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Abstract

In recent years, workflows have started to be used in many domains such as
business processes, scientific applications, and e-learning. Accordingly, various
workflow specification languages have needed to be designed in each one of those
domains. Corresponding infrastructures (like editors, engines, and monitoring ap-
plications) to utilize and enact those languages have been implemented as well.
Among the benefits commonly associated with workflows, one that stands out is
the possibility of modifying workflow definitions by manipulating only high level
or domain specific concepts. This is extremely positive because it enables domain
experts to introduce changes to the systems without requiring the intervention
of software developers. However, this flexibility is not always enough. Workflow
users often encounter new requirements that cannot be properly solved with ex-
isting tools and languages because they depend on new concepts or should use
different structures. In those cases, their only options are to change or extend
the workflow languages, or to develop entire new ones. Unfortunately, nowa-
days there is poor support to implement either alternative. With the former,
the biggest problem is that workflow languages and their associated tools have
very limited extensibility capabilities. With the latter, there are two different
problems. The first one is the scarcity of frameworks or libraries available to
support the development of new workflow engines to enact the newly created
languages. The second problem is that existing engines are tightly coupled to
the languages they were developed for. Therefore, by creating a new language
one looses existing tool support (editors, simulators, monitoring applications, and
others).

The goal of this dissertation is to solve these limitations by offering a plat-
form that serves as the foundation for extensible workflow engines. In this way,
the enactment of new workflow languages will be more easily supported, because
the implementation of every engine will not start from scratch. Furthermore, this
platform is geared towards supporting extensible and flexible workflow languages,
and thus changing requirements will be more easily accommodated. The pro-
posed platform supports various kinds of workflow languages. In the first place,
there are general purpose workflow languages that can be used in many domains,
such as BPEL or BPMN. Another kind is that of domain specific workflow lan-
guages, such as IMS-LD or Sedna. Finally, the proposed platform also supports
concern specific workflow languages, which modularize workflow descriptions in
accordance with various possible criteria.

There are three ideas that are central to the proposal. First of all, there is
the idea of using metamodels to define the structure of workflow languages, and
using models to represent specific workflows. The second idea is that of making
the models executable by establishing executable semantics for every element in
the metamodels, and following the semantics of the language. Finally, the third
idea is that of coordinating the execution of several executable models in order to
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support the aforementioned concern specific languages. To support these three
ideas we developed the notion of ‘open objects’, which are used to define the
behavior of elements of the metamodels in a special way. By using open objects,
each element defines its own semantics. However, the actual coordination between
those elements is specified in an explicit and flexible way. It is the responsibility of
a special kernel in the platform to use this information to coordinate the behavior
of the elements and thus execute the workflows. Furthermore, this kernel also
provides other features common to workflow systems. Therefore, these features
do not have to be reimplemented for every language.

The ideas presented in this dissertation have been implemented in the Cumbia
platform, which encompasses a Java based development framework, and two com-
ponents called Cumbia Kernel and Cumbia Weaver. Concretely, the framework
is what workflow language developers need to build their own metamodels based
on open objects. The Cumbia Kernel is the component that loads and runs the
models. The Cumbia Weaver is what establishes relationships between mod-
els conformant to different metamodels, thus allowing the interaction of concern
specific languages.

This approach has been validated with the construction of engines for well
known workflow languages, which include BPEL, BPMN and YAWL. Other ex-
periments include the implementation of engines for concern specific workflow
languages (miniBPMN, XPM, and XTM), and for domain specific workflow lan-
guages (IMS-LD and PaperXpress).



Samenvatting

Workflows worden de laatste jaren steeds meer gebruikt in tal van domeinen zoals
business processen, wetenschappelijke toepassingen en e-learning. Ter ondersteu-
ning werd voor al deze domeinen een workflow specificiatietaal ontwikkeld. Tevens
werden ook overeenkomstige infrastructuren (zoals workflow editors en engines)
geïmplementeerd. Een opvallend voordeel van workflows is de mogelijkheid om
workflow definities aan te passen en te manipuleren op een hoog niveau of op
domeinspecifieke concepten. Hierdoor kunnen domeinexperts het systeem zelf
aanpassen, zonder hulp van softwareontwikkelaars. Zelfs deze flexibiliteit vol-
staat niet altijd aangezien workflowgebruikers vaak nieuwe vereisten tegen komen
die niet kunnen worden opgelost met behulp van bestaande tools en talen daar
ze stoten op nieuwe concepten of andere structuren gebruiken. Indien dit het
geval is, kunnen ze de workflowtalen nog proberen aanpassen of uitbreiden of een
nieuwe taal van nul af aan ontwikkelen. Helaas biedt men tegenwoordig weinig
ondersteuning om een van deze opties te implementeren. De grootste proble-
men omtrent het eerste alternatief zijn de beperkte uitbreidingsmogelijkheden
van workflowtalen en bijhorende tools. Bij het laatste alternatief staat men voor
twee problemen. Ten eerste is er een tekort aan beschikbare frameworks of bib-
liotheken om de ontwikkeling van nieuwe workflow engines te ondersteunen. Ten
tweede zijn bestaande engines te nauw verbonden met de workflowtalen waarvoor
ze werden ontwikkeld. Bestaande ondersteuning gaat hierdoor verloren wanneer
een nieuwe taal wordt ontwikkeld.

Het doel van deze thesis is tot een oplossing te komen voor de reeds vermelde
beperkingen door een platform aan te bieden dat als basis dient voor uitbreidbare
workflow engines. Op deze manier zal het uitbrengen van nieuwe workflowtalen
gemakkelijker worden ondersteund aangezien men bij de implementatie van de
engines niet telkens van nul af aan moet herbeginnen. Bovendien is dit plat-
form gericht op de ondersteuning van uitbreidbare en flexibele workflowtalen
waardoor het eveneens gemakkelijker wordt vereisten te wijzigen. Verschillende
soorten workflowtalen worden ondersteund door het voorgestelde platform. In
de eerste plaats ondersteunt het platform algemene workflowtalen zoals BPEL
en BPMN die in verscheidene domeinen worden gebruikt. Een ander soort talen
die ondersteund worden zijn domeinspecifieke workflowtalen zoals IMS-LD en
Sedna. Tenslotte ondersteunt het voorgestelde platform eveneens concern speci-
fieke workflowtalen die workflow beschrijvingen modelleren in overeenstemming
met verschillende mogelijke criteria.

Drie ideeën staan centraal in dit voorstel. Eerst en vooral het gebruik van
metamodellen om de structuur van workflowtaal te preciseren en modellen te ge-
bruiken om specifieke workflows voor te stellen. Ten tweede maakt men modellen
uitvoerbaar door een uitvoerbare semantiek voor elk element in deze metamod-
ellen te voorzien en door de semantiek van de taal te volgen. Het derde idee
staat voor het coördineren van de uitvoering van workflow over verschillende
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uitvoerbare modellen om ondersteuning te bieden aan de reeds vermelde concern
specifieke workflowtalen. Ter ondersteuning van deze drie ideeën introduceerden
we de notie ‘open objecten’ die worden gebruikt om het gedrag van de elementen
van metamodellen op een speciale manier te definiëren. Door open objecten te
gebruiken, definieert elk element zijn eigen semantiek. De eigenlijke coördinatie
tussen deze elementen is echter gespecificeerd op een expliciete maar flexibele
manier. Het is immers de verantwoordelijkheid van een speciaal ontwikkelde ker-
nel in het platform om deze informatie te gebruiken om het gedrag van deze
elementen te coördineren en dus in te staan voor de uitvoering van de workflows.
Bovendien voorziet deze kernel ook andere features eigen aan workflow syste-
men, waardoor deze eigenschappen niet voor elke taal opnieuw moeten worden
geïmplementeerd.

De ideeën die in deze thesis worden voorgesteld, werden geïmplementeerd in
het Cumbia platform. Dit platform omvat een Java ontwikkelingsplatform en
tevens ook twee componenten genaamd de Cumbia kernel en de Cumbia weaver.
Door gebruik te maken van het framework zijn de ontwikkelaars van workflow-
talen in staat hun eigen metamodellen te creëren aan de hand van open objecten.
De Cumbia kernel is de component die verantwoordelijk is voor het inladen en
uitvoeren van de modellen. De Cumbia weaver daarentegen initieert de relaties
tussen de verschillende modellen in overeenstemming met de verscheidene meta-
modellen, waardoor de interactie van concern specifieke taken mogelijk wordt.
Deze benadering werd gevalideerd door de ontwikkeling van workflow engines
voor bekende workflowtalen, waaronder BPEL, BPMN en YAWL. Andere exper-
imenten omvatten het implementeren van engines voor concern specifieke work-
flowtalen (miniBPMN, XPM, en XTM) en voor domeinspecifieke workflowtalen
(IMS-LD and PaperXpress).
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1
Introduction

1.1 Research context

Reduced to its core elements, workflow technology serves to control and coor-
dinate, in a flexible way, the execution of sets of well defined operations. This
technology has recently gained momentum in many different domains, including
business processes, scientific applications, and e-learning, and one reason for this,
is that workflows abstract away from technical concepts by employing concepts
closer to each specific domain. Because of this, workflows are often used by
domain experts which do not have a solid technical background. Furthermore,
workflow based applications are flexible and can be easily changed by deploy-
ing new workflow definitions. Thus, workflows are often used in contexts where
requirements change frequently [GHS95]. As an example, consider that the prof-
itability of many companies depends on having processes that manage efficiently
the requirements of the market and the pressures from competitors. By using
workflows to represent and support the enactment of those business processes,
companies reduce the time and effort required to adapt their systems to updated
processes.

A workflow management system (WfMS) is a package that supports the defini-
tion, enactment, and control of workflow definitions, while allowing interactions of
human participants and external applications [Coa99, GV01, GHS95]. A WfMS
usually includes editors to create the definitions, management applications to
control the execution, client applications to allow the interaction of participants,
and monitoring applications which track the execution of the workflows and are
used to derive and register relevant metrics. The central element in a WfMS is
a workflow engine, which loads and instantiates workflow definitions, and enacts
them according to the semantics of the workflow specification language in use.
Figure 1.1 depicts the relationship between the different workflow concepts.

Nowadays, a large number of workflow specification languages have been de-
signed and implemented. Using those, it is possible to describe workflows in a
large number of contexts and with relatively high level concepts. Compared to
general purpose programming languages, workflow specification languages work

1
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Figure 1.1 Basic workflow concepts

on a less technical level of abstraction, and are only useful for restricted kinds
of problems. In general, different workflow languages tend to manage different
concepts depending on the domain they target. However, there is also a lot of
overlap between some of those languages; in many cases, the differences between
them are minimal.

Although a formal classification does not yet exist, workflow specification lan-
guages can be classified as generic workflow languages or domain specific workflow
languages. Generic workflow languages (GWfLs) are those languages that do not
target a particular domain, and thus can be used in a large number of contexts. In
this sense, they are similar to generic programming languages1 [vDKV00]. One of
the best known GWfLs is WS-BPEL (or BPEL) [OAS05]: although it is originally
a language for defining web-services’ composition, it has been used to describe
workflows in many different domains, including business processes, web applica-
tions, scientific applications, and computer-aided engineering. Other well-known
examples of GWfLs include BPMN [Obj08, Obj09a], and XPDL [Coa08]. These
three languages offer different approaches to business process modeling, and they
have many supporters and compatible applications. Currently, there are at least 9
BPEL engines, 61 implementations of BPMN reported to the OMG [Obj09b], and
83 tools or companies that support XPDL [Coa09]. This has happened mainly
because these languages have been standardized (BPEL by OASIS2, BPMN by
the OMG3, and XPDL by the WfMC4), and because they have been proposed
and adopted by influencing companies such as IBM, Oracle and Microsoft.

In the opposite end of the spectrum are domain specific workflow languages

1In [vDKV00], van Deursen, Klint and Visser discuss the dichotomy between domain specific
languages and generic programming languages. The focus of this dissertation is on workflow
languages which are not general purpose, but can be either generic or domain specific.

2The Organization for the Advancement of Structured Information Standards (OASIS) is
a consortium that drives the development, convergence and adoption of open standards. The
standards maintained by OASIS include XML and several related to web-services.

3The Object Management Group (OMG) is an international consortium that develops tech-
nology standards. The members of the OMG include both companies that do software develop-
ment and end-users that provide feedback and real usage scenarios. Some of OMG’s standards
include UML and CORBA.

4The Workflow Management Coalition (WfMC) is an organization formed by companies and
institutions that work with workflows and especially with BPM. The standards proposed by
the WfMC have as main goal to enable interoperability between tools developed by different
vendors.
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(DSWfLs). Similarly to a Domain Specific Language (DSL), a domain specific
workflow language focuses on a particular workflow domain and offers a restricted
suite of concepts and constructs [vDKV00]. Because of this, the elements in-
cluded in a DSWfL are better aligned to domain concepts with respect to any
GPWfL. An example of a DSWfL is Sedna [WEB+07], a language for grid-based
applications that was derived from BPEL. In addition to the generic elements
offered by BPEL, Sedna also includes elements needed in this domain such as
concurrent experiments, indexed flows, and hierarchical decompositions. IMS-LD
[IMS03b] is another example of a DSWfL. This language targets specifically the
e-learning domain, and it includes domain concepts such as learning sequence,
learning material, and learner.

The characteristics of workflows make them suitable for contexts where re-
quirements change frequently. In many cases, these changes can be handled
by modifying or replacing workflow definitions. However, this is not possible
when languages in use cannot support the new requirements, or can only sup-
port them in a complicated or counterintuitive way. Various examples of these
situations can be found in the literature on workflow patterns, which shows
how languages can or cannot support common workflow structures [vdAtHKB03,
RtHvdAM06, RvtE05, RtHEvdA04, RtHEvdA05, RvdAtH06]. For instance, if a
BPEL-based application needs to model a structured discriminator5, it has to do
so in an extremely complicated way because BPEL does not support the pattern
[WvdADH03]. In cases where the language cannot support a certain requirement,
the solution is to adapt or extend the language. However, this implies modifica-
tions to the tools that are part of the WfMS and depend on the language, such
as the editors, the engines, and others.

Requirements that change are not the only reason to modify a language.
Applying an existing language to a new domain may also require modifications
to it. For instance, BPEL includes many features to model and enact business
processes. However, it lacks the concepts related to management of people, such
as roles and task assignments. Therefore, an extension to the language was
created, which introduced all those concepts and related them to existing BPEL
elements (BPEL4PEOPLE [AAD+07]).

Unfortunately, there are also cases where existing languages are not compat-
ible at all with the new requirements or with the new domains. In those cases,
it is not enough, or it is not cost effective, to modify an existing language. For
instance, modifying BPEL to include arbitrary loops [vdAtHKB03, RtHvdAM06]
would require a total redefinition of the language. In those situations, new lan-
guages are designed and implemented. Of those, many are Domain Specific Work-
flow Languages.

Creating and supporting a new language has both advantages and disadvan-
tages. In the first place, there is the high cost associated to the design of the
language and the development of the corresponding tool chain. In particular,
supporting a new language usually requires, at least, the implementation of a
new editor and of a new workflow engine. The construction of a workflow engine
is a critically expensive step to support a new language [Nut96]. Another disad-

5In the structured discriminator pattern, there is a join of two or more branches, that follows
a corresponding split earlier in the process. When the first incoming branch is enabled, the
control flow is passed to the part of the process that follows the join. Subsequent enablements
of the incoming branches, do not result in passing the control flow. The discriminator is reset
when all incoming branches have been enabled [Wora].
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vantage of creating a new language is having to train users to use it. Depending
on the characteristics of the language, this can be a difficult task. In particular,
DSWfLs should offer a better user experience and should be easier to learn for
domain experts [WEB+07, Dee07]. Finally, another aspect to consider is that of
maintenance, since introducing a new language also implies having to maintain
a new tool chain. On top of that, the more specific languages are, the more
likely they are to change [Cle07a]. Thus DSWfLs need to be designed from the
beginning with growth and change in mind.

Developing new workflow languages also brings advantages, especially when
they target particular domains. In the first place, when a new language is de-
signed, the elements included in it are the ones most suitable for the problems
that have to be solved with the language. In many cases, these elements are
aligned to domain concepts and thus they capture better domain knowledge.
Furthermore, these languages are usually smaller and simpler than GWfL, which
makes them simpler to implement, maintain, and modify [vDK98].

1.2 Problem statement

The problem addressed in this dissertation has two aspects. The first one is the
need to support extensions and adaptations to existing workflow languages. Cur-
rently, this is impeded by the characteristics of workflow engines and languages,
which have not been designed with flexibility as one of their most important ca-
pabilities. The second aspect is the need to support new workflow languages, and,
in particular, domain specific workflow languages. This is also problematic be-
cause it requires the development of a number of tools, including editors, clients,
monitoring applications, and, most importantly, workflow engines [Nut96]. This
dissertation addresses a solution for these problems, but limited to the problems
affecting workflow engines. Solving these two problems for the rest of the tools
in a WfMS is outside the scope of this dissertation, and even though its results
can act as a solid basis, further research is required to address these issues.

1.2.1 Challenges to the development, extension, and adaptation
of workflow engines

Currently, there are a number of conditions that challenge the creation of tools
to support workflow languages, and also limit the extent to which they can be
adapted and extended. In this section we discuss these conditions.

Limited extensibility and adaptability of engines and languages

Many workflow engines currently in use were not designed considering flexibility
of the languages6 as a fundamental requirement. On the contrary, they were de-
signed and optimized to run a single version of a specific language. Some of them
can handle a few extensions, but these are usually very limited. This situation
is evidenced in the architecture of those engines, which is not suited to accom-
modate changes to the workflow specification languages. Therefore, it is very
difficult to introduce modifications and support new, unexpected requirements.

6“Flexibility is the ease with which a system or component can be modified for use in
applications or environments, other than those for which it was specifically designed” [IEE90].
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In the cases where workflow languages offer flexibility points, these are fairly
limited. They usually allow just the specialization of some of the elements. Only
in a few cases it is also possible to add new elements, albeit with restrictions.
However, the adaptation of existing elements is never possible. As an example,
the only flexibility points in BPEL are the tag <extensionActivity>, and the
possibility of supporting some extra attributes and elements. Similarly, BPMN
offers some extensible elements called artifacts, while the specification of XPDL
mentions vendor or user specific extensions.

An additional problem is that the flexibility offered by these languages does
not necessary reflect on their engines. Therefore, it is not always feasible to ex-
tend the languages because the engines may not support the extensions. These
drawbacks can be seen in BPEL4PEOPLE (B4P) [AAD+07], one of the best
known BPEL extensions, which offers a very expressive way to introduce human
interactions into BPEL processes. B4P makes use of the extension points of
BPEL to introduce complex people-related information and new types of activ-
ities. However, since the extension of existing BPEL engines to support B4P is
not trivial [HVD08], B4P is not currently supported by many BPEL engines.

In summary, current workflow engines offer very limited capabilities for ex-
tension and adaptation, or offer no capabilities at all. Because of this, changes
to workflow specification languages require either complex and extensive modifi-
cations to engines’ implementations, or require complete re-implementations.

Misalignment between high level model information and low level run
time information

Another factor that challenges the flexibility of workflow engines and languages is
the misalignment between i) the structure of the languages, and ii) the structure
of the engines’ implementation and the associated run time information. For in-
stance, a workflow definition in OPERA7 is expressed with a high level language,
but it is usually very different from the run time representation that is expressed
with OCR or with database specific schemas. As a result, it becomes difficult
to map changes to the languages directly onto changes to the implementation.
Furthermore, as changes are introduced, the relation between implementation
artifacts and language elements may become more difficult to understand and
maintain [Eva03].

In addition to the impact on engines and languages’ flexibility, this misalign-
ment also affects the other tools that depend on the language and interact with
the engine (e.g. clients and monitoring applications). The main problem with
those complementary applications originates in their high coupling with the en-
gines, and the dependency they have on the languages. In this case, the complex
mapping previously discussed appears again: changes to the languages reflect on
difficult-to-trace changes to the engines, and those reflect on changes to the tools.
In the end, the relation between specific changes to the languages and specific
changes to the tools is complex to follow.

On the contrary, if languages and engines’ implementations were well aligned,
it would be very easy to introduce and track changes in the languages, the engines,
and the tools.

7Section 2.4.2 presents more details about OPERA, a kernel for distributed workflow exe-
cution based on a canonical representation model (OCR).
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Limited support for developing new engines

Another challenge in solving the problem of building new workflow engines is the
relative lack of frameworks or libraries to support their development. Because
of this, implementing a new engine currently represents a substantial amount of
work.

In the past, a few frameworks and kernels have been designed to support the
development of workflow engines. However, these frameworks usually present two
important restrictions that limit their applicability:

1. Prescribed execution models

Several frameworks and kernels have an embedded execution model that
cannot be modified. Because of this, these tools can only be used with
languages that are compatible with the provided execution model. For
instance, the Process Virtual Machine – PVM [BV07] supports only one
execution model based on hierarchical tokens. Consequently, to implement
an engine on top of the PVM, the semantics of the language have to be
described in terms of that token-based system.

In order to avoid this problem, kernels and frameworks should offer mecha-
nisms to adapt or replace the execution models. Some of the possible adap-
tations include changing the behavior of existing concepts, or introducing
new ones. Unfortunately, this is only offered by a few kernels. Section 2.2.2
discusses the role of the execution models in workflow systems, and section
2.4 presents various workflow kernels, including a few that support changes
to the execution models.

2. Fixed intermediate workflow languages

Several workflow kernels and frameworks are based on the usage of an inter-
mediate workflow language. The idea behind this strategy is to implement
the necessary elements to support just one executable language, and then
transform various high level languages into this intermediate one. Usually,
this intermediate language is low level in order to be more generic. This
strategy is used, for example, to execute BPMN processes in BPEL engines.
In this case, BPEL can be considered the intermediate workflow language.

There are various kernels based on using intermediate workflow languages.
These include the ‘Workflow Kernel’ of Ferreira and Pinto Ferreira [FF04],
the work of Fernandes et al. [FCS04], OPERA [AHST97b, AHST97a], and
Mentor [WWWKD96]. Section 2.4 presents these, and a few others, in
more detail.

However, there are three issues associated to the usage of a fixed interme-
diate workflow language. The main one is that the expressive power of the
workflow language is limited by the expressive power of the intermediate
language. Therefore, it is possible to have structures in the newly envi-
sioned language that cannot be represented in the executable one. In those
cases, either the original language has to be constrained, or the intermediate
language has to be changed. In BPMN, the first alternative was selected:
the mapping from BPMN to BPEL described in the BPMN specification
only includes a subset of BPMN’s elements.
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The second issue is the additional complexity introduced by the mapping
from one language to the other. This mapping is usually implemented
with transformations which leave traceability information that has to be
interpreted to relate the elements from those two languages. For instance,
this information is used to relate run time events and state changes in the
executable models, with events and state changes in the original, high level
model.

Finally, there is an issue that arises when languages are modified. In such
cases it is also necessary to change the transformations. However, finding
the transformations affected by the changes, building the mapping, and
maintaining it can be complex and expensive [KKS07].

Engines are tightly coupled to languages

A related challenge is the tight coupling between workflow engines and workflow
languages. This means that engines are designed to support a specific language,
and that all the elements of its implementation are aligned with that particular
language. This coupling makes it very difficult to use an existing engine to execute
a new workflow language, and it is related to the limited capabilities of extension
and adaptation.

As an example of the disadvantages posed by this challenge, one can consider
the case of BPEL. Most BPEL engines are very complex applications which are
integrated in workflow management systems and interact with several different
applications. The complexity of these engines is not limited to the complexity
inherent to executing BPEL processes. Instead, this complexity arises from ad-
ditional features such as the communication infrastructure, the management of
persistence, the scalability of the system, and its reliability. The applications that
interact with a BPEL engine include debuggers, monitors, and clients of different
kinds. Because of all the features offered by BPEL engines, BPEL would seem a
very reasonable choice for use in any domain. However, experts in different do-
mains have found limitations of BPEL and then have opted for developing their
own languages from scratch (e.g. Taverna [HWS+06, OGA+06]). These experts
have had to develop their own engines because of the tight coupling between
BPEL engines and the language. As a consequence, they have re-implemented
many of the features offered by BPEL engines, and adapted those features to
their own languages.

A related example is Sedna [WEB+07], which extends BPEL. Although the
language is not compatible with BPEL, its developers built the tools to enable its
execution using BPEL engines. To achieve this, they built a new editor capable of
transforming Sedna’s definitions into BPEL, and a monitoring tool that converts
run time BPEL information back into Sedna.

Tool chains are not portable between languages

Continuing with the previous example, developers of new languages also face the
need to develop new tools to interact with their new engines. Because they have
not been able to reuse existing engines, in most cases they have also lost the
possibility of using existing tools. Therefore, they have had to develop their own
tool chains.
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We consider the need to re-develop entire tool chains an important challenge
to the development of new languages. If existing tool chains could be more easily
reused with new languages, then new and more adequate languages would be
developed.

1.2.2 Objective

The objective of this dissertation is to solve the problems identified with a novel
approach to support the development of engines for new workflow languages,
as well as to support their extension and adaptation. The proposed approach
includes the necessary abstractions to define the languages, and a framework to
implement the corresponding workflow engines based on a novel architecture. To
guide the usage of these elements, we also present the main elements of a process
to develop, adapt, or extend workflow engines.

The following are the four characteristics that we consider central to overcome
the mentioned limitations and achieve the stated objective. These characteristics
are present in our proposal, and they were a central consideration to the design
of the whole approach and the platform that implements it. We believe that any
other solution that presents the same characteristics is also likely to solve the
stated problems.

C1. The platform is independent from particular workflow languages
and execution models

To support the largest possible number of languages, the solution that we present
in this dissertation is not based on elements from particular workflow languages
or workflow execution models. Instead, the structure and semantics of language
elements are expressed using more generic elements because every restriction
introduced can potentially limit the number of languages supported. As we show
later, to avoid these restrictions we embraced, to a certain point, the usage of
general purpose programming languages. On the other hand, this also means
that fixed intermediate languages (like those used by Ferreira and Pinto Ferreira
in [FF04], or OCR in OPERA [AHST97b]) are not an acceptable solution because
they could limit the ability to support certain languages.

The elements that support the definition of languages have specific character-
istics to support features normally required in workflow languages and engines.
As a result, the proposed platform supports requirements such as the following:
allowing the concurrent execution of multiple tasks and controlling their synchro-
nization; allowing the parallel execution of multiple instances of the same process
that involve different participants and data; handling the interaction between ex-
ternal systems and the running workflow instances; allowing the execution of
tasks that interact with external applications; allowing the persistence of the
processes state.

The variability found in current workflow languages makes it impossible for a
single platform to claim that it can support any workflow specification language,
and it only gets worse when DSWfLs are considered. Instead, we analyzed several
existing languages and workflow execution models to identify their most relevant
characteristics, and we aimed to support those characteristics in our platform.
This created a reasonable scope which, as the case studies presented in chapter 7
evidence, includes both generic and domain specific workflow languages, and in-



Introduction 9

cludes several commonly used workflow execution models. The trade-off of this is
excluding some workflow languages that require uncommon features. For exam-
ple, our solution does not target distributed workflows [PPL01], rule based work-
flows [WLC+05, GKD01], and logic based workflow languages [GP07, DM05].

C2. The platform maintains a clear mapping between language ele-
ments and implementation elements

The platform presented in this dissertation provides a way to easily establish a
mapping between elements of the language and elements of the implementation.
Furthermore, in the event of language evolution, this mapping is easy to maintain.
The main benefit taken from this characteristic is facilitating the evolution and
maintenance of the languages, by avoiding the misalignment between languages
and their implementation.

C3. The platform supports language flexibility

The proposed approach favors the extension and adaptation of workflow specifica-
tion languages. This is achieved because the platform offers a series of extension
mechanisms that are available to all the workflow languages built on top of it.
Therefore, extensions and adaptations do not have to be done in an ad hoc way,
they can instead be based on common extension operations.

As in the case of characteristic C1, our platform does not try to support
every imaginable extension for each supported language. Instead, we have built
a taxonomy of composable extensions and adaptations that the platform can
support (see chapter 4). These basic modifications can be composed to achieve
more complex results, such as those illustrated in chapters 4 and 7.

C4. The platform is reusable and supports the implementation of open
engines

Workflow engines are not isolated applications, but are instead frequently found
embedded in complex systems known as workflow management systems. There-
fore, workflow engines need some means to interact with other elements of the
same system, to interact with external elements, and to react to requests coming
both from inside and outside the system. To achieve these requirements, our plat-
form supports the development of open engines. This means that the internals
of each engine are observable by external components and systems. Additionally,
some of its elements can also be controlled to some degree from the outside.

On top of that, the platform is reusable and adaptable. Therefore, a ba-
sic set of elements are shared by every engine, while some other elements are
adapted to the needs of each particular language. Together, these two charac-
teristics contribute to solving the problem of porting or re-developing the tool
chains associated to the languages. Since the engines are open and offer powerful
interfaces, complex tools can be developed to interact with them. On the other
hand, since the platform is reusable, all the tools can be programmed using a
common API. This opens the possibility of using some of those applications with
several languages. This possibility cannot be guaranteed because it depends on
the characteristics of each application, but currently it is not available for most
workflow engines and tool chains.
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1.3 Thesis approach

To achieve the stated objective, in this dissertation we propose a novel architec-
ture to build workflow engines, based on metamodels and on the modularization
of workflow definitions. By using this architecture, the development of engines
for new workflow languages does not have to start from scratch. Instead, engines
are built on top of a reusable workflow kernel that can be configured to support
different workflow languages. Furthermore, the engines built using this kernel
are more adaptable and more extensible than currently available engines.

The main elements and ideas of the proposed approach are the following:

• A metamodeling platform for modeling workflow definitions.

• Modularized workflow definitions using concern specific workflow languages.

• Run time coordination of executable workflow models.

• A platform based on Open Objects.

In the following we will briefly explain these key ingredients of the approach
that we have implemented in a platform called Cumbia. In later chapters we will
provide a more detailed discussion on each aspect of the approach.

A metamodeling platform for modeling workflow definitions

The reason behind some of the problems and challenges discussed is the difficulty
to localize the elements in the engines’ implementations affected by changes to
the syntax or the semantics of the languages. These aspects are often scattered
around in the engines’ code, and they are entangled with the implementation of
other functionalities, thus making languages very difficult to modify or replace.
To counteract this, our approach offers the means to separate the implementation
of the languages from the implementation of complementing functionalities. By
doing so, the people in charge of implementing the semantics of the languages,
do not have to implement those other functionalities, the implementation arti-
facts become more coherent, and the languages are more easily replaceable and
modifiable.

Using metamodels to represent languages is a technique frequently applied
in several contexts [GKP98]. Often, only the abstract syntax of the languages
is modeled, but some metamodeling platforms can also model the semantics of
languages, or parts of it. The level of abstraction and the level of detail included
in those representations depends on the characteristics of the platform. Figure
1.2 shows how metamodeling techniques can be applied to the workflow con-
text. A metamodel definition is constructed to represent a workflow specification
language. Then, model definitions conformant to the metamodel are built to
represent workflow definitions. Finally, workflow instances (also known as cases)
are represented with model instances.

Figure 1.3 provides a graphical representation of the main elements in our
proposal to support the definition and enactment of workflow specification lan-
guages. Since a metamodeling approach is used, the first element to consider
is the metamodeling framework. It defines the abstractions to build metamodel
definitions and represent the structures and semantics of the languages. This
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Figure 1.2 Metamodeling and workflows

Figure 1.3 An execution platform based on metamodels

dissertation proposes open objects as the main modeling abstraction to use in the
metamodeling framework.

The second element in the proposal is a component called Execution Kernel
(EK). The most important of its multiple responsibilities is to enact model def-
initions. To support this, the EK offers the means to load model definitions,
instantiate them, and coordinate the run time behavior and interaction of in-
stance elements. Nevertheless, the EK is generic and it requires access to the
information contained in the metamodel definition to be aware of the elements,
the structure, and the semantics of the enacted language. Additionally, the EK
holds other responsibilities, such as managing persistence, doing basic confor-
mance verifications, offering interfaces to allow external interactions with the
running model instances, and generating events to facilitate monitoring. By us-
ing the EK as the foundation of every engine, the features it offers do not have to
be redeveloped for each new language. As a result, the effort required to support
a new workflow language is considerably reduced, thus making the development
of domain specific workflow languages more likely.

Compared to existing workflow kernels, the one we are proposing is more
flexible and more expressive because there is not a fixed underlying workflow
language or workflow execution model. Instead, all the aspects of the new lan-
guages can be defined from scratch, restricted only by the characteristics of the
abstractions provided by the metamodeling framework. Later chapters in this
dissertation demonstrate that these restrictions are less problematic than the re-
strictions found in other kernels based on intermediate languages and models. In
those, the semantics of every workflow language has to be reduced to the seman-
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tics of a unique workflow execution model which is not always well aligned with
the necessities of the language.

This aspect of the approach also has a positive impact on the maintainability
and extensibility of the engines. By using metamodels to structure the languages
and the implementation of their semantics, the decomposition of language con-
structs is preserved in their implementation. This makes it easy to maintain a
mapping between language elements and implementation elements. Furthermore,
it makes the implementations easier to understand, maintain, extend, and evolve
[Cle07b].

Finally, there is another advantage associated to using one workflow kernel
to implement many workflow engines. Typically, workflow engines are developed
in an ad hoc fashion and there are no commonalities between them at the code
level. Therefore, the associated tool chains are also developed in an ad hoc way,
and thus are difficult to reuse. On the contrary, if the same kernel is shared
among various workflow engines, the reuse of complementary tools is more likely
to occur. Towards the end of this section we discuss how this is complemented
with the usage of open objects to achieve the goal of having a reusable platform
for open engines.

Modularized workflow definitions using concern specific workflow lan-
guages

Currently, most workflow languages, and especially generic workflow languages,
are monolithic and tend to include a large number of elements, which are not al-
ways closely related. These languages offer only simple modularization strategies
that are generally restricted to the hierarchical decomposition of processes. These
factors have had negative impacts on the languages. On the one hand, bigger
languages tend to be more difficult to understand and learn. They are also more
difficult to maintain, and because of the lack of powerful mechanisms of modular-
ization, the definitions tend to be large and complex. Therefore, they are more
difficult to create, maintain, and reuse. In some domains, these limitations are
very inconvenient.

On the other hand, the aforementioned factors have also limited the extensi-
bility and adaptability of the languages. Since languages are defined in a mono-
lithic way, it is not easy to replace parts of it. Similarly, it is not easy to add new
elements and extend the original languages.

In recent years, some modularization strategies for workflows have been pro-
posed. In particular, Padus [BVJ+06] and AO4BPEL [CM06] have applied
aspect-oriented techniques to workflow modularization. Nevertheless, these ap-
proaches have only solved part of the problems by offering strategies for the
modularization of workflow definitions. As a result, the issues with the workflow
specification languages, such as their size and complexity, have not been solved.

The approach that we propose employes a modularization strategy based on
concern separation and inspired on multimodeling techniques [BCF+08]. This
strategy has two sides to consider. The first one, is that workflow definitions
can be decomposed according to concerns, which is similar to what Padus and
AO4BPEL propose. The result is depicted in figure 1.4, where a monolithic
workflow definition is split into a set of concern-specific definitions. These defi-
nitions are complemented by composition information, which serves to relate the
otherwise totally separated parts. We call this set of definitions, together with
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the information that relates them, a workflow assembly. The second side of the
modularization strategy is that concern specific languages can be used to specify
each part of an assembly. Therefore, these languages can be very expressive and
employ high level elements adapted to each concern.

Figure 1.4 Concern specific workflow languages and definitions

There is not a single technique to identify the concerns to include in an
application. For example, they can be identified based on functional elements of
the process, such as business, billing, or auditing activities. Another example is
to follow the traditional decomposition in perspectives (i.e. control, resources,
data, etc. [vdAvH02]). The only requirement is that each detail that is relevant
for the processes must be included in a concern.

Run time coordination of executable workflow models

When concern specific workflow languages are used to describe a workflow, one or
more models are built for each involved concern. Afterwards, these models have
to be assembled to reconstruct the semantics of the complete workflow. In our
approach this is achieved with a model weaving technique that depends on links
described between model definitions. This means that the composition problem
is solved at the model level and not at the metamodel level. Metamodels are thus
completely independent and there is nothing to explicitly relate them. By doing
so, the coupling between languages is lowered, and this favors their evolution.
The downside of this is that the relations between models have to be written for
each assembly.

The other characteristic of our approach regarding the composition of work-
flow definitions is that they are never combined. Instead, lightweight links are
established between model instances, and these are used to coordinate their ex-
ecution. This approach is very different from most model weaving techniques,
which combine the source models to generate a composed one. On the contrary,
our approach keeps concern specific models related in such a way that they can
interact, while at the same time they are recognizable and have well defined bor-
ders and structures. The weaving between model instances is established after
creating them, but before starting their execution, and it serves to coordinate
their execution.

Additionally, the links established between model instances are modifiable
at run time. Therefore, assemblies are not totally fixed, and their structure can
change even after they have been instantiated. This additional degree of flexibility
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complements the possibility of changing the structure of model instances at run
time. These two features are very important for some domains, such as e-learning.

Figure 1.5 Coordination of workflow concerns

In order to coordinate a set of models, information additional to the mod-
els’ structure has to be provided. In Cumbia, this information is a weaving
program written in a language called CCL (see figure 1.5). This language, the
Cumbia Composition Language, is independent of the concern specific languages.
Therefore, a new composition language is not required when new languages are
introduced.

A platform based on Open Objects

In order to implement a platform with the characteristics previously mentioned,
we developed a notion called open objects. Open objects are the main modeling
abstractions to build and implement the metamodels. When a metamodel for
a workflow language is defined in Cumbia, each element in the language has to
be modeled with an open object. In this way, the open object encapsulates the
structure of the element and the behavior it should have when used in a model.
Open objects also externalize their interaction with other elements in order to
make this interaction flexible.

There are two main characteristics of open objects that make them useful to
implement the proposed platform. In the first place, open objects offer various
coordination mechanisms, both synchronous and asynchronous, that can be used
to control the interaction between elements in the models. These mechanisms
make the execution of the models possible, and also allow the coordination of
various concerns. CCL and the weaver also rely on those mechanisms, as CCL
instructions are expressed in terms of open objects’ features. The interaction
mechanisms of the open objects, together with the externalized state machines
and powerful interfaces to control and observe them, makes this notion central
for the support of open engines.

On the other hand, open objects offer various mechanisms to extend and
adapt metamodels. Each one of those mechanisms represents a different kind
of change that can be applied to an open object. For example, some of these
mechanisms serve to specialize the behavior of an open object, or to modify the
way it interacts with other elements. By stacking up multiple of those changes,
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complex adaptations and extensions to the languages can be supported.

1.4 Thesis contributions

The following are the main contributions of the research presented in this disser-
tation.

• A novel architecture for workflow management systems

This dissertation proposes an approach to build extensible and adapt-
able workflow engines, using an architecture that favors their evolution
and maintenance, and favors the evolution of the workflow languages
that they support. On the other hand, this architecture also targets
the creation of open engines, thus facilitating the integration of com-
plementary tools, such as clients or monitoring applications.

• A novel approach for workflow modularization

This dissertation explores a multimodeling approach to modularize
workflow definitions and workflow specification languages. This ap-
proach is based on the identification of relevant workflow concerns in
each domain, the design and implementation of concern specific work-
flow languages (CSWfLs), and the modularization of the workflow def-
initions accordingly to the concerns identified. This approach should
result in CSWfLs that are simpler to use and are more suitable than
monolithic, generic workflow languages. On top of that, the modu-
larized definitions described with those languages should be easier to
write, understand and maintain.

Additionally, this dissertation provides the following secondary contributions.

• Open Objects, a base element for executable modeling

This dissertation defines the notion of open object, and uses it as a base
element to build executable models. The usage of open objects results
in metamodels and models with coordination features and flexibility
characteristics pertinent in a workflow context.
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• The Cumbia Platform

This dissertation presents the Cumbia platform, which implements the
proposed approach. The central element in the platform, the Cumbia
Kernel, supports the execution of open objects, and can be used as the
base to develop engines for new workflow languages. Other important
elements of the platform include CCL, a language to describe the co-
ordination between concerns of a workflow definition, and the Cumbia
Weaver, which interprets the CCL programs before the execution of the
workflows.

• Validation of the Cumbia Platform in workflow applications
based on MiniBPMN, YAWL, Petri nets, IMS-LD, BPMN,
BPEL, and other workflow languages.

The proposed approach and the Cumbia Platform is validated with the
implementation of several languages with varying characteristics that
test different aspects of the approach.

1.5 Organization of the dissertation

The following is the structure of the rest of this document.

Chapter 2: Workflow Modeling and Enactment, presents an overview of
the workflow context and the main characteristics and limitations of cur-
rent modeling techniques and execution tools. The first part of the chapter
is devoted to modeling, and thus it discusses languages, execution mod-
els, and modularization strategies. The second part of the chapter focuses
on workflow execution, and presents some characteristics and limitations
of representative tools that are used for workflow enactment, or serve to
develop workflow engines.

Chapter 3: Executable Models in a Workflow Kernel, presents the main
characteristics of the solution and shows how these characteristics con-
tribute to solve the problems identified in chapter 1. The chapter is con-
cluded with an overview of the implementation of the solution in the Cumbia
platform.

Chapter 4: Workflow Models based on Open Objects, presents the details
about the Cumbia platform and explains how it can be used to support a
workflow language. This chapter describes core concepts of our approach,
such as the open objects and their usage for metamodel definition. The
chapter uses a language called MiniBPMN to illustrate the ideas discussed:
this language is concern specific and only includes elements to describe the
control flow of a process.

Chapter 5: Coordination of Multiple Concern Specific Models, complements
chapter 4 by showing how several concern specific languages are supported
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in Cumbia. To illustrate this, the dimension of time is identified in a work-
flow application, and a metamodel is designed to describe it. Then, the
Cumbia Composition Language (CCL) is used to establish relationships
between control flow and the time restrictions, thus achieving the initially
intended execution semantics.

Chapter 6: Towards a development process for workflow engines based
on Cumbia, presents guidelines to organize the development. On the one
hand, it identifies activities to gather information about the problem at
hand and develop the necessary artifacts using what Cumbia offers. These
activities go from selecting or developing workflow specification languages,
to executing models described with said languages. On the other hand,
this chapter characterizes the stakeholders of the development process us-
ing their skills and knowledge. This chapter also presents some tools that
are additional to the core of the proposal and facilitate the usage of the
core of Cumbia.

Chapter 7: Validation, presents the application of the Cumbia platform in
various case studies. These scenarios are different from the examples pre-
sented in chapters 4 and 5 and they aim to cover an interesting part of
the spectrum of workflow languages. The languages selected for these case
studies include pre-existing ones, and also ad hoc languages that we de-
veloped. The scenarios presented in this chapter also differ because they
target different workflow domains.

Chapter 8: Conclusion, concludes the dissertation with the presentation of
the most important conclusions, a revision of the contributions, and a brief
discussion of future work.



18 1.5. Organization of the dissertation



2
Workflow Modeling and Enactment

The domain of workflow-based systems has seen the development of different
technologies and strategies to implement and adopt workflows. Among these
things, there are several execution models and hundreds of workflow specifica-
tion languages based on them. Consequently, workflow engines to execute these
languages have been developed. However, many of these engines have been con-
structed mostly from scratch, in an ad hoc fashion. One of the reasons behind this
is the relative lack of frameworks to develop engines for new languages. There are
a few frameworks available to alleviate this situation, but some have limitations,
while others target too specific domains.

This chapter presents a brief overview of some of the developments that were
just mentioned. In order to do so, the first section introduces the basic vocab-
ulary and concepts about workflows, which are used in the rest of this chapter
and the dissertation. The following section focuses on workflow modeling and
illustrates various workflow specification languages and workflow execution mod-
els. The final part of the section presents two metrics to compare and select
workflow languages and execution models: expressive power and suitability. The
following section introduces the topic of workflow modularization and presents
the most relevant works in this area. Afterwards, section 2.4 discusses various
works that have addressed the problem of supporting new workflow languages.
The approaches that we present in this section offer a comprehensive view of the
available solutions to tackle the issue. Finally, section 2.5 revisits the challenges
presented in the introduction and shows that the options currently available to
develop engines for new languages, have several limitations.

2.1 General workflow concepts

Workflows are a technology that has been in development for over thirty years.
Workflows had their origin in the development of computational systems to han-
dle office procedures in paperless offices, but soon their usage spread to many
other domains [GHS95, EN96, zM04]. Nowadays, workflows are used in contexts
as dissimilar as business process modeling (BPM), e-learning, scientific applica-
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tions, computer aided engineering, and health services management.
In general workflow systems are used for one of the following objectives

[CKO92]:

• To facilitate understanding and communication of workflows in an organi-
zation.

• To support process management, by offering the possibility of monitoring,
controlling and adjusting the workflows in real time.

• To support process improvement, by offering tools to gather performance
information and adjust the processes based on its analysis.

• To provide automated guidance. This means providing suggestions to users
that participate in a workflow, to facilitate their work and to improve com-
pliance to the workflow definition.

• To automatize workflow execution. This objective has two parts. The first
one is executing the software-based steps of the workflow. The second part
is supporting the interaction of humans at the right points of the execution.

From these objectives it emerges that the essential feature of workflow tech-
nology is its focus on describing a series of actions, and describing the order to
perform them. Depending on the specific workflow technology, the actions can
be of various kinds. For example, in a language like WS-BPEL1 actions usually
serve to consume web-services or to transform xml data [OAS05]. On the other
hand, in IMS-LD2 actions usually involve the participation of users that have
to read provided material, answer tests, and other learning activities [IMS03b].
The order in which actions are performed can also be specified in different ways.
For example, it is very common to specify an explicit flow of control, although
some tools can also specify dependencies between actions. In the former case, the
specification says what has to be done after each action is completed. Languages
such as BPMN3 use flows to describe this. In the latter case, the specification
says what must happen before an action can be executed. For instance, these
dependencies can be described with temporal logic [DM05].

Another common characteristic of most workflow systems is using special-
ized languages to describe workflow definitions. These languages are commonly
known as workflow specification languages, workflow definition languages, or sim-
ply workflow languages. In the literature, the term ‘workflow’ has been used both
for the real life process and for its representation in a workflow system. To avoid
the confusion, we will use the term ‘workflow definition’ for the representation of
a ‘workflow’.

Many workflow specification languages have been designed to be used by non-
technical users, and they are usually expected to be high level. However, many
workflow languages use low level concepts (e.g. WS-BPEL’s XSLT transforma-
tions of XML data), and there are even workflow languages that are similar to
general purpose programming languages (e.g. Workflow Prolog [GP07]). Section
2.2.1 presents the basic details about some common workflow languages which
illustrate part of the available spectrum.

1WS-BPEL, or BPEL, will be described in section 2.2.1
2IMS-LD will be described in section 2.2.1
3BPMN will be described in section 2.2.1
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A workflow definition can be used for several purposes. For instance, it can
be used just as documentation of a fully manual process. Another example is
using the specification as an input for analysis tools which try to discover in-
consistencies in the specifications. Nevertheless, for this dissertation the most
relevant usage for the specifications is as the input for workflow engine which
enacts them. According to the definition of Grefen and de Vries, enacting or ex-
ecuting a workflow means processing workflow events and initiating reactions to
these events as defined in the workflow definition [GdV98]. For example, in the
context of BPMN, the finalization of the execution of an activity is a workflow
event; the reaction to this event is to start the execution of the ensuing activities.

Workflow definitions can only be enacted if the semantics of the languages
are well defined semantics and implemented in the engine. These semantics are
usually defined in terms of a known execution model, such as those described in
section 2.2.2. In each case, these execution models are tailored to include behavior
specific to the language. For example, the way to invoke concrete activities or the
supported data transformations. Nevertheless, the most complex behavior, which
usually involves aspects such as managing concurrency and synchronization, is
usually defined in the execution model itself.

Another important concept related to workflow execution is that of workflow
instantiation. A workflow instance, or case, is the representation inside a work-
flow system of a single enactment of a process [Coa99]. Usually, each workflow
instance is capable of independent control, and maintains its own internal run
time state and data. In some cases, workflow instances can also share data at
the specification or at the engine level.

Since many workflows support interactions with external elements, it is im-
portant for the engine to have mechanisms to differentiate the instances of a
workflow definition. This is usually achieved with a unique identifier, but in
some cases this can have a big impact and require more complex mechanisms.
For instance, the necessity for having case identifiers in YAWL was one of the fac-
tors for using Extended Workflow Nets instead of Petri nets [vdAtH06]. Another
example is BPEL, where correlation sets uniquely identify process instances, and
are required to support asynchronous messages.

In addition to the execution itself, which includes the invocation of exter-
nal applications and the management of the resources consumed and produced
during said execution, workflow engines in different contexts support some dif-
ferent sets of additional requirements. One of them is monitoring, which refers
to the activities performed by users or external systems to trace the run time
state of the enacted workflows and the produced data. Monitoring is usually
done through applications connected to the engines, which query the state of the
workflow instances, or capture relevant events.

Another example is what some workflow engines call dynamic adaptation.
This term refers to the capacity to modify workflow instances or specifications, at
run time. In general, this is complex to support, especially because it is necessary
to adapt the run time state of the instances to the new structure. Depending on
the engine and the particular requirements of each language, different strategies
are followed to implement this. As an example, some engines only support some
predefined kinds of changes. On the contrary, others are much more flexible but
offer less guarantees about maintaining the consistency of the instances. This
also means that not every change is supported in every workflow engine or has
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the same impact. For example, some engines only support changes to selected
workflow instances, while in others changes can be applied to all the instances of
a workflow definition.

Workflow engines are seldom isolated from other applications. On the con-
trary, they are usually part of a package known as a Workflow Management
System (WfMS) which also includes tools to define the specifications, to control
and monitor their execution, and to allow the interaction of participants and ap-
plications [Coa99]. The workflow reference model of the Workflow Management
Coalition proposed a set of interfaces to standardize the elements of a WfMS and
facilitate the interaction of tools from different vendors [Hol95, Hol04]. Figure
2.1 shows the main components and interfaces proposed by this reference model.

