
Context-Aware Tuples for the Ambient

Christophe Scholliers ?, Elisa Gonzalez Boix ??, Wolfgang De Meuter, and
Theo D’Hondt

Software Languages Lab
Vrije Universiteit Brussel, Belgium

{cfscholl,egonzale,wdmeuter,tjdhondt}@vub.ac.be

Abstract. In tuple space approaches to context-aware mobile systems,
the notion of context is defined by the presence or absence of certain
tuples in the tuple space. Existing approaches define such presence either
by collocation of devices holding the tuples or by replication of those
tuples across all devices. We show that both approaches can lead to
an erroneous perception of context. The former ties the perception of
context to network connectivity which does not always yield the expected
result. The latter causes context to be perceived even if a device has left
that context a long time ago. We propose a tuple space approach in which
tuples themselves carry a predicate that determines whether they are in
the right context or not. We present a practical API for our approach
and show its use by means of the implementation of a mobile game.

1 Introduction

A growing body of research in pervasive computing deals with coordination in
mobile ad hoc networks. Such networks are composed of mobile devices which
spontaneously interact with other devices within communication range as they
move about. This network topology is often used to convey context information
to collocated devices [13]. Moreover, such context information can be used to
optimize application behaviour given the scare resources of mobile devices [10].
In this paper, we focus on distributed programming abstractions to ease the
development of context-aware applications deployed in a mobile environment.

Developing these applications is complicated because of two discriminating
properties inherent to mobile ad hoc networks [18]: nodes in the network only
have intermittent connectivity (due to the limited communication range of wire-
less technology combined with the mobility of the devices) and applications
need to discover and collaborate without relying on a centralized coordination
facility. Decoupled coordination models such as tuple spaces provide an appro-
priate paradigm for dealing with those properties [10]. Several adaptations of tu-
ple spaces have been specially developed for the mobile environment (including
LIME [13], L2imbo [2] and TOTA[9]). In those systems, processes communicate
by reading from and writing tuples to collocated devices in the environment.
Context information in such systems is thus represented by the ability to read
certain tuples from the environment. In this paper we argue that this represen-
tation is inappropriate and can even lead to an erroneous perception of context.
? Funded by a doctoral scholarship of the IWT-Flanders, Belgium.

?? Funded by the Prospective Research for Brussels program of IWOIB-IRSIB, Belgium

2

The main reason for this is that the ability to read a tuple from the environment
does not give any guarantees that the context information carried by the tuple
is appropriate for the reader. This forces programmers to manually verify that
a tuple is valid for the application’s context situation after the tuple is read.

In this paper, we propose a novel tuple space approach called context-aware
tuples which decouples the concept of tuple perception from tuple reception. A
context-aware tuple has an associated predicated called a context rule that de-
termines when the receiving application is in the right context to perceive the
tuple. Only when a tuple’s context rule can be satisfied by the context of the
receiving application, the tuple can be perceived by the application. Applica-
tions can also be notified when the tuple can no longer be perceived. The core
contribution of this work lies in the introduction of a general programming con-
cept under the form of a context rule to support development of context-aware
applications in a mobile environment. Our contribution is validated by (1) a
prototype implementation, (2) demonstrating the applicability of our model by
using it in a non-trivial context-aware distributed application and (3) providing
an operational semantics for our model.

2 Motivation

Tuple spaces were first introduced in the coordination language Linda [7]. Re-
cently they have shown to provide a suitable coordination model for the mobile
environment [10]. In the tuple space model, processes communicate by means of
a globally shared virtual data structure (called a tuple space) by reading and
writing tuples. A tuple is an ordered group of values (called the tuple content)
and has an identifier (called the type name). Processes can post and read tuples
using three basic operations: out to insert a tuple into the tuple space, in to
remove a tuple from the tuple space and rd to check if a tuple is present in the
tuple space (without removing it). Tuples are anonymous and are extracted from
the tuple space by means of pattern matching on the tuple content.

In order to describe the main motivation behind context-aware tuples, we
introduce a simple yet representative scenario and show the limitations of ex-
isting tuple space approaches. Consider a company building where each room
is equipped with devices that act as context providers of different kinds of in-
formation. For example, information to help visitors to orient themselves in the
building or information about the meeting schedule in a certain room. Employees
and visitors are equipped with mobile devices which they use to plan meetings
or to find their way through the building. Since each room is equipped with a
context provider, a user located in one room will receive context information
from a range of context providers. Only part of this context information which
is broadcasted in the ambient is valid for the current context of the user.

Figure 1 illustrates the scenario where ω represents the company building,
τ a meeting room in the building, and γ the communication range of a device
located in the meeting room. The star denotes a tuple space (acting as the
context provider) which injects tuples into the ambient, i.e. all devices (depicted

3

Legend

Context Provider

Perceives Correct Context

Perceives Wrong Context

Target Context

Network Connectivity

 ω

 ω

τ
γ

τ
γ

World
R

R

Fig. 1. Context perception in existing tuple space approaches

as dots) ∈ γ. Those tuples are aimed to be perceived by devices in the meeting
room, i.e. in the target area τ . This device injects a tuple in the ambient to
signal receivers that they are currently in the meeting room. Note that location
is just one example of context, τ could involve more complex constraints, e.g.
being located in the meeting room while there is a meeting.

A large body of tuple space systems targeting a mobile setting follows a feder-
ated tuple space model [13] in which the visibility of the tuples (and thus context
perception) directly depends on collocation of devices holding these tuples. In
this model, the perceived context of a device is equivalent to being in range of γ.
The context delivery solely based on γ makes two groups of devices to perceive
wrong context information (depicted as black dots). The first group consists of
devices contained in the set γ \ τ . In our example, these are all devices within
communication range of the context provider but outside the meeting room.
These devices will perceive to be in the meeting room while they are actually
not. The second group consists of devices contained in the set τ \ γ. In our ex-
ample, these are all devices out of communication range of the context provider
(possibly due to an intermittent disconnection) but in the meeting room. These
devices will perceive not to be in the meeting room while they are actually.

