
Many-Core Virtual Machines
Decoupling Abstract from Concrete Concurrency

Stefan Marr Theo D’Hondt
Software Languages Lab

Vrije Universiteit Brussel, Belgium
stefan.marr@vub.ac.be

Abstract
We propose to search for common abstractions for concurrency
models to enable multi-language virtual machines to support a wide
range of them. This would enable domain-specific solutions for
concurrency problems. Furthermore, such an abstraction could im-
prove portability of virtual machines to the vastly different upcom-
ing many-core architectures.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.1.3 [Programming Techniques]: Concur-
rent Programming

General Terms Design, Languages, Performance

Keywords Multi-language virtual machines, concurrency, many-
core, abstraction, machine model, parallel programming models

1. Problem Statement
Since the processor manufacturers reached the boundaries of what
is feasible to achieve computational speedups in terms of increased
clock rates, they changed their scaling dimension from clock rate
to core count, i. e., the number of computing units on a single chip.
With this change, they are still able to deliver more computing
power with every new processor generation by shifting the bur-
den of realizing speedups to the software developers[12]. In the
fields of operating systems, middleware, databases, and distributed
systems, solutions have been found to provide support for con-
currency. However, for the development of end-user applications,
today’s systems still lack comprehensive support to make concur-
rency accessible and its complexity manageable.
The most widely used programming model for concurrency is

the shared memory model with threads and locks. Unfortunately,
this model has very narrow limits. Even though threading and fine-
grained locking have proven to allow high-performance concur-
rency, programming complexity increases fast with a rising num-
ber of threads and shared resources. Therefore, this model does not
scale up to the degree of concurrency in many-core system. The use
of disciplined concurrency models avoiding shared state, is almost
the only choice to cope with the inherent complexity. With the actor
model and software transactional memory, there are promising can-
didates available, but currently not part of mainstream software de-

Copyright is held by the author/owner(s).

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

velopment. However, the general forms of these models also have
their problems, thus, we expect domain-specific solutions for the
different application domains to become an important approach to
handle concurrency.
Another aspect of the changing processor designs is an increase

in the diversity of processor architectures. Processor designers ex-
periment with various different approaches to arrange cores on the
chip and to connect them to the memory system, using various dif-
ferent caching strategies, and possibly explicit inter-core communi-
cation. For instance, the Cell B.E. uses a distributed memory model
with an inter-core ring network for explicit memory transfers[3].
Intel’s Larrabee uses also a ring for inter-core communication, but
provides shared memory with cache-coherency[8]. A different ap-
proach was taken with MIT’s RAW processor which was commer-
cialized by Tilera. Its TILE architecture combines cores in a 2D
mesh with five special-purpose inter-core networks[14]. Thus, in
the age of many-core systems, processors do not only vary over in-
struction sets, but they provide fundamentally different inter-core
communication characteristics which need to be accounted for.
High-level language virtual machines (VMs) have become the

major means to tackle these kind of problems. They are used in-
creasingly as multi-language runtime environments. Typical exam-
ples are the Java Virtual Machine (JVM) andMicrosoft’s Common
Language Runtime (CLR). Even so the JVM was originally not de-
sign as a multi-language VM, today it hosts, similar to the CLR,
various different languages and programming models. Ongoing ef-
forts like the introduction of the invokedynamic bytecode extend
the capabilities of this platform to handle a large number of differ-
ent programming paradigms[7].
However, concurrency is a concept for which VMs do not pro-

vide sufficient abstraction. They abstract from memory manage-
ment, language specific, and platform specific characteristics by
providing an abstract machine model represented by an instruction
set architecture (ISA) which brings portability as well as it allows
to build highly optimizing just-in-time compilers for the different
supported hardware architectures. Yet, these machine models do
not provide abstractions for different concurrency models[5]. The
JVM and CLR have rudimentary support for threads and locks in
their ISAs, and Erlang as notable exception provides explicit sup-
port for the actor model in its BEAM opcodes set. But there is no
VM which exposes more than one concurrency model to the pro-
grammer or provides means to abstract from the different concrete
concurrency models provided by the hardware. With respect to the
many-core evolution, we expect that VMs have to handle both as-
pects to be able to provide software developers with the necessary,
possibly domain-specific tools to cope with concurrency.



2. Research Goal
The main goal of our research is to identify common abstractions
of different abstract concurrency models which are also appropri-
ate to be mapped efficiently onto the various upcoming many-core
architectures[6]. Thus, the concurrency models on the different lev-
els of implementation are to be decoupled. For this, we experi-
ment with an VM instruction set architecture, i. e., a VM model
with explicit support for some form of disciplined concurrency. The
ISA has to provide appropriate abstractions to generalize the broad
range of abstract concurrency models to be usable as a foundation
for new language designs. Furthermore, it is necessary to devise
a methodology which enables language-designers to map their ab-
stract concurrency model onto such an ISA. The methodology also
needs to provide means to VM developers to map from this ISA to
concrete concurrency models, since the differences in the hardware
design will be significant.
The analysis and design is approached iteratively to find an

