. Song. Reusable enterprise
metadata with pattern-based structural expressions.
In International Conference on Aspect Oriented
Software Development (AOSD), 2010.

