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Abstract

Maintaining consistency between design and implementation is a fundamental issue in software evolution. Although
existing tools and techniques provide support for correcting inconsistencies, they target generally-applicable design
rules. Unfortunately, in addition to these common design rules, any software system has an abundance of custom
design rules that are very specific to the system at hand. For such custom design rules, verification and correction
are often left to the developer or require a considerable investment in the implementation of specific verification and
correction meta-programs.

HEAL is a framework that alleviates the problem of diagnosing and correcting violations of custom design rules in
code. It supports the implementation and automatic inference of corrective actions (i.e., program transformations that
may solve a detected design inconsistency. Using an abductive logic reasoner, HEAL infers these corrective actions
from the design rules themselves and the code over which these rules are verified.

In previous work we showed how simple solutions are generated from a repository of corrective actions to low-
level structural problems. In this paper, we extend our previous work by showing how multiple solutions affecting the
same source code element can be composed, allowing for the correction of complex design inconsistencies.

Keywords: inconsistency management, abductive reasoning, logic meta programming

1. Introduction

Software developers need mechanisms to ensure that the source code they create and evolve conforms to design
rules, such as the consistent application of coding conventions [1], idioms [2], design patterns [3] and design regu-
larities [4]). Respecting these design rules is not only important for keeping the source code easy to understand and
to maintain [5], but is also required to preserve the correct behavior of a system (e.g., certain frameworks such as
Hibernate require the source code to follow specific conventions to function correctly [6]).

Many development tools enable documenting design rules and verifying these rules with respect to the source
code (e.g., IntensiVE [7, 8, 9], NDepend [10], Semmle [11], CheckStyle [12], Lint [13], FindBugs [14], Ptidej [15]).
Some of these tools, such as Code Critics [16] and Eclipse’s quick fixes [17] suggest automated corrective actions
to help a developer resolve detected inconsistencies. None of these tools, however, provide sufficient support for
detecting and resolving user-defined design rules in the implementation of a software system: the implementation of
such user-defined design rules almost always requires developers to resort to ad-hoc techniques.

To fill this gap, we designed and implemented HEAL, a framework that extends IntensiVE (a tool suite for the
documentation and verification of structural design rules) with support for diagnosis and semi-automated correction
of user-defined design-rule inconsistencies. IntensiVE offers developers a set-theoretic model — built on top of the
logic query language SOUL [18] — to document design rules, along with a set of dedicated tools to verify validity of
these rules with respect to the source code. Using IntensiVE, developers gather sets of related source-code entities by
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means of a logic query, and specify constraints over these sets of entities. HEAL interprets these logic queries using
abductive logic reasoning [19, 20] to hypothesize about the possible causes for any design rule violation identified by
IntensiVE. Our tool returns visual feedback of the identified causes to the developer and provides specific support for
defining appropriate corrective actions making the source code adhere to a design rule. Our technique assumes the
existence of a library of basic corrective actions to low-level design-rule conditions. For example, a typical solution
to restore the consistency of a method with a wrong statement, could be deleting the faulty statement.

In previous work we have shown how simple solutions can be generated from a repository of corrective actions
to low level structural problems. We did not support at that time the application of multiple corrective actions on
the same source code element, in such a way that the final result is consistent with all the applied corrections. In
this paper we show our preliminary results in this direction. We describe in these initial experiments how multiple
solutions affecting the same source code element can be composed, presenting to the programmer the complete view
of how a source code element with multiple affectations during the inference process would look like after executing
a set of corrective actions.

Our work is structured as follows:
Section 2 discusses the IntensiVE tool suite and its logic meta programming foundations. Some examples show

how developers can document and verify system’s design rules. Section 3 subsequently demonstrates how associating
corrective actions with the hypothesized causes of an inconsistency enables the semi-automated correction of design
rule violations. Section 4 illustrates the complete diagnosis and correction process supported by our approach on our
examples. We give an overview of our future work in Section 5 and in section 6 we show our conclusions.

