
REME-D: a Reflective Epidemic Message-Oriented
Debugger for Ambient-Oriented Applications

Elisa Gonzalez Boix
egonzale@vub.ac.be

Carlos Noguera
cnoguera@vub.ac.be

Tom Van Cutsem
tvcutsem@vub.ac.be

Wolfgang De Meuter
wdmeuter@vub.ac.be

Theo D’Hondt
tjdhondt@vub.ac.be

Software Languages Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

ABSTRACT
Debuggers are an integral part, albeit often neglected, of the
development of distributed applications. Ambient-oriented
programming (AmOP) is a distributed paradigm for appli-
cations running on mobile ad hoc networks. In AmOP the
complexity of programming in a distributed setting is mar-
ried with the network fragility and open topology of mobile
applications. To our knowledge, there is no comprehensive
debugging approach that tackles both these issues. In this
paper we present REME-D, an online debugger that inte-
grates techniques from distributed debugging (event-based
debugging, message breakpoints) and proposes facilities to
deal with ad hoc, fragile networks – epidemic debugging,
and support for frequent disconnections. A prototype for
REME-D is implemented for the AmbientTalk language us-
ing the meta-actor protocol provided by AmbientTalk to im-
plement its features.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; distributed debugging ; D.3.2 [Programming
Languages]: Language Classifications—concurrent, distri-
buted, and parallel languages; object-oriented languages

Keywords
debugging tools, distributed object-orientated applications,
event-loop concurrency, reflection, mobile networks

1. INTRODUCTION
Debugging software is an integral part of the development

of any application. Debuggers aid in this task by allowing
developers to retrace the execution of a program, looking
for places in which it deviates from the intended behaviour.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

This task, which in sequential programs is already difficult,
is further complicated in a distributed environment [2].

When debugging a distributed program, developers must
deal with the inherent non-determinism of concurrent pro-
cesses. This complicates the debugging task since an error
detected on a run might not manifest itself in the debugging
session. Furthermore, the mere presence of the debugger
might exacerbate this non-determinism by affecting the way
in which the program behaves. Computations performed by
the debugger —recording state, checking for breakpoints,
etc.— may affect the order in which processes are executed,
making the reproduction of a rare erroneous condition even
rarer. This condition akin to the Heisenberg Uncertainty
principle, is known as the probe effect [7, 14].

In this paper, we focus on providing debugging support
for ambient-oriented applications: distributed applications
running on mobile networks that are built on the ambient-
oriented programming paradigm [3](AmOP). Ambient-ori-
ented programming extends the object-oriented paradigm
with a set of abstractions to deal with the hardware char-
acteristics of mobile ad hoc networks, namely, the fact that
network disconnections are frequent, and devices can ap-
pear and disappear as the user moves about (i.e., the net-
work is open). A central principle in the AmOP paradigm is
that all distributed communication is non-blocking, i.e asyn-
chronous. Ambient-oriented applications thus employ a con-
currency model without blocking communication primitives
(e.g. the actor model [1], event loop concurrency [15], etc).

In order to provide debugging tools for ambient-oriented
applications, two challenges need to be addressed:

Message-oriented debugging. In non-blocking concur-
rency models, the non-determinism is limited to the order
in which asynchronous messages are processed as a message
is executed atomically. On the other hand, the distance
between the cause of an error and its manifestation (i.e., er-
ror latency [2]) can be larger. In sequential programming,
a call stack trace is often used to establish a happened be-
fore relation [13] between function calls. In a non-blocking
concurrency model, at the beginning and end of processing
each message, the call stack is always empty. This means
that there is no trace of the path taken to reach the current
execution point outside of a process; thus inter-process com-
munication history is lost. It is precisely this inter-process
communication that is essential to understand the behaviour
of a distributed application. A debugger must thus provide

functionality to trace message passing between communicat-
ing parties.

Open debugging sessions. The hardware characteris-
tics inherent to mobile ad hoc networks must be taken into
account in the debugging process. Given the dynamic nature
of mobile ad hoc networks, a debugging session will consist
of a undetermined, fluctuating number of devices. Because
of this, a debugger must be able to dynamically add and re-
move devices from the session. Furthermore, the debugger
must allow devices to leave the debugging session without
affecting the rest of the participants.

