
Flocks: Enabling Dynamic Group Interactions in Mobile
Social Networking Applications

Elisa Gonzalez Boix
egonzale@vub.ac.be

Andoni Lombide
Carreton

alombide@vub.ac.be

Christophe Scholliers
cfscholl@vub.ac.be

Tom Van Cutsem
tvcutsem@vub.ac.be

Wolfgang De Meuter
wdmeuter@vub.ac.be

Theo D’Hondt
tjdhondt@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

ABSTRACT
Mobile social networking applications enable end-users to in-
teract on the move. Current applications model user groups
as simple lists which have to be manually enumerated. This
representation is both unsuitable and inefficient for group
interactions: due to the openness and the mobility to which
these applications are exposed, the contents of such lists
are likely to change frequently. Updating the lists manually
while interacting with users quickly becomes impractical.
In this paper, we introduce an alternative representation
for user groups named flocks. A flock represents a loosely-
defined user group in terms of an intensional description.
The flock content is implicitly updated when changes oc-
cur, e.g. the users’s location. Flocks have group interaction
provisions based on asynchronous message passing. Bench-
marks indicate that flocks can be implemented efficiently
by exploiting structure in their definitions. We present the
flock abstraction and its implementation as the basis of a
new distributed framework called Urbiflock.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems Distributed Applications; D.3.3 [Software Engi-
neering]: Language Constructs and Features—frameworks,
data types and structures

Keywords
mobile computing, social networks, group management, event-
driven programming abstractions

1. INTRODUCTION
In the last few years social networking applications such as

Facebook, MySpace and Twitter, have gained tremendous
popularity. These applications moved the focus of simple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

data retrieving towards various social interactions between
their users. Some of the traditional social networking ap-
plications have a mobile counterpart, but use a centralised
server-client architecture and do not exploit so called mo-
bile ad hoc networks. These networks allow mobile devices
to join and leave a spontaneously formed network without
relying on a server. In this work we focus on abstractions
that can take full advantage of such networks allowing users
to collaborate and engage in ad-hoc interactions with co-
located users. Supported by the advances in mobile tech-
nology, a new brand of social networking applications is
emerging which enable social interactions on the move called
mobile social networking applications [4, 15].

In mobile social networking applications, the concept of
a user group plays a central role as it models the user’s so-
cial networks. Recently, middleware platforms have been
developed especially for these kinds of applications [3, 13,
4]. We observe that in these platforms there is a lack of
high-level abstractions to define mobile user groups and in-
teract with them. Typically, user groups are exposed as
simple lists of users. The social application provides a num-
ber of predefined user groups (e.g. “the world” or “my direct
contacts” in MyNet [13]). In addition, users can create and
manage groups by explicitly enumerating the users belong-
ing to it. However, changes in the user’s situation or his/her
surroundings, usually have to be manually reflected by the
end-user. Due to the nature of mobile networks, mobile so-
cial networking applications call for more dynamic group
management. This paper proposes a high level abstraction
to manage the users’ social networks and interact with their
dynamic nature in a straightforward way. To exemplify the
kind of dynamic user groups and interactions that we tar-
get, consider the following scenario: Alice and Bob are in
the cafeteria of the university when they decide it would be
nice to play some badminton. Since reserving the badminton
field is rather expensive, Bob decides to invite some extra
players by taking his mobile phone and sending a message
to the couples currently in the neighborhood who like to
play badminton. Luckily, Carol and Denis who also wanted
to play badminton see the invitation. They reply to Bob’s
message whereafter they meet and start playing a game. Af-
ter the game, the four of them get the wild idea to organize
a badminton competition for next week. Again Bob takes
his mobile phone and decides to send an invitation to all
couples at the university who like badminton.

In order to realize applications enabling interactions with
user groups in an ubiquitous environment there are several
challenges which need to be addressed:

• Semantic Specification of User Groups. Mobile users
should be able to use semantical information in order
to organize contacts in user groups and combine them
to form more complex groups. This semantic infor-
mation can be subjective information from the point
of the user (e.g. users physically nearby) or objective
information (e.g. the fact that another user likes bad-
minton). Groups can be combined into a new user
group of e.g. nearby users who like badminton.

• Dynamic User Group Composition. In a ubiquitous
environment, user groups are exposed to a higher rate
of changes in their contents due to device mobility.
The contents of user groups change frequently because
users can move out of earshot at any moment in time.
Thus, the contents of user groups need to be frequently
recomputed to reflect changes in the user’s environ-
ment. The limited computing power of mobile devices
requires that recomputing is as efficient as possible.

• Interacting with Volatile User Groups. Users should be
able to interact with user groups of which the contents
frequently change. Interacting with such volatile user
groups with a simple list representation is cumbersome
as its contents may change during the interaction. In
addition, users should be able to interact with the cur-
rent contents of the group (e.g. currently nearby bad-
minton couples) and also the semantic contents of the
group (e.g. everybody who likes badminton).