2. Documenting and Verifying Design Rules using IntensiVE

IntensiVE [21, 8, 22] is a tool suite for documenting structural design rules and verifying their validity with
respect to source code. This tool suite has been applied to document a wide range of such design rules, such as coding
conventions, implementation idioms, design pattern instances, architectural dependencies and so on.

At the core of IntensiVE lies the concept of an intensional view. Such a view is a set of source code artifacts
(such as classes, methods, fields) that are conceptually related (for example, all visit methods in the instance of a
Visitor design pattern). Key to IntensiVE is that this set of artifacts is not defined by explicitly enumerating all the
elements, but rather by means of an intension, i.e. an executable logic query that, upon evaluation, yields the artifacts
belonging to the intensional view. To this end, IntensiVE uses the Smalltalk Open Unification Language (SOUL) [18]
which is a Prolog-like logic programming language with specialized features for reasoning about the source code of
Smalltalk [23, 24], Java [24, 25], C [26] and Cobol [27] programs.

To document structural design rules, relationships are expressed between these intensional views. IntensiVE
supports three kinds of relationships, namely multiple alternative views, unary relationships and binary relationships.

As illustrative examples we have chosen the verification of custom design rules that should be respected by an
existent web development framework: Seaside [28]. Since the design rules in this case study can be expressed with
unary relationships, we will focus on this kind of rule.

Unary relationships are declared over a single intensional view and are used to express a number of conditions
that need to be respected by the elements belonging to this intensional view. These relationships are of the form:
Qx ∈ V : conditions(x) where Q is a logic quantifier (e.g. ∀,∃,@), V is an intensional view and conditions is logic
query expressed using SOUL.

2.1. Example 1. No method should send renderContentOn:
A typical Seaside application consists of a number of Seaside components. From within one component, a de-

veloper can use another component by invoking the renderOn: method on that component. Novice users of the
framework tend however to invoke the renderContentOn: method instead, which is part of the internals of the
framework.

An intensional view named WAComponents methods is created to document the design rule that within Seaside
components, the renderContentOn: method should not be called. It is defined by means of the following SOUL
query:
if classInheritsFrom(?class,[WAComponent]),

methodInClass(?method, ?class)
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The actual design rule is documented by imposing a unary relationship over this view. This relationship is defined
as follows:

∀ ?component ∈ WAComponents methods:
not(methodSendsSelector(?component.method,{renderContentOn:}))

This unary relationship expresses that for all methods that are part of the WAComponents methods intensional view, the
method should not send the selector renderContentOn:. To this end, the condition of this relationship uses the
predicate methodSendsSelector/2 that is part of the predicate libraries offered by SOUL. The actual definition
of the predicate is shown in listing 1.

1 m e t h o d S e n d s S e l e c t o r ( ? method , ? s e l e c t o r ) i f
2 s t a t emen tOfMethod ( ? s t a t e m e n t , ? method ) ,
3 ? messagesend i s S t C h i l d O f : ? s t a t e m e n t ,
4 ? messagesend e q u a l s : RBMessageNode ( ? , ? s e l e c t o r , ? )

Listing 1: Definition of methodSendsSelector

This predicate receives as parameters a method and a selector. It verifies if the selector is used in the parse tree of
the method.

2.2. Example 2. Certain methods should contain a super call

In Seaside, certain methods called initialize in classes inheriting from WAComponent should contain a super
call as the first statement of their implementation.

An intensional view named WAComponents initializers is created to document this design rule. It is defined by
means of the following SOUL query:

if classInheritsFrom(?class,[WAComponent]),
methodWithNameInClass(?method,initialize,?class)

This query will gather all initialize methods in classes inheriting from WAComponent.
The design rule is documented by imposing a unary relationship over the intensional view WAComponents initial-

izers. This relationship is defined as:

∀ ?initializer ∈ WAComponents initializers:
methodBeginsWithSuperCall(?initializer.method)

This unary relationship expresses that for all methods that are part of the WAComponents initializers intensional view,
the first statement of the method should be a super call. To this end, the condition of this relationship uses the
predicate methodBeginsWithSuperCall/1. This predicate is defined in listing 2.

