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Abstract. Pervasive applications running on mobile ad hoc networks
have to be conceived as loosely-coupled event-driven architectures be-
cause of the dynamic nature of both the underlying network and the
applications running on top of them. Such architectures can become te-
dious to develop and understand when the number of events and event
handlers increases. The reason is that the control flow of the application
is driven by event handlers or callbacks which are triggered indepen-
dently and are scattered throughout the application code. In this paper,
we propose a number of language constructs that reconcile the elegant
processing of events of a reactive programming system with the loose
coupling of a publish/subscribe system that is required to cope with the
dynamic nature of mobile ad hoc networks.

Key words: reactive programming, publish/subscribe, event-driven pro-
gramming, mobile ad hoc networks

1 Introduction

Pervasive applications running in mobile ad hoc networks cannot be structured
as monolithic programs which accept a fixed input and compute it into some
output. Instead, to allow responsiveness to changes in the dynamically changing
mobile ad hoc network, programming paradigms targeting pervasive applications
propose the adoption of event-driven architectures [1–4].

The traditional way of conceiving an event-driven system in a setting where
producers and consumers change at runtime is by adopting a publish/subscribe
architecture, where event producers publish events and event consumers sub-
scribe and react to events, either using a topic-based or content-based subscrip-
tion [5, 6]. In mobile ad hoc networks, where devices dynamically join and leave,
and where network connections can be broken at any point in time, the coupling
between producers and consumers should be very loose to prevent that network
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partitioning breaks the system when both parties are disconnected from one
another. Furthermore, in such a setting without a fixed infrastructure such as
naming servers, event producers should be able to notify event consumers with-
out prior knowledge about their location and identity. This decoupling in space
and time is what makes publish/subscribe so well suited to a dynamic environ-
ment such as a mobile ad hoc network [7, 2] and both properties are needed
to support application components that act as publishers and subscribers on
roaming devices.

Eventually, the application layer should react to the events detected by the
publish/subscribe layer. In most cases, this requires the programmer to bridge
the gap between the underlying event notification system and the application
layer. First, many event communication systems operate only on specific data
types (e.g. event structs without methods) which lack some of the expressive
power typically conveyed by high level programming languages. Consequently,
application data types that correspond to events must adhere to additional cri-
teria to allow mapping application data to events and vice versa. Furthermore,
by adopting such an event-driven architecture, the application logic becomes
scattered over different event handlers or callbacks which may be triggered in-
dependently [8]. The control of the application is no longer driven by an ex-
plicit control flow determined by the programmer, but by external events. This
is a phenomenon known as inversion of control [9]. Control flow among event
handlers has to be expressed implicitly through manipulation of shared state.
E.g. unlike subsequent function calls, code triggered by different event handlers
cannot use the runtime stack to make local variables visible to other executions
(stack ripping [10]), such that these variables have to be made instance variables,
global variables, etc. Finally, in more complex systems it is not always clear in
which order different event handlers will be triggered, which can be critical in
programming languages that allow side effects. In short, most publish/subscribe
middleware lack a seamless integration with a high level programming model [11].
This is why in complex systems such an event-driven architecture can become
hard to develop, understand and maintain [12, 13].

In this paper, we propose a set of language constructs that enable the fol-
lowing:

1. No inversion of control It should be possible to generate, combine and
react to events all in the same programming language in an expressive way
without inverting the control of the application and without introducing
extra synchronization issues.

2. Support for roaming Distributed application components notifying each
other of events in an environment that exhibits all the characteristics of
pervasive applications and mobile ad hoc networks mentioned above. This
requires decoupling of event producers and consumers in both space and
time.

Concretely, reactive programming techniques are used to build event-driven
systems without inversion of control. Furthermore, we introduce ambient behav-

iors, a language abstraction built on top of publish/subscribe middleware which



permits distributing event-driven applications over mobile ad hoc networks. The
expressive power of the language construct is subsequently illustrated by its use
in a non-trivial collaborative application deployed on a mobile ad hoc network.

In the next section, the key technologies on which our approach is based,
namely the programming language AmbientTalk and ambient references, are
briefly explained. In section 3, we discuss reactive programming in AmbientTalk/R
and introduce some event notification language constructs that support roaming
and do not suffer from an inversion of control. Section 4 discusses a small perva-
sive application that we have implemented using our novel language constructs
and subsequently in section 5 we point out the limitations of our approach. In
section 6 we discuss some existing systems that permit building a similar kind
of distributed event-driven systems by providing programming language support
for one or more of the required features we pointed out above. Finally, section 7
concludes this paper.