To address the challenges of defining and interacting with
user groups in an mobile environment, we introduce the flock
abstraction: a malleable, extensible event-driven represen-
tation of user groups abstracting the complexities of dealing
with user groups of which the contents frequently change.
The flock abstraction is implicitly maintained by the un-
derlying system while remaining configureable by end-users.
Flocks are encapsulated in a framework called Urbiflock de-
signed both to serve as a testbed for flocks and to ease the
development of mobile social networking applications. Sev-
eral applications have been implemented using the frame-
work in which users can broadcast announcements to each
other, browse each other’s profiles, launch interactive polls,
etc. In summary, the main contributions of this work are:

• The introduction of a declarative event-driven abstrac-
tion for representing user groups in mobile social net-
working applications named a flock.

• A set of interaction abstractions to communicate with
dynamically changing user groups.

• The implementation of Urbiflock, a mobile social net-
working application framework developed for Android
phones which uses our flock abstraction at the heart
of its design.

The rest of this paper is organized as follows. After de-
scribing the flock abstraction, we present the Urbiflock frame-
work. We then explain the instantiation of the flock abstrac-
tion in Urbiflock and the abstractions designed to interact
with flocks. We describe flocks from the point of view of an

application programmer and how end-users can create flocks
and interact with them in Urbiflock. Before concluding the
paper, we evaluate the efficiency of the flock abstraction.

2. FLOCKS
In order to deal with the mentioned challenges of user

groups in mobile social networking applications, we intro-
duce the concept of a flock. A flock is an abstraction that
allows end-users to create and maintain user groups in a
straightforward way. Once the flock is created, end-users do
not need to be concerned about its maintenance as flocks
are implicitly updated by the underlying system.

Semantic Specification of User Groups. A flock is
defined in terms of a characteristic function that determines
which users belong to the flock. In order to be able to define
semantic-based user groups, there are several basic charac-
teristic functions that the system needs to provide. First,
subjective functions, such as an isNearby function encoding
physical proximity and an isFriend function encoding the
friendship relationship (i.e. if a user is a friend of another
one). Secondly, an isCompliant function encoding objective
information associated to a user (e.g. “is male”, “has blue
eyes”, “likes badminton”, etc). We give the intensional de-
scription of such characteristic functions as follows:

isNearby(user) ⇔ currentlocation− user.location < 20m
likesBadminton(user) ⇔ isCompliant(badminton∈ user.hobbies)

A characteristic function is basically a predicate applied
to a user. In the above examples, the likesBadminton function
applies a filter on the hobbies of the user and the isNearby

function tests that the current location of the user is within
a certain radius (20 meters). They can be used to create the
nearbyFlock and badmintonFlock flocks as follows:

nearbyF lock = ∀user ∈ ω : isNearby(user)
badmintonFlock = ∀user ∈ ω : likesBadminton(user)

In this description, ω represent the known group of flockrs.
Rather than considering each flock in isolation, flocks are
designed as a composable abstraction: more complex flocks
can be composed from existing flocks by means of logical
operations such as and, or or not. The nearbyBadmintonFlock for
example, denoting the group of users which are nearby and
like badminton could be defined as follows:

nearbyBadmintonFlock = nearbyF lock ∩ badmintonFlock

Dynamic User Group Composition. Flocks have
been designed to represent a dynamic set of users. Once
a flock is created, its characteristic function is recomputed
whenever there is an event that could alter the contents of
the flock. There exist three different kinds of events that
may alter a flock corresponding to the three different kinds of
basic characteristic functions: (1) discovery event triggered
when users go online or offline, (2) friend event triggered
when users get added or removed from the user’s friends
list and (3) profile event triggered when users update their
profile information, such as hobbies, social preferences, etc.
When one of these events get triggered by the system, all
flocks depending on such an event get notified and their char-
acteristic function is applied to the user that generated the
event. Programmers do not need to deal with such low-level
events. Rather, the characteristic function translates them
into addition and removals of users in a flock. Applications
can then register an event listener to process them. For
example, considering the nearbyFlock previously defined, if a

user moves out of the specified radius, the isNearby function
is recomputed removing the disconnected user.

Interacting with Volatile User Groups. In order to
deal with intermittent disconnections in mobile networks,
communication with a flock has been specified in terms of
asynchronous message passing. Interaction with flocks is
specified by two operators as follows:

nearbyBadmintonFlock <- (”Badminton at 6pm!”)
nearbyBadmintonFlock <+ (”Tournament next week!”)

Messages sent via <- are only transmitted to the users in
the flock at the moment of sending the message. Messages
sent via <+ are transmitted first to the current flock contents
and from then, the message is transitively propagated from
user to user in order to reach the semantic contents of a flock.
This happens by propagating the message to the users that
were not reached yet that are in the same flock of the users
that received the message originally. The underlying system
takes care that despite frequent disconnections those users
who are targeted by a message will be reached if they connect
with another receiver even if they were not connected at the
moment the message was originally sent.