Figure 2.1 Components and interfaces defined in the Workflow Reference Model [Hol95]

In the center of the figure there are workflow engines which expose a common
workflow API based on standardized interchange formats. The API defines the
following five interfaces that serve to interact and exchange information with
different kinds of applications:

• Interface 1: Process definition tools. This interface is used by process
definition tools (editors) to deploy workflow definitions into engines. The
format proposed by the Workflow Management Coalition to use for this is
XPDL.

• Interface 2: Workflow Client Applications. This interface is used
by applications that mediate in the interaction between users and running
workflows. For instance, one such client application can request information
from a user and then give that information back to an activity in order to
process it and continue with the workflow execution.

• Interface 3: Invoked Applications. This interface in the reference
model is used to allow back and forth interaction with external applications
that participate in a workflow.
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• Interface 4: Other Workflow Enactment Services. In the work-
flow reference model, interface 4 is described as the interface to allow the
interaction between several instances of a workflow engine, or between sev-
eral different workflow engines. This was an important requirement for
the Workflow Management Coalition because of their interests in achiev-
ing compatibility between engines and achieving the integration of existing
systems.

• Interface 5: Administration and Monitoring Tools. The fifth and
final interface described in the reference model allows the interaction of
administration and monitoring tools with the engine. These tools have two
main objectives. The first one is to control and manage the behavior of the
engines and the execution of the workflows. The second one is to gather
and display information about the running workflows.

In spite of its advantages, the workflow reference model was never adopted
in full. This happened mainly because it imposed tight requirements that im-
plied profound changes to existing tools. For instance, the adoption of XPDL
as the sole intermediate workflow language was seen as an impediment to the
development of workflow specification languages.

2.2 Workflow modeling

In order to model a workflow, it is necessary to first choose a workflow specifi-
cation language. Such a language has to be analyzed from two points of view.
Firstly, there is the point of view of the concepts included in the language. This
point of view can be associated to the syntax of the language and it has a deep
impact on the usability of the language. Furthermore, this point of view also
includes the semantics of the single elements in the language, which include its
behavior and interaction with external elements.

Secondly, there is the point of view of the execution semantics of the language
as a whole, that is the way in which various elements interact, the way in which
they can be combined, and the way in which the run time state is represented.
For instance, this aspect includes the order in which elements in a workflow
specification are executed, or the way in which concurrency is handled in the
language.

This section analyzes these two points of view using examples. First, we
present five different workflow specification languages, and we highlight the dif-
ferences in their characteristics and in their motivations. Afterwards, we present
five models which have been widely used to describe the execution semantics of
workflow languages. Finally, the concepts of expressive power and suitability are
discussed and it is shown how they can be used to compare workflow languages
and execution models.

2.2.1 Workflow specification languages

In this section we analyze five workflow specification languages, that present inter-
esting differences. The main reason behind those differences, are the motivations
that guided the design of those languages. The languages that are described are
the following:
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• BPMN: a standardized graphical notation for business processes that
mainly targets communication among business experts, analysts and soft-
ware developers.

• WS-BPEL: a standardized XML language for web-service based executable
business processes, and web-service composition.

• YAWL: an academic workflow specification language with solid formal
semantics.

• Sedna: a domain specific workflow language designed and implemented by
physicists, on top of WS-BPEL. Sedna is used to model experiments in grid-
based scientific applications. Although it is not a very well known language,
Sedna is interesting for our research as a language used and designed by
domain experts.

• IMS-LD: a specification for defining workflows in the e-learning context,
using components and learning materials designed according to several com-
plementing specifications.

BPMN

BPMN, or Business Process Modeling Notation, is a standard developed by the
Object Management Group – OMG and the Business Process Management Ini-
tiative – BPMI in order to provide a notation to describe business processes. The
main goals behind this standard are to provide a notation that is understandable
for all business users (business analyst, technical developers, and the people that
monitor and control the processes), and to provide a notation to visualize exe-
cutable business languages [Obj09a]. BPMN 1.1 [Obj08] has been in use for a
few years now, but an updated version, BPMN 2.0 [Obj09a], has been proposed
and is currently in a beta stage.

The notation proposed for BPMN is mainly graphical, although also BPMN
2.0 proposes textual representations based on XMI and XSD. Figure 2.2 presents
a sample BPMN diagram, which illustrates a few elements of the language. This
diagram represents a workflow formed by a main process which includes a sub-
process. The following are some of the main elements depicted in this figure:

• Tasks: they represent actions to be performed in the process and they are
represented with rectangles that have rounded corners.

• Events: they represent special conditions that happen during the execution.
For instance, they can represent the beginning of the process, its ending,
an error, or the reception of a message. In the figure we have included a
representative set of the available types of events, which are represented
with circles and a variable icon inside.

• Gateways: gateways in BPMN are used to condition the control flow and
to control the concurrent execution of various parts of a process. Gateways
are represented with diamonds and the icon in them represents the way in
which they handle concurrency.

• Swimlanes: swimlanes are the mean to differentiate which resource has to
perform each action in a process. In the figure there are three swimlanes
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which correspond to the three roles that participate in the process (Order
System, Process Manager, and Testing System).

• Artifacts: although BPMN is not a data-flow, it offers a simple way to
describe the data produced and consumed by each task. Nevertheless, the
semantics of the execution does not depend on the flow of artifacts and it
is only considered documentation.

Figure 2.2 Sample BPMN diagram

As other OMG specifications, e.g. UML [Obj07a, Obj07b] or SPEM [Obj05],
the BPMN 2.0 specification uses metamodels to introduce the elements of the
language and the relations that can be established between them. The complete
metamodel presented in the specification has more than 150 elements. This is
new for version 2.0, as in version 1.1 the specification was more informal and also
smaller. In comparison, the WS-BPEL 2.0 metamodel has less than 65 elements
[wsp07], while YAWL has 14 [vdAtH06]. Therefore BPMN has been criticized
for including too many elements, which are seldom used, and thus complicate the
language [zMR08].

Since its first version, the main goal of BPMN has been to provide a com-
munication mechanism. Thus, BPMN is used to communicate business processes
between people with different skills and roles in an organization. Furthermore,
BPMN is also a valid tool to represent and communicate processes that involve
various organizations.

On top of that, BPMN has been used to define business processes with the
explicit goal of enacting them. This was a problem in prior versions of BPMN
because the semantics of the language were ambiguous and incomplete. Only a
subset of BPMN had precise semantics, which were defined with transformations
to WS-BPEL. Thus, many BPMN processes could be executed using WS-BPEL
engines. BPMN 2.0 formalized the execution semantics for all elements [Obj09a],
thus making it possible to build a BPMN engine which does not use WS-BPEL.

BPMN offers two mechanisms to extend the language and accommodate spe-
cific needs. On the one hand, BPMN’s elements allow specialized markers to
convey specialized information. For example, Events can be marked with icons
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that correspond to user specific extensions. The second mechanism is based on
elements called Artifacts, which are user defined and are connected to other
elements in the processes using associations. Nevertheless, Artifacts have a
strong limitation: they cannot change the normal flows (i.e. Sequence or Message
Flows) and they cannot alter the mappings to executable languages. As a result
of these limitations, BPMN’s extension mechanisms are useful for specializing the
behavior of some of its elements, but are not enough to introduce new structures.

In spite of its limitations and drawbacks, BPMN is currently one of the most
popular workflow languages available. According to the report in [Obj09b], there
are at least 61 BPMN implementations reported to the OMG, which include
editors, engines, monitoring applications and others.

WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL), also known
as BPEL, is another standard to describe workflow definitions. It was proposed
by OASIS and its main goal is to describe web-service based executable business
processes [OAS05, KKM09]. While the motivations behind the design of BPMN
are mostly related to the need of communicating users, in the case of BPEL the
motivations are more related to the need to communicate and exchange infor-
mation between companies and between machines. A further motivation behind
BPEL’s design is building complex services as a composition of existing ones.

In comparison to BPMN, BPEL is a low level language which is more suited
for software systems than for business analysts and managers [Obj09a]. On the
one hand, BPEL models are represented using a verbose XML based notation.
Graphical representations are also used, but they are defined and provided by
tool vendors, and they are not standardized. On the other hand, the concepts
appearing in the BPEL language are of a lower level than the elements in BPMN
and most of them refer to one of the following things:

• Web services consumption.

• Manipulation of XML data.

• Control flow elements (scopes, conditionals, loops).

• Exception handling.

From the point of view of the semantics, there are also important differences
between BPEL and BPMN. While in BPMN the semantics are informally de-
scribed (even in version 2.0), in BPEL these are more precise, and they have
even been described with formalisms such as Petri nets [HSS05] or pi-calculus
[LM07, Abo06].

The specification for BPEL discusses three possible kinds of extensions. The
first kind involves the creation of new types of activities, which serve to intro-
duce specialized behavior into new processes, and which is simply based on a
single element: <extensionActivity>. The second kind is similarly used, and it
serves to create new assign operations that permit new ways of managing data:
<extensionAssignOperation>. Finally, the third kind of extensions involves the
introduction of namespaces which can define additional attributes for existing
elements, and additional elements. Nevertheless, extensions must not contradict
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the semantics defined by the BPEL specification, and this restriction greatly re-
duces the power of the extension mechanisms. Another problem with this kind
of extensions is that, in the practice, it is not easy to modify the engines to make
them work with the extended elements. One example of this is BPEL4PEOPLE
[AAD+07], the extension to BPEL that serves to manage human tasks. As re-
ported in [HVD08], supporting this extension in an existing BPEL engine is not
trivial, not because of the inherent complexity of BPEL4PEOPLE, but because
of the difficulties of integrating it with the base engine.

Currently, BPEL is one of the most used workflow languages, and it has been
applied in many different contexts, like business processes, scientific applications,
computer aided engineering, and e-learning. This has been due to the character-
istics of the language, and the widespread availability of tools to model, enact,
and monitor BPEL processes.

YAWL

YAWL (Yet Another Workflow Language) [vdAtH06] is a workflow language that
originated in the academia and has been mainly used for research purposes.
YAWL offers a graphical syntax but it also has a formal definition. The se-
mantics of the language are formally specified using Petri nets [RtHEvdA07].
Moreover, the semantics of YAWL are also formally specified using an extension
to Petri nets known as EWF-Nets (extended workflow nets).

An example of the graphical syntax of YAWL can be seen in figure 2.3. This
figure represents the same workflow that was previously used as an example of
BPMN (figure 2.2), although it has a slightly different organization. With respect
to BPMN there are various differences that can be seen immediately. The first
one is that YAWL does not have anything similar to BPMN’s events; their role
is played by tasks such as those marked with a M that expect the reception of
messages. Another one is that each process (or net in YAWL’s terminology) has a
single exit point. Finally, YAWL does not have something equivalent to BPMN’s
swimlanes or artifacts.

The designers of YAWL, which are also the original proponents of the control
flow patterns [vdAtHKB03], designed the language with the explicit goal of sup-
porting all these patterns. As a result, YAWL is the only widely known language
that supports all the original control flow patterns4. On the other hand, YAWL
also strives to be considered as an intermediate language that can be applied in
a large number of contexts. Therefore, its elements are not particular to any
specific domain.

YAWL does not offer mechanisms to extend the language by adding new
elements or constructs, but it does offer the means to specialize the behavior of
some kinds of elements. More specifically, the element of YAWL that is called
Decomposition is a placeholder for concrete activities, and process developers
are expected to implement decomposition specializations. On top of this, YAWL
offers another mechanism of extension which is based on Worklets and which
allows for the late selection of the activities of execute in a process.

4There is a pattern not supported in YAWL (implicit termination) because the authors of
the language consider that pattern to be a potential source of errors. Nevertheless, the pattern
can be supported by applying a simple transformation in the processes, to connect the dangling
tasks to the end condition of the YAWL process.
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Figure 2.3 A sample YAWL process. The net on the upper part is the top level net, while
the one on the lower part of the image is the sub-net.

Another reason that makes YAWL important for the academic community
is that it has been used as a test bench to develop analysis tools for workflows.
These have been mainly based on applying techniques developed for Petri nets
analysis or for graph-analysis. Woflan [vdA99, VvdA00] is one of the resulting
tools for workflow analysis, and it can be used to discover flaws in the design of
business processes.

Sedna

We are now going to analyze the main characteristics of a language that has
been designed for a specific domain. The term Sedna refers both to the workflow
specification language based on WS-BPEL and to a visual modeling environment
to define workflows in the context of scientific applications [WEB+07].

The main motivation behind Sedna’s design is offering the means to success-
fully apply BPEL to scientific applications. There are two reasons for this. On
the one hand, BPEL has enactment environments that offer the scalability and
reliability required in scientific applications. On the other hand, the abstractions
used in BPEL lack the expressiveness needed for scientific applications.

Sedna’s design also takes into account the most important characteristics
of scientific workflows, which set them apart from business workflows. These
characteristics are the following:

1. The large scale of the processes, which may make thousands of invocations
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to many different services.

2. The requirement of executing in parallel a large number of very similar
subworkflows.

3. The massive amounts of data produced and processed by each process.

4. The short life of the processes, which are frequently changed or adapted as
experiments are refined.

Given this situation, the goal of Sedna was to provide a modeling language
and environment to build scientific workflows, and also to take advantage of the
features offered by BPEL. To achieve this, they built an environment where the
complexities of BPEL are hidden, and created a visual extension to WS-BPEL
which incorporates concepts that are relevant to scientific workflows. Behind
the scenes, the environment transforms Sedna workflows into standard BPEL
processes and creates deployment descriptors to run these languages on some of
the most popular BPEL engines.

With respect to standard BPEL, Sedna introduces the following four exten-
sions:

1. Indexed flows. Indexed flows are containers where activities can be placed
for parallel execution. Therefore, indexed flows can be used to model the
massively parallel execution of subworkflows.

2. Hierarchical compositions. Since scientific workflows are much more
complex than business processes, some elements to reduce the complexity
and simplify the development were added. By introducing the hierarchical
composition of workflows, Sedna’s developers gained the two things: on
the one hand, this allows reusing existing workflows; on the other hand, it
reduces the complexity of large workflows.

3. Plug-ins. In Sedna, plug-ins encapsulate parameterizable sequences of
activities using Java classes. When plug-ins are included in a workflow,
they look like basic BPEL activities. However, when the standard BPEL
process is generated, the included plug-ins are run and modify the generated
structure. For instance, plug-ins can be used to easily introduce complex
sequences of activities that process the data produced by an experiment.

4. Macros. Macros are inlined BPEL activities that are expanded when a
Sedna workflow is converted into a standard BPEL process. Macros, as
well as plug-ins, are intended to be shared and reused by many developers
across multiple experiments.

The final important point about Sedna is related to tool support. Besides
the modeling environment for the new language, Sedna’s developers also had to
build an execution environment that permits the interaction with the workflow
instances. This environment plays a crucial role in the success of Sedna, as it has
several responsibilities. On the one hand, it has to enable the quick modification
of the scientific workflows and it has to validate their correctness with respect
to certain criteria. Furthermore, it offers the means to monitor and debug the
enactment of the processes. However, all this must be realized while hiding the
complexity of BPEL and its inherent technical details.
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As a domain specific workflow language, the development of Sedna shows what
language developers must do in order to have full support for their languages.
First of all, they have to design the language: in the case of Sedna, this required
the definition of a visual representation, and the definition of the required BPEL
extensions.

Then, it is necessary to develop the tools to use the language, which normally
are at least an editor, and an engine. In this case, they developed a fully-fledged
visual modeling environment, and converted the scientific workflows into BPEL
processes. In this way, they did not have to create a new engine for the language.

Finally, they had to consider additional requirements (validation, debugging,
monitoring) and included support for them in the tools. In this case, the con-
version of Sedna to BPEL created some additional problems to implement these
functionalities, in comparison to using a native Sedna engine.

IMS-LD

The IMS Learning Design Information Model, or IMS-LD, is a specification that
integrates a number of other specifications in the context of e-learning [IMS03b].
Using IMS-LD, it is possible to model learnflows, which are equivalent to work-
flows in the e-learning context [MnCVC07]. Basically, a learnflow is a sequence
of activities which have a pedagogical goal and are performed by learners and by
a supporting staff, using a number of learning objects.

When the IMS-LD specification was created, it provided a framework to inte-
grate several existing specifications, which targeted very different aspects of the
e-learning problem. For instance, the IMS Question and Test Interoperability
specification defines how evaluation applications can be specified and packaged
to be included in a Learning Design; instead, the IMS Learner Information Pack-
age specification provides mechanisms to model and store the information about
learners, which may be modified during the execution of a Learning Design.
The IMS-LD specification does not offer itself extension mechanisms, but there
is flexibility in its support for multiple implementation of the complementary
specifcations.

Among the requirements of the IMS-LD specification, there were several re-
lated to the execution of the Learning Designs. In the first place, it had to allow
the participation and interaction of both learners and staff members. Further-
more, learners could participate as single users, or as part of groups. Finally, a
very important requirement was supporting the interoperability between Learn-
ing Designs and other applications. On the other hand, from the language point
of view, IMS-LD had to be powerful and flexible. It had to support any pedagog-
ical model, and it had to allow the personalization and adaptation of the units
of learning.

Given this context, it can be seen that the design of IMS-LD faced a number
of difficult restrictions imposed by the domain. The elements of IMS-LD, which
are depicted in figure 2.4, are organized according to a theatrical metaphor. A
play specifies an actual learning design, the teaching-learning process. Each play,
which is composed by a sequence of acts, specifies which roles perform which
activities. The persons that participate in a play have to assume a role as learners
or as staff. The conceptual model includes also a number of elements that are
exclusive to the e-learning context, such as learning objectives, prerequisites, and
learning objects.
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Figure 2.4 Conceptual model of IMS-LD [IMS03b]

Besides specifying the conceptual model, the IMS-LD specification also de-
fines three compliance levels. Implementations that are compliant with level A of
the specification are only required to support the basic part of the specification,
which defines static and fixed learning designs, and does not handle properties or
personalizations. Compliance level B includes level A and adds conditions and
properties. Using those, different learners may follow different learning sequences.
Finally, compliance level C adds notifications which can be used to make new
activities available for a role to perform. Notifications introduce dynamic adap-
tation into learning designs.

In spite of the powerful characteristics of IMS-LD, there are only a few tools
available which support the specification. Furthermore, most of them have com-
pliance only with the level A of the specification. This is probably due to the
complexity of the requirements imposed by the IMS-LD specification with respect
to interoperability, the support of the other specifications, and the dynamic adap-
tation of the learnflows. Since these requirements are inherent to the domain and
are likely to appear in any other language to describe learnflows.

Summary about the workflow specification languages

This section has presented a sample of the spectrum of workflow specification lan-
guages. The languages presented differ in several aspects, and this contributes
to showing the diversity of languages available. The first characteristics to com-
pare these languages is their relative genericity or the domain that they target.
We presented three languages that can be applied in a wide number of domains
(BPMN, BPEL, and YAWL), and thus can be considered generic. Conversely,
we also presented two languages that are restricted to specific domains (Sedna
and IMS-LD).

Another difference between the presented languages concerns the number of
elements in them. BPMN is, by far, the biggest of the languages presented, and it
includes elements to describe many workflow concerns. On the contrary, YAWL
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mostly focuses on the control flow5. IMS-LD has also the potential of managing
a large number of concepts. However, these concepts are modularized across
several specifications, and are not mandatory.

The languages presented also differ on the extension mechanisms that they
provide, but at least all of them are capable of supporting specializations at the
activity level. Extensions with more ample impact to the languages’ structures
require bigger efforts to be supported, and this explains why some of these lan-
guages put limitations to the kinds of extensions allowed. Furthermore, we can
see that BPMN and BPEL restrict the extensions to prevent changes to the ba-
sic semantics of the languages, and thus guarantee basic compatibility between
engines.

Finally, a further criterion for comparing these languages is the way in which
their semantics are specified. In YAWL, these are formally declared. In the
case of BPEL, the semantics have been formalized as well, although this is not
included in the specification. The semantics of Sedna are not explicitly specified,
although the mapping to BPEL solves the problem. On the other hand, the
semantics of BPMN and of IMS-LD are not formally defined and thus are subject
to interpretation by the implementers.

2.2.2 Execution models

The execution model of a workflow specification language is an abstract model of
its operational semantics. In the literature, it is also known as the workflow model
[GHS95], the internal process definition [Hol04], or as the formalism to define the
control aspect of a workflow [KAR06]. The execution model determines three
aspects of the language execution.

In the first place, there is the order in which actions defined in a workflow
specification have to be performed. In execution models that do not support
concurrency, there has to be a policy to serialize the actions in a workflow. Oth-
erwise, the execution model defines which actions can be run in parallel, and how
their execution must be coordinated.

A further responsibility of an execution model is establishing when the ele-
ments in a workflow definition can interact with their environment. This includes
handling interactions coming from outside of the workflow instance or even out-
side of the engine. Some execution models also consider the management of
expected or unexpected errors (i.e. exception handling).

Finally, the execution model also defines how the run time state of a workflow
is represented and how it is modified. For instance, an execution model specifies
how each operation modifies the state of a running instance of a workflow.

On the other hand, there are also aspects of a language’s semantics that
are usually not considered to be part of its execution model. These aspects
include, for example, the fine grained details about the interaction with external
applications (e.g. the communication protocols) and about the mechanisms to
process and store data. By leaving these details out of the description of the
execution models, they are kept from becoming excessively complicated. This
facilitates the analysis of the languages, and the construction of tools based on
these execution models.

5The YAWL editor also includes mechanisms to specify resource assignments, and also time
restrictions. However, it is not clear where to draw the line between YAWL as a language and
YAWL as a tool.
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There are three main uses for the execution model of a language. In the first
place, an execution model is necessary to enact the processes with a workflow
engine [vdAtHW03]. In particular, this requires keeping updated the state of the
process and executing the actions, by following the operational semantics estab-
lished in the execution model. A similar and complementary use for the execution
models is to simulate the execution of process definitions. This is usually done
when the processes are being designed, and it is a technique for the detection of
problems in process specifications.

Finally, the information about an execution model is also necessary to analyze
workflow definitions. This is done especially with execution models that are
formally specified, and it has been applied in complex contexts, such as the SAP
reference processes [vDJVVvdA07].

Below we present some of the types of execution models that are more fre-
quently used with workflow specification languages.

Petri nets

Petri nets are a formalism to model concurrent, distributed systems, which is
based on a small set of simple concepts and on formally defined state-transition
rules [GV01]. This formalism has been applied to different domains, its advan-
tages and disadvantages have been thoroughly studied, and many tools have
been developed to work with them in both specific and generic domains. Petri
nets have been used to describe the execution model of workflow specification
languages because of several reasons.

The first one is that the semantics of Petri nets are formally designed and
thus allow for the precise definition of the core aspects of the workflow specifi-
cation languages’ semantics. One example of this is the YAWL language, whose
semantics has been defined first using an evolution of Petri nets (see Extended
Workflow Nets below), and then using Colored Petri Nets. They call this alter-
native definition newYAWL [RtHEvdA07].

A second reason is the availability of tools and techniques to analyze or sim-
ulate Petri nets. Most of these have not been initially developed for workflow
specification languages, but they have been successfully adapted. YAWL is also
an example of this. On the one hand, the core of newYAWL’s engine is a Petri net
interpreter. On the other hand, Petri nets have been used to analyze the struc-
ture of YAWL processes [vdA99, VvdA00]. Similar things have been achieved
in other workflow specification languages: BizAgi is a Petri nets-based engine
for BPMN [Biz10]; and LoLA is a tool to verify WS-BPEL specifications that is
based on representing them as Petri nets [HSS05].

Another reason for using Petri nets to describe the semantics of workflow
specification languages is that it offers a relatively simple, but very powerful,
model. In its basic version it includes only four elements (places, transitions,
edges, and markings) which are generic. In comparison, other formalisms and
execution models use more specific elements and have more complex semantics.
As a result, these other formalisms are more difficult to be used with several
different languages, and cannot be applied as easily to diverse domains.

Finally, Petri nets offer a very powerful model of concurrency based on disjoint
locality [GV01]. Therefore, they are suited to represent workflows where actions
are executed in parallel, and concurrency issues are only considered in the points
where synchronization should happen.
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The application of Petri nets to workflows has been studied, and two main
alternatives have been identified to map workflow concepts into nets [GV01].
These alternatives emphasize different aspects of the processes. In the most
common mapping strategy, there is a transition for each task, and control flow
is determined by edges and shared nodes. Therefore, the state of a workflow is
determined by the current marking. The exact meaning of a transition firing
has to be specified in each case, because it could signal the start or the end of a
task execution. To solve this issue, a second strategy has been proposed, where
each task is represented by a transition followed by a node followed by another
transition. Thus, the first transition marks the beginning of the task, the second
transition marks its end, and a token on the node signals that the activity is in
execution.

These two alternatives are depicted in figure 2.5. Part a of the figure shows
a fragment of a BPMN process. Then, part b shows how this fragment could
be represented in a Petri net if the first mapping strategy was applied. Finally,
part c shows the result of applying the second strategy. In this figure, Bi marks
the beginning of task B, while Bf marks its end. A third strategy that has
been proposed represents tasks with nodes, but apparently this has not been
implemented [EW01].

Figure 2.5 A sample BPMN and two possible mappings to Petri nets

Using Petri nets with workflow specification languages has also some prob-
lems. On the one hand, the simplicity of the model can make it necessary to use
a large number of elements, or complicated structures, to represent even simple
workflows. This occurs because each element in a workflow specification language
has usually a complex semantics that has to be represented with several nodes,
transitions and arcs. Eshuis and Wieringa have also identified other characteris-
tics of Petri nets that make them inadequate to represent workflows [EW01]. The
main one is that Petri nets are usually non reactive, while workflows typically
depend strongly on external interactions.
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Extended Workflow Nets

Because of the problem of relative simplicity in Petri nets, some languages use
execution models inspired on Petri nets. One well known example are Extended
Workflow Nets (EWF-nets), which are the real execution model for YAWL. In
[vdAtH06], the authors of YAWL formalize the structure and behavior of an
EWF-net.

With respect to Petri nets, the most important characteristics of EWF-nets
are the assignment of identifiers to net instances, the inclusion of conditions
associated to the edges, and the possibility to remove tokens from places. These
characteristics enabled the inclusion in YAWL of concepts such as cancelation
regions and composite tasks, without complicating the models. In spite of all
these additional elements, the designers of EWF-nets claim that they can be
converted into Petri nets [RtHEvdA07].

Transition based systems

Transition based systems are another derivation of Petri nets which are frequently
used as execution models for a workflow language [Hol04]. The main character-
istic of these systems is introducing elements with more complex semantics than
those found in Petri nets. Therefore, in these systems transition firing conditions
are subject to more complex rules.

Besides the nodes, transitions, and edges of Petri nets, transition based sys-
tems usually include complex joins and splits. Furthermore, they typically sup-
port conditions associated to the transitions, and thus make routing decisions
more complicated. In order to be able to use these conditions, there has to be a
language available to express them.

Compared to using Petri nets, the most important benefit of using a transition
based system is the reduction in the number of elements in the models. This is
explained because each element in a model has a semantic that can be equated
to that of a Petri net with several nodes and transitions. The tradeoff in this
case is in the additional complexity of each element and of the execution rules.
Therefore, transition based systems are more complicated to analyze, and this
explains why most tools to analyze workflows are based on Petri nets.

A further disadvantage of transition based system is that they are less likely
to be reused. Since they include higher level concepts, the supported workflow
languages need to be compatible with those concepts, which are less general than
the concepts included in Petri nets.

Block structured decompositions

Another common type of execution model is based on the concept known as
‘block structured decomposition’. In the languages that use this model, process
specifications are divided in blocks that can be sequential or parallel. Concur-
rency is restricted so no two parts can be executed at the same time, unless they
are parallel and some conditions are met. Furthermore, the decomposition can be
hierarchical, and the identified blocks can be typed and have different behaviors.
As a consequence of the hierarchical structure, languages based on this execu-
tion model cannot handle arbitrary loops, or have unstructured splits and joins
[Hol04, vdAtHKB03, RtHvdAM06].
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BPEL is one of the best known languages that uses a block structured decom-
position. In this language, blocks are known as scopes and, depending on their
type, they have different structures and behaviors. For instance, Sequence Flows
execute in sequence a collection of Activities. Another example are Whiles,
which execute repeatedly a Sequence Flow, until some associated condition is
false. Another workflow system based on this execution model is the Windows
Workflow Foundation [Mic07].

Rule based execution

The final type of execution model we discuss is based on the application of ECA
rules to workflows [MD89]. With this execution model it is not necessary to
establish explicit dependencies between activities in workflows. Instead, these
dependencies are replaced with triggers, and conditional flows are replaced with
conditions. Finally, the action part of the ECA rules define the specific activities
to execute when the rule is evaluated.

As an example, consider the BPMN process fragment depicted in figure 2.6.
In this process, task ‘B’ and task ‘C’ are executed depending on the result of
evaluating the functions f( ) and g( ), which are not necessarily mutually ex-
clusive. If this process is executed using a rule based execution model, the two
flows that lead to ‘B’ and ‘C’ can be represented with two rules:

Figure 2.6 A simple BPMN process

Table 2.1 Representation as ECA rules of the process in figure 2.6

Rule 1 Rule 2
Event Completion of activity ‘A’ Completion of activity ‘A’

Condition f( ) g( )
Action Execute ‘B’ Execute ‘C’

Two workflow systems based on this execution model are EWMS [WLC+05],
and JOpera [Pau09]. In section 2.4.4 we present more details about JOpera.

2.2.3 Expressive power and suitability

The two previous sections presented examples of workflow languages and execu-
tion models which demonstrate the variance that can be found in this context.
Generally speaking, it is positive to have so many alternatives because it makes
more likely to find a very adequate solution for each problem. However, this
also creates a burden for those in charge of selecting the language to adopt in a
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project. Furthermore, there is also the alternative of developing a new, ad hoc,
workflow definition language to solve the specific problems that are faced.

In many respects, this problem is similar to that of selecting a programming
language. In order to take such a decision it is necessary to analyze the available
languages from several points of view. On the one hand, there are practical
aspects to consider, like the availability of tools to use with each language. It
is also important to analyze the availability of documentation and support. In
short, these factors are important because they have a big impact on how efficient
are users of the languages.

On the other hand, languages should also be analyzed and compared with
respect to their inherent characteristics. However, finding the criteria for this
comparison is a complicated problem. In his dissertation, Bartosz Kiepuszewski
proposed the idea of using two complementing metrics to tackle this problem:
expressive power, and suitability [Kie03].

Expressive power

Expressive power refers to workflows that can, or cannot be modeled with a
given set of modeling constructs. It is an objective criterion, because it is possi-
ble to demonstrate whether some structure is supported or not6. For instance,
Kiepuszewski demonstrated that Standard Workflow Models have less expressive
power than free-choice Petri nets [Kie03].

Expressive power must not be confused with expressiveness. In the context
of programming languages, when a language ‘a’ is said to be more expressive
than language ‘b’, it usually means that it is more succinct or has less syntactic
sugar [Fel90]. Felleisen proposed a framework to formalize the measurement of
expressiveness in [Fel90], but still this measure is frequently evaluated in a sub-
jective and imprecise way. On the contrary, the measurement of expressive power
proposed by Kiepuszewski is not normally applied to general purpose program-
ming languages because these languages are usually universal [Fel90]; therefore,
comparing the sets of computable functions is frequently useless.

In the context of this dissertation, expressive power is relevant because it
allows to compare execution models with respect to the requirements of a certain
domain or of a workflow language.

Suitability

The second metric used by Kiepuszewski is suitability, and it complements expres-
sive power. Loosely speaking, the term suitability refers to how ‘straightforward’
or how ‘naturally’ a modeling problem is solved with a given language. Suitability
also refers to the match between available constructs in the modeling language
and the concepts in the application domain [Kie03]. Therefore, suitability is a
subjective notion, which depends not only on the workflow language but also on
the domain where it is applied.

In previous work, including Kiepuszewski’s, suitability has been ‘measured’
using various kinds of workflow patterns [vdAtHKB03, RtHvdAM06, RtHEvdA04,
RvtE05]. In these works, the evaluation usually involves an expert on the lan-
guage that models each proposed pattern. Afterwards, someone evaluates those

6Nevertheless, this demonstration is only possible if the the modeling constructs are formally
defined.
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models, judging them as suitable (+), somewhat suitable (+/-), or unsuitable
(-). This is done based on entirely subjective criteria, and has been a source of
debate. Nevertheless, this kind of evaluation has been applied to a large num-
ber of languages and standards (including BPEL, BPMN, XPDL, UML, EPCs
and YAWL [Word, vdAtHKB03, WvdADH03, WvdAD+06]), commercial systems
[Worb, vdAtHKB03, RtHvdAM06], and open source systems [Worc].

These evaluations are not necessarily fair. On the one hand, they evaluate
or compare the languages using abstract scenarios described in patterns. Thus,
the evaluation is limited only to very specific details and it is not possible to
extract conclusions about issues like the suitability with respect to composed
patterns. On the other hand, patterns’ definitions are usually informal, and thus
ambiguous and subject to interpretation. Because of this, it is not possible to
decide if two models built with different languages are really modeling the same
pattern. There have been a few attempts to formalize the control flow patterns
[WG07, PW05, GT08], but these formalizations have not been widely adopted.

In spite of these deficiencies, suitability is a valuable metric to aid in the selec-
tion of a workflow system. This is because suitability usually has a direct relation
with other important characteristics such as maintainability, understandability,
and usability.

2.3 Workflow modularization

Typically, workflow definitions are built monolithically. This means that every
workflow is specified in a single artifact that cannot be modularized. The only
widespread exception to this are sub-workflows, which represent fragments of a
bigger workflow. However, this mechanism is not powerful and general enough
to solve all the problems related to the lack of modularization techniques for
workflow definitions.

One of the issues associated with this situation is that workflow specifica-
tions are much larger than they would be if there were adequate modularization
mechanisms. This complicates the specifications and makes them harder to un-
derstand, analyze, and maintain [BVJ+06]. Furthermore, reusability is hindered,
as it is restricted to reusing entire sub-workflows [Jab94, CM06].

The lack of modularization mechanisms for workflows also introduces scatter-
ing and tangling problems [CM06, BVJ+06]. Every workflow definition involves
the description of multiple concerns of the represented process, which include
the activities to perform, the people involved, the produced and consumed data,
and also technical concerns such as distribution, data validation, and security.
Since the only available decomposition mechanism (sub-workflows) modularizes
the workflows according to the control flow, the other concerns are scattered
across the workflow definition, and tangled one to another. In consequence, it is
very difficult to analyze or modify only one concern in isolation, and it is also
complex to introduce new concerns into an existent workflow.

Finally, evolution and adaptation of workflows is another aspect where more
powerful modularization mechanisms are necessary. Currently, “workflow lan-
guages do not support a modular expression of changes as first-class entities”
[CM06]. Therefore, changes are unstructured, introduced ad hoc, and thus are
difficult to track or revert.

Only a handful of projects have tackled these issues and proposed alternatives
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to modularize workflow definitions. In the following sections we briefly introduce
those projects and the strategies they have followed. In the first place, we discuss
the identification and usage of perspectives on business processes, and then we
discuss the application of aspect-oriented concepts and techniques in the context
of workflows.

2.3.1 Business process perspectives

The literature on business process modeling has consistently identified some per-
spectives that can be used to analyze and model each process. These perspectives
can also be seen as dimensions that business process modelers should take into
account and use as reference, but traditionally they have had a more important
role in the documentation than in the actual implementation of the processes
[Jab94].

Below we describe the perspectives that appear more commonly in business
process literature. They can also be generalized to most workflows.

• Functional Perspective.

This perspective considers the goals and the actual activities (or tasks)
performed in a business process. In all the other perspectives, ‘tasks’ are
concepts that perform abstract or unknown actions. For instance, in the
functional perspective it is established if a task is manual and performed
by a user, or if it is automatic. In the first case, the perspective includes
all the information to establish what the user must do. In the second
case, the perspective includes all the information to execute the task, which
may involve transforming data, invoking other applications, or consuming
services.

• Behavioral Perspective.

This perspective considers the interdependencies and interrelationships be-
tween tasks in a process. A commonly used mechanism to establish these
interdependencies are control flows, that determine which activity can be
executed at each point. There are two basic types of control flows [Jab94].
The first type are prescriptive (or sequential) control flows, that establish
at each step which are the following tasks to execute. The second type are
descriptive control flows, which establish what must happen before each
task can be executed.

• Organizational Perspective.

This perspective describes the structure of the organization in which the
workflow is executed. This includes describing the characteristics or abil-
ities of the users involved, and also the characteristics of other resources
that can be used, such as machines. This perspective also describes rules
to assign tasks to users.

• Informational Perspective.

This perspective describes the information consumed and produced by a
workflow. This includes how documents flow between tasks (i.e. the data
flow) and also how tasks have dependencies based on the data they need.
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Workflow perspectives have been used to modularize workflow definitions in
a number of tools. MOBILE is one such tool [Jab94]. In MOBILE a workflow
specification is composed of several aspects7 that correspond to different work-
flow perspectives. In MOBILE, they have favored the four perspectives that were
previously discussed, but it is possible to add application-specific aspects when-
ever they are needed. A further important characteristic of MOBILE is that for
every perspective a different notation is used. In consequence, these notations
can be very suitable.

Besides extendibility, the other important capability offered by MOBILE is
reusability. This is supported with the MOBILE built time architecture [Jab94],
which uses a repository as a library to store reusable parts of a multitude of
workflow definitions. By offering this, the process of building a new workflow
definition becomes more similar to a configuration process.

The other part of MOBILE’s implementation is the run time architecture,
which consists of two main blocks. On the one hand, there is the MOBILE
Kernel, which interprets workflow definitions stored in the repository. On the
other hand, there are various servers, which provide the functionalities for the
different perspectives controlled by the MOBILE Kernel. Therefore, to support
a new perspective it is necessary to first implement an adequate server, and then
to configure it adequately so that the kernel can use it.

AMFIBIA is another proposal to achieve workflow modularization at the de-
sign and the execution level. Although AMFIBIA’s documentation uses the ter-
minology ‘aspect’ to refer to the parts of a workflow definition, their approach is
closer to MOBILE than to the aspect-oriented workflow systems that we describe
in the following section.

AMFIBIA is a metamodel that formalizes the essential aspects of business
process modeling using an approach based on modularization [KAR06]. There
are three main ideas behind the design of this approach. Firstly, AMFIBIA is
formalism independent, meaning that the proposed metamodel can be adapted
to many different formalisms. Furthermore, each aspect can have its own devoted
formalism or notation. Secondly, AMFIBIA proposes a set of basic aspects, but
it is not necessarily limited to those. New ones can be introduced as needed,
and AMFIBIA guarantees that there is no bias towards any particular aspect.
Finally, AMFIBIA does not aim to only describe simple relations or equivalences
between elements occurring in different perspectives. Instead, AMFIBIA also
captures the interactions between those elements, and uses that information to
ensure that the execution semantics of the workflow is complete.

These ideas are implemented in AMFIBIA using a core metamodel formed
with the elements that are common to all aspects. These elements are shown
in figure 2.7. In addition, for each aspect there is another metamodel, which
is formalism independent. The elements of those aspect specific metamodels
are related to the elements of the core metamodel. Finally, several formalism
dependent models can be related to every aspect specific metamodel.

The behavior of the elements in each aspect specific metamodel is determined
using automata that vary for each aspect. The elements in the core metamodel
have some basic automata, and the elements in the other metamodels are syn-
chronized using an event based mechanism. Because of this, new aspects can be

7In MOBILE literature, they use the term aspect, but it does not have the exact same
meaning as in AOP literature.
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Figure 2.7 The core of the AMFIBIA model [KAR06]

integrated without much problems.
The two discussed approaches, MOBILE and AMFIBIA, show the main ad-

vantages of modularizaring workflow definitions using workflow perspectives. In
the first place, the selected perspectives are usually well established and accepted
by the community. Therefore, the decomposition criteria are well understood by
most users, and the modularization is natural to them. Secondly, the two pre-
sented approaches are capable of managing perspective-specific languages. This
is an advantage from the point of view of the suitability of the languages. Nev-
ertheless, this can only work as long as the relations and interactions between
languages and between perspectives are clearly defined. Unfortunately, part of
the literature about workflows and workflow perspectives does not specify those
relationships clearly enough to implement them.

2.3.2 Aspect orientation in workflow systems

Aspect-oriented software development (AOSD) techniques have as goal a better
separation of concerns so that adding, modifying or removing such concerns has
a reduced impact on the rest of the system [BVJ+06]. Aspect-oriented workflow
systems propose to apply AOSD concepts and strategies in the workflow con-
text to solve the lack of modularization. These systems adapt and apply AOSD
concepts such as aspects, join points, pointcuts, and advices [CM06].

AO4BPEL is an aspect oriented extension to BPEL that serves to modularize
workflow definitions using a low level pointcut language based on XPath [CM06].
Using this language it is possible to locate the points in a workflow definition
where the advices have to be woven. Furthermore, these advices must also be
specified using BPEL.

Although AO4BPEL is based on BPEL, it is not compatible with standard
BPEL engines. AO4BPEL introduces a feature that most BPEL engines do
not support: dynamicity. Therefore, using AO4BPEL it is possible to introduce
changes into the process definitions even at run time. To do so, changes are en-
capsulated as concerns and they are dynamically woven to the original processes.

Padus is another aspect oriented extension to BPEL which also intents to
provide a better separation of concerns [BVJ+06]. There are many differences
between the approaches followed in Padus and AO4BPEL, and they have impor-
tant consequences on the offered features. In the first place, Padus uses a static
approach, where advices are statically woven to the main process. Since the result
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of this weaving process is a valid BPEL process, a standard BPEL engine can be
used. The downside of this is that Padus does not support dynamic adaptation
of the processes. On the other hand, the approach followed by Padus does not
introduce any performance overhead, while in AO4BPEL it is possible to have
performance problems related to the application of aspects.

Another important difference is due to the used pointcut languages. While
AO4BPEL uses a language based on XPath, Padus uses a very expressive logic
based programming language. In consequence, expressions are more easily read
and it is possible to construct high level composition primitives. There is also
a difference in the weaving strategies allowed. Besides the normal before, after,
and around, Padus also allows more complicated weaving strategies.

Finally, AspectViewpoint is a domain specific aspect language for workflow
models [Cor07]. It is based on model-driven engineering ideas, but it is mainly
targeted at BPMN. With respect to the previously discussed approaches, the
main difference of AspectViewpoint is to support the definition of viewpoints
using control flow patterns [vdAtHKB03, RtHvdAM06].

With respect to the usage of perspectives for modularization, applying aspect
oriented techniques into workflows has one main advantage. This advantage is
an increased flexibility, because concerns can be freely selected or designed for
each particular application. Therefore, more specific concerns, such as billing,
can be selected. On the other hand, these approaches also have some important
limitations. First of all, there is the fact that every concern has to be specified
with the same language. In AO4BPEL and Padus this language is BPEL, while
in AspectViewpoint it is BPMN. From the point of view of suitability this is
not desirable, because these languages may not be adequate for other concerns.
This is also related to the second limitation of those approaches, which is the
asymmetric composition. As a consequence of this, the language used in those
approaches is that of the central concern, i.e. the control flow.

2.4 Workflow kernels and intermediate languages

The goal of this section is to describe the most relevant characteristics of a number
of systems that can be used as a base to build workflow engines. The systems
described in this section were selected because they show the wide spectrum of
strategies that have been applied to this end. The main characteristic shared by
all these systems is that they offer support for the basic workflow functionalities.
Thanks to this, they alleviate developers from re-implementing those. For the
rest, they all have different goals and offer different architectures.

One criteria that differentiates these systems is how they are used in a soft-
ware solution. Some of them, are intended to be used as the central element of
workflow management systems. Instead, others are intended to be integrated into
applications where workflow functionalities are needed, but are not the central
requirement.

Another difference between these approaches is how they allow the interaction
with other applications. In some cases, they offer object oriented APIs. In others,
the interaction requires the usage of an intermediate workflow language or can
also happen through data stored in a database.

The rest of the section is structured as follows. First, a few systems based
on intermediate workflow languages and models is presented. Then, the main
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characteristics of Opera, a system based on databases is presented. Section 2.4.3
presents the main characteristics of two object oriented workflow kernels, namely
Micro-Workflow and Lewfe. Finally, section 2.4.4 presents JOpera and discusses
its usage of ECA rules and code generation.

2.4.1 Intermediate workflow languages and models

Intermediate languages and models are base formalisms used to support other
higher level formalisms. The general idea is to only implement what is needed
to support the execution of these base models, and to transform higher level
languages into them. This is very similar to the strategy that we previously
discussed to execute BPMN specifications on top of BPEL engines.

Intermediate languages take different forms, but they share two main charac-
teristics. On the one hand, they cannot be too specific, or the high level languages
supported would be severely limited. On the other hand, they need to have a high
expressive power to support the execution semantics of the high level languages.

This leads to two main issues of intermediate languages [FCS04]. The first
one is knowing if the formalisms selected are expressive enough to support the
high level languages. The second one, is having enough flexibility to adapt those
formalisms to new requirements. Unfortunately, these two questions depend on
unknown requirements and cannot be answered with precision.

“Workflow Kernel” and “Workflow Virtual Machine”

Ferreira and Pinto Ferreira proposed in [FF04] an architecture to build workflow
engines that use an intermediate model based on Petri nets. Their work was
mainly motivated by the frequent need to redevelop common workflow function-
ality because of a poor support for reusability, and their proposal was a reusable
and embeddable system that abstracts common workflow functionalities. They
call this system the “Workflow Kernel”, and it prevents the repeated implemen-
tation of general workflow features.

The central element of their Workflow Kernel proposal is a model based on
Petri nets that is extended with the concepts of actions and events: an action is
something that has to be executed when a token is received in a specific node; an
event is something that triggers a transition (see figure 2.8). They selected Petri
nets because they are regarded as capable of making the Kernel independent
of the workflow language, and because of their formal semantics that make it
possible to do process analysis and verification [FF04].

In this extended Petri nets model, all workflow tasks are regarded as arbitrary
actions, which emit events to signal task completion, failure or timeout. Further-
more, these events trigger transitions in the Petri net, and thus they make the
process execution proceed.

An extended version of this event based mechanism is used to augment the
functionalities of the basic workflow engine that is at the base of the Workflow
Kernel. For this, they defined some additional events that can be produced, and
defined an interface (INotifySink) that must be implemented by any element
that wants to interact with the workflow engine. The additional events include
changes to the nets, changes to elements’ attributes, triggering of actions, and
the generation of action-specific events. Figure 2.9 shows a Workflow Engine that
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Figure 2.8 Actions and Events associated to places and transitions [FF04]

interacts with three external applications that expose the INotifySink interface,
and receive events about a state change in the engine.

Figure 2.9 Extension to the functionalities of the workflow engine [FF04]

The proposal of Fernandes, Cachopo and Silva also uses a kind of intermediate
language, but it has several differences with the aforementioned Workflow Kernel
[FCS04]. In particular, the main motivation for their proposal is to cope with
evolution and with the constant changes of workflow languages.

The core of their approach is a system that supports the execution of work-
flows defined with a backend language. This system is called the Workflow Virtual
Machine, and it is complemented by a layer that transforms frontend languages
into the backend language. The idea behind this separation is that frontend lan-
guages should be user-friendly and very suitable, and also that they may change
frequently. On the other hand, the backend language is expected to remain largely
unchanged and be able to support the execution of many frontend languages.

Besides proposing the general architecture for implementing this approach,
Fernandes et al. also proposed a backend language. This language is a sim-
ple model that is capable of handling both control and data flow. To support
concurrency, it also includes elements such as splits and joins.
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These two proposals, the Workflow Kernel and the Workflow Virtual Machine,
share the same problems: it is difficult to guarantee the expressive power of the
intermediate language, and guarantee that it is going to support the high level
/ frontend languages. Furthermore, in the case of the Workflow Kernel, the
intermediate language cannot be easily adapted to new requirements, although
it is based on simple concepts that should be applicable to a large number of
contexts.

Process Virtual Machine

The Process Virtual Machine (PVM) is an initiative of JBoss to build a reusable
workflow kernel that can support various workflow languages, and which can be
integrated into other applications [BV07].

There are four important characteristics behind the PVM design:

• Flexibility: the PVM should improve the collaboration between analyst
and developers. This means that it should offer the flexibility necessary to
implement very quickly all the changes to workflows required by analysts.

• Extensibility: the PVM should support multiple workflow definition lan-
guages, and it must be possible to extend the syntax and the semantics of
such languages.

• Embeddability: the PVM is expected to be integrated into other appli-
cations. Therefore, it should offer the necessary mechanisms to integrate
this system, control the workflows, and obtain information about their ex-
ecution.

• Plugability: the PVM should allow the integration of configurable services
that implement complementing functionalities. Some of these functionali-
ties include persistence, transaction management, and testing facilities.

The PVM originated from the JBoss jBPM platform, and thus its execution
model is almost the same model originally designed for jBPM. This model is sim-
ilar to Petri nets in the usage of tokens, but it can also handle hierarchical tokens.
However, this execution model lacks a formal specification of its semantics. Fur-
thermore, the whole model has dependencies to Java and has some parts defined
in terms of Java interfaces. Because of its origin, the PVM originally supported
only jPDL (jBPM Process Definition Language). Moreover, support for BPEL
was recently added, and more languages are expected to follow [OW208].

Mentor and Mentor-Lite

The Mentor project aimed at supporting an enterprise-wide workflow manage-
ment platform involving both heterogeneous and distributed information sys-
tems [WWWKD96]. More in detail, its central goal was to develop a scalable
and highly available environment for the execution and monitoring of workflows.
They achieved this by proposing a solution based on an intermediate workflow
language.

In Mentor, the formalisms to define workflow definitions include state and
activity charts. These were selected because they are reportedly “perceived by
practitioners as more intuitive and easier to learn than Petri nets yet they have
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an equally rigorous semantics” [WWWKD96]. On top of this formalism they
were able to implement a system to verify workflow definitions using animation
and simulations.