2 Preliminaries

The ambient-oriented programming paradigm [14] is specifically aimed at per-
vasive applications running in mobile ad hoc networks. For this reason we chose
to incorporate our language constructs in an existing ambient-oriented program-
ming language. Ambient-oriented programming languages should explicitly in-
corporate potential network failures in the very heart of their computational
model. Therefore, communication between distributed application components
should happen without blocking the execution thread of the different components
such that devices may continue doing useful work even when the connection with
a communication partner is lost. Ambient-oriented languages also deal with the
dynamically changing network topology in mobile ad hoc networks. The fact that
in such networks devices spontaneously join with and disjoin from the networks
means that the services these devices host cannot be discovered using a fixed,
always available name server, but instead require dynamic service discovery pro-
tocols (e.g. broadcasting advertisements to discover nearby services).

2.1 AmbientTalk

AmbientTalk [15, 16] is a distributed programming language embedded in Java1.
The language is designed as a scripting language that can be used to compose
Java components which are distributed across a mobile ad hoc network. The
language is developed on top of the J2ME platform and runs on handheld de-
vices such as smart phones and PDAs. Even though AmbientTalk is embedded
in Java, it is a separate programming language. The embedding ensures that
AmbientTalk applications can access Java objects running in the same JVM.
These Java objects can also call back on AmbientTalk objects as if these were
plain Java objects.

1 The language is available at soft.vub.ac.be/amop



The most important difference between AmbientTalk and Java is the way
in which they deal with concurrency and network programming. Java is multi-
threaded, and provides either a low-level socket API or a high-level RPC API
(i.e. Java RMI) to enable distributed computing. In contrast, AmbientTalk is
a fully event-driven programming language. It provides only event loop con-
currency [17] and distributed objects communicate by means of asynchronous
message passing. Event loops deal with concurrency similar to GUI frameworks
(e.g. Java AWT or Swing): all concurrent activities are represented as events
which are handled sequentially by an event loop thread.

AmbientTalk offers linguistic support to deal with the fluid topology of mobile
ad hoc networks.

1. In an ad hoc network, objects must be able to discover one another with-
out any infrastructure (such as a shared naming registry). Therefore, Am-
bientTalk has a service discovery engine that allows objects to discover one
another in a peer-to-peer manner (by broadcasting UDP advertisements).

2. In an ad hoc network, objects may frequently disconnect and reconnect be-
cause of network partitions. Therefore, AmbientTalk provides fault-tolerant
asynchronous message passing between objects: if a message is sent to a dis-
connected object, the message is buffered and resent later, when the object
becomes reconnected. Other advantages of asynchronous message passing
over standard RPC is that the asynchrony hides latency and that it keeps
the application responsive (i.e. the event loop is not blocked during remote
communication and is free to process other events).

2.2 Event-driven Programming in AmbientTalk

AmbientTalk uses a classic event-handling style by relying on closures to function
as event handlers. This has two advantages: closures can be used in-line and
can be nested and closures have access to their enclosing lexical scope. Event
handlers are (by convention) registered by a call to a function that starts with
when. Events are always processed sequentially within the same event loop and
event handler closures always run to completion before the next scheduled event
handler is invoked, hence providing atomic execution of event handlers within
the same event loop.

Throughout the rest of this paper we will use an example mobile application
that assists visitors of a concert or other kind of event to trade tickets with
other users. The following code snippet illustrates how AmbientTalk can be
used to discover a TicketVendor object representing a user selling a ticket. Once
discovered, the remote object is sent a message to retrieve its current location.

when: TicketVendor discovered: { |ticketVendor|

when: ticketVendor<-getLocation() becomes: { |location|

// Update user interface with the location.

}}

The above code consists of two event handlers. The first event handler, regis-
tered by means of the when:discovered: control structure, is invoked when the



language runtime discovers a TicketVendor object. Here, TicketVendor refers to a
Java interface. The discovered object is accessible via the ticketVendor variable,
which denotes a remote AmbientTalk object that wraps a Java component im-
plementing the ticket vendor. The syntax obj<-msg() denotes an asynchronous
message send and is used here to query the TicketVendor object for its latest lo-
cation. When the query message is processed by the remote ticketVendor object,
that object’s getLocation method is invoked. The return value of this method is
used as the reply to the query. The caller is notified asynchronously when the
reply has been computed. The when:becomes: control structure is used to install
an event handler that can process this reply. The return value is passed to this
event handler (cf. the location variable in the example).

As can be seen from the above example, service discovery and replies of
remote queries are represented in AmbientTalk as events that trigger the ap-
propriate event handlers, causing an inverted control flow. Furthermore, if the
location of the ticket vendor has to be refreshed, the code shown above has to
be executed periodically (e.g. in a loop). In the following section, we show how
the events of discovering new and detecting lost services can be made implicit,
by means of ambient references [18].