3. URBIFLOCK
We have prototyped flocks as the basis of a new dis-

tributed object-oriented framework sculpted for the devel-
opment of such applications called Urbiflock. In Urbiflock,
users (called flockrs) can meet other users and interact with
them, for example by sending each other messages. Flockrs
have a profile with information about their identity which
can be browsed by other flockrs. By means of flocks, users
can create and manage their social networks.

Similar to other social networking applications, program-
mers can build applications and plug them into Urbiflock.
The aim of Urbiflock is to assist in the rapid development of
such applications. To this end, it provides programmers with
the necessary infrastructure to deal with the highly dynamic
environment to which mobile social networking applications
are exposed. The framework has been written in the Am-
bientTalk [18] language, an object-oriented distributed lan-
guage designed for mobile ad hoc networks. AmbientTalk’s
asynchronous concurrency model and its built-in peer-to-
peer service discovery makes the language suitable for writ-
ing such kind of mobile applications. Since AmbientTalk
is embedded in Java, developers can reuse all existing Java
libraries when writing Urbiflock applications, e.g. GUI com-
ponents, encryption libraries, etc. Although privacy issues
are not the focus of this work, the framework provides hooks
to encode privacy strategies as explained later.

3.1 Urbiflock Architecture
The architecture of Urbiflock is shown in figure 1. Every

mobile device has one instance of the Urbiflock framework
running on top of AmbientTalk (which is in turn hosted
by a JVM). The framework is divided in three layers: ap-
plications, core, and infrastructure. The application layer
consists of two types of applications. Core applications are
default applications that provide access to Urbiflock’s core
such as flock and profile editors. User applications are end-
user applications that are plugged into the framework. User
applications currently available in Urbiflock are: I rate you
(IR8U) that allows users to ask proximate users to rate them
on a certain subject, and Guanotes which is thoroughly ex-

URBIFLOCK

Urbiflock's Core

TOTAM

User Profile

Flockr

Flock

Urbiflock's Infrastructure
RETE
Engine

Discovery API
{WiFi, Bluetooth, RFID... }

Communication
API

AmbientTalk Virtual Machine

JVM

Applications
User Applications

{Guanotes, IR8U, ...}
Core Applications

{FlockEditor, ProfileEditor, ...}

Dynamic Group Management

Figure 1: Urbiflock architecture

plained later. End-users need to explicitly add an appli-
cation before it can be used1. Running applications have
controlled access to user information via the framework. Ap-
plications can have access to the user’s flocks and the users
who have installed the same application.

Urbiflock’s core is composed of the following three facili-
ties used by applications to interact with the framework:

Flockr represents a user in the framework. A flockr has
exactly one profile and can create and be registered to mul-
tiple flocks. It can also have multiple installed applications.
A flockr is also the gateway that other applications can use
to get information about the user or about the applications
that the user has installed.

User Profile represents the user identity (e.g. name, gen-
der, hobbies, etc.). Profile fields can be used to specify flocks
based on semantic information associated with the user. For
example, end-users could add a field with their year of grad-
uation which can be in turn used to create a flock of nearby
flockrs which graduated the same year. Profiles are highly
extensible and besides a number of mandatory fields, end-
users can add their own custom fields. From a programmer’s
perspective, the framework provides several default types of
fields (numbers, strings, dates and choices). Moreover, pro-
grammers can easily add new data types without having to
write too much boiler plate code.

Dynamic Group Management provides developers with
the necessary infrastructure to reason and interact with user
groups. This module has been designed to take into account
the requirements for representing user groups in mobile so-
cial networking applications previously explained. It con-
sists of two abstractions: the flock abstraction, an inten-
sional event-driven extensible representation of user groups,
and the TOTAM infrastructure, a tuple space-based frame-
work that enables flock communication. We describe the
two abstractions in detail in the next sections.

Finally, the infrastructure layer consists of three low-level
abstractions on which the Urbiflock’ core is based: a RETE
engine [9] which infers the flock contents, and the service
discovery and communication APIs to discover and commu-
nicate with nearby applications, respectively.

4. FLOCKS IN URBIFLOCK
1Due to space limitations, the distribution and deployment
of applications is out of the scope of this paper.

As shown in figure 1, user group management is a cen-
tral concept in the Urbiflock framework. In this section, we
explain the integration of the flock abstraction in Urbiflock
and the design decisions made. We describe how it can be
used by programmers to build a new Urbiflock application,
and how it can be used from an end-user’s perspective.

4.1 Efficiently Organizing Social Networks
As explained before, flocks are defined in terms of charac-

teristic functions. Such characteristic functions are the key
abstraction to support a declarative mechanism to determine
which users belongs to a flock. In order to efficiently derive
the contents of a flock in the face of frequent updates, flocks
are implemented based on a well known caching algorithm
named RETE [9]. RETE is a forward-chaining inference en-
gine that caches intermediary results of logical derivations
such that changes in the rule set do not trigger an entire
rederivation of all possible outcomes.