1 methodBeg insWi thSupe rCa l l ( ? method ) i f
2 methodWithName ( ? method , ? name ) ,
3 argumentsOfMethod ( ? a rgs , ? method ) ,
4 m e t h o d W i t h F i r s t S t a t e m e n t ( ? method ,
5 RBMessageNode ( RBVariableNode ( s u p e r ) , ? name , ? a r g s ) )

Listing 2: Definition of methodBeginsWithSuperCall

This predicate receives as parameter the method that should begin with a super call. After requesting the
name and arguments of this method (lines 2 and 3), It verifies if the first statement of the method is a message sent
(RBMessageNode, line 5) to the pseudo-variable super having the same name and parameters than the receiving
method.

The definition of the predicate methodWithFirstStatement/2 is shown in listing 3.

1 m e t h o d W i t h F i r s t S t a t e m e n t ( ? method , ? s t a t e m e n t ) i f
2 s t a t e m e n t s O f M e t h o d (<? s t a t e m e n t | ? o t h e r S t a t e m e n t s > ,? method )

Listing 3: Definition of methodWithFirstStatement
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3. Diagnosing and Correcting Violations of Design Rules

In the previous section, we discussed how design rules can be specified and verified in IntensiVE by means of
relations between intensionally-defined (i.e., by means of a logic query) sets of source code elements. This section
describes how abductive logic reasoning allows to diagnose violations of those design rules and how corrective actions
(i.e. source code transformations) enable the semi-automatic correction of such inconsistencies.

3.1. Diagnosing Violations with Abductive Inference

Reiter [29] defines diagnosis as the search of the components of a system that —under the assumption that these
components are faulty— will explain inconsistencies between a description of this system and certain observations.
Following Reiter’s definition, we assume that violations of design rules are caused by faults in the system’s compo-
nents. At this time, we do not consider the possibility that the actual documentation of these design rules is incorrect.

The IntensiVE tool suite discussed in Section 2 documents design rules as relations between sets of source code
elements. The logic meta programming foundations of this suite (i.e., it relies on logic queries that quantify over the
program’s code to define those sets and relations) imply that both the program to verify and its consistency rules can
be regarded as a logic theory. In logic, the process of hypothesizing causes for abnormal observations is referred to
as abductive reasoning [19]. Given that we can consider abnormal observations as inconsistencies, HEAL makes use
of a logic abductive reasoner for finding causes to design problems in code. Such abductive reasoner, in addition to
generate answers to a query using SLDNF resolution [20], will attempt to find hypothetic updates to the logic theory
that will change the result of a query. Intuitively, abductive inference is typically accomplished with the analysis of
a logic proof tree (i.e., a tree representation for the logic resolution process of a query). Examining this tree, it is
possible to suggest the right updates to the theory that would change the result of a query according to a particular
intention.

For a detailed explanation of abductive inference, and how it is implemented in HEAL we refer to our previous
work [30].

3.1.1. Declaring Reification Predicates as Abducibles
IntensiVE reports design rule violations as a set of source code elements for which the relations do not hold. To

diagnose a violation, it therefore suffices to re-evaluate the logic queries that define the violated relations —this time
using abductive logic resolution with the queries’ free variables bound to the source code elements that correspond to
the violation.

SOUL offers several predicate libraries for reasoning about a system’s source code. Each library provides reifica-
tion predicates that reify the basic relations between the nodes in an abstract syntax tree representation of the program
(e.g., methodWithNameInClass/3). In addition, each library provides higher-level predicates that quantify over
relations between AST nodes that are not explicit in the AST representation. Examples include classCallsClass/2
and accessorMethodInClassForInstanceVariable/3. As the higher-level predicates are implemented
in terms of the reification predicates, the abductive logic reasoner only considers the latter as abducible predicates
—each explanation should be minimal. Implementation-wise, predicates are declared as abducible using rules of the
following form:

abducible(?abductiveIntention(?abduciblePredicate)) if
?groundingConditions

where ?abductiveIntention is a constant in or out indicating whether ?abduciblePredicate has to be added to or re-
moved from the logic theory respectively. Although ?abduciblePredicate can contain variables, explanations comprise
ground atoms only. Logic variables within ?abduciblePredicate are therefore either bound in the query evaluated by
the abductive logic interpreter (i.e., the one corresponding to a design rule violation) or bound via the ?grounding-
Conditions conditions. This supports reasoning with incomplete information.

