
Mining Source Code for Structural Regularities
Angela Lozano∗, Andy Kellens†, Kim Mens∗, Gabriela Arevalo‡§

∗ ICTEAM — Université catholique de Louvain
Place Sainte Barbe 2, B-1348 Louvain La Neuve, Belgium

Email: {angela.lozano — kim.mens}@uclouvain.be
† Software Languages Lab — Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussels, Belgium
Email: akellens@vub.ac.be

‡ Facultad de Ingenierı́a — Universidad Austral
Av. Juan de Garay 125 (1063), Buenos Aires, Argentina

§ CONICET
Av. Rivadavia 1917 (1033), Buenos Aires, Argentina

Email: garevalo@austral.edu.ar

Abstract—During software development, design rules and con-
tracts in the source code are often encoded through regularities,
such as API usage protocols, coding idioms and naming con-
ventions. The structural regularities that govern a program can
aid in comprehension and maintenance of the application, but
are often implicit or undocumented. Tool support for extracting
these regularities from the source code can provide developers
useful insights. But building such tool support is not trivial, in
particular, because the informal nature of regularities results in
frequent deviations and exceptions to these regularities.

We propose an automated approach, based on association rule
mining, to discover the structural regularities that govern the
source code of a software system. We chose this technique because
of its resilience to exceptions. In general, tool support for mining
regularities tends to discover a huge amount of rules, making
interpretation of the results hard and time-consuming. To ease
the interpretation, we reduce the results to a minimal canonical
form, and group them to obtain a more rational description of
the discovered regularities. As an initial feasibility study of our
approach, we applied it on two open-source systems, namely
IntensiVE (Smalltalk) and FreeCol (Java).

I. INTRODUCTION

Understanding the rationale and design knowledge of a
software system is essential when maintaining or evolving the
system [1]. Design decisions and contracts between program
entities are often encoded through structural source code
regularities, such as naming conventions, design pattern con-
straints, idioms and protocols. However, these regularities are
usually not documented explicitly and are frequently violated
throughout the source code.

Given that such regularities can reveal where and how im-
portant design decisions are implemented, and that deviations
of those regularities may hint on problems in the code [2],
there have been several approaches to detect, document and
track such regularities [3], [4], [5], [6], [7]. However, manual
interpretation of discovered regularities can be time consum-
ing, because even when the resulting set of source code entities
perfectly matches the regularity, there is little support to infer
the design rationale that explains the discovered regularity. We
believe that for an automated tool to be successful in extracting

structural source code regularities, it should exhibit at least the
following properties:

• Intensional representation: Rather than presenting the
user with a set of source-code entities that exhibit the
supposed regularity, the intended technique should pro-
vide the user with enough information to allow him or
her to infer and codify the underlying intent;

• Robustness towards deviations: Because deviations to
regularities are common, the intended technique should
be sufficiently robust towards deviations, and still be able
to detect regularities in spite of such deviations;

• Conciseness of results: Because redundancy in the mined
results hampers interpretation of the resulting regularities,
an automated tool should minimize the total amount
of information presented to the user and maximize the
quality of that information.

The main contribution of this paper is a generic lightweight
regularity mining approach based on association rule mining
that has the above properties and that provides relevant hints to
help a user in rapidly inferring and documenting the rationale
of potential regularities. Examples of regularities found by our
approach include naming conventions, idioms, implementation
protocols, design pattern constraints and implementation im-
provements.

The paper is organized as follows. In Section II we discuss
the technique of association rule mining that underlies our
approach. Section III describes how we apply association rules
to locate structural source-code regularities. We also describe
the various proposed filters and grouping mechanism that aim
at condensing the amount of information that needs to be
processed by a user of our approach. In Section IV we describe
the two case studies that we have performed to provide a
qualitative assessment of our approach. Section V analyses
the results of these case studies and takes a more in-depth
look at the kinds of regularities we were able to discover. We
conclude the paper in Section VII after comparing our work
with the state of the art in Section VI.

II. IMPLICATION AND ASSOCIATION RULES

This section explains the technique of association rule min-
ing which underlies our approach. To illustrate the approach,
we use the generic example of users’ preferences when buying
groceries in supermarkets. Table I shows a data set of people
and the groceries they have bought. For example, Steve bought
Bread and Coffee.

Bread Milk Eggs Coffee Cereal
John X X X X
Ann X X
Beth X X X
Steve X X
Caroline X X X

TABLE I
SHOPPING BASKET EXAMPLE

An association rule is a rule of the form
condition

confidence%−−−−−−−−→ conclusion that summarizes
the extent to which two sets of properties overlap. Intuitively,
it can be read as: if an entity satisfies the property condition
(the antecedent), then there is a likelihood confidence that
it also satisfies property conclusion (the consequent). For
example, from Table I we can derive the association rule
Coffee 75%−−→ Milk, because from the set {John, Beth, Steve,
Caroline} of people that buy coffee, 75% also buy milk,
namely: {John, Beth, Caroline}.

John Beth
CarolineSteve

Coffee Milk

Ann

Coffee Milk
75%

Condition
(antecedent)

Conclusion
(consequent)

Matches

Fig. 1. Parts of a rule

Figure 1 provides a schematic overview of the structure of
an association rule. The set of all entities that satisfy both
condition and conclusion (i.e. the intersection of both sets)
are called the matches of the association rule. In our example
rule, there are three matches: John, Beth and Caroline.

The confidence of an association rule represents the per-
centage of entities satisfying the condition that are actual
matches: confidence = |matches|

|condition| . However, confidence
does not convey information regarding the entities in the
conclusion. We define error as a measurement of how many
entities in either condition or conclusion are not matches:

error = 1−
|matches|
|condition| +

|matches|
|conclusion|

2
Rules with a high error degree apply only to a small subset

of the involved entities. The closer the error is to zero, the
stronger the rule is. Applied to our example rule, we observe
that the error equals 0.25: 1 out of 4 entities in the condition

are not matches, as well as 1 out of 4 entities in the conclusion,
which indeed gives an overall error of 25%.