2.3 Language Abstractions for Roaming

When writing AmbientTalk code to query nearby services for data (e.g. all users
selling a ticket) using the language features discussed in the previous section,
one often writes a recurring pattern of code to deal with the discovery and loss
of nearby services while a query is executing, and to deal with gathering the
replies from all respondent services. To ease the writing of multicast queries,
AmbientTalk introduces ambient references [18]. Ambient references represent a
collection of nearby services of the same type. This collection is constantly kept
up-to-date with the proximate physical environment: newly discovered services
are added to the collection, while unreachable services are removed from it. This
synchronization with the environment must no longer be done manually by the
programmer, but is instead done by the ambient reference itself.

Sending a message to an ambient reference causes this message to be mul-
ticast to all services in the collection. A message can also be annotated with
an expiration period (in milliseconds). If a message has an expiration period, it
will not only be multicast to all services in the ambient reference’s collection at
the time the message is sent, but also to any services discovered at a later point
in time, until its expiration period has elapsed. Consider the following example
query:

def werchterVendors :=

ambient: TicketVendor where: { |tv| tv.event == "Rock Werchter" };

whenAll: werchterVendors<-getLocation()@Expires(5.seconds) becomes: {

|locations|

// Update the map GUI with the locations

}



The keyword ambient: allows one to create an ambient reference given a Java
interface. Additionally, an optional where: clause can be specified that allows
to filter on properties of the discovered objects to allow content-based pub-
lish/subscribe. The variable werchterVendors contains an ambient reference that
refers to all nearby TicketVendor objects that are selling tickets for an event
named "Rock Werchter". The message getLocation() is asynchronously multi-
cast to these services with an expiration period of 5 seconds. This implies that
the message may be received by all proximate ticket vendors at the time it is
sent, as well as to all additional ticket vendors discovered within the next 5 sec-
onds. The whenAll:becomes: control structure allows the programmer to install
an event handler that can be used to gather the results of the query. Within
this event handler, locations refers to an array containing the locations of the
ticket vendors that replied. The event handler is triggered when the message’s
expiration period has elapsed.

The above example shows how ambient references relieve the programmer
from having to deal explicitly with the events of discovery and loss of nearby
services: ambient references transform these events into additions to or removals
from their encapsulated collection. The programmer only has to specify an in-
tensional (topic-based or content-based) description of the services that have
to be discovered. The programmer must still capture the replies to the query
by means of the whenAll:becomes: callback, leading to an inverted control flow.
Furthermore, if the user interface showing the locations of the ticket vendors
has to be kept up to date with the physical environment, the query has to be
repeatedly executed in a loop. Eliminating both phenomena is the topic of the
next section.

3 Reactive Programming in AmbientTalk/R

Reactive programming is a programming paradigm employed for various pur-
poses such as animation [19], real time systems [20] and robotics [21]. Originating
in Haskell, it has been successfully introduced in various other languages such
as Java [22] and Scheme [23]. Reactive programming revolves around the use of
time-varying reactive values or behaviors. While evaluating a reactive program,
the interpreter implicitly constructs a directed acyclic dataflow graph [24] which
mirrors the call graph of the program. Reactive values form the nodes of the
graph, while the directed edges represent data dependencies. In this section, we
briefly describe AmbientTalk/R, an extension of AmbientTalk with support for
reactive programming.

As a first introduction to reactive programming in AmbientTalk/R, consider
the following example: assume that the user interface of the ticket trader appli-
cation introduced in the previous section sports a user interface which includes a
map that shows the position of ticket vendors. The user can use this map to seek
out a vendor and purchase one of the tickets being offered. To facilitate naviga-
tion, the map must be centered on the user’s current position. Hence, whenever
the position of the user changes, the user interface should be updated. The code



excerpt below illustrates that using reactive programming, such behavior can be
achieved without registering event handlers or suffering from inversion of control.

gui.centerOn(GPS_Location.latitude, GPS_Location.longitude);

In the above code excerpt, it is assumed that GPS_Location is a reactive value
that represents the user’s current location. Later in this section, we will illus-
trate how to construct such a reactive value by means of a built-in GPS location
sensor. Given the GPS_Location, dependent reactive values are created implic-
itly when accessing its latitude and longitude fields respectively. These reactive
values will be recomputed (i.e. the respective fields will be read anew) auto-
matically whenever the GPS_Location is updated. In turn, the reactive values
representing the user’s current latitude and longitude are used as arguments to
the invocation of the centerOn method. This method invocation will be lifted by
the interpreter, resulting in the construction of a reactive value which depends
on both reactive arguments. Hence, when either one of the arguments changes,
the method will be invoked anew with the updated arguments. The dataflow
graph that is constructed by evaluating this code snippet is shown in figure 1.