The Mentor executed environment is based on a distributed client-server ar-
chitecture where a Corba-style object request broker is used to invoke application
programs. In addition to the workflow engine itself, which executes the state and
activity charts, the architecture of Mentor also includes a number of other com-
ponents. These additional elements are necessary to provide additional workflow
functionalities such as managing the list of tasks assigned to users, keeping log
files with a registry of relevant events, and monitoring the execution of the pro-
cesses.

Because of all these additional components, the Mentor architecture was re-
garded as heavy-weight and not suitable for every application. In response to
this, the same working team developed a second version and called it Mentor-Lite.
Mentor-Lite is a light-weight and tailorable architecture for executing workflows.
This architecture is based on a small system kernel based on Mentor. However,
this architecture supports extensions that implement additional workflow func-
tionalities. The central difference is that in Mentor-lite these extensions are im-
plemented as workflows. For instance, worklist management and history manage-
ment have been implemented following this approach [WWWKD96, MWGW99].

2.4.2 Database based

The previously presented approaches employ reusable execution models that de-
fine both a way to represent run time state, and to progressively update that
state. Other workflow systems have achieved similar results through the usage of
database management systems. In these systems, the run time state of workflows
is stored in databases, and the workflow engine updates that state according to
the language semantics. The YAWL System’s implementation is an example of
this approach: it stores the state of cases in a database, and updates this state
following the semantics defined for the YAWL language. Alternatively, some
database based approaches rely entirely on mechanisms provided by the DBMS
(e.g. triggers and stored procedures) to update the state of run time workflows,
i.e. the engine is implemented in the DBMS.

The YAWL system that was previously mentioned can only be used to enact
workflow definitions prepared using the YAWL language. We will now describe
a database based workflow system that can be used with different high level
modeling languages.

OPERA

OPERA is a basic kernel for supporting distributed workflow execution indepen-
dently of the workflow language [AHST97b, AHST97a]. This kernel also shows
that database technology can have a central role in supporting workflow func-
tionality. Furthermore, OPERA focuses on some aspects of workflow execution
that are not normally considered in detail, such as atomicity, persistency, and
transactionality.

Two defining aspects of OPERA are the usage of database technology, and
the usage of the OCR (OPERA Canonical Representation). These two aspects
are discussed next.
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Figure 2.10 System architecture of OPERA [AHST97b]

The system architecture of OPERA can be divided in three parts as shown
in figure 2.10. The first layer encompasses the Interface Services that allows the
interaction between OPERA and other systems and services in several different
platforms.

The second layer contains the components required for coordinating and moni-
toring the execution of processes. In particular, one of these components interacts
with the data spaces of the third layer, one interacts with external objects, and
one serves to query the status of the processes.

Finally, the third layer contains the actual repositories where data about
processes is stored. This layer includes an internal abstraction layer that makes
the rest of the system independent of the concrete database systems used. For
example, this abstraction layer makes it possible to use an object store instead
of a relational database.

The characteristics that set OPERA apart from other systems are mainly lo-
cated in this third layer. For instance, the high availability and scalability sought
by OPERA depends on the capabilities of the DBMSs used. Similarly, distributed
workflow execution is achieved by leveraging the distribution characteristics of
the DBMSs.

On the other hand, the responsibility of ensuring the transactional aspects
of OPERA are shared between the process services and the database services.
In the first place, OPERA relies on the transactional properties provided by
the database systems used (i.e. atomicity, isolation, and durability). However,
ensuring these properties also requires the active involvement of workflow specific
services such as the Navigator, which acts as the overall scheduler, and enforces
transactional aspects of the execution.

Figure 2.11 shows how OPERA was made independent of the workflow lan-
guages (application modeling languages). Instead of directly supporting each
concrete language, OPERA defines and supports OCR (Opera Canonical Repre-
sentation), a generic process model that plays the role of an intermediate model.
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Figure 2.11 The different language representations in OPERA. Adapted from [AHST97b]

As such, OCR defines the concepts that can be managed (processes, activities,
subprocesses, loops, forks, and others), their semantics, and a way of describing
the models and storing their run time state. To be compatible with the rest of
the approach, this canonical representation can be easily mapped to a relational
database. On the other hand, the semantics of OCR models is similar to that
of ECA rules (described in sections 2.2.2 and 2.4.4). This semantics is based
on guards attached to tasks, activation conditions, and input and output data
structures that describe and store the parameters and results of tasks.

2.4.3 Object oriented kernels

Another approach employed to support the development of workflow engines is
the application of object oriented techniques. In these approaches, it becomes
difficult to separate the implementation of the engine from the implementation
of the language. Therefore, supporting several languages is more difficult than in
approaches based on transformations to intermediate languages.

Among the approaches discussed in this section, the object oriented approach
is the closest to the work presented in this dissertation. We will now present two
very powerful object oriented kernels.

Micro-workflow

Micro-workflow is a kernel for software developers to introduce workflow func-
tionality into object oriented applications [Man01]. Micro-workflow offers a
lightweight architecture that enables these developers to select and adapt only
the features that they need in their applications.

Micro-workflow is specifically intended to be used in object oriented applica-
tions. Because of this, it “applies techniques typical of object systems to solve
workflow management problems. Consequently, it reduces the impedance mis-
match between the provider of workflow functionality and application objects”
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[Man01]. These techniques mainly refer to inheritance, extension, composition,
and reusability.

The base of Micro-workflow is a set of workflow elements that implement basic
control flow functionalities. In order to have domain specific behavior and struc-
tures, developers have to extend this base metamodel with their own specialized
elements.

On the other hand, complementing workflow functionalities are implemented
as components that interact with the control-flow core. Thus, developers can
add new features by building more of those components. Also, they can tailor
existing components if the features provided need to be adapted.

This approach provides two additional benefits. On the one hand, developers
can choose only the features that they really need in their applications. On the
other hand, these features are clearly isolated in components. Thus, they are
easier to localize when they have to be maintained or removed.

Finally, we should mention two important limitations of the Micro-workflow
architecture, with respect to other approaches discussed. The first one is that
programming skills are necessary even to create the equivalent to workflow spec-
ifications. The second limitation is that Micro-workflow does not support high
level standards such as BPMN or BPEL. Therefore, Micro-workflow is specifically
targeted towards software developers.

Lewfe

Lewfe [Pér09] is an extensible workflow language and a lightweight engine, which
can also be categorized as an object oriented kernel. Lewfe offers an open imple-
mentation of a workflow language, and enables the manipulation of the internals
of the system. Furthermore, Lewfe is implemented on top of Cobro, a concept
centric environment implemented in Smalltalk [Der06]. Because of this, Lewfe
offers:

• A malleable implementation of the workflow languages, which can be mod-
ified at different points in time, including run time.

• An environment where domain knowledge appearing in the workflow lan-
guage is reified in the application.

The metamodel of the Lewfe language is depicted in figure 2.12. This meta-
model was adapted from [Man01] and it captures the elements necessary to man-
age sequences of activities, conditional and repeated paths, and also concurrency
and synchronization of multiple control flows. Nevertheless, this language can be
modified as necessary by modifying the metamodel or modifying the code of its
elements.

Just as Micro-workflow, Lewfe also shows a merge between the implemen-
tation of the language and of the workflow engine. Because of this, most of
the implementation of the engine is part of the implementation of the language.
The Cumbia platform is similar to a certain degree, but the Cumbia Kernel and
the Open Objects’ framework on it offer several important functionalities that
are reused in every element (e.g. coordination and synchronization). On the
other hand, since Cumbia is implemented on top of Java, it lacks some of the
dynamicity and flexibility provided by Cobro and Smalltalk.
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Figure 2.12 Workflow metamodel implemented in Lewfe [Pér09]

2.4.4 ECA Rules

To conclude this section we describe a system based on ECA rules called JOpera.
As it was shown in section 2.2.2, ECA rules can be used to describe the semantics
of a workflow language. In the case of JOpera, ECA rules are an intermediate
step of the complete procedure to execute a workflow.

In reality, JOpera should not be considered a workflow kernel, because it
only attempts to support one high-level or frontend language. Nevertheless, the
approach that they use to execute the workflows has characteristics that make it
worth presenting in this section. Furthermore, this approach could be adapted
and used with other languages.

JOpera

JOpera is a visual composition language that provides a graphical notation to
model workflows [Pau04, Pau09]. Originally, JOpera was intended to offer a
visual extension to OPERA and to the OCR. However, the project evolved and
it became an independent system that can use OCR as well as other execution
environments such as BPEL or Java.

A workflow definition in JOpera is composed of three parts:

• A control flow graph that describes the control dependencies between the
tasks of a process.

• A data flow graph that describes how data is transferred and transformed
to be used in tasks.

• The description of the components that implement tasks’ behavior, or the
description of the services that are consumed.

In order to execute these specifications, JOpera performs two rounds of trans-
formations. In the first one, the control and data flow are respectively converted
into a set of ECA rules, and into a schedule of data transfers. This step also
performs some verifications on the workflow definition, and can uncover incon-
sistencies.

In the second round of transformations, these elements are compiled into
executable code. In his dissertation, Pautasso shows the mapping to convert
JOpera specifications into OCR code, BPEL code, or Java code [Pau04].
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Because of the double compilation step, the approach that JOpera follows
is more complex than some of the other approaches discussed in this chapter.
Moreover, JOpera also has two useful characteristics. The first one is that mul-
tiple executable models can be supported as long as a mapping can be found
from the intermediate representation to the executable one. This characteristic
can be used to select different execution environments depending on particular
non-functional requirements. For instance, if transactionality is an important
issue, OCR can be selected over BPEL.

On the other hand, the JOpera architecture can also be used to support other
workflow definition languages. For this, it is necessary to find a mapping from
the frontend languages into the intermediate representation. Since ECA rules
have a high expressive power, many such languages are likely to be supported.

2.5 Development of engines for new languages

Based on the information presented in this chapter, we can now revisit the chal-
lenges identified in section 1.2.1. In the following chapter we will present the
elements of the solution that we propose.

Limited extensibility and adaptability of engines and languages

The workflow specification languages presented in section 2.2.1 are a representa-
tive part of the spectrum of available languages. However, none of these languages
includes powerful flexibility capabilities. BPMN and WS-BPEL offer a few ex-
tensibility points which are insufficient for complex requirements. One evidence
of this is Sedna. It relies on WS-BPEL for its execution, but extends the lan-
guage using different mechanisms than those offered in the specification. Those
mechanisms are insufficient to support the extensions required in the language.
Because of this, implementing Sedna required a larger effort compared to the
effort required to implement a normal extension (e.g. BPEL4PEOPLE). With
respect to this, YAWL and IMS-LD are also fairly limited, as the only flexibility
points are the activities automatically executed or performed by users.

A further factor that limits the flexibility of these languages is the lack of mod-
ularization mechanisms. The tools presented in section 2.3 are more an exception
than a rule, and they can be used only with a few languages. Nevertheless, it
is important to note that some of those modularization approaches (MOBILE
and AMFIBIA) explicitly state as a goal to support several notations. From the
point of view of language flexibility, this is very important because it opens up
the possibility of changing the languages as needed (at least their notations).

The limitations to extensibility and adaptability are not exclusive to the lan-
guages. Most of the engines and kernels that we have discussed also present
important limitations. We believe that behind most of those limitations are the
difficulties to modify the execution models. Among the kernels presented in this
chapter, the more flexible ones are those where the execution model can be more
freely modified, namely Micro-workflow, Lewfe, and, to a certain degree, the
PVM. The key element for having this flexibility is allowing the usage of general
purpose languages to define the execution models. On the other hand, there are
kernels where the languages supported can vary but where the execution model
is fixed (e.g. OPERA, Mentor, etc.). When those kernels are used, the biggest
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risk faced by language developers is that eventual changes to the languages may
be impossible to support on the prescribed execution models.

Finally, it should be considered that most workflow engines are not developed
on top of workflow kernels, but are instead built from scratch. Because of this,
even the few flexibility capabilities offered by these kernels are not available to
most engines.

Misalignment between high level model information and low level run
time information

The workflow kernels presented in this chapter can be categorized in two broad
groups. The first group contains kernels that use an intermediate workflow lan-
guage or model. The second group contains the kernels where the modeling
language used by workflow designers is directly executed.

The kernels of the first group are those where it is more likely to have a
misalignment between the workflow definitions and the models that are effectively
executed. On the one hand, this misalignment makes it difficult to map the
elements of the high level models into elements of the execution model. On the
other hand, this misalignment also makes it difficult to map the run time state of
the execution model, into the high level model. A concrete consequence of this
is an increase in the complexity of the tools associated to engines based on those
kernels. This complexity is a consequence of considering those mappings. For
example, a tool that monitors OPERA processes and shows the run time state
to domain experts, has to be aware of at least the high level models, the OCR
representations, and the mapping between them.

The second group of kernels, which is solely composed by Micro-workflow and
Lewfe, does not have to manage that additional complexity. Their main drawback
is offering a relatively low level approach. In the case of Lewfe, Cobro contributes
to solving this issue. In the case of Micro-workflow, it is explicitly stated that
high-level standards are not intended to be supported in the approach.

Limited support for developing new engines

In this chapter we have presented a number of workflow kernels that can be used
to develop new workflow engines. Unfortunately, these kernels suffer from the
two restrictions identified in section 1.2.1.

1. Prescribed execution models

Most kernels support a single type of execution model that cannot be mod-
ified. The ‘Workflow Kernel’ of Ferreira and Pinto Ferreira is a good exam-
ple of this, as all their approach is built on top of that particular execution
model. As it was said above, the limited expressive power of any model
creates the risk of encountering languages that cannot be supported.

2. Fixed intermediate workflow languages

On the other hand, several of the kernels discussed support only one inter-
mediate workflow language, and require high level languages to be converted
into that language. These intermediate languages are usually low level, and
thus have low suitability. Once again, the main issues of this are related
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to the expressive power of the languages, and to the additional complex-
ity introduced into the tools. On top of that, there is the aforementioned
problem of the lack of flexibility, which limits the capacity of those kernels
to change and support languages that were not initially supported. Of the
presented approaches, only the ‘Workflow Virtual Machine’ of Fernandes et
al., and the PVM offer some kind of flexibility regarding the intermediate
language.

These two restrictions of currently available workflow kernels are an important
limitation to their applicability. However, these restrictions present their worst
effects when languages evolve. Therefore, when initially selecting one of those
kernels, a careful analysis of evolution requirements in the languages and in the
domain has to be made.

Engines are coupled to languages

In this chapter we presented five different workflow languages that have different
levels of tool support: for BPMN and WS-BPEL there are many workflow engines
and tools available; for YAWL there is only one workflow engine; for Sedna there
is no workflow engine, as it is transformed into WS-BPEL to be executed; and
for IMS-LD there are a few engines that support subsets of the specification. In
the majority of cases, the engines are specifically designed for those languages
and they cannot be modified to support other languages. The only exceptions
are engines built on top of a workflow kernel (e.g. a WS-BPEL engine built using
the PVM).

In this respect, it must be said that engines designed for a specific language
usually offer more powerful non functional requirements. One reason for this,
may be that those engines are more mature, and are developed by better sup-
ported groups. Another possible reason is that those requirements are specific to
the languages and are difficult to adapt to other languages. Nevertheless, some
kernels also provide mechanisms to implement similar non functional require-
ments, e.g. OPERA and Micro-workflow. All this is also related to the following
consideration about the tool chains associated to the engines.

Tool chains are not portable between languages

The final challenge identified in section 1.2.1 was related to the need of re-
developing entire tool chains for each new workflow language to be supported.
In this chapter we have shown two aspects of this.

The first aspect is that workflow engines for existing languages already pro-
vide mature tool chains. However, these tools are usually tightly coupled to the
languages and to the engines, and thus they are very difficult to adapt. The
workflow reference model tried to reduce this problem by introducing standard
interfaces, but they have not been widely adopted. In the case of WS-BPEL, the
specification of the language also defines some interfaces that WS-BPEL engines
must implement. However, these interfaces are usually complemented by vendor
specific interfaces that offer more powerful services.

The second aspect shown is that workflow kernels can be leveraged to reuse
a tool chain across a number of workflow languages. For instance, all the engines
developed on top of the OPERA kernel can share the same tools, although they
all rely on the OCR intermediate language.



54 2.5. Development of engines for new languages



3
Executable Models in a Workflow Kernel

The goal of this dissertation is to offer the means for developing workflow en-
gines for extensible workflow languages with less effort than with state-of-the-art
techniques. From a technical point of view, we propose a strategy based on us-
ing a metamodeling platform to define executable models, and using a kernel to
execute multiple models in coordination. This strategy is based on a notion that
we call open objects. From a methodological point of view, the strategy is to use
concern specific workflow languages.

Cumbia is the concrete platform that implements this strategy. Cumbia’s
main constituents include a metamodeling platform to describe workflow lan-
guage metamodels; a development framework to implement the elements of these
metamodels; and an execution kernel to run executable models based on the open
objects associated to these elements.

This chapter introduces the aforementioned constituents, and focuses on how
each contributes to solving the problems previously identified. Subsequent chap-
ters discuss those elements in more detail.

This chapter has the following structure. Section 3.1 shows how a metamod-
eling platform that uses executable models can be a base to implement workflow
engines. Section 3.2 focuses on the execution kernel and discusses the role it has
in the solution. In section 3.3, we discuss the idea of using concern specific work-
flow languages. Then, section 3.4 briefly presents the technique to coordinate the
concern specific workflow languages, and shows what this implies in terms of the
architecture of our solution. Section 3.5 introduces open objects and explains
how they serve to implement the rest of the approach. Finally, section 3.6 intro-
duces the Cumbia platform, which is a concrete implementation of the strategy
presented in the previous sections.

3.1 A metamodeling platform for executable workflow
models

The focus of this section are the main characteristics of our metamodeling plat-
form, and the reasons to include them in our approach. This section starts by
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presenting some commonalities about metamodeling platforms and their appli-
cation to the workflow context. Then, we describe the main properties of the
metamodeling platform that we developed. The section is concluded with a dis-
cussion about the benefits provided by this specific platform.

Metamodeling platforms

Ametamodeling platform is a modeling environment where the modeling language
is specified with a metamodel that is open for adaptation. In a metamodeling
platform, the modeling language, or modeling formalism, is not restricted to a
standardized or predefined language. Instead, different languages can be defined,
and each one can use the elements and constructs most adequate for the problems
under consideration [KK02]. For example, in a metamodeling platform it is
possible to build languages whose elements and structures closely reflect the
structure of specific domains. There can even be a one-to-one mapping between
elements of the domain and elements in the language. As a result, domain experts
can use these languages very effectively, because they can relate their constructs
to the domain knowledge that they posses.

In a metamodeling platform, metamodels are used to specify the abstract
syntax and the semantics of the desired modeling languages. These are defined
in a structured set of metaclasses, where each metaclass represents a modeling
entity in the language and has an internal, encapsulated state [GKP98]. These
metaclasses, and the relationships between them, define the abstract syntax of
the language. On top of that, metaclasses also need to have semantics, which
define the behavior of specifications created with the modeling language. Se-
mantics can be described for each metaclass and be included in the metamodel
definition, or it can be provided by external interpreters that run the models, or
it can be defined in transformations. Finally, the concrete syntax of the model-
ing languages is also considered in a number of metamodeling platforms. This
aspect falls outside the scope of this dissertation, and it is not addressed in our
metamodeling platform. Instead, our platofm uses a common notation for all the
languages that it supports.

A metamodeling platform for workflows

Our strategy to support the development of extensible workflow engines uses a
metamodeling platform and relates metamodeling concepts to workflow concepts
(see figure 3.1). On the top of the figure, there are metamodel definitions with are
used to represent workflow specification language (e.g. BPMN or YAWL). Then,
models conformant to those metamodels are used to represent workflow defini-
tions (e.g. claim filling process, e-learning process for training ‘6042’). Finally,
there are model instances, which correspond to cases in the workflow context
(e.g. claim 1798 for client John Smith). Those instances are run time versions of
the models.

Something to consider with respect to the platform is the process to select
the elements that have to be part of a metamodel. We have to remember that we
want to support workflow languages used by domain experts, and that we want
to have domain concepts appearing at every stage of the life cycle of a workflow
definition. Therefore, the elements selected to appear in a metamodel need to
have a direct mapping to elements in the domain under consideration [KK02].



Executable Models in a Workflow Kernel 57

Figure 3.1 A metamodeling platform and the workflow context

To facilitate the following steps in the design of the metamodel, and to improve
the extensibility and evolvability of both the metamodel and the language, the
selected modeling entities (the language constructs) should have distinguishable
semantics with respect to other entities [Cle07b]. This means that we will favor
the identification of elements that have relevant behavior over elements that only
have a structural role or only hold data.

A related aspect to consider are the means to define the semantics of workflow
language elements. In some metamodeling platforms, the semantics of modeling
languages are defined in a translational way [Cle07b]. This means that the se-
mantics are defined by translations to different languages with known semantics.
For instance, the precise semantics of BPMN depend on a mapping to BPEL
that is described in its specification [Obj08]. Another example is UML, whose
semantics is ambiguous until a specific translation to a programming language is
defined.

As shown in chapter 2, existing workflow kernels rely on some underlying
intermediate languages or execution models. Therefore, to be supported in a
kernel, the workflow language needs to be aligned with the execution model of the
kernel. This is a strong constraint that we wanted to avoid in our metamodeling
platform.

Another consideration related to the specification of the semantics is the level
of formality used. In many cases, semantics are only defined informally, using
textual documentation. In other cases, more formal languages have been used
to ensure that ambiguities and subjective interpretations are not possible. This
is the case of Executable UML, which uses SMALL, TALL or the BridgePoint
Action Language [MB02]. Other approaches have used formal mechanisms to de-
fine not only the semantics but also the structure of the modeling languages. For
instance, Geisler et al. [GKP98] used Object-Z [DRS94] as a metalanguage to for-
mally define the semantics of their metamodels. We later show that the semantics
of our workflow modeling languages are specified for the most part with infor-
mal mechanisms. Nevertheless, the approach we utilize supports the majority
of the concepts that a metalanguage has to support, according to [GKP98]: the
concepts supported are Objects, Object Identity, Object Behavior, Classes, Com-
positionality, Inheritance, and Polymorphism; the only concept not supported are
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Constraints. We analyze this further in section 3.5.
Our metamodeling platform is also characterized by making the definition of

the semantics part of the metamodel definitions themselves. In particular, the
definition of each metaclass in a metamodel includes the definition of its execu-
tion semantics (its object behavior). This definition includes two facets. The first
one defines how instances of the metaclass should change their internal state in
response to external stimuli, and how they should interact with elements external
to the models. In the context of workflow specification languages, these exter-
nal elements include, for example, other applications, data sources, or remote
services. The second facet in the definition of a metaclass execution semantics
determines how instances of the metaclass should interact with other elements in
the same model instance (its interaction behavior). In our metamodeling platform
we have kept these two facets as separated as possible. This is consistent with the
localization principle, which dictates that each metaentity should have its own
meaning as independent as possible form other metaentities [GKP98, Öve98].
Furthermore, keeping the internal object behavior oblivious of the interaction
behavior contributes to lowering the coupling between language constructs, and
to improving the flexibility of the metamodel [Cle07b].

A final distinguishing feature of the metamodeling platform is the explicit set
of extension mechanisms provided [SJVD09]. These mechanisms can be used in
two ways. Firstly, they can be used to define a new metaclass as an extension
to an existing metaclass in the metamodel. Secondly, new metamodels can be
defined as extensions to existing metamodels. In such cases, the new metamodels
reuse the metaclasses included in the base ones, and specify new metaclasses,
or extensions to the existing ones. In the rest of the chapter, and in the rest
of the dissertation, we provide more information about how these features are
supported.

Benefits of the metamodeling platform

Now we analyze the main benefits of using our metamodeling platform to support
the development of workflow engines. The first benefit is related to having an
almost one-to-one mapping between elements in the languages and elements in
their implementations (the metamodels). Using the terminology of Cleenewerck
[Cle07b], this means that the decomposition of language constructs is preserved in
the language implementations. This contributes to improving the maintainability,
extensibility, and evolvability of languages and their implementations, because
they can co-evolve in sync and in terms of the same changing elements [Cle07b].

Another benefit of our metamodeling platform is to be able to define and
support different workflow specification languages without the limitations found
in other workflow kernels. Since the platform uses a generic execution model that
is not tied to a particular workflow language or workflow execution model, the
semantics of the languages supported in this platform are not limited.

From the point of view of the semantics of the languages, the platform also
offers various benefits. In the first place, there are benefits related to the decision
of making the semantics part of the metamodel definitions, instead of establish-
ing it in additional components. For instance, in other metamodeling platforms
the semantics of the languages are implemented with transformations that com-
plement the metamodels. This is something useful in some contexts, such as
MDA[Obj10], where a single model targets multiple platforms with different op-
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erational semantics. However, this strategy has drawbacks from the point of view
of the flexibility and extensibility of the languages. This is due to the fact that to
change the languages it is necessary to change both the transformations and the
metamodels which may be structured in very different ways. On the contrary,
if semantics are established directly in the metamodel definitions, then changes
and extensions to the languages are easier to support. This makes it also possi-
ble to have a kernel that can be configured using only a metamodel definition.
Also, since this kernel does not depend on any specific metamodel, extensions
and changes to the metamodels do not affect its capacity to run the models.

In this section we have given an overview of the most prominent characteris-
tics of our metamodeling platform and of the benefits that it intends to provide
for the development of workflow engines. In the following sections we elaborate
on these characteristics by showing how the models produced with the platform
are executed in an execution kernel, and by showing how metamodels are imple-
mented on top of open objects.

3.2 The role of a configurable kernel

The metamodeling platform that we just described can be used to specify the ab-
stract syntax and the semantics of workflow languages. Using those metamodels
it is possible to build executable models, which are run in a component called the
execution kernel. The main responsibility of this component is to execute model
definitions, but it also implements some related functionalities, such as managing
persistence.

To enact a workflow definition (e.g. a claim filling process), an instance of
the workflow is first created (e.g. claim 1798 for client John Smith). Then, the
execution kernel successively updates the run time state of the instance, following
the semantics of the language, until a final state is reached. In the meantime,
additional tasks such as the following are performed: loading, transforming, and
storing data; interacting with other applications; or reacting to external stim-
uli. To do all of this, the kernel assumes the basic functions of a workflow en-
gine, which include i) creating and maintaining instances (cases) of the workflow
definitions; ii) controlling the execution of the instances; iii) offering adequate
interfaces to navigate workflow instances and their activities; iv) and offering
interfaces to supervise and manage the instances [Coa99].

The previously described requirements can only be achieved if there is a kernel
capable of interpreting the workflow definitions, which means that it has to be
aware of the semantics of the language used to describe them. This is done by
first instantiating the kernel and then configuring it with the metamodel that
corresponds to the workflow specification language. This step makes it possible,
in that particular instance of the kernel, to load workflow definitions, and to create
and enact instances (cases). Note that a particular kernel instance can only be
configured with one language at a time. As we will discuss later, supporting the
execution of a workflow that involves multiple languages, is done by a kind of
orchestration between different kernel instances.

In many workflow engines, the high level concepts appearing in a workflow
specification languages are not available at run time. This is caused by the fact
that in those engines high level workflow definitions are converted into low level
representations, thus complicating activities such as monitoring or debugging. To
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solve these problems, traceability information that relates high level information
with low level, run time information is frequently introduced. However, this also
introduces additional complexity into the system because the workflow engine
has to create this information and maintain it updated. On the other hand, the
tools that depend on this information, such as monitoring applications, may have
to correlate low level run time information with traceability information and with
high level workflow definitions. Conversely, our configurable kernel always uses
the elements defined in the metamodels. Therefore, no traceability information is
necessary to relate the elements in a workflow definition to the elements present,
at run time, in a model instances.

A second important point about the kernel are the additional workflow-related
functionalities that it provides. These include persisting workflow definitions
and the state of the run time models; doing basic conformance verifications;
and mediating in the interaction with external applications. This is a subset of
the functionalities commonly required in workflow engines, and the idea is that
additional ones can be integrated as they become necessary. By offering them as
part of the platform, less effort is required to support new languages. This is also
an advantage with respect to current workflow kernels and engines because those
functionalities are part of the kernel and are not entangled with the language
implementations. It should be noted that the implementation of each of the
functionalities included in the kernel is relatively simple; however, more complex
implementations of these, and additional functionalities can be integrated at a
later stage. As an example, one can consider persistence. The implementation
currently included in the kernel only operates at the model level and can load
and save the state of full run time models. If a finer granularity is required, for
instance to persist sections of the run time models, the design of the kernel makes
it possible to replace only the elements related to persistence functionalities, and
put in place others that implement the finer granularity functionalities. This
replacement is expected to be totally independent of the implementation of the
languages’ semantics.

Finally, the kernel has the additional responsibility of exposing interfaces to
observe the execution and the state of the elements in a workflow instance. These
interfaces are also necessary to allow the interaction of external applications with
the instances run within the kernel.

The operations offered in the exposed interfaces can be classified in various
groups. The first group comprises operations to navigate workflow instances and
find particular elements. The next group comprises operations to query the state
of elements at run time. Next, there are operations to change the structure of a
model instance, or to change its elements, which in some contexts is a fundamen-
tal requirement. For instance, to support Level C of the IMS-LD specification
[IMS03b] it must be possible to change the learnflows dynamically (see section
2.2.1). Finally, the last set of operations serve to control the execution of the
elements of a model instance. All these operations are generic, i.e. they are not
specific to a particular language, and they were selected to expose as much as
possible of the run time elements and their run time state. Therefore, the plat-
form can only make a few guarantees about the consistency of run time elements,
and the rest of the responsibility is of the clients that use these operations.

Typically, each workflow engine offers a different set of operations which are
strongly related to the supported workflow language. As a consequence, the appli-
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cations that interact with an engine are strongly coupled to it and to the language
it supports. This also means that those applications cannot be reused with other
engines or other languages. On the contrary, all the operations provided by the
kernel are independent of the metamodel used to configure it. Therefore, the
exact same operations can be used with different workflow languages. The most
important consequence of this is opening the possibility to reuse applications with
different workflow languages.

In summary, the kernel is a component whose main function is to execute
models built with metamodels that come from the metamodeling platform. This
kernel is independent of the workflow languages, but it can be configured with
metamodel definitions to understand the semantics of particular languages. Ad-
ditionally, the kernel implements functionalities commonly found in workflow lan-
guages. Finally, the kernel offers powerful interfaces to interact with the models,
which do not depend on the languages.

3.3 Concern specific workflow languages

In chapter 2 we showed the characteristics of some of the most common work-
flow languages. As we discussed, most of those languages do not use high level
concepts that belong to a specific domain, but instead they use concepts that are
general and belong to a technical level. Also, most of those languages model every
aspect of a workflow within a single artifact. This has two negative consequences.
Firstly, this artifact usually becomes complex and difficult to understand and to
maintain; this happens even with relatively simple workflows. Secondly, the com-
plexity of those languages is elevated, because they have to include a large number
of elements, which are not always very related. Therefore, these languages can
turn out to be difficult to implement, to learn and to fully use, especially when
users are not technology experts but domain experts. For example, in the case
of BPMN, most users never use more than a small fraction of its constructs (less
than 20%) and never reach the level of detail that is necessary to enact or simulate
the processes [zMR08].

In this dissertation we propose a solution to this problem that is based on
two ideas. Firstly, there is the idea of modularizing workflow definitions accord-
ing to concerns. Secondly, there is the idea of using, for each concern, a very
suitable concern-specific workflow language. In the past, other approaches have
modularized workflow definitions (see section 2.3). However, they used the same
language for each concern. In this respect, the main difference of our proposal is
the usage of different languages for each identified concern.

The first benefit of modularizing workflow definitions is the simplification of
the artifacts that users have to manipulate. When monolithic languages are used,
the definition of a workflow entails the construction of artifacts that mix many
different elements. In the case of BPMN, these artifacts are diagrams that de-
scribe the control flow, the assignment of people to tasks, the management of
exceptions, and the data consumed by tasks. Since all this information is com-
bined, these diagrams can easily become big, complex, and difficult to manage.

Figure 3.2 shows the profusion of different elements that can be found in a
relatively small BPMN process. This process only shows a subset of the elements
available in BPMN to represent the control flow, the assignment of resources,
time restrictions, and the flow of data. Version 1.0 of the BPMN specification
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[Obj08] defined more than 50 constructs and attributes. The current proposed
version 2.0 of this specification is even more complex and considers more kinds
of processes [Obj09a]. Nevertheless, many of the constructs available in the
language are rarely used in the practice [zMR08], thus raising the questions of
how many of them are really necessary, and whether it would be useful to have
a smaller language.

Figure 3.2 Sample BPMN process with control, resources, time, and data.

Modularizing workflow definitions leads to simpler artifacts that are much
easier to create, to understand, to modify, and to maintain, although a cost
has to be paid to assemble the parts back together. Modularizing workflow
definitions also allows the usage of concern specific workflow languages – CSWfLs.
These languages only target one particular concern of a workflow definition, and
therefore they have a smaller set of elements that makes them very suitable for
that concern. Concern specific workflow languages must be used in groups, in
order to supply the complete semantics of a workflow definition.

An important characteristic of CSWfLs is to be simple, in the sense that they
only handle small sets of elements. This is necessary since those languages are
intended to solve problems restricted to a very specific concern. For instance, one
can think of CSWfLs to describe the control flow in an e-learning application, or
to describe how tasks are assigned to employees in a banking domain. In both
cases, the number of concepts involved is considerably smaller than the number
of elements in a language like BPMN. As a consequence of being simple, each
CSWfL is easy to learn, and easy to implement and maintain [vDK98, vDKV00].

Another characteristic of CSWfLs is their suitability. Since these languages
are designed to solve problems in very specific contexts, their elements can be high
level and represent directly the important concepts of each concern. For instance,
in the previously mentioned language to describe task assignment, users could be
organized in an organization chart, instead of being organized in a generic tree
or graph. Such a difference in terminology can be very important for domain
experts. The suitability of those languages is also related to their simplicity:
since they are simple to implement, it is more likely to have many of those
languages implemented, instead of having only a few and forcing their use in
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situations where they are not fully suited.
Finally, CSWfLs can also be reused. Each of those languages embodies knowl-

edge about a particular concern, which may be used in various applications
[vDK98, vDKV00]. For instance, the language used to describe a billing con-
cern could be used in a telecom workflow (like in [BVJ+06]), or in a scientific
application where grid services are payed per usage.

In summary, concern specific workflow languages are the strategy of our ap-
proach to make languages simpler, more suitable, and easier to implement and
maintain. Nevertheless, it should be noted that the whole approach that we are
proposing in this dissertation should work both with and without the usage of
CSWfLs. In other words, the implementation of engines for monolithic workflow
languages is also supported in our approach.

3.4 Coordination of concern specific models

The previous sections have focused on a metamodeling platform for executable
models, a kernel to execute those models, and the usage of concern specific work-
flow languages. The combination of these ideas results in a metamodeling plat-
form to define a metamodel for each concern specific language. The issue is then
to assemble concern specific models and run them with the kernel as a whole
entity.

We envision two possible strategies to do this. In the first one, the concern
specific models are combined to make a global model that encompasses all the
details about the workflow and are run in the kernel. However, this strategy has
three problems. First of all, the execution kernel we propose is capable of running
a model because it has access to the definition of the metamodel. In the case of
a global model, either a global metamodel would be needed, or the kernel would
have to deal with several metamodel definitions at the same time. The second
problem is loosing the separation between models. Since users know about this
separation, merging the models would be a way of loosing high level information.
Finally, merging the models makes it more difficult to add or remove models late
in the life-cycle of a workflow definition.

The second strategy that we envision does not use a global model and it
is the one that we adopted and implemented. This strategy runs each concern
specific model separately, in a different instance of the kernel, and coordinates
their execution. By doing so, each kernel instance is configured with a single
metamodel, metamodels do not have to be composed, and the separation between
executable models can be maintained even at run time.

Figure 3.3 shows the main elements involved in implementing this strategy.
In this figure we have used the term assembly to refer to a set of concern specific
models together with information about how they have to be coordinated. This
coordination information is specified with a language which is independent from
the metamodels. To achieve this, the language has to describe the coordination
in terms of basic elements provided by the metamodeling platform, instead of
using elements defined in specific metamodels. Such a language makes it possi-
ble to have a single weaver, which interprets the coordination instructions and
establishes links between model instances. The next section explains that these
links are not based on the introduction of code, as weavers in other contexts do.

In our implementation, this language is called CCL, or Cumbia Composition
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Figure 3.3 Coordination of concern specific models.

Language. As chapter 5 shows, CCL is a low level language that describes the
coordination using only concepts provided by the metamodeling platform and the
execution kernel. Because of this, CCL can be used to describe the coordination
between any group of models. The only requirement is that they should be de-
signed to run inside our kernel. Therefore, the definition of new metamodels does
not require the definition and implementation of a new coordination language.

Finally, a further characteristic of this strategy, and of the weaver we im-
plemented, is to support changes to the assemblies at run time. These changes
include the addition and removal of models, and also the modification of the rela-
tionships. For example, an auditing model could be added to an already running
assembly.

3.5 Open Objects

The goal of this section is to introduce the notion of open objects, and show
how it is used as the base element to implement metamodels. This section also
explains how open objects contribute to implementing the previously discussed
approach. Chapters 4 and 5 provide all the other details about open objects.

Choosing the core elements of a metamodeling platform is critical because it
determines the structure and semantics of the metamodels. For instance, in the
case of UML, the concept of class can be considered the central element of the
metamodel. In fact, most of the other concepts in this metamodel are directly
or indirectly related to classes. The selection of the core elements determines the
information required in the metamodel, and its structure. In the case of UML,
using classes implies defining properties, operations, interfaces, and associations
[Obj07a]. This is complemented by concepts to model the organization of classes,
such as packages and components. From the behavioral point of view, UML
models also describe interactions, messages, events, and state machines, which
are also related to classes [Obj07b].

The role that classes have in UML, is the role that open objects have in our
metamodeling platform. Classes and open objects share many common things,
and open objects can even be considered as extensions to classes. The core of
this “extension” is that the state that is normally encapsulated in an object,
is externalized in a state machine. Figure 3.4 shows the basic components of
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an open object. The component marked as entity is a traditional object, with
attributes and methods. It provides an attribute-based state to the open objects,
and part of the open object’s behavior is implemented in the methods of the
entity. Each entity also declares a set of events that it can generate, and these
events play a crucial role in the interaction of the open objects (see section 4.2.2)
and the coordination of models (see chapter 5). Finally, the entity of each open
object is not implemented from scratch. Instead, the Cumbia platform includes a
development framework to implement new open objects on top of it. In this way,
developers of new languages, and hence developers of new open objects and their
entities, do not have to worry about things like generating events or handling the
state machines.

Figure 3.4 Basic components of an open object

Besides an entity, each open object also contains a state machine which rep-
resents one abstraction of its life-cycle. To materialize this state machine, de-
velopers have to identify the relevant states, establish the transitions, and make
explicit how each transition is triggered. Furthermore, state machines also serve
for coordination purposes. Whereas traditional objects can only interact through
explicit method invocations specified in method bodies, open objects can observe
other open objects’ state machines and react to their changes. This interaction
is based on the coordination of state machines and it is mostly external to the
entities. Section 4.2.2 explains this in more detail. The main consequence of this
is making the interaction more easy to analyze and modify.

The last element in an open object are actions, which are pieces of code related
to transitions in the state machine. When a transition is taken, its actions are
executed in a synchronous way. Actions offer the means to associate behavior to
changes of state in an open object. Furthermore, actions do so in an explicit way,
which is also easy to modify. This is even possible at run time.

Open objects offer essential characteristics to support the approach to build
workflow engines that we present in this dissertation. These characteristics are
the following:

• Various types of execution models supported. The behavior of each
metamodel built in our platform, depends on the behavior of the open
objects included in it. This behavior is determined by the methods in the
entity, and the actions in the state machine, and it is not constrained in
any way. Therefore, various types of execution models are supported.
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For instance, using open objects it is possible to implement an execution
model based on Petri nets: it is only necessary to implement the token man-
agement semantics in the entities, and establish the necessary interactions
between the elements (see chapter 7).

• Externalized state. With the introduction of the state machines, the
state of the open objects is externalized. This makes it possible for other
elements to observe the state of the open objects, without resorting to using
the methods of the entity.

• Externalized interaction. The state machines of the open objects offer
the means to describe the interaction of an element in an externalized way.
By analyzing these state machines, it is possible to know how each open
object should react to changes on the open objects that surround it. Fur-
thermore, this makes it much more simpler to modify the interactions of
an element. Conversely, if the interactions were hidden in the methods of
the entities, then they would be less explicit and harder to modify.

• Compatibility with the kernel. A kernel is capable of executing open
object based models because the basic structure of the behavior is deter-
mined by the state machines structure. Therefore, the responsibility of the
kernel is to coordinate the execution of the open objects of a model by
managing the generation of events, distributing them, updating the state
machines, and executing the actions.

Another important point here is that the coordination mechanisms used
by the kernel to synchronize open objects within a model, are also used to
synchronize models corresponding to different workflow concerns.

• A base development framework for developers. To build an engine
for a new workflow language, the developers have to define a metamodel
and then develop its open objects. Since there is a framework where the
basic behavior of open objects is already implemented, these developers
can concentrate their efforts on the implementation of the semantics of
their language. For instance, developers do not have to write the code
to generate and distribute the events, to manage the state machine, or to
execute the actions. Similarly, the kernel and the framework are responsible
for handling the concurrent execution of several open objects, and remove
this responsibility from the developer.

• Explicit extension mechanisms. Open objects define a series of exten-
sion mechanisms that make explicit the differences between an element and
its extensions. These mechanisms, together with the fact that extensions
to elements do not have an impact on the kernel, contribute to making the
engines more extensible.

• Decoupled interfaces. The state machine, and the interaction mecha-
nisms based on events, make it possible to interact with an open object
without using an interface. This contributes to decoupling the elements,
and facilitates the integration of external applications synchronized via
event passing.
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Compared to a metamodeling platform for UML or MOF, our metamodeling
platform based on open objects is much more simple and includes less kinds of
elements. Because of this, there are details about the open objects that cannot
be included in the metamodel description and have to be introduced in the entity
implementation. Nevertheless, the evaluation of our platform using the concepts
defined by Geisler et al. [GKP98] shows that it includes most of the required
concepts. According to the authors, a metalanguage should support the eight
concepts listed below, and our metamodeling platform currently supports 7 of
them. We have not yet addressed the last concept, constraints, but we believe
that an existing constraint language, such as OCL [Obj06b], can be adapted in
the near future. Note that although these concepts are defined in terms of objects
and classes, they can be adapted to open objects and open object definitions. The
following is a description of the concepts extracted from [GKP98], and a brief
explanation about the way in which they are supported in our metamodeling
platform.

• Objects: encapsulation of an object’s internal state.

At run time, each open object instance in a model instance has its own
state. This state is encapsulated in the entities’ attributes, but a view
of it is offered through the externalized state machines. Nevertheless, the
encapsulated state can only be changed by the entities’ methods. Further-
more, the elements contained in different model instances are completely
independent and do not have a shared state.

• Object Identity: the notion of a persistent identity for an object.

Each open object instance in a model has its own identifier. At run time,
it is possible to identify different instances of the same elements, which are
contained in different instances of the same model. For example, if the
process of figure 3.2 is instantiated three times, there are three instances of
the activity “Create Purchase Order”, each with a different identifier.

• Object Behavior: the possibility of objects to evolve in a pre-defined way.

Each open object defines its own behavior, which is implemented in the
methods of its entity and its actions. This means that each open objects
defines how its state should evolve in response to external stimuli such as
event notifications and method invocations. The ‘pre-defined way’ men-
tioned in [GKP98] points out that the behavior of elements is intrinsic to
them, and it is not something provided by the context.

• Classes: the ability to describe the common aspects of objects and encapsu-
lating them in a class structure.

In our metamodeling platform, an open object definition is the equivalent of
a class in UML: it defines the structure and behavior of a multitude of open
objects instances used in models. In other words, open object definitions
work as classifiers [Obj07a].

• Compositionality (associations): the ability to declare a structural connec-
tion between classes [...].

The definition of a metamodel includes the definition of associations be-
tween open object definitions. These associations can have simple or multi-
ple cardinality. Furthermore, in associations with multiple cardinality the
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links can be ordered or they can be named. This characteristic is very
important to allow model navigation.

• Inheritance: defining a class as an extension of one or more existing classes.

Our metamodeling platform offers the possibility of defining new open ob-
jects as extensions to existing ones (see section 4.2.5). For instance, in a
BPMN metamodel there can be a generic open object called Task, and also
extensions to it to represent Manual Tasks or Automatic Tasks. In addi-
tion, our metamodeling platform also allows the specification of abstract
open objects which must be extended to be instantiated.

• Polymorphism: the ability to define operations that act upon several distinct
classes.

In our platform, polymorphism is related to inheritance. We do not have a
concept similar to that of interfaces in Java, but we can have abstract open
objects that must be specialized to be used.

• Constraints: the ability to describe constraints between objects or [...] ob-
jects operations [...].

The only concept defined by Geisler et al. that our metamodeling plat-
form does not currently support are constraints. In UML, this concept was
implemented with the introduction of OCL, and to support it in our meta-
modeling platform would require a similar effort. We have envisioned two
alternatives to achieve this. The first one is to develop, from scratch, a new
language to describe constraints that are suited for our specific platform.
The second alternative is to start from an existing language, such as OCL,
and adapt it to the include the aspects that are specific to the open ob-
jects. This alternative will probably require the complete implementation
of a new OCL checker, as we do not expect to be able to adapt one of the
existing ones to our platform.

3.6 The Cumbia platform

The previous five sections presented our strategy to support the development of
workflow engines for new workflow languages. We implemented this strategy in
a concrete platform that we called Cumbia. More specifically, this platform was
implemented in Java, supports Java-based open objects, and uses XML as the
representation for most descriptors, including metamodel and model definitions.
This platform is composed by a number of elements that we now introduce (see
figure 3.5). Chapters 4, 5 and 6 present all of those in more detail.

The first element of the Cumbia platform is a concrete implementation of the
metamodeling platform. This implementation offers various elements to define
and use the metamodel and model definitions. In the first place, the platform
offers the means to load these definitions and to perform some consistency checks.
For instance, it can verify whether a model is conformant to the metamodel it
claims. Consequently, the platform also establishes a format that metamodel and
model definitions have to follow. To facilitate the interaction with other tools,
these formats were defined using XSD schemas (see appendix B).

In a similar fashion, the metamodeling platform also offers the means to de-
scribe and implement open objects. We refer to this as the open objects framework
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Figure 3.5 Main elements of the Cumbia Platform

and it can be seen in two parts. On the one hand, the metamodeling platform
defines the format of another XML-based descriptor which is used to specify some
aspects of the open objects, such as the structure of the state machines. On the
other hand, the metamodeling platform also includes a development framework
that serves to implement the behavior of the open objects.

Another fundamental element in the Cumbia platform is a configurable exe-
cution kernel that is compatible with the described metamodeling platform. This
component is called Cumbia Kernel, and it is a concrete kernel to execute mod-
els based on open objects. To achieve this, the Cumbia Kernel has to be first
configured with a metamodel definition. This definition should also include the
structure of the relevant open objects, and the implementation of their behavior.
After this configuration step, the Kernel is then capable of executing the models
by controlling the execution of the open objects. This is mainly achieved through
the generation and distribution of events (see section 4.4 for more details). Fi-
nally, the Cumbia Kernel also implements basic workflow functionalities, and
offers interfaces to interact in many ways with the model instances at run time.

The next component in the Cumbia platform is the Cumbia Weaver. The main
responsibility of this component is to interpret coordination programs written
with CCL. By doing so, it establishes links between elements located in different
model instances. This is possible for the Cumbia Weaver because the Cumbia
Kernel offers the interfaces that are required to build those links. Section 5.3
provides more details about the responsibilities of the the Cumbia Weaver.

Finally, the Cumbia platform also includes a number of additional tools, which
are not essential to use the approach. However, these tools make the approach
more usable to language developers, and improve the quality of the results. These
additional tools, include an editor for metamodels and for open objects, a frame-
work to develop tests for new workflow languages, and a debugger to find prob-
lems with the models at run time. Chapter 6 describes these tools in more detail.

3.7 Summary

This chapter introduced the core elements of the proposal, which include a meta-
modeling platform to describe workflow specification languages, a kernel to ex-
ecute models conformant to those metamodels, and a modeling abstraction to
describe the elements in the metamodels. This dissertation also proposes the
modularization of the workflow specification languages with the introduction of
concern specific workflow languages, and it provides the means to integrate con-
cern specific models by describing how their execution should be coordinated.
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This description of the coordination is written with a language called CCL and
it is external to the models and to the metamodels.

The content presented in this chapter is discussed in more detail in the chap-
ters that follow. Chapters 4 and 5 focus on describing all the elements that are
part of the proposal and include all the relevant technical details. Chapter 4, de-
scribes the characteristics of the open objects, their mechanisms of coordination,
and how they can be extended. Then it shows how they are used in the metamod-
eling platform to form metamodels representing workflow specification languages,
how engines are structured around the Cumbia Kernel, and how these engines use
the metamodel specifications to enact workflows. Chapter 5 complements this
by focusing on the usage of multiple concern specific workflow languages. This
chapter describes how the coordination of concern specific models conforming to
different metamodels is achieved by means of CCL and of the Cumbia Weaver.
Having discussed all the technical details of the proposal, 6 presents the structure
of a development process to develop workflow engines. Chapter 7 shows how the
ideas presented in this chapter were validated in a number of case studies.



4
Workflow Models based on Open Objects

In the previous chapter we introduced the main elements of the approach, and
we justified their usage in relation to the problems identified in chapter 1. The
goal of this chapter and of chapter 5 is to concretize what was introduced in
chapter 3, by providing all the details about the design and usage of the Cumbia
platform and of the proposed approach. We have divided the presentation of
this between this chapter and chapter 5. First, chapter 4 presents the notion
of open objects and shows how to use open objects to define metamodels. This
chapter also presents, in detail, the mechanisms that make the models executable,
and illustrates the most important concepts with a workflow language called
MiniBPMN. Chapter 5 continues the presentation by explaining and illustrating
how multiple concern specific workflow languages can be constructed and have
their executions coordinated.