Although a diverse spectrum of debugging tools exists
for message-passing programs [5, 8, 18, 21], we observe that
no debugger exists offering support for debugging applica-
tions running in the highly dynamic environment to which
ambient-oriented applications are exposed. The distributed
debugging techniques and debuggers developed to date have
either been designed for parallel computing (e.g. p2d2 [11],
replay [8], TotalView [8]), or for general-purpose distributed
computing (e.g. Causeway [18], Millipede [19]). None of
these debuggers have been explicitly designed for applica-
tions running on mobile networks.

In this paper, we introduce REME-D1 —for Reflective,
Epidemic MEssage-oriented Debugger—, a breakpoint-based
debugger that adapts notions of sequential debugging, such
as step-by-step execution and state introspection, to ambient-
oriented debugging. REME-D combines these features from
sequential debuggers with a message-oriented architecture
based on event-driven debuggers [5, 11, 17, 18, 21], resulting
in a simple debugging toolbox. In order to deal with the dy-
namic nature of the debugging session, in REME-D encoun-
tered devices are “infected” with the debugging session, thus
terming REME-D an epidemic debugger. We implemented
a prototype REME-D for the AmbientTalk language [20] (a
distributed object-oriented language designed for mobile ad
hoc networks) using its reflective capabilities.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses existing distributed debugging approaches
and points out the features that are useful for debugging
ambient-oriented applications under the event-loop concur-
rency model. In section 3, we introduce the domain of
ambient-oriented programming and the event loop concur-
rency model. Section 4 presents REME-D, explaining the
rationale behind each of the features it offers to developers.
REME-D’s implementation is discussed in section 5, while
section 6 concludes the paper and discusses future work.

2. RELATED WORK
Several techniques exist for debugging distributed, concur-

rent, and parallel programs. Although none of the existing
approaches provide support for message-oriented debugging
and open debugging sessions, they provide the foundation
on which we build a debugger for ambient-oriented applica-
tions. Along with our discussion, we highlight the techniques
that influenced the design of REME-D.

Debuggers can be categorized in two main families: log-
based debuggers (also known as post-mortem debuggers)
and breakpoint-based debuggers (also known as online de-
buggers). Post-mortem debuggers insert log statements in
the code of the program to be able to generate a trace log
during its execution. Developers can afterwards browse it

1read as remedy

to examine the behaviour of the program execution after
its completion. Breakpoint-based debuggers, on the other
hand, execute the program in a debug mode that allows
programers to pause/resume the program execution at cer-
tain points, inspect program state, and perform step-by-
step execution. In this work, we take a breakpoint-based
approach as its features provide a simple but fundamen-
tal debugging toolbox. Stack traces, for example, give the
developer an idea of what has happened before in the ex-
ecution of the program, giving hints of how the developer
got to the current point in the execution. Despite the fact
that the stack view does not show total causality, in most
cases tracing back the stack is enough to find the cause of
a bug [18]. When this does not uncover the cause, break-
points make it easier to mark to interesting places in the
execution. While log-based debugging have been previously
explored for message-oriented debugging [18], this paper ex-
plores breakpoint-based debugging as it provides a simple
yet flexible solution which aligns well with the dynamic na-
ture of ambient-oriented applications.

The main focus of distributed debugging is typically inter-
process communication where processes are considered to be
the basic building blocks [2]. In order to deal with bugs
internal to a process, most of the approaches delegate them
to dedicated sequential debuggers [2]. Others offer some
support for intra-process communication [4, 11, 18, 19]. In
this work, we take the former approach, focusing on inter-
process communication based on the use of message passing.

A great body of concurrent and parallel debugging tech-
niques are event-based. Event-based debuggers [14] conceive
the execution of a program as a sequence of events. The de-
bugger records the history of the events generated by the ap-
plication, which can then be used to either browse the events
once the application is finished [5, 18], or to replay the exe-
cution to recreate the conditions under which the bug was
observed [4, 17]. Event-based debuggers have been mainly
criticized because the recording process is costly and brows-
ing event history does not scale since manually inspecting
huge traces becomes cumbersome and difficult [14]. How-
ever, they fit well with a non-blocking concurrency model
as message sends and receipts can be represented as sepa-
rate events. A partial order of such events would accurately
reflect the behaviour of a distributed application. Some ap-
proaches explore a partial order of the event history based on
the happened before relation for browsing [18] or replay [8,11,
17]. The happened before relation shows how events poten-
tially affect each other [13], allowing developers to identify
potential places that caused a bug and as such, offering a
similar functionality as stack traces in sequential debuggers.
Our approach adapts event histories based on the happened
before relation to a breakpoint-based debugger by allowing
developers to browse causal links for messages in the current
execution context.