If an association rule has a confidence of 100%, we call it an
implication rule and denote it with a⇒, to distinguish it from
weaker association rules. We do not indicate the confidence on
the implication arrow because it is always 100%. For example,
from Table I, we can derive the implication rule Cereal ⇒
Milk, because all people (i.e. Ann, Beth) that buy Cereal also
buy Milk, without exceptions.

III. OUR MINING APPROACH

Our mining technique takes as input a set of source-
code entities (classes, methods, . . .) along with a number of
relations between those entities (inheritance, implementation,
naming, . . .). The output is a set of association rules that
express interesting regularities in the source code. Intuitively,
association rules can be seen as if-then rules such as “if a
class belongs to the hierarchy of AbstractAction, then it
(probably) has the identifier Action in its name”.
Our approach consists of the following steps:

1) Determining the input of our tool;
2) Pre-filtering of input data to prune redundant/trivial

information;
3) Applying the association rule mining algorithm in order

to obtain a set of implication and association rules;
4) Post-filtering (simplification and pruning) of resulting

rules based on general structural characteristics of these
rules and domain-specific heuristics;

5) Grouping sets of related association rules in order to
convey the mined results in a more concise manner.

Below we discuss each of these steps in more detail.

A. Input parameters for the algorithm

Although our approach is independent of the actual kinds
of source-code entities and properties of those entities, in this
paper, to minimize the amount of information to analyze, we
restrict our analysis to classes only and consider the following
properties of classes1:
• Hierarchy: The hierarchy (superclasses) to which a class

belongs;
• Implements: The names of the methods that are imple-

mented by a class;
• Identifiers: The words contained in the name of a class.
We chose these three properties only, because our first anal-

ysis discovered relevant relations or correlations only between
class hierarchies, implementation protocols and the vocabulary
of the system being analyzed. Part of that vocabulary is present
in the names of the classes in the system. The class names
are split up based on capitalization or delimiting characters to
extract the identifiers that belong to the system vocabulary. For
example, the class TextWindowDialog yields identifiers
‘Text’, ‘Window’ and ‘Dialog’ and Text_Window yields
‘Text’ and ‘Window’).

1We also experimented with calling relationships between (methods belong-
ing to) classes and ‘refers to’ relationships, but discarded those relationships
as they did not produce many useful regularities at the level of classes.

B. Pre-filtering

The set of properties that serve as input to the association
rules algorithm are pruned, before the execution of the algo-
rithm, to remove redundant or irrelevant data. Concretely, we
discern two groups of pre-filters:
• Root classes: When calculating the Hierarchy property of

a class, all root classes of the system (e.g. Object, the
root classes of common libraries and frameworks) are not
considered. Including these in the analysis would result
in the deduction of trivial rules that express knowledge
such as “all classes are in the hierarchy of Object”;

• Common words: Common words in identifiers (‘the’,
‘get’,‘in’,. . .) are considered meaningless and therefore
are pruned.

C. Computation of association rules

Association rules can be computed automatically from a
data set [8]. Various algorithms and techniques for mining
association rules exist [9]. Let us provide a brief overview of
the algorithm we implemented.

Historically, the concepts of association and implication
rules stem from Frequent Itemset Analysis. The best-known
algorithm for computing such Frequent Itemsets is Apriori [8].
For each possible combination of properties, this algorithm
calculates the set of entities in the data set that exhibit these
properties. Later on, these so-called frequent item sets serve
as input to deduce the actual association rules. Calculating
the frequent item sets is computationally intensive: all 2N - 1
(with N being the number of properties) potential association
rules are considered by the technique. While this algorithm
will compute all possible association rules, its exponential
complexity makes it rather impractical.

Our implementation of an association rule miner avoids this
combinatorial explosion by restricting the sets of properties
between which we compute possible association rules. More
specifically, we calculate association and implication rules
based on a concept lattice. To this end, we employ an efficient
Formal Concept Analysis (FCA) algorithm [10]. FCA is a
branch of lattice theory that allows identifying meaningful and
maximal groupings of elements that share a set of common
properties. Our implementation of FCA has a runtime com-
plexity of O(N2), with N being the number of properties.
In the resulting lattice, we obtain groups of properties that,
according to the data set, belong together. By only considering
the concepts that introduce a property (maximal N concepts),
and calculating the association rules between that concept and
the other concepts on its path, we need only consider N2

different combinations of properties for the association rules.

D. Post-filtering

To reduce the amount of information presented to the
user, we also post-process and post-filter the association rules
reported by our algorithm. We distinguish two kinds of filters,
namely structural filters that aim at rewriting the mined
association rules and removing redundancy from these rules
and heuristic filters that use domain knowledge to further

restrict the amount of (meaningless) results. Table II shows
an overview of all filters and their definition. Below, we take
a more in-depth look at each of these filters, and describe their
workings.

1) Structural filters: A first group of filters are the structural
filters. These filters are based on structural properties of the
mined association rules and aim both at eliminating irrelevant
rules (rules subsumed by other rules), and making the rules
more concise. Note that these filters are oblivious to the
actual properties of the dataset that is being analyzed and
can therefore be reused when applying our approach using
different input properties. In this category, we have defined
the following eight rules2:

• Matches (S1): Rules that have 4 or less matches are
considered not to convey meaningful information, as
these association rules are not supported by a sufficiently
large part of the data set. In general, less than 3 matches
cannot be considered a regularity (1 is a singularity, 2 is a
casualty, and from 3 matches and on it can be considered
a regularity). We chose a threshold of 4 matches for our
case studies, because regularities of just 3 matches were
only adding noise.

• Left to Right (S2): This filter favors association rules
with higher confidence. If we have a rule A → B and
a rule B → A, then we eliminate the rule with lowest
confidence.