3.1.2. Declaring Corrective Actions for Abducibles
In our library, corrective actions are declared as rules of the following form:

correct(?abducedHypothesis, ?action) if ?generatorConditions
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Here, ?abducedHypothesis is a hypothesis from an abduced explanation (i.e., a ground atom corresponding to an
abducible predicate) and ?action a Smalltalk expression performing the corrective action upon the user’s request.
An abduced explanation consists of abducible predicates that will explain an observation once they are added to or
removed from the logic theory.

In our problem setting, those abducibles are ground reification predicates that reify the relations between the nodes
in an abstract syntax tree representation of the program. An explanation that requires a predicate to be added to or
retracted from the logic theory implies changes to the program’s AST. Rather than changing the reification of the
program and subsequently constructing the modified program from the updated reification, we directly change the
program’s AST itself. This is possible because SOUL’s symbiosis with Smalltalk (i.e., logic variables can be bound
to Smalltalk objects and Smalltalk expressions can be used within logic queries) enables reifying an AST node as the
AST node itself (i.e., a Smalltalk object rather than a compound term). Hence, most corrective actions are performed
by sending messages to AST nodes. The logic conditions ?generatorConditions support the corrective action.

In the rest of this section we give examples about how we can associate abducibles with corrective actions. These
examples will be revisited in the next section. As a first example, the corrective action associated with the retraction
of a predicate statementOfMethod/2 from a theory is shown in listing 4.

1 c o r r e c t ( o u t ( s t a t emen tOfMethod (+? s t a t e m e n t , + ? method ) ) ,
2 [ [ Soul . MLI f o r S m a l l t a l k updateMethod : ? method withCode : ? newMethodCode ] ] ) i f
3 methodSourceCode ( ? method , ? prev iousMethodCode ) ,
4 g e n e r a t e ( m e t h o d W i t h o u t S t a t e m e n t ( ? method , ? s t a t e m e n t ) , ? newMethodCode )

Listing 4: Corrective action for statementOfMethod/2 (deleting the statement).

The out functor in the declaration of the corrective action implies that this action is intended to retract the ground
predicate statementOfMethod(?statement, ?method) from our logic theory. The action will suggest the
elimination of the conflictive statement from the method.

Note that multiple corrective actions can be associated with an abduced hypothesis. For example, although in
the previous case deleting a conflicting statement could be the right action to accomplish in many situations, in other
occasions we would like to replace such statement by another one (like in the Seaside case). A corrective action
producing such effect is shown in listing 5.

1 c o r r e c t ( o u t ( s t a t emen tOfMethod ( RBMessageNode ( ? ,{ r e n d e r C o n t e n t O n : } , ? ) ,+? method ) ) ,
2 [ [ Soul . MLI f o r S m a l l t a l k updateMethod : ? method withCode : ? newMethodCode ] ] ) i f
3 methodSourceCode ( ? method , ? prev iousMethodCode ) ,
4 s t a t e m e n t s O f M e t h o d ( ? s t a t e m e n t s , ? method ) ,
5 r e p l a c e O c c u r a n c e W i t h ( ? s t a t e m e n t s , ? newSta tements ,
6 RBMessageNode ( ? rec ,{ r e n d e r C o n t e n t O n :} , ? a r g s ) ,
7 RBMessageNode ( ? rec ,{ renderOn :} , ? a r g s ) ) ,
8 m e t h o d S i g n a t u r e ( ? method , ? s i g n a t u r e ) ,
9 methodSourceCode ( ? s i g n a t u r e , ? newSta tements , ? newMethodCode )

Listing 5: Corrective action for statementOfMethod/2 (replacing the statement).

As a last example, in listing 6 we define a corrective action associated with the addition of the abduced hypothesis
statementsOfMethod/2 to a theory.