Several breakpoint-based debuggers have been designed
for parallel programs using message passing communication
including p2d2 [11], TotalView [8], and Amoeba [4]. These
debuggers offer the traditional commands to, e.g. stop,
inspect and step-by-step execution of a running program.
Some of them allow to set breakpoints on statements of one
process (e.g. TotalView) or a set of processes (e.g. p2d2,
prism). An interesting alternative to traditional breakpoints
is message breakpoints [21]. A message breakpoint stops all
receiver processes of the next message sent by a process.

The notion of message-breakpoints maps well to the event-
loop concurrency model, since it allows to define sensible
stepping semantics at message passing level.

In terms of debugging applications deployed on highly dy-
namic networks, for the most part, approaches assume a sta-
ble network infrastructure, and fragile communication chan-
nels are assumed to be handled at the application level, i.e.,
communication failures are seen as an application-level er-
rors. In a mobile setting, it is desirable that the debugger
gracefully deals with network disconnections. TotalView [9]
supports open debugging sessions by relying on the underly-
ing MPI middleware to manage and connect to newly or in-
dependently started processes. Developers can dynamically
attach processes running on nodes that execute a TotalView
debugging agent to a debugging session. This gives a degree
of freedom in the configuration of a debugging session nec-
essary for ambient-oriented applications. In our approach,
devices can be included in the debugging session without
first deploying special facilities.

3. AMBIENT-ORIENTED PROGRAMMING
REME-D is designed to support debugging of ambient-

oriented applications. Previous work has described the set
of programming characteristics that distinguish the AmOP
paradigm from a classic distributed object-oriented program-
ming [3]. In this section, we describe two characteristics
which directly impact the design of the debugger.

Mobile ad hoc networks are typically not administered.
This means that there are no global name servers, and as
such objects need to spontaneously discover required ser-
vices. Hence, in the AmOP paradigm communicating par-
ties do not need to know one another’s exact address or loca-
tion to get to know one another. In addition, they must be
able to keep an up-to-date view of which acquaintances are
(dis)connected (so that they can take explicit action when an
acquaintance disconnects). The combination of these mech-
anisms is known as ambient acquaintance management.

In the AmOP paradigm, all distributed communication
is non-blocking. This allows communicating parties to deal
with the impact of intermittent connectivity of devices on
the application as their control flow is not blocked upon
sending or receiving. An ambient-oriented concurrency model
is thus a concurrency model without blocking communi-
cation primitives. In this paper we consider an ambient-
oriented concurrency model based on the model of the E
language’s communicating event loops [15], which is itself
an adaptation of the well-known actor model [1]. In this
model, actors are represented as containers of objects encap-
sulating a single thread of execution (an event loop) which
perpetually takes a message from its message queue and in-
vokes the corresponding method of the object denoted as the
receiver of the message. The method is then run to comple-
tion, which is called a turn. A turn is executed atomically,
i.e. an actor cannot be blocked while processing a message.

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Figure 1: Actors as event communicating loops

Figure 1 illustrates actors as communicating event loops.
The event loop (represented by dotted lines) processes in-
coming messages one by one and synchronously execute the
corresponding methods on the actor’s objects. Methods can
only be directly executed by objects encapsulated by the
same actor. Communication with an object in another actor
happens asynchronously by means of far references (object
references that span different actors). For example, when
A sends a message to B, the message is enqueued in B’s
message queue which eventually processes it as shown in
Figure 1. A turn thus consists of the execution of a number
of synchronous method invocations and asynchronous mes-
sage sends. Note that at the start and end of a turn, the
method invocation stack is always empty. Message return
values are then obtained by means of callback objects.