GPS_Location

gui.centerOn(_, _)

behavior

operator dataflow dependency

_.longitude

longitude

_.latitude

latitude

H

H+1

H dataflow graph stratum

Fig. 1. Dataflow graph for centering the map in the ticket trader application

The graph shows the reactive value GPS_Location which acts as the progenitor

for two dependent reactive values which represent the latitude and longitude.
In turn, these reactive values are the progenitors for the reactive value that - as a
side-effect - centers the user interface on the user’s current location. Furthermore,
figure 1 shows how the dataflow graph is partitioned into different layers or strata

such that a reactive value only depends on reactive values situated in a lower
stratum. This stratification (first proposed in [23]) is used when propagating
the updates to ensure that a reactive value is recomputed only when all of its
progenitors have been updated. For instance, when the user’s current position



changes, the interpreter will first update both the latitude and the longitude

reactive values before the centerOn method will be invoked anew.

Having illustrated how dependent reactive values are created implicitly by
the interpreter in a reactive program, we now describe how to create new reactive
values ex nihilo. For this, AmbientTalk/R introduces the makeReactive construct
which creates a reactive value based on the object it is passed. In the code
example given below, we define a Coordinate object2 which represents a GPS
location. In addition to its fields, Coordinate objects also define two methods, to
wit distanceTo and update.

1 def Coordinate := isolate: {

2 def latitude := 0;

3 def longitude := 0;

4
5 def distanceTo(anotherCoordinate) {

6 /* Compute via the Haversine formula */

7 };

8
9 def @Mutator update(newLatitude, newLongitude) {

10 latitude := newLatitude;

11 longitude := newLongitude;

12 };

13 };

14
15 def GPS_Location := makeReactive(Coordinate.new());

16 GPS.addLocationObserver: { |lat, lng| GPS_Location.update(lat, lng) };

When passing an object to the makeReactive construct, a clear distinction should
be made between accessor methods which only read the state encapsulated by
the object (e.g. distanceTo) and mutator methods which can change the object’s
internal state (e.g. update). Therefore, all mutator methods must be explicitly
tagged with an @Mutator annotation. This requirement stems from the fact that
the semantics for invoking both kinds of methods on a reactive value differs
significantly:

Accessor methods When invoking an accessor method (or reading a field)
on a reactive value, a dependent reactive value is created which depends on the
receiver and additionally on any reactive values that were passed as arguments.
Hence, if the reactive value is updated, these dependent computations will be
performed anew.

Mutator methods When invoking a mutator method (or writing a field), no
dependency on the receiver is recorded. In other words, if none of the arguments
of the method invocation are reactive values, the method is simply performed
once. If at least one reactive value was passed as an argument, a dependent

2 The object is created by means of the isolate: AmbientTalk language construct.
This simply constructs a special kind of object that has no surrounding lexical scope
and thus can be easily copied over the network, instead of having it to pass by
reference as is done for regular objects.



reactive value is created which ensures that the mutator method is invoked
anew whenever the reactive arguments change. However, changes to the receiver
are simply disregarded. Furthermore, the interpreter ensures that whenever a
mutator method has been invoked, all dependents of the receiver are notified
that their progenitor has been updated.

This semantics is used in line 16 of the code example to register a location
observer with the GPS device, which will be invoked whenever the user’s position
has to be updated. At this point in time, the mutator method update is invoked
upon the reactive object GPS_Location. This mutator method is invoked once
(since its arguments are ordinary numeric values), updating the coordinates
to reflect the most recent sensor values. Afterwards, all reactive values which
implicitly depend on GPS_Location will be notified that the location has changed.
This may result for instance in an update of the user interface, such that the
map is centered on the user’s updated position. Note that mutator methods
do not need to be atomic to guarantee correctness: the stratification explained
earlier in this section of the dataflow graph constructed by the interpreter in
combination with all updates that are scheduled in a single event loop according
to this stratification prevent local concurrency control problems and ensure that
the ordering of updates to reactive values mirrors the call graph of the program
(which is critical when reactive updates trigger side effects).

3.1 Loosely-coupled Distributed Reactive Programming

The reactive programming system described in the previous section only deals
with events in a single, local event loop. In many cases, distributed application
components are interested in events coming from other devices (and thus event
loops) in the mobile ad hoc network. In this section, we introduce a language
construct called ambient behaviors that allows the loosely-coupled propagation
of events to reactive values hosted on different event loops by means of pub-
lish/subscribe. The transition from local reactive values to ambient behaviors
needs some special consideration in order to uphold the ambient oriented pro-
gramming characteristics mentioned in section 2. First of all, because of the
dynamic nature of mobile ad hoc networks, one cannot assume a stable dataflow
graph as is constructed on the local interpreter level, such as explained in the
previous section. Instead, the dependencies between different distributed compu-
tations should be encoded in such a way that the ambient-oriented programming
characteristics are upheld. When we rename behaviors to event producers and
dependent computations to event consumers, this means that there should be
a very loose coupling between event producers and event consumers. In clas-
sic publish/subscribe systems, event publishers do not have explicit knowledge
about their subscribers and vice versa. In mobile ad hoc networks, the binding
between consumers and producers must happen in the absence of any infras-
tructure, such as a centralized broker network. In this section, we describe a
publish/subscribe system where event producers and consumers, denoting re-
active application components, find each other in the mobile ad hoc network



by means of intensional descriptions that are broadcasted using UDP to al-
low decentralized and spontaneous discovery. The difference with an extensional
approach (e.g. a list of registered subscribers) is that one merely states the con-
ditions that the properties of a producer or consumer must satisfy to establish
a loosely-coupled binding between the two.