Chapter 4 is organized as follows. Section 4.1 presents the general features
that metamodeling platforms should offer and their relation with executable mod-
els. Section 4.1 concludes by introducing open objects as an element to imple-
ment these features. Then, section 4.2 presents the Open Objects in detail. This
includes an in-depth presentation of the components of open objects, their in-
teraction mechanisms, and of the concrete means to specify and implement new
open objects. Using this information, section 4.3 shows how metamodels are
built using open objects, and how model definitions are written. Section 4.4,
focuses on the execution of models. For this, it first discusses the way in which
models are instantiated, and then it explains how the Cumbia Kernel executes
those instances. Section 4.5 explains how an engine is built on top on Cumbia,
and discusses the architecture of Cumbia based workflow engines.

The rest of the sections (4.6, 4.7, and 4.8) are devoted to illustrate the ideas
previously exposed. These sections use a workflow language called MiniBPMN
and show how a metamodel for this language is specified and implemented, how
models conformant to the metamodel are defined, and how they are executed.
To close the chapter, section 4.8 shows how MiniBPMN can be extended with new
concepts, and then shows how these concepts are introduced as extensions to the
base metamodel, and the small impact that these extensions have on it.
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4.1 A metamodeling platform based on Open Objects

4.1.1 Metamodeling platforms

The general goal behind model driven development is to “use modeling techniques
to bridge the gap between the problem domain and the software implementation
domain” [FR07]. Different strategies and technologies have been applied to ad-
dress this goal, but most of them have a common characteristic: to use fixed
metamodels (OMG level m2). This means that, under these approaches, all
models are conformant to the same metamodels, or are created using the same
language and base elements. Therefore, the flexibility in those approaches has
been limited to the model level (OMG level m1) [KK02].

To counter this, metamodeling platforms have appeared. In those, flexibility
is introduced at an additional level of the typical metamodeling pyramid. Instead
of having a fixed metamodel (m2) to produce all the models (m1), the metamodel
can also vary. By doing so, the overall platform is more flexible and it becomes
possible to further narrow the gap between the problem domain and the solution
domain. The fundamental idea behind all of this is that flexibility at the meta-
model level reflects in models that are expressed using concepts that are closer
to the problem domain and thus create more suitable solutions to the problem.
Some examples of metamodeling platforms include the Eclipse EMF [The10a], the
MIC/GME [LBM+01], Memo [Fra02], and several other MOF-based platforms.

The design of a metamodeling platform has to take four aspects into account.
First of all there are the means to describe the metamodels. Then, there are
the means to describe models conformant to the metamodels previously created.
The third aspect includes the operations that can be performed on the models.
Finally, there are the technical and practical details of the platform, such as
the technologies involved, the tools supported, and the generic architecture of
applications based on the platform. We now describe this four aspects, and in
later sections we will provide concrete examples of these.

A metamodel description, which is usually created using a meta-metamodel
(OMG level m3), defines a collection of types of elements to use in models, or
metaclasses. The description of each type should include its name, the attributes
of its instances, and the relations allowed with other type instances. In some
platforms, constraints can also be specified (e.g. using OCL in the case of UML).
This creates the restrictions that are necessary to later check if a model is con-
formant to a given metamodel, or not. In section 4.1.2 we will discuss about
associating behavior to these types.

An issue faced when designing a metamodeling platform is to provide ade-
quate modeling abstractions to describe the metaclasses. The number of meta-
modeling platforms based on the MOFmeta-metamodel (OMG level m3) [Obj06a]
shows that the modeling abstractions do not necessarily have to be complex in
order to be useful. However, if more advanced information about the types had
to be specified, then MOF would be dropped and more expressive modeling ab-
stractions would have to be developed.

After the artifacts to specify the metamodels are selected, the following issue
is to put the metamodels to use. To achieve this, the metamodeling platforms
have to offer the means to describe particular problems of the domain using
models conformant to the metamodels. In general, a model specification describes
instances of types and relates them following the restrictions established in the
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metamodel.
Models themselves are not very useful if the platform does not offer operations

to query or interact with them. These operations can have very different natures,
and they can be applied to one or several models at a time. One example of
operations are those that offer access to the structure and information in the
models. Another example are operations that transform models or that generate
code or documentation taking as input one or several model specifications (e.g.
MDA [Obj10]). Other operations serve to weave models (e.g. AMW [FBJ+05]).
Finally, some operations are useful to validate that models are conformant to the
metamodels.

Finally, the previous three aspects are complemented in a metamodeling plat-
form by an underlying infrastructure and tools that metamodels and model de-
velopers can use. This results in considerable savings in development costs as the
tools and architectures are easily reused [KK02].

4.1.2 Model behavior

In this dissertation we are not concerned with models that represent static and
stateless structures. Instead, we are interested in stateful executable models: a
model is executable if it is possible to compute how its state changes in response
to input data [HBMN07]. This creates further requirements for the metamodeling
platforms as they have to offer the means to describe, at the metamodel level,
the behavior expected to be seen in models.

There are at least three strategies to define this behavior. The first one is
using translational semantics [Cle07b]. This means that the behavior is indirectly
defined by establishing a translation schema to a metamodel with well known
semantics. For example, the specification of BPMN includes a chapter that fixes
the behavior of BPMN processes by providing a mapping to WS-BPEL processes.
Another example are languages that rely on code generation to be executable.
Although this is an effective approach, it also has problems because the behavior
definition ends up scattered between the transformation rules and the target
language.

The behavior of models can also be specified by directly defining how their
state should be updated in response to stimuli. For example, graph rewrite rules
[BFG95] can be used to specify model changes (including state changes or changes
to their structure) at different levels, from single elements to entire models.

Finally, the behavior of models can also be specified in an object oriented fash-
ion by encapsulating in each element its own behavior definition. This definition
should include the following three aspects: i) the way in which internal stimuli
force changes to the state of the element; ii) the way in which the element should
create new stimuli for other elements of the model in response to stimuli received
(the interaction behavior); iii) the way in which the element should interact with
the execution environment (e.g. the elements and applications external to the
model).

Each metamodeling platform that aims to support executable models has to
provide a strategy to define the behavior of the models. Since each one has
advantages and disadvantages, the strategy should be selected according to the
particular domains and the kinds of applications constructed. The rest of the
chapter shows that the Cumbia platform employs a strategy that is close to the
object-oriented one that we just discussed.
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4.1.3 The role of open objects

Open objects are the artifact used in Cumbia to describe the elements of the
metamodels. On the one hand, open objects serve to specify the element types
and the structure of the metamodels. On the other hand, they serve to describe
the behavior of those elements in order to make the models executable.

Each element type in a Cumbia metamodel is represented with an open object.
Open objects can have attributes, which serve both to configure the element
and to maintain its state at run time. Open objects can also be related using
inheritance and aggregation relations. As a result, new element types can be
created by extending existing ones; similarly, aggregations restrict the structure
of the models that want to be conformant to the metamodel. However, it should
be noted that the inheritance and aggregation relations between open objects
have a special semantics that is studied in the next section.

Finally, each open object can specify its own behavior, its interactions with
other open objects, and the mechanisms to interact with the execution environ-
ment. An engine can then take this specification and use it to successively update
the state of a model instance in a way that reflects the semantics of the language.

The following sections will provide a complete description of the open objects,
of their interaction mechanisms, and of their characteristics to create extended
element types. This is illustrated with a new metamodel called MiniBPMN.

4.2 Open objects

The goal of this section is to present the notion of Open Objects and discuss their
most important characteristics. This section is divided in five parts that present
different aspects about open objects. In section 4.2.1, the general characteristics
and the main elements of an open object are introduced. Then, section 4.2.2 part
presents in detail the interaction mechanisms used to synchronize the execution
of open objects in a model. A navigation language to describe and find elements
in open objects’ graphs is presented next in section 4.2.3. Afterwards, section
4.2.4 shows concretely how an open object is described and implemented. Finally,
section 4.2.5 presents and illustrates the mechanisms that allow the definition of
new open objects as extensions to existing ones.

4.2.1 General characteristics

Open objects are the abstraction used in Cumbia to model the elements of a
workflow language. By using this abstraction, it is possible to represent the
structure, the state and the behavior of those elements. Furthermore, this notion
offers various mechanisms to model the interaction between those elements, for
instance as a reaction to state changes. Figure 4.1 shows the basic components
of an open object.

Entity

The central element of each open object is what we have called the entity of the
open object. Basically, an entity is an object (a standard object, i.e. a Java
object) which has three main purposes. First of all, most of the behavior of the
open object is implemented in the methods of the entity. For this, each open
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Figure 4.1 Basic notation to represent open objects

object declares the set of methods that it supports, using an interface that is
implemented by the entity. The second purpose of the entity is to maintain part
of the run time state of the open object. This is done with the attributes of the
entity, and are complemented by the state machine.

Finally, the entity generates events that are required to synchronize various
open objects, or to synchronize the entity with its state machine. The role played
by those events is analyzed in section 4.2.2.

As an example, consider an open object called Task1, whose entity is shown in
figure 4.2. This open object is used in a workflow language where the execution
of tasks follows rules similar to those found in a Petri net: at a given time,
only the tasks that posses a token can be executed. Because of this, the entity
of Task has a boolean attribute called hasToken, which indicates if the task
currently posses a token and thus can be executed. The entity also implements
four methods that are relevant for the semantics of a Task in the context of
this workflow language: method setToken() makes true the attribute hasToken,
while removeToken() makes it false; method activate() starts the execution of
the concrete task that has to be performed (e.g. consuming a remote service,
processing data, requesting inputs); and finish() announces that the concrete
task has been completed. Finally, this entity also declares that it can generate
two events, namely tokenReceived and finished. Listing 4.1 shows the general
structure of the implementation of this entity. The methods of the entity are
declared in the interface ITask.

Figure 4.2 Entity for the open object Task

1In this section we will use Task to illustrate, element-by-element, all the constituents of an
open object. In section 4.2.2 we will show how Task is related to other elements in a metamodel.
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Listing 4.1: The implementation of the entity of Task

1 public class Task extends OpenObject implements ITask
2 {
3 private boolean hasToken;
4

5 public void setToken( ){ ... }
6

7 public void removeToken( ) { ... }
8

9 public void activate( ) { ... }
10

11 public void finish( ) { ... }
12 }

In ensuing sections we will show how entities are described, configured, and
implemented. In particular, in section 4.2.2 we will show how and when the
events declared in an entity are generated. Section 4.2.4 shows how each entity is
actually an extension of various existing classes provided by the Cumbia frame-
work. By providing these base functionalities, the amount of code required to
implement a new entity is greatly reduced and focuses on the domain and on the
requirements of the particular language.

State Machine

Each open object also contains a state machine which materializes one of the
possible abstractions of its life-cycle. Compared to the states identified by the
attributes of an entity, the states in a state machine are coarser and thus can
be in a higher level of abstraction. Furthermore, since those states of the open
object are reified in the state machine, it is easier to react to state changes.

The states in a state machine are connected by transitions and each transition
has an associated trigger event. When the open object receives an event that
triggers a transition, the open object changes its current state and may trigger
the execution of some code (see actions below). This is the basic mechanism
used to execute a model, and it is fully described in section 4.4.

Figure 4.3 shows the state machine for the open object Task. This state ma-
chine has two states, Waiting and Active, which are connected by two transitions.
Transition activation is triggered by the event tokenReceived, and it has an as-
sociated action called activate. Transition deactivation is triggered by the event
finished, and it has two actions associated, which are called removeToken and
giveToken. In section 4.2.2 we will explain that the string [ME] indicates who is
expected to generate the event.

The structure of a state machine is specified with an XML file used in the
context of a metamodel. The structure of such file is explained in detail in section
4.2.4.

Actions

Actions are typically small pieces of code associated to transitions of a state ma-
chine. Using actions it is possible to associate behavior to the state changes:
when a transition is taken, the actions associated to it are executed. By de-
fault, actions are executed synchronously, one after the other, following the order



Workflow Models based on Open Objects 77

Figure 4.3 State machine for the open object Task

specified by the designer of the metamodel. However, it is also possible to mark
actions as asynchronous and then execute them in parallel to the other ones.
This is explained in detail in section 4.4.

The state machine of the open object Task (figure 4.3) includes three actions
that are executed when state changes take place. The action activate invokes
the method activate()2 of the open object when the transition activation is
triggered. The actions removeToken and giveToken are executed in that or-
der when transition deactivation is triggered: action removeToken invokes the
method removeToken() of the open object, and action giveToken invokes the
method setToken() in the open object that follows the Task.

Memory

A final aspect about the open objects is something that we have called the mem-
ory of the open object. Without this memory, the only way to store information
in an open object is to use the attributes of the entity. However, this may be
problematic because the only way to access this information is to use the methods
offered by the entity. Furthermore, including additional fields or modifying the
existing ones requires altering the implementation of the entity.

To solve these problems, every open object has a memory, which is a dictio-
nary based data container. This memory can be accessed using a simple interface
that is common to every open object. All the information stored in the memory
of an element is named, and it must be an instance of either some basic or some
composite data types. The basic types supported are String, Integer, Double,
Boolean, and Byte. The composite data types are Properties or Sequences. In
retrospective, these data types, including their representation as strings, are very
similar to JSON [Cro06, jso10].

The memory of the open objects is used for two reasons. The first one is to
configure the elements in a model by providing some initial values (see section
4.3.2). The other is to temporally store information about the model execution,
such as partial results.

For example, consider a workflow definition where different instances of Task
are used to consume different web services. In order to configure the locations
of these services, the workflow definition indicates the values to include in the
memory of each Task. Now consider a monitoring tools that queries each task to

2It is only by chance that the name of the action and the name of the method coincide, i.e.
the method invoked is not inferred but it is explicitly indicated in the code of the action.
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know which service it is consuming, and how many timeouts it has encountered
during the execution of a case. From the point of view of the implementation of
the kernel and of the monitoring tools, it is easier to store this information in
the memory and to offer a standard interface to make the queries, than using a
reflection API to query the attributes of the entity.

Relations

Finally, there is another detail about the open objects worth mentioning briefly at
this point. Similar to UML’s associations, it is also possible to establish relations
between open objects. Relations play a very important role in the construction
and execution of the models, and they have several important characteristics. In
the first place, relations are named and typed. Relations also have a cardinality,
which can be ‘simple’ or ‘multiple’ (they are equivalent to UML’s ‘0..1’ and ‘0..*’,
respectively). Furthermore, relations where the cardinality is ‘multiple’, can be
implemented in two ways: as ‘sequences’ or as ‘maps’. The conformance of a
model to a metamodel can be validating by considering the relations defined in
the metamodel and the way in which they are instantiated in the models.

Sections 4.2.4 and 4.3, will present more information about the meaning and
the definition of relations. Additionally, the navigation language that will be
presented in section 4.2.3 has lots of dependencies on the relations.

4.2.2 Open objects interaction

There are two mechanisms of interaction between open objects. The first one
is synchronous and uses direct method calls to invoke methods in the entities.
These invocations can be found in three locations: i) in the body of actions; ii)
inside methods of the entities; iii) or they can come from elements external to
the metamodels.

The second mechanism of interaction is based on events that trigger tran-
sitions in the state machines. This is possible because each transition has an
associated trigger event, which is specified with a source and an event type.
When an event matching the description is received by the open object, the tran-
sition is triggered. Then, the actions associated to it are executed, and the state
machine changes its current state. Events are not processed immediately, but are
arranged in a queue and processed asynchronously. Section 4.4 explains in detail
the mechanisms to process these events, including the way in which the queues
are managed.

There are two kinds of sources for these events. The first source are the
methods of the entities, which can explicitly generate specific events. To support
this, the open objects framework offers methods that can be invoked from within
methods to explicitly generate events. Nevertheless, an entity can only generate
events declared in the description of the open object (see section 4.2.4). Listing
4.2 shows a method in an entity which explicitly generates an event.

The second source of events are the state machines themselves. When a
transition is triggered in a state machine, several events are generated to keep
other elements informed. Figure 4.4 enumerates those events, which signal the
different steps in the processing of a transition.

1. Exit State: the first event generated announces that the state machine is
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Listing 4.2: Generation of an event in an entity

1 public void activate( )
2 {
3 ...
4 generateEvent( "activated" );
5 ...
6 }

Figure 4.4 Events generated when a transition is triggered

leaving a certain state. If several transitions depart from the same state,
the first event generated is the same.

2. Before Transition: the second event generated announces that a spe-
cific transition was triggered. This event is generated before the actions
associated to the transition are executed.

3. After Transition: the third event generated indicates the completion of
the execution of the actions associated to a specific transition.

4. Enter State: the fourth and last event generated announces that the state
machine reached a certain state. If several transitions arrive to the same
state, the last event generated is the same.

In simple cases, some of these events may be redundant. For instance, when a
state has only one outgoing transition, the first and second events are equivalent.
Similarly, when the transition has no actions associated, the second and third
events are also equivalent. Nevertheless, in more complicated situations the four
events are necessary to have the adequate fine grained synchronization hooks.
Furthermore, it is important to note that these events are generated and delivered
in the order depicted in the figure. Therefore, it is not possible for a listener to
receive them in a different order.

An important detail about trigger events associated to transitions is the way
they are described. Each trigger event is described with an expression of the form
[source] eventName. In this expression, eventName serves as an identifier for
the type of event. For instance, in figure 4.7 the type of the events expected are
tokenReceived and finished. In this type name there is no indication about
the origin of the events: they could be generated by an entity, or they could be
generated by a state machine.

On the other hand, [source] is an indicator of the expected source of the
event. Therefore, events are not filtered only by type, but also by the open objects
that generate them. This works as a kind of message filter [JVR97, AWB+93],
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and it is the inverse of acquaintances in the actors model [Agh86]. This means
that instead of specifying who can receive a given event generated by an open
object, we specify the open objects that can send that particular event to it.

To specify these filters we use roles. In this context, a role is an abstract
description of sets of elements in a model, where each set is relative to a base
element. The description of a role includes two things. Firstly, it specifies the
type of the elements allowed in the set. Secondly, it uses a navigation expression
to describe the elements in the set, in relation to the base element. Therefore, the
power of the roles mechanism depends on the expressiveness of the navigation
language used. The navigation language used in Cumbia will be presented in
section 4.2.3.

To illustrate what a role is, consider the simplified BPMNmetamodel depicted
in figure 4.5. This figure only shows types of elements, the inheritance hierarchy
formed by these types, and the relations that can be established between instances
of those types. We are now going to describe a role in this metamodel, [TASKS
IN PROCESS], that serves to refer to the elements of type Task that are enclosed
in a Process. The description of this role first specifies that the relevant elements
are found by following the relation flowElements of Process, and then filtering
by the type of the element, which must be Task3.

Figure 4.5 Simplfied BPMN metamodel

Applying the definition of the role to the BPMN process depicted in figure
4.6, we can identify the following: with respect to the top-level process, the role
[TASKS IN PROCESS] is fulfilled by two tasks, namely Query Shipment State and
Alert Responsible; with respect to the sub-process, the role [TASKS IN PROCESS]
is fulfilled by the other four tasks. Note that without the restriction by type, the
sub-process would also be included in the role for the top-level process, because
a SubProcess is a FlowElement as well.

The final matter about roles and their usage to specify event sources has to do
with the time of evaluation of navigation expressions. In the case of models that

3The specification of BPMN 2.0 defines the relation flowElements between a
FlowElementContainer and a FlowElement. In this specification, a Process is a
FlowElementContainer, and a Task is an Activity, which in turn is a FlowElement [Obj09a].
The metamodel in figure 4.5 has been simplified with respect to the full BPMN metamodel.
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Figure 4.6 Sample BPMN process

do not change at run time, this evaluation can be done at the time of creating the
instance of the model. However, if the model allows dynamic adaptation, then
roles have to be recalculated for every change to the structure of the instance. For
instance, in the previous example, if a Task were added to the top-level process,
it should also be part of the role [TASKS IN PROCESS] for that process.

We will now analyze three cases that serve to describe and illustrate the two
interaction mechanisms. We have used some elements from a metamodel whose
execution model is based on token passing.

Case 1: Interaction between an entity and its state machine.

A state machine externalizes the state of the entity; therefore, at run time the
state machine has to be in sync with the entity. This synchronization is achieved
using an interaction mechanism based on events. In this case, the entity generates
events which are received by the state machine.

Figure 4.7 illustrates this situation with a concrete scenario. In this figure,
the entity of an open object called Task has an attribute hasToken; also, it has
a method setToken() that makes the attribute true. The state machine of this
open object has two states, namelyWaiting and Active, and two transitions called
activation and deactivation that connect the two states. The state machine and
the entity are consistent only if one of the following statements is true: a) the
state machine is in state Waiting and hasToken is false; or b) the state machine
is in state Active and hasToken is true.

The event that triggers the transition activation is described with the expres-
sion [ME]tokenReceived. This means that the transition is triggered only when
the same Task that owns the state machine ([ME]4) generates an event of type
tokenReceived. In this case, the event is generated explicitly inside the method
setToken() (see listing 4.3).

Finally, there is an action associated with the transition activation. This
action, which invokes the method activate() on the entity, is executed each

4The role [ME] is special as it is available in every metamodel and always refers to the
element that owns the state machine. [ME] can be considered to be equivalent to this in Java.
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Figure 4.7 Coordination of the entity and the state machine of Task

Listing 4.3: Extract of the method setToken() in the entity of Task

1 public void setToken( )
2 {
3 ...
4 hasToken = true;
5 ...
6 // The method generateEvent( typeOfEvent ) is implemented in the class

OpenObject, which is part of the framework provided.
7 generateEvent( "tokenReceived" );
8 ...
9 }

time this transition is triggered.

Case 2: Interaction between open objects using actions.

This second case involves more than one open object and uses an interaction
mechanism based on method calls. For illustration purposes, the case considers
the situation where an element of type Task is followed by an element of type
Gateway in a process. According to the semantics of the language, after the task
has been executed, its token should be passed to the gateway located after it.

Figure 4.8 Interaction between Task and Gateway

In this particular case, the synchronization between Task and Gateway is
achieved with actions associated to the transition deactivation of Task. This
transition is triggered when the task finishes its execution and generates the
event finished (the method finish() invokes the generation of the event). The
transition also has two actions associated: the first one, removeToken, removes
the token from the task, by calling the method removeToken() in the entity; the
second action, giveToken, gives the token to the gateway by invoking its method
setToken(). To do so, it is necessary to follow the association called «next»
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between the Task and the Gateway.
Listing 4.4 shows the implementation of the action giveToken. In this snippet,

the parameter event corresponds to the notification of the reception of the event
finished; the parameter element is a reference to the entity of the open object
that received that event. The method getElement( String ) is used to navigate
between elements of a model, using the relations declared in the metamodel (see
section 4.2.4).

Listing 4.4: Implementation of action giveToken

1 public class GiveToken implements IAction
2 {
3 public void execute( EventNotification event, Transition transition,

IOpenObject element )
4 {
5 IGateway g = (IGateway) element.getElement("next");
6 g.setToken( );
7 }
8 }

Case 3: Interaction between open objects using event notifications.

The third case also involves two open objects, but uses an interaction mechanism
based on events. Figure 4.9 shows a fraction of the state machines of two elements
of the language, namely Process and End Event. In this language, the begin-
ning and the end of a process are marked by Start Events and End Events: a
Process has to terminate whenever one of its End Events receives a token.

Figure 4.9 State machines of a) Process and b) End Event

The deactivation transition of the process’ state machine in figure 4.9a, has
an associated event described as [endEvent]enterFull. This means that the
transition has to be taken whenever an element that fulfills the role [endEvent]
generates an event of type enterFull. In this language, the role [endEvent]
describes the End Events that are associated to each Process 5.

This case is different from the previous ones for three reasons. Firstly, the
state machine is expecting an event generated by another open object. In the
previous examples the role was always [ME]. Secondly, if the process has more

5In this metamodel, the role [endEvent] is associated to the element Process, and is re-
stricted to elements of type End Event. Furthermore, the navigation expression associated to
the role is #self.endEvents (see section 4.2.3).
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than one End Event, then there is more than one possible source for the event.
This means that the Process does not care who the exact generator of the event
is, as long as it fulfills the role [endEvent]. Thirdly, the event in this case is
not generated by the entity of an open object; instead, it is a notification of a
change in a state machine: the event enterFull is generated when a transition
that targets the state Full is taken.

Analysis of the interaction mechanisms

The interaction mechanisms presented are complementary and can be compared
from three points of view. In the first place, method invocation is a synchronous
mechanism: when a method is invoked, it is executed immediately and the caller
cannot proceed until the execution of the method has finished. On the contrary,
events are processed asynchronously: they are stored on reception, and they are
processed at a later stage. However, it is not known in which order they are going
to be processed. Having the two alternatives (synchronous and asynchronous
interaction) is a positive feature, because each mechanism is adequate for certain
situations. For instance, method invocation may be used in the points of a process
where branches are synchronized (Joins), while event passing may be better for
points where branches are created (Splits).

Another important difference between events and method invocation is the
scope of the interaction. On the one hand, method invocation always involves
one source and one target. On the contrary, event passing is more similar to
a broadcast and the recipients of an event notification cannot be scoped. The
relevance of this difference can be illustrated in a control-flow language that
includes OR-Splits with conditions, such as YAWL (see the top part of figure
4.10). Using method invocation, the Split itself can evaluate each condition and
activate only some of the branches (figure 4.10a). Conversely, if event passing
is used, then all the ensuing tasks (T1, T2, and T3) receive the event and they
have to evaluate the conditions (figure 4.10b).

The other criterion to compare the interaction mechanisms is coupling. With
method invocations open objects are more coupled because of interface and struc-
ture dependencies. For instance, in case 2 the action giveToken knows that there
is a next gateway, and that it has to invoke the method setToken() ( see figure
4.8). Conversely, in case 3 the Process only knows that there is an element that
can generate the event enterFull; the Process is oblivious about the implemen-
tation of the End Event, or its location, or its cardinality. In a similar way, the
End Event is not aware of who is interested in receiving the events it produces.

4.2.3 Navigation language

In every metamodeling platform, it is important to be able to locate elements in
a model. The most basic means to do so is with the identifier of each element.
However, in many situations more powerful mechanisms are required.

In the context of programming languages, and particularly in the context of
Java, various navigation languages (or expression languages) have been devel-
oped. Using those languages it is possible to write expressions to evaluate in
the context of an object graph. The result of this evaluation is usually a collec-
tion of objects. Some of the best known navigation languages for Java are the
Object-Graph Navigation Language – OGNL [Dav04], the JSP Expression Lan-
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Figure 4.10 Differences between a) method invocation and b) event passing

guage [ABB+05], and MVEL [The06]. Furthermore, GPath [KGK+07], which is
integrated with Groovy, can also be used to navigate and select Java objects.

Those languages offer roughly the same set of basic characteristics, like navi-
gating object graphs using properties. In particular, they offer powerful means to
navigate properties where the cardinality is larger than 1. Furthermore, they can
also invoke methods of those objects and evaluate or compare their results against
other properties, against other methods’ results, or against some constants. On
the other hand, some of these languages offer more ‘advanced’ functionalities such
as the usage of variables and the definition of functions. Unfortunately, these
‘advanced’ functionalities have turned these navigation languages into scripting
languages. Thus, their implementation and adaptation is more complex than the
implementation of a single navigation language.

In order to navigate models based on open objects, we designed a navigation
language inspired on the aforementioned languages. The characteristics of this
language are all related to navigating the models, and they were heavily influ-
enced by the necessity of describing the roles. Furthermore, the implementation
of the language is not applicable to Java objects because it was built to be used
specifically with open objects.

To present the navigation language, we will first show some examples, and
then we will describe the main characteristic of the language. The following nav-
igation expressions are valid in the context of the simplified BPMN metamodel
shown in figure 4.5. They depend on the elements described in this metamodel
(Process, FlowElement, SubProcess, etc.), and on the relations established be-
tween them (flowElements, boundaryEventRefs). Furthermore, they rely on some
attributes which are not shown in the figure but are very important for BPMN
semantics (e.g. elements in BPMN can be marked as loops by setting an attribute
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called loopCharacteristics). In this metamodel the root element of a model is
always of type Process.

Sample navigation expressions

1. All the elements of the root process:
#root.flowElements

2. All the elements inside either the root process or one of the subprocesses,
depending on the context of evaluation:

#self.flowElements

3. All the subprocesses contained in the root process:
#root.flowElements.{? #this isOfType "SubProcess"}

4. All the boundary events associated to elements in the root process:
#root.flowElements.boundaryEventRefs

5. All the boundary events associated to elements in the root process, and in
its subprocesses, at every depth:

#root.flowElements.
<! #this.boundaryEventRefs −>

#this.{ (#this isOfType "SubProcess") ?
(#this.flowElements) : (nil)}>

6. The members of the root process that are loops and can be executed more
than 10 times:

#root.flowElements.
{? isNotNil? #this.loopCharacteristics &&

#this.loopCharacteristics::loopMaximum( ) > 10 }

7. The first two outgoing flows of an element:
#self.outgoing[0−1]

We now present the main characteristics of the navigation language, which can
be seen in the previous examples. Afterwards, we discuss two of these examples
in more detail. The specification of this language is presented in appendix C.

• The navigation language can be used to write expressions of two kinds:
paths describe sets of elements6, while value expressions describe the result
of invoking a method or evaluating a property on an element described by
a path.

In the examples, the expression #root.flowElements is a path and it
describes the set of elements in a Process. Conversely, the value expres-
sion #this.loopCharacteristics::loopMaximum() is used to invoke the
method loopMaximum() in an object located with a path.

6More precisely, ordered sets. In a path, the elements are organized according to some
criteria, and there are no repeated elements.
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• Expressions can be absolute or relative. Absolute expressions start with
the keyword #root , which refers to the root element of a model. The only
thing required in the context to evaluate an absolute expression is a model
instance.

• Relative expressions start with the keyword #self and are relative to an
element that must be provided as the context to evaluate the expression.

For example, if the Process at the root of the model is used as context
to evaluate the expression #self.flowElements , the expression produces
the same results as #root.flowElements . Instead, if another process is
passed as context to evaluate the expression, the set of elements obtained
with #self.flowElements will be the set of elements inside the passed
process.

• Expressions starting with #this are also relative but they have to be
evaluated in the context of another navigation expression.

• The language can be used to navigate relations between elements, and find
the elements that match each subexpression. For instance, the expression
#root.flowElements.boundaryEventRefs is evaluated in four steps.

1. First, the only element in the collection is the root of the model
( #root ).

2. Then, the only element currently in the collection (the root of the
model) is removed, and all the elements associated as ‘flowElements’
are added to the collection.

3. Then, the elements currently in the collection are removed, and all the
elements associated to them as ‘boundaryEventRefs’ are added to the
collection.

4. The last step is returning the collection assembled.

• It is possible to filter the elements added to a path based on their position in
a relation (for relations of type ‘sequence’) or based on the key (for relations
of type ‘map’).

For example, the expression #self.outgoing[0-1] can be evaluated on
an element where the relation outgoing is defined. The result of evaluating
this expression is a set with at most 2 elements, which are the first two
outgoing SequenceFlows of the element used as context.

• It is also possible to evaluate conditions using the elements currently in the
path. Conditions can be evaluated with respect to the types of the elements,
their properties, the result of invoking methods on them, or constants. Also,
it is possible to compose conditions by using boolean operations.

The expression #root.flowElements.{? #this isOfType "SubProcess"}
shows an example of this. In the first place, this expression selects the el-
ements associated as ‘flowElements’ to the root of the model. Then, these
elements are filtered by evaluating their type, and only those that are of
type SubProcess are kept on the collection.

• It is possible to add elements to the path in a recursive way (this is illus-
trated in one of the following examples).
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The previous examples presented the basic characteristics of the language.
We now present two additional examples which provide a further illustration of
the characteristics of the language.

Example 1 – The members of the root process that are loops and can
be executed more than 10 times

#root.flowElements.
{? isNotNil? #this.loopCharacteristics &&

#this.loopCharacteristics::loopMaximum( ) > 10 }

This path uses a conditional expression and finds all the members of the root
process which are marked as loops7 and can be executed more than 10 times. The
function isNotNil? verifies if there is an element that matches the expression.
The second part of the condition invokes the method loopMaximum( ) on the
result of the path #this.loopCharacteristics and then verifies if it is larger
than 10. In order to invoke a method it is necessary to have a path that describes
0 or 1 elements. It is a run time error to invoke a method using a path that can
return more than one element.

Example 2 – The boundary events associated to elements in the root
process, and in its subprocess, at every depth

#root.flowElements.
< #this.{ (#this isOfType "SubProcess") ?

(#this.flowElements) : (nil)}
−>
#this.boundaryEventRefs >

This expression not only selects events attached to elements contained directly
in the root process, but also looks for events attached to elements in subprocesses.
To achieve this, this expression uses the capabilities for recursion of the navigation
language. We will now analyze part by part this expression.

A recursive expression is described with a structure of the form:
< Conditional Expression −> Path >

Furthermore, a ‘Conditional Expression’ has a structure of the form:
(condition) ? ( alternativeTrue ) : ( alternativeFalse)

The semantics of this works as follows.
• The recursive expression is evaluated in a context, which is a collection

of elements. In this example, the recursive expression is evaluated in the
context of all the members of the root process. This is the result of the
expression #root.flowElements .

• Evaluating a recursive expression involves maintaining two collection of
elements: one represents the result of the expression; the other contains
the elements in the context that still have to be analyzed.

• The conditional expression is used to evaluate the elements in the context.
The ‘condition’ is evaluated for each element in the context and, depend-
ing on its result, the elements in ‘alternativeTrue’ or ‘alternativeFalse’ are
added to the context to be later evaluated.

7In BPMN this is achieved by setting the attribute loopCharacteristics.
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In the example, the conditional expression is the following:
{(#this isOfType "SubProcess") ? (#this.flowElements) : (nil)}

In this case, there is a conditional expression over the type of #this which
has two possible outcomes. If #this is indeed a SubProcess, the members
of this SubProcess are added to the context and are thus marked to be
explored. If #this is not a SubProcess, then there is no recursion, as
‘alternativeFalse’ is nil .

• The other side of the recursion expression indicates which elements have to
be used to assemble the final result. In this case, the expression

#this.boundaryEventRefs

indicates that the final path returned by the expression should include the
boundary events connected to all the elements evaluated.

Listing 4.5: Java code equivalent to the recursive navigation expression

1 SortedSet<BoundaryEvent> getBoundaryEventsRecursively(Process root)
2 {
3 SortedSet<BoundaryEvent> result = new TreeSet<BoundaryEvent>( );
4 SortedSet<FlowNode> toCheck = root.getFlowElements( );
5 Collection<FlowNode> checked = new TreeSet<FlowNode>( );
6

7 getBoundaryEvents(result, toCheck, checked);
8

9 return result;
10 }
11

12 void getBoundaryEvents(SortedSet<BoundaryEvent> result,
13 SortedSet<FlowNode> toCheck, Collection<FlowNode> checked)
14 {
15 if (toCheck.isEmpty( ))
16 return;
17

18 FlowNode nThis = toCheck.first( );
19

20 result.addAll(nThis.getBoundaryEventRefs( ));
21 if (nThis.isOfType("SubProcess"))
22 {
23 List<FlowNode> subElements = nThis.getFlowElements( );
24 for(FlowNode nThis2 : subElements)
25 {
26 if (!checked.contains(nThis2))
27 {
28 toCheck.addAll(nThis2.getFlowElements( ));
29 }
30 }
31 }
32

33 checked.add(nThis);
34 toCheck.remove(nThis);
35

36 getBoundaryEvents(result, toCheck, checked);
37 }

The recursive expression analyzed is equivalent to the Java program shown
in listing 4.5. This code shows two important aspects of the semantics of the lan-
guage. On the one hand, using SortedSets for result and toCheck ensures that
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elements are not repeated inside those collections, and that their order is main-
tained. On the other hand, the checked collection and the contains(nThis2)
verification serve to ensure termination. In this case it is not required because
the structure of the metamodel does not allow circular references (a subprocess
cannot be contained in itself), but these verifications are always present when
recursive expressions are used.

4.2.4 Open object definition

The specification and implementation of an open object entails four parts:

• The description of the general characteristics of the new element.

• The description of the state machine structure.

• The implementation of the entity

• The implementation of the actions associated to its state machine.

In this section we illustrate these steps using a concrete example. It is impor-
tant to note that the example is a base type, i.e. a type that is not an extension
of another type of the metamodel. In section 4.2.5 we will show how new open
objects are created on top of existing open objects.

Structure of an open object definition

The first part that we will analyze is the declaration of the general characteristics
of the open object. In the Cumbia platform, this is done with an XML file with
a structure as exemplified by listing 4.68. The Cumbia Kernel is capable of
interpreting the information provided in this file to create instances of this open
object. Furthermore, the Cumbia Kernel uses this information to perform various
consistency checks on the metamodels and on the models.

The definition of an open object can be divided in four sections: attributes of
the open object; relations with other open objects; information about the events
generated by the entity; and the roles relevant to the open object.

The attributes of an open object are the following:

• Name: Each open object must have an unique name within a metamodel.

• Entity Class: This is the name of the class for the entity of the open
object.

• Interface: This is the name of the interface for the entity. The entity class
must implement the interface.

• State machine: This is the name of the state machine of the open object.

• Abstract: It is possible to mark open objects as abstract. It is not possible
to create instances of abstract open objects, and thus they have to be
extended in order to be used.

8Appendix B.1 presents an XSD schema that formalizes this structure.
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Listing 4.6: Structure of an open object definition

1 <type name="Activity"
2 entityClass="sample.elements.Activity"
3 interface="sample.elements.IActivity"
4 statemachine="defaultActivity">
5

6 <!−− Relations −−>
7 <relation name="parentProcess" cardinality="simple"
8 relationType="simple" targetTypeName="Process"/>
9 <relation name="workspace" cardinality ="simple"

10 relationType="simple" targetTypeName="Workspace"/>
11 ...
12

13 <!−− Generated Events −−>
14 <event name="activated" />
15 <event name="activityAbort" />
16 <event name="executionEnded" />
17 ...
18

19 <!−− Roles Definition −−>
20 <role name="PROCESS" description="Parent process">
21 <role_detail type="Process">#self.parentProcess</role_detail>
22 </role>
23 <role name="WORKSPACE"
24 description="The workspace running inside the activity">
25 <role_detail type="Workspace">#self.workspace</role_detail>
26 </role>
27 ...
28

29 </type>

The second section of the description specifies the relations that the open
object has with other elements of the metamodel. Each relation is described
with the following parameters:

• Name: Each relation is named and this name must be unique within the
open object.

• Cardinality: This can either be ‘simple’, to indicate a ‘0..1’ cardinality,
or ‘multiple’, to indicate a ‘0..*’ cardinality. No other cardinalities are
currently supported by the metamodel.

• Relation type: For relations with ‘simple’ cardinality, the relation type
is always simple, because there may be at most one reference to an other
open object. For relations with ‘multiple’ cardinality the relation can
be implemented with a ‘sequence’ or with a ‘map’. In the first case, the
references are ordered. In the second case, there must be a key for each
reference.

• Target type name: This is the super-type of the elements in the other
end of the relation.

This information about relations is used to verify that models are conformant
to the restrictions of the metamodel (see section 4.3). There are 4 verifications
performed for each relation established between two elements in a model. These
verifications are performed when a model is loaded.

1. The relation must be declared for the source element, or one of its super-
types
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2. The type of the target element must be the target type declared or a sub-
type of it.

3. The compliance to the cardinality of the relation is verified.

4. For relations of type ‘map’, a key must be provided with the reference.

The third part of the description specifies the names of the events generated
by the entity of this open object. The entity of the open object will be capable of
invoking the generation only of the events declared in this section. Besides these
events, an open object can also generate the events declared in the state machine
description.

The fourth section is the description of the roles that are relevant for this open
object. For each role, at least one navigation expression has to be provided. Each
navigation expression also specifies the type of the elements expected to be found
with the expression. Furthermore, this part establishes the mapping between the
structure of the metamodel and the source events associated to transitions of the
state machines.

Structure of a state machine definition

The definition of the structure of a state machine is also done with an XML
file9. This file must have a structure such as the file depicted in listing 4.7. This
description is structured around the states of the state machine, and for each one
the transitions that start on it are described.

Listing 4.7: Structure of a state machine definition

1 <state_machine name="defaultActivity" initial_state="Inactive">
2

3 <!−− State Active −−>
4 <state name="Active"
5 enter_event="enterActive"
6 exit_event="exitActive">
7 <transition name="ActivityAborted" successor="Aborting">
8 <source_event source_name="ME" event_name="activityAbort" />
9 <before_event name="beforeActivityAborted" />

10 <after_event name="afterActivityAborted" />
11 <actions>
12 <action name="abortWS"
13 class="sample.actions.activity.AbortWS" />
14 ...
15 </actions>
16 </transition>
17 ...
18 </state>
19 ...
20 </state_machine>

For each state the following basic information is provided:

• Name: Each state in a state machine must have a unique name.

• Enter Event / Exit Event: The name of the events generated when
the state machine reaches the state, and when the state machine leaves the
state.

9In chapter 6 we present a graphical editor to define the state machines and generate the
corresponding XML files. Appendix B.2 presents an XSD schema that formalizes this structure.
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Furthermore, for each state a set of transitions are described. The common-
ality between those transitions is that all of them originate from the same state.
The following are the attributes that must be provided for each transition:

• Name: Each transition in a state machine must have a unique name.

• Successor: The name of the state targeted by the transition.

• Source Event: The event that triggers the transition. This description
must include a role name (that must match one of the roles described in
the open object, or in a super-type) and the name of an event. When a
metamodel is loaded by the Cumbia Kernel, the types declared for the roles
are used to verify if these events can be generated.

• Before Event / After Event: The name of the events generated when
the transition is taken (before executing the actions, and after executing
the actions).

Finally, each transition can have associated actions. Each action must have
a unique name (unique within the transition), and the name of the class that
implements the action. Furthermore, the order in which actions are defined is
relevant because they are executed in the order specified.

Implementation of the entity

Inside the Cumbia platform, the implementation of the entity of an open object
does not have to be done from scratch because the open objects framework offers
many base functionalities. Thus, the implementation of an entity can focus on
the behavior that is relevant to the domain. In order to have access to these
existing functionalities, the entity must be an extension to the class OpenObject.

Listing 4.8 shows a fragment of the implementation of the entity of the open
object called Activity. The two methods shown (abortActivity() and stop())
are declared in the interface IActivity.

The implementation of abortActivity() shows how to invoke the generation
of events, using the method generateEvent(String eventName).

On the other hand, the implementation of stop() shows how another el-
ement of the model is found by following the relation ‘workspace’ which was
declared in the description of the open object. The method getElement(String
relationName) is also implemented in the class OpenObject.

Figure 4.11 shows the structure of the main classes and interfaces in the open
objects’ framework10. This hierarchy is structured in five levels, and each level
has different responsibilities.

• Level 1 – Navigable Elements: these elements define the interface and
implement the behavior to navigate object graphs. The relations between
open objects are supported at this level.

• Level 2 – Metamodel platform: these elements implement the basic
functionalities of a metamodeling framework. At this level, it is possible to
have metamodels and models, although their elements do not have to be
open objects.

10Appendix A presents all the details about these interfaces.
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Listing 4.8: Extract of the implementation of the entity of an open object

1 public class Activity extends OpenObject implements IActivity
2 {
3 ...
4 public void abortActivity( )
5 {
6 generateEvent( "activityAbort" );
7 }
8

9 public void stop( ) throws CumbiaException
10 {
11 IWorkspace workspace = ( IWorkspace )getElement( "workspace" );
12 workspace.stop( );
13 ...
14 }
15 ...
16 }

• Level 3 – Open objects platform: at this level, the metamodeling
platform is more specific and its elements are either open objects, or are el-
ements that can interact with open objects. For instance, the event passing
mechanisms are implemented at this level.

• Level 4 – Open objects: these elements implement the complete struc-
ture and semantics of the open objects, using what was defined in the
previous levels. For instance, the classes to support the state machines are
implemented at this level.

• Level 5 – Metamodel element: in this level of the hierarchy are imple-
mented the elements used in specific metamodels. In the case depicted in
the figure, at this level we have the entity of Activity and its interface.

The classes discussed and included in the figure are just a subset of the classes
defined in each layer of the Cumbia Kernel. Besides these classes there are many
others that implement related functionalities. For instance, the classes to load
metamodel and model definitions are implemented at the metamodel platform
level. The implementation of those classes is refined in levels 3 and 4, in order to
load open object specific information.

Implementation of the actions

Each action associated to a transition is implemented in a different class. This
class must implement the interface IAction which is defined in the open object
kernel, and only declares the method execute() (see listing 4.9).

The parameters in the method are the context to execute the action. These
parameters provide the following information:

• Event: This is information about the event notification that triggered
the transition. Using this information, it is possible to have access to the
element that generated the event.

• Transition: This is the transition where the action is installed.
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Figure 4.11 Basic classes and interfaces in the open object’s framework

• Element: This is the element that owns the state machine with the tran-
sition. Using this reference it is possible to query the state of the element,
invoke one of its methods, and also navigate the model. For instance, in the
sample code the action finds the Workspace of the Activity and invokes
its method abort().

Listing 4.9: Implementation of an action

1 public class AbortWS implements IAction
2 {
3 public void execute( EventNotification event, Transition transition,

IOpenObject element )
4 {
5 // Implementation of the action
6 IAtomicActivity activity = ( IAtomicActivity )element;
7 IWorkspace workspace =
8 ( IWorkspace )activity.getElement( "workspace" );
9 workspace.abort( );

10 }
11 }

4.2.5 Extension mechanisms

In metamodeling platforms, the relation of inheritance or extension between
metaclasses serves two purposes. On the one hand, it contributes to structuring
the metamodel. For instance, in class-based object oriented frameworks, hier-
archies of classes are created with inheritance relations, and these relations are
used to handle polymorphism. On the other hand, inheritance can be used to
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define new metaclasses as extensions to existing ones, instead of doing it from
scratch. Therefore, extension is also a reuse mechanism.

The specific semantics of extension relations vary for each platform. As an
example, consider class inheritance in C++ and in Java. Although they share
many similarities, there are also important differences that have to be considered
when using those languages. In particular, the contrast between static method
binding in C++ and dynamic method binding in Java, is a clear manifestation
of the different semantics of the inheritance relation [Cra07].

Since open objects define several additional elements with respect to standard
objects, we had to specify new semantics for the extension relation. Moreover,
since open objects are not composed of a single part, we refined the extension
relation to differentiate between extensions to the state machine and extensions
to the entity. In the rest of the section we will discuss the different types of
extensions that can be used to define new open objects, which can be combined
to a certain degree. In section 4.8 we will illustrate these extensions in a concrete
metamodel.

The following are the five types of extensions that can be used to create
new open objects. These can be applied in combination to define new extended
elements with greater flexibility. All the characteristics that are not explicitly
modified, are inherited by the extended elements.

• Modifications to the entity description.

• Modifications to the relations.

• New implementation of the entity.

• Modifications to the state machine.

• New state machine.

These five types of extensions, as well as their subdivisions form the hierarchy
depicted in figure 4.12.

Figure 4.12 Hierarchy of extensions
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Modifications to the entity description

The first type of changes only affects the details of the entity that are provided
in the description of the open objects. These changes can be further divided in
three kinds.

1. New interface
The first possible change to the description of an entity is to change its in-

terface. This does not affect any of the other aspects of an open object or its
entity: it does not affect the events generated, the roles available, or the state
machine. The motivation for changing the interface is usually to provide new
services. Therefore, changing the interface of the entity usually implies changing
the class that implements that interface.

A change of interface only requires the name of the new interface that the
entity must implement (see listing 4.10).

Listing 4.10: Extension example: new interface

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <new_entity interface="cumbia.samples.IExtendedInterface" >
3 ...
4 </new_entity>
5 </extended_type>

2. Additional events
Another way of extending the entity of an open object is by declaring extra

events that it can generate. This is usually accompanied by a change in the
implementation of the entity, which triggers the generation of these new events.

Listing 4.11 shows how an extended element is described to generate addi-
tional events with respect to the base element.

Listing 4.11: Extension example: additional events

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <new_entity>
3 <new_event name="additionalEvent1" />
4 <new_event name="additionalEvent2" />
5 ...
6 </new_entity>
7 </extended_type>

3. Additional roles
The third extension to an entity adds new roles that can be of relevance to

its state machine. As for base elements, the definition of additional roles requires
the type of elements, and some navigation expressions to find the elements that
belong in the role. This is illustrated in listing 4.12.

Modifications to the relations

Another way of extending an element is by adding new relations. Listing 4.13
shows how this is done to create an ExtendedElement that extends the BaseElement
by adding a new relation with the element OldElement.

This kind of extension is frequently accompanied by changes to the entity’s
implementation, and also by the definition of new roles based on the new relations.
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Listing 4.12: Extension example: additional roles

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 ...
3 <new_role name="NEW_ROLE" >
4 <role_detail type="OldElement">
5 ... <!−− Navigation expression to find the elements −−>
6 </role_detail>
7 ...
8 </new_role>
9 ...

10 </extended_type>

Listing 4.13: Extension example: new relations

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <new_relation name="connections" cardinality="multiple"
3 relationType="sequence" targetTypeName="OldElement"/>
4 ...
5 </extended_type>

New implementation of the entity

When this kind of extension is applied, a new entity implementation is used
in the extended open object. A possible motivation for this is a change to the
description or to the interface of the entity, as described before. Nevertheless, this
extension mechanism can also be applied to specialize or to modify the behavior
of the entity.

The most frequent situation we have found to apply this extension mechanism
is to create specialized tasks or activities. Generally, workflow specification lan-
guages include generic activities that have to be configured somehow to perform
specific actions (see figure 4.13a). For instance, in order to use Invoke nodes in
BPEL, they need to be configured with the information of a Partner Link. The
problem with this is that the semantics of the nodes is limited by the configu-
ration system. For instance, in BPEL it is not possible to configure an Invoke
node to choose among similar service providers based on external criteria.