4. REME-D: A REFLECTIVE EPIDEMIC
MESSAGE-ORIENTED DEBUGGER

REME-D is a debugger for ambient-oriented programming
built on an event loop concurrency model. A prototype of
REME-D for the AmbientTalk language has been imple-
mented as the debugger module of the AmbientTalk IDE
for Eclipse (IdeAT)2. Although the current prototype imple-
mentation of REME-D is aimed at AmbientTalk programs,
its principles are translatable to other languages built on
event-loop concurrency (e.g., E [15]).

To address the challenges posed by a non-blocking con-
currency model, REME-D is designed as a breakpoint-based
debugger in which focus is placed on the exchange of asyn-
chronous messages between event loops. It adapts features
from breakpoint-based debuggers to event loop concurrency
–actor state introspection, message breakpoints, stepping
over or into turns– , while incorporating for an online usage
features from post-mortem, message-oriented debuggers –
browsing causal links. To respond to the openness of mobile
ad hoc networks, REME-D provides epidemic debugging: it
can install itself on newly discovered devices, a process akin
to an infection in which REME-D spreads to devices join-
ing the debugging session. Devices can leave the debugging
session, either due to communication failures or in response
to a user action, without disrupting the debugging of the
remaining participants.

 Debugger Actor

Eclipse
Plugin GUI

REME-D Device Device

ActorActor

AmbientTalk VMREME-D

AmbientTalk VM

Socket communication Asynchronous communication

Device
AmbientTalk VM

AmbientTalk VM

Figure 2: REME-D Architecture Overview

Figure 2 shows the architecture of the REME-D’s proto-
type implementation. It consists of two main components:

2The IdeAT plugin is available to be installed from the
Eclipse update site at http://tinyurl.com/ideat

Figure 3: Eclipse plugin showing a REME-D debug session.

the coordinator debugger actor (or just debugger actor) and
the debugger UI implemented on top of the Eclipse Debug
Framework [6]. The debugger actor is executed on a differ-
ent AmbientTalk virtual machine than the application-level
actors being debugged. This actor serves as a central man-
ager for all actors within a debugging session. Each actor
participating in the debugger session contains a dedicated
object (denoted in grey in the figure) to communicate with
the debugger actor called local debugging manager (or just
local manager). Information is transferred between the de-
bugger actor and local managers via asynchronous message
passing. Note that communication is bidirectional as actors
inform the debugger actor of their current state, and they
also must be controlled in response to the user’s actions
within the debugging session (e.g. set a breakpoint).

REME-D’s UI displays the debugging information sent
to it by participating distributed AmbientTalk virtual ma-
chines, and issues debug commands through the debugger
actor. Figure 3 shows a typical REME-D session, in this
case the debugging of an online shopping application that
processes purchase orders similar to the one found in [18].
The figure displays three views: the debug view on the top
right pane, the state inspector on the top left pane, and the
editor on the bottom. The state inspector shows the state of
a paused actor highlighted in grey in the debug view. Debug
view shows that the application is composed of two differ-
ent devices running the store and the buyer files. The
editor shows part of the implementation of the buyer which
contains a checkoutShoppingBasket method. This method
is called by the customer when he decides to purchase some
goods. In response to this action, the buyer actor go method
is called which verifies three things before accepting the or-
der: 1) whether the requested items are still in stock, 2)
whether the customer has given valid payment information
and 3) whether a shipper can deliver the order in time.

4.1 Viewing actor state
REME-D supports the introspection of actors whenever

they are suspended (in a pause state). An actor can only be
suspended between turns. As turns are executed atomically,

allowing actors to be suspended only between turns aligns
well with the concurrency model. Because of this, the de-
bugger’s probe effect is minimised as turns in the debugged
actors remain atomic.

Actors can be explicitly suspended by the developer via a
pause command, or implicitly suspended by the local man-
ager as a result of a breakpoint or a step command. When
an actor is suspended, the corresponding local manager de-
lays the processing of the message at the head of the queue,
until it receives the command to resume execution. The
local manager communicates the state of the actor to the
debugger actor which in turn updates REME-D’s UI. Fig-
ure 3 shows, on the top left pane, how this information is
presented to the developer in REME-D in the state inspec-
tor. The developer is able to inspect the state of the objects
encapsulated in the actor, as well as the messages that await
processing on the actor’s message queue. In this example,
the actor contains an object customer and a go message
emitted by an actor with the id -1774115976.