Other tuple space systems have adopted a replication model where tuples are
replicated amongst collocated devices in order to increase data availability in the
face of intermittent connectivity [9, 12]. In replication-based models, devices in
τ \ γ will not perceive wrong context information. However, in these systems
tuple perception is equivalent to have been once within reach of γ, possibly in
the past. This means that devices which have been connected to the context
provider once (τ) and are currently in ω \ τ (depicted as black dots with a R)
will perceive to be in the meeting room even though they are no longer there.

2.1 Summary

Using current tuple space approaches the context perception is correct in cer-
tain cases (the white dots) but, in many cases it is wrong (black dots). There
are three main reasons for these erroneous context perceptions. First, there is a
connectivity-context mismatch making context sharing based solely on connec-
tivity unsuitable for the development of context-aware applications deployed in a
mobile setting. Second, the observed context is affected by intermittent connec-
tivity: temporal disconnections with the context provider result in an erroneous

4

context perception. Third, when using replication-based models to deal with
intermittent connectivity, a permanent disconnection leads devices to perceive
that they are in the target area forever.

In order to solve these issues, programmers are forced to manually verify that
every tuple (and thus context information) is valid for the application’ context.
More concretely, programmers have to manually determine tuple perception at
the application level after a tuple is read from the tuple space. Manually deter-
mining the applications context and adapt accordingly leads to context-related
conditionals (if statements) being scattered all over the program [1], hindering
modularity. Additionally, the content of the tuples have to be polluted with meta
data in order to infer tuple perception at application level, decreasing reusability
of tuples. For example, a Room tuple indicating that a person is currently located
in the meeting room should also contain the location information. Finally, pro-
grammers need to write application level code that deals with context-awareness
in order to compensate for the lack of expressiveness of underlying model.

As the complexity of context-aware applications increases, manually comput-
ing tuple perception can no longer be solved using ad hoc solutions. Instead, the
coordination model should be augmented with abstractions for context-aware-
ness that allow developers to describe tuple perception in the coordination model
itself. Context-aware tuples provides an alternative approach that keeps the sim-
plicity of the tuple space model where interactions and context information are
defined by means of tuples, while allowing tuples themselves to determine the
context in which a receiving application should be in order to perceive a tuple.

3 Context-Aware Tuples

Context-aware tuples is a novel tuple space approach for mobile ad hoc net-
works tackling the tuple perception issues described. We introduce the notion of
a context rule prescribing when a tuple should be perceived by the application,
and a rule engine to infer when a tuple is perceivable and when it is not. Un-
like existing tuple space approaches, only the subset of tuples which should be
perceivable, is made accessible to applications.

The Core Model The model underlying context-aware tuples gathers con-
cepts from both federated and replication tuple spaces, and extends them with
a declarative mechanism to express context information with tuples. Figure 2
depicts our model. A device in the network is abstracted as a virtual machine
(VM) carrying one or more context-aware tuple space (CAT) systems. CAT sys-
tems are connected to other CAT systems by means of a mobile ad hoc network.
Several interconnected CAT systems form a CAT network. The composition of
a CAT network varies according to the changes on the network topology as the
hosting device moves about with the user. A CAT system consists of a tuple
space and a rule engine.

The tuple space serves as the interface between applications and the CAT
system. It supports non-blocking Linda-like operations to insert, read and re-

5

VM VM

flow of tuples in the model

Applications

Applications

 Context-Aware Tuple Space System

Tuple
Space Rule Engine Context-Aware Tuple Space System

Tuple
Space

Rule
Engine

 Context-Aware Tuple Space System

Tuple
Space

Rule
Engine

Fig. 2. Context-aware tuple space model

move tuples. The main reason for the strict non-blocking operations is that it
significantly reduces the impact of volatile connections on a distributed appli-
cation1. As an alternative to blocking operations, we provide the notion of a
reaction to a tuple (similar to a LIME reaction [13]): applications can register
an observer that is asynchronously notified when a tuple matching a certain
template is found in the tuple space.

The tuple space of a CAT system contains two types of tuples. Public tuples
denote tuples that are shared with remote CAT systems, and private tuples
denote tuples that remain local to the tuple space in which they were inserted
and thus, will not be transmitted to other CAT systems. Applications can insert
private and public tuples in the tuple space by means of the out and inject
operation, respectively. As in LIME, applications can access tuples coming from
the network without knowing the different collocated CAT systems explicitely.

The rule engine infers when a tuple should be perceived by applications (i.e.
when its context rule is satisfied). Before further detailing the role of the rule
engine, we describe how tuples are spread across the network.

Distribution of tuples in the network. When two CAT systems discover
each other in the network, the public tuples contained in their tuple spaces are
cloned and transmitted to the collocated CAT system. Hence, our model repli-
cates tuples to remote CAT systems. Related work has shown that replication
increases availability in such a highly disconnected environment allowing parties
not to have to be connected at the same time to communicate [12]. In this work,
replication is used to support context-aware computation even though context
providers and receivers are not connected at the same time. When a CAT system
disconnects from the CAT network, the interchanged tuples are still stored in
each CAT system allowing applications to perform some computation based on
the stored context information despite being disconnected.

Tuples are propagated from CAT to CAT system when they see each other on
the network according to a propagation protocol (similar to a TOTA propagation
rule [9]). Tuples themselves carry a propagation protocol that allows a tuple

1 From previous work, we have found that a loosely-coupled communication model mit-
igates the effects of hardware characteristics inherent to mobile ad hoc networks [3].

6

itself to check whether it should be propagated to a certain CAT system. Such
propagation protocol is triggered before a tuple is being physically transmitted
to a new CAT system avoiding unnecessary exchange of tuples. In this work,
the propagation protocol is limited to one-hop neighbours. A description of this
scoped propagation mechanism can be found in [16]. Note that other replication
techniques could be used [12], and the mechanism for replication is orthogonal
to the abstractions for context-awareness introduced in this work.