Flocks are structured as a RETE network where a char-
acteristic function corresponds to a RETE node. A RETE
node caches the intermediate results in order to avoid re-
evaluating the whole flock when a change in the environ-
ment adds data to it, for example when a user moves into
range. It also allows the efficient re-computation of the flock
contents when a change in the environment removes data
from it, for example when a user moves out of range. The
RETE network is kept on a user per user basis resulting in
a purely local data structure which is fed by both local and
remote events coming from other flockrs. These events are
fired by the Urbiflock framework when it detects changes in
the flockr’ user profile, its friends list or when the service
discovery module detects the connection or disconnection
of flockrs. These changes produce the profile, friend and
discovery events, respectively. Note that while friend and
discovery events are locally triggered by the framework, a
profile event is also propagated to flockrs in direct commu-
nication (via the TOTAM framework as we explain later).

This design allows characteristic functions to be reused in
the definition of multiple flocks so that they are evaluated
only once when a change occurs. When a more complex flock
is composed using logical operators on existing flocks, the
existing characteristic functions gets reused and the combi-
nation forms the characteristic function of the newly created
flock. Apart from being a highly composable and reusable
abstraction, it offers a substantial speed-up compared to a
non-caching approach as we show in the evaluation section.

4.2 Flocks From a Programmer’s Perspective
Urbiflock provides programers with two predefined flocks:

friendsFlock and nearbyFlock. friendsFlock represents a list of
friends or acquaintances of a user. In Urbiflock, this is the
only flock that is not automatically derived and thus, re-
quires user intervention to be updated. nearbyFlock represents
the flockrs that are physically colocated, i.e. the flockrs that
are within communication range of the device on which Urb-
iflock is running. Whenever a user moves in or out of range,
the framework updates nearbyFlock to reflect the changes in
the network topology. Additionally, programmers can cre-
ate custom flocks. To this end, the framework exposes the
flock abstraction as an object with the API given in table 1.

The programmer can create a flock in two different ways.
First, a flock can be created by calling the flock constructor
and passing it a characteristic function as shown below.

new(charactFunc) Flock constructor.
and(aFlock) Returns a flock composed of

two flocks using and predicate.
or(aFlock) Returns a flock composed of

two flocks using or predicate.
not() Returns the negation of the flock.
getSnapshot() Returns a snapshot of the flock.
addListener(aListener) Registers a listener to the flock

that must implement two methods:
notifyFlockrAdded(aFlockr)

notifyFlockrRemoved(aFlockr)

Table 1: Flock API

def maleFlock := flock.new(isMale);

We show later in this section how such an isMale character-
istic function is created. The second way of creating a flock
is to compose it out of other flocks using one or more of the
logical operations defined on the flock abstraction. The ex-
ample below shows how the previously defined maleFlock can
be composed to create the nearbyMaleFlock flock containing all
nearby flockrs that are male.

def nearbyMaleFlock := nearbyFlock.and(maleFlock);

The and and or methods of the flock API have an optional
predicate parameter to allow more complex combinations
using variables (see section 7).

In order to create flocks, the Urbiflock framework offers
two built-in characteristic functions: the isFriend function
checks if a flockr is in the user’s buddy list and the isNearby

function checks if a flockr is physically close to the user.
Additionally, users can build a characteristic function based
on profile information. For example, the definition of the
isMale characteristic function used in the maleFlock definition
previously introduced is shown below.

def isMale := makeIsCompliantCharacteristic(
{ |flockr| flockr.profile.gender == ‘Male });

def maleFlock := flock.new(isMale);

In this example, the isMale function filters flockrs on their
gender. The makeIsCompliantCharacteristic function is part of
the Urbiflock API and allows the programmer to quickly
create a characteristic function that matches on properties
of a flockr’s profile. The matching consists of applying the
predicate passed as an argument to a concrete flockr (of
which the profile can be accessed). The makeIsCompliantCharac-

teristic function can be used in a similar way to create a flock
denoting the group of users that like badminton as follows:

def likesBadminton := makeIsCompliantCharacteristic(
{ |flkr| flkr.profile.interests.includes(‘badminton)});
def badmintonFlock := flock.new(likesBadminton);

We will show later how this flock is combined with a flock
denoting the couples in the neighborhood to define the user
group that Bob targets in our scenario (i.e. all the couples
in the neighborhood who like badminton).

Applications can be notified of the addition and removal
of flockrs in a flock by registering them as listeners on flocks.
For example, the Urbiflock framework offers as a core appli-
cation a simple viewer which shows the list of the current
flockrs in a given flock. The code snippet below shows the
part of the flockViewer implementation which takes care of

registering the application to receive flock updates. The
last line of code shows how a flockViewer instance is created
and registered as a listener to the nearbyMaleFlock.

def flockViewer := object: {
// ...
def notifyFlockrAdded(aFlockr) {

// Add aFlockr to the list of flockrs
};
def notifyFlockrRemoved(aFlockr) {

// Remove aFlockr from the list of flockrs
} };

nearbyMaleFlock.addListener(flockViewer.new ());

In response to the corresponding flock update events, nearby-
MaleFlock calls the notifyFlockrAdded and notifyFlockrRemoved no-
tification methods of the listener that in turn updates the
user interface with the new contents of the flock.