While an actor’s execution is paused, the state of its ob-
jects remains static –no other execution thread has access to
them. However, this is not the case for the actor’s message
queue since other, non-paused actors can still send messages
to it. New messages that arrive while the actor is paused are
queued, and the local manager notifies the debugger actor to
update the state of the actor’s message queue. Notice that
while an actor is paused, its message queue can only grow,
and the order of messages received is not altered.

4.2 Asynchronous Message Breakpoints
In sequential debuggers, breakpoints are placed on state-

ments to mark “interesting points” in the execution of the
program in which the developer wishes to inspect its state.
Such interesting points in ambient-oriented programming
take the form of messages passed between actors leading
to the concept of asynchronous message breakpoints.

To debug a message, the developer places a breakpoint
on the asynchronous message send statement. In Ambi-
entTalk an asynchronous message statement is expressed as
o<-m() while a synchronous message statement is expressed

Figure 4: Debug view after a step-into command

as o.m(). In Figure 3 this is signaled in the editor by a dot
next to the breakpointed message. When a developer sets
a breakpoint, the debugger actor notifies all local managers
of the new breakpoint so that when the message is sent, it
is annotated with the breakpoint. The actor is suspended
when the breakpointed message reaches the head of its mes-
sage queue, before its execution.

REME-D provides the option of selecting at runtime on
which devices a given breakpoint will be active. REME-D UI
will then contact the debugger actor which, in turn, notifies
the corresponding set of local managers of the new break-
point. This is useful when debugging, for example, peer-to-
peer ambient-oriented applications in which a single object
plays the roles of both client and server. In these applica-
tions, all peers load the same source code so breakpoints will
be active on all running peers by default. REME-D also al-
lows the developer to “activate” breakpoints on a per-device
basis.

4.3 Navigating Consequence Links
REME-D allows developers to perform a step-by-step ex-

ecution of a running application. Two kinds of step com-
mands are offered: step-over and step-into a turn.

Stepping over a turn allows the developer to follow the
evolution of the actor state as it processes incoming mes-
sages. A step-over command instructs the local manager to
process a single message –the one at the head of the queue–
and return to the paused state.

Stepping into a turn allows the developer to navigate the
consequences of processing a given message, i.e., the mes-
sages sent to other actors in that turn. This is important
when understanding the behaviour of an actor since actors
cooperate with each other in order to carry out tasks [10].
When the developer instructs REME-D to step into the cur-
rent turn, the local manager will perform a step-over and
mark all outgoing asynchronous messages as breakpointed
messages. At the end of step-into, the current actor (i.e.,
the one on which the command was invoked) and all the
actors receiving messages sent within that turn are paused.
The developer can then assert the effect of the turn on the
current actor, and decide which of the now paused receiving
actors to continue debugging. This semantics is reminiscent
to the ones provided in [21] by combinaning a message break-
point with a traditional breakpoint on send statements.

Figure 4 shows the state of REME-D’s UI after having
stepped into the turn that processed the go message shown
in Figure 3. The debug view shows the actor that performed

the turn is expanded displaying the messages emitted during
the turn (canDeliver, checkCredit and partInStock), and
the three paused actors that received them.

4.4 Browsing Causal Links
In sequential debuggers, the call stack gives the developer

an idea of how the application has reached its current state.
Sadly, in the event-loop concurrency model, the call stack is
emptied at the end of each turn, providing no information
to the debugger. Since all inter-actor communication is per-
formed through asynchronous message passing, a traditional
call stack would be of no use in establishing the history of
the distributed behaviour of the application.

REME-D takes an event-driven approach by keeping a his-
tory of the messages sent and received during a turn. It is
possible to query the turn from where a message originated
and the message that was being processed in that turn, thus
establishing a happened before relation between messages.
The developer can then interactively unravel the causal links
that led to the currently inspected message. Local managers
maintain the event history for each actor, noting per each
incoming message (processed in a turn) all outgoing mes-
sages. This information is then sent to the debugger actor
which is in charge to build the causal links for a particular
message being browsed.