Ambient Behaviors We will continue the ticket trading example introduced
earlier. Recall that ticket vendors have a behavior that denotes their current
location by means of GPS coordinates. What we actually want to achieve is
to discover ambient behaviors made available by other devices that signal the
events in which we are interested, in this example a behavior that represents the
GPS coordinates of the location of the ticket vendor. Publishing such a behavior
happens as follows, on the ticket vendor’s device:

exportBehavior: GPS_Location as: TicketVendorLocation

to: { |buyer| buyer.interestedIn == "Rock Werchter" };

By exporting this behavior, applications running on other devices can subscribe
themselves on the events that are signaled by this behavior. This happens as
follows:

def vendorLocation := ambientBehavior: TicketVendorLocation

where: { def interestedIn := "Rock Werchter" } @One;

The ambientBehavior: construct is used to create a local reactive value which is
bound to one or more behaviors exported by other event loops. In the example
given above, the @One annotation is used to indicate that vendorLocation should
denote the location of a single ticket vendor, rather than a collection of vendor
locations. Once an exported behavior can be found that matches the inten-
sional descriptions given by the programmer (which can be either topic-based
or content-based), the exported behavior will transparently start propagating
update events to vendorLocation. Note that multiple applications could be sub-
scribed to the TicketVendorLocation topic. The group communication required
to notify all these subscribers is internally handled by the M2MI framework [1].
These events trigger an update in the reactive value which may result in further
reactive computation in its own event loop. For instance, the vendorLocation

could be used to update the location of the ticket vendor on the map in the
graphical user interface:

GUI.showLocationOnMap(vendorLocation);

The point here is that while the ticket vendor roams the environment and his
GPS device signals updates to all subscribed behaviors, the maps on the user
interfaces of the (reachable) interested parties are transparently updated with
the new locations without resorting to callbacks. Furthermore, if an ambient be-
havior is disconnected from the exported behavior it was bound to, the ambient
behavior will attempt to match with another exported behavior in the ad hoc
network. Finally, since ambient behaviors are treated as regular behaviors by



the interpreter, they can be used in local reactive code as if they were behaviors
that depend solely on local changes. On the other hand, applications that ex-
port the GPS_Location do not have explicit knowledge to which event consumers
they propagate events, nor do they keep an explicit list of event consumers. This
loose coupling between event producers and consumers is necessary to reflect the
dynamic nature of mobile ad hoc networks and to support roaming of devices.

Reactive Queries in Mobile Ad Hoc Networks The mechanism described
above can only be used if there are ambient behaviors published in the network.
Otherwise, one has to obtain ambient behaviors by querying the network for
relevant information oneself. For this the programmer is provided with an ab-
straction that allows creating a behavior that autonomously queries the network
to update itself. This abstraction is an integration of ambient references (which
allow querying the network by sending messages) with the reactive programming
language facilities of AmbientTalk/R (which allow reacting to and processing
events without inversion of control). The example below shows the creation of a
behavior by querying the network using a reactive ambient reference.

def werchterVendors :=

ambient: TicketVendor where: { |tv| tv.event == "Rock Werchter" };

def locations := werchterVendors<-getLocation()@Refresh(5.seconds);

Note that the getLocation() message is annotated with @Refresh, which implies
that the result of the message is accumulated in a reactive value. Hence, the
locations variable contains a reactive value which initially denotes an empty
array. The @Refresh annotation implies that the annotated getLocation mes-
sage is sent every 5 seconds to all nearby ticket vendors offering a ticket for
Rock Werchter3. The resulting locations behavior is updated every five seconds
and contains an array of all responses from the ticket vendors in range. Since
locations is a behavior, it can be passed on to other functions or methods as a
normal value, as done below to update the map in the user interface of the user
with all locations:

locations.each: { |coordinates| GUI.showLocationOnMap(coordinates) };

Note that by making use of a reactive query, the programmer does not have to
explicitly poll the environment in a loop any more.