• Confidence (S3): This filter prunes rules with confidence
less than 70%. Intuitively, if a rule is valid for less than
70% of the elements satisfying the condition of the rule,
we do not consider it to be an interesting regularity
because there is too much counter-evidence.

• Error (S4): Rules with a degree of error larger than
45% are discarded as well. Intuitively, even when a rule
is supported by a certain number of elements in the
data set (the matches), we discard it when there are, in
comparison, many exceptions in either the condition (low
confidence) or the conclusion (low coverage) with respect
to the matches.

• Compact Rules (S5): This filter aims at removing re-
dundant information from the condition or conclusion of
an association, by using the information contained in the
implications. An implication represents a subset relation
between two sets of properties: if an entity satisfies the
properties in the condition of the implication, then it
will also satisfy the properties in the conclusion. We
can use this information to remove redundancies in the
set of computed association rules. If the condition or
conclusion of an association rule contains both condition
and conclusion of the implication, then we can safely
remove the property corresponding to the conclusion of
the implication from the association rule without any
impact on the amount of information conveyed in the rule.

2For those filters that rely on a certain threshold value, those thresholds
were experimentally determined based on the two case studies conducted, but
may need to be fine-tuned for future case studies.

Filter name (id) Before filtering After filtering (rules that remain i.e. the more specific rules)

Matches (S1) R : A→ B

A→ B if |matches(R)| ≥ 4
discard otherwise

Left to right (S2) R1 : A→ B
R2 : B → A

A→ B if |matches(R1)|

|A| > |matches(R1)|
|B|

B → A otherwise

Confidence (S3) R : A→ B

A→ B if confidence(R) ≥ 70%
discard otherwise

Error (S4) R : A→ B

A→ B if error(R) ≤ 45%
discard otherwise

Compact Rules (applying im-
plications) (S5)

A ∧B → C
E → F ∧G
A⇒ B
F ⇒ G

A→ C
E → F
A⇒ B
F ⇒ G

Redundant mention of super-
property (S6)

A→ B ∧ C
A⇒ B

A→ C
A⇒ B

Super & sub-properties are
concluded by same properties
(S7)

R1 : X → A
R2 : X → B
A⇒ B

8<: X → A if confidence(R1) ≥ confidence(R2)
∧ error(R1) ≤ error(R2)

X → B otherwise
A⇒ B

Super & sub-properties con-
clude same properties (S8)

R1 : A→ X
R2 : B → X
A⇒ B

8<: A→ X if confidence(R1) ≥ confidence(R2)
∧ error(R1) ≤ error(R2)

B → X otherwise
A⇒ B

Hierarchy relations (H1) H > Subclass⇒ H > Superclass discard if Subclass is subclass of Superclass

Semantic pruning (H2) A→ B

A→ B if weight(A) > weight(B)
discard otherwise

with:
weight(Hierarchy) > weight(Implements)
weight(Hierarchy) > weight(Identifier)
weight(Implements) = weight(Identifier)

TABLE II
OVERVIEW OF THE POST-FILTERING

For example, if we have an association rule A∧B → C
and an implication A ⇒ B, then we can simplify this
association rule to A→ C (note that A is more specific).
Note that multiple implications can possibly be applied to
a single association rule. In such cases, the order in which
the implications are applied can have an impact on the
outcome of this filter, if there exists an overlap between
the properties of the implications. To circumvent this
problem, our approach sorts the applicable implications
such that a maximum of implications can be applied to
a single association rule. This is achieved by ordering
the implications such that those ones whose conclusion
is the condition of another implication that is applicable
get preference. To illustrate this, consider an association
rule A ∧ B ∧ C → D and two (applicable) implications
A ⇒ B and B ⇒ C. If we start by applying the first
implication, this will remove B from the condition of
the association rule, making it impossible to apply the
second implication. However, the other way around we
can apply both implications, resulting in the association
rule A→ D.

• Redundant mention of super property (S6): This
filter is based on the same principles as S5, and aims
to improve the conciseness of mined implications. In

contrast to S5, this filter allows the conclusion and the
condition of the implication to be in different parts of the
association rule. In fact, the condition of the implication
must be part of the condition of the association (A ⊆ A),
and the conclusion of the implication must be part of the
conclusion of the association (B ⊆ B∧C). The converse
does not apply, because applying the implication would
change the meaning of the rule (e.g. B∧C → A, A⇒ B
6= C → A, A⇒ B).

• Super & sub-properties concluded by same properties
(S7): The goal of this filter is to remove a redundancy in
the mined information in situations where we have two
association rules X → A and X → B, where there also
exists the implication A⇒ B. To decide which rules gets
pruned, we compute the confidence and error of both
rules and select the one with highest confidence and
lowest error. While this filter might seem counterintu-
itive at first, it is based on the observation that, although
A is a subset of B, this does not necessarily imply that
there exists more overlap between X and B than between
X and A.

• Super & sub-properties conclude same properties
(S8): This filter is complementary to S7 discussed above.
This filter prunes, according to the confidence and

error, the redundant rule in the situation where we have
association rules A→ C and B → C, and where A⇒ B.

2) Heuristic filters: The above set of general filters are
complemented by two heuristic filters. These filters are dedi-
cated to the experimental setup of this paper and rely on the
semantics of the different kinds of analyzed properties in order
to further restrict the set of mined association rules.
• Hierarchy relations (H1): One of the properties of the

classes we analyze is the class hierarchy relationship.
This causes our algorithm to identify implication rules
that express mere subclass relationships (e.g., “if a class
is in the hierarchy of class A, it also is in the hierarchy
of class B” is trivially true for each superclass B of A).
Since such implication rules present trivial information,
they are pruned from the final result.