4.5 Debugging in face of partial failures
As REME-D is geared towards debugging ambient-oriented

applications, it is subject to the hardware characteristics
of any other ambient-oriented application, namely frequent
disconnections and the fact that the network is open. This
section describes how REME-D deals with the former char-
acteristic, and the latter is described in the next section.

In order to deal with the frequent disconnections inherent
to mobile ad hoc networks, communication with REME-
D is non-blocking: REME-D sends debug commands and
receives events from participating actors via asynchronous
messages. Events are produced either in response to the ex-
ecution of debug commands e.g., setting a breakpoint, or to
inform REME-D of changes in the actor state e.g., new mes-
sages enqueued while in a paused state. As such, communi-
cation failures with debugged devices do not affect the de-
bugging of the other devices. When a local manager detects
a communication failure with the debug actor, it removes
the breakpoints, and resumes the actor if necessary. Since
it is impossible to predict if a disconnection is temporary
or permanent, REME-D takes a conservative approach and
resumes the actor computation removing the local manager.

4.6 Epidemic Debugging
Debugging applications written for mobile ad hoc net-

works require that the debugging process itself be open.
In this sense, REME-D’s debugging sessions are not con-
strained to a fixed configuration. The developer does not
need to define a-priori which devices will participate in the
session. Instead, REME-D operates in an epidemic fash-
ion, spontaneously adding devices to the current debugging
session whenever they interact with other actors. A device
is added to the debugging session whenever it receives a
breakpointed message from an actor. Whenever a break-
pointed message arrives to an actor, the AmbientTalk VM
deploys a local manager on the newly infected actor. The lo-
cal manager then announces its presence to the debugger ac-

createMessage(name,args,tags) Creates a message from name, arguments and type tag annotations.
send(receiver,message) Sends a message asynchronously to the receiver.
schedule(receiver,message) Adds a message to the actor’s message queue.
serve() Dequeues a message from the actor’s message queue and process it.

Table 1: Reflective Operations overridden by the debugger actor mirror

@Debug Annotation used to mark messages as a debugging command from the debugger actor.
@Pause Annotation used to mark messages that require pausing the receiver actor. It is used

both by breakpointed messages and messages sent during step-into command.

Table 2: Annotations on Asynchronous Messages

tor, which adds the actor to the debugging session and sends
back debugging information (e.g the active breakpoints).

Devices leave a debugging session when they disconnect
from the network. As explained before, if a device was sus-
pended when it disconnected, the local manager resumes
the actor. On the other side, the debugger actor removes
the disconnected actor from the debug view. In figure 4,
the debug view on the right pane shows two different de-
vices running Store.at and Buyer.at respectively. Newly
infected devices would appear in this same pane.

5. IMPLEMENTATION
As previously mentioned, we implemented a prototype of

REME-D for AmbientTalk programs. The prototype has
been built reflectively in the AmbientTalk language itself.
The debugger actor has been implemented as an actor while
the local debugging manager as a meta-actor protocol. A
meta-actor protocol is similar to a meta-object protocol [12],
but it allows developers to introspect on or alter the default
semantics for an actor instead of an object. In AmbientTalk,
a meta-actor protocol is implemented as a special type of
object called an actor mirror [16]. In the rest of this section
we sketch the implementation of REME-D’s features.

Debugger actor. The debugger actor keeps an up-to-
date list of connected actors in the debugging session. The
list is updated whenever an actor loses connectivity by reg-
istering a callback that is invoked whenever a device discon-
nects from the network. In response to a user’s action, the
debugger actor sends an asynchronous message to the corre-
sponding local manager(s). Those messages are annotated
with a Debug annotation so that a local manager can dis-
tinguish between application-level messages and debug-level
messages. Annotations used in the REME-D prototype are
shown in Table 2. When a user sets a message breakpoint in
the UI, the debugger actor informs all local managers about
the source line corresponding to the send statement.

Debugger actor mirror. The debugger actor mirror is
an actor mirror representing the local debugging manager.
It implements the necessary interface methods for each de-
bugging command in order for the debugger actor to con-
trol the actor. In addition, it alters the default language
semantics for message sending and receiving to implement
the described REME-D features. Table 1 shows the list of
methods that this actor mirror overrides to this end 3.