Finally, the API provides the getSnapshot method that re-
turns a list of flockrs. This list corresponds to the contents of
the flock at the point in time when the snapshot was taken.

4.3 Flocks From an End-User’s Perspective
Urbiflock offers some core applications to allow end-users

to easily create, edit, view and compose flocks. Consider
again the example of a user who is looking for people nearby
that like to play badminton. The criterion that someone is
a badminton player is based on information that is not in
the standard user profile. Badminton players could agree to
extend their user profiles as shown in figure 2.

Figure 2: Matching on custom profile fields

When adding custom fields to the profile, the user can
specify the type of the field such as a number, a piece of
text, a date, a choice, etc. Once this information is added
to the user profile, it can be used in the definition of a flock
to match with other flockrs. These flockrs must have a field
in their profile with the same name and type of value. In our
example the user chooses to match on other flockrs that like
badminton based on the Interests field, as shown in figure 2.
The underlying implementation optimizes the verification of
these criteria by translating them into a RETE network as
explained before.

5. INTERACTING WITH FLOCKS
To enable mobile social interactivity, users should be able

to communicate both with the currently connected flockrs
in a flock (e.g. flockrs belonging to a flock which are cur-
rently reachable) and the semantically determined contents
of the flock (e.g. everybody who belongs to a flock regard-
less of being currently connected). Due to the dynamics of

peer-to-peer mobile networks, a good communication mech-
anism should make it possible to communicate with a flock
taking into account that all flockrs belonging to it may not
be connected at the same time while maintaining privacy
in their interaction and limiting network traffic. The basic
communications API of the framework provides means to
address and communicate with individual flockrs by means
of remote objects references. However, communicating with
a volatile group of flockrs in this fashion does not scale (as
it would require to manually manage a group of remote ref-
erences of which the contents frequently change). Instead,
we have designed a dedicated communication abstraction for
flocks called Tuples on the Ambient (TOTAM) [17].

Male

Female
Female

Female

Female

Female

Female
Male

Male

Male

Male

Male

Device Descriptor Tuple send Tuple not send

Male

(a) (b)

Male

Male

Female
Female

Female

Female

Female

Female

Male

Male

Male

Male

Figure 3: Operational sketch of a scoped tuple

TOTAM is a tuple space-based framework that allows
flockrs to communicate with other flockrs belonging to a
flock by exchanging tuples. Rather than sending tuples to
all connected peers, TOTAM tuples have been augmented
with a dynamic scoping mechanism. Every tuple carries the
definition of the flock that targets which allows the tuple
itself to determine whether a flockr is in its scope before it
is physically interchanged between two devices.

Figure 3 illustrates the exchange of tuples through several
devices hosting the Urbiflock framework. Consider that a
user running Urbiflock on the device with a star has the def-
inition of two flocks: the male and female flock. This user
sends a message to his male flock. This interaction is imple-
mented using the TOTAM framework by means of a tuple
to be propagated to the semantically defined contents of the
male flock. Which devices belong to a flockr in the male
flock is determined by means of a descriptor associated to
every device. This descriptor contains semantic information
that is used by the tuples at sending time to decide whether
a certain location is in their scope. In Urbiflock, the user
profile is used as the descriptor.

Figure 3(a) shows that a tuple is injected from the device
with a star. This device is connected to four male users
and one female user. As the scope of the tuple is limited to
male users the tuple will only be sent to the four male users
connected. From those four users the tuple is transitively
propagated obeying the scope of the tuple until all connected
male users are reached without being transmitted to female
users. Note that one male user is not transitively connected
to the sending device and thus does not receive the tuple.
Figure 3(b) shows that a male user moved into the range of
the isolated male user and transmits the previously received
tuple to the male user as he did not receive the tuple yet.
Again, the tuple is not transmitted to the female users.

It is important to note from this operational sketch, TO-

Figure 4: Bob’s (a) NearbyFlock, (b) badmintonCouplesFlock, (c) Guanotes inbox and (d) Guanote editor

TAM allows communication with flockrs that are not con-
nected at the same time, e.g. the male user isolated at first
receives a tuple without being connected at any time with
the originator of the tuple (the star device). In addition,
we ensure that only flockrs belonging to the targeted flock
are used as routers, i.e only potential targeted flockrs carry
tuples. Such a tuple propagation strategy has the benefits
of enhancing privacy and decreasing the burden on the net-
work traffic. Note that it is not possible to guarantee that
all users in the scope of the tuple are reached: a targeted
flockr must be at least once in communication range with a
router or the originator device to receive a tuple. However,
other peer-to-peer propagation strategies (e.g. a flooding
algorithm) could have been encoded in TOTAM.