To conclude, integrating ambient references with reactive programming al-
lows the results of queries over the network to be collected into a behavior that
is automatically synchronized with the environment. Ambient references provide
an abstraction over the events of appearance and disappearance of services in the

3 In addition to the @Refresh annotation, one can add annotations to the message
that specify the message sending semantics. By varying these annotations, one can
decide to send the message to all objects in range like in the example, which will
result in a changing array of results, or send the message to just one of the objects
in range, resulting in a behavior containing a single value.



network, while the reactive programming system provides an abstraction over
the events generated by the reception of results of asynchronous queries. Reac-
tive queries can be regarded as the dual language construct of ambient behaviors,
offering pull-based instead of push-based communication.

4 The Ticket Trader Application

In previous sections, we have used the dynamic discovery of ticket vendors and
their location as a running example to explain the various features of Ambi-
entTalk/R and ambient behaviors. This section presents a slightly more elabo-
rate version of the application, which matches ticket vendors with prospective
clients. In publish/subscribe terminology, ticket vendors publish the offers for
tickets they are willing to sell, while their prospective clients subscribe to events
concerning tickets being offered in their vicinity. Clients are able to identify
which ticket offers are relevant to them by specifying which events they want to
attend, the price they are willing to pay for the ticket and the maximal allowed
distance between themselves and the ticket vendor. The latter filter requires
that both vendors and clients have access to a GPS device, such that their GPS
coordinates can be used to compute the distance.

Note that different ticket vendors can offer tickets for the same event (possibly
for a different price) and that different clients can be interested in the same ticket.
Furthermore, both vendors and clients roam the environment, can cancel their
offers, change the price of their offers, and announce new offers. The different
instances of the application on the different devices should all respond to these
changes.

Before turning our attention to the implementation of both parties in the
system, we will show the implementation of a very simple object representing a
ticket offer:

def TicketOffer := isolate: {

def eventName := nil;

def price := 0;

def location := nil;

// Constructor

def init(anEventName, aPrice) {

eventName := anEventName;

price := aPrice;

};

};

The object contains three slots: the event the ticket provides access to, the price
at which it is currently being offered and the vendor’s current location. During
the course of the application, the latter two values may change: the vendor may
roam and decide to adjust the price at which the ticket is being offered. Typically,
the price can be reduced if interest is low or if the event is about to start.



To determine the vendor’s current position, we reuse the GPS_location ab-
straction, which was defined previously as follows:

def GPS_Location := makeReactive(Coordinate.new());

GPS.addLocationObserver: { |lat, lng| GPS_Location.update(lat, lng) };

The following code excerpt defines an AmbientTalk type (which corresponds
to a Java interface type) that will be used as the topic under which ticket offers
are published.

deftype TicketOfferT;

Having described the necessary abstractions, we can now describe how ticket
offers are published by the vendor:

1 def TicketVendor := object: {

2 def offeredTickets := HashMap.new();

3
4 // Offer a new ticket.

5 def offerTicket(eventName, price) {

6 def ticketOffer := makeReactive(TicketOffer.new(eventName, price));

7 ticketOffer.location := GPS_Location;

8 offeredTickets.put(eventName, ticketOffer);

9 exportBehavior: ticketOffer as: TicketOfferT;

10 };

11
12 // Change the price of a ticket on offer.

13 def setTicketPrice(eventName, newPrice) {

14 (offeredTickets.get(eventName)).price := newPrice;

15 };

16 };

Tickets are offered to all nearby prospective clients by invoking the offerTicket
method. In it, a reactive TicketOffer object is created (line 6). Because the ob-
ject is reactive, the vendor is guaranteed that whenever the offer changes, these
changes will be automatically propagated to all prospective clients. One way in
which the offer might change is if the location of the vendor changes. Note that in
line 7, the location associated with the offer is set to the vendor’s GPS_Location.
Due to the fact that GPS_Location is a reactive value and due to the semantics
of mutating reactive values (see section 3), the location field of the ticketOffer

will be set anew whenever the GPS_Location is updated. In turn, this update will
be propagated to reactive values which depend on ticketOffer. In this particular
case, this includes all prospective clients that are currently in range. The fact
that these prospective clients can detect the offer, stems from the fact that it is
published using the exportBehavior:as: construct in line 9.

Additionally, vendors keep track of the various events for which they offer
tickets in the offeredTickets map. This map is used to update the price at which
tickets are being offered. The setTicketPrice method uses the mapping to find a
particular reactive ticket offer, in order to update its price. Due to the semantics



of mutating reactive values, setting the price causes an update to be propagated
to all prospective clients in reach.

The following code excerpt shows the findOffers function, which permits
prospective clients to detect ticket offers that have been exported by nearby
vendors by means of the ambientBehavior: construct.