The createMessage and send methods reify the default
semantics for sending of asynchronous messages of an ac-
tor. The debugger actor mirror overrides the createMes-

sage method to add a Pause annotation (c.f. table 2) in a
message to be able to pause the receiver actor. A message

3For a complete description of the reflective API of Ambi-
entTalk, we refer the reader to a dedicated publication [16].

is also extended to include information about the sender ob-
ject in order to build the event history for browsing causal
links. The send method was overridden to notify the debug-
ger actor about messages being sent from an actor.

The schedule and serve methods, on the other hand,
reify the default semantics for message receiving. The sched-
ule method is called right before a message is added in the
message queue of an actor. It is overridden to implement
the pause command. When an actor receives a pause com-
mand, the actor changes its state to paused. If the actor
is in a pause state when schedule is called, the incoming
message is buffered and the debugger actor is notified of
the arrival of a new message. The debugger actor in turn
updates the UI representation of the message queue in the
inspector. This semantics are not applied for debug-level
messages. If the incoming message has a Debug annotation,
the default semantics of schedule are applied and the debug-
ger actor is not notified. The serve method is called when
a message is dequeued, before being processed. It was over-
ridden to implement the resume and step commands. The
first thing that serve checks is the message’s annotations.
If the message has a Debug annotation, it is directly pro-
cessed (as it represents a debug-level message sent by the
debugger actor). If the message has a Pause annotation, the
actor state is changed to pause, and the debugger actor is
notified of its suspension. Before processing a message, we
check whether a message has a breakpoint. Each message
carries the source line number where it was created. In Am-
bientTalk, this corresponds to the place where the <- was
used, i.e. the asynchronous message send statement. The
method thus checks whether this line number corresponds
to any of the ones received from the debugger actor.

Infecting AmbientTalk VMs As explained before an
actor becomes infected when it receives a breakpointed mes-
sage. This has been implemented by altering the default
semantics for messages annotated with the Pause annota-
tion. In AmbientTalk it is possible, at runtime, to install a
new meta-actor protocol on an existing actor overriding an
actor’s MOP methods. When a message is annotated with
Pause, the method responsible for processing the message
is also overridden to be able to install the debugger actor
mirror on the receiver actor. The only requirement for in-
fecting an actor is thus, that the receiving actor knows the
source code for the debugger actor mirror. The source code
is included in the default AmbientTalk standard library, and
thus accessible to any created actor.

Implementation Status Although our REME-D proto-
type has been built entirely reflectively, it required to change
the AmbientTalk interpreter to provide access from the re-
flective layer to the source line number of asynchronous mes-
sages. Currently, causal link browsing is not integrated into
the debugger’s UI: the event logs produced by REME-D are

output into a format readable by Causeway [18].

6. CONCLUSION AND FUTURE WORK
We have presented REME-D, an online, message-oriented

debugging approach for ambient-oriented programs under
event loop concurrency. REME-D adapts well-known fea-
tures from sequential debuggers, such as step-by-step ex-
ecution, state introspection and breakpoints, to the event
loop concurrency model. We deal with the communica-
tion fragility and the changing network topology inherent
to the ambient domain by having the debugger itself be
an ambient-oriented meta-program that can reproduce itself
on newly discovered devices in an epidemic fashion. Since
communication between the debugger manager and the de-
bugged actors happens via asynchronous messages, discon-
nections of debugged actors do not affect the debugging ses-
sion. Such a design also minimizes the debugger’s probe
effect since turns in the debugged actors remain atomic (
i.e. REME-D does not block debugged actors) and the or-
der of application-level messages is not altered. To the best
of our knowledge REME-D is the first debugger that com-
bines these features together into one debugging toolbox and
applies them to ambient-oriented applications. REME-D
has been prototyped in the AmbientTalk language and inte-
grated as part of AmbientTalk IDE for Eclipse.

We would like to explore several avenues of future work.
First off, since the focus of REME-D is on inter-process com-
munication, debugging intra-actor messages is currently not
supported. Including support for such messages would re-
quire adaptations to AmbientTalk’s interpreter, so that the
continuation stack is reified. Secondly, we would like to add
a new kind of step command geared towards debugging mes-
sages carrying an implicit callback to return computation
results (i.e. future-based message passing). This would al-
low the developer to step through a future-typed message,
and have the sending actor be paused again when the re-
turning future is resolved. The reflective implementation of
REME-D has the benefit of allowing developers to extend
the debugger with new capabilities within the language it-
self such as support for timeouts, allowing the modification
of values on a paused actor, and replaying an execution.