5.1 Interacting With Flocks From a Program-
mer’s Perspective

In order to interact with flocks, programmers do not have
to manually insert tuples using the TOTAM framework as
in traditional tuple space middleware [10]. Rather, the flock
abstraction provides programmers with two methods (in ad-
dition to the ones discussed in table 1): the sendToCurrentContents

method sends an asynchronous message to the contents of
a flock at the point in time of executing the operation, and
the sendToAll method sends an asynchronous message to all
flockrs belonging to a flock. These methods make use of
the TOTAM framework to exchange the necessary tuples to
send the corresponding message to the targeted flockrs.

We show how these methods can be used our scenario be-
low. For example, Bob’s Urbiflock sends his initial message
to invite nearby couples for a badminton match as follows:

badmintonCouplesFlock.sendToCurrentContents("Let ’s play
some badminton at 6pm");

The sendToCurrentContents method first determines the con-
tents of the flock at this moment in time (by means of
the getSnapshot method) and inserts a tuple in the TOTAM
framework whose scope is limited to flockrs belonging to the
resulting list of flockrs. In the second part of the scenario,
Bob would like to reach all couples playing badminton in
Urbiflock. This can be encoded as follows:

badmintonCouplesFlock.sendToAll("Badminton tournament
next week!");

In response to the sendToAll messsage, Urbiflock inserts a tu-
ple in the TOTAM framework of which scope is the badminton-

CouplesFlock. To determine the flockrs belonging to it, the tu-
ple recomputes the flock definition at every device where it
is transmitted. These two methods have an optional pa-
rameter specifying a timeout to obtain time-based delivery
guarantees on sent messages.

Urbiflock applications can subscribe a listener with the
TOTAM framework to receive messages. The snippet below
shows the skeleton code of an application that registers itself
to display the contents of a message.

TOTAM.registerArrivalTupleListener(object: {
def receiveTuple(tuple) {

// display the contents of the tuple
}});

5.2 Guanotes: An Application Interacting
With Flocks

To demonstrate the use of the TOTAM framework in an
Urbiflock application, we have implemented the Guanotes
application. Inspired by the Wall plug-in of Facebook where
people can post messages on somebody else’s wall, the Guan-
otes application allows end-users to interact with flockrs be-
longing to a particular flock by means of messages called
guanotes. A guanote consists of a message and a receiver
list denoting the targeted audience. A guanote can be sent
to the flockrs belonging to a flock which are currently in
their surroundings or to a flock as a whole (i.e. the semantic
contents of the flock). In addition, a guanote can also target
individual flockrs as is the case in the Wall plugin.

Guanotes keeps track of the connected flockrs which are
running the application. Guanotes instances communicate
with each other by means of the TOTAM framework. A
guanote is implemented as a kind of tuple. Figure 4 shows
the Urbiflock GUI on Bob’s device during the process of typ-
ing a guanote after playing a match with Carol and Denis.
In particular, four different screenshots are displayed: (a)
the contents of Bob’s NearbyFlock, (b) the contents of Bob’s
badmintonCouplesFlock, (c) Bob’s Guanotes inbox (that con-
tains a guanote previously received from Carol replying to
his first invitation), and (d) the editor for a new guanote to
invite all his friend’s couples to participate in a badminton
tournament. Note that there are few flockrs colocated at
this time with Bob (people in the NearbyFlock shown in Fig-
ure 4 (a)) which belong to the badmintonCouplesFlock flock (b).
As he would like to reach all couples interested in badminton
for the tournament, he selects the badmintonCouplesFlock in the
receiver list in Figure 4 (c). In order to send a guanote to

the current flockrs in the badmintonCouplesFlock, Bob had to
long press on the flock name in the receiver list and select
the “Expand flock...” option.

6. IMPLEMENTATION
Urbiflock is available for download with AmbientTalk at

http://tiny.cc/urbiflock. Our experimental setup con-
sists of phones running Android 2.0 or higher that commu-
nicate by means of TCP broadcasting on a wireless ad hoc
WiFi network. Urbiflock can be also deployed on phones
running J2ME under the connected device configuration.

Urbiflock’s discovery module uses AmbientTalk’s discov-
ery engine based on multicast messaging via UDP. This
means that the isNearby characteristic function infers that
a flockr is nearby to another flockr if the latter is reachable
within the same WiFi network. However, isNearby can be eas-
ily adapted to work with a different technology (e.g. Blue-
tooth). Below is the skeleton implementation of isNearby.

def isNearbyCharac :=
extend: UnfilteredCharacteristic with: {

// methods invoked by the discovery module.
def notifyJoined(flockr){ // insert flockr in RETE };
def notifyLeft(flockr){ // remove flockr from RETE };

};
discoveryModule.registerListener(isNearbyCharac);

The UnfilteredCharacteristic is a prototypical characteristic
function that encapsulates the behavior of the underlying
RETE network. In this example, we extend it (by means of
the extend:with: construct) with additional behavior to insert
or remove flockrs from the RETE node caching the flockrs in
the nearbyFlock when they move in or out of range. For this
purpose, the isNearby characteristic function registers itself to
the discovery module to be notified when a flockr is in close
range. It suffices to register this characteristic function as a
listener to another discovery module to alter its behavior.