Managing Tuple Perception. The rule engine is a central component in our
model which ensures that applications can only see those tuples that they should
perceive. Each tuple inserted in a CAT system carries a context rule. A context
rule defines the conditions that need to be fulfilled for a tuple to be perceivable.
Such context rule is defined by the creator of the tuple and gets transmitted
together with the tuple when the tuple is injected in the network.

When a tuple is inserted at a certain CAT system, the tuple is first handed in
to the rule engine which installs the necessary machinery to evaluate the tuple’s
context rule. When the rule engine infers that the conditions on a context rule
are satisfied, the tuple’s context rule is triggered and said to be satisfied. Only
when the context rule of a tuple is satisfied, the tuple is inserted in the tuple
space of the CAT system. At that moment, the applications are able to read
the tuple. The rule engine takes care of reflecting the changes to the receiver’
context so that applications cannot perceive those tuples whose context rule is
not satisfied. The rule engine combined with the context rule solve the erroneous
context perception problems from which replication-based approaches suffer.

As explained in the introduction, context information in tuple space ap-
proaches is represented by the ability to read certain tuples from the tuple space.
These tuples can be either received from the environment or inserted locally. An
example of a locally inserted tuple is a tuple which indicates the user location
(e.g. GPS coordinates). As this information is always true, the associated con-
text rule of such a tuple is always satisfied independently of the context. In
contrast, a tuple received from the ambient indicating that a user is located in
the meeting room needs a custom rule. The rule could specify that, e.g., there
should be a location tuple in the receiving tuple space whose coordinates are
within the boundaries of the meeting room. Our model conceives a context rule
as a set of conditions defined in terms of the presence of certain tuples in the
receiving tuple space. The rule engine thus observes the insertion and removal of
the tuples in the tuple space to infer which context rules are satisfied. Defining
context rules in terms of tuples allows the application to abstract away from the
underlying hardware while keeping the simplicity of the tuple space model.

The rule engine incorporates a truth maintenance system built on top of a
RETE network [5]. A RETE network optimizes the matching phase of the in-
ference engine providing an efficient derivation of context rule activation and
deactivation. The network has also been optimized to allow constant time dele-
tions by applying a scaffolding technique [15]. A full description of the engine
and its performance is out of the scope of this paper and can be found in [17].

7

The lifespan of a context-aware tuple. Context rules introduce a new di-
mension in the lifespan of a tuple. Not only can a tuple be inserted or removed
from the tuple space, but it can also be perceivable or not for the application.
Figure 3 shows a UML-state diagram of the lifespan of a context-aware tuple.
When an application inserts a tuple in a CAT system 2, the tuple is not perceiva-
ble and its context rule is asserted in the rule engine. The rule engine then starts
listening for the activation of that context rule (CR activation in the figure).

A tuple will become perceivable depending on whether the context rule is
satisfied. If the context rule is satisfied, the tuple is perceivable and it is subject
to tuple space operations (and thus becomes accessible to the application). If the
tuple is not perceivable, the tuple is not subject to tuple space operations but its
context rule remains in the rule engine. Every time a tuple’s context rule is not
satisfied, the out of context listeners for a tuple (OC listeners in the figure) are
triggered. Applications can install listeners to be notified when a tuple moves
out of context and react to it.

Perceivable
CR Deactivation

in [template]

[!context rule] /
OC Listeners

Not Perceivable
CR Activation

Not Perceivable
CR Retracted

Not Perceivable
CR Deactivation

[context rule]

rd [template] out [!context rule]

[!context rule] /
OC Listeners

Fig. 3. Lifespan of a context-aware tuple

Upon performing an in operation, the tuple is removed from the tuple space
but its context is not modified. As such, the tuple is considered not to be per-
ceivable (as it is out of the tuple space) and its context rule remains in the rule
engine. Once out of the tuple space, the rule engine listens for the deactivation of
the context rule. Once the context rule is no longer satisfied, the context rule is
retracted from the rule engine, and the tuple will be eventually garbage collected
(once it is no longer referenced by the application).

Coordination. Our model combines replication of tuples for read operations
while guaranteeing atomicity for remove operations. Atomicity for remove oper-
ations is an essential feature to support synchronization between applications.
In our model, applications cannot remove tuples coming from a remote CAT
system which is no longer connected. In order for a remove operation to succeed,
the CAT system which created and injected the tuple in the network (called the
originator system) needs to be connected. This means that a remove operation
in our approach is executed atomically as defined in Linda [7]: if two processes

2 To keep the figure concise out denotes the insertion of a private or a public tuple.

8

perform a remove operation for a tuple, only one removes the tuple. When an
originator is asked to remove one of its (stored) tuples by another CAT system, it
removes the tuple and injects an antituple in the network for the removed tuple.
For every tuple there is (conceptually) a unique antituple with the same format
and content, but with a different sign. All tuples injected by an application have
positive sign while their antituples have a negative sign. Whenever a tuple and
its antituple are stored in the same tuple space, they immediately annihilate one
another, i.e. they both get removed from the tuple space. By means of antituples,
CAT systems can “unsend” tuples injected to the network.

Garbage Collection of Tuples. In our model, a public tuple gets replicated
to collocated CAT systems. Some of these tuples may not be used by the re-
ceiving CAT system, resulting in accumulation of obsolete tuples. We use two
mechanisms to garbage collect tuples in the CAT network. First, all tuples are
injected in the network with an associated timeout. Such a timeout denotes the
total lifespan of a tuple and it is determined by the application that creates and
injects the tuple to the network. A tuple is transmitted together with its timeout
to another CAT system. When the time period has elapsed, independently of
the state in which a tuple is, the tuple becomes candidate for garbage collection
in the CAT system. This means that the tuple context’ rule is retracted from
the engine, and the tuple is removed from the tuple space if necessary. The tran-
sitions for garbage collection have been omitted from figure 3 to keep it clear
and concise. Secondly, when a public tuple gets removed, an antituple is sent
to those systems that received the removed tuple. If a CAT system cannot be
reached, the removal of the tuple is delayed until its timeout elapses.