• Semantic pruning (H2): Experimentation with earlier
versions of our approach revealed that in many cases,
some association rules were deemed to be less interesting
in the context of mining structural regularities than others.
In our case studies with classes, rules whose conditions
only contained identifier properties, or whose condition
contained implemented messages and the conclusion a
particular hierarchy, were observed to be of less interest
to the developer. To prune away such rules, we defined a
partial order between the properties under consideration
and prune away rules where the condition appears to be
of less interest than the conclusion of the rule.

E. Grouping

Upon manual inspection of the association rules reported
by our tool we observed that the number of association rules
can be considerably large. However, in many cases, several
association rules describe the same set of source code entities,
and were often contributing to the same regularity. Therefore,
we further restrict the amount of information conveyed to
the user by grouping such related rules. In practice, we
consider two association rules to belong to the same group
(i.e. contributing to the same structural regularity) if at least
70% of their matches overlap.

F. Discussion

Our technique for identifying meaningful structural reg-
ularities in the source code of programs, has the desirable
characteristics mentioned in Section I:
• It provides useful clues on the rationale behind potential

regularities, by merging all shared properties for related
source code entities: the more information we have on
what properties the entities have in common, the more
clues we have on why these entities are related.

• It provides an intensional description of the regularities.
Rather than just mining for sets of entities that share
some regularity, we also discover their intension, i.e. the
properties those entities have in common.

• It allows for deviations. By using a mining technique
(association rules) that does not require exact matches of
the regularities, we increase the tolerance for deviations.

At the same time, by tweaking the tolerance level so
that potential regularities with too many mismatches get
discarded, we can discard easily regularities that are likely
to be false positives.

• It provides concise results by eliminating similar regular-
ities, simplifying regularities to their minimal expression,
and grouping regularities that cover the same sets of
entities.

IV. CASE STUDIES

IntensiVE FreeCol
Language Smalltalk Java

Classes 233 382
Methods 2863 3252

Lines of code 12318 31191

TABLE III
OVERVIEW OF THE TWO CASE STUDIES

As an exploratory study of the usefulness of our approach
and to perform a qualitative assessment of the mined results,
we applied it to two open-source applications. More specif-
ically, we studied the IntensiVE and FreeCol systems.
Table III provides an overview of the size of both systems.

• IntensiVE is an academic tool suite that supports the
documentation and verification of structural source code
regularities. It was written (amongst others) by the sec-
ond and third author of this paper. Next to supporting
regularities, its implementation relies heavily on the use
of regularities. Since IntensiVE’s regularities are well-
documented and we possess expert knowledge about
these regularities, IntensiVE was an ideal first case study
on which to test our approach.

• FreeCol is a free and open implementation of the game
‘Colonization’. In contrast to the other case study, we
chose this system since it was new to all of the authors
of the paper, however presents a well-known domain.

Table IV gives an overview of the size of the mined results,
and how our filters were able to reduce the amount of informa-
tion conveyed to the user. Despite the fact that our approach
uses Formal Concept Analysis to compute the association
rules (and does not perform a brute force combination of
all properties), before filtering, our algorithm still produced
an overwhelming amount of association rules (approximately
75,000 for IntensiVE, and over 200,000 for FreeCol). As can
be seen in the table, the vast majority of these rules got
pruned by filter S1, which removes all rules that have less
than 4 matches and are therefore considered to be irrelevant.
Filter S3 (rules with too low confidence) further prunes the
set of rules for both case studies by approximately 2000
rules. The remaining filters reduce the set of rules further by
approximately 150 rules (IntensiVE) and 100 rules (FreeCol).
Note that these filters not only remove redundant rules, but that
they (e.g. in the case of S5) reduce rules to a more concise

IntensiVE FreeCol
Execution time 47secs. 3 mins.
Inspection time 2 hours 8 hours

Rules before filtering 75823 203305
Rules after filtering 146 115

Groups 38 27
Filter S1 72814 200760
Filter S2 17 15
Filter S3 2279 1905
Filter S4 1 7
Filter S5 39 17
Filter S6 1 0
Filter S7 32 22
Filter S8 39 16
Filter H1 12 25
Filter H2 6 6

Repeated rules 437 417

TABLE IV
OVERVIEW OF THE RESULTS OF APPLYING OUR TECHNIQUE TO BOTH

CASE STUDIES.

form. After removing duplicate rules3, we end up with 146
rules for IntensiVE and 115 rules for FreeCol. After grouping,
we end up with 38 groups for IntensiVE and 27 for FreeCol.

Table IV also includes the time necessary to compute the
set of association rules as well as the time invested by the
authors of the paper in analyzing the resulting groups. Our
approach is reasonably fast in computing the rules, ranging
from less than a minute for IntensiVE to approximately
3 minutes for FreeCol. The time necessary to inspect the
resulting groups differs drastically between both case studies.
In the case of IntensiVE, it took about 2 hours to go over
each of the proposed groups, analyze the association rules in
that group and inspect the elements that matched the rules,
along with possible deviations of the rules. As we know the
implementation of IntensiVE well, the amount of needed time
for performing such a detailed analysis was fairly restricted.
For FreeCol, such an analysis took about 8 hours. This was
not unexpected as we did not know the implementation details
of the system and therefore we had to invest a larger effort to
assess the groups and association rules proposed by our tool.

V. ANALYSIS OF RESULTS

In this section, we take a look at the various kinds of
regularities that our approach was able to identify in the
two case studies. Despite the fact that this paper presents
an exploratory study of the use of association rule mining
to identify structural source code regularities, and therefore
only considered three simple properties (class identifiers, class
hierarchies, messages implemented), our approach was able to
identify a number of interesting regularities.

We distinguish three kinds of identified regularities:
• Naming conventions: Regularities that express how the

classes in a particular hierarchy, or implementing a par-
ticular concern or protocol, should be named.

3Duplicate rules may be introduced when rules are compacted by filters like
S5. For example, a more complex rule may be compacted to a more simple
rule that already existed.

• Complementary methods: Regularities that express sets
of methods that should be implemented together.