7. EVALUATION
In this section, we report on benchmarks of our flock pro-

totype implemented in the Urbiflock framework 2. The aim
of our benchmarks is to measure the speed-up acquired by
using our flock abstraction compared to a hand-crafted so-
lution which does not cache intermediate derivations. We
benchmarked our flock abstraction by means of the flock
used in our scenario, which contains all the couples in the
neighbourhood who like badminton. The code to construct
this flock is shown below.

def nearbyCouplesFlock := nearbyFlock.and(
nearbyFlock , {|P1,P2| P1.partnerId == P2.id});

def nearbyBadmintonFlock := nearbyCouplesFlock.and(
badmintonFlock);

We first construct a flock which contains all the people whose
partner is nearby. This flock combines the nearbyFlock with
itself, by specifying that the partner id of nearby person
P1 has to have the same id as the nearby person P2. The
nearbyCouplesFlock is in turn combined with the badmintonFlock

to construct the nearbyBadmintonFlock. In the ad hoc imple-
mentation of the nearbyBadmintonFlock, a user list is kept to
represent the current people in the surroundings. Every
time a new user appears in the network the entire contents of

2Benchmarks of the network performance of the underlying
AmbientTalk language can be found in [7].

 Ad hoc Implementation Flock abstraction

Flock Abstraction Benchmarks

0 (ms)

1375 (ms)

2750 (ms)

4125 (ms)

5500 (ms)

5 10 15 20 25

Figure 5: Flock contents derivation times.

the list are inspected in order to determine whether his/her
partner is also in the immediate vicinity and if he/she likes
badminton. Despite not being a complex flock, the code to
be written for the ad hoc implementation was longer and
required explicit management of the discovered users. The
benchmarks in figure 5 show the processing time of comput-
ing the flock contents with a varying number of users in the
immediate vicinity. These tests were conducted on a HTC
Desire running an official version of Android 2.2. For each
simulation variation (1 till 25) the test starts with an empty
list of nearby users and stops when the total amount of users
is added. For each measurement, we took the average of 10
tests, discarding the extremes. As shown in figure 5 we
measured a 4.5x speed-up in the case of 25 people for the
nearbyBadmintonFlock. This speed-up is due to the caching of
the derivation of the flocks which drastically reduces the
number of comparisons that need to be performed.

8. RELATED WORK
Several areas of related work to the flock abstraction exist,

including mobile social applications, frameworks and com-
munication abstractions for mobile networks.

Mobile User Groups Other possible approaches are
contact recommendation algorithms, such as in Cluestr [11],
VENETA [19] and [4]. Other approaches use context infor-
mation defined by geographical location of devices [16], safe
distance [6] or device communication range [5]. Friendlee [1]
uses social network information (such as the most frequently
called people by a user) to rank user contacts. Wang et
al. [20] propose abstractions to support and manage persis-
tent social groups. In contrast to flocks, members in a social
group are chosen by consensus between group members and
interactions amongst them last over a period of time with a
concrete beginning and end.

Mobile Social Networking Applications Slam [8] is
a mobile group-based messaging and media sharing appli-
cation, but uses a centralized infrastructure and groups of
contacts have to be listed extensionally. MyNet [13] is a
secure platform which enables end-users to organize their
social networks by representing them as lists. Three built-in
user groups are provided: “the world”, “my direct contacts”,
“my extended contacts” (i.e. users two social hops away).
Similarly, in BT Communities [3], the notion of proximity
is defined by Bluetooth connectivity. Urbiflock provides a
more abstract way independent of the networking technol-
ogy to determine which users are in a user group.

Group Interactions Group interaction has also been
studied in the context of mobile ad hoc networks. M2MI [14]
introduces a data type called a handle that is used to denote
a dynamic group of remote Java objects of the same inter-
face. M2MI only uses network connectivity and Java inter-
face types of objects to decide which objects are in the group.
In contrast to our interaction model, M2MI invocations on
objects that are not immediately reachable are lost. Other
approaches provide delivery guarantees by exploiting con-
text information such as location and/or distance [16, 6, 5],
or by means of efficient content routing algorithms [15, 12].
These alternative group communication mechanism could be
encoded in TOTAM as tuple protocols.

9. CONCLUSIONS AND FUTURE WORK
We presented a novel abstraction to represent user groups

in mobile social networking applications named flocks, de-
signed to deal with the openness and the mobility to which
these applications are exposed. Flocks are customizable
based on semantic information derived from the user’s pro-
file, the user’s friend links, and the physical colocation of
users. Custom flock criteria can be easily defined and com-
posed using logical operators to form more complex flocks
that are declaratively specified. Programmers do not need to
deal with the low-level events that alter the flock contents.
Flock contents are efficiently recomputed by a RETE-like in-
ference engine. Additionally, flocks provide an event-based
interface to allow applications to be notified of changes in
their contents. Finally, we provide an asynchronous inter-
action model to communicate with the currently reachable
users in the flock or the semantics contents of the flock.