1 def findOffers(event, maximumPrice, maximumDistance) {

2 // Subscribe to TicketOffers

3 def allNearbyOffers := ambientBehavior: TicketOfferT @All;

4
5 // Filter out interesting TicketOffers

6 allNearbyOffers.filter: { |offer|

7 (offer.eventName == event).and: {

8 (offer.price <= maximumPrice).and: {

9 GPS_Location.distanceTo(offer.location) <= maximumDistance }}};

10 };

11
12 def werchterTicketVendors := findOffers("Rock Werchter", 200, 500);

13 gui.updateWithOffers(werchterTicketVendors)

The ambient behavior allNearbyOffers will be bound to a collection that con-
tains all ticket offers made by nearby vendors. This semantics is due to the
fact that the @All annotation is used, rather than the @One annotation that was
showcased earlier. In other words, allNearbyOffers is a reactive value denoting
an array of exported ticket offers. This size of this array evolves as ticket vendors
go in and out of range.

The reactive collection allNearbyOffers is subsequently filtered to produce
a selection of ticket offers that are relevant to the client (lines 6-9). An offer is
deemed relevant if it provides access to the correct event, its price does not exceed
the maximum set by the client and if the distance to the client’s current location
does not exceed a given maximum. Since allNearbyOffers is an ambient behavior,
the invocation of its filter: method (an accessor method) creates a dependent
reactive value, which is the return value of the function. This reactive value is
updated when vendors go in and out of range, but also if one of the previously
detected offers change (i.e. the vendor has moved or the price has been updated).
Furthermore, it is important to note that the condition to determine whether
an offer is relevant also depends on the location of the prospective client. In line
9, the vendor’s location is compared to the current location of the client. This
implies that an offer can suddenly become relevant as the client is roaming.

In the code snippet, the findOffers function is called to find ticket offers to
attend Rock Werchter, which cost less than 200 euro and whose vendor is less
than 500 meters away. The resulting collection is passed as an argument to the
updateWithOffers method of the user interface. This method expects an array of
ticket offers (which all contain their last location) and draws them on the map.
Since the werchterTicketVendors collection is a reactive value, this method will
be invoked anew whenever the collection is updated.



Evaluation Notice that ticket vendors and their prospective clients are loosely
coupled to one another. They discover one another by means of a topic-based
publish/subscribe architecture (which uses a common Java interface to denote
the type of events that are exchanged). Parties that are disconnected from each
other (e.g. by network partitioning of the mobile ad hoc network) are automat-
ically discarded while newly connected parties dynamically discover each other
and start exchanging events.

Furthermore, the publication of new events is integrated closely with the
imperative object-oriented programming style of the host language. Provided
that mutator methods are properly identified, any object can be used to create
a reactive value. Once such a reactive value has been published, it suffices to
write one of the object’s fields or invoke one of its mutator methods to implicitly
emit events notifying all reachable subscribers of the change.

Finally, the subscriber can trivially indicate which events it is interested in
receiving (by means of a topic-based subscription) and can handle incoming
events without resorting to a complex network of event handlers. In the ticket
trader example, two sources of events are considered, to wit allNearbyOffers

and GPS_Location. Changes to the former are the result of the appearance and
disappearance of vendors (which result in the addition and removal of certain
offers) as well as updates to the offers themselves (i.e. price and/or location
updates). Changes to the latter are the result of roaming clients, and affect the
number of offers reported to the user as they affect the distance between the
vendor and the prospective client. The interplay between these different event
sources are handled implicitly by the AmbientTalk/R interpreter.

5 Limitations and Future Work

As a first issue, it is clear that the reactive programming system of Ambi-
entTalk/R comes with an overhead in terms of computational resources com-
pared to the plain AmbientTalk interpreter. More (dataflow) events are sched-
uled in the different event loops of an application and more memory is being
consumed to keep track of the different dataflow dependencies in a local applica-
tion. Although in the near future we will investigate to which extent this is the
case, we also observe that, with respect to pure processing power, AmbientTalk
and AmbientTalk/R are targeted towards highly networked applications where
the network will be the performance bottleneck instead of the interpreter.

Some of the limitations stem directly from the hardware characteristics of
mobile ad hoc networks. Because of both the unreliability of the connections
between the different devices and the unpredictable delays on the arrival of
messages at remote parties, our system cannot provide real-time guarantees on
the processing and reacting to events. Furthermore, when a message is sent from
one device before a different message is sent from another device, the underlying
AmbientTalk virtual machines do not guarantee that these messages will arrive
at their destination in that same order. Providing such guarantees would involve
keeping a global clock over all the distributed virtual machines (an assumption



that is for example made in the GEM event monitoring language [25]) to time-
stamp events, which is impractical in this setting. The programmer has to take
this into consideration if causality between events has to be inferred. However,
our system focuses on applications that work with a human time scale (e.g.
seconds, minutes), so slightly drifting distributed clocks are tolerable.

Currently, there is no way for an event consumer to tell its event producer
to limit the events that it wants to receive: an ambient behavior publication
or subscription can only be cancelled. Afterwards, the subscription can be re-
established. We have to investigate whether this can lead to network congestion
or performance issues on the device that acts as event consumer. We might look
for inspiration in some of the systems mentioned in section 6 which incorporate
load balancing.