3.1 Operations

In this section we describe context-aware tuples from a programmer’s perspec-
tive. Context-aware tuples have been implemented as part of AmbientTalk3, a
distributed object-oriented programming language specifically designed for mo-
bile ad hoc networks [18]. We introduce the necessary syntax and features of the
language along with our explanation.

In order to create a CAT system programmers can call the makeCatSystem
operation as follows:
def cat := makeCatSystem ();

This operation initializes a CAT system (including the rule engine and the
tuple space) and publishes it to the ambient, i.e. the CAT network. It returns
the tuple space of the newly created CAT system. Variables are defined with the
keyword def and assigned to a value with the assignment symbol (:=).

As mentioned before, all operations for interacting with the tuple space of
a CAT system are non-blocking. We provide the rdp(template) operation to
check if a tuple matching the template is present in the tuple space(without
3 Context-aware tuples is available with AmbientTalk at http://soft.vub.ac.be/amop

9

removing it), and the out(tuple) operation to insert a private tuple in the
tuple space. In order for applications to insert a public tuple, thereby making it
available to other collocated CAT systems, the inject: operation is provided:

cat.inject: tuple inContext: contextRule timeout: timeInterval;

This operation takes as parameter a tuple and its context rule and a time
interval denoting the timeout value for the tuple. A context rule is defined by an
array containing the set of templates and constraints that need to be satisfied
for the tuple to be perceivable. Constraints are conceived as logical conditions
on the variables used in a template. As a concrete usage example, consider again
the scenario sketched in the motivation. In order to model that a device is within
the meeting room, the context provider could inject a public tuple as follows:

cat.inject: tuple(inRoom , meetingRoom)
inContext: [tuple(location ,?loc), withinBoundary(roomArea ,?loc)];

A tuple is created by means of the tuple operation which takes as parameter
a list of fields. As usual, the first field of a tuple is its type name. In this case,
we create a inRoom tuple for the meeting room whose context rule consists of
two terms that need to match. First, there must be a tuple in the tuple space
matching the tuple(location,?loc) template 4. The ? operator indicates a
variable in a template, i.e. the template matches any location tuple in the tuple
space. Secondly, the location tuple needs to satisfy a constraint: its coordinates
have to be within the area of the meeting room. The withinBoundary function
returns such a constraint given the coordinates stored in the ?loc variable and
the meeting room area stored in roomArea variable.

Programmers can use reactions to register a block of code that is executed
when a tuple matching a template is inserted in the tuple space. Our approach
extends a LIME reaction with the notion of context : a reaction can only be trig-
gered when the tuple matching the pattern is perceivable. Programmers can also
react to a tuple moving out of context by installing an outOfContext listener.
In what follows, we describe the different kinds of reactions supported.

cat.when: template read: closureIn outOfContext: closureOut;

The when:read: operation takes as parameter a template to observe in the
tuple space, and two closures that serve as event handlers to call when the
tuple is perceivable and when it is not, respectively. When a perceivable tuple
matches the template, the closureIn handler is called binding all variables of
the template to the values of the matching tuple. As this operation performs a
reaction to a rd operation, the tuple is not removed from the tuple space. When
the context rule of the matching tuple is not satisfied, the closureOut handler
is called. The when:read: operation only triggers the event handlers once for a
matching tuple. If several perceivable tuples match the template, one is chosen
non-deterministically. The whenever:read: operation works analogously but it

4 A template is created by means of the tuple operation as well. However, only tem-
plates can take variables as fields.

10

triggers the event handlers for every perceivable tuple matching the template.
The code snippet below shows the usage of this operation in our scenario.

cat.whenever: tuple(inRoom ,?name) read: {
display("You are in room" + name);

} outOfContext: {
display("You moved out of room" + name);

};

In the example, each time an inRoom tuple is matched, the application notifies
that the user moved in a certain room. Once the user moves out of the boundaries
of that room, the inRoom’s context rule is not satisfied and the outOfContext
closure is applied notifying the user that he moved out of the room.

The following two operations work analogously to the previous ones but, they
perform a reaction to an in operation rather than a rd operation.

cat.when: template in: closureIn outOfContext: closureOut;
cat.whenever: template in: closureIn outOfContext: closureOut;

Those operations remove the tuple from the tuple space before calling the
closureIn handler. Note that if the tuple to be removed comes from another
CAT system, the underlying CAT system contacts the originator CAT system to
atomically remove the original tuple. If that removal fails, the replicated tuple is
not removed from the local tuple space and closureIn is simply not triggered.

4 Semantics

We now formalize the context-aware tuples model by means of a calculus with
operational semantics based on prior works in coordination [19, 20]. The syntax
of our model is defined by the grammar shown in table 4. k identifies the type
of the tuple: + for a public tuple, ⊕ for a private tuple and − for an antituple.
A context-aware tuple c is specified as a first order term τ . τkx,t〈r〉 indicates that
the tuple with content τ , type k and timeout t, originates from a tuple space
with identifier x and is only perceivable when its context rule r is satisfied. The
context rule is considered optional and the notation τkx,t should be read as τkx,t〈1〉,
i.e. the context rule is always true. The antituple of a tuple τkx,t is denoted by
τ−x,t〈0〉, i.e. its context rule is always false.

Table 1. Context-Aware Tuples: Grammar

k ::= + | ⊕ | − Tuple Types
c ::= τk

x,t〈r〉 Context-Aware Tuple
S ::= ∅ | c, S Tuple Set
P ::= ∅ | A.P Process
C ::= ∅ | (JSKx|C) | (P |C) Configuration
A ::= out(x, τ, r, t) | inject(x, τ, r, t) | rd(x, ν) | in(x, ν) |
outC(x, ν) | whenRead(x, ν, Pa, Pd).P | whenIn(x, ν, Pa, Pd).P Actions

11

A process P consists of a sequence of tuple space operations A. Tuples are
stored in S which is defined as a set of tuples composed by the operator (,).
A tuple space with content S and identifier x is denoted by JSKx. A system
configuration C is modeled as a set of processes P and collocated tuple spaces
JSKx composed by the operator |. An application consists of all P ∈ C.