• Interface definitions: Regularities that express the set
of methods that have to be implemented when a class is
present in a particular hierarchy, or when it implements
a particular concept.

In what follows, we discuss each of these kinds of reg-
ularities in more detail and provide examples of interest-
ing identified regularities from the two case studies. Within
these examples, we use the following naming conventions for
indicating properties: identifiers are indicated by ‘Id’, class
hierarchies by ‘H’ and implements relationships with ‘Im’. For
example, the property that a class belongs to the hierarchy of
Object will be indicated by H > Object.

A. Naming conventions

Our approach identified a number of association rules, or
groups of rules representing naming conventions. These asso-
ciation rules are characterized by the fact that their conclusion
contains one or more identifiers, and represent regularities
such as “If a class belongs to a hierarchy C, it should have
identifier K and L in its class name”, or rules such as “If
a class implements a method M, then that class should have
identifier K in its name”.

1) IntensiVE: The following two examples are selected
from the naming conventions found in IntensiVE:

a) Quantifiers: IntensiVE offers developers a set-
theoretic model to document structural source code regulari-
ties. Part of this model (and the corresponding implementation)
defines quantifiers such as ∀,∃, and so on. Each kind of
quantifier is implemented by a separate class (in the hierarchy
of AbstractQuantifier) that follows the naming con-
vention that its name contains the identifier ‘Quantifier’. Our
approach identified a group of three implications that represent
this regularity:

Im > symbol⇒ Id >′ Quantifier′ ∧H > AbstractQuantifier
Id >′ Quantifier′ ⇒ Im > symbol ∧H > AbstractQuantifier
H > AbstractQuantifier ⇒ Im > symbol ∧ Id >′ Quantifier′

These rules encode the knowledge that all classes in the
hierarchy of AbstractQuantifier implement the method
named symbol (representing the mathematical symbol for the
quantifier) and have ‘Quantifier’ as part of their class name. As
the identified rules were implications, there are no exceptions
to these rules: all 14 quantifier classes in IntensiVE obey the
regularity.

b) Visualizations: IntensiVE features a visual query lan-
guage. For each of the visual primitives in this query language
(e.g. classes, methods, associations, . . .) a separate class is
used. All of these classes are characterized by the fact that
they should contain the identifiers ‘IVEditor’ and ‘Figure’. A
group of three association rules that was identified by our tool
represents this naming convention:

Id >′ IV Editor′
96%−−−→ Id >′ Figure′

H > IV EditorF igure
95%−−−→ Id >′ IV Editor′

H > IV EditorF igure
95%−−−→ Id >′ IV Editor′ ∧ Id >′ Figure′

The first rule expresses that if a class contains the
identifier ‘IVEditor’ it most likely contains ‘Figure’
as well. The other rules express that classes in the
hierarchy of IVEditorFigure should follow the
naming convention. Note that, while these three rules
have a high confidence, there exists a single exception
to these rules. Further inspection of the rules revealed
that one class, IVEFigureRootCollection, did
not obey the regularity and was therefore corrected to
IVEditorFigureRootCollection

2) FreeCol: Similar to the IntensiVE case study, we iden-
tified a number of interesting naming conventions within
FreeCol. One example is the following group:

Id >′ Action′ ∧ Im > getID ⇒ H > FreeColAction
H > FreeColAction⇒ Id >′ Action′

H > FreeColAction ∧ Im > actionPerformed⇒ Id >′ Action′

H > FreeColAction ∧ Im > shouldBeEnabled⇒ Id >′ Action′

FreeCol implements a hierarchy of classes that represent user
interface actions. In addition to the fact that all of these actions
belong to the hierarchy FreeColAction, they all share the
naming convention that they contain the identifier ‘Action’ in
their class name. Note that this group does not include a rule
that concludes the hierarchy from the identifier, as this is not
the case in the source code. For example, there exist classes
like ActionManager that — while they contains the proper
identifier — do not implement a user interface action.

B. Complementary methods

The second kind of regularity that was identified by our
approach are groups of methods that all contribute to the
implementation of a particular concept. These rules represent
regularities of the form “If a class implements a method M,
then it should also implement a method N”.

1) IntensiVE:
a) Compilation: One instance of this kind of regularity

that we identified in IntensiVE was the saving mechanism.
Crosscutting the entire implementation of IntensiVE, there
are classes that represent objects that should be compiled.
To achieve this, IntensiVE offers a small framework that is
customized by each compilable object. Our approach identified
a fairly large group of 21 implication rules that demonstrate
the use of this framework. Some of the rules that were part of
this group are:

Im > compileFooterOn :⇒ Im > compileDefinitionOn :
Im > compileCachingOn :⇒ Im > save∧

Im > compileHeaderOn : ∧
Im > compileFooterOn : ∧
Im > compileSpecificsOn :

Im > fullname ∧ Im > save⇒ Im > generateSelector
. . .

This regularity describes the set of methods that need to
be overridden by an object in order to be compilable. If a
developer overrides one of these methods, then most likely all
others should also be overridden.

b) Undo: The actions that can be performed within the
user interface of IntensiVE are implemented by means of a
Command design pattern [11]. A subset of these actions are
undoable. This is indicated in the source code by the fact that
these actions implement the method isUndoable. However,
in such cases, the undoable action should also implement
the method undoAction that performs the actual undo.
Furthermore, undoable actions are allowed to implement the
optional redoAction method in order to perform a redo.