1 c o r r e c t ( i n ( s t a t e m e n t s O f M e t h o d (+? mode lS t a t emen t s , + ? method ) ) ,
2 [ [ Soul . MLI f o r S m a l l t a l k updateMethod : ? method withCode : ? newMethodCode ] ] ) i f
3 methodSourceCode ( ? method , ? prev iousMethodCode ) ,
4 m e t h o d S i g n a t u r e ( ? method , ? s i g n a t u r e ) ,
5 s t a t e m e n t s O f M e t h o d ( ? o l d S t a t e m e n t s , ? method ) ,
6 a d a p t ( ? o l d S t a t e m e n t s , ? mode lS t a t emen t s , ? newSta t emen t s ) ,
7 methodSourceCode ( ? s i g n a t u r e , ? newSta tements , ? newMethodCode )

Listing 6: Corrective action for statementsOfMethod/2.

The condition in the body of the rule (line 7) binds ?newMethodCode to a string corresponding to the source code
of a Smalltalk method which follows the pattern given by ?modelStatements. The actual corrective action (line 2) is

5



List of explanations ( Δ1, Δ2, ... Δn)
List of corrective actions
for selected explanation

Description of selected corrective action

Source code before corrective action

Source code after corrective action

Abductive proof tree

Figure 1: Corrective actions for a method invoking #renderContentOn:.

a Smalltalk block that, upon request by the user, will update the source code of the method ?method with the string
?newMethodCode — thus correcting the hypothesized cause of an inconsistency.

In the next section we will make use of these associations of abducible predicates with corrective actions, in order
to diagnose and correct inconsistent source code.

4. Illustrative Examples

In this section we illustrate how the consistency checks presented in section 2 can be diagnosed and corrected in
our approach. At the end of this section, we will also show how different corrections can be composed with our tool.

4.1. Correcting methods sending renderContentOn:

By means of a unary relationship imposed on top of the WAComponents methods intensional view, we constrained
that the methods belonging to this view should not invoke methods named renderContentOn:. We verify that
this property holds, executing this query for every method in the view:

not(methodSendsSelector(?method,{renderContentOn:}))

In case of failure (i.e., when a tested method does send the selector #renderContenOn:), HEAL will attempt
to find an update to our logic theory that would change the result of this query, making it true. Using logic abductive
reasoning, we find that in case of retracting all the facts from the theory with this form:

statementOfMethod(wrongCallStatement, aFaultyMethod)

the consistency will be restored. This solution is found since statementOfMethod/2 was declared as abducible
(see listings 4 and 5).

Figure 1 depicts the HEAL browser (produced with the browser scripting language Glamour [31]) with the actual
feedback for the methods violating the design rule that the message #renderContentOn: should not be used.

The bottom pane contains the top of the abductive proof tree providing a graphic representation for the abductive
inference process. It is drawn using the Mondrian [32] visualization engine.

The pane in the top-left corner lists the abduced explanations for the violation. Once users have selected a possible
explanation from this list, they are offered the corresponding list of corrective actions in the next pane. In the second
row, a pane shows a textual description for the selected corrective action. In the two panes present in the third row, we
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Abductive solutions

Figure 2: Proof tree for the renderContenOn design rule.

Abductive solution

Figure 3: Proof tree for the super design rule.

can see a comparison between how the code of a violating method looks before applying certain corrective action (left
pane) and what the method would look like if the corrective action is applied (right pane) making the method comply
with the design rule.

Note that there are two corrective actions available: the first just eliminating the faulty statements, the second
replacing these statements with correct values. The browser depicts the two solutions for every detected inconsis-
tency. The proof tree fragment shown in figure 2 illustrates how the solutions were found using abductive reasoning:
complete lines denote logic SLDNF resolution and broken lines denote abductive resolution.

4.2. Correcting methods missing a super call
The design rule stating that methods overriding initialize should contain a super call as their first statement

was documented in Section 2. IntensiVE identified a method with this name in class IntensionalViewLayoutManager
as one of the violations of this design rule.

As we described before, such verification is accomplished testing that for all the methods that should follow this
design rule, the following query succeeds:

methodBeginsWithSuperCall(?method)

The abductive logic interpreter detected that although this query was failing for the method:
IntensionalViewLayoutManager>>initialize, our logic theory can be updated in such a way that this
query would succeed.