Next to the grammar, we assume the existence of a matching function µ(ν, τ)
that takes a template ν and a tuple content τ , and returns θ. θ is a substitution
map of variable identifiers from the template ν to the actual values from τ . A
concrete value in this map can be accessed by θz that returns the actual value
for z. The matched tuple can be accessed by θτ . We also assume the existence of
a function time which returns a numeric comparable value indicating the current
time. r(S) indicates that the context rule r is satisfied in the tuple set S.

The semantics of the context-aware tuples model is defined by the transition
rules shown in table 2. Every transition C λ−→ C ′ indicates that a configuration
C can be transformed into a configuration C ′ under the condition λ.

Table 2. Operational Semantics

out(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ⊕

x,t′ 〈r〉 , SKx|C (OUT)

inject(x, τ, r, t).P |JSKx|C
t′=time()+t−−−−−−−−−→ P |Jτ+

x,t′ 〈r〉 , SKx|C (INJ)

Jτkx,t 〈r〉 , SKx|JS′Ky|C
τ 6∈S′∧(k 6=⊕)∧−−−−−−−−−−→

(x 6=y)
Jτkx,t 〈r〉 , SKx|Jτkx,t 〈r〉 , S

′Ky|C (RPL)

rd(x, ν).P |Jτky,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧(k 6=−)∧−−−−−−−−−−−−−→

r(S)
Pθ|Jτky,t 〈r〉 , SKx|C (RD)

Jτ−y,t 〈0〉 , τ
k
y,t 〈r〉 , SKx|C

(k 6=−)−−−−−→ Jτ−y,t 〈0〉 , SKx|C (KILL)

Jτky,t 〈r〉 , SKx|C
t≤time()∧(k 6=−)−−−−−−−−−−−−→ Jτ−y,t 〈0〉 , SKx|C (TIM)

in(x, ν).P |Jτkx,t 〈r〉 , SKx|C
µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→

(k 6=−)
Pθ|Jτ−x,t 〈0〉 , SKx|C (INL)

in(x, ν).P |Jτ+
y,t 〈r〉 , SKx|Jτ+

y,t 〈r〉 , S
′Ky|C

µ(ν,τ)=θ∧r(S)∧−−−−−−−−−−−−→
(x 6=y)

Pθ|JSKx|Jτ−y,t 〈0〉 , S
′Ky|C (INR)

outC(x, τ).P |Jτky,t 〈r〉 , SKx|C
!r(S)−−−−→ P |Jτky,t 〈r〉 , SKx|C (OC)

whenRead(x, ν, Pa, Pd).P |JSKx|C
1−→ rd(x, ν).Pa.outC(x, θτ).Pd|P |JSKx|C (WR)

whenIn(x, ν, Pa, Pd).P |JSKx|C
1−→ in(x, ν).Pa.outC(x, θτ).Pd|P |JSKx|C (WI)

The (OUT) rule states that when a process performs an out operation over
a local tuple space x, the tuple is immediately inserted in x as a private tuple
with context rule r and timeout t′. The process continuation P is executed
immediately. When a tuple is inserted in the tuple space x with an inject
operation as specified by (INJ), the tuple is inserted in x as a public tuple
and is replicated to other tuple spaces as specified by (RPL). This rule states
that when a tuple space y moves in communication range of a tuple space x,
all tuples τkx,t which are not private and are not already in y will be replicated
to y. The (RD) rule states that to read a template ν from a tuple space x, x
has to contain a matching τky,t and the context rule of τ is satisfied in S. (RD)
blocks if one of these conditions is not satisfied. When (RD) does apply, the
continuation P is invoked with substitution map θ. Note that we do not disallow
x to be equal to y in this rule. The (KILL) rule specifies that when both a
tuple τ and its unique antituple τ− are stored in the same tuple space, τ is

12

removed immediately. The (TIM) rule specifies that when the timeout of a tuple
τ elapses, its antituple τ− is inserted in the tuple space. The in operation is
guaranteed to be atomically executed. In the semantics, it has been split into
a local rule (INL) and a remote rule (INR). (INL) works similarly to (RD),
but it removes the tuple τkx,t originated by the local tuple space x and inserts
its antituple τ−x,t. (INR) states that when the in operation is matched with
a tuple published by another tuple space y, y must be one of the collocated
tuple spaces (i.e. be in the configuration). Analogously to (INL), the tuple is
removed and its antituple is inserted. The (OC) rule states that to move out
of context a tuple τ from a local tuple space x, x has to contain τ (possibly
its antituple) and its context rule is not satisfied. The WR rule states that
a whenRead operation performed on the local tuple space x with template ν
and processes Pa and Pd, is immediately translated into a new parallel process
and the continuation P will be executed. The newly spawned parallel process is
specified in terms of performing a rd operation followed by an outC operation.
A rd operation blocks until there is a tuple matching ν in the local tuple space.
The continuation Pa is then executed to subsequently perform an outC which
blocks until the tuple is no longer perceivable. Finally, the continuation Pd is
invoked whereafter the process dies. The WI is specified analogously but as it
models a whenIn operation, it performs a in operation rather than a rd one.
The wheneverRead and wheneverIn operations have been omitted as they are
trivial recursive extensions of whenRead and whenIn, respectively.

Note that (KILL) does not remove antituples. This has been omitted to
keep the semantics simple and concise. By means of (RPL), the antituple of a
tuple τ is only replicated to those systems that received τ . In our concrete imple-
mentation if a system cannot be reached, the removal of the antituple is delayed
until the timeout of its tuple elapses (which inserts an antituple as specified by
(TIM)). An antituple can only be removed once there are no processes in the
configuration which registered an outC operation on the original tuple.