The alternative to a configuration approach is to have a hierarchy of elements
that perform specific tasks. For instance, in YAWL a decomposition has to be
specified for each Task appearing in a process. The platform provides several of
those decompositions, and additional ones can be introduced by end users (see
figure 4.13b).

If YAWL decompositions are modeled with open objects, their specializations
are naturally extensions where the implementations of entities have been replaced.
Considering that the base element (Decomposition) has a method start( ) that
is invoked by a Task when it is activated, then each extension to Decomposition
should implement this method in a different way.

The following code snippet (listing 4.14) is the concrete way to define such
an extended element in a metamodel. As it can be seen, a new element is defined
(ManualDecomposition), and the only parameter specified is the name of the
class that implements its entity. For all the other aspects, this new element is
similar to an existing element called Decomposition.
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Figure 4.13 a) The configuration approach (BPEL) vs. b) the specialization approach
(YAWL).

Listing 4.14: Extension example: new implementation of the entity.

1 <extended_type extends="Decomposition" name="ManualDecomposition">
2 <new_entity
3 entityClass="cumbia.yawl.decompositions.ManualDecomposition"/>
4 </extended_type>

Modifications to the state machine

The third kind of extensions applicable to the open objects involve changes to the
structure of the state machines. However, some changes to the state machines
are more likely than others to introduce consistency problems in a metamodel.
Therefore, we decided to support only four kinds of changes, which add additional
elements to the state machine, and which have a small possibility of creating
inconsistencies. On the contrary, changes that remove elements from the state
machine, or that change its structure, are very likely to introduce consistency
problems.

As an example of this, consider the simple scenario depicted in figure 4.14. In
this scenario, initially there are two kinds of open objects: Light is an entity that
can be either On or Off ; and Control represents a switch that has two states,
namely Deactivated and Activated, which are connected with the transitions ac-
tivation and deactivation. Light and Control interact when the state machine
of Control transitions to the state Activated. At that point, the state machine
of one or more Lights go from Off to On. The procedure is analogous when the
Control is deactivated.

Now, we are going to consider an extension to Control that is only a Button.
This extension was created by changing both the structure of the state machine
of Control and its entity. Nevertheless, the idea is that Button is a particular
kind of Control. This button should be pressed to turn the lights on, and it
should be pressed again to turn the lights off. However, the button is not aware
of the state of the lights, and therefore it only has one state. The problem in this
case is that Light is expecting the event enterActivated, but if the control is
a Button, the event is never going to be generated. If Light were expecting the
events afterActivation and afterDeactivation, the inconsistency would still
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Figure 4.14 Inconsistency scenario

be present.
As we mentioned before, open objects support four categories of changes to

the structures of the state machines. These categories were selected because they
conserve most of the structure of the state machines, and thus they are less likely
to introduce inconsistencies. Even with this reduced set of changes supported, it
is not possible to guarantee the consistency.

The types of changes supported are the following:

1. Additional actions

2. Additional transitions

3. Additional states

4. New intermediate states

When a new extended element which modifies the state machine is created,
several of the described categories of changes can be combined. The following
listing (listing 4.15) shows the basic structure to define such an extended ele-
ment. Inside the element <state_machine_extensions> several changes can be
described, and they are applied in order to the base state machine. If the pro-
vided categories of changes are insufficient, the state machine can be replaced
altogether.

1. Additional actions
This category of changes to a state machine simply adds new actions to exist-

ing transitions. These new actions can only be added at the end of the sequence
of actions associated to a transition.

Listing 4.16 shows how two new actions are associated to transition transi-
tionToExtend in the element ExtendedElement. For each new action to add, it
is necessary to specify its name and the name of the class that implements it.

2. Additional transitions
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Listing 4.15: Empty state machine extension

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <state_machine_extensions>
3 ...
4 <! Extensions to the state machine −−>
5 ...
6 </state_machine_extensions>
7 </extended_type>

Listing 4.16: Extension example: additional action

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <state_machine_extensions>
3 ...
4 <!−− Add Actions to transition −−>
5 <add_actions transitionName="transitionToExtend">
6 <action name="actionName1"
7 class="cumbia.samples.extension.Action1" />
8 <action name="actionName2"
9 class="cumbia.smaples.extension.Action2" />

10 </add_actions>
11 ...
12 </state_machine_extensions>
13 </extended_type>

This category of changes to a state machine adds additional transitions be-
tween existing states. It is also possible to add a new transition that starts and
ends in the same state.

To add a new transition it is necessary to specify the same details that are
used when a transition is defined in a base state machine. These details include:
the name of the transition; the states connected with the new transition; the event
that triggers the transition; the events that are generated when the transition is
taken (before and after executing its activities); and the details about any action
associated to the new transition.

Listing 4.17 adds a new transition to the state machine of ExtendedElement.

Listing 4.17: Extension example: additional transition

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <state_machine_extensions>
3 ...
4 <!−− Add Transition −−>
5 <add_transition name="newTransition"
6 source_state="state1" successor="state2">
7 <source_event source_name="ME" event_name="triggerNewTrans" />
8 <before_event name="beforeNewTransition" />
9 <after_event name="afterNewTransition" />

10 <actions>
11 ...
12 </actions>
13 </add_transition>
14 ...
15 </state_machine_extensions>
16 </extended_type>

3. Additional states
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This category of changes adds additional states to an existing state machine.
Since state machines are connected graphs, adding a state also requires the addi-
tion of at least one incoming transition that starts from an existing state: in this
context, incoming transitions have as destination the new state, while outgoing
transitions start from the new state.

As shown in listing 4.18, the definition of a new state requires some basic
details about the new state and also the information about all the incoming and
outgoing transitions. The information about the new state includes its name,
the events associated to it, and whether this will be the initial state for the state
machine.

Listing 4.18: Extension example: new state

1 <extended_type name="ExtendedElement" extends="BaseElement">
2 <state_machine_extensions>
3 ...
4 <!−− Add State −−>
5 <add_state name="newStateName"
6 enter_event="enterNewState"
7 exit_event="exitNewState"
8 initial_state="false">
9 <incoming_transitions>

10 <transition name="newTransitionIn" source_state="state1">
11 ...
12 </transition>
13 ...
14 </incoming_transitions>
15 <!−− Outgoing transitions are optional −−>
16 <outgoing_transitions>
17 <transition name="newTransitionOut" successor="state1">
18 ...
19 </transition>
20 ...
21 </outgoing_transitions>
22 </add_state>
23 ...
24 </state_machine_extensions>
25 </extended_type>

4. New intermediate states
The fourth category of changes supported adds intermediate states. The

difference between this kind of changes and the preceding ones is that in this
case the new state is connected to an existing transition. Figure 4.15 illustrates
the two possible ways to do this. In the original situation, there is a transition
called fromAtoB that connects the states A and B. In the situation where the
new state is added before the existing transition, a new transition called newTr
is used to connect states A and NewState. Additionally, the existing transition
fromAtoB is reconfigured to connect NewState and B. The organization of the
new and the old transition is reversed when the new state is added after the
existing transition.

It should be noted that when an intermediate state is added all the existing
events are kept. The only thing that changes is that intermediate events are
added.

The following snippet of code shows how an intermediate state is added after
an existing transition. In this case, information is provided about the new state
and about the new transition.



Workflow Models based on Open Objects 103

Figure 4.15 New intermediate state possibilities: located a) before, and b) after

Listing 4.19: Extension example: new intermediate state

1 <extended_type name="ExtendedWorkspace" extends="Workspace">
2 <state_machine_extensions>
3 ...
4 <!−− Add Intermediate State −−>
5 <add_intermediate_state transitionName="fromAtoB" location="after">
6 <additional_state name="NewState"
7 enter_event="enterNS" exit_event="exitNS">
8 <additional_transition name="newTr">
9 ...

10 <!−− Details about the transition −−>
11 ...
12 </additional_transition>
13 </additional_state>
14 </add_intermediate_state>
15 ...
16 </state_machine_extensions>
17 </extended_type>

New state machine

The last kind of extension mechanism entirely replaces the state machine of
the base element. This is done when the structure of the state machine of the
extended element is incompatible with the state machine of the base element. The
drawback of this, is that it is easier to introduce inconsistencies in a metamodel
when this mechanism is used.

As an example, consider the life cycle of a Decomposition in YAWL (figure
4.16): every work item has to be offered, allocated and started before being
completed. However, this life cycle is not compatible with automatic activities,
that do not need to be offered nor allocated. Therefore, a different state machine
is required.

The following is the concrete way to define such an extended element in a
metamodel (listing 4.20). A new element is defined (AutomaticDecomposition),
and the only parameter specified is the file with the description of the state
machine. For all the other aspects, this new element is similar to an existing
element called Decomposition.
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Figure 4.16 Life cycle of a Work Item in YAWL [The08]

Listing 4.20: Extension example: new state machine.

1 <extended_type name="AutomaticDecomposition" extends="Decomposition">
2 <new_state_machine name="adSM" file="AutoDecSM.xml" />
3 </extended_type>

4.2.6 Other perspectives on open objects

Open objects have similarities to other works and proposals, both with respect
to the general goals sought, and to the strategies and tactics utilized. We will
now discuss some of these works, and we will focus on the main similarities and
differences.

APEL is a graphical and enactable formalism, and also a platform for building
process support systems [DEA98, EVLA+03]. There are several key ideas that
Cumbia adopted, which were first developed and tested in APEL. One of them
is the usage of state machines or, in APEL’s terminology, state diagrams - SD.
In APEL, the SDs describe the evolution of entities over time, and the events
and conditions that cause state changes. This is conceptually very similar to
what the state machines of open objects achieve, and their differences are mainly
of a technical nature. For example, while open objects use roles and the types
of events to filter them, in APEL events are broadcasted and rules are used to
decide if a given state change should occur. Other differences can be found in
the events generated. For example, in Cumbia a temporal signal does not exist;
supporting it would require the development of a special kind of open object.

A central part of APEL is a base metamodel that defines a series of concepts
that are common to all process based applications. This base metamodel can be
extended to support specialized applications, using mechanisms that are similar
to those found in the open objects. For example, a new element can be created
as an extension to an existing one and inherit its SD. If necessary, subtypes can
be introduce modifications to the SD, but it is only allowed to add new states or
transitions. In chapter 5 we provide a little more information about APEL, and
about the strategy to extend the base process metamodel by means of composing
multiple domains.

In their book about metaobject protocols, Kiczales, des Rivières, and Bobrow
[KdRB91] discuss and illustrate an idea for enabling users to create their own
languages, or modify existing ones. This is achieved by means of interfaces to the
language implementations, which they call metaobject protocols. This approach
results in open languages, that are not completely fixed, and can be adapted to
create variants that suit specific situations. This objective is extremely close to
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the goal in Cumbia of supporting very expressive languages based on concepts of
particular domains.

We can consider that the open objects specification defines a metaobject pro-
tocol, and that the Cumbia Kernel and the open objects framework implement
this specification. Since they are structured following an object oriented ap-
proach, the parallel to the metaobject protocol presented in [KdRB91] is even
closer. The basic design and implementation of the open objects defines a fam-
ily of languages, where every language can be obtained by applying extension
mechanisms to refine or extend the behavior of existing open objects. In the
previous section, we have shown that many of those extension mechanisms are
based on the key object-oriented concepts of subclassing and specialization, just
as is suggested in [KdRB91].

An important concept in the design of metaobject protocols if that of metaob-
jects, which are reifications of the base elements of the languages. In the case of
object-oriented languages, these metaobjects include classes and methods. In the
case of open objects, the relevant metaobjects are the open objects themselves
and their constituent parts (entities, state machines, and actions). Currently,
further decompositions are not possible, i.e. in the metaobject protocol for open
objects is not possible to treat the methods of an entity on par with the actions
of a state machine. The execution of models based on open objects is the main
responsibility of the Cumbia Kernel, and it is able to do so while oblivious of the
specific behavior defined in the metamodel. This is possible because the Cumbia
Kernel only operates in terms of the metaobjects previously mentioned.

Reflection, is a technique frequently used with metaobject protocols, and
it is also a technique used extensively in the Cumbia Kernel. The main idea
behind the usage of reflection in both cases is that it serves to open up language
implementation, while restricting the elements that can be effectively accessed.
This strategy rises the level of abstraction, and hides unnecessary implementation
details.

The characteristics of the open objects and of the Cumbia Kernel, and also
the ways to define new languages, makes it possible to draw some relations be-
tween Cumbia and works on extensible interpreters. As in the case of Cumbia,
the goal of extensible interpreters is to support extensible languages. According
to [Sch71], there are two alternative approaches to implement an extensible inter-
preter. In the first one, the interpreter offers a set of primitive instructions, which
implement some basic semantics. Language implementations provide instructions
with concrete implementations based on the primitives provided. Later on, when
programs written with the language are executed, the interpreter has to find and
execute the sets of primitives to execute, given the instructions in the program
and the behavior associated to each one in the language implementation.

The outlined approach results in interpreters that provide only a set of low
level instructions and where all languages are implemented using the same one.
Therefore, when new languages are defined it does not matter if they are base
languages or if they extend existing ones, because they end up being defined in
terms of the same primitives. This creates performance problems, as it introduces
an overhead on the interpretation [Sch71].

The second approach of [Sch71] to implement extensible interpreters results
in a different strategy to handle language extensions. In this approach, the set of
base instructions is not fixed, but instead grows with the languages. Therefore,
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the definition of an extended language produces an extended interpreter, whose
instructions reflect the operations in the extended language, and are at the same
level as the primitives originally provided.

Depending on the point of view, we can see that both approaches are present
in Cumbia. If the Cumbia Kernel and the operations of the open objects are
considered as the basis of the interpreter, the view presented is very close to the
first approach: the basic set of instructions never changes and the elements of
each language are always described using the same terms.

Conversely, if we analyze Cumbia from the stand point of the languages imple-
mented on top of it, we can see a picture that is closer to the second approach of
[Sch71]: if we build a new language on top of an existing one, the elements of the
new language are treated in the same exact way as the elements of the base one.
This property is maintained even when language extensions are accumulated.

State machines are a central element in the open objects proposal, and they
are used for two purposes: one is to represent the state of the elements, and the
other is to coordinate their execution. In other proposals, state machines fulfill
different roles, and, in particular, they are used for verification and analysis
purposes. For instance, ensuring the correct interoperation of the elements in a
component based architecture is a task that can only provide limited results if
based on the static analysis of component interfaces. On the contrary, doing an
analysis of the behavior and interaction between components [BCP07, BBS06],
when the behavior is specified by means of state machines, is likely to provide
more useful information.

STSLib is another approach to model component based systems, and espe-
cially, to model their types, behaviors, and interactions [FR08, FLR08]. Accord-
ing to its documentation, STSLib offers four kinds of functionalities: firstly, it
supports the formal design of software components using symbolic transition sys-
tems (STS) to achieve this goal; then it supports their verification using STSs;
the third point is the enactment of the component models, for which STSLib
offers an execution platform; finally, STSLib is also capable of interfacing with
external tools, such as model-checkers.

Several parallels can be traced between elements of Cumbia and elements
of STSLib, and especially with respect to the enactment of component models.
One clear parallel is that primitive elements are typed, which is also a core char-
acteristic of open objects. Furthermore, composites in STSLib relate primitive
components, and thus fulfill a role similar to that of metamodels in Cumbia.
Primitive components are also composed of two complementing aspects: on the
one hand, there is the data part of the component, which corresponds to the
entity of open objects; and on the other hand, there is the protocol which attains
the same goals as state machines in open objects.

4.3 Metamodels and model definition

This section has two parts. The first one shows how a metamodel is constructed
from the definition of the open objects used in it. Then, the second part shows
how models conformant to a given metamodel (or an extension to it) are built.
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4.3.1 Metamodel definition

The definition of a new metamodel is basically the union of the open objects
included in it. Listing 4.21 shows the basic structure of a metamodel definition,
which can be divided in four main parts11.

The first part only indicates the name and the version of the metamodel.
These details are important to assess the compatibility of the models.

The second part of the metamodel description has references to the files with
the specifications of the state machines. This information about the state ma-
chines is external to the specification of the open objects to make it possible for
elements to share their state machines.

The third part of the file is the central one, as it contains the descriptions
of the open objects included in the metamodel. These open objects can be
base types or extended types. The process of loading a metamodel performs the
following checks to assess the consistency of the information described in this file.

• Check that the information required for each element type is complete.

• Check that names that should not be duplicated, are not duplicated (names
of element types, states within a state machine, relations in an element type,
etc.).

• Check that relations are properly defined (the type and cardinality are
valid, and the type appears in the metamodel).

• Check that extended elements extend types declared in the metamodel.

• Check that the roles that appear in the state machines are declared in the
metamodel.

• Check that roles are properly defined. This include checking that the types
appear in the metamodel and that navigation expressions are well formed
and match relations in the metamodels.

• Check that the events expected by the state machines match with the events
generated by the types and super-types that can assume a role.

The final part of a metamodel definition is the configuration of the runtime
controller of the metamodel. The runtime controller is a component required by
the kernel that implements functional requirements related to the execution of
the models. There is a generic runtime controller that provides a basic implemen-
tation of those operations, but they can be specialized for a metamodel if it has
specific requirements. A metamodel definition must select an implementation of
the runtime controller, by providing the name of the class, as well as additional
configuration information. All the details about the functionalities of the runtime
controller are discussed in section 4.4.

4.3.2 Model definition

The definition of models is done with an XML file, which can be divided in four
main parts, as shown in listing 4.2212. The structure of the files to define the

11Appendix B.1 presents an XSD schema that formalizes this structure.
12Appendix B.3 presents an XSD schema that formalizes this structure



108 4.3. Metamodels and model definition

Listing 4.21: Basic structure of a metamodel definition

1 <!−− 1. Metamodel definition −−>
2 <metamodel name="XPM" version="1.0">
3

4 <!−− 2. Reference to state machine specifications −−>
5 <state_machine_reference name="defaultXPMNode" file="xpmNodeV3.xml"/>
6 <state_machine_reference name="defaultProcess" file="processV3.xml"/>
7 <state_machine_reference name="defaultWorkspace"
8 file="workspaceV3.xml" />
9 ...

10

11 <!−− 3. Open objects included in the metamodel −−>
12 <!−− XPMNode −−>
13 <type name="XPMNode"
14 entityClass="uniandes.cumbia.xpm.elements.XPMNode"
15 interface="uniandes.cumbia.xpm.elements.IXPMNode"
16 statemachine="defaultXPMNode"
17 abstract="true">
18 ...
19 </type>
20

21 <!−− Process −−>
22 <extended_type name="Process" extends="XPMNode">
23 ...
24 </extended_type>
25

26 <!−− Worspace −−>
27 <type name="Workspace"
28 entityClass="uniandes.cumbia.xpm.elements.workspace.Workspace"
29 interface="uniandes.cumbia.xpm.elements.workspace.IWorkspace"
30 statemachine="defaultWorkspace">
31 ...
32 </type>
33 ...
34

35 <!−− 4. Runtime controller configuration −−>
36 <runtime class="uniandes.cumbia.xpm.runtime.XPMRuntime">
37 <memory>
38 <data name="admin" type="String">admin</data>
39 </memory>
40 </runtime>
41 </metamodel>

models does not vary with the metamodel. Therefore, it is not necessary to
develop a new language and a new parser for each workflow language supported.

As with metamodel definitions, the first part of a model definition provides
general information about the model. In this case, this information includes the
name of the model, and the name and version of the metamodel that it should
be conformant to.

The second part of a model definition describes extensions to the metamodel
that are required for that specific model, and only for that specific model.

The third part of the model definition provides additional configuration for
the runtime controller that is to be used with that model.

Finally, the fourth and most important part describes the structure of the
model, which includes its elements (e.g. the activities of a process) and the way
in which they have to be related (e.g. with flows between them).
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Listing 4.22: Basic structure of a model definition

1 <!−− 1. Model definition −−>
2 <definition modelName="Event Registration" metamodel="XPM" version="1.0">
3

4 <!−− 2. Extensions to the metamodel −−>
5 <metamodel_extensions>
6 ...
7 </metamodel_extensions>
8

9 <!−− 3. Runtime controller configuration −−>
10 <runtime class="...">
11 ...
12 </runtime>
13

14 <!−− 4. Model Structure −−>
15 <model_structure root="MainProcess">
16 <elements>
17 ...
18 </elements>
19

20 <connections>
21 ...
22 </connections>
23 </model_structure >
24 </definition>

Metamodel extension

In many cases, the elements included in a metamodel are not sufficiently special-
ized to build concrete workflows. For instance, in the case of BPMN the element
called Task represents any activity that is part of a business process. Among
others, Tasks serve to represent manual activities performed by humans, activ-
ities that transform data, and automatic activities that interact with external
applications. It is clear that an implementation of the BPMN metamodel cannot
provide an implementation of Task that can fulfill all the required responsibilities.
Therefore, in order to have executable BPMN models, the BPMN metamodel has
to be extended to provide adequate specializations of the element Task. Each
one of those will be capable of performing one of the type of atomic activities
required in that particular business process13. For example, one specialization
could serve to consume remote services using the SOAP protocol, another one
could serve to transform the data obtained from that service, and a third one
could serve to require some human input through some external application.

In the case of Cumbia, for each model a metamodel extension can be pro-
vided which builds over the base metamodel declared in the attribute of the
model. Since the elements in a metamodel extension are expected to be be
very specific to the metamodel, the specification of this extension is included
in the file that contains the description of the model. The definition of an ex-
tended metamodel, which is shown in listing 4.23, uses the same mechanisms
described in section 4.2.5 to describe the extended types. In the example pro-
vided, three elements are added to the metamodel that was used to describe
the process (XPM according to listing 4.22). The elements in the sample ex-

13In some metamodels the elements are detailed enough and thus do not need to be spe-
cialized, but only configured. For example, a metamodel for WS-BPEL should include from
the beginning configurable elements to invoke SOAP web services synchronously and asyn-
chronously, and elements to transform data using XSLT.
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tended metamodel are called AutoProcess, StoreInformationWorkspace, and
UploadInformationWorkspace.

Listing 4.23: Definition of model-specific metamodel

1 <!−− 2. Extensions to the metamodel −−>
2 <metamodel_extensions>
3 <!−− An extended process −−>
4 <extended_type extends="Process" name="AutoProcess">
5 <state_machine_extensions>
6 <add_actions transitionName="StartA">
7 <action
8 class="uniandes.cumbia.xpm.tests.ActionAssignProcessResponsible"
9 name="registerProcessResponsible"/>

10 </add_actions>
11 </state_machine_extensions>
12 </extended_type>
13

14 <!−− Ad−hoc workspace StoreInformationWorkspace −−>
15 <extended_type extends="Workspace" name="StoreInformationWorkspace">
16 <new_entity
17 entityClass="uniandes.cumbia.xpm.tests.StoreInformationWorkspace"/>
18 </extended_type>
19

20 <!−− Ad−hoc workspace UploadInformationWorkspace −−>
21 <extended_type extends="Workspace" name="UploadInformationWorkspace">
22 <new_entity
23 entityClass="uniandes.cumbia.xpm.tests.UploadInformationWorkspace"/>
24 </extended_type>
25

26 </metamodel_extensions>

Runtime controller configuration

For each model, it is also possible to provide additional configuration details for
the Runtime Controller to use. For example, listing 4.24 shows how to configure
the controller to enable its instances to be debugged. Additionally, each model
can also use an implementation of the runtime controller different from the one
provided by the metamodel. For simplicity in the implementation, the config-
uration of a runtime controller uses the same memory structure that is used in
metamodel elements.

Listing 4.24: Runtime controller configuration

1 <runtime>
2 <memory>
3 <data name="debug" type="String">true</data>
4 </memory>
5 </runtime>

Model structure

The last part of a model definition is the specification of its structure, which
must be conformant to the specified metamodel and to the extended metamodel.
The structure of a model is specified in two parts: first the elements used in it
are declared, and then the connections between them are specified.
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Listing 4.25: Definition of the elements of a model

1 <!−− 4. Model Structure −−>
2 <model_structure root="MainProcess">
3 <elements>
4 <element name="MainProcess" typeName="AutoProcess" />
5

6 <element name="StoreInformation"
7 typeName="AutoActivity" />
8 <element name="StoreInformationWS"
9 typeName="StoreInformationWorkspace"/>

10

11 <element name="UploadInformation"
12 typeName="AutoActivity" />
13 <element name="UploadInformationWS"
14 typeName="UploadInformationWorkspace">
15 <memory>
16 <data name="url" type="String">
17 http://localhost/uploadInfo.php
18 </data>
19 </memory>
20 </element>
21 ...
22 </elements>
23

24 <connections>
25 ...
26 </connections>
27 </model_structure>

The declaration of the elements appearing in a model is exemplified in listing
4.25. As it is shown, each element in the model has a name which has to be
unique in the model. The type of each element is also specified, and this type
name must match with the name of a type in the metamodel or in its extension.

It is also possible to configure the elements by providing data to include in
their memory14. In this way, when instances of the model will be created, the
elements will have that information loaded in their memories. In the example
presented, only the element called ‘UploadInformationWS’ requires a special con-
figuration. This element is of type UploadInformationWorkspace, which is an
extension to the type Workspace and was declared in the extended metamodel.
Furthermore, from listing 4.25 it results that this type is configured by putting
in its memory a data element of type String with the name “url”.

The second part of a model structure declaration is the specification of the
associations established between the elements previously described. These as-
sociations are based on the relations15 declared for each type and we call them
connections.

Listing 4.26 shows sample connections between elements in the model. The
following are the important details abut these connections.

• For each connection, the sourceElement and the targetElement must be
elements declared in the model.

• The name of the relation in each connection (relationName) must match
the name of a relation declared in the type of the source element. The

14The characteristics and the rationale of the memory of open objects was described in section
4.2.1.

15See section 4.2.1 for information about relations and its valid attributes.
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Listing 4.26: Definition of connections between elements of a model

1 <model_structure root="MainProcess">
2 <elements>
3 ...
4 </elements>
5

6 <connections>
7 <!−− Activity StoreInformation −−>
8 <connection relationName="activities" sourceElement="MainProcess"
9 targetElement="StoreInformation"/>

10 <connection relationName="parentProcess"
11 sourceElement="StoreInformation"
12 targetElement="MainProcess"/>
13 <!−− Workspace of StoreInformation −−>
14 <connection relationName="workspace" sourceElement="StoreInformation"
15 targetElement="StoreInformationWS"/>
16 <connection relationName="activity" sourceElement="StoreInformationWS"
17 targetElement="StoreInformation"/>
18

19 <!−− Activity UploadInformation −−>
20 <connection relationName="activities" sourceElement="MainProcess"
21 targetElement="UploadInformation"/>
22 <connection relationName="parentProcess"
23 sourceElement="UploadInformation"
24 targetElement="MainProcess"/>
25 <!−− Workspace of UploadInformation −−>
26 <connection relationName="workspace" sourceElement="UploadInformation"
27 targetElement="UploadInformationWS"/>
28 <connection relationName="activity"
29 sourceElement="UploadInformationWS"
30 targetElement="UploadInformation"/>
31 ...
32 </connections>
33 </model_structure>
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relation can also be declared for a super-type of the source element.

• The type of the target element must be compatible with the type declared
for the relation. This means that the target type must be of the type
declared, or of a sub-type.

• If a relation has the cardinality type ‘multiple’, then many connections
with the same sourceElement and the same relationName may appear in
the model. For instance, the relation ‘activities’ is defined as ‘multiple’ in
the type Process. Therefore, it is valid to have several connections between
MainProcess and other elements, using the relation ‘activities’.

• The order in which connections are defined is relevant to relations of type
‘sequence’: in those cases, the order of the associations between the open
objects’ instances matches the order of the connections declared in the
model specification.

• For relations of type ‘map’, the additional attribute key must be used to
associate two open objects.

4.4 Model execution

This section analyses the execution of open objects based models. There are two
main elements involved in this. On the one hand, there is the Cumbia Kernel
whose main responsibility it is to coordinate the execution of the elements in a
model. To do so, the Cumbia Kernel handles all the tasks related to generating
and distributing events.

Figure 4.17 A model instance at run time

On the other hand, there is another element that intervenes in the execution
of a model. We called it the Runtime Controller, and it can be considered part
of the model instance because there is one instance of it for every model instance
(see figure 4.17). The runtime controller has three main functions. Firstly, it han-
dles certain operations that are common to every metamodel such as starting,
stopping, pausing and restarting the execution of an instance, and also saving
and loading the state of a running instance. In principle, the implementations
of these operations are the same for every metamodel and are provided in the
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basic runtime controller. However, if a different implementation is required, a
specialized runtime controller can be selected, as was shown in the previous sec-
tion. As an example, consider the operation pause: in one workflow language,
pausing a running instance may happen immediately and thus require every task
to stop instantly. In another language the pause operation may wait until every
active task finishes its execution normally. These differences in the behavior of
the operations are implemented in specialized runtime controllers.

The second function of the runtime controller is to generate certain event no-
tifications about the execution of the model instance. These events are associated
to the aforementioned operations, and thus their generation is also metamodel
dependent. The most important of those events are started, stopped, paused,
restarted, saved, and loaded. Nevertheless, these events are not generated
instantly as the corresponding operations are invoked. Instead, they are gener-
ated asynchronously and are often related to events generated by the elements in
the model instance. For instance, the event stopped is usually associated to the
event enterStopped or similar in the top level element of the model instance.

Finally, the third function of the runtime controller is controlling how events
are processed. If necessary, the runtime controller can implement variable policies
to manage the processing of events in a metamodel. In most situations this is
not necessary and the events of every element in a model instance are processed
with the same priority.

4.4.1 Model Instantiation

The first step towards executing a model is creating a model instance. In order
to do so, it is necessary to have available all the information and resources of
the metamodel, and the definition of the model. The following are the actions
required to create a model instance.

Loading the metamodel

In the first place, the metamodel has to be loaded in the Cumbia Kernel. This
loading process includes parsing and verifying the metamodel definition. Fur-
thermore, when a metamodel is loaded, its associated resources are also located,
in particular the classes used for the entities and the actions.

Loading the model

After loading the metamodel, the next step is to load the model. This step
has two parts. First, if there is a metamodel extension, it has to be loaded
and verified, in the same way as the base metamodel. Afterwards, the model
definition is loaded and its structure is verified to check its conformance to the
metamodel.

Instantiating the model elements

With all the information about the elements of the metamodel and the elements
in the model definition, it is possible to create an instance of the model. This
step basically requires creating instances of the open objects as declared in the
model definition, initializing those instances, and then establishing the connec-
tions between them.
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In the Cumbia platform, an instance of an open object has all its elements
reified as objects. This includes the entity and the state machines with its parts,
and also the actions. In this way, all these elements can be queried and manipu-
lated as objects. The entity of the open object is an instance of the class specified
in the metamodel definition. Therefore, it is a dynamically loaded class that is
instantiated using the reflection API of the Java platform. Similarly, the classes
for the actions associated to the state machine are also loaded and instantiated
using the reflection mechanism. The object representations of the state machines
are constructed to reflect the structure described in the metamodel.

After each open object and its components are instantiated, they are initial-
ized. The most important aspect of this is giving to each element its unique name
specified in the model definition. Furthermore, the state machine has to be put
into the initial state declared in the specification of the open object. Finally, the
memory of the element is initialized, with the information provided in the model
definition.

Finally, the instances of the open objects are connected. This is done by
creating the connections described in the model definition. For this, the Cumbia
Kernel uses the methods defined in the interface INavigable (see figure 4.11).
Additionally, the instances are also connected from the point of view of the events
consumed and generated. This means that roles are evaluated, and that the open
objects instances are registered as listeners of the necessary events.

Instantiating the runtime controller

The instantiation process is concluded by creating an instance of the runtime
controller and associating it with the instances of the model elements. Further-
more, since the runtime controller can be configured, the last step is applying
this configuration.

4.4.2 Model Execution

After a model instance has been created, the execution of its elements is controlled
by the Cumbia Kernel. To do so, the Kernel controls the processing of events
received by each open object. This includes updating the state of the state
machines, executing the actions associated to the transitions, and distributing
the events generated.

For each model instance, there is a single execution thread that processes
events. The events received by each open object are stored in a queue until they
are processed. The runtime controller has the responsibility of selecting which
queue to process at any given moment. Therefore, the events in a queue are
guaranteed to be processed in the order of arrival, but there is no guarantee
about the order in which events received by different open objects are processed.

The first step to process an event is to check the current state of the state
machine and the transitions that originate in that state. Then, the type of the
event is compared against the type of the events that trigger those transitions.
If there is a match, the element that generated the event is matched with the
role declared in the transition. If these two tests are passed, the transition is
selected to be taken. If no transition is selected, then the event is discarded. If
there is more than one transition that matches the event received, any one can be
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selected. Note however that this situation is a design problem of the metamodel,
which introduces uncertainty on the model execution.

When a transition is taken, the following actions occur (figure 4.18):

1. An event is generated to announce the departure from the previous state.

2. An event is generated to announce that the transition is starting.

3. The actions associated to the transition are executed.

4. An event is generated to announce that the transition was completed.

5. An event is generated to announce the arrival to the new state.

Figure 4.18 Events generated when a transition is triggered

The generation of those events is a responsibility of the Cumbia Kernel, which
also distributes them to all the registered listeners. Each one of those, receives
a copy of the original event notification, which is stored in the respective event
queue to be processed.

The execution of actions is sequential and synchronous. Only when an action
is marked as asynchronous, the Kernel does not wait until the action finishes
in order to proceed with the execution of the following action. Furthermore, in
the case of asynchronous actions, the actions are really executed in a different
thread than the thread used to process the events. As it was previously said, the
behavior of actions is not restricted. Therefore, an action can invoke methods
of an entity and trigger the generation of new events and thus keep alive the
execution of the model.

After all the actions associated to a transition have been executed, the last
two events are generated. At this point, the current state of the state machine
is updated, and a new event can be processed. This new event can be the one
received by the same element as before, or it can be retrieved from a different
queue. Selecting the queue to process is a responsibility of the runtime controller.
However, the default implementation provided in the platform tries to be fair by
processing events from different queues more or less evenly. This is achieved by
maintaining a list that holds references to the queues that have not-yet processed
events; after an event from a queue is processed, that queue is removed from the
list (if it does not have other unprocessed events) or it is put at the end of the
list.

As it was previously said, all the events in a model instance are processed in
a single execution thread. This does not mean that there is no concurrency in
the execution of a model instance. On the contrary, there are three basic means
to achieve concurrency.
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1. By using asynchronous actions. Since those actions are processed in differ-
ent threads, everything they do, including invoking methods of the entities,
is done in a thread different from the event-processing thread.

2. By spawning new threads in the implementation of the actions or of the
entity methods. The main problem in this case is that the Kernel is not
aware of the creation and management of those threads.

3. Concurrency can also appear when code external to the Kernel, and thus
running in other threads, invokes methods of the entities. This can also be
a problematic case, as the Kernel has no way to control these invocations
and synchronize their execution with the other aspects of the execution.
Therefore, it is advisable that the methods of the entities that can be
invoked from outside fulfill one of these characteristics: either they only
serve to query the state of the elements, or they interact with other elements
by generating events.

An additional way of having concurrency is by using different threads to pro-
cess the events. For instance, a different thread could be used to process the
events of each queue, thus making the same guarantees about the order in which
events are processed. Nevertheless, after various tests we realized that this strat-
egy complicates the design of the metamodels and especially the synchronization
of the state machines. Since the actions and methods of the entities can invoke
methods of other elements, having multiple, unrelated threads increases the risk
of race conditions.

On the contrary, using a single thread makes the possible sources of concur-
rency problems more visible and easier to detect. Since asynchronous actions
are explicitly marked as such, then metamodel developers know that they should
check them for concurrency problems and thus reduce the risk of encountering
problems.

4.5 Workflow engines and the Cumbia Kernel

Now we will explain the general architecture of a workflow engine based on the
Cumbia platform. This information is presented from a technical point of view,
by identifying the parts that constitute an engine and their roles. In chapter 6 we
present a development process that identifies the steps to develop these engines.

A workflow engine based on Cumbia can be seen as a component formed by
the three elements shown in figure 4.19: the definition and resources of a meta-
model, an instance of the Cumbia Kernel, and elements specific to the language
supported by the metamodel. This architecture has similarities to the architec-
ture of applications based on embedded interpreters, such as the one described
in [Ram06]. In those applications, interpreters for scripting languages are used
as libraries and can be easily replaced when the implemented language has to
grow or change. In the case of Cumbia based engines this is possible because
languages can be replaced by upgrading the Cumbia Kernel to work with other
metamodels. This kind of changes should only require a reconfiguration of the
Kernel to load the definition of the upgraded metamodels and their associated
resources (state machines’ definitions, implementations of entities and actions,
and other complementary resources).
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Figure 4.19 Basic architecture of a Cumbia based engine

The other core aspect of architectures based on embedded interpreters is
permitting back and forth interactions between the interpreters and the host ap-
plication: on the one hand, this means that the interpreter can make invocations
on the host application as required by the programs interpreted; on the other
hand, it means that the host application can also make invocations on the inter-
preter. The rest of this section describes the interactions between the Cumbia
Kernel (the interpreter), and the other elements of a Cumbia-based engine (the
host application).

As shown in the previous section, the Cumbia Kernel has a crucial role in
the creation and execution of model instances, and offers an interface to allow
the interaction with the elements in model instances. By using this interface,
external elements can navigate the elements of a model instance, query the state
and analyze the structure of their state machines, and also invoke any method
on the entities of the open objects.

This interface also serves to analyze and modify the structure of the model.
By offering this, it is possible to support workflow languages that require dynamic
adaptation. Nevertheless, it should be considered that the support offered by the
platform for this is very low level. Higher level concerns related to guaranteeing
model consistency, or model and metamodel migration, are currently not provided
by the Cumbia platform.

The functionalities provided by the Cumbia Kernel are expected to be shared
by most workflow engines built on top of it. For example, it is expected that most
engines will require run time information to persist, and therefore we implemented
such functionalities in the Cumbia Kernel. However, languages and engines can
also require particular functionalities that are not provided by the Kernel. There
are basically two alternatives for the implementation of these functionalities.

The first alternative is to implement them as part of the metamodel, by dis-
tributing the code between its elements. For instance, in the case of BPEL it
can be reasonable to implement the invocation of web-services in the code of
the element Invoke. However, this alternative has a limitation when the func-
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tionalities affect many elements or have to be shared between several instances
of a model, or even several model definitions. For example, BPEL engines are
expected to expose a SOAP interface to query and control the processes, and to
request the creation of new instances. This cannot be implemented in the meta-
model, and thus it has to be implemented in something additional and external
to the Cumbia Kernel.

The second alternative is to implement these functionalities in what figure
4.19 calls language specific elements. There are no restrictions on what these
elements can be or do. For example, they can implement and expose additional
interfaces to interact with the engine and with the model instances. Furthermore,
they can also implement functionalities that may or may not interact with the
Cumbia Kernel and with the model instances. On the other hand, the elements
in the models can also use services offered by those specific elements.

Figure 4.20 Asynchronous messages in a BPEL engine

Figure 4.20 shows an example of this in BPEL. In a BPEL engine implemented
in Cumbia16, asynchronous messages require back and forth interaction between
model elements and some other BPEL specific elements located outside of the
Cumbia Kernel. When an asynchronous request is done, the corresponding open
object (AsyncInvoke) contacts the ‘Async Messages Processor’ and provides cor-
relation information. When the response message is received through the SOAP
interface, this information is used to locate the adequate instance that sent the
outgoing message. Finally, the response message is delivered.

16Section 7.7.3 provides more information about the implementation of a BPEL engine on
top of Cumbia.



120 4.6. A sample metamodel: MiniBPMN

4.6 A sample metamodel: MiniBPMN

We have already introduced the main concepts about open objects and about
the mechanisms to use and manipulate them. The goal of this and the ensuing
sections, is to illustrate the usage of Cumbia and of the open objects to support,
execute, and extend a workflow language. This section will thus present the
development of the engine for a new workflow language called MiniBPMN. The goal
of MiniBPMN is not to model real-life workflow processes, but it is to illustrate
the main characteristics of Cumbia based engines. Thus, the language has very
simple structure and semantics. In order to be able to illustrate the structure
of MiniBPMN processes, a subset of BPMN’s notation can be used. Figure 4.21
shows a sample MiniBPMN process.

Figure 4.21 MiniBPMN sample process with legend

In the following sections we will present the steps necessary to create an engine
for this language. These steps starts with the design of the language, its elements,
its abstract syntax, and its semantics. Then, a corresponding metamodel has to
be designed and implemented. This step includes describing the state machines
of the open objects, and writing the code of the entities and the actions. After
the metamodel is fully implemented, the engine is completed by implementing
additional functionalities not provided by the Cumbia Kernel. Section 4.7 shows
how this engine is used and describes the execution of a sample process. Chapter
6 provides in more detail the process to design and implement a workflow engine.

4.6.1 Structure of MiniBPMN

The first step to design a metamodel to support a language like MiniBPMN is to
define its abstract syntax. In particular, this requires identifying the concepts
in the language, naming them, and establishing their structure. The result is a
metamodel like the one depicted in figure 4.22.

In short, a Process in MiniBPMN consists of a number of Tasks that have
to be executed in a specific order. Events mark the beginning and the end
of the execution: the process starts with a StartEvent, and finishes with an
EndEvent. Each Process contains a number of BasicElements, which can be
Tasks, Gateways, Joins, Events, or (Sub)Processes. Gateways are used to
route the control flow depending on conditions: for each condition, there is a Gate
in the Gateway. Since conditions are not necessarily exclusive, it is possible to
have concurrent flows in the process. Because of this, two kind of joins (XORJoin
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and ANDJoin) are included and they can be used to synchronize parallel flows;
their semantics are similar to that of the corresponding elements in BPMN.

Figure 4.22 Structure of MiniBPMN

The execution semantics of MiniBPMN is inspired on token passing, although
tokens are not reified. In this sense, the semantics of MiniBPMN is more similar
to the semantics of BPMN, than to the semantics of YAWL. A Process starts
its execution when the control flow reaches its StartEvent, and the execution
finishes when one of its EndEvents receives the control flow. The control flow
passes from one BasicElement to the next one, and only Tasks that currently
have the flow can be in execution at any given point. Tasks receive the control
flow from one element, and always pass it to one element. Instead, Gateways
receive it from one element, but can pass it to several if several conditions evaluate
to true. Finally, ANDJoins synchronize the control flow coming from several
sources, but pass it just to one other element. The last rule is that when a
Process finishes its execution, all the elements contained in it must finish their
execution as well.

To implement the metamodel, the first step is to write the metamodel speci-
fication. This specification defines the elements in the metamodel and the rela-
tionships between them (this is the info depicted in figure 4.22). In addition, this
file indicates the resources associated with each element: the classes that imple-
ment each element’s entity, and the structure of their respective state machines.
In section 4.6.2 we will present in detail two of the open objects in MiniBPMN,
namely Process and Task. The definition of the metamodel and the state ma-
chines also requires the specification of roles: in section 4.6.3 we will analyze all
the roles used in MiniBPMN.

After defining the structure of the metamodel and defining the state machines
of each open object, the following step is implementing the entities and the ac-
tions: each one of those is implemented in a Java class, using the framework
included in the Cumbia platform. Moreover, the definition and implementation
of metamodels does not have to be done by hand: a graphical editor for Cumbia
metamodels has been developed and it outputs the XML definitions and con-
structs the skeletons of classes for entities and actions (see chapter 6). After
using this editor, the developer of a metamodel only needs to complete the im-
plementation of the methods.
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4.6.2 Process and Task

We are now going to analyze two of the main elements of MiniBPMN and we will
discuss their entities and the structure of their state machine. In the first place,
both Process and Task extend BasicElement. Thus, their state machines share
the basic structure of the state machine of BasicElement (see figure 4.23). A
BasicElement has two states, Inactive and Active, and it goes from the former
to the latter when either the element before it ([PE], previous element) is deacti-
vated, or when the condition of a Gate that targets the element ([PG], previous
gate) evaluates to true (section 4.6.3 will present more details about the roles
involved). On the other hand, a BasicElement is deactivated when the Process
that contains it ([PROCESS]) finishes its execution.

Figure 4.23 State machine of BasicElement

A Process is not much more complicated than a BasicElement: it has a
very simple entity, and its state machine only has a few additional things (see
figure 4.24). The methods in the entity are used only to activate the process, by
giving the control flow to the StartEvent, or to abort its execution. The method
activate() also generates an event called activate, which is expected by the
state machine. Therefore, the state machine of Process takes the transition from
Inactive to Active when said method is invoked. Similarly, the method abort()
of the entity ([ME]) generates the event aborted, and when it is invoked the state
machine goes from Active to Inactive. Furthermore, this transition has an action
associated that aborts the execution of every element contained in the Process.

On the other hand, a Process can also finish normally when one of its
EndEvents receives the control flow. In such cases, the action abortMembers is
also executed to make sure that every element contained in the Process finished
its execution.

Figure 4.24 Open object for Process in MiniBPMN
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The element called Task is a BasicElement that performs activities in a
Process. However, the element Task itself is abstract in the sense that it does
not do anything specific. Instead, the element Task should be extended in order
to make it perform specific actions. For instance, it could be extended to make it
consume web-services, send emails, contact users, transform data in some way, or
interact with external applications. Because of this generic nature, the life-cycle
of Task is also very generic (see figure 4.25): when it is activated, it gets some
initial data, then it uses that data and obtains some results, and then it stores
those results.

The entity of Task reflects this life-cycle. The method setData() is in-
voked by the action getData and generates the event dataReceived. The method
executeTask() is invoked by the action processData and it generates the event
dataProcessed when the execution of the task concludes. This is the method
that extensions to Task must override in order to have useful Tasks. Finally, the
method saveData() is invoked by the action saveData and generates the event
dataSaved.

Figure 4.25 Structure of Task in MiniBPMN

4.6.3 Roles in MiniBPMN

The goal of this section is to describe the roles used in MiniBPMN. This will serve
to explain the roles mechanism itself, and to illustrate the navigation language.

• [PE]: this role name stands for ‘Previous Element’ and it is fulfilled by any
element followed by the base element. This role is described in BasicElement
with the following navigation expression:

#self.previousElements

• [PG]: this role name stands for ‘Previous Gate’ and it is fulfilled by a Gate
(of a Gateway) that targets the base element. This role is described in
BasicElement with the following navigation expression:

#self.parentProcess.member.
{? #this isOfType "Gateway"}.gates.
{? #this.next == #self }}

This expression can be decomposed in the following way:
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– #self : is the base element.

– parentProcess : is the Process that contains the base element.

– member : is any BaseElement that is a member of the Process.

– {? #this isOfType "Gateway"} : filters the members to keep only
those of type Gateway.

– gates : is any Gate of a Gateway previously identified.

– {? #this.next == #self} : filters the gates to keep only those that
target the base element.

An alternative expression to describe the same role is the following:
#self.previousElements.

{? #this isOfType "Gateway"}.gates.
{? #this.next == #self }

• [PROCESS]: this role is used to describe the Process that contains the
base element. This role is described in BasicElement with the following
navigation expression:

#self.parentProcess

• [END-EVENT]: this role is used to describe the end events of the base el-
ement. This role is only defined for the type Process. The navigation
expression to describe the role is:

#self.endEvents

• [ME]: this role is used for events generated by the entity of the element that
owns the state machine. The role [ME] is predefined for every metamodel,
and it is equivalent to the navigation expression:

#self

To illustrate the meaning of these roles, we are going to evaluate some of
them in the sample process depicted in figure 4.21. Table 4.1 shows the results
of this evaluation, using different base elements for each role. Note that some of
these evaluations result in an empty set of elements.

4.6.4 An engine for MiniBPMN

Besides the definition and implementation of the MiniBPMN metamodel, there are
not many other things required to have a functional engine for this language. The
Cumbia Kernel and the metamodel, already provide an implementation for many
functionalities. In the first place, the Cumbia Kernel loads MiniBPMN models
expressed using the Cumbia XML schema. Thus, it is not necessary to implement
any additional parser. Furthermore, the kernel is responsible for instantiating
the models when new cases are going to be enacted, and it includes a generic
persistence system to store and maintain the state of the execution.

Nevertheless, there are a few elements specific to MiniBPMN that must be
implemented (see figure 4.26). For instance, if Tasks in a MiniBPMN process need
to interact with external applications, then the communication mechanisms can
be implemented as part of the metamodel, or they can be part of the engine.
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Table 4.1 Some roles evaluated in the sample process

Role Base Element Matching Elements
PE XJoin1 {ApproveRejectRequest,

ApproveRequest}
ApproveRequest {}
RequestCredit {StartEvent1}

PG StudyClientHistory {GateStudy}
ApproveRequest {GateApprove}
RequestCredit {}

PROCESS MailDecision {CreditProcess}
RequestCredit {CreditProcess}

END-EVENT CreditProcess {EndEvent1}
MailDecision {}

ME CreditProcess {CreditProcess}
MailDecision {MailDecision}

Figure 4.26 Architecture of the engine for MiniBPMN
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4.7 A sample MiniBPMN model

This section illustrates the usage of open objects and of MiniBPMN with a sample
workflow. This process was taken from the banking context and it is used to
grant “fast credits”. In this chapter, we only consider the control flow concern
of this process; however, the complete workflow also includes other concerns like
time and resources, which will be discussed in chapter 5.

The process modeled starts when a client issues a credit request. If the
amount requested is less than 1000 USD, the credit is approved. Otherwise, the
financial history of the client is studied, and then the results of those studies are
used to decide on the approval or rejection of the credit. Finally, the client that
requested the credit is informed by email about the result of the process.

Figure 4.27 MiniBPMN sample process

Figure 4.27 presents a graphical representation of the MiniBPMN model that
represents the process that was described above. Figure 4.28 shows the same
model, but this time it is represented using an UML object diagram, where each
object corresponds to an open object.

The goal of this diagram is to show which open objects are used in the sample
process, and show the identifiers of the instances employed. For example, the
sample model includes two instances of the MiniBPMN element called Gate, and
these instances are identified as gateStudy and gateApprove. Furthermore, it
should be clear that the instances in this diagram are not ‘executable instances’:
they are part of a model definition, they have a type, and they have a name;
however, they do not have an execution state, because a model definition is not
run. In a later stage, this definition and all its open objects have to be instantiated
to be run inside the Cumbia Kernel. Only at that point it makes sense to talk
about the state of the open objects.