Our approach identified a group with two rules expressing
the above regularity:

Im > isUndoable⇒ Im > undoAction
Im > redoAction⇒ Im > name, Im > undoAction

2) FreeCol: Within FreeCol, we identified a group that
contains a single association rule. In particular, this group
expressed that:

Im > readFromXMLImpl
96%−−−→ Im > getXMLElementTagName

A closer inspection of the source code identified
that FreeCol offers serialization of game objects to
XML files. In order to properly work, an object
needs to implement both the readFromXMLImpl and
getXMLElementTagName methods. There were two
exceptions to this rule, which represent abstract classes
that implement readFromXMLImpl, but that require their
concrete subclasses to specify getXMLElementTagName.
Note that this regularity could not be captured by a Java
interface: it does not suffice for a class to inherit an
implementation of getXMLElementTagName; each class
that implements readFromXMLImpl should implement its
own getXMLElementTagName method.

C. Interface definitions
The third kind of regularity that we identified are interface

definitions. These are represented by association rules of
the form “If a class belongs to hierarchy C, then it should
implement methods M and N”.

1) IntensiVE: IntensiVE is implemented in the dynamic
language Smalltalk, which does not offer the language con-
struct of an interface. As such, some of the best-documented
regularities in IntensiVE are interface definitions. Our ap-
proach was able to extract some of these interface definitions
automatically from the source code. For example, IntensiVE
offers the concept of fuzzy quantifiers. These are quantifiers
such as “almost all”, “most” and “many”. Within the imple-
mentation of IntensiVE, these fuzzy quantifiers have to im-
plement a particular interface to indicate that they are a fuzzy
quantifier, and to calculate the truth degree that is associated
with their use. One of the groups of association rules that was
identified by our approach contained the following implication
rule that expresses this interface definition:
H > FuzzyQuantifier ⇒ Im > crispQuantifier∧

Im > holdsWithTruth : total∧
Im > fuzzyDegreeWithTruth : total :

The above rule describes the exact intent of the regularity
in IntensiVE, namely that all classes in the hierarchy of
FuzzyQuantifier should implement the correct interface.

2) FreeCol: The colonization game contains the concept
of Locations: the various kinds of tiles in the game (such as
colonies, settlements, and so on). Internally in the implemen-
tation, this concept is represented by an interface definition
named Location that specifies that locations need to pro-
vide an implementation for methods getGoodsContainer
and getLocationName. While this regularity is therefore
explicitly verified by the Java language itself, our approach
was able to identify it in the source code. More specifically,
we found a group containing amongst others the following
rules:

H > Location
80%−−−→ Im > getGoodsContainer

H > Location
80%−−−→ Im > getLocationName

Notice that this rule has a confidence of only 80% because
there exist an abstract class in the implementation of FreeCol
that delegates the implementation of the methods to its sub-
classes. Our approach did not mine the opposite rule (where
the implementation of the methods concludes the interface)
because of the presence of sub-interfaces of Location that
require additional methods to be implemented.

D. Discussion

1) Grouping of rules: One of the contributions of our
approach is the fact that we propose to group rules of which the
matches show a significant amount of overlap. In both cases,
this grouping of rules offered, next to condensing the amount
of information that needs to be processed by a developer,
the added benefit of allowing the evaluation of association
and implication rules in a particular context. Section V-B1a
presents an example of this. We discussed the regularity that, in
order to correctly compile an entity, that entity’s class needs to
implement a set of methods. This regularity was described by
means of a large number of association rules. If the association
rules would have been inspected individually, it would have
been easy to miss that all of these rules actually belong to-
gether and describe the implementation of a particular concept.
In other words, the groups aid in discovering the intent of a
particular regularity by grouping all of its properties.

2) Heterogenous versus homogenous groups: Most of the
identified groups were heterogenous, meaning that the rules in
these groups did not exclusively describe a naming convention,
an interface definition or complementary methods. This is
not that surprising since our technique groups together rules
based on their matches. Consequently, a group reported by
our approach does often not align with a single regularity, but
rather consists of multiple regularities that are applicable to
the same set of entities.

3) Finding violations and improvements using the mined
rules: One of the strengths of association rule mining —
which motivated our choice for this technique — is its
resilience to deviations in the data set. In other words, in order
for a regularity to be discovered by our approach, it is not
necessary that this regularity is strictly obeyed throughout the
entire source code. While during our analysis, we found that
most of these imperfect regularities were caused by the fact

that the regularity itself is not always applicable (i.e. there exist
exceptions to the general rule), we were also able to identify
a number of violations of the regularities. For example, as
we discuss in section V-A1b, our approach amongst others
identified a violation of one of the naming conventions within
IntensiVE. While not discussed above, in the FreeCol case
study we identified a refactoring opportunity in the graphical
interface where a dedicated subclass of JPanel was used. For
no apparent reason, some classes in the interface did not use
this dedicated class but extended the JPanel class directly.

4) Choice of properties and influence on mined regularities:
Since it was our goal to demonstrate the feasibility of our
approach, for now we restricted our analysis to classes and
opted to only include three simple properties of classes. As
a consequence, the different kinds of regularities that can
be discovered based on these properties is rather limited.
We can observe that most of the reported rules describe
the vocabulary that is used in the application. While this
provides interesting information regarding the application [12]
(for example, to novice developers), a wide range of regular-
ities are currently not mined by our approach. For example,
calling relationships, usage of particular classes, framework
specialization constraints, and so on are not found.We plan
further experimentation where we will not restrict our analysis
to classes but also include methods. Furthermore, we will
investigate the use of properties such as calling relationships,
method overrides, typing information and statement ordering.

5) Amount of manual effort: Possible scalability issues of
our approach are not caused by the complexity of computing
the actual association rules, but rather by the manual analysis
of the resulting groups. While our approach aims at mini-
mizing the amount of effort that needs to be invested by a
developer (by extensive filtering and grouping rules), it still
requires a considerable effort to extract the rationale behind the
grouping. In order to identify the intent of a group, a developer
needs to inspect the various rules in that group, along with the
source-code entities that match the rule, and the exceptions to
this rule. Especially in the case of an unfamiliar system, this
can be time consuming. Although such a manual analysis has
to be performed only once for a particular system, we plan
to further circumvent this problem in future work by allowing
the mining and analysis to be done in a more incremental
way, during the development process. We envision a tool that
extends a standard IDE in such a way that, when browsing a
particular source-code entity, the developer is also shown the
groups and association rules in which this source-code entity
is involved (either as a match to a rule, or as a deviation).
This way, a manual post-processing step of the results of our
approach is no longer necessary but the analysis can be done
incrementally, during development.