5 Flikken: Programming with context-aware tuples

We demonstrate the applicability of context-aware tuples by means of the imple-
mentation of Flikken 5: a game in which players equipped with mobile devices
interact in a physical environment augmented with virtual objects. The game
consists of a dangerous gangster on the loose with the goal of earning 1 mil-
lion euro by committing crimes. In order to commit crimes a gangster needs to
collect burgling equipment around the city (knives, detonators, etc). Policemen
work together to shoot the gangster down before he achieves his goal. Figure 4
shows the gangster’s and a policeman’s mobile device at the time the gangster
has burgled the local casino. The gangster knows the location of the places with
big amounts of money (banks, casinos, etc). When a gangster commits a crime,
policemen are informed of the location and the amount of money stolen. Po-
licemen can see the position of all nearby policemen and send messages to each
5 Flikken (which means cops in Dutch) is also included in the AmbientTalk distribution

13

other to coordinate their movements. The gangster and policemen are frequently
informed of each other positions and can shoot at each other.

Fig. 4. Flikken GUI on the gangster device (left) and a policeman device (right).

Flikken is an ideal case study for context-aware tuples as it epitomizes a
mobile networking application that has to react to context changes on the en-
vironment such as changes on player’s location, appearance and disappearance
of players, and the discovery of virtual objects while moving about. Moreover,
how to react to these changes highly depends on the receivers of the context
information, e.g. virtual objects representing burgling items should only be per-
ceived by the gangster when he is nearby their location while they should not
be perceived at all by policemen. In what follows we describe the coordination
and interaction between policemen and the gangster which is fully specified by
means of context-aware tuples.

5.1 Implementation

Every player has a CAT system in his mobile device. Once the game starts,
policemen and the gangster communicate player to player by means of the CAT
network. Throughout the city various context providers (i.e. CAT systems) are
placed to inform players about virtual objects or crime locations by injecting the
necessary tuples. A special type of context provider is the headquarter (HQ) of
the players which signals the start of the chase.

Due to space limitations, this section only describes the set of tuples coor-
dinating the core functionality. Table 3 shows an overview of the tuples used
in the game and its context rule. The tuples are divided in five categories de-
pending on the entity that injects them in the environment, i.e. all players, only
gangster, only policemen, headquarters and city context providers. As used in
the semantics, a tuple is denoted by the term τ and the first element of a tuple
indicates its type name. We use capitals for constant values.

14

Table 3. Overview of the Context-Aware Tuples used in Flikken

Tuple Content Tuple Context Rule Tuple Description
All Players

τ(TeamInfo,
uid, gip)

[true] Private tuple denoting the player’s team.

τ(PlayerInfo,
uid, gip, location)

[τ(TeamInfo, ?u, ?team), ?team 6=
gip]

Injected to opposite team members ev-
ery 6 minutes to notify the position of a
player. Location is a 2-tuple indicating the
(GPS) coordinates of the player.

τ(OwnsVirtualObject,
GUN, bullets)

[true] Private tuple inserted by players when
they pick up their gun at their HQ.

Only The Gangster
τ(CrimeCommitted,
name,location,reward)

[τ(TeamInfo, ?u, POLICEMAN)] Notifies policemen that the gangster com-
mitted a crime.

τ(OwnsVirtualObject,
type, properties)

[true] Private tuple inserted when the gangster
picks up a virtual object in the game area.

Only Policemen
τ(PlayerInfo,
uid, gip, location)

[τ(TeamInfo, ?u, gip)] Notifies the position of a policemen to his
colleagues every time he moves.

HeadQuarters
τ(InHeadquarters,
location)

[τ(PlayerInfo,?u,?team,?loc),
inRange(location, ?loc)]

Notifies that the player entered his HQ.
Used to start the chase (when this tuple
moves out of context for the gangster’s
HQ) and to reload policemen’s guns.

τ(CrimeTarget,
name, location)

[τ(TeamInfo, ?u, GANGSTER)] Notifies the gangster of the position of
crime targets.

τ(CommitCrime,name,
location,reward, vobj)

[τ(TeamInfo, ?u, GANGSTER),
τ(PlayerInfo,?u, GANGSTER,?loc),
inRange(location,?loc),
hasVirtualObjects(vobj)]

Notifies the gangster of the possibility
of committing a crime. hasVirtualObjects
takes an array of virtual object ids and
checks that the gangster has the required
OwnsVirtualObject tuples.

City Context Providers
τ(VirtualObject,
id, location)

[τ(TeamInfo, ?u, GANGSTER),
τ(PlayerInfo,?u, GANGSTER,?loc),
inRange(location, ?loc)]

Notifies the gangster of the nearby pres-
ence of a virtual object. inRange is a helper
function to check that two locations are in
euclidian distance.

τ(Rechargeable-
VirtualObject,GUN,
BULLETS)

[τ(InHeadQuarters,?loc),
τ(OwnsWeaponVO,GUN,?bullets),
?bullets < BULLETS]

Represents the player’s gun. The gangster
gets only one charge at the start of the ga-
me, while policemen’s guns are recharged
each time they go back to their HQ.

The CAT system on the player’s device carries a vital private tuple τ(TeamInfo,
uid, gip) indicating to which team he belongs. Every player transmits its loca-
tion to the CAT network by means of the tuple τ(PlayerInfo, uid, gip, location).
These tuples are often used in other tuple’s context rules to identify the current
whereabouts of a player and his team. For example, the tuple implementing a
grenade uses them as follows.

cat.inject: tuple(VirtualObject , grenade , location)
inContext: [tuple(TeamInfo , ?u, GANGSTER),

tuple(PlayerInfo , ?u, GANGSTER , ?loc),
inRange(location , ?loc)]

The tuple τ(VirtualObject, grenade, location) should be only perceived if the
receiver is a gangster whose location (given by ?loc in the PlayerInfo tuple)
is physically proximate to the virtual object. The inRange function returns the
constraint that checks if the gangster location is in euclidian distance with the
location of the grenade (stored in location). Upon removal of a VirtualObject
tuple, a private tuple τ(OwnsVirtualObject, object) is inserted in his CAT sys-