Examining the definition of methodBeginsWithSuperCall/2 (listing 2) and methodWithFirstStatement/2
(listing 3), and inspecting the proof tree of the failing query (figure 3), we can observe that the failure of the predicate
statementsOfMethod/2, in charge of verifying that the first statement of a method is a super call, is the cause
of the failure of the query. Since the predicate statementsOfMethod/2 is declared as an abducible and associ-
ated with a corrective action (listing 6), the interpreter was therefore able to abduce an explanation for this violation.
This explanation has the form:

statementsOfMethod(<superCallStatement | otherStatements>,
aFaultyMethod)
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Composition of multiple solutions

Source code before last corrective action Source code after multiple corrections

Figure 4: Corrective actions for a composite solution.

4.3. Composing solutions

Finally we will consider how the previous solutions can be composed by HEAL.
The main idea behind composition of solutions is that HEAL, during the abductive inference process, is able to

remember previous assumptions over the structure of source code elements. In this way, new corrective actions can
take always into consideration the last state of modified source code elements.

For example, if we combine our two previous verifications in one single design rule, we would express it with the
following query:

not(methodSendsSelector(?method,{renderContentOn:}))
methodBeginsWithSuperCall(?method)

In case of a method with multiple faults (i.e., sending #renderContentOn: and not beginning with a super
call), the abductive reasoning process will:

• Detect that the first predicate is failing. Then it will attempt to generate an hypothesis in which the possibly
correct method code does not send #renderContentOn: anymore.

• Detect that the new code of the method is still breaking a design rule (it does not include a super call). Then
generate a new hypothesis starting from the last version of the method, in which the new problem is corrected.

Note that the result of method transformations are not applied to the real code during the inference process.
However, the abductive reasoner can know how the last version of the method looks like in any state of such inference
process. Once the inference process is finished, it is the responsibility of the programmer to select and apply the right
combination of corrective actions to a faulty source code element.

Figure 4 shows the output of HEAL for our composition example. There we can see how multiple composed
corrective actions are presented to the programmer. At the left bottom of the HEAL browser, we can see how the code
would look like just before applying the last corrective action. Note that in this version of the method one corrective
action has already been applied, since the method already include a super call. However, the method is still making
a call to #renderContentOn:. The final state of the method, after applying all the corrections, is shown at the
panel of the right. No errors are left.
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5. Future work

Our current ongoing work focusses on researching strategies for generating more refined corrective actions for
inconsistencies. Particularly, we are interested in finding heuristics for filtering the number of results generated by our
approach, i.e., guiding the abductive inference process.

In our problem domain, one promising direction is developing heuristic strategies that analyze not only the struc-
ture of the source code artifacts that violate a design rule, but also of the artifacts that satisfy this rule. By comparing
these two code fragments, information might be obtained concerning the exact statements in the source code that
should be modified in order to correct the violation.

Finally, we are also interested in the generalization of our technique for the diagnosis and correction of inconsis-
tencies between different kinds of software models. Concretely, we are interested to know if HEAL can be used for
diagnosing inconsistencies between design and UML models.

6. Conclusion

In this paper we have presented Heal, a framework based on abductive logic reasoning for diagnosing and correct-
ing violations of design rules in program code. Heal has been implemented as an extension to the IntensiVE tool suite,
that allows for documenting design rules and verifying these design rules with respect to the source code. Underlying
this IntensiVE tool suite lies the use of the logic program query language SOUL to quantify over a system’s source
code and define sets source code artifacts referred as Intensional Views. Design rules are expressed with queries
denoting relationships that should hold between Intensional Views. By means of logic abduction over these logic
queries, our approach is able to provide a developer feedback concerning possible hypotheses that might cause viola-
tions of design rules. In order to correct the hypothesized causes of inconsistencies, our approach provides a library of
associated corrective actions for basic structural problems in code. HEAL composes these primitive solutions in order
to generate a set of corrective actions that will bring design and code back to a consistent state.
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