For clarity, the diagram only shows the entities of the open objects. Addition-
ally, it also shows most of the connections declared in the model definition be-
tween these entities. We only removed from this diagram the relations ‘member’
and ‘parentProcess’ that exist between the Process and all the other elements
(but the Gates). This diagram can also be used to validate the evaluation of the
roles presented in section 4.6.3 (cf. table 4.1).

A final note about this sample model is that all the instances of Task are
really instances of open objects that extend the type Task. These extensions are
all different and they specialize the method executeTask( ) in order to have a
real, specific behavior in the process.
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Figure 4.28 Objects diagram corresponding to the sample process

4.8 Extensions to the MiniBPMN

This section shows how a language can be extended with new concepts and
constructs. In particular, we are going to extend MiniBPMN in four different
ways, using the previously discussed extension mechanisms.

The first two extensions will introduce a new concept known in BPMN as
Ad Hoc Subprocesses [Obj08]. In those, tasks are not structured, but all of them
have to be executed in a sequential order defined at run time. In the revised list
of control-flow patterns [RtHvdAM06], this is known as Interleaved Routing (pat-
tern number 40). To achieve this goal, we will introduce two new constructs into
MiniBPMN: Extension 1 is an extended kind of BasicElement called AdHocBlock,
which will function as BPMN’s Ad Hoc Subprocess; Extension 2, is an extension
to Task called AdHocTask; an AdHocBlock can only contain AdHocTasks. The
other two extension scenarios are unrelated: Extension 3 introduces a minor ex-
tension to element Process, and Extension 4 introduces a new element called
ExecutionLogger.

Figure 4.29 shows the final structure of MiniBPMN after the application of all
the extensions. In this figure the new elements have been shaded, and a bold
arrow has been used to represent an extension relation that is different from other
extension relations in the metamodel. In the following sections we provide all the
details about this.
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Figure 4.29 Extended MiniBPMN metamodel

4.8.1 Extension 1: AdHocBlock

Figure 4.30 summarizes the extensions to the metamodel that are necessary to
introduce Ad Hoc Subprocesses in MiniBPMN. This section will focus on the new el-
ement AdHocBlock, while the next section will focus on AdHocTask. Furthermore,
it must be noted that in the figure the extension relationship between AdHocTask
and Task, which is described in section 4.8.2, has been depicted with a wide
arrow to highlight that it is different from the relation between AdHocBlock and
BasicElement.

Figure 4.30 Extended MiniBPMN metamodel

In order to introduce an AdHocBlock into MiniBPMN, we added a new element
that extended BasicElement. In this case, the extension consisted in providing
a new interface and a new implementation for the entity, and also a new state
machine. However, to minimize compatibility problems, we complied with the
following restrictions:

1. The interface of AdHocBlock extends the interface of BasicElement.

2. The class that implements the entity of AdHocBlock extends the class that
implements the entity of BasicElement.

3. The state machine of AdHocBlock is compatible with the state machine
of BasicElement. In this context, this means that the state machine of
AdHocBlock can be constructed by applying extensions to the state machine
of BasicElement.
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Figure 4.31 Extended element: AdHocBlock

Figure 4.31 shows the structure of the new element. Listing 4.27 is the extract
from the extended metamodel specification where the new element is described.
First of all, line 2 specifies the state machine to use with this new element. Then
(lines 4–9), it describes the new entity, by specifying its interface and class, and
also the name of the events that it can generate. Afterwards (lines 12–13) the
code specifies the relations of the new element. Finally (lines 15–17) it defines the
new role [AHT] which the state machine requires: this description specifies that
[AHT] have to be of type AdHocTask, and also provides a navigation expression
( #self.tasks ) to find those elements.

Listing 4.27: Definition of the AdHocBlock extension (without the state machine)

1 <extended_type name="AdHocBlock" extends="BasicElement">
2 <new_state_machine name="AdHocBlockSM" />
3

4 <!−− Entity −−>
5 <new_entity entityClass="cumbia.minibpmn.AdHocBlock"
6 interface="cumbia.minibpmn.IAdHocBlock">
7 <new_event name="taskSelected" />
8 <new_event name="allExecuted" />
9 </new_entity>

10

11 <!−− Relations and Roles−−>
12 <new_relation name="next" cardinality="simple"
13 targetTypeName="BasicElement"/>
14 <new_relation name="tasks" cardinality="multiple"
15 relationType="sequence" targetTypeName="AdHocTask"/>
16

17 <new_role name="AHT" description="Ad Hoc Tasks within the block">
18 <role_detail type="AdHocTask">#self.tasks</role−detail>
19 </new_role>
20 </extended_type>
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4.8.2 Extension 2: AdHocTask

The second element added is an extension to Task that is called AdHocTask.
AdHocTask introduces a number of changes with respect to Task. In the first
place, the state machine is extended with the addition of a transition, and of an
intermediate state. From the perspective of the entity, AdHocTask extends the
interface and its implementation by adding the method selectTask( ). Finally,
an additional event is declared. Figure 4.32 shows the new element.

Figure 4.32 Extended element: AdHocTask

Listing 4.28 shows the extract of the metamodel extension that describes the
new element AdHocTask. Lines 4 to 7 describe the extended entity, including the
new event that can be generated. Then lines 10 to 35 specify the extensions to the
state machine: first, an intermediate state is added between states SavingData
and Inactive (lines 12–22); afterwards, an additional transition between Inactive
and GettingData is added (lines 25–35). The last part of the code defines a
new relation called block, and the new role [AHB] that serves to refer to the
AdHocBlock that contains the AdHocTask. Note that this role is used in the
transition allTasksExecuted that is added with the intermediate state.

4.8.3 Extension 3: Unsupervised Process

For the third extension to MiniBPMN we are going to consider a much simpler
requirement. In this extension scenario, the new requirements is to have unsu-
pervised processes that send an email to the administrator when they are com-
pleted. This extension can be implemented by defining an extension to Process,
and adding a new action to its state machine.
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Listing 4.28: Definition of the AdHocTask extension

1 <extended_type name="AdHocTask" extends="Task">
2

3 <!−− Extensions to the entity of Task −−>
4 <new_entity entityClass="cumbia.minibpmn.AdHocTask"
5 interface="cumbia.minibpmn.IAdHocTask">
6 <new_event name="taskSelected" />
7 </new_entity>
8

9 <!−− Extensions to the state machine of Task −−>
10 <state_machine_extensions>
11 <!−− Add Intermediate State −−>
12 <add_intermediate_state transitionName="deactivating"
13 location="after">
14 <additional_state name="Completed" enter_event="enterCompleted"
15 exit_event="exitCompleted">
16 <additional_transition name="allTasksExecuted">
17 <source_event source_name="AHB" event_name="allExecuted" />
18 <before_event name="beforeAllTasksExecuted" />
19 <after_event name="afterAllTasksExecuted" />
20 </additional_transition>
21 </additional_state>
22 </add_intermediate_state>
23

24 <!−− Add Transition −−>
25 <add_transition name="taskSelectedTransition"
26 source_state="Inactive" successor="GettingData">
27 <source_event source_name="ME" event_name="taskSelected" />
28 <before_event name="beforeTaskSelected" />
29 <after_event name="afterTaskSelected" />
30 <actions>
31 <action name="getData"
32 class="cumbia.minibpmn.task.GetData" />
33 </actions>
34 </add_transition>
35 </state_machine_extensions>
36

37 <!−− Relations and Roles−−>
38 <new_relation name="block" cardinality="simple"
39 targetTypeName="AdHocBlock"/>
40

41 <new_role name="AHB" description="AdHocBlock that contains the task">
42 <role_detail type="AdHocBlock">#self.block</role_detail>
43 </new_role>
44 </extended_type>
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Listing 4.29 shows the definition of this new extension. Listing 4.30 shows
the structure of the code of the new action. As it can be seen, integrating the
action with the state machine does not require any complex code.

Listing 4.29: Definition of the UnsupervisedProcess extension

1 <extended_type name="UnsupervisedProcess" extends="Process">
2 <state_machine_extensions>
3 <!−− Add additional action to the transition −−>
4 <add_actions transitionName="processEnded">
5 <action name="notifyProcessEnded"
6 class="cumbia.minibpmn.extension.NotifyProcessEnded" />
7 </add_actions>
8 </state_machine_extensions>
9 </extended_type>

Listing 4.30: Implementation of the new action NotifyProcessEnded

1 public class NotifyProcessEnded implements IAction
2 {
3 public void execute( EventNotification event, Transition transition,

IOpenObject element )
4 {
5 IProcess p = (IProcess) element;
6 // Send the email with the notification
7 ..
8 }
9 }

4.8.4 Extension 4: Execution Logger

The fourth extension scenario adds an element to MiniBPMN that does not extend
from any existing elements. This new element is called ExecutionLogger, and
its responsibility is to create a log about the execution of all the Tasks of a
Process. Although none of the existing elements will know about the new one,
ExecutionLogger will have relations to other elements and will react to events
produced by them.

Figure 4.33 New element: ExecutionLogger
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Figure 4.33 shows the structure and the state machine of this new element,
and shows how it is related to Process. Listing 4.31 shows how this new element
is declared as a new element within the extension to MiniBPMN.

Listing 4.31: Definition of the ExecutionLogger extension

1 <metamodel name="MiniBPMN−Extension" extends="MiniBPMN" version="0.1">
2

3 <state_machine_reference name="ExecutionLoggerSM"
4 file="executionLoggerXM.xml" />
5

6 <type name="ExecutionLogger"
7 entityClass="cumbia.minibpmn.extension.ExecutionLogger"
8 interface="cumbia.minibpmn.extension.IExecutionLogger"
9 statemachine="ExecutionLoggerSM">

10

11 <!−− Relation −−>
12 <relation name="process" cardinality="simple"
13 targetTypeName="Process"/>
14

15 <!−− Roles Definition −−>
16 <role name="PROC" description="Monitored Process">
17 <role_detail type="Process">#self.process</role_detail>
18 </role>
19 <role name="TASKS" description="Monitored Tasks">
20 <role_detail type="Task">#self.process.member</role_detail>
21 </role>
22 </type>
23 </metamodel>

4.9 Summary

This chapter has presented the core elements of our proposal. It started with
a discussion about metamodeling platforms, and then it introduced the notion
of open open objects as the main modeling abstraction for our platform. Open
objects were thoroughly presented in this chapter and concrete examples were
used to illustrate their characteristics. Afterwards, we showed how open objects
are assembled together to form metamodels, how metamodels are used to create
models, and how engines are built to execute those models. The last part of the
chapter presented a detailed example of the usage of the platform, based on an
ad hoc workflow specification language called MiniBPMN.

In chapter 3 we briefly introduced some characteristics of the open objects
that are essential to the construction of workflow engines. We now revisit these
characteristics.

• Various execution models supported. In this chapter we have shown
that the execution model of the open objects is not related to any particular
workflow language. In fact, it is not at all related to workflows. Therefore,
in principle it should be possible to implement several workflow execution
models on top of these elements. In chapter 7 we present several case studies
that confirm this idea.

• Externalized state and externalized interaction. In this chapter we
presented in detail the methods to publish the run time state of open ob-
jects, and to use this information to coordinate the execution of elements.
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In this chapter the coordination and interaction was limited to elements
in the same model, but in chapter 5 we show how models conformant to
different metamodels can interact using the same mechanisms.

• Compatibility with the kernel, and a base development framework
for developers. Throughout the examples presented in this chapter, we
have shown that the open objects and the Cumbia Kernel provide a num-
ber of features and functionalities that are often required when workflow
applications are developed. Therefore, developers of new languages do not
have to focus on these features, and can focus on characteristics that are
specific to the language and its elements.

• Explicit extension mechanisms. The extension mechanisms that open
objects provide were extensively presented in this chapter. These mech-
anisms allow both for horizontal extensions (extensions to the function-
alities) and for vertical extensions (specialize the implementation of ele-
ments) [EVLA+03]. The ideas about multiple concern specific languages,
which are presented in chapter 5, are another way of introducing horizontal
extensions. This chapter also presented a full example where extensions
to the language were obtained by applying the aforementioned extension
mechanisms to one metamodel.

• Decoupled interfaces. In this chapter we mentioned and illustrated the
specific interfaces implemented by the entity of each open object. More-
over, we also presented the basic characteristics of the general interfaces
that are shared by every open object and serve to interact with it. These
interfaces, contribute to maintaining low the coupling between elements in
a metamodel.

The model presented, and in particular its behavior, has a number of ele-
ments that elevate its complexity. However, these elements were included with
the explicit goal of augmenting the expressiveness of the model, and enabling the
representation of more languages. One example of this are the two mechanisms
of interaction available: one is synchronous and based on actions and invocations
to entities’ methods; the other one is asynchronous and based on events. When
the model was designed, we faced the alternative of selecting only one interaction
mechanism, but we considered a problem the enormous reduction in expressive-
ness. In chapter 7 we discuss a case study where we used only the asynchronous
interaction mechanisms to implement a Petri net interpreter. In spite of the rela-
tive simplicity of Petri nets, the metamodel that we had to implement turned out
extremely complex because of the lack of synchronous mechanisms of interaction.

Another decision that increased the complexity of the model, but also in-
creased its expressiveness, has to do with the events generated when a transition
is triggered. In the case studies developed, we have frequently seen that the num-
ber of events available largely exceeds the number of events required: generating
two events per state change (or even one) is enough to achieve the coordination
required in most metamodels. However, having the four events shown in fig-
ure 4.4, facilitates the design of the state machines because more information is
available about each event.

The expressiveness of the open objects model was also a main concern when we
decided against restricting what can be included in the methods of entities, or in



Workflow Models based on Open Objects 135

the actions associated to transitions. This decision also elevates the complexity of
the model and, by making these implementations totally opaque, renders difficult
activities such as the analysis and verification of the metamodels and the models.

The information presented in this chapter is complemented by chapter 5,
which focuses on using open objects to support multiple concern specific work-
flow languages. Chapter 6 complements what these two chapters presents by
showing how users should use the elements and tools that Cumbia provide to
build workflow engines for new languages. Finally, chapter 7 illustrates with
concrete scenarios and case studies, all the elements that this chapter presented.
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5
Coordination of Multiple Concern Specific

Models

Most workflow engines describe in a single artifact all the relevant details of a
workflow. These artifacts, which may be diagrams, textual programs, or xml
representation of models, are usually described with languages that include a
large number of elements and handle general concepts. This has led to two
problems. On the one hand, the artifacts in which workflows are described tend
to become big and difficult to manage as workflows become more complex. On
the other hand, the artifacts are difficult to understand and maintain because
the languages are not very suitable or do not manage proper domain concepts.
To solve these problems, we propose to use multiple Concern Specific Workflow
Languages (CSWLs). These languages offer various advantages compared to
using a single language. First of all, they can be more suitable because they use
concepts that are very close to each concern. Since they focus on a small part
of the whole workflow, this also makes each one of them simpler when compared
to generic workflow languages. As a result they are also easier to implement, to
maintain, and to change when necessary. A downside of using CSWLs is that
one often needs to use multiple ones to specify a full workflow application. As a
result one has to manage the integration of several languages, and this raises the
overall complexity of the systems. However, this complexity can be mitigated
by providing adequate mechanisms to relate the languages and also to relate the
models built with those.

In the previous chapter we showed how to implement engines for new work-
flow languages using the Cumbia platform as their base. Nevertheless, we only
considered the case where a single language was used to describe all the relevant
details of a workflow. Conversely, in this chapter we show how Cumbia and the
open objects support the integration and interaction of multiple concern specific
worklfow languages. In particular, this chapter focuses on the mechanisms to
coordinate the execution of concern specific models.

This chapter begins by briefly presenting some existing approaches for model
composition, together with a framework to compare such strategies and tools.
Afterwards, we present our strategy to use multiple concern specific workflow
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languages. This strategy is based on explicitly expressing how to coordinate
concern specific models, and using the interaction mechanisms offered by open
objects to achieve this coordination. This strategy is based on two additional
elements of the Cumbia platform. The first one is CCL, the Cumbia Composi-
tion Language, which is presented in section 5.2. The second one is the Cumbia
Weaver, which we present in section 5.3. CCL is the language to describe how to
coordinate the execution of concern specific models. CCL is also independent of
the concern specific languages, and thus it can be used to describe the coordina-
tion between models even if they are specified with different metamodels. On the
other hand, the Cumbia Weaver is the element in the architecture of Cumbia that
serves to integrate different engines and to interpret CCL programs. The chap-
ter is concluded with a complete example that illustrates the usage of concern
specific workflow languages, and their coordination using CCL and the Cumbia
Weaver.

5.1 Model composition and coordination

In the previous chapters we showed how to define workflow languages using meta-
models and how to build models using those metamodels. When concern specific
workflow languages are used, several metamodels are used (one for each CSWL),
and several models (one for each concern specification) have to be related to
capture the complete semantics of the workflow. In Cumbia this is achieved by
having various concern-specific models and coordinating their execution. The
coordination mechanisms used, which can be considered a model composition
technique, are introduced in this section.

This section is organized in two parts. First, the general idea of model com-
position is introduced and the framework introduced by Jeanneret et al. for
comparing model composition techniques is presented [JFB08]. The second part
of the section presents the general ideas of the model composition strategy used
in Cumbia.

5.1.1 Model composition techniques

To avoid the problem of having every detail of a system specified in one huge
model, in many domains it is common to use multiple complementary models.
Since each of these models only captures the properties relevant for a specific
viewpoint of the system, these models are significantly simpler and easier to
manage. Furthermore, the modeling language can vary across different viewpoints
[JFB08] so that suitable elements and constructs are available.

Different types of relations can be established between viewpoint-specific
models. For instance, a common type is that of equivalence relations between
elements of different models: these relations indicate which model elements rep-
resent the same system elements. The kind of relations that are most relevant to
our approach are those that specify how elements from different models should
interact when workflows are enacted.

Establishing relations between elements in different models is not trivial, and
it has been shown that human intervention is frequently required [FBJ+05]. Rules
and heuristics to automatically discover relations have been studied (e.g. based
on naming conventions), but in it is often the case that they cannot find all the
meaningful relations between two models. Moreover, establishing these relations
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is not necessarily easy for humans and it requires a good knowledge about the
models that are composed.

In the past, several model composition strategies and tools have been pro-
posed. The characteristics of those strategies have been determined by factors
such as the type of models composed, the available technologies, and the intention
of the composition. These factors have to be taken into account when selecting
a composition strategy in a specific modeling context.

Two representative and well known model composition approaches that present
very different characteristics are AMW [FBJ+05] and the Motorola WEAVR
[CvdBE05, CvdBE07]. The first one is a model weaving tool based on ATL
transformations, which depends on an explicit weaving metamodel. With this
metamodel it is possible to describe a weaving model that specifies how some
source models have to be composed to obtain a single model. The actual compo-
sition is performed by a weaver that applies ATL transformations derived from
the weaving model information. A further characteristic of AMW is its focus on
the structural aspect of the systems and of the composed models.

On the other hand, there is WEAVR, an aspect-based model weaver. WEAVR
was developed at Motorola to coordinate and to reason about the coordination
of crosscutting concerns described with separate models. Therefore, WEAVR
focuses on the interaction between the elements in those models, rather than
focusing on other kind of relations between them. Since WEAVR is an aspect-
based approach, they adopted concepts from AOP such as joinpoints, aspects
and advices.

AMW and WEAVR share some characteristics, such as the usage of code
generation. They differ in others, such as the emphasis in structural composi-
tion in AMW versus the emphasis on coordination in WEAVR. To select one
of them as the composition strategy or tool for a certain project, they have to
be analyzed from several points of view. To guide this selection, a reference
process framework for model composition was proposed in [JFB08]. This process
identifies several aspects of the model composition strategies that are worth com-
paring. The following are these aspects, which are illustrated with the analysis
of AMW proposed by the authors of the framework. In section 5.5 we will use
this framework to analyze our own approach.

• Ordering

Since most compositions require more than one step, one relevant aspect is
the order in which those composition steps are executed.

E.g.: In AMW the composition steps are executed according to the order
of application of the ATL rules.

• Ordering Flexibility

This aspect of the framework refers to the flexibility in the ordering of the
composition steps, which in some cases is not rigidly fixed by the user who
describes the composition.

E.g.: In AMW the ordering is inferred by the ATL engine.

• Stopping Criteria

This aspect identifies the criteria to determine that the composition proce-
dure has finished.
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E.g.: In AMW the composition process finishes when no more ATL rules
apply.

• Stopping Criteria Flexibility

This aspect refers to the flexibility of the criteria to stop the composition
procedure. In some strategies , the composition has a fixed number of steps,
while in others the number of composition iterations are difficult to predict
and depend on the stopping criteria.

E.g.: Since AMW depends on ATL rules, the flexibility of the stopping
criteria depends on the ATL engine.

• Contribution

In this framework, the term contribution refers to the elements that are
composed.

E.g.: In AMW, a contribution is a weaving model.

• Contribution Granularity

This aspect refers to the granularity of the descriptions of elements which
are composed (the contributions).

E.g.: In AMW, the granularity of the contribution are the elements in a
weaving model.

• Contribution Selectivity

This aspect refers to the kind of elements that can be selected to be a
contribution, and the limitations on this selection.

E.g.: In AMW the selection is arbitrary and any element in a weaving
model can be selected.

• Location Description

In this framework, the term location refers to the point in the target model
(the composed model) where a contribution is going to be attached. This
aspect refers to the mechanism to identify the locations.

E.g.: In AMW the location for the composition is determined in the ATL
transformation.

• Location Freedom

The locations available to do a composition can also be limited. This aspect
refers to the kinds of valid locations, and to the mechanisms to describe
such locations.

E.g.: In AMW, locations are described using ATL transformations, and
the valid locations are all the locations that can be described using ATL.

• Combination Description

The way in which contributions are combined in the composed model varies
among strategies and is an important criteria to compare them. The Com-
bination Description aspect refers to the mechanisms to describe the com-
bination strategies employed by each composition strategy.

E.g.: In AMW the combination depends on both the weaving metamodel
and the weaving model.
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• Combination Expressiveness

This aspect refers to the composition operators available to do the com-
bination. The expressiveness of the composition strategy depends on the
power of these operators.

E.g.: In AMW the combination expressiveness depends on user-defined
operators.

• Translation

Some model composition strategies require source models to be conformant
to the same metamodel and thus they apply some translation mechanism.
This aspect refers to the technique to perform this translation, when nec-
essary.

E.g.: AMW employes ATL transformations to translate the models.

• Fastening

This aspect refers to the technique employed to actually assemble the com-
posed model.

E.g.: AMW employes ATL transformations to obtain the composed models.

In addition to the criteria that we just described, we have added an additional
one to the framework. This additional criteria is the following.

• Symmetry

This aspect analyzes whether the composition is symmetric or asymmetric.
When composition is asymmetric, the source models necessarily have dif-
ferent roles. For example, one of the source models can be the base for the
composition and the contributions can be attached to it.

E.g.: AMW uses a symmetric composition approach. Different models can
have different roles, but that is up to the composition operators selected by
the user.

5.1.2 Cumbia model composition strategy

The composition strategy that we use in Cumbia is motivated by the need to have
several models representing different concerns of a workflow, and by the need to
enact that workflow. Especially because of this enactment requirement, the focus
of the composition strategy presented in this dissertation is on the coordination
of the models. That was our starting point, and we have left for future work
the missing research about the means to describe composition at the metamodel
level. Conversely, other approaches for model composition have focused on the
description of possible compositions at the metamodel level. For example, in the
Melusine environment composite domains are created to relate existing domains,
and composition models conformant to the composite domains are then used to
describe the relations between domain models [EIV05]. The interpretation of the
whole applications is distributed among domain specific virtual machines, and a
virtual machine for the composition, which references the other ones. Finally, the
synchronization between all of these machines is achieved through a mechanism
based on AOP.
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Another important characteristic of the Cumbia composition approach is that
it does not require coordination code and executable code to be generated. On
the contrary, Cumbia keeps the models largely independent, and uses the inter-
action mechanisms offered by the open objects to synchronize the execution of
the models.

The composition mechanism employed in Cumbia is external. This means that
the composition of the models is defined outside of the models themselves, in a
separate artifact, after the models are created. Because of this, the composition
has minimum impact on the models, and this allows models to be reused more
easily [EIV06]. This aspect of the strategy is similar to other approaches, such
as Melusine [EIV05].

Furthermore, the composition mechanism is lightweight. In this context, this
means that the relationships established between elements in different models are
easy to set up and do not have a profound impact on the models. Similarly, these
relationships can be easily removed, leaving the models unaltered. A further
consequence of this is that concern specific models are not joined together but
remain separate artifacts. Thus, at all times it is possible to identify the parts
that make a complete workflow.

There are two elements that are central to the composition strategy in Cumbia.
The first one is CCL, a language to establish the composition between models by
using the interaction mechanisms offered by open objects. In section 5.2 we will
present in detail this language. The second element in this composition strat-
egy is a component of the architecture that we have called the Cumbia Weaver.
This weaver plays a central role because it interprets CCL instructions and es-
tablishes the relationships between models in accordance to those instructions.
Since the relationships are materialized between model instances when their el-
ements are fastened1, the Cumbia Weaver also has some responsibilities related
to the creation of the model instances. Finally, the Cumbia Weaver maintains
the information about the relationships that it created. Section 5.3.2 presents
more information about the Cumbia Weaver and about the overall architecture
of Cumbia based workflow engines that support concern specific workflow lan-
guages.

A strategy similar to the one presented in this dissertation was previously
employed in APEL, a process support system that supports multiple domains
that complement and extend a process kernel [DEA98, EVLA+03]. In APEL,
concepts belonging to different domains are structured in different metamodels.
When it becomes necessary to execute models conformant to those metamodels,
instances of those models are linked, at runtime, by a federation engine. This
linkage is done by means of an AOP machine, which inserts the necessary code to
intercept method calls and invoke the code that does the binding between model
elements.

5.1.3 A note about the graphical syntax

In order to describe graphically the relations between metamodels, we have de-
veloped a small graphical syntax. Using this syntax it is possible to specify for
a given situation how the metamodels involved are related. Figure 5.1 shows an
example of the usage of this syntax. The meaning of the lines in the syntax is

1Cf. the framework of Jeanneret et al. [JFB08].
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described in table 5.1.

Figure 5.1 Graphical syntax example

Table 5.1 Types of lines in the proposed graphical syntax

This line indicates that metamodel B is an extension to
the base metamodel A. This means that the elements in
the extended metamodel can be defined in the base one,
can be extensions to elements in the base one, or can be
entirely new elements.

This line indicates that models conforming to meta-
model A can be composed to the models conforming to
metamodel B. In particular, this means that the former
models are prepared to observe and react to changes in
the latter models. These reactions can have effects on
the models conformant to metamodel B.

This line indicates a relationship similar to the previous
one, but with stronger conditions. The additional re-
quirement is that metamodel A has specific dependencies
towards metamodel B. Therefore, models conforming to
the former metamodel can be composed only to models
conforming to the latter metamodel or to extensions of it.

Based on this description, the semantics of figure 5.1 is the following:

• MM2 is a metamodel that extends metamodel MM1.

• Models conforming to MM3 can be composed with models conforming to
MM1.

• Models conforming to MM4 can be composed with models conforming to
MM1.

• Models conforming to MM3 can be composed with models conforming to
MM4, and vice-versa.

• MM5 is a metamodel that extends metamodel MM4.

• MM6 is a metamodel that extends metamodel MM2.
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• Models conforming to MM5 have to be composed with models conforming
to MM2 or to MM6.

In this chapter we use this graphical notation in section 5.4 to describe the
organization of the metamodels in the sample workflow.

5.2 CCL – The Cumbia Composition Language

CCL is the language that Cumbia uses to describe the composition of models
based on Open Objects. Since this composition is based on coordinating the
execution of the models, CCL can be considered a coordination language akin to
control-driven coordination languages such as Manifold [PA98, AHS93]: it has a
role on gluing active pieces of programs (i.e. open objects in different models)
to make them behave as an ensemble. Moreover, as the rest of the current
section shows, CCL is closer to coordination models and languages that deal
with configuration and architectural description, such as Conic [PA98, KMF90],
and it is farther to data-driven coordination models and languages, such as Linda.

The central goal of CCL is to offer instructions to link model elements and
enable their interaction. The instructions offered are closely related to the in-
teraction mechanisms available in open objects and rely on events, actions, and
the invocation of methods in the entities. Because of this, we consider CCL a
low level language. To use it, it is necessary to have a good knowledge about the
open objects’ interaction mechanisms, and about the entities and state machines
of the specific elements that must interact. The benefit taken from this low level
nature, is that CCL is decoupled from specific metamodels. Therefore, it serves
to describe the coordination between any group of Cumbia models, regardless of
the languages used to describe each one of them.

A central concept to CCL is the concept of assembly. An assembly in Cumbia
is a group of concern specific model definitions, possibly conformant to different
metamodels, and the information to relate those definitions. This information
is enclosed in the CCL program for the assembly, which mainly consist on two
kinds of instructions. On the one hand, there are instructions to establish re-
lationships between the elements in model instances. On the other hand, there
are the instructions to request the creation of instances of the models included
in the assembly. At first, it may seem that the second kind of instructions are
at odds with the stated goals for CCL, but these are necessary for two reasons.
The first one is that it is a responsibility of the CCL program to describe how
many instances of each model definition have to be created when the assembly
is instantiated and the CCL program is run; in many cases, there is more than
one instance per definition. The second reason is that not all the model instances
have to be created when the assembly is instantiated. The number of instances
may be even unknown at design type, and depend on the execution of the mod-
els. Therefore, the CCL program has to describe when to create instances of each
model.

To understand what an assembly and a CCL program represent, consider
the following example. Learnflows in a certain e-learning application involve two
concerns: control and time. Thus, for each specific learnflow (e.g. online seminar
on technology X) we have to create an assembly containing one control model,
and several time models. The control model describes the learning activities that
students have to perform. The time models describe time restrictions for the
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learning activities (e.g. deadlines). An assembly containing only model defini-
tions is useless, because it does not contain any information about the relations
between the model definitions. Therefore, a CCL program has to be included
in each assembly, and this program has to contain the two kinds of instructions
previously mentioned. On the one hand, it has to describe which model instances
have to be created when the assembly is instantiated. For example, it may be
the case that the same time restriction is used for two activities, and thus two
instances of the same time model are required. On the other hand, it has to de-
scribe how to establish concrete links between elements in the model instances,
using the interaction mechanisms of the open objects. This means that who-
ever wrote the CCL program had knowledge about the structure of the models,
about the way in which they had to interact, and about the metamodels used to
describe them.

Additionally, a parallel can be established between the previously mentioned
elements of CCL, and elements of Conic, a coordination language where coordina-
tion is viewed as configuration [PA98, KMF90]. In Conic, there are typedlogical
nodes that have exitports that can generate messages, and entryports that can
receive messages. Logical nodes are thus comparable to open objects that can
generate and receive events. Besides offering the means to describe types of
logical nodes (modules), Conic also provides instructions to describe system con-
figurations. Just as in CCL, these instructions can be categorized as creation
instructions, which describe the module instances to create, and linkage instruc-
tions, which describe the links to create between exitports and entryports in the
module instances.

In the upcoming sections we present in detail the instructions available in
CCL, and in section 5.4 we present a complete and detailed example. Addition-
ally, section 5.3 explains how an assembly is packaged in a file with a special
structure (a cumbiar) to be deployed in Cumbia.

5.2.1 Structure of a CCL program

Listing 5.1 shows the structure shared by every CCL program. The first part of
it declares which model definitions are used in the assembly. This declaration
specifies the names of the models to load, and their respective metamodels. To
avoid ambiguities, models are fully identified with the name of the metamodel
followed by the name of the model (e.g. metamodel:model). Moreover, to make
CCL programs more readable, an alias is assigned to each model. These aliases
are used in every point of the program where a model has to be referenced.

In the second part of the program, all the instructions to create model in-
stances and to create links between their elements are found. These instructions
are grouped in blocks, and each block is associated to an event that is relevant
to CCL: when that particular event occurs, the block of instructions is executed
with the adequate parameters. Currently, there are two types of events that can
be used in CCL programs namely Init and ModelInstanceCreation.

The event Init signals the creation of the assembly. Therefore, the block
of CCL instructions associated to this event is executed when the assembly is
instantiated (see listing 5.2). The instructions found in this block usually serve
to request the creation of model instances, but they can also create links between
the elements in the newly created instances. Every CCL program must include
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Listing 5.1: Basic elements of a CCL program

1 assembly {
2 // Load and create aliases for the models used in the assembly
3 load (MetamodelName1:ModelName1 ModelAlias1,
4 MetamodelName2:ModelName2 ModelAlias2,
5 ...
6 );
7

8 // References that can be used in any block
9 global(ref1, ref2);

10

11 // Block of instructions to perform when Event1 occurs
12 on:Event1 ( parameters ) {
13 ...
14 }
15

16 // Block of instructions to perform when an Event2 occurs
17 on:Event2 ( parameters ) {
18 ...
19 }
20

21 ...
22 }

a block of instructions associated to the event Init.

Listing 5.2: Block of instructions executed when the assembly is instantiated

1 on:Init {
2 ... // Instructions
3 }

The other kind of event supported in CCL is ModelInstanceCreation. These
events are generated when a new instance of one of the models in the assembly
is created. In listing 5.3, there are two blocks of instructions associated to this
event which differ on the model definition that is instantiated: the first block is
executed when an instance of the model with alias ModelAliasX is created; the
second block is executed when an instance of the model with alias ModelAliasY
is created. In both cases, the new instance can be accessed using the name
localName within the context of the block.

Listing 5.3: Blocks of instructions executed when model instances are created

1 on:ModelInstanceCreation (ModelAliasX instanceName) {
2 ... // Instructions
3 }
4

5 on:ModelInstanceCreation (ModelAliasY instanceName) {
6 ... // Instructions
7 }
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5.2.2 Instructions to create model instances

The instruction to create an instance of a model in CCL can be used in any block
of instructions. In listing 5.4 two model instances are created.

The first one (line 1) is an instance of the model that was declared with the
alias ModelAlias1. In this code, a reference to the newly created model instance
is stored in the temporary reference localRef1 which can be used in the ensuing
instructions. If the variable is declared to be global, then it can be used in other
blocks.

The second part of the listing (lines 2 to 5) show an alternative way of creating
a model instance that stores some information in the memory of the instance.
By offering this, it is possible to parameterize the instances created, and make
distinctions between them. In order for this information to be useful for the
model execution, the names of the parameters must match the names of the data
that the model expects to find in its memory.

Listing 5.4: CCL Example: Model instantiation

1 localRef1 = new ModelAlias1;
2 localRef2 = new ModelAlias2 {
3 param = value;
4 ...
5 };

5.2.3 Instructions to create links

The last aspect of CCL are the actual operations to create relationships between
elements located in different model instances. Since the elements involved are all
open objects, these relationships take advantage of the interaction mechanisms
of the open objects. These mechanisms were described in section 4.2.2.

The first kind of relationships that can be created with CCL is based on the
introduction of actions. Listing 5.5 shows how to create one of those.

Besides declaring the type of link to create (createActionLink), the first line
also specifies the name of the link (“link_name”). The Cumbia Weaver stores the
information about the links created, and this name can later be used to navigate
or modify the links.

The following lines in the listing define and configure actions to install in
specific transitions. In line 2, the action installed is of a predetermined type
which can be configured to call specific methods in other open objects. An
instance of this action is installed in the transition called activation of the element
described with the expression fcpInst["#root"]. In this expression, fcpInst
points to a model instance, while ["#root"] is a navigation expression that points
to elements in that instance. The new action is configured to call the method
notifyStart( ) in an element of the model instance identified with tr.

Lines 3 and 4 of listing 5.5 present an alternative way to specify the action
to install in the transition. In this case, the action is not the predefined one but a
specific one provided with the assembly (e.g. "cumbia.ccl.test.ResetAction").
The location where this action is added is described as in the first case, but its
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specific behavior depends on its implementation. The action can also be config-
ured with a parameter. In this case it receives as parameter a reference to the
root element in the tr model instance.

Listing 5.5: CCL Example: Action Link

1 createActionLink ("link_name") {
2 fcpInst["#root"]|activation −> tr["#root"]::notifyStart();
3 fcpInst["#root"]|deactivation −>
4 createAction("cumbia.ccl.test.ResetAction", tr["#root"]);
5 } ;

The other kind of relationships that can be established with CCL is based
on events rather than actions. In this case, instead of adding new actions, the
idea is to associate an existing transition of an element to an event generated
by another element. Nevertheless, in Cumbia transitions can only be triggered
by one event. Thus, the specified transition is duplicated and the new one is
associated to the event.

Listing 5.6 shows how a relationship based on events is created in CCL. As in
the previous case the first line names the link. Line 2 first specifies the event and
then it specifies the transition to be triggered by that event. This transition has to
be an existing transition which is duplicated when createEventLink is executed.
The only differences between the original transition and the new one are the
trigger event (which in the second case is the event specified), and the name of
the transition (which in the second case has a consecutive number appended).

Listing 5.6: CCL Example: Event based Link

1 createEventLink ("link_name") {
2 fcpInst["#root"]:starting −> tr["#root"]|beginning ;
3 };

The two types of relations discussed form the core of the composition in
Cumbia. Since they are independent of the metamodels they can be easily applied
to any concern specific model. Furthermore, they do not have a destructive
impact on the elements of the models: these relationships can be easily removed
to restore the elements to their original state.

5.3 An architecture to execute concern specific models

In section 4.5 we presented the base architecture of workflow engines based on
Cumbia. However, in that section we only considered the case of engines that
use a single modeling language. Therefore, these engines depend on only one
metamodel and it is not necessary to do any kind of model composition.

This section complements what was introduced in 4.5 by presenting an archi-
tectural view of Cumbia based workflow engines that support multiple concern
specific workflow languages. This section is divided in two parts. In the first one,
we present the general architecture and relate it to the workflow reference model
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of the Workflow Management Coalition. The second part focuses on the Cumbia
Weaver which is a central component in the whole architecture as it relates the
concern specific engines.

5.3.1 General architecture

The architecture of a Cumbia based workflow solution which supports multiple
concern specific workflow languages is shown in figure 5.2. This architecture
includes the following components and interfaces.

Figure 5.2 Architecture of a workflow solution based on Cumbia

• Concern specific engines

In order to run models conformant to different metamodels it is necessary
to have one engine for each metamodel. The reason for this is that each
engine uses one instance of the Cumbia Kernel, and that each instance of
this kernel can be configured with one metamodel at a time. Each engine
holds the same responsibilities it would if there were not other engines.

An important characteristic of the architecture is that each of these engines
do not need to know each other in order for their models to interact. This is
because interaction is achieved by the relationships created by the Cumbia
Weaver. This characteristic facilitates the reuse of these engines, and makes
it more easy to replace one engine or to add a new one depending on the
concerns involved in each context.

• Common interfaces

The various engines depicted in the figure usually offer two separate in-
terfaces. The first one is an interface shared by all the engines, which
corresponds to the interface offered by the Cumbia Kernel. This interface
can be used by external applications to interact with each engine using the
same protocols. Furthermore, this interface is used by the Cumbia Weaver
to interact and require services from the engines. For instance, the Cumbia
Weaver uses this interface to load models into each engine, request the
creation of model instances, and access the elements inside those instances.
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• Concern specific interfaces

In addition to the common interface, each engine can also offer an ad-hoc
interface where services specific to that engine are exposed.

• Cumbia Weaver

The Cumbia Weaver has two main responsibilities in this architecture. The
first responsibility is that of interpreting CCL programs to establish rela-
tionships between model instances. This is possible because the Cumbia
Weaver has also the responsibility of locating and maintaining references
to the engines involved in the assemblies. Therefore, the Cumbia Weaver
has to be used to locate or access each engine.

• Weaver interface

The other important interface in this architecture is the interface of the
Cumbia Weaver. Through this interface it is possible to load new assemblies
or to request their instantiation. Furthermore, this interface also serves to
query the instances of the assemblies, and to query and analyze the relations
established between elements in the model instances involved.

The Workflow Management Coalition proposed in the Workflow Reference
Model (WRM) a series of five interfaces that, according to them, have to be
offered by every workflow engine [Hol95, Hol04]. We now analyze how the 5
interfaces appear in the Cumbia architecture that was just presented. Figure 2.1
shows the 5 interfaces.

Interface 1: Process definition tools
In the WRM, this interface is used by process definition tools (editors) to

deploy workflows into engines. In the case of Cumbia, two things have to be
considered. In the first place, it is possible to build editors capable of deploying
workflows into the Cumbia engine through the usage of the Cumbia Weaver
interface. We have not built such tools yet, but there are no restrictions that
would prevent it.

The second thing to consider is that the Cumbia Weaver is also capable of
loading a kind of package that we have called cumbiar. A cumbiar file is similar to
a jar file [Ora10a] because it is compressed, has a meaningful internal structure,
and has a predefined descriptor. In the case of a cumbiar, the internal structure
depends on the metamodels and models included in it, and the descriptor is a
CCL program. The relevance of this format is that process definition tools can
use it to export data in a way that can be directly used by the Cumbia Weaver.

Interface 2: Workflow Client Applications
The second interface in the WRM is used by applications that mediate in

the interaction between users and running workflows. For instance, one such
client application can request information from a user and then give that infor-
mation back to an activity in order to process it and continue with the workflow
execution.

Client applications can interact with Cumbia based workflows by means of
the two kinds of interfaces previously described: the common interface, and the
concern or engine specific interfaces. In the first case, the main advantage is that
applications are more easily reused. In the second case, the main advantage is
that the interaction can be more powerful since the interfaces are, in theory, more
expressive.
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Interface 3: Invoked Applications
This interface in the WRM is used to allow back and forth interaction with

external applications that participate in a workflow. For instance, in the case of
a BPEL engine this is the interface that allows the invocation of web-services via
SOAP, and the reception of responses to asynchronous messages.

In the case of Cumbia, the elements in each metamodel can communicate
with external applications through any means they want. There is not a single
outgoing communication channel to be shared by all engines. With respect to
incoming messages, each engine can setup ad hoc reception channels as part of
engine specific interfaces. If necessary, external applications can locate these
engines by using the services provided through the weaver interface.

Interface 4: Other Workflow Enactment Services
In the WRM, interface 4 is described as the interface to allow the interaction

between several instances of a workflow engine, or between several different work-
flow engines. In Cumbia, we have not attempted to provide specific mechanisms
to support this.

Interface 5: Administration and Monitoring Tools
The fifth and final interface described in the WRM allows the interaction of

administration and monitoring tools with the engine. These tools have two main
objectives. The first one is to control and manage the behavior of the engines
and the execution of the workflows. The second one is to gather and display
information about the running workflows.

In the case of Cumbia, this kind of tools can use the mechanisms previously
discussed and, in particular, those described for interface 2 of the WRM.

5.3.2 The Cumbia Weaver

With respect to model composition and coordination, the Cumbia Weaver is the
central element of the architecture. As it has been briefly mentioned in previous
sections, the Cumbia Weaver has several responsibilities from the loading of an
assembly (for instance, as a cumbiar), to the removal of finished instances. In
this section we analyze all these responsibilities.

Assembly load

The first responsibility of the Cumbia Weaver is to load assemblies so they can
be later instantiated. This requires the following intermediate steps:

• Handle model resources. The majority of the resources required to execute
Cumbia models should be part of the engines. For instance, the imple-
mentation of the entities of the used open objects is normally part of the
resources that are used to configure the Cumbia Kernel in an engine. Nev-
ertheless, since each model can extend its metamodel by using the extension
mechanisms presented in chapter 4, each model can require additional re-
sources (configuration files, images, keys, etc.). The Cumbia Weaver has
the responsibility of loading those additional resources and pass them to
the specific engines that have to use them, before instances of those models
are created.

• Handle model definitions. The Cumbia Weaver has to load the definitions
of the models used in an assembly, and load them in the adequate engines.
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• Load CCL resources. The CCL code that describes the relationships in
an assembly may require additional resources. In particular, each CCL
program can use ad hoc actions that have to be supplied with the assembly.
The responsibility of the CumbiaWeaver is to load these resources and make
them available when the CCL code is executed.

• Load the CCL program. The Cumbia Weaver has to load the CCL program
and have it ready to be executed when instances of the assembly are created.

After these steps are completed it becomes possible to create instances of the
assemblies. This whole process does not necessarily have to be done step by step:
from the perspective of a user, it can be done in a single step where a cumbiar file
is loaded. Section 5.4.5 will present the structure of a cumbiar with a concrete
example.

Instance creation

The creation of an instance of an assembly has two relevant steps. In the first one,
a space to store the state of the assembly is created inside the Cumbia Weaver
and it receives an identifier. In this way it is possible to locate and query the
existing instances, and there is a place to group all the information about the
run time state of the assembly. Figure 5.3 presents this graphically.

Figure 5.3 Representation of the run time state of the Cumbia Weaver and of two engines

The lower part of the figure offers a run time representation of the Cumbia
Weaver. For each assembly, there is an area where the CCL program and the CCL
resources are stored. This space is also used to maintain run time information
about instances of the assembly, using a unique identifier for each one (e.g. 1.1,
1.2, etc.). The state of each instance includes the state of the variables, and
references to model instances. In the upper part of the figure engines and their
relevant elements are depicted. These include the definition of the models (which
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are referenced in the CCL program), and the instances of the models which are
created as required in the CCL program.

The second step in the creation of an assembly is the interpretation of the
CCL program, which can also be subdivided in several steps.

1. The first step is to verify the existence of the necessary model definitions
as declared in the load part of the CCL program. Furthermore, the infor-
mation about the aliases is stored in the assembly space to be used in the
rest of the CCL program execution.

2. The second step is to start executing the block of CCL instructions associ-
ated to the Init event.

3. Finally, the third step is to execute the other blocks of CCL instructions
whenever the corresponding events occur.

The CCL instructions available can be divided in two main groups. On the
one hand, there are the instructions to create instances of the models, while on the
other hand there are the operations to establish relationships between elements
in the instances. In the former group, an important detail is that the Cumbia
Weaver does more than just requesting the corresponding engine to create the
instance. It also installs the necessary listeners to receive other events generated
by the engines and by the Runtime Controllers.

The rest of the CCL instructions are related to linking the elements in the
model instances, and are achieved by employing the operations offered in the
interface of the Cumbia Kernel. Furthermore, these operations also update a
registry of the relations created as part of each assembly instance, and of the
elements involved in each relation.

All the tasks performed by the Cumbia Weaver that were just described de-
pend on the fact that it needs access to the engines involved. In particular, it
needs to be able to interact with them to request the loading and instantiation
of models.

5.4 A sample workflow

This section presents a complete workflow that involves two concerns with mutual
dependencies at run time. The goal of this section is to show how an assembly
is defined and described, how it is instantiated, and finally how its models are
composed and their executions are coordinated.

This section starts with a presentation of the concerns and the metamodels
involved (MiniBPMN and XTM). Then, the models are presented: first the control
model, and then the models that impose time restrictions on the control. Next, we
present the CCL program that describes the coordination between these models.
Finally, we describe the weaving process and the execution of these models.

5.4.1 The metamodels

For the sample workflow that we are discussing in this section we are going to
use two metamodels that describe two co-dependent concerns. The first concern
is the control concern, and we are going to use MiniBPMN to build control models.
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Figure 5.4 MiniBPMN metamodel

The elements of this metamodel are depicted in figure 5.4. This metamodel was
fully presented in chapter 4 and we retake it here in an unaltered form.

The second metamodel is called XTM, and it is used to describe models rep-
resenting time restrictions that workflows should adhere to. The acronym XTM
stands for Extensible Time Metamodel, and its main elements are depicted in
figure 5.5. The central element of this metamodel is called TimeRestriction,
and it encapsulates the logic to decide whether a time restriction has been ful-
filled or not. XTM supports many types of time restrictions, and this can be seen
in the hierarchy of extensions to TimeRestriction. In the figure we have only
included the three kinds of restrictions that are relevant to the sample workflow
(DurationLowerLimit, DeadlineLowerLimit, and PeriodicTaskStopEvent), but
the complete metamodel includes fourteen of them.

In order to keep track of time elapsed or to check whether a deadline has
passed, XTM includes different kinds of timers that generate event notifications
when certain conditions are valid (a deadline has passed or a time lapse has
passed, for example). These notifications are needed by the TimeRestriction to
update its state.

On the other hand, the time restrictions that can be modeled with XTM are
not hard constraints on the execution of other models. XTM cannot enforce the
conformance to the time restrictions. Instead, it can provide sets of activities to
execute depending on whether each restriction is respected or not. This means
that it is possible to define some actions to execute if a restriction is fulfilled,
and some other actions to execute if the restriction is not fulfilled. These actions
are grouped in TaskSets, and the execution of each task set is triggered by a
different event notification emitted by the TimeRestriction.

The last element in this metamodel is called EntryPoint. An EntryPoint
works as an adapter to elements in other models which are subject to time restric-
tions. XTMmodels are usually composed by an EntryPoint, a TimeRestricition,
and then the Timers and TaskSets that the restriction requires. The run time
state of the TimeRestriction depends on the events received from the timers
and the EntryPoint. In turn, the events generated by the EntryPoint depend
on event notifications or methods invoked by elements in other models. There-
fore, when MiniBPMN and XTM are used together, the EntryPoints are normally
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Figure 5.5 Fragment of the XTM metamodel

the only elements of XTM woven to elements in other models.
In XTM, the role of the EntryPoint can be assimilated to the role of a façade,

because it is the sole point of communication between the control model and a
time restriction. The EntryPoint also works as an adapter, because it converts
events and calls made by external elements into events that are expected by the
TimeRestriction. However, this pattern does not need to be followed in every
metamodel. Depending on each particular situation it can also be acceptable to
have many points of contact between models.