appropriate compromise between the different instances of the
currently most important concurrency models as well as between
these models itself. Currently, actors[1, 11], software transactional
memory[9], and shared-memory models are most important. Even
if the latter have conceptual difficulties with respect to many-core
concurrency, because the programming model with fine-grained
locking does not scale, they are important to allow a transition
from these models to more disciplined models. Furthermore, recent
research in the area of partitioned global address space (PGAS)
languages indicates that their might be disciplined shared memory
approaches[2, 10]. The analysis and design process will iterate over
the different concurrency models and chose a suitable compromise
for the different instances of the current model under investiga-
tion. The compromise will be guided from the viewpoint of the
language designer as well as from the viewpoint of the VM im-
plementer. After each iteration, the insights will be consolidated
to a methodology which then will be applied and refined in the
following iteration.
Important is also the mapping on a concrete concurrency model

provided by a specific hardware architecture. The simplest, but still
important one is an intra-core communication. This is the standard
case for single-core processors, possible with multiple hardware
threads. The next step is a uniform memory access model like
it is used for current multi-core systems and could be used for
subsets of cores on many-core systems as well. For real many-core
systems only a non-uniform memory access model is feasible. Like
mentioned before, inter-core ring or mesh networks with or without
shared-memory are currently proposed[3, 8, 14]. At least this three
concrete models have to be considered in the iterations to be able
to provide a suitable mapping from the ISA to different hardware
architectures. Distributed systems, i. e., systems based on a number
of physical nodes connected by a network are not regarded by
this project. Instead, the main focus of this research are on the
challenges with respect to processor internal communication and
the influence of the different many-core architectures.
The results of this research should enable us to decouple ab-

stract and concrete concurrency models by using an ISA with in-
herent concurrency support. New abstract concurrency models can
be implemented on top of the ISA and a new concrete concurrency
model or a new many-core architecture can be supported by the
generalization the ISA provides.

3. Current State and Future Work
Currently, we completed the initial phase of literature studies and
prototyping of ideas. Thus, we investigated the state of the art in
concurrency support for virtual machines[5] and experimented with
support for threads and locks, as well as actor abstractions on the

instruction set level[6]. Our experiments included also an analysis
of high-level concurrency constructs with a focus on barrier syn-
chronization. However, they turned out to be to divers and their
high-level character did not match the requirements for a concept
that needs to be directly supported by virtual machines.
Our future work will be based on the work of Ungar and

Adams[13]. With this multi- and many-core virtual machine, we
have a foundation for experimenting on the TILE architecture as
well as commodity multi-core systems.
Furthermore, we will investigate the notions of locality and en-

capsulation as fundamental concepts to concurrency. Encapsulation
refers to the guarantee given to an entity, for instance an object or
an actor, that its internal state is only accessible by itself. Local-
ity refers to the notion of a spacial relation between entities. For
instance, the objects grouped together in an partitioned global ad-
dress space model. We aim to evaluate their capabilities to facilitate
virtual machine support for different concurrency models[4].

Acknowledgments
Stefan Marr is supported by a doctoral scholarship of the Institute
for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen), Belgium.

References
[1] G. Agha. ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-oriented
approach to non-uniform cluster computing. In Proc. of OOPSLA’05,
pages 519–538. ACM, 2005.

[3] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communi-
cation network: Built for speed. IEEE Micro, 26(3):10–23, 2006.

[4] S. Marr. Encapsulation and locality: A foundation for concurrency
support in multi-language virtual machines? In Proc. of SPLASH 2010
- Doctoral Symposium, 2010. (to appear).

[5] S. Marr, M. Haupt, and T. D’Hondt. Intermediate language design
of high-level language virtual machines: Towards comprehensive con-
currency support. In Proc. of VMIL’09, pages 3:1–3:2. ACM, October
2009. (extended abstract).

[6] S. Marr, M. Haupt, S. Timbermont, B. Adams, T. D’Hondt,
P. Costanza, andW. D. Meuter. Virtual machine support for many-core
architectures: Decoupling abstract from concrete concurrency models.
In Prof. of PLACES’09, volume 17 of Electronic Proceedings in The-
oretical Computer Science, pages 63–77, February 2010.

[7] J. R. Rose. Bytecodes meet combinators: Invokedynamic on the jvm.
In Proc. of VMIL’09, pages 1–11. ACM, 2009.

[8] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: A many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):1–15, 2008.

[9] N. Shavit and D. Touitou. Software transactional memory. In Proc. of
PODC’95, pages 204–213. ACM, 1995.

[10] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers:
A unified deadlock-free construct for collective and point-to-point
synchronization. In Proc. of ICS’08, pages 277–288. ACM, 2008.

[11] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java.
In Proc. of ECOOP’08, pages 104–128, 2008.

[12] H. Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[13] D. Ungar and S. S. Adams. Hosting an object heap on manycore
hardware: An exploration. In Proc. of DLS’09. ACM, 2009.

[14] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5):
15–31, 2007.