15

tem. OwnsVirtualObject tuples are used in the context rule of CommitCrime
tuples which notify the gangster of a crime that can be committed. As crimes
can only be committed when the gangster has certain burgling items, the context
rule of the CommitCrime tuple requires that certain OwnsVirtualObject tuples
are present in the tuple space. For example, in order for the gangster to perceive
the CommitCrime tuple for the grandCasino, a τ(OwnsVirtualObject,grenade)
tuple is needed as shown below.
cat.inject: tuple(CommitCrime , grandCasino , location , reward)
inContext: [tuple(TeamInfo , ?u, GANGSTER),

tuple(PlayerInfo , ?u, GANGSTER , ?loc),
inRange(location , ?loc),
tuple(OwnsVirtualObject ,grenade)];

Each player also registers several reactions to (1) update his GUI (e.g. to show
the OwnsVirtualObject tuples collected), and (2) inject new tuples in response
to the perceived ones, e.g. when a gangster commits a crime, he injects a tuple
τ(CrimeCommitted, name,location,reward) to notify policemen. The code below
shows the reaction on PlayerInfo tuples installed by the application.
cat.whenever: tuple(PlayerInfo , ?uid , ?tid , ?location) read: {

GUI.displayPlayerPosition(tid , uid , location);
} outOfContext: {

//grey out a player if there exists no update of his coordinates.
def tuple := cat.rdp(tuple(PlayerInfo , uid , tid , ?loc));
if: (nil == tuple) then: { GUI.showOffline(uid) };

};

Whenever a PlayerInfo tuple is read, the player updates his GUI with the
new location of that player. As PlayerInfo tuples are injected with a timeout,
they are automatically removed from the tuple space after its timeout elapses
triggering the outOfContext: handler. In the example, this handle greys out the
GUI representation of a player if no other PlayerInfo tuple for that player is
in the CAT system. If the rdp operation does not return a tuple, the player is
considered to be offline as he did not transmit his coordinates for a while.

5.2 Discussion

Flikken demonstrates how context-aware tuples aid the development of context-
aware applications running on mobile ad hoc networks and address the tuple
perception issues described in section 2 by introducing two key abstractions: (i)
the context rule of a tuple which determines the context in which a receiving CAT
system should find itself in order to perceive the tuple, and (ii) the rule engine
which takes care of inferring tuple perception before applications are exposed to
the tuple. A tuple space model with such abstractions has the following benefits:

1. Decomposing a tuple into content and context rule leads to separation of
concerns, increasing modularity.

2. Since context rules can be developed separately, it enables programers to
reuse the rules to build different kinds of tuples, increasing reusability. For
example, in Flikken, we used a inRangeOfGangster(?loc) function to build
the rule for the different VirtualObject tuples which was also reused to
build the three first conditions of CommitCrime tuples.

16

3. Programmers do not need to add computational code to infer tuple percep-
tion as the rule engine takes care of it in an efficient way, making the code
easier to understand and maintain.

Flikken is a significant subset of an augmented reality game inspired by the
industrial game The Target6. The game functionality counts 11 tuples (8 of which
carry a custom context rule) and 7 reactions. Currently, the game only provides
one kind of virtual object for the player’s defense, namely a gun. As future work,
we would like to extend it with more complex virtual objects like mines, bombs,
bulletproof vests, and radio jammers (to disrupt the communication with nearby
players). We would also like to enhance the game interaction by incorporating
compass data from the mobile device to be able to aim and kill players in a
certain trajectory rather than using a certain radius of action.

The AmbientTalk language and context-aware tuples run on J2SE, J2ME
under the connected device configuration (CDC), and Android 1.6 Platform.
The current discovery mechanism is based on multicast messaging using UDP.
Our current experimental setup for Flikken is a set of HTC P3650 Touch Cruise
phones communicating by means of TCP broadcasting on a wireless ad hoc WiFi
network. As future work, we aim to port the current Java AWT GUI of Flikken
to the Android platform to deploy the game on HTC Hero phones.

6 Related Work

In this section, we discuss related systems modeled for context-awareness and
show how context-aware tuples differs from them. Most of the tuple space sys-
tems designed for a mobile environment can be divided into federated and repli-
cation tuple space models. Both suffer from the problems shown in Section 2.

In TOTA, tuples themselves decide how to replicate from node to node in
the network. As tuples can execute code when they arrive at a node, they can be
exploited to achieve context-awareness in an adaptive way. But, programming
such tuples has proven to be difficult [9]. TOTA, therefore, provides several basic
tuple propagation strategies. None of these propagation strategies addresses the
perception problem tackled by our approach. Writing context-aware tuples in
TOTA would require a considerable programming effort to react on the presence
of an arbitrary combination of tuples as it only allows reactions on a single tuple.

GeoLinda [14] augments federated tuple spaces with a geometrical read oper-
ation read(s,p). Every tuple has an associated shape and the rd operation only
matches those tuples whose shape intersects the addressing shape s. GeoLinda
has been designed to overcome the shortcomings of federated tuple spaces for
a small subset of potential context information, namely the physical location of
devices. As such, it does not offer a general solution for context-aware applica-
tions. In contrast, we propose a general solution based on context rules, which
allows programmers to write application-specific rules for their tuples. More-
over, in GeoLinda the collocation of devices still plays a central role for tuple
perception which can lead to erroneous context perception.
6 http://www.lamosca.be/en/the-target

17

EgoSpaces provides the concept of a view, a declarative specification of a
subset of the ambient tuples which should be perceived. Such views are defined
by the receiver of tuples while in context-aware tuples it is the other way around.
Context-aware tuples allow the sender of a tuple to attach a context rule dic-
tating the system in which state the receiver should be in order to perceive
the tuple. EgoSpaces suffers from the same limitations as federated tuple spaces
since at any given time the available data depends on connectivity [8].