Flocks have been prototyped in Urbiflock, a framework
for mobile social networking applications. As future work
we would like to augment Urbiflock with semi-automatic
means to infer relationships based on recommendation algo-
rithms [4], or sensing data, e.g. using RFID technology [2].

10. ACKNOWLEDGMENTS
Elisa Gonzalez Boix is funded by the prospective research

for Brussels program of IWOIB-IRSIB. Andoni Lombide
Carreton and Christophe Scholliers are funded by a doc-
toral scholarship of IWT-Vlaanderen. Tom Van Cutsem is
a postdoctoral fellow of FWO-Vlaanderen.

11. REFERENCES
[1] A. Ankolekar, G. Szabo, Y. Luon, B. A. Huberman,

D. Wilkinson, and F. Wu. Friendlee: a mobile
application for your social life. In Human-Computer
Interaction with Mobile Devices and Services
(MobileHCI’09), pages 1–4. ACM, 2009.

[2] A. Barrat, C. Cattuto, V. Colizza, J.-F. Pinton, W. V.
den Broeck, and A. Vespignani. High resolution
dynamical mapping of social interactions with active
rfid. CoRR, abs/0811.4170, 2008.

[3] R. Beale. Supporting social interaction with smart
phones. IEEE Pervasive Computing, 4(2):35–41, 2005.

[4] S. Ben Mokhtar and L. Capra. From pervasive to
social computing: Algorithms and deployments. In
ICPS 2009, pages 169–178. ACM, 2009.

[5] L. Briesemeister and G. Hommel. Localized group
membership service for ad hoc networks. In Inter.

Workshop on Ad Hoc Networking (IWAHN), pages
94–100, 2002.

[6] G. catalin Roman, Q. Huang, and A. Hazemi.
Consistent group membership in ad hoc networks. In
ICSE, pages 381–388, 2001.

[7] J. Collins and R. Bagrodia. Programming in mobile ad
hoc networks. In 4th Annual International Conference
on Wireless Internet (WICON ’08), pages 1–9, 2008.

[8] S. Counts. Group-based mobile messaging in support
of the social side of leisure. Computer Supported
Cooperative Work (CSCW), 16(1-2):75–97, 2007.

[9] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem. In
Artificial Intelligence & Databases, pages 547–557.
Kaufmann Publishers, INC., San Mateo, CA, 1989.

[10] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, Jan 1985.

[11] R. Grob, M. Kuhn, R. Wattenhofer, and M. Wirz.
Cluestr: mobile social networking for enhanced group
communication. In Int. Conf. on Supporting Group
Work (GROUP ’09), pages 81–90. ACM, 2009.

[12] E. Jaho and I. Stavrakakis. Joint Interest- and
Locality-Aware Content Dissemination in Social
Networks. In Wireless On demand Network Systems
and Services, pages 161–168. IEEE Press, 2009.

[13] D. N. Kalofonos, Z. Antoniou, F. D. Reynolds,
M. Van-Kleek, J. Strauss, and P. Wisner. Mynet: A
platform for secure p2p personal and social networking
services. In PerCom 2008, pages 135–146, 2008.

[14] A. Kaminsky and H.-P. Bischof. Many-to-many
invocation: a new object oriented paradigm for ad hoc
collaborative systems. In OOPSLA 2002, pages 72–73.
ACM Press, 2002.

[15] A. Mashhadi, S. Ben Mokhtar, and L. Capra. Habit:
Leveraging human mobility and social network for
efficient content dissemination in manets. In Inter.
Symp. on a World of Wireless, Mobile and Multimedia
Networks. IEEE, 2009.

[16] R. Meier and V. Cahill. Exploiting proximity in
event-based middleware for collaborative mobile
applications. In Distributed Applications and
Interoperable Systems (DAIS), pages 285–296.
Springer-Verlag, 2003.

[17] C. Scholliers, E. Gonzalez Boix, and W. De Meuter.
Totam: Scoped tuples for the ambient. In Proc. of the
CAMPUS Workshop collocated with DisCoTec’09
federated event, volume 19, pages 19–34. EASST, 2009.

[18] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk:
object-oriented event-driven programming in mobile
ad hoc networks. In Inter. Conf. of the Chilean Comp.
Science Society, pages 3–12. IEEE C.S., 2007.

[19] M. Von Arb, M. Bader, M. Kuhn, and
R. Wattenhofer. Veneta: Serverless friend-of-friend
detection in mobile social networking. In WiMob 2008,
pages 184–189. IEEE Computer Society, 2008.

[20] B. Wang, J. Bodily, S. K. S. Gupta, and E. K. S.
Gupta. Supporting persistent social groups in
ubiquitous computing environments using
context-aware ephemeral group service. In PerCom
2004, pages 287–296. IEEE Computer Society, 2004.