Figure 5.6 Relations between the metamodels in the sample workflow

Figure 5.6 shows the relations between the metamodels involved in the sample
workflow. The left part of the figure shows the relationship between MiniBPMN
and XTM: models built with MiniBPMN are oblivious of XTM models, while XTM
models observe, react, and can perform actions on MiniBPMN models. The line
between XTM and MiniBPMN is not continuous because XTM models can be com-
posed to models built with many other control metamodels (e.g. BPMN, BPEL,
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or YAWL). More concretely, this means that the implementation of MiniBPMN is
not aware of the presence of any other metamodel: MiniBPMN models can thus be
used independently of other models. Conversely, XTM models always require the
presence of at least another model, regardless of its metamodel.

The right part of the figure shows that extensions to some metamodels do not
have to be related in the same way as the base metamodels. For example, the
relationship between the extensions in this case is continuous because specific
tasks included in the XTM extension ( extXTM ) depend on specific elements of
extMiniBPMN.

In the next sections we will present the control and the time restriction models
for the sample workflow. Furthermore, we will provide a few more details about
XTM’s elements, including presenting the state machines of some of its elements.

5.4.2 The control model

The control model for the sample workflow is the same that was presented in
section 4.7. This model, which is shown again in figure 5.7, represents the control
flow of a process in the context of financial services. This process was modeled
with MiniBPMN but, unlike the previous chapter, in this one the model is not
going to be executed by itself. Instead, it is going to be complemented with time
restrictions and both the control model and the time models will be executed in
a coordinated fashion.

Figure 5.7 The control concern in the sample workflow

5.4.3 The time models

In this section we will describe the concern of the sample workflow that establishes
time restrictions and some actions to execute which depend on those restrictions.
These restrictions are defined in three models that are conformant to the XTM
metamodel that was previously introduced. Figure 5.8 illustrates the idea of how
the three time restrictions (TR1, TR2, and TR3) are going to be connected to
different elements of the MiniBPMN model.

We now describe these three models and in the following sections we will
show in detail how these models are composed to the MiniBPMN control model.
In those sections we will also present in more detail the XTM elements involved,
including the state machines most relevant to the composition.
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Figure 5.8 Integration between control and time in the sample workflow

Time Restriction 1: maximum time for approval or rejection

The first restriction states that the task Approve/Reject Request should not
last longer than one day. Furthermore, this restriction specifies what to do when
that restriction is not observed. In such cases, an email must be automatically
sent to a supervisor of the employee that took too long to answer.

Figure 5.9 shows an object diagram of the model for this restriction. The
kind of time restriction employed (Duration Lower Limit Time Restriction)
requires the usage of a DurationTimer, which emits a signal when a programmed
time lapse has elapsed. This time restriction coincides with a time restriction
pattern where the interval between two events in the workflow is not expected to
be superior to a certain amount of time.

This model only includes one TaskSet because the time restriction only spec-
ifies what to do when the duration is exceeded. Nevertheless, the characteristics
of XTM and, especially, the structure of the state machine of the TimeRestriction
makes it also possible to specify something to do when the duration is not ex-
ceeded (see figure 5.12).

Figure 5.9 Objects diagram of the first time restriction



158 5.4. A sample workflow

Time Restriction 2: unfinished processes at the end of the month

The second XTM model is used to gather a list of the processes that are still
unfinished at the end of this month. In order to do so, the model shown in
figure 5.10 uses a TimeRestriction of the type Deadline Lower Limit Time
Restriction. This kind of restriction corresponds with a time pattern where
an event in the workflow must occur before a given deadline. In this case the
DeadlineTimer is used to generate an event when the end of the month is reached.

Figure 5.10 Objects diagram of the second time restriction

In this case, there is also only one TaskSet and the only action in it is used
to add the identifier of the process to the report of unfinished processes.

Time Restriction 3: daily status report

Finally, the third restriction specifies that a daily report with the status of the
whole process has to be sent to each client while the process is still unfinished
and he has not received a notification. In this case, the TimeRestriction is of
a type that is slightly different to the previous ones because it can execute each
TaskSet different times, once for each time the MeasureTimer emits a signal (see
figure 5.11). In this case, the only Task in the model is used to send the report
to the client.

Figure 5.11 Objects diagram of the third time restriction

5.4.4 The composition code

In the previous two sections we presented the MiniBPMN and the XTM models of the
sample workflow. However, up to this point there are no real relations between
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those models. At most, there are only intentions in the descriptions of the XTM
models which refer to specific activities in the control model.

In this section we materialize these relations using CCL. To facilitate the
description of the CCL code, it will be divided and presented in four parts.

Assembly declaration and initialization

Listing 5.7 shows the first part of the CCL code for the sample workflow. This
code describes two main aspects of an assembly.

In the first place, it declares the models that are going to be part of the assem-
bly, and assigns a model alias to each one. The listing shows how this particular
sample assembly is going to include one MiniBPMN model named ‘fastCreditPro-
cess´, and three XTM models. The code also declares fcpInst as a global variable
and thus it becomes usable in every part of the code.

Listing 5.7: Assembly declaration and initialization of the assembly instance

1 assembly {
2 load (miniBPMN:fastCreditProcess FCP,
3 XTM:restriction1 Res1,
4 XTM:restriction2 Res2,
5 XTM:restriction3 Res3 );
6

7 global (fcpInst);
8

9 // Initialization of an assembly’s instance
10 on:Init {
11 fcpInst = new FCP;
12 new Res1;
13 new Res2;
14 new Res3;
15 }
16 ...
17 }

The second part of the code (lines 9 to 15) specifies what has to be done when
the assembly is instantiated. First of all, line 11 specifies that a new instance of
the MiniBPMN model has to be created. A reference to the newly created model
instance is stored in the global variable fcpInst. The other lines in this block
create new instances of the XTM models. However, because of the event based
organization of the CCL blocks, it is not necessary to store references to these
instances.

Composition of the first time model

The composition of the MiniBPMN model with the XTM model corresponding to the
first time restriction is determined by the CCL code shown in listing 5.8. This
block of code is associated to the event of the creation of an instance of the XTM
model.

One thing to note about the code in listing 5.8 is that in this case the elements
in the MiniBPMN model are not selected with an expression of the navigation
language. Instead, the function findByName is used to select the elements using
their name, which is unique within each model instance.
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Listing 5.8: Composition of the first time model

1 on:ModelInstanceCreation (Res1 newTR) {
2 createActionLink ("Approval/Rejection Duration") {
3 findByName(fcpInst, "ApproveRejectRequest")|activate −>
4 newTR["#root"]::notifyIntermediate();
5 findByName(fcpInst, "ApproveRejectRequest")|deactivate −>
6 newTR["#root"]::notifyEnd();
7 };
8 }

The result of executing this CCL code is represented in figure 5.122. Two
additional actions are installed into transitions of the state machine of the task
ApproveRejectRequest. Furthermore, these actions are configured to invoke the
methods notifyIntermediate( ) and notifyEnd( ) of the EntryPoint of the
XTM model.

Composition of the second time model

The second XTM model is composed to the MiniBPMN model by using a different
kind of composition mechanism. While the previous example used additional
actions, this one works by subscribing one element (the entry point in the XTM
model) to an event generated by one element in the other model (the process in
the MiniBPMN model). Listing 5.9 shows how this is achieved.

Listing 5.9: Composition of the second time model

1 on:ModelInstanceCreation (Res2 newTR) {
2 createEventLink ("End of Month Report") {
3 fcpInst["#root"]:deactivation −> tr["#root"]|endTransition;
4 };
5 }

Figure 5.13 shows the end result of this composition: in this case, a new
transition triggered by the event deactivation is created.

Composition of the third time model

The final part of the CCL program (listing 5.10) is used to compose the third XTM
model to the MiniBPMN model. The main difference between these cases and the
previous ones is that two different elements of the MiniBPMN model are woven to
a single element of the XTM model. In the listing shown below, an action is first
installed in a transition of the Task ‘RequestCredit’, and then a second one is
installed in a transition of the Task ‘MailDecision’. Figure 5.14 shows the result
of this composition.

2In figures 5.12, 5.13, and 5.14 we have left out various details in order to present in the
figures only the elements most relevant to the composition.
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Figure 5.12 Partial view of the MiniBPMN model composed with the first XTM model

Listing 5.10: Composition of the third time model

1 on:ModelInstanceCreation (Res3 newTR) {
2 createActionLink ("Daily Report Links") {
3 findByName(fcpInst, "RequestCredit")|activate −>
4 newTR["#root"]::notifyIntermediate();
5 findByName(fcpInst, "MailDecision")|deactivate −>
6 newTR["#root"]::notifyEnd();
7 };
8 }



162 5.4. A sample workflow

Figure 5.13 Partial view of the MiniBPMN model composed with the second XTM model
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Figure 5.14 Partial view of the MiniBPMN model composed with the third XTM model

5.4.5 Packaging and using the assembly

The step to perform after building the models and writing the CCL program
to compose them, is to package the assembly in a cumbiar file. For the sample
workflow, the cumbiar file has the structure shown in figure 5.15. For each model
in the assembly, this file includes the description of the models, and the additional
resources that are required in each one. Similarly, this file also includes the CCL
program (assembly.xml) and its additional resources (in this example this file is
empty as there are no additional CCL resources required).

Cumbiar files are loaded in the Cumbia Weaver, which analyses their structure
and the CCL program, and loads the resources and models in the adequate
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Figure 5.15 Structure of the cumbiar file with the sample assembly.

engines. In the example considered, this means loading the fastCreditProcess
in the MiniBPMN engine, and loading the three time restriction models in the XTM
engine, each with their respective resources.

After performing this step, it becomes possible to request the creation of
instances of the assembly. When such a request is issued, through the interface
exposed by the Cumbia Weaver, the block of instructions associated to the Init
event is executed. In this case, the instructions require the creation of instances of
the models inside each engine. Since every engine generates some events informing
about the creation of those instances, the blocks of instructions associated to the
events ModelInstanceCreation are also executed, one by one.

After these steps are completed, the end result is an instance of the assembly
composed by a collection of instances of the models, whose elements are related
as the CCL program specifies.

5.5 Summary

To conclude this chapter we present an evaluation of the composition strategy
of Cumbia, based on the reference process framework discussed in the previous
section. The following is an overview of the composition strategy of Cumbia from
each point of view.

• Ordering
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The order to perform the composition depends on the order of CCL in-
structions: the Cumbia Weaver executes blocks of instructions associated
to an event. Within each block, instructions are executed one by one, in
the order specified in the file.

• Ordering Flexibility

There is flexibility in the order of the composition because the blocks of
instructions are associated to high level events produced by the workflow
engines. In general, a fixed order cannot be predicted, but there is no
concurrency inside the Cumbia Weaver.

• Stopping Criteria

For each event, there is a number of instructions and the composition ends
when those instructions are all executed. The whole composition process
finishes when no more events occur.

• Stopping Criteria Flexibility

The flexibility is given by the usage of events to group and organize the
execution of the CCL composition instructions.

• Contribution

In CCL the contributions are concern specific models.

• Contribution Granularity

The granularity of the contributions in CCL is at the level of elements in a
specific model instance.

• Contribution Selectivity

The selection in CCL is arbitrary and any element in a model definition
can be selected to be composed.

• Location Description

In CCL the locations are described using expressions based on the naviga-
tion language presented in section 4.2.3. Using the information present in
model definitions, the locations are described with respect to specific model
instances.

• Location Freedom

In CCL, the valid locations are all the elements in a model instance.

• Combination Description

In our strategy, the combination is described by writing CCL programs.

• Combination Expressiveness

The expressiveness of the combination is limited by the expressiveness of
the available CCL operations.

• Translation

We do not use a translation step in our composition strategy because it
does not need models to be all conformant to the same metamodel.
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• Fastening

The fastening is done by the Cumbia Weaver when it executes the ac-
tual CCL operations. This fastening is done between elements of model
instances.

• Symmetry

Our composition strategy is symmetric: every model is at the same level.
Furthermore, since all the original models are kept and are distinguishable
after the composition, it is not possible to speak about a base model that
serves as the base for the final composed model.

Chapters 4 and 5 have presented the core details about the Cumbia platform,
and have illustrated its usage with a simple application. Nevertheless, these
chapters have not studied practical considerations that are relevant for the devel-
opment of such an application. For example, not a lot has been said about the
process to design or select concern specific languages, about the roles played by
the people that participate in the development, or about the complementary tools
that they can use to facilitate the development. Chapter 6 focuses on providing
all this practical information.



6
Towards a development process for workflow

engines based on Cumbia

In previous chapters we have presented the Cumbia platform and its base elements
(the open objects). In those chapters, we have only discussed the tools that are
central to the platform: the Cumbia Kernel and the Cumbia Weaver. Similarly,
we have focused on the central tasks of designing and implementing metamodels
and models. However, we have not shown in detail the relationships between
these tasks, and we have not discussed any of the complementing tasks.

This chapter addresses these topics. It describes all the stakeholders involved
in the process of designing, implementing, and using concern specific workflow
languages with Cumbia. Then, this chapter analyses the tasks that each stake-
holder performs. To give these tasks a context and logical relations, we have
organized them in a software development process to produce workflow engines.
Finally, this chapter also presents the supplementary tools that we have already
developed to support some of the aforementioned tasks.

The chapter begins with a rapid presentation of the whole development pro-
cess and of the relevant stakeholders, and then it describes each task, artifact,
and tool in more detail.

6.1 Process overview

Developing, maintaining, and evolving workflow languages and engines requires
a complex process involving several small activities of different natures. Some
of these activities have a strong technical component, and thus they have to be
performed by people with technical skills. On the other hand, other activities are
more suitable for people with a deep knowledge of the particular domains. In this
chapter, we present a rudimentary development process that goes from the design
of the concern specific workflow languages, to the execution and monitoring of
workflow assemblies. Besides presenting the specific activities to be performed, we
also discuss the artifacts produced and consumed by each activity, the spectrum
of participants involved, and the tools that these participants require in each
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step. Figure 6.1 uses BPMN’s notation to graphically represents the five main
groups of activities (phases) in the process.

Figure 6.1 The five main phases in the process for developing workflow languages and
engines based on Cumbia

The five phases identified can be summarized as follows:

1. Design & develop languages, metamodels and engines. Based on
requirements from specific domains, workflow languages are designed. Since
the languages can be concern specific (CSWfLs), this can be done several
times, in parallel. The metamodels and engines corresponding to each lan-
guage are designed, built, and tested in this step. In figure 6.1 this step
is shown as optional because it is possible to reuse, in new applications,
languages developed in previous iterations. In such cases the goal of the
process becomes integrating those languages under a new workflow appli-
cation.

2. Design metamodel composition. The possible interactions between
specific groups of concern specific languages are analyzed. These inter-
actions are reflected in guidelines to compose models described with the
corresponding metamodels. This is an optional step because it is also pos-
sible to use workflow languages in isolation.

3. Design & build applications. In this phase applications tailored to
specific languages or groups of languages are developed. These applications
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can be used to build the models (editors), but also to interact with models
at run time. This is also an optional step.

4. Design & build workflows. In the following phase, workflows to solve
specific problems are designed and built. Each one of these workflows is an
assembly, and thus it is formed by models, additional resources, composition
information (a CCL program), and composition resources.

5. Enact workflows. The final step is to enact the workflows and interact
with them at run time. This participation in the execution includes, for
instance, providing data or taking decisions. Furthermore, the execution of
these instances is monitored during this enactment phase.

Together with these groups of activities, we have also identified eleven kinds
of participants, or roles, that are relevant to the whole process. These roles are
the following:

• Domain expert. This role represents people that do not necessarily have
technical knowledge, but have knowledge about the domain of the work-
flows. Domain experts are not only suited to contribute their domain knowl-
edge to specific workflows, but they can also contribute to the design of
languages.

• Language developer. This role corresponds to people in charge of de-
signing languages, which are capable of capturing the knowledge of domain
experts in suitable and expressive domain specific languages.

• Metamodel developer. This role represents people that have an in-depth
knowledge of Cumbia and are able to design and develop metamodels for
new languages. They are also capable of evolving existing metamodels in
response to changes in the languages.

• Engine developer. This role represents the developers who complement
the work of metamodel developers by developing the parts of the engines
that are not supported directly by the Cumbia Kernel and the metamodel.

• Metamodel tester. This role represents people that are in charge of
ensuring the quality of the metamodels implementation, and their confor-
mance to the corresponding language definition.

• Composition tester. Similar to the metamodel testers, these people an-
alyze the composition guidelines and try to uncover problems in them.

• Application developer. This role represents developers who build the
additional required applications.

• Model builder (analyst). This role groups domain experts that partic-
ipate in the design of specific workflows or models, by contributing their
domain knowledge.

• Model builder (developer). This role groups technical people that also
participate in the construction of specific workflows, for instance by devel-
oping the software to support additional requirements.
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• Workflow manager. This role represents managers that are in charge of
creating instances of the workflows, and monitoring their execution.

• Participant. Participants are the people that are part of the workflow exe-
cution and must perform steps that determine its execution or its outcomes.
For instance, participants may have to interact with client applications to
supply information or take decisions about the running workflow.

Between the list of roles just presented and the list of stakeholders proposed by
Weske [Wes07] there are important differences. For instance, in the list of Weske
there are two types of stakeholders that are responsible for the development of the
“business process management systems” and the “software artefacts required to
implement business process”. In our case these roles are more detailed and form
the core of the list. Conversely, Weske’s list identifies six types of stakeholders
that participate in the definition and enactment of the business process, whereas
we only identified three roles that fulfill those tasks. The differences between
these lists highlight the fact that our proposal is mostly targeted at the designers
and developers of workflow languages and engines, and not so much at the users
of those.

In the following sections we will explain in more detail every phase, the ar-
tifacts produced and required in each one, and also the tools available for each
role.

Notation

In the following sections we use an ad hoc graphical notation, roughly based on
BPMN’s, to represent the different parts of the process. Figure 6.2 shows the
structure of the diagrams and its main elements.

Figure 6.2 Graphical notation used to present the details about the process

In the central section of the diagrams (Activities to perform) we use BPMN’s
notation to show the relevant activities, and their order of execution. Besides
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tasks and flows, in some of the processes we use also BPMN’s gateways and
subprocesses.

The section to the left of the diagrams (Participants and assignment to ac-
tivities) graphically represents the roles that participate in each of the activities
of the central section. Dotted lines are used to connect each activity to the role
that should perform it.

The section to the right of the diagrams (Artifacts produced and used) shows
the artifacts that are relevant to the activities in the central section. Some of
these artifacts are inputs to one or more activities, while others are produced by
the activities. The difference between these artifacts can be seen in the direction
of the arrow that connects them to activities. Finally, there are also some artifacts
which are represented both as inputs and products of an activity: this means that
these artifacts are updated by the activity.

The section of the diagrams located near its bottom (Tools to support the
activities), depicts those tools that we have developed and can be used by the
participants to perform some of the activities. We have not included any graphical
element to connect these tools to specific activities, but the text makes explicit
which tools support which activities.

6.2 Design and develop languages, metamodels and en-
gines

The first phase of the process covers the steps to design and implement new
workflow languages, their metamodels, and their engines. In this phase, the par-
ticipation of Domain Experts is crucial: they provide the domain knowledge that
languages and applications must incorporate. Furthermore, they define the re-
quirements and functionalities for the applications. Domain Experts team up
with Language Developers to specify the languages which are to be implemented
and used in the subsequent steps. The work of Language Developers achieves an
important objective: it captures domain knowledge in a suitable and expressive
language. Finally, this phase also involves Developers which know the Cumbia
platform and can use it to implement the support required to use the new lan-
guages.

Figure 6.3 presents a coarse view on the activities involved in this phase.
Some of these were covered in chapter 4, when we showed how to implement a
concern specific workflow language and an engine for it. In this section, we present
these activities in the context of a development process, and we complement
them with some additional steps. The final results of this phase are used in the
subsequent phases and they are a language specification, a tested implementation
of its metamodel, and an engine to run models.

In this phase of the process we also consider languages built as an evolution
or a new version of an existing language. In the first parts of this section we
mostly describe the activities to develop languages from scratch. Afterwards, in
section 6.2.5, we describe how language evolution is incorporated in the process
and how this alters the normal flow of activities.
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Figure 6.3 Design and implementation of a Cumbia based workflow language

6.2.1 Design a language

The first step in the process, to Design a Language, has two main goals. The
first one is to design a language which captures the adequate amount of domain
knowledge. For instance, it must capture the main entities of the domain, their
relations, their interactions, and the relevant restrictions. The second goal is to
design a language that domain experts can use effectively to address the problems
they face. Depending on the domain, the specific requirement related to this may
vary. For instance, in the domain of scientific based applications, users expect
to have self explanatory workflows where it is easy to see if results make sense
scientifically [MBZL09].

The most important input for this step is all the knowledge provided by
domain experts. Besides contributing information about the domain, these users
also define the requirements for the language and for the applications which will
use the language.

Another input for this step are other related languages. Since Cumbia sup-
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ports the integration of multiple concern specific workflow languages, the design
of a new language must consider those other languages which may be related.
This includes existing languages and languages under development. A pertinent
example in the domain of business processes is the design of a new control flow
language which is to be integrated with an existing language to describe time
restrictions, and a language under development to describe data flow. By taking
these other languages into account since this early phase, the new control flow
language will better integrate with those other languages. A further consideration
to take into account at this point is reusability: although the Cumbia platform
provides features to make languages more reusable, the design of the language
can also facilitate or obstruct its reusability.

The previous considerations are all relevant to CSWfLs. However, this does
not mean that Cumbia cannot handle non-modularized workflow languages or
even generic workflow languages, like BPMN or WS-BPEL. Therefore, the result
of this step can be the specification of such a language. Additionally, this sim-
plifies some of the ensuing phases, especially the second and fourth phase, since
the interaction between languages does not have to be analyzed, supported, and
taken into account when designing workflows.

The output expected from this step of the process is a Language Specification.
This specification must describe the elements of the language, their structure,
and their semantics. The syntax of the language is also likely to be designed in
this step. However, since we are not considering the development of editors, this
syntax is not relevant to the subsequent steps of our development process. On the
other hand, the semantics of the language must be complete and its specification
should not leave space for interpretation by metamodel developers. This can be
achieved with any means available, but we are not going to automatically process
this information in any way.

6.2.2 Metamodel design and implementation

Figure 6.3 shows that the following activities in the phase are to Design a Meta-
model and Build a Metamodel. In reality, these are not simple, atomic activities.
Instead, they are complex set of tasks that Metamodel Developers carry out to
implement the Language Specification built in the previous step.

Figure 6.3 also shows that Build Engine is performed while the metamodel is
designed, implemented, and tested. Since we are not decomposing Build Engine
into more detailed phases, this concurrency is necessary to show the following
considerations.

• Unless the engine is totally generic, its design depends on the metamodel
and its implementation.

• The implementation of a metamodel can depend on elements of the engine
or on services provided by the engine. In chapter 4 we referred to these
services as Language Specific Elements. For example, in the case of a
WS-BPEL implementation, the engine can provide a gateway to consume
web-services for elements in the metamodel.

• The testing of some metamodels may be impossible to do without an engine,
or require a complex mock infrastructure. Therefore some tests of the
metamodels must be done using scenarios deployed into an engine.



174 6.2. Design and develop languages, metamodels and engines

This concurrency would be eliminated if we identified more detailed tasks,
such as define services that engine must provide, test isolated metamodel, and
test metamodel and engine.

Design metamodel

In this point of the process, the metamodel is designed. This begins by identify-
ing which concepts of the language must be reified as entities in the metamodel.
A one-to-one relation between concepts in the language and entities in the meta-
model is not mandatory. However, the maintainability, the flexibility, and the
extensibility of both language and metamodel can be favored by keeping concepts
and entities as aligned as possible.

After metamodel entities are identified, they are structured. This means
that the relations between entities are made explicit. Next, entities are given
attributes, and then they are given behavior. The behavior defined for each
entity must consider two aspects: on the one hand, the way in which instances of
the entity must alter their internal state in response to external stimuli; on the
other hand, the way in which instances of the entity should interact with other
instances of the same entity or with instances of other entities in the metamodel.

Since these are metamodels to use in the Cumbia platform, the result of the
previous steps must be the specification of a Cumbia metamodel. This includes
the full descriptions of the open objects in it, together with the description of their
state machines, the description of the interfaces of entities, and the description
of the actions.

In order to support the activities in this stage, we have developed a tool called
the OO Editor (Open Objects Editor). This tool is based on the Eclipse GMF
platform, and it provides a graphical editor to define the entities and the structure
of the metamodels. The OO Editor also provides the means to describe the
internals of the open objects, including their attributes, the events they generate,
the interface of the entities, and their state machines (see figure 6.4). The only
aspect that the tool does not support is the specification of the behavior, that is,
the implementation of the entities’ methods and of the actions.

Given a metamodel specification, the OO Editor can export the XML files
that are used to configure the Cumbia Kernel.

Build metamodel

After the metamodel has been designed, the following task is to implement it and
prepare it to be tested or used in an engine. This involves writing the Java code
for the entities and for the actions associated to state machines. Furthermore,
additional files required in the metamodel have to be prepared (e.g. configuration
files). Finally, the resources associated to the metamodel (the classes and the
other files) are packaged in a jar file.

The OO Editor also provides support for some of the tasks in this stage. Given
the specification of a metamodel, this tool can generate boilerplate code for the
open objects’ entities and actions. The generated files are full of markings that
the Metamodel Developers must replace with the actual code for these classes.

In the end, the XML files exported from the OO Editor and the resources
of the metamodel are tested and are used in the engine implemented for the
language.
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Figure 6.4 The OO Editor editing a metamodel structure, and an open object

6.2.3 Metamodel testing

After the completion of a metamodel’s implementation, this implementation must
be tested1. The intention of this is to find errors in the design of the metamodel
or in the implementation of the entities and the actions. Besides finding purely
technical errors, this testing phase also aims to uncover inconsistencies between
the specification of the language and its implementation in the metamodel. If an
error is discovered in this phase there are two alternatives to correct it: the first
one is to return to the Build Metamodel activity, fix the implementation, and
then test again; the second one is to return to the Design Metamodel activity,
fix the design, then fix the implementation, and then test again.

The proposed testing procedure is based on Model Based Testing [UPL06,

1In reality the metamodel implementation is not tested in isolation. As previously explained,
in several cases this testing phase also involves the engine.
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AD97] and on the usage of scenarios as figure 6.5 shows. Each scenario is com-
posed of a model and of a set of stimuli for that model (e.g. the interaction of
participants, or requests from external systems). The model is described using
the language specified in the first step of the process. Since the semantics of
the language is known, the behavior of the scenario, given the model and the
stimuli, can be predicted2. On the other hand, the same model and stimuli are
used with the metamodel implementation, and the actual behavior is recorded.
The comparison of the expected behavior and the actual behavior can expose
inconsistencies between the language and the metamodel.

Figure 6.5 Scenario based testing of metamodels

It is important to note that it is not sufficient to compare the final results of
the execution. Instead, it is necessary to check that the executed models reaches
all the intermediate states and performs all the actions defined in the semantics of
the language. For example, it may not be enough to just check the data produced
at the end of a WS-BPEL process. Instead, it may be more appropriate to check
that all the intermediate web-services were invoked with the correct parameters.

We have developed two different tools to support the work of Metamodel
Testers. The first of those tools is called Cumbia Debugger (CD). It is an extension
to the Cumbia Platform which provides a graphical interface that a Metamodel
Tester can use to examine the execution of the models in an interactive way.
With the CD they can see the structure of the state machines, the state changes,
the actions executed, and the events generated and processed (see figure 6.6).
The second tool available is called Cumbia Test Framework (CTF)[SJV10] and it
is a collection of tools to build test workbenches and Test Suites for workflow
languages. The CTF will be described in the next section.

2Unless there are existing implementations of the semantics, or there are formal models, the
predictions have to be manually constructed. Therefore, the role of the Abstract Interpreter
shown in 6.5 may be played by someone that knows the language and its semantics.
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Figure 6.6 Screenshot of the Cumbia Debugger

The basic result of the testing activity is a Test Suite composed of a number
of scenarios. If the CTF is used, then another result of this activity is a test
workbench for the language. The Test Suite is not only useful when the language
is first specified and implemented. It can also be used to perform regression
tests when the metamodel is modified, or it can be the basis for a new test suite
whenever the language is modified or extended. Finally, it must be considered
that in all but a few cases, scenario based testing cannot guarantee the correction
of the metamodel implementation with respect to the language specification. If
no errors are detected, the confidence in the results only depends on the quality
of the test suite.

Cumbia Test Framework

The Cumbia Test Framework3(CTF) is a framework for creating test environ-
ments and test suites for metamodels [SJV10]. The CTF is not tied to any par-
ticular language. Instead, it defines the general structure of a scenario, and
provides the base elements to define those scenarios, execute them, and verify if
the execution proceeded as expected.

One of the main motivations behind the design of the CTF is to minimize the
impact of concurrency in the result of the tests. Existing test frameworks, such
as JUnit, offer very poor support to test concurrent programs [LHS03, Ric10].
Since concurrency is at the base of the Cumbia platform and the open objects,
using a testing tool with issues to handle concurrency is not desirable. To counter
this situation, the CTF relies on the off-line analysis of traces which are captured
during the execution of the models. This approach was inspired by the work of
Kortenkamp et al. [KMSF01].

3The development of the Cumbia Test Framework has been an ongoing effort, and several
students of the Universidad de los Andes have contributed to its development. The contributors
to CTF include Sergio Moreno, Camilo Jiménez, Carlos Vega, John Espitia, Ivan Barrero, Carlos
Rodríguez, and Mario Sánchez.
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In order to gather the information for the analysis, the CTF instruments the
scenarios using sensors. These sensors are installed as actions in the open objects
and they register run time information each time they are executed (i.e. the
transition where they are installed is triggered). The information that sensors
obtain is stored in traces. Afterwards, when the execution of the scenario is
completed, those traces are analyzed to uncover situations where the execution
did not follow the semantics of the language.

The elements in a CTF scenario are the same regardless of the metamodel
under test. These elements are the following.

1. Models. These models are described using the metamodels under test and
they provide concrete situations with known behavior. Scenarios can in-
clude a single model or several ones. For example, if a control-flow language
allows the interaction between various processes, then the scenarios to test
the language will have to include multiple models.

2. Instantiation schemas. The instantiation schemas define how to create the
instances of the models in the scenario. For instance, the instantiation
schema can determine that one instance of each model has to be created.

The instantiation schemas also have an important role when the CTF is used
for scalability testing. In those situations, the schema offers a practical way
to request the creation of hundreds or thousands of instances of a model.

3. Animation program. The first part of a scenario (the models), provide only
a static view on the scenario. The instantiation schema provides only a
little bit of dynamic information, as it determines how the models should
be instantiated. This dynamic information is complemented with animation
programs that describe the stimuli that models require. For example, an
animation program for WS-BPEL should define the responses of mock web-
services to the requests made in the processes.

4. Observation structure. Each scenario requires different information to be
gathered in order to check its correct execution. The observation structure
for a scenario defines the types of sensors to use, which determine the
information to gather in the traces. The observation structure also defines
the placement of sensors in the models (i.e. the transitions where they
should be installed as actions).

5. Assertion program. The last element of a scenario are the programs that
check the information in the traces to discover inconsistencies between the
expected behavior and the observed behavior. These programs can be built
in two ways. The first one is to use a general purpose programming language
(e.g Java) and an API to access the traces. The disadvantage of this is
having to write Java code for each scenario. The second way is to use data
analyzers and the assertion language defined by the CTF. Data analyzers are
simple programs that look for specific patterns in the traces. Although they
are also written in Java, they are easily reused across different scenarios.
Furthermore, scenarios designers do not have to know the internals of these
analyzers because they can use them through the assertion language.

Besides defining the elements that each test scenario must include, the CTF
also provides tools to use those elements and perform the tests. All these elements
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and tools are generic, which means that they must be specialized for testing
specific workflow languages. For instance, animation languages, to write the
animation programs, have to be designed following the characteristics of each
language under test. Three steps are required to adapt the CTF and use it to test
a specific metamodel.

1. Specialize the Framework
The CTF is a framework to build testing environments for specific workflow lan-
guages. Therefore, in order to use the CTF and test a metamodel that implements
a language, a new testing environment has to be developed. This is done by spe-
cializing three aspects of the CTF:

• Animation Language. The stimuli that the test framework provides to
control the execution of the scenarios have strong dependencies towards
the actual languages tested. Therefore, the animation languages to describe
these stimuli have to be specialized for each tested language. In particular,
each animation language can describe different characteristics of the stimuli,
and can specify in different ways how and when these stimuli should be
generated.

For example, in the case of a testing environment for a WS-BPEL meta-
model, the animation language should describe aspects of the mock web-
services used in the scenarios. For example, it could describe the data
contained in responses, or the delay to generate those responses.

• Data Analyzers. The data analyzers required for each tested language de-
pend on the relevant assertions to test. Therefore, specific data analyzers
have to be implemented.

In the WS-BPEL example, interesting assertions could check the data pro-
duced by the processes, or the order of execution of web-service invocations.
Therefore, a testing environment for WS-BPEL should include the data an-
alyzers to find this kind of information in the traces.

• Sensors. Data analyzers depend on the data left in traces by sensors. Thus,
specific sensors have to be created to record the data required.

To fulfill the requirements of the data analyzers previously described, the
sensors in a WS-BPEL testing environment should register in the traces
the data produced by each activity, and the time of the execution of the
invocations.

2. Build Scenarios
The second step in the usage of the CTF is to build the scenarios. This step can
be divided in three main parts.

• In the first part, the requirements for the scenario are established. This
means deciding which aspect of the language is going to be verified and
which kind of assertions are going to be used.

• Afterwards, a scenario that presents the aspects to test has to be designed
and implemented. This includes building the models involved, writing the
animation programs, and establishing the instantiation schema.
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• The final part involves both the observation structure and the assertion
programs: first, the assertions that should be valid when the scenario is
executed are established; then, the corresponding assertion programs are
written; finally, an observation structure is defined to gather the informa-
tion required in the assertion program.

Moreover, the construction of a scenario does not have to start from scratch
each time, as many of their elements can be reused. For example, several scenarios
can share most elements and only differ in their animation programs. Another
common reuse situation is where the same models and animation programs are
used to verify different assertions.

3. Execute the scenarios
At last, scenarios are executed and a response is produced: if given the infor-
mation in the traces all the assertions are valid, then the scenario has a positive
result; otherwise, a negative result is produced and the Metamodel Testers receive
a report of the assertions that were violated.

Figure 6.7 shows the four distinct phases in the execution of a scenario in the
CTF.

Figure 6.7 The phases of the execution of a scenario

1. Instantiation and instrumentation. In the first phase the models are instan-
tiated according to the details found in the Instantiation Schema. Then,
the model instances are instrumented as required by the Observation Struc-
ture. This means that sensors are installed as actions in the transitions of
elements in the models. At last, model instances are further instrumented
if the animation language requires so. For example, consider an animation
language that has expressions of the form “complete activity B after activ-
ity A has been completed”. In such a case, the model instances will have to
be instrumented with elements to notify the interpreter of the animation
programs about the completion of activities.

2. Animation. In the second moment, the scenarios are executed. This is a
responsibility of an interpreter of the animation language, which follows the
instructions in the animation program.
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3. Observation. While models are being executed, the sensors gather informa-
tion and store it in traces: each time a transition with a sensor is triggered,
the sensor is executed, retrieves runtime information, and stores it in a
trace.

4. Analysis. In the final phase, after the execution of the models is complete,
assertion programs are run. Using the information of the traces, these
programs check that the execution of the models proceeded as expected.

6.2.4 Engine development

In chapter 4 we presented the structure of engines in Cumbia, and we showed
how each of them incorporates an instance of the Cumbia Kernel. In this step,
the goal is to design and build an engine to support and complement a specific
metamodel. To design an engine the following aspects have to be taken into
account:

• The additional services required by a metamodel (the Language Specific El-
ements). For instance, a metamodel may require gateways to communicate
with web-services, or services to access a database.

• The additional interfaces that the language requires. For instance, the
specification for WS-BPEL defines a standardized interface that all imple-
mentations of the specification must offer.

• Finally, the engines define how to handle and identify model specifications
and model instances.

As we previously said, most of an engine’s implementation is dependent on
the metamodel. Therefore, the development of engines proceeds in parallel to
the development of the metamodels. Furthermore, in figure 6.3 we have depicted
Build Engine as a collapsed process because it must include a number of steps
commonly found in the development of any software system (e.g analysis, design,
implementation, and testing).

6.2.5 Language and metamodel evolution

Up to this point we have considered the activities necessary to design and imple-
ment a language from scratch. However, in many cases it is possible to develop a
new language starting from an existing one. This is more likely to happen when
the new language is an updated version of an existing language.

Figure 6.8 shows a more complete version of the activities that were previously
described. According to this figure, the first thing to consider in the process is
whether a new language is required, or if an existing one can be adapted. In the
former case, the process proceeds as it was described in the preceding sections.
In the latter case, the specification of the existing language is modified to reflect
the new requirements, and it is stored with a new name or a new version number.

The following step is to determine if the metamodel of the existing language
can accommodate the changes required in the new language. This is an analysis
that will have to be done by hand in each case. Given the characteristics for
flexibility and extensibility of the Cumbia platform, we expect that most changes
will be attainable with a reasonable effort. However, in some cases it will be more
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Figure 6.8 Steps to evolve an existing workflow language

convenient to design or develop a new metamodel. For example, the differences
between BPMN version 1.1 and BPMN version 2 are so profound that it is not
worth to convert one metamodel into the other.

When a metamodel is adapted, the rest of the activities are similar to the
activities that were discussed in the previous sections. Furthermore, these ac-
tivities result not only in an updated metamodel but also a updated test suite
and updated engine. The investigation of whether it is more cost effective to
develop a new language than adapting and extending an existing one are outside
the scope of this dissertation.
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6.3 Design metamodel composition

In the previous phase languages have been designed and implemented as meta-
models. In many cases, these languages and metamodels are designed without
explicit dependencies. Therefore, the goal of the next phase in the process is to es-
tablish how models described with these languages and metamodels can interact.
This is achieved in four main steps. Firstly, a subset of the available languages
that will be used together is selected. Secondly, the interactions between these
languages are analyzed and documented. Then, this analysis is used to estab-
lish how models will have to be composed and coordinated. This is reported in
guidelines to compose the selected metamodels. Finally, tests are done to verify
that the composition guidelines do not create problems and inconsistencies in the
models during execution.

Figure 6.9 shows the main activities of this phase, together with the partici-
pant roles and the artifacts that each activity uses or produces. In the following
sections we discuss all these in detail.

Figure 6.9 Details of the process to design the composition of metamodels
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6.3.1 Select languages

The first step in this phase is to select a set of languages that will be used in some
application. This selection depends on three factors: the general objectives of the
application, the particular characteristics of the domain, and the compatibility of
the languages. The first factor to consider are the objectives and requirements of
the application. They determine the concerns that the application must handle,
the information to manage, the interaction with external applications, and the
actions that users can perform to control the processes. For example, an appli-
cation’s requirement can be to assign tasks based on the knowledge and skills of
participants. This creates the need to handle that information about participants,
and also necessitates a language to assign tasks based on that information.

The second factor to consider are the characteristics of the domain where the
application is used. This is relevant because each domain determines important
restrictions which can limit the applicability of a language. For example, some
control flow patterns which are commonly not well supported in workflow lan-
guages, appear very frequently in certain domains. Therefore, it is important for
the languages selected to work in that domain to support those patterns.

Finally, the selection of the languages to use in an application can also be in-
fluenced by how well the languages can be integrated: not every pair of concern
specific workflow languages can be successfully composed. For example, some
languages can be incompatible if they handle similar concepts in different ways
that cannot be reconciled. Consider as an example a control flow language that
handles multiple instances of the activities, and a language to define task assign-
ments that cannot distinguish between different instances of the same activity.

The actors that participate in the activity Select Languages are of two kinds.
On the one hand, there are Domain Experts. They are capable of establishing the
requirements for the application and assess whether the selected languages fulfill
these requirements. On the other hand, there are Language Developers, which
have an in-depth knowledge of the languages available, and can judge whether
the integration of the selected languages is feasible.

The result of this step is only a selection of the languages to use in a specific
context. In the following step, the relations and interactions between those lan-
guages are thoroughly analyzed and then they are applied to the composition of
the corresponding metamodels and models.

6.3.2 Analyze language interactions

The second step in this phase is to analyze the possible interactions between the
selected languages. This is done by discovering how elements in the languages
relate, and how these relations determine their behavior. In the case of the
languages presented in chapter 5, the most easily seen interaction is between
MiniBPMNTasks and XTM Time Restrictions. However, Time Restriction can
also be related to Processes of MiniBPMN, and a single Time Restriction can
be related to several elements of MiniBPMN(e.g. a task and a process).

Furthermore, the relations and interactions between language elements can
also involve more than two elements. As an example, consider a language to
express the workflow control flow (e.g. MiniBPMN), a language to express rules to
offer and assign tasks to workflow participants, and a language to express time
restrictions (e.g. XTM). In this context, a possible interaction between the three
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languages would be to have rules restricting the maximum amount of time a task
can be offered after it becomes enabled to be executed.

As in the previous step, the only roles involved in this one are the Domain
Experts and the Language Developers. At the end of the step, they have to report
the relevant interactions between elements in the languages. This description
should include at least the following aspects for each interaction pattern:

• The types, numbers, and characteristics of the elements involved. For in-
stance, a Time Restriction that checks a time lapse in an XTM model can
interact with two different Tasks in a MiniBPMNmodel. In order to differ-
entiate them, these two Tasks could be characterized as the initial and the
final tasks.

• The context in which the elements interact. In the previous example, the
elements initiate their interaction when the initial task initiates its execu-
tion.

• The consequences of the interaction. In the example, after the initial tasks
starts its execution, the Time Restriction should start checking whether
the allowed time lapse is surpassed before the final task completes its exe-
cution.

The goal of this report is to have enough information about the patterns of
interaction between the languages, to map the same patterns to the interaction
between elements conformant to different metamodels.

6.3.3 Design metamodel composition guidelines

In this step, the patterns documented in the previous step are taken as the
base to describe the corresponding interaction patterns between elements in the
metamodels. In order to do this it is necessary to know how the elements of
the language were implemented in the metamodel. For example, it is necessary
to know how the high level events of the language correspond to events in the
metamodel. Therefore, this step has to be performed by Metamodel Develop-
ers because they should have a deep knowledge of the metamodels and of their
relation to the languages.

The result of this step is a document that describes Metamodel Composition
Guidelines. This document has a structure similar to the document obtained in
the previous step. However, in this case the description of the interaction patterns
is done at the level of the metamodel and the open objects. This document thus
provides the guidelines to compose and coordinate models conformant to the
involved metamodels, including guidelines to write the CCL programs. These
guidelines are provided in the way of patterns of CCL code where it is only
necessary to replace the identifiers or paths of the specific elements that must
interact.

At the time of the writing of this dissertation, we have a work in progress
that has as objective to formalize the result of this step and facilitate its usage in
subsequent phases4. In this work we are developing a language to first describe
the interaction patterns between metamodels, and then facilitate the construction

4This work is being done with Carlos Rodríguez. Carlos is a current student of the Master
in Engineering program at the Universidad de los Andes.
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of the assemblies using high level languages based on those patterns. When this
work will be completed, it would not longer be necessary to write CCL programs
by hand. Instead, they will be generated from the high level descriptions. As a
result, the complexity of building and assembly will be reduced, and it will become
possible to ensure that the interaction between models follows the interaction
patterns discovered.

6.3.4 Test metamodel composition

The goal of this step is to test the composition guidelines produced in the previous
step. To do so, these guidelines are used to build test scenarios where models
conformant to different metamodels interact. Then, the results of executing these
scenarios are compared against the semantics of the languages and against the
analysis of the interaction between the languages. Therefore, the Composition
Test Suites produced in this step require as input the Metamodel Composition
Guidelines and the report about the Language Interaction Analysis.

The tests to check the composition of languages are designed and executed
in a similar way to the independent tests for languages. They are also done
using the Test Framework and there are only three major differences. In the
first place, the scenarios have to include CCL programs in addition to the model
descriptions. In the second place, the languages to control and observe the models
include additional elements to handle concurrent model instances in execution.
Finally, the Test Framework has to interact with the engines through the Cumbia
Weaver instead of doing it directly.

The testing tasks described in this step are performed by a Composition
Tester. This role is fulfilled by users with an understanding of the composition
mechanisms and of the Test Framework. To build the scenarios, they use the
OOEditor (to create ad hoc metamodel extensions) and the CCL Editor. The
final result of this step is a Test Suite that shows that the composition of the
selected languages is correct when it is done following the composition guidelines
established in the previous steps. This Test Suite can be later used to check that
the evolution of the metamodels has not created problems in the interaction of
the languages.

To simplify figure 6.9, we have removed some elements which show that when
the execution of the test suite fails, the composition guidelines have to be cor-
rected.

6.4 Design and build applications

All the metamodels and engines implemented on top of the Cumbia platform
and the open objects share a number of common characteristics. This makes it
possible to have generic tools to build, interact, control, and monitor the models
and the assemblies. However, in many scenarios, generic applications are not ad-
equate, and specialized ones have to be constructed. For example, in a corporate
scenario it may be necessary to build a specialized monitoring tool to display
information organized according to business goals. A further reason to build spe-
cialized applications is to integrate the concern specific languages from the user
perspective.

Figure 6.10 shows a diagram for this phase of the process. This part is
not very detailed because it is mostly an ad hoc process with a structure that
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Figure 6.10 Details of the process to design and build applications

varies for every case. For instance, the activities to build a graphical editor
that integrates all the languages used in a scenario, are very different from the
activities to develop a web application that allows the participation of users in
the workflows. Therefore, we did not attempt to describe the steps inside Design
& Build Applications.

The relevant roles for this phase are the following: Domain Expert, and
Application Developer. Domain Experts are relevant to this phase because they
should establish the requirements for the applications, according to their specific
needs. Therefore, in this group we have included not only the domain experts that
participate in the design and specification of the languages, but also those that
participate in the design of the workflows, and their enactment and monitoring.
The other relevant role is that of Application Developers, which are responsible
for designing and implementing the applications. In order to do so, they need a
profound understanding of the languages and metamodels involved, and also of
the Cumbia platform and the interfaces it offers.

There are four possible input artifacts for the activity of developing applica-
tions. On the one hand, there is the information about the languages, which is
contained in the documents describing the languages (Language Specification),
and in the corresponding Metamodels. The Metamodels also provide implemen-
tation information such as the interfaces of the elements, and their relations.
Finally, the other inputs are the Language Interaction Analysis and the Meta-
model Composition Guidelines, which describe how applications should handle
the interaction between languages and, correspondingly, how they should deal
with metamodel composition. By providing these artifacts produced in the pre-
vious phases, this phase can produce applications, and they can be consistent
with the structure of the languages and with their composition.

In summary, the phase of designing and developing applications is where
specific applications are built to complement generic applications. The details
about this phase can vary depending on the kind of applications built, and even
the whole phase can be skipped if no specific applications are required.
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6.5 Design and build workflows

This phase of the process uses what was developed in previous phases to develop
workflows that solve specific domain problems. This phase includes both high
level activities, which do not directly involve the Cumbia platform, and low level
activities which create Cumbia artifacts. Because of this duplicity, this phase
involves two roles. The first role, Model Builder (analyst), is fulfilled by those that
contribute their domain knowledge to design the workflows using concern specific
workflow languages. The second role, Model Builder (developer), is fulfilled by
those that have a technical knowledge of Cumbia and the metamodels, and are
therefore able to implement the workflows designed by the analysts. The final
result of this phase is a cumbiar file which can be loaded in the Cumbia platform.

Figure 6.11 shows the main activities, artifacts, participants, and tools that
are relevant to this phase of the process. These elements are described in more
detail in the ensuing sections.

6.5.1 Design a workflow

The first part of the phase starts with a very high level activity, Analyze the
Workflow. In this activity, the objectives of the new workflow are established
and then its general structure is designed. The goal of this activity is not to have
a complete understanding of the workflow structure, but to have a high level view
to later guide the design of the concern specific models.

After this initial activity, the more formal tasks of designing the models and
their interactions are carried out by the Analysts. In this part of the process,
the Analysts should use concern specific workflow languages to describe the var-
ious parts of the workflow. This results in a collection of Concern Descriptions.
Roughly at the same time, the analysts must also produce a description of the
intended interactions between the concerns of the workflow. These interactions
should be based on the interaction patterns between the languages discovered in
the second phase of the process (see section 6.3.2).

Because of the scope of the work presented in this dissertation, which focuses
on the execution aspect of the workflow languages, we do not currently offer tools
to support this part of the process. Therefore, analysts have to use ad hoc editors
for the CSWfLs. We consider that future work related to this dissertation should
look for approaches to easily build or generate editors for these languages, and
make them compatible with Cumbia.

6.5.2 Build models, extensions, and resources

In the second part of the phase, the high level workflow is converted into concrete
model definitions conformant to Cumbia metamodels. Since specific workflows
usually require specialized elements, this part of the phase also includes the cre-
ation of metamodel extensions and their associate resources. In figure 6.11 we
have identified two coarse activities that are executed in parallel, namely Build
Models and Develop Extensions and Resources.

The objective of the activity Build Models is to transform the Concern De-
scriptions into Model Definitions that can be loaded in a Cumbia engine. Ideally,
the editors used to write the descriptions should be capable of exporting the high
level descriptions into the XML schema that Cumbia uses to specify the struc-
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Figure 6.11 Details of the process to design and build workflows

ture of models. However, given the current lack of editors for the CSWfLs, this
conversion has to be done using ad hoc converters implemented especially for
each language.

On the other hand, the objective of the activity Develop Extensions and
Resources is to build the elements that metamodels cannot provide because they
are specific to the workflow. Among these additional elements, the most common
ones are extensions to the metamodels that specialize the behavior of some open
objects (see chapter 4). Besides the definition of the extended metamodel, these
extensions also require the inclusion of additional classes where the specialized
behavior is implemented (entities and actions). On top of the elements to support
the extensions, the resources associated to a model can also include descriptors,



190 6.6. Enact workflows

configuration files, documents, or any other kind of file. For example, in the
case of a model representing a WS-BPEL process, the associated resources must
include the files that describe the partner links of the process.