6) Correctness of the results: From a technical point of
view, all rules mined by our approach are correct with respect
to the system that is analyzed. Nevertheless, without the
filtering that is offered by our approach, the use of association
rule mining can still result in a large number of trivial
rules. Since we restrict our rules to those that are supported

by a sufficient number of matches, and that exhibit a high
confidence and low degree of error, we are able to prune a
significant number of these trivial rules. This however does
not provide any insights into the quality of the mined results
from a usability perspective: are the groups of rules identified
by our tool of interest to developers? While we were able to
identify interesting regularities in both case studies, such an
analysis of the usefulness of our approach is highly subjective.
In future work, we will validate our approach by mining for
regularities in a number of open-source systems and involve
the original developers of these systems in a user study.

7) Comparison with known regularities in IntensiVE: For
the IntensiVE tool, a fairly large number of regularities were
already documented. While our approach was not able to
find all of these regularities (due to restricted scope of our
experiment), we were able to identify a majority (10 out of
15) of the documented naming conventions, complementary
methods and interface definitions. For example, the compila-
tion scheme, the undoable actions and the quantifier naming
convention discussed above were all documented already using
the IntensiVE tool. Furthermore, some interesting regularities
(8) such as the fuzzy quantifier interface and part of the user
interface protocol (not discussed in the paper) were identified
by our approach, but were not previously documented. Our
approach however failed to identify the naming conventions
and interface definitions related to the implementation of a
Factory design pattern within IntensiVE. The reason for this
is the fact that, due to the small number of classes that have
to respect these regularities, association rules that involved the
classes implementing the factory were removed from the result
by our filters.

8) Choice of thresholds: Our approach can result in false
negatives as consequence of the aggressive filtering scheme
where we expect at least 4 matches for the rule, a confidence
of 70% and a degree of error lower then 45%. While this
filtering strategy allows us to limit the amount of noise, it
can result (as illustrated in the previous point) that certain
interesting regularities are filtered out. First, our choice for
expecting at least 4 matches for a rule was inspired by
the observation that a lower threshold would include casual
correlations of properties, therefore increasing the amount of
noise produced by our approach. Second, we experimented
with different confidence and degree of error thresholds. Both
these thresholds have an impact on the number of entities
that get reported by our tool and were determined after
experimentation. For example, using a confidence threshold
of 50% on the IntensiVE case study only resulted in 40 more
association rules, and 2 extra groups. However, we observed
that this lower threshold resulted in the introduction of random
association rules in the groups, that were caused by seemingly
unrelated properties. Although the confidence of these rules
was higher than the threshold, both condition and conclusion
exhibited a large number of exceptions. Similar observations
can be made for the degree of error. While a lower degree
would result in less groups/rules, and a number of interesting
regularities would be eliminated, too high a degree of error

would allow for rules that are too generic (coincidental). While
experiments resulted in the same thresholds for both case
studies, this does not imply that these thresholds are optimal
for the analysis of any system. We hypothesize that, since the
size of both systems is similar, the same thresholds yielded
satisfying results (in spite of the fact that they are written in
different languages).

VI. RELATED WORK

A. Approaches using association rule mining

Our work is not the first one to propose the use of as-
sociation rule mining for extracting knowledge from source
code. For example, Michail [13] uses association rules to
mine library reuse patterns (library components that are reused
together). Similar to our approach, this work analyzes classes
and basic relationships between these classes. Furthermore,
this approach also proposes some heuristics to filter rules that
are not adding information. Thummalapental and Xie [14]
mine association rules obtained from exception handling code.
The association rules that are obtained by their approach are
composed of sequences of method calls that occur together.
Bruch et al. [15] propose the use of frequent itemset analysis
and association rule analysis to remove irrelevant recommen-
dations in code completion. PR-Miner by Li and Zhou [16] use
association rules to extract method and variable correlations
from source code, and use these rules to identify violations
to these rules. Similar to our approach, they offer a grouping
mechanism; theirs is based on the antecedent of the rules.

The above approaches are similar to our approach in that
they use the same mining technique and similar input data. Our
approach aims at grouping and presenting the resulting asso-
ciation rules in such a way as to ease manual interpretation of
these rules, and to discover the rationale behind these rules. In
contrast, the above approaches serve different goals. Therefore,
due to the nature of the problem we tackle, the filtering and
grouping strategies we propose differ from previous ones in
that they aim at presenting the mined association rules in a
more minimal and condensed format.

B. Mining for structural regularities

There are several approaches specialized in mining certain
types of source code regularities. For instance, aspect mining
techniques [17] look for frequent scattering patterns, however
these approaches tend to be difficult to interpret and intoler-
ant to exceptions [18]. Another set of approaches has been
proposed to detect features (i.e. the implementation of user-
perceivable functionality). However, feature detection is gen-
erally based on data that is difficult to extract such as vectors
of words that characterize source code entities [19], and data
and control flow relations [4], [20]. Other feature identifica-
tion techniques rely on traces [21], [7], [22], which require
intense filtering to separate the calls to auxiliary methods
from those that indeed implement the feature. Furthermore,
there are several approaches to mine for API usages [13],
[23], [24], [25] however, the results tend to be very low-
level implementation rules, which are difficult to interpret as

domain/application specific rules. Finally, there are approaches
that aim at extracting domain/application design rules [26],
nevertheless the scalability of this approach is limited. To
summarize, in comparison to our approach, previous regularity
mining approaches tend to be specialized for a single type of
regularity being incapable of detecting other regularities, while
our approach would find as many and diverse regularities as
properties analyzed. In contrast to the approaches presented,
ours is a lightweight approach which is resilient to exceptions
and provide hints to interpret the rationale of the results.