Publish/subscribe systems are closely related to tuple spaces as they provide
similar decoupling properties [4]. Context-aware publish subscribe (CAPS) [6] is
the closest work as it allows certain events to be filtered depending on the context
of the receiver. More concretely, the publisher can associate an event with a
context of relevance. However, CAPS is significantly different from context-aware
tuples. First, CAPS does not allow reactions on the removal of events, i.e. there is
no dedicated operation to react when an event moves out of context. Moreover, it
is not a coordination abstraction, i.e. atomic removal of events is not supported.
And last, their context of relevance are always associated to physical space.

The Fact Space Model [11] is a LIME-like federated tuple space model that
provides applications with a distributed knowledge base containing logic facts
shared among collocated devices. Unlike context-aware tuples, rules in the Fact
Space Model are not exchanged between collocated devices and are not bound
to facts to limit the perception of context information.

7 Conclusion

We have introduced a novel tuple space approach in which a tuple itself carries a
predicate, called a context rule, that determines when the receiving application
is in the right context to perceive the tuple. The novelty of our approach lies in
the use of context rules combined with the introduction of a rule engine in the
tuple space system which takes care of inferring when a context rule is satisfied,
to control which tuples present in the tuple space should be actually accessible
by applications. This decouples tuple reception from tuple perception solving
the context perception problems exhibited by existing tuple space systems. By
decomposing a tuple into content and context rule we allow the programmer to
separate concerns. Since context rules can be developed separately, it enables
programers to reuse the rules to build different kinds of tuples. Programmers do
not longer need to infer tuple perception manually as the rule engine takes care
of it in an efficient way, making the code easier to understand and maintain.

Acknowledgments The authors would like to thank Amy L. Murphy for her
helpful comments on earlier versions of the paper, and Bruno De Fraine for his
invaluable help with the formal semantics of our model.

References
1. P. Costanza and R. Hirschfeld. Language constructs for context-oriented program-

ming: an overview of contextl. In DLS ’05, pages 1–10, NY, USA, 2005. ACM.

18

2. N. Davies, A. Friday, S.P. Wade, and G.S. Blair. L2imbo: a distributed systems
platform for mobile computing. ACM Mob. Netw. and Appl., 3(2):143–156, 1998.

3. J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter.
Ambient-oriented Programming in Ambienttalk. In the European Conf. on Object-
oriented Progr. (ECOOP), volume 4067 of LNCS, pages 230–254. Springer, 2006.

4. P. Th. Eugster, Pascal A. Felber, R. Guerraoui, and A.Kermarrec. The many faces
of publish/subscribe. ACM Computing Survey, 35(2):114–131, 2003.

5. Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. In J. Mylopoulos and M. L. Brodie, editors, Artificial Intelligence
& Databases, pages 547–557. Kaufmann Publishers, INC., San Mateo, CA, 1989.

6. D. Frey and G-C. Roman. Context-aware publish subscribe in mobile ad hoc
networks. In Proc. of the 9th Int. Conf. on Coordination Models and Languages
(COORDINATION), volume 4467 of LNCS, pages 37–55. Springer, June 2007.

7. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan 1985.

8. C. Julien and G.-C. Roman. Active coordination in ad hoc networks. In Proc. of
the 6th Inter. Conf. on Coordination Models and Languages (COORDINATION),
volume 2949 of LNCS, pages 199–215. Springer, February 2004.

9. M. Mamei and F. Zambonelli. Programming pervasive and mobile computing ap-
plications with the TOTAmiddleware. In IEEE Int. Conf. on Pervasive Computing
and Communications (PERCOM), page 263. IEEE Computer Society, 2004.

10. C. Mascolo, L.Capra, and W. Emmerich. Mobile Computing Middleware. In
Advanced lectures on networking, pages 20–58. Springer-Verlag, 2002.

11. S. Mostinckx, C. Scholliers, E. Philips, C. Herzeel, and W. De Meuter. Fact spaces:
Coordination in the face of disconnection. In Conf. on Coord. Models and Lang.
(COORDINATION), volume 4467 of LNCS, pages 268–285. Springer-Verlag, 2007.

12. Amy L. Murphy and G.P Picco. Using lime to support replication for availability in
mobile ad hoc networks. In 8th Int. Conf. on Coordination Models and Languages
(COORDINATION), volume 4038 of LNCS, pages 194–211. Springer-Verlag, 2006.

13. Amy L. Murphy, G.P. Picco, and G.-C. Roman. LIME: A middleware for physical
and logical mobility. In Proceedings of the The 21st International Conference on
Distributed Computing Systems, pages 524–536. IEEE Computer Society, 2001.

14. J. Pauty, P. Couderc, M. Banatre, and Y. Berbers. Geo-linda: a geometry aware
distributed tuple space. In Proc. of the 21st Inter. Conf. on Advanced Networking
and Applications (AINA), pages 370–377. IEEE Computer Society, 2007.

15. Mark Perlin. Scaffolding the RETE network. In International Conference on Tools
for Artificial Intelligence, pages 378–385. IEEE Computer Society, 1990.

16. Christophe Scholliers, Elisa Gonzalez Boix, and Wolfgang De Meuter. TOTAM:
Scoped Tuples for the Ambient. In Workshop on Context-aware Adaptation Mech-
anisms for Perv. and Ubiquitous Services, volume 19, pages 19–34. EASST, 2009.

17. Christophe Scholliers and Eline Philips. Coordination in volatile networks. Master’s
thesis, Vrije Universiteit Brussels, 2007.

18. T.Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter.
Ambienttalk: object-oriented event-driven programming in mobile ad hoc networks.
In Int. Conf. of the Chilean Comp. Science Society, pages 3–12. IEEE C. S., 2007.

19. M. Viroli and M. Casadei. Biochemical tuple spaces for self-organising coordina-
tion. In Proc. of the Inter. Conf. on Coordination Models and Languages (COOR-
DINATION), pages 143–162. Springer-Verlag, 2009.

20. M. Viroli and A. Omicini. Coordination as a service. Fundamenta Informaticae,
73(4):507–534, 2006.