Finally, the naming and discovery of services happens via Java interfaces. We
make the underlying assumption that the name of such Java interfaces repre-
sents a unique service and is known by all participating services. This discovery
mechanism also does not take versioning into account explicitly. For example, if
the TicketVendor from the example in section 2.1 is updated, older clients may
discover the updated service, and clients that want to use only the updated ser-
vice may still discover older versions. Clients and services are thus themselves
responsible to check versioning constraints.

6 Related Work

Solar [26] is a graph-based abstraction for collecting, aggregating and disseminat-
ing context information targeting mobile, pervasive applications. The abstrac-
tion models context information as events, which are produced by sources, flow
through a directed acyclic graph of event-processing operators, and are delivered
to subscribing applications. Applications describe their desired event stream as
a tree of operators that aggregate low-level context information published by
existing sources into the high-level context information needed by the applica-
tion. The operator graph is thus the dynamic combination of all applications’
subscription trees. Solar assumes centralized, reliable components to process the
subscription requests from applications (which may dynamically join and leave
the network) and deploys operators onto appropriate nodes as necessary. These
centralized components render Solar unsuitable for mobile ad hoc network ap-
plications.

Flask [27] is a functional reactive programming language embedded in Haskell
that uses Haskell as a meta-language to generate node-level code fragments in
a subset of Haskell called Red. Red is intended to run on resource-constrained
sensor nodes and is stripped from language features such as closures and recur-
sive data types to eliminate arbitrary allocation. Just like our approach, Flask
constructs a distributed dataflow graph, but in this case at compile-time instead
of run-time using the Haskell meta-language, which causes Red code fragments
to be deployed on the distributed nodes. To cope with a dynamically changing



network topology in mobile ad hoc networks we require the nodes to be deployed
at runtime instead of at compile-time.

Opis [28] is a functional reactive extension to Objective Caml for developing
event-based distributed systems. An Opis protocol description consists of a re-
active function (called event function) describing the behavior of a distributed
system node. Opis is very related to our approach in the sense that it both ap-
plies reactive programming as a paradigm to implement event-based distributed
applications and uses a peer-to-peer overlay protocol to disseminate the events
between distributed application components. However, Opis focuses on wide-area
networks where nodes are fixed and hence does not support roaming.

SpatialViews [29] is an extension to Java designed to query wireless sen-
sor networks. SpatialViews allows the specification of virtual networks of which
the nodes are discovered dynamically with user-specified (physical) location and
time constraints and execute mobile code that constitutes to the global query.
SpatialViews might as well be a suitable building block to implement the lan-
guage constructs presented in this paper and the location and time constraints
that can be placed on nodes can enhance these constructs with similar features.

A similar idea exists in Location-based Publish/Subscribe (LPS) [30] in which
publishers and subscribers are not only bound by means of a topic-based or
content-based subscription, but also by taking into account external context
such as the physical location of the different parties. However, such external
context is provided in LPS by centralized infrastructure, whereas our approach
does not assume any infrastructure. The ticket trader example application used
in section 4 is strongly expired by the examples used to illustrate LPS.

Finally, the language constructs proposed in this paper are integrated in
a distributed, imperative object-oriented scripting language. There exist dedi-
cated languages for event processing, such as Aurora [31]. Aurora is a centralized
stream processor that uses the popular boxes and arrows paradigm found in most
process flow and workflow systems. Tuples flow through a loop-free, directed
graph of processing operators (i.e., boxes) which the programmer has to specify
using a graphical user interface. Aurora was afterwards extended to Aurora*
and Medusa, which make decentralized event processing possible and addition-
ally allow high level load balancing and load shedding policies to be expressed
using specialized middleware. These systems however, focus on internet-scale
application running in a reliable network.

7 Conclusion

We have presented a number of language constructs that reconcile the loose
coupling of a distributed publish/subscribe architecture and the elegant event
processing of a reactive programming language, AmbientTalk/R. Concretely, the
dataflow graphs constructed by the AmbientTalk/R interpreter to keep track of
dataflow dependencies can now be seamlessly distributed by means of ambient
behaviors, which is a new language construct added to the language. The dis-
tributed dataflow dependencies are implemented on top of a decentralized pub-



lish/subscribe architecture to achieve a very loose coupling between the depen-
dents (event consumers) and their progenitors (event producers). Hence, event
producers can be dynamically replaced at run-time when they become unreach-
able due to network partitions. By adopting the reactive programming paradigm,
the reception of events can be represented as (external) updates to a reactive
value. Such updates are propagated implicitly to all relevant parts of the ap-
plication. Hence, it is possible to react trivially to external events without the
inversion of control that would result from having to resort to the use of explicit
callbacks.
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