VII. CONCLUSIONS

Structural source-code regularities such as idioms, naming
conventions, interface definitions, play an important role in
easing software maintenance and evolution. Unfortunately,
such regularities are often only implicitly known and not doc-
umented. Furthermore, automatic extraction of such structural
regularities from source code is not a trivial task, due to the
overwhelming amount of information that mining techniques
might present a user, and the inherent presence of exceptions
to the structural regularities in the source code.

In this paper we have presented a novel approach for mining
such regularities that is based on association rule mining. The
contributions of our approach are:

1) Resilience to exceptions in the source code, due to the
nature of the applied association rule mining technique;

2) A comprehensive representation of the mined rules, due
to an elaborate post-filtering and grouping of rules;

3) An intentional description of the mined regularities, due
to the fact that we mine for relations between properties
of source code entities, and not between the actual
entities.

As a proof-of-concept of the feasibility of our approach,
we have applied it to two open-source systems (IntensiVE and
FreeCol). Despite the fact that we only considered three simple
properties of the analyzed classes (identifiers, implemented
methods, inheritance relationships), our qualitative analysis of
the resulting groups of association rules indicated that our
approach is able to discover interesting structural source code
regularities. Currently, we are extending the experiment to
methods and relations between those methods.

ACKNOWLEDGEMENTS

This work has been performed under the scope of the MinDeR
bilateral project sponsored by MINCyT Argentina and FWO Flan-
ders. Angela Lozano is funded by the ICT Impulse Programme of the
Institute for the encouragement of Scientific Research and Innovation
of Brussels (ISRIB). Andy Kellens is funded by a research mandate
provided by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen). This work
has been supported by the Interuniversity Attraction Poles (IAP)
Programme of the Belgian State – Belgian Science Policy.

REFERENCES

[1] K. Bennett and V. Rajlich, “Software maintenance and evolution: a
roadmap,” in The Future of Software Engineering. ACM, 2000, pp.
73–87.

[2] T. Matsumura, A. Monden, and K. Matsumoto, “The detection of faulty
code violating implicit coding rules,” in Workshop on Principles of
Software Evolution, 2002.

[3] K. Gallagher and J. Lyle, “Using program slicing in software mainte-
nance,” IEEE Trans. Softw. Eng., vol. 17, no. 8, pp. 751–761, 1991.

[4] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.” in Intl. Workshop on Program Comprehension, 2000, pp.
241–247.

[5] M. Robillard and G. Murphy, “Concern graphs: finding and describing
concerns using structural program dependencies,” in Intl. Conf. on
Software Engineering. ACM, 2002, pp. 406–416.

[6] K. Mens, I. Michiels, and R. Wuyts, “Supporting software development
through declaratively codified programming patterns,” Elsevier Journal
on Expert Systems with Applications, vol. 23, no. 4, pp. 405–431, 2002.

[7] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Trans. Softw. Eng., vol. 29, no. 3, pp. 210–224, 2003.

[8] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases.” in Intl. Conf. on Management
of Data. ACM SIGMOD, 1993, pp. 207–216.

[9] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[10] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foun-
dations. Springer Verlag, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
Elements of Reusable Object-Oriented Software, 1995.

[12] J. Maletic and A. Marcus, “Supporting program comprehension using
semantic and structural information,” in Intl. Conf. on Software Engi-
neering. IEEE/ACM, 2001, pp. 103–112.

[13] A. Michail, “Data mining library reuse patterns using generalized
association rules,” in Intl. Conf. on Software Engineering. ACM, 2000,
pp. 167–176.

[14] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in ICSE ’09: Proc. of the 2009 IEEE 31st
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 496–506.

[15] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in European Software Engineering
Conf. and the symposium on the Foundations of Software Engineering.
ACM, 2009, pp. 213–222.

[16] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” in
European software engineering conference/International symposium on
Foundations of software engineering. ACM, 2005, pp. 306–315.

[17] A. Kellens, K. Mens, and P. Tonella, “A survey of automated code-level
aspect mining techniques,” Transactions on Aspect-oriented Develop-
ment (TAOSD), 2007.

[18] K. Mens, A. Kellens, and J. Krinke, “Pitfalls in aspect mining,” in
Working Conf. on Reverse Engineering. IEEE Computer Society, 2008,
pp. 113–122.

[19] A. Marcus and J. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Intl. Conf. on
Software Engineering, 2003, pp. 125–135.

[20] B. Dagenais, S. Breu, F. Warr, and M. Robillard, “Inferring structural
patterns for concern traceability in evolving software.” in Automated
Software Engineering (ASE). ACM, 2007, pp. 254–263.

[21] N. Wilde, M. Buckellew, H. Page, and V. Rajlich, “A case study of
feature location in unstructured legacy FORTRAN code.” in European
Conf. on Software Maintenance and Reengineering, 2001, pp. 68–76.

[22] G. Antoniol and Y. Guéhéneuc, “Feature identification: A novel ap-
proach and a case study,” in Intl. Conf. on Software Maintenance, 2005,
pp. 357–366.

[23] C. Williams and J. Hollingsworth, “Automatic mining of source code
repositories to improve bug funding techniques.” Transactions on Soft-
ware Engineering, vol. 31, no. 6, pp. 466–480, 2005.

[24] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories.” in Mining Software Repositories. ACM, 2006, pp. 54–57.

[25] H. Kagdi, M. Collard, and J. Maletic, “An approach to mining call-usage
patterns with syntactic context.” in Intl. Conf. on Automated Software
Engineering, 2007, pp. 457–460.

[26] P. Lam and M. Rinard, “A type system and analysis for the automatic
extraction and enforcement of design information.” in European Confer-
ence on Object-Oriented Programming. Springer, 2003, pp. 275–302.