Acknowledgments
Elisa Gonzalez Boix is funded by the prospective research for

Brussels program of IWOIB-IRSIB. Tom Van Cutsem is a post-

doctoral fellow of FWO-Vlaanderen. This work has been partially

funded by the Interuniversity Attraction Poles Programme of the

Belgian State through the Belgian Science Policy. We would like

to thank Anh Le Tuan who implemented the first debugger for

AmbientTalk programs.

7. REFERENCES
[1] G. Agha. Actors: a Model of Concurrent Computation

in Distributed Systems. MIT Press, 1986.

[2] W. H. Cheung, J. P. Black, and E. Manning. A
framework for distributed debugging. IEEE Software,
7(1):106–115, 1990.

[3] J. Dedecker, T. Van Cutsem, S. Mostinckx,
T. D’Hondt, and W. De Meuter. Ambient-oriented
Programming in Ambienttalk. In ECOOP’06, volume
4067 of LNCS, pages 230–254. Springer-Verlag, 2006.

[4] I. J. P. Elshoff. A distributed debugger for amoeba.
SIGPLAN Not., 24(1):1–10, 1989.

[5] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-Trace: A pervasive network tracing
framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation, pages 271 – 284,
Cambridge MA, USA, Apr. 2007.

[6] B. Freeman and B. D. Wright. The eclipse debug
framework. EclipseCon tutorial, 2005.

[7] J. Gait. A debugger for concurrent programs.
Software:Practice and Experience, 15(6):539–554, 1985.

[8] C. Gottbrath. Deterministically troubleshooting
network applications. Technical report, TotalView
Technologies, Apr. 2009.

[9] C. L. Gottbrath, B. Barrett, B. Gropp, E. R. Lusk,
and J. Squyres. An interface to support the
identification of dynamic MPI-2 processes for scalable
parallel debugging. In European PVM /MPI Users’
Group Meeting, LNCS, pages 115–122, Germany, 2006.

[10] Y. Honda and A. Yonezawa. Debugging concurrent
systems based on object groups. In ECOOP’88,
LNCS, pages 267–282, UK, 1988. Springer-Verlag.

[11] R. Hood. The p2d2 project: building a portable
distributed debugger. In Symposium on Parallel and
distributed tools, pages 127–136, USA, 1996. ACM.

[12] G. Kiczales, J. D. Rivieres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, USA, 1991.

[13] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications ACM,
21(7):558–565, 1978.

[14] C. E. Mcdowell and D. P. Helmbold. Debugging
concurrent programs. ACM Computing Surveys,
21:593–622, 1989.

[15] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan coordina-
tion. In Symp. on Trustworthy Global Computing,
volume 3705 of LNCS, pages 195–229. Springer, 2005.

[16] S. Mostinckx, T. Van Cutsem, S. Timbermont,
E. Gonzalez Boix, E. Tanter, and W. De Meuter.
Mirror-based reflection in ambienttalk. Software:
Practice and Experience, 39(7):661–699, 2009.

[17] R. H. B. Netzer and B. P. Miller. Optimal tracing and
replay for debugging message-passing parallel
programs. In Supercomputing ’92, pages 502–511, CA,
USA, 1992. IEEE Computer Society Press.

[18] T. Stanley, T. Close, and M. Miller. Causeway: A
message-oriented distributed debugger. Technical
Report HPL-2009-78, HP Laboratories, 2009.

[19] E. Tribou and J. Pedersen. Millipede: A multilevel
debugging environment for distributed systems. In
PDPTA’2005, volume 1, pages 187–193, 2005.

[20] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk:
object-oriented event-driven programming in mobile
ad hoc networks. In Inter. Conf. of the Chilean
Computer Science Society, pages 3–12. IEEE CS, 2007.

[21] R. Wismüller. Debugging message passing programs
using invisible message tags. In European PVM/MPI
Users’ Group Meeting, pages 295–302.
Springer-Verlag, 1997.