The final result of this part of the phase is a set of Model Definitions comple-
mented by Metamodel Extensions and Resources. At this point, these elements
can already be loaded in the corresponding engines to be executed. However,
unless their executions are correctly coordinated, they will not provide the se-
mantics of the complete workflow. Therefore, the final steps of this phase are used
to develop the elements to achieve the coordination of the models. Furhtermore,
all these elements are packaged to manage them as single units.

6.5.3 Write CCL programs and package the assemblies

Finally, the last part of this phase takes the models built previously, assembles
them, and produces a cumbiar file that can be loaded in the Cumbia Weaver.
This is done in two steps. In the first one, Model Builders write the CCL Pro-
gram to relate the models and coordinate their execution. The base for this
program is the definition of the models and the description of their intended
interaction. Furthermore, the CCL program should follow the Metamodel Com-
position Guidelines. In some cases, this step also includes the development of
additional resources for the CCL program, i.e. ad hoc actions required for action
based relations (see section 5.3.2).

The tasks related to writing the CCL programs and developing the resources
are performed by Model Builders which currently can use the CCL Editor. How-
ever, this tool currently only provides very limited assistance. In particular,
the CCL Editor cannot guarantee that a CCL program respects the composition
guidelines. The ongoing work that we mentioned in section 6.3.3 is intended to
solve this by providing better language and tool support.

In the second and final part of this phase, all the artifacts relevant to the
workflow are packaged to obtain a cumbiar file. To avoid cluttering the figure,
we have not made explicit the inputs for this activity in figure 6.11 but we now
enumerate them:

1. The Model Definitions - these are XML files.

2. The Metamodel Extensions and the corresponding Resources - these are
XML files and jar files with the additional classes and resources (e.g. con-
figuration files, descriptors, images, etc.).

3. The CCL Program - this is only a CCL file.

4. The CCL Resources - these are jar files with the additional classes and
resources (e.g. configuration files, descriptors, etc.).

6.6 Enact workflows

The final phase of the process described in this chapter is to enact the workflows
built in the previous phases. The fine details about some of the activities in this
phase were already discussed in section 5.3.2. In particular, in that section we
described the process to load and instantiate a workflow packaged in a cumbiar
file.
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Figure 6.12 Details of the process to enact workflows

Figure 6.12 shows the main activities in this phase. In the first place, the
cumbiar obtained in the previous phase of the process is loaded in the Cumbia
Weaver. By doing this, the workflow becomes available to be instantiated and
executed. The following step is precisely to create an instance of the workflow
assembly. During this step, the CCL program in the assembly is executed and the
necessary model instances are created in the corresponding engines. These two
steps are performed by users fulfilling the role of Workflow Managers. The figure
also shows that after a workflow is loaded, it can be instantiated and executed
multiple times.

After the step where the workflow is instantiated, the obtained instance can
be executed. This execution involves three elements. On the one hand, there are
the users that participate in the workflow execution through client applications.
These are the Participants in the workflow, and they are usually knowledgeable
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about the domain. The second element are external systems that interact with
the workflow, either in an active or reactive way. Finally, there are the engines
themselves that update the state of the models and execute actions in response
to conditions, to the interaction of the Participants, and to the stimuli provided
by the external systems. Moreover, there are domains where the workflows are
completely automated and self-contained. Therefore, these workflows do not rely
on the interaction with users or with external systems.

At the same time, the execution of workflows can also be monitored by the
Workflow Managers. By doing so, these managers obtain operational information
about the execution, such as the number of active instances or the mean duration
of their execution. Furthermore, these managers can also gather run time data
about domain specific aspects of the models. For instance, in the Fast Credit
Process example, Workflow Managers can monitor the number of credit requests
accepted and rejected. These monitoring activities are achieved with specialized
or with generic tools. The former group contains monitoring applications built
for specific domains and specific sets of languages. The latter group contains
monitoring applications that can be configured and adapted to be used with
different sets of languages.

6.7 Summary

In previous chapters, we presented the open objects’ framework, CCL, the Cumbia
Kernel, the Cumbia Weaver, and all the other elements that form the core of our
proposal to support the development of workflow engines. In those chapters, the
focus was on the characteristics of these elements and on the reasons for propos-
ing their usage. However, we left out of those chapters the practical view on how
these elements should be used, and on the ways to manage the complexity that
they introduce.

To resolve this, in chapter 6 we have focused on the usage of the elements
in the Cumbia platform by structuring one possible process to develop workflow
engines. For this, we identified the main activities to perform, and how each
one relates to different elements of Cumbia. We described the relations between
these activities using a BPMN process where we made their dependencies explicit.
To achieve this, we relied on the inputs that each activity requires, and the
outputs that each activity produces. To complement this description, which only
amounts for the control and data perspectives, we characterized the roles that
people developing workflow engines with Cumbia should assume. Finally, in this
chapter we also described additional tools that we have developed to facilitate the
usage of Cumbia, and that workflow engines’ developers should use. We consider
these tools to be outside of the core of the proposal, but they have an important
function in reducing its complexity.
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Validation

Software design is not an exact science and it is not possible to prove (in the
mathematical sense) that a proposed set of tools, architectural blueprints, and
methodologies will serve to build any application in a specific domain. Instead,
case studies can be used to illustrate the capabilities of a proposal and to do a
qualitative analysis of its advantages and disadvantages. A crucial step in this
approach remains in the selection of the case studies, because meaningful results
can only be obtained if the case studies include the key aspects of the domain
under study. Applying a validation approach based on case studies to Cumbia
not only enables a critical analysis of the proposal, but also serves to discover
and document recurrent solutions to key problems in the workflow domain.

In previous chapters, and especially in chapter 2, we have characterized the
applications that we aim to support with Cumbia. We have also illustrated
the approach by discussing the implementation of two concern specific workflow
languages (MiniBPMN and XTM). In this chapter, we present other case studies
which explore other relevant aspects in the workflow domain. By means of these
scenarios, we provide more evidence about the benefits and disadvantages of
Cumbia, and we examine how the objectives stated in the introduction to this
dissertation were fulfilled.

The chapter starts by revisiting said objectives and then nine case studies,
each one based in a different workflow language, are described. For these case
studies, we first present a general description of the language, and then we de-
scribe the most relevant aspects of its implementation, and of the experiments
performed (e.g. extensions, additional requirements, tool integration). Finally,
we reflect about each scenario and on the features of Cumbia that it highlights.
The final part of the chapter reviews the case studies, and analyzes them from
the perspective of the objectives and characteristics presented in chapter 1.

7.1 Objective revisited

The general objective of this dissertation is to support the development of flexible
engines for new workflow languages. To achieve this, we proposed an alternative
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to the current frameworks and architectures for building engines, and we imple-
mented this proposal in a platform called Cumbia. In the rest of the chapter we
use a number of case studies to show how the general objective is achieved with
this platform.

In the introduction to this dissertation we claimed that four characteristics of
the platform were central to achieve the objective. We will now revisit these char-
acteristics and explicitly show how they appear in Cumbia. Afterwards, in each
case study we show how the characteristics were stressed and their contribution
to achieving the general objective.

C1. The platform is independent from particular workflow languages
and execution models

The general objective of the dissertation implies that our platform should sup-
port a large number of existing and future workflow languages, including generic
and domain specific languages. Given the restrictions found in platforms based
on intermediate languages, a key characteristic for our platform was to be inde-
pendent from particular languages or models. To achieve this, for designing the
platform we used structures and abstractions that were powerful enough to be
used in a large number of workflow languages, and which introduced the least
possible number of restrictions. These elements are the open objects and the
metamodeling platform itself, and their characteristics have been described in
previous chapters. In this chapter, the case studies show how these elements
were used to implement languages with very different characteristics. Further-
more, for some languages we describe how some of their characteristics were
difficult to implement using open objects and how we overcame these difficulties.

C2. The platform maintains a clear mapping between language ele-
ments and implementation elements

This characteristic has two aspects to consider. The first one is that languages and
their implementations should be aligned. This means that the mapping between
elements of the language and elements of the engine implementation should be
easy to discover and to follow. The second aspect is that languages, engines,
and mappings should be easy to modify and keep up-to-date. In Cumbia this
characteristic is supported by the usage of metamodels based on the abstract
syntax of the languages. By avoiding a code generation strategy and instead
implementing the semantics of languages as part of the metamodels, it becomes
easy to trace the executable semantics of languages into the implementation.
Furthermore, since changing the languages requires changing the metamodels,
the mapping between the two elements is automatically kept up to date.

C3. The platform supports language flexibility

Because of the general objective, an important characteristic for the platform
was to support language flexibility. There are three aspects of Cumbia that are
related to supporting this characteristic. In the first place, there are the elements
described for characteristic C2, because they facilitate the understanding of lan-
guages’ implementation and thus favor their maintenance and evolution. In the
second place, there are the extensibility mechanisms of the open objects, which
define a taxonomy of easy-to-apply modifications at the element level. These
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modifications can be composed to form complex language level extensions and
adaptations. Finally, the third aspect of Cumbia that contributes to language
flexibility is the support for loosely coupled concern specific workflow languages.
These languages are easy to add, remove, or replace in existing applications. Al-
though this is not the same as language flexibility, it achieves similar results.
Besides showing how languages were implemented, this chapter also presents a
number of experiments where languages were modified and where CSWfLs were
added.

C4. The platform is reusable and supports the implementation of open
engines

Throughout this dissertation we have shown that the Cumbia platform offers
many elements to reduce the effort required to implement a workflow engine
and support a new language. These elements include the metamodeling plat-
form, the open objects framework, the Cumbia Kernel, the Cumbia Weaver, the
Cumbia Test Framework, and the Cumbia Debugger. All of them were designed
deliberately to be language independent, but they can be specialized for specific
languages. They can be reused for each new language that has to be supported.

Besides reducing the effort required to implement a new engine, Cumbia also
presents some characteristics that facilitate the construction of open engines. The
first one is offering very open interfaces that can be used to control and query
most aspects of a workflow execution. Secondly, there is the usage of executable
models, which contributes to aligning languages and their implementations. And
thirdly, there is the widespread usage of events which can also be captured by
applications external to the engine itself. By supporting open engines, the con-
struction of the tool chains required for each engine is facilitated. Furthermore,
since the base platform is shared by the engines of many languages, the applica-
tions that interact with these engines can use the same interfaces, thus opening
the possibility of reuse. Some examples of this that we discussed in previous
chapters include the Cumbia Debugger and the Cumbia Test Framework. The
case studies described in this chapter present some further examples.

7.2 Overview of the case studies

To investigate how suited was Cumbia to implement flexible engines for workflow
languages we did a number of case studies. These case studies first involved
developing engines to test the expressive power of the platform, and then we
tested their flexibility by adapting and extending the languages. The case studies
were not all implemented on top of the same version of Cumbia. Instead, they
were built progressively, and thus they served to guide the development of the
platform by identifying the characteristics that it lacked.

The selection of the languages for the case studies was made based both on
some technical characteristics (e.g. the type of the underlying execution model)
and on their popularity. Furthermore, some of the languages selected are generic,
while others target particular domains. Figure 7.1 shows, in a graphical way,
how the languages selected can be distributed across the spectrum of workflow
languages. We do not claim that we covered the whole spectrum, but we believe
that we addressed an important part of it.
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Figure 7.1 Characteristics of the case studies

In the figure, we have used the x axis to classify the languages according to
the type of their underlying execution models. Most of the languages tested can
be classified as transition based systems (TBS). This is normal considering that
most workflow specification languages are based on this type of model. With
respect to the types of execution models described in chapter 2, the only one
not represented in these case studies is rule based execution (RBE), which is too
different from Cumbia to be supported.

The y axis of the figure classifies the languages according to the domain
that they target. In this graph, we have put WS-BPEL in the SOA / Service
Composition domain, because the language was supposed to target that domain
in its beginning; given the widespread usage of the language, we can also put
WS-BPEL in the Generic Coordination domain. Similarly, we put BPMN in the
Business Processes domain because that is its explicit target domain, although
it can also be used for Generic Coordination.

Finally, the graph has a third dimension related to how close to the language
specification was our implementation. There are three categories in this dimen-
sion. Strict specification refers to case studies where the languages were fixed
and their semantics were clear. In those cases we implemented the semantics
without making assumptions, although in some cases we did not implemented
them in full. Flexible specification refers to case studies where we were able to
change the specifications to suit our needs because we were the ones creating
them. Some assumptions introduced refers to case studies where we implemented
existing models or specifications, but where we had to made assumptions about
their semantics. In the case of BPMN, we had to make these assumptions because
the BPMN specification does not offer complete and unambiguous semantics. In
the case of Petri nets, we had to make these assumptions to introduce transitions
with non-zero durations.

The number of languages implemented in these case studies is relatively large
and each one required a big effort to be completed. For each one it was necessary
to study or design the language, and then to implement it in the Cumbia platform
using metamodels and open objects. To test these implementations, testing envi-
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ronments were implemented using the CTF and then test suites with meaningful
test scenarios were designed and implemented. For some languages, additional
applications such as web-based clients had to be designed as well. Furthermore,
some case studies involved extensions and adaptations to the languages and their
tools. Several students at the Universidad de los Andes, which were doing their
Master’s thesis under the guidance of Jorge Villalobos„ had a central role in de-
veloping these case studies. Without their hard work, the scenarios available to
test and analyze Cumbia’s capabilities would have been fewer and possibly less
useful.

In the following sections we will describe the case studies and present the most
relevant details of their implementations. We have divided these case studies in
two groups. The first one contains those that were more challenging to implement
in Cumbia and which provided the most interesting information about the capa-
bilities of the platform. The second group contains the rest of the case studies.
For the former, the descriptions in the following sections will be quite detailed;
for the latter, the descriptions will be more superficial because the implementa-
tion details to report are less interesting or are similar to those found in one of
the languages of the first group.

7.3 MiniBPMN

MiniBPMN is an ad hoc, high level workflow language that we designed as a scenario
for Cumbia. It is roughly based on BPMN, and thus its underlying execution
model is based on a transition system. Since previous chapters already discussed
the design and implementation of MiniBPMN, we are not going to discuss it any
further in this chapter. In particular, chapter 4 described the language and
presented in detail its implementation, its metamodel, and its engine. This served
to show how a workflow specification language can be implemented on top of open
objects and the Cumbia Kernel. That chapter also presented three extensions to
the language, which illustrated the mechanisms in Cumbia to support language
extensions at the metamodel level.

Chapter 5 continued the exposition of this case study by showing how the
control concern was complemented with the time concern. We used XTM as the
metamodel to describe time, and we showed how CCL was used to describe the
relations between MiniBPMN models and XTM models.

In spite of its simplicity, the MiniBPMN scenario has enough elements to illus-
trate the main objective of the Cumbia platform and its main characteristics. On
the one hand, we were able to implement an engine for the language without de-
pending on a specific workflow execution model or an existing workflow language
(C1). Furthermore, the implementation was flexible and thus we were able to
change the language in several ways (C3). All the changes to the languages were
implemented by changing the metamodel, or by composing a new metamodel
(XTM), and thus we managed to kept a straightforward mapping between the lan-
guage and the implementation (C2). Finally, the engine was implemented on
top of a platform that provided many of the functionalities commonly required
by workflows, and thus the implementation of the language was greatly simpli-
fied (C4). For example, the implementation of the MiniBPMN engine addressed
concurrency issues only through the structure of the state machines, and it did
not have to consider the management of threads and their synchronization. As
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a further example, the MiniBPMN engine used the persistency mechanisms offered
in the platform by default.

7.4 YAWL and Petri nets

General description

The goal of this section is to present a case study where we implemented en-
gines for YAWL and for Petri Nets. Our initial objective was only to support
YAWL, but the close relation between Extended Workflow Nets (YAWL’s execu-
tion model) and Petri nets, led us to implementing an engine also for the latter1.
With this second engine we were able to evaluate some of the most complicated
aspects of YAWL, which have to do with concurrency and synchronization.

YAWL (Yet Another Workflow Language) [vdAtH06] is a formal workflow
language which originated in the academic community but has also been used in
commercial applications. We already introduced YAWL and discussed its most
important characteristics in chapter 2. In this chapter we provide some extra
details about its structure and semantics.

We chose YAWL as a case study for Cumbia because of three main reasons:
YAWL’s fame in the workflow community; YAWL’s precise semantics based on
atomic state changes; and its simplicity with respect to external bindings.

In the first place, YAWL is well known in the workflow community. Its
notation and semantics are common place, and it subsumes the core elements
found in most workflow languages. Furthermore, YAWL is regarded as been very
expressive, as it supports most of the control flow patterns. On top of that, YAWL
has been frequently used as a case study in workflow research: many innovations
in the field have been illustrated using YAWL, or have been compared to YAWL’s
own strategies.

The second reason for selecting YAWL is related to its precise semantics.
Unlike languages where the semantics are informally defined, such as BPMN, in
YAWL the semantics is formally specified using Extended Workflow Nets (EWF-
Nets). EWF-Nets are themselves formally defined in terms of Petri nets. Be-
cause of this formality, implementing the language does not require a subjective
interpretation of its specification. In addition to this, YAWL semantics have a
characteristic that differs from several other workflow languages. In YAWL, the
state of an entire process is updated in an atomic way, just as Petri nets’ markings
are updated in discrete steps. Also, the state changes of each element depends
not only on its state, but also on the state and behavior of other elements. Since
Cumbia is mostly based on concurrent execution and asynchronous interactions,
it was interesting for us to attempt the implementation of these characteristics
which require a strict synchronization.

The third and final reason for selecting YAWL was its simplicity with respect
to the bindings with external applications. In fact, neither the specification of the
language nor the related papers provide concrete details to incorporate external
applications into the processes. The only available sources for these details are
the source code of the reference implementation, and its manual.

1Petri nets are not a workflow specification language and a more appropriate name for the
component that we implemented would be Petri nets interpreter or simulator. However, to
maintain a consistent terminology between the case studies, we refer to the Petri nets imple-
mentation as the Petri nets engine.
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To implement an engine for YAWL, the first aspect to be considered are the
five dimensions typically involved in a process (see figure 7.2). Although these
dimensions are not always mentioned in YAWL documentation, they have been
discussed by YAWL’s designers [vdAvH02] and they have a prominent place in
the design and enactment of YAWL’s processes.

Figure 7.2 The 5 dimensions of a process in YAWL

The five dimensions of a process in YAWL are the following.

1. Control. This dimension represents the core of YAWL and defines the tasks
in a process and their order of execution. Specifying the elements of this
dimension is the central objective of the YAWL language.

2. Application. This dimension defines the actual activities to realize in a
process. For example, specifying whether an activity must be automatic or
must be performed by a human, is something that belongs in this dimension.
Therefore, the specification of bindings and bridges to concrete external
applications are found in this dimension. YAWL’s documentation uses the
term services for these elements.

In spite of its importance, in YAWL this dimension is only represented by
one element, which is called Decomposition: each Task in a process should
have a Decomposition associated which specifies what the Task is about.

3. Data. This dimension describes the structure of data produced and con-
sumed by a process, and its relation to activities.

In YAWL’s official implementation this dimension has two aspects. On
the one side, XSD schemas are used to define the data that a process can
manage. On the other side, XPath [CD99] and XQuery [BCF+07] are used
to specify the data that each activity is allowed to consume, and to specify
how the data produced by each task is transformed and stored.

4. Time. This dimension describes timeouts and expiration dates for tasks in
a process. In YAWL’s official implementation these are also defined using
low level XML information.

5. Resources. This dimension describes the participants in the processes and
the policies to assign them to tasks. This is probably the most advanced
dimension in YAWL after control, and its implementation offers powerful
characteristics. On the one hand, it allows the external administration of
participants, i.e. in an LDAP system. On the other hand it supports a
complex life cycle for task assignment to resources: tasks are first offered
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to some participants, then they are selected by the participants willing to do
them, and finally their execution begins. The mechanisms to define which
participants are able to perform the tasks range from very simple (e.g.
“Anyone can do the task”, or “User X must do the task”), to very complex
(e.g. “Users with characteristics Y and Z, and which have not participated
yet in this instance of the process”). Furthermore, at any point in time this
assignment process can be modified or bypassed by the administrator of
the process.

The control dimension is the best documented and best known dimension of
YAWL. It also presents the most interesting challenges to Cumbia from the point
of view of modeling interaction and state. Therefore, our case study focused on
this dimension. Nevertheless, we did not entirely neglect the other dimensions.

Figure 7.3 shows the symbols to graphically represent the elements available
in YAWL to model the control flow of processes. The semantics of all these
elements are defined in terms of EWF-Nets, and thus they depend on the transfer
and consumption of tokens. Flows define how tokens can be transferred between
elements in a process, and elements are only executed when tokens are available
for them to consume (as in Petri nets). There are four main categories of elements
in YAWL.

Figure 7.3 Symbols used in YAWL [vdAtH06]

• Nets. Nets enclose structured sets of elements and have a role similar
to Process in MiniBPMN. Nets, however, cannot be nested directly, as in
MiniBPMN or BPMN.
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• Tasks. These are the units of work in a net. They can be atomic, and
represent something that has to be performed once. They can also be
multiple, and represent the same action that has to be performed multiple
times, in parallel. Finally, tasks can also be composite when a sub-net
has to be performed.

Furthermore, each Task has a split behavior and a join behavior that de-
termine the interaction of a Task with the other elements in the Net. For
example, a Task with an AND-Join behavior waits until tokens are available
through all the incoming flows to start its execution. When a Task with an
AND-Split behavior is completed, it makes a token available through all of
its outgoing flows.

• Conditions. These are elements of YAWL that can contain one or more
tokens, without consuming them. They are analogous to places in Petri
nets, and they create some of the most complex synchronization problems
for an implementation of YAWL. Conditions are so named because when
they contain a token it means that a certain condition holds in the net.

• Cancellation regions. A cancellation region is a group of tasks and
conditions in a net which can be cancelled when a certain task (located
outside the cancellation region) is executed. The cancellation operation
happens by removing all the tokens in the region, and aborting the execu-
tion of every task that had already started. Cancellation regions cannot
be easily modeled with Petri nets, and they are one of the main reasons to
define YAWL’s semantics using EWF-nets.

Implementation details

The implementation of YAWL on top of the Cumbia platform is called YOC
(YAWL on Cumbia)2. At first, we identified the concerns involved (control, time,
resources and data) and we established the metamodel structure shown in figure
7.4. With this division we assimilated the dimensions of control and application
because we do not consider it very likely for them to evolve independently. Also,
we do not expect to have control models that are reused independently from
application models, and vice-versa. Since control is the only dimension in YAWL
that has been formally specified, and is the best known one, we decided to only
address this dimension initially, by implementing a metamodel for it. Figure 7.5
shows the elements in the control metamodel for YOC. The figure shows that we
included in this metamodel the elements to model the application dimension, i.e.
we have decompositions as an element in this metamodel.

Besides initially leaving out of the implementation the dimensions of time,
resources, and data, we also left out one aspect of the control dimension: the OR-
Join. It has been shown that the semantics of OR-Joins in workflow languages are
complex, and usually ill-defined, and thus create problems for the implementation
of workflow engines [vdADK02]. YAWL is one of the few languages that correctly
supports this construct. YAWL’s developers have discussed their implementation
of this element [WEvdAtH05], but it is quite complex compared to the rest of the

2YOC is the main result of the work of Diana Marcela Puentes at the Universidad de los
Andes towards her MSc. degree. Diana worked closely with Mario Sánchez in this project and
her advisor was Jorge Villalobos.
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Figure 7.4 Concern specific metamodels in YOC

language. We decided against supporting the OR-Join in YOC because it added
too much complexity to the implementation without giving us extra information
about the modeling capacities of Cumbia and of the open objects. Correctly
supporting OR-Joins is mostly a matter of algorithmic and its solution is largely
independent of the underlying implementation artifacts.

With respect to the syntax of YAWL, we have also introduced two details in
our implementation but they do not change at all the semantics of the processes.
The first one is to assume AND-Join and AND-Split behaviors for all tasks where
these behaviors are not explicitly defined. This assumption does not change the
semantics of the processes because in YAWL it is mandatory to specify a join
behavior for all tasks with more than one incoming flow, and to specify a split
behavior for all tasks with more than one outgoing flow. Although it is not
evident for a process designer, the official YAWL editor assumes the same behav-
iors that we do, and our implementation only makes this explicit. The second
assumption in YOC was to introduce a condition in each flow that connects
two tasks. This simplified our implementation as we did not have to consider
three kinds of flows (task-to-condition, condition-to-task, and task-to-task) but
only two (task-to-condition and condition-to-task). This assumption does not
change the semantics of the language either. In fact, we are only reversing a
decision of YAWL’s designers where they decided to hide conditions connecting
two tasks to simplify the layout of YAWL’s diagrams. In terms of Petri nets,
our decision is equivalent to forcing flows to connect places and transitions,
and disallowing flows connecting two transitions.

We are now going to skip the “easy” details of YOC’s implementation, and
we are going to discuss the main difficulties that we encountered. The rest of
the implementation was straightforward and did not provide information about
Cumbia’s capabilities beyond what we already knew from other case studies.

Figure 7.6 and figure 7.7 depict two YAWL nets that appear simple, but
which were not trivial to support in YOC. The crucial characteristic in the first
net is to have a condition followed by two tasks. The semantics of this structure
matches that of the workflow pattern Deferred Choice [RtHvdAM06]: after Task
1 has been completed, both Task 2 and Task 3 are enabled to be executed.
Which task is executed depends on an external factor, but in any case only
one of the two can be executed. The difficulty arises from the facts that both
tasks can potentially consume the same token, that both tasks have to be
enabled to be offered to users, and that only one of them can consume the token.
Therefore, mechanisms are required to guarantee that both tasks are notified
about the token’s presence, to guarantee that only one of them is activated (no
inconsistency because of two activations), and to guarantee that at least one of
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Figure 7.5 The control metamodel for YOC (divided in parts for readability)

them is activated (no deadlocks between them).
The second problematic net adds further complications to the previous one.

In this case, after Task 1 is executed, only one among Task 2, Task 3, and Task
4 can be executed. Each one of those requires two tokens to work, which can
be found in conditions A, B, and C. Each task shares its incoming conditions
with the other tasks, and each task is enabled at the same time – just after the
execution of Task 1 is completed. With respect to the first net, there are two
additional problems in this one. Firstly, in the case of attempting to execute the
three tasks, it is possible to have a triple deadlock if tokens are assigned one
by one. Secondly, assigning the tokens to any task involves negotiating with the
other two (and potentially more in more complex nets). This additional com-
plexity brought by the shared conditions makes it impossible to apply certain
solutions that would work in the first net.

Supporting such nets in YOC presented some difficulties due to two main rea-
sons. On the one hand, there is Petri nets’ nature as discrete transition systems
where only one transition is activated at a time, and where the consumption
and production of tokens occur instantaneously and at exactly the same time.
On the other hand, there are Cumbia’s asynchronous coordination mechanisms,
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Figure 7.6 Shared condition in a YAWL net

Figure 7.7 Interlocked shared conditions in a YAWL net

where multiple external requests can be received at the same time, and where
only one open object can be updated in each moment3. Therefore, a Cumbia
based Petri net is going to traverse some states that are semantically incorrect.
For example, after the activation of a transition, there will be moments where
only some of the input tokens have been consumed or when some of the output
tokens have been produced. Eventually, a consistent state will be reached, but
in the meantime other actions can happen (e.g. activating another transition,
consuming a token) and lead to an inconsistent state. Therefore, an implemen-
tation of Petri nets on top of Cumbia should take extra precautions to prevent
this kind of inconveniences.

Using Petri nets to represent workflows is known to require an important
change to their execution semantics: if transitions are used to represent ac-
tivities, then they cannot be instantaneous and real concurrency and asynchrony
has to be introduced. This creates the potential problems previously exposed,
namely deadlocks and inconsistencies. This situation has been studied and three
solution strategies have been proposed: to introduce a centralized control system,
to distribute the control over the places, and to distribute the control among the
edges [Bar02]. During the development of YOC we tested two of these strategies.

The first strategy that we tested was to distribute the control over the places
of a net. This strategy basically involves implementing a distributed algorithm

3Here the term moment is used to refer to the lapse of time required to process one event
received by an open object, select the transition to trigger, execute the actions associated to it,
emit the necessary events, and update the state of the open object. Therefore, a moment can
be very brief, when there are no transitions to trigger and the event can be discarded, or can
be lengthy if the actions to execute are long lived.
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to assign resources to distributed elements. In [Bar02] an algorithm is proposed,
but it depends on some characteristics that cannot be guaranteed over open ob-
jects. Instead, we adapted the algorithm to create mutual exclusions in networks
presented in [RA81], and implemented it on top of open objects.

We did not test this strategy with the full YAWL metamodel. Instead, we
built a smaller case study based on Petri nets, and then we extrapolated our
conclusions to YAWL. In this case study we first designed and implemented a
basic metamodel for Petri nets, and then we modeled the problematic scenarios.
As part of this metamodel we implemented the first strategy to correctly execute
these scenarios. We also created an interactive client for Petri nets, and a testing
environment (see figure 7.8).

Figure 7.8 The Petri nets client showing one of the problematic cases

The Petri nets metamodel was extensively tested using both simple and com-
plex nets, uncovering several corner cases where deadlocks or inconsistencies
could occur. After we fixed all the problems we ended up with a set of open ob-
jects with very complex state machines. The main reason for this complexity was
attempting to use asynchronous communications for most interactions, instead
of putting a lot of the behavior in synchronized pieces of code within the entities’
methods. The main conclusion of this case study was that implementing the
strategy using open objects was possible, but not practical: the state machine of
the element Transition in this metamodel had 5 states and 28 transitions. The
same strategy applied to the YAWL metamodel would have required even more
complex state machines. Because of this, we rejected the idea of implementing
a distributed token assignment algorithm and we opted instead for a centralized
solution.

There are at least two ways to implement a centralized control system to
solve the execution problems of an interpreter for Petri nets, and both of these
ways can be implemented on top of open objects. The proposal of [Bar02] involves
defining locksets (sets of transitions that can compete for the same tokens) and
resolving the conflicts at the lockset level. The way in which we implemented a
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centralized control system is potentially slower because conflicts are resolved at
the process level. Nevertheless, the end result is the same: no deadlocks and no
inconsistencies are allowed.

We implemented this strategy in YOC and its core is a queue that stores the
names of tasks enabled at any given moment. The tasks in this queue are executed
one by one and the tokens are assigned atomically. Tasks are also removed from
the queue when they are no longer enabled. This guarantees that i) no deadlocks
are caused by tokens assigned to tasks that never execute, and guarantees that
ii) no inconsistencies happen because of tasks that execute without having the
required tokens. From the point of view of the semantics of Petri nets, this
strategy also serves to make a correct implementation: on the one hand, at
most one transition can be activated at any given time; on the other hand, the
consumption and production of tokens happen in different times, but no other
actions can occur before the whole procedure is completed.

The strategy implemented also has two disadvantages to consider. The first
one is adding a potential bottleneck for the process execution. This bottleneck is
the queue processor, although the time required to process each element in the
queue should be very short and thus should have a minimal effect on the duration
of a process execution. The second disadvantage is adding in the metamodel an
element that is an implementation artifact and does not really have a place on
the model. In a subsequent version of this case study we intent to remove the
queue from the metamodel and make it part of the engine.

Experiments with YAWL

The first experiment to consider in this case study is the implementation itself
of the language. Furthermore, using the CTF we built a test environment for
YOC and we used the official YAWL editor to build a test suite. This test suite
tested both simple and complex test cases, and the results of these were compared
against the semantics displayed by the official YAWL engine.

The second experiment performed with YOC involved its integration with
XTM. In the beginning of this section we described the time dimension in YAWL,
which is very limited. We did not implement this aspect, but instead we success-
fully integrated the control metamodel to the existing XTM metamodel (see figure
7.9). We consider this a successful example of metamodel reuse. Furthermore,
we also consider that this experiment shows that a dimension can be enriched by
introducing more powerful metamodels: XTM makes it possible to describe richer
time based restrictions than the basic time dimension of YAWL.

Figure 7.9 Control and time metamodels in YOC
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Results and conclusions

In this case study we did an evaluation of Cumbia using two languages with
formally defined semantics. The main difficulty encountered is due to the syn-
chronous nature of Petri nets, which demands for the atomic update of several
elements’ states. This was initially a problem for Cumbia, because most inter-
actions between open objects happen in an asynchronous way through events.
Nevertheless, within these scenarios we studied and implemented two alternative
strategies to support the required semantics. From these experiments we can
conclude that Cumbia will be able to support other workflow languages based on
similar synchronous interactions.

The other characteristics and requirements associated to Petri nets and to
YAWL did not present relevant problems to be implemented on top of Cumbia.
On the contrary, we were able to take advantage of the metamodel flexibility
and the language modularization to extend the language in a controlled way.
Another advantage was implementing these engines on top of an existing (and
tested) platform: thanks to this, the implementation effort was not as much, and
it was more focused on the language itself. Unfortunately, we cannot compare the
size of our YAWL implementation with the size of the reference implementation
because the features supported are not exactly the same (e.g. the reference
implementation is tied to a JEE application container).

7.5 PaperXpress

General description

The next case study to discuss is that of PaperXpress4, an application for a
specific domain which combines multiple concern specific languages. Since we
established the requirements for the application and we designed the languages,
we were able to use this scenario to do interesting validations of Cumbia’s ex-
pressiveness. In particular, we tested its capacity to support different kinds of
language extensions, and, to a lesser extent, its capacity to support dynamic
adaptation [SJVD09, Jim07]. In this section we will first discuss the initial im-
plementation of the application as a set of metamodels, and then we will describe
the experiments that we did to extend the languages involved.

PaperXpress is an application built using the Cumbia platform to support the
definition and execution of processes for writing and reviewing research articles.
PaperXpress allows an author to define and perform an ordered set of activities,
like writing and reviewing, and relating them with sections in an article. An
author starts using PaperXpress, by first defining the structure of the paper he
wants to write. This is achieved by using the application shown in figure 7.10.
In this image, the author already defined a structure composed by six sections
and four subsections.

After the article structure is defined, the author can plan activities to write
and review each part. For this purpose, he can use the application shown in
figure 7.11, which offers an ad-hoc language with very simple control structures.
In the sample process shown, the author defined a process with steps to write

4PaperXpress is the main result of the work of Camilo Jiménez at the Universidad de los
Andes towards his MSc. degrees. Camilo’s advisor was Jorge Villalobos.
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Figure 7.10 The structure of an article in PaperXpress

Figure 7.11 A part of the process to write and review an article using PaperXpress

the abstract, write the main sections, review the sections, and finally write the
conclusions.

Implementation details

In order to implement PaperXpress using Cumbia we first identified the two
principal concerns and we developed the corresponding metamodels, which are
shown in figure 7.12. The PxControl metamodel, which is used to describe the
control concern, has elements to describe processes and activities to write or
review parts of an article (see figure 7.13). Since PaperXpress does not require
complex control structures, this metamodel is very simple and supports only basic
control flow patterns [vdAtHKB03] through three major constructs: Process,
PxActivity and Flow. A Process always has an initial activity, but the end of
the process is implicit (as for the implicit termination control flow pattern).

On the other hand, the PxArticle metamodel has the elements to describe
the structure and the contents of an article (see figure 7.14). These elements
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Figure 7.12 Basic metamodels in PaperXPress

Figure 7.13 PxControl: metamodel for the control concern in PaperXpress

include sections and subsections, which give the article a structure, and fine
grained content elements, such as paragraphs and images.

Figure 7.14 PxArticle: metamodel for the article concern in PaperXpress

There are several relations between the control and the article concern in
PaperXpress, and these can be realized with CCL. One example of those relations
is a rule specifying that article sections can only be changed when the related
activity is active. In this way, an activity unlocks its section as soon as it starts
its execution, and locks it again when it finishes. The coordination between these
elements can be achieved with two actions installed in the state machine of the
activity, associated to the transitions occurring when the activity starts and ends
its execution. These actions notify the corresponding sections to be unlocked or
locked.

Another example can be found when the process ends. At that moment, Pa-
perXpress automatically generates a pdf file with the contents of the article using
a predefined format. This composition is implemented with actions installed in
the PxProcess state machine. In this case, an action notifying the article el-
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ement to generate the pdf file is automatically installed in the transition taken
when the process ends its execution.

Extending PaperXpress

The development of this case study proceeded in two phases. First, the basic
metamodels (PxControl and PxArticle) were developed. Then, the extensibility
capabilities of the open objects were tested by developing some extensions to
the base applications. Figure 7.15 shows the relations between the metamodels
included in these extensions, which are described in the following paragraphs.

Figure 7.15 The metamodels used in PaperXPress and their extensions

A. Storing the article contents in a remote repository
The first extension to PaperXpress includes a new persistence requirement: the
contents of article sections must be kept in a remote repository and they must
be checked out only when the activity planned to write or review them is active.
Similarly, modifications to these contents must be saved in the repository, when
the activity finishes its execution.

To support this requirement it was necessary to extend the behavior of the
element Section in a new element called Persistent Section. More specifi-
cally, two actions were implemented and installed in its state machine. A first
action, checkOut, was installed in the transition taking place when the section
is unlocked (see Persistent Section state machine in figure 7.16). This ac-
tion checks out the contents from a specific repository and gives them to the
entity. A second action, save, was installed in the transition occurring when the
persistent section is locked. This action retrieves the contents from the entity
and saves them in the remote repository.

After installing the new actions, the coordination between the activity and its
section changes as follows (see figure 7.16). As soon as a PxActivity is activated,
its state machine takes the transition from the state Init to the state Active. This
executes the unlock action notifying the section that must be unlocked. At that
moment, the state machine of the Persistent Section takes the transition to
the Unlocked state, executing the checkout action to retrieve the contents from
the remote repository. The contents remain available and are changeable until the
PxActivity is completed. In that moment, the transition to the Finalizing state
is taken. The action lock is then executed, notifying the Persistent Section
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Figure 7.16 New actions in the state machines of a) PxActivity and b) Section

that it must be locked again. Finally, the state machine of the Persistent
Section takes the transition to the Locked state, executing the save action.

Implementing this requirement implied two steps. Firstly, the new actions
were implemented in separate Java classes. These classes included the logic nec-
essary to connect and disconnect from a specific remote repository, as well as
to save and retrieve contents from it. Secondly, the Extended PxArticle meta-
model was created, and the element PersistentSection was defined using the
following snippet of code:

Listing 7.1: Definition of the PersistentSection extension

1 <extended_type name="PersistentSection" extends="Section">
2 <state_machine_extensions>
3 <add_actions transitionName="Unlock">
4 <action name="checkOut" class="cumbia.actions.CheckOut" />
5 </add_actions>
6 <add_actions transitionName="Lock">
7 <action name="save" class="cumbia.actions.Save"/>
8 </add_actions>
9 </state_machine_extensions>

10 </extended_type>

B. Revision control for article sections
The second extension to PaperXpress includes a revision control mechanism for
article sections. This mechanism must be activated automatically every time an
activity modifies a section and it applies the following two criteria: First, a new
revision is created if and only if the contents of a section are different from the
contents of its current revision. Second, if the differences between those contents
are greater than 30%, the new revision should then increase its revision number
by 1; this is called a major revision. Otherwise, the revision number is increased
by 0.1; this is called a minor revision.

In order to support this new requirement in PaperXpress, we used Cumbia ex-
tension mechanisms to allow the inclusion of additional elements to the Extended
PxArticle metamodel. In particular, two new elements within the article meta-
model were defined (see figure 7.17): Firstly, a new element representing the
current revision of a section, Revision; and secondly, a new extended section
composed and coordinated with its revision, VersionedSection.

The element that represents the current revision of a section holds the last
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Figure 7.17 New elements in the Extended PxArticle metamodel

version of the section contents, and it is identified by a revision number that
changes according to the second criterion. Within its state machine, the complete
revision process required by the two criteria is represented and coordinated by
particular actions that activate the transitions in the state machine. This revision
process is triggered by the extended section (VersionedSection) when it is locked
after an activity has finished. In order to do this, its state machine is being
enriched with a new state between the unlocked and locked states. In this way,
when the section is locked it must be revised. As soon as the revision steps finish,
the section is locked again.

Implementing this requirement implied three steps. Firstly, the Extended
PxArticle metamodel was extended to include the new elements and their state
machines. Secondly, the new entities (Revision and VersionedSection) were
implemented. They were implemented in separate Java classes. Finally, the new
actions were implemented. Changes to the other concerns were not necessary to
support these new requirements.

C. Supporting several authors
The third extension to PaperXpress is to support the participation and collabora-
tion of several authors within the process. The authors and their activities must
be defined at the same time as the article structure and the process definition.
Once they are defined and the process is started, the authors must be able to
login into PaperXpress and check their assigned activities. In particular, authors
must be assigned one activity at a time. In case an activity is assigned to a busy
author (he has unfinished activities assigned), that activity must be queued in
his pending activities; pending activities can later be manually assigned.

In order to support the new requirement, we extended PaperXpress with a
whole new concern: the authors concern. This concern includes two principal
elements in its metamodel: Author and Assignment (see figure 7.18). In par-
ticular, an author might be waiting for an assignment or he might already have
begun working on it. These two possible states are represented in the author’s
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state machine, and they define whether or not an activity is marked as pending
during process. While an author is waiting, an assignment can be given to him.
This assignment is triggered by the predefined process when the corresponding
activity starts its execution. At this particular moment, the availability of the
author must be checked: If he is busy, the activity is marked as pending and must
be activated later manually; otherwise, the assignment is given to the author, and
his state changes to Working. This assignment policy is represented in the state
machine of the Assignment element shown in figure 7.18.

Figure 7.18 Elements in the PxAuthors metamodel: a) Assignment and b) Author

Implementing this requirement in PaperXpress implied three steps. Firstly,
the new PxAuthores metamodel had to be developed. The Cumbia Editor was
used for the metamodel and state machine definitions, and separate Java classes
were implemented for the entities and the actions. Secondly, an extension to the
PxControl metamodel was created. In this extension the state machine of the
PxActivity has two additional actions that serve to coordinate their execution
with the assignments. For each PxActivity there is one Assignment and corre-
sponding Author, and as soon as the state machine of the PxActivity changes
its state to Active, an action notifying the corresponding assignment is executed.
The assignment policy is then triggered and the author can start working, or the
assignment can be marked as pending. The other action installed in the state ma-
chine of the PxActivity notifies the assignment to be finished when the activity
is completed. The client applications of PaperXpress had to be extended as well
to support this extension. In particular, the process definition editor required
the most changes.

Results and conclusions

The focus of the PaperXpress scenario was to study the expressive power of
Cumbia and its extensibility capabilities. This scenario was scoped to a very
specific domain and we had the liberty of defining the languages ourselves. There-
fore, we defined these languages in ways that were adequate for Cumbia and we
did not encounter major problems in their implementation. We did not enjoy the
same advantage in the IMS-LD scenario that is presented in the next section. In
spite of this, PaperXpress illustrates the core characteristics of the platform.

Among the metamodels used in PaperXpress, only PXControl has some sim-
ilarities to the languages used in the other case studies. The other metamodels
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are very different as they mostly focus on state and have a relatively simple
behavior. If Cumbia were based on a unique workflow execution model or an
intermediate language, supporting those other languages would probably be very
difficult. On the other hand, the experiments performed in this case study also
provide evidence about the advantages brought by characteristics C2 and C3.
These experiments involved different types of changes and extensions to the lan-
guages which were implemented with changes to the metamodels and with the
introduction of new ones. In both cases, they illustrate the tight relation between
languages and metamodels.

7.6 IMS-LD

General description

IMS-LD is a specification for defining workflows in an e-learning context, using
components and learning materials conforming to several complementing spec-
ifications [IMS03b] (see section 2.2.1). In this context, IMS-LD is the central
specification that is used to define learnflows, while the other complementing
specifications serve to describe the interaction with other applications and the
structure and contents of learning materials. This case study is also based on a
domain specific language, but unlike the PaperXpress scenario, in this one the
language already existed and was out of our control. Therefore, its semantics
had to be implemented as per the specification and we could not adapt its re-
quirements to make them more adequate for Cumbia. Also, we had to support
requirements that are specific to the e-learning context and that we had not
considered in the previous case studies.

For example, in this domain it is fundamental to offer support for dynamic
adaptation because instructors should be able to modify the learnflows, at run
time, in response to the students’ performance. Another difficulty is the existence
not only of activities that every student has to perform independently, but also of
activities that require the joint work of several students. Furthermore, the close
relation between IMS-LD and other specifications to integrate external services,
applications, and learning materials, created some additional restrictions for the
implementation. An evidence of the difficulties that these requirements pose is
the relative lack of tools to support the IMS-LD specification: at the time when
this case study was developed, there was only one full implementation of the
specification.

As a result of these characteristics, IMS-LD turned out to be a very useful
scenario to test the Cumbia platform. Because of its special characteristics, the
platform had to be improved in many ways to accommodate features discovered
during the development of the project. In this section we will describe how
this case study was developed, the aspects of the scenario that created the most
interesting challenges, and the solutions proposed for those challenges.

Implementation details

Garabato [CV08] is the name of the IMS-LD implementation on top of the
Cumbia platform5. Following the guidelines proposed by Cumbia, Garabato is

5Garabato is the main result of the work of Nadya Calderón and Carlos Vega at the Uni-
versidad de los Andes towards their MSc. degrees. Their advisor was Jorge Villalobos.
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based on several concern specific metamodels, and includes an engine for each
one of those. These metamodels are depicted in figure 7.19 and they are de-
scribed in the rest of the section6. The full Garabato application includes an
engine for each of the metamodels involved, a client to allow the participation
of users (both students and support staff), an application to monitor the execu-
tion of the learnflows, and an application to convert IMS-LD specifications into
Garabato-compatible model specifications.

Figure 7.19 Metamodels in Garabato

The central metamodel in Garabato is called CumbiaLD, and it embodies the
elements required to describe the structure of the learnflows. The basic elements
of this metamodel are shown in figure 7.20 and they follow the same structure
that was presented in the conceptual model of IMS-LD (see figure 2.4). CumbiaLD
only targets the level A of the IMS-LD specification.

Figure 7.20 Elements in the CumbiaLD metamodel

6Since the time when Garabato was developed, the Cumbia platform has evolved in several
ways, thus making the original implementation of Garabato obsolete. Because of this, Garabato
includes some elements that are not allowed in Cumbia anymore, and its metamodels take less
advantage of open objects’s extensibility mechanisms.
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The main issue encountered in the implementation of this metamodel was
related to the number of instances of each task that had to be executed for
each instance of the learnflow. The exact number of task instances is usually
known at run time, and a mechanism to dynamically create new task instances
had to be included. This was implemented using prototypes that were manually
cloned when the number of required instances was known. We later refined this
mechanism and adopted it in the implementation of XPM’s MultiActivities (see
section 7.7.1).

Cloning prototype tasks was an effective means to achieve the required result
of having several instances of the tasks, but it required some additional things to
work properly. First of all, when this functionality was implemented, the devel-
oper of the CumbiaLD metamodel had to modify the structure of the model and
connect the new elements adequately. This included creating the new instances
of the tasks, and connecting them to the other elements in the model. However,
the single most difficult point was creating the event subscriptions that the new
elements required to interact with the other elements in the model. To tackle
theses difficulties, newer versions of the Cumbia platform offer the means to clone
model elements much more easily.

Another related issue had to do with the interaction of the cloned elements
with the other metamodels. Since the relations between elements in model in-
stances are created when the models are instantiated and the CCL programs are
executed, recently cloned elements were not connected to other models. There-
fore, the relations between models had to be manually updated whenever a new
element was cloned. Up to the current version of Cumbia and of CCL we have
not really tackled this problem. However, we have in our future work plans to
introduce finer grained events into CCL, to allow the execution of CCL blocks
whenever new elements are dynamically added or removed from the models (cur-
rently CCL only supports coarse grained events that refer to the creation or the
deletion of model instances).

The CumbiaLD metamodel only supports the specification of the control con-
cern for the level A of the IMS-LD specification, but it is complemented by the
optional metamodel called XLD. The XLD metamodel was developed in two stages:
at first, it only included the elements necessary to support IMS-LD level B; after-
wards, it was enriched with the Notification element to support IMS-LD level
C. Figure 7.21 depicts the elements in this metamodel. Some of these are shaded
in gray to represent that they are not open objects (they are non-open objects),
although they are part of the models. The decision to handle these elements as
simple objects, and not as open objects, was due to their nature as containers
without relevant behavior or interactions with other elements.

The other metamodels involved in Garabato did not present important chal-
lenges in their implementation. RoleD is the metamodel where IMS-LD users and
roles are managed. Since the IMS-LD specification defines learner and staff as
the mandatory roots of the hierarchies of roles, this information was included in
the metamodel structure (see figure 7.22). The element User in this metamodel
is also a non-open object, as it only holds static information about the users.

IMS-LD also defines the structure of several kinds of resources associated to
the learnflows. These resources are generically called learning materials and,
besides their contents, they also include information about their role in the con-
text of a learnflow. The LDContents metamodel was defined to describe learning
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Figure 7.21 The XLD metamodel to support levels B and C of IMS-LD

Figure 7.22 The RoleD metamodel

materials, and it supports all the elements required by the IMS-LD and IMS-
CP [IMS03a] specifications. Figure 7.23 shows the elements of this metamodel.
It should be noted that, unlike other metamodels that mixed open objects and
non-open objects, in this metamodel all the elements are non-open objects.

Figure 7.23 The LDContents metamodel

Finally, Garabato also employed XTM to describe time restrictions over the
learnflows.
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Experiences with IMS-LD

The experiments related to this case study are basically two. Firstly, there is the
implementation of Garabato, which included the development of the engines, of a
client for participants in the learnflows, of a console for monitoring the learnflows
at run time, and an application to convert IMS-LD specifications into model
specifications. Figure 7.24 shows screenshots of the client application and of the
monitoring console. This implementation was accompanied by the development
of a test suite built on top of the CTF.

Figure 7.24 Some screenshots from Garabato

The other part of the experiments performed in the IMS-LD scenario had
as goal to test the extensibility of Cumbia. In these experiments Garabato was
complemented with the necessary components to support student portfolios7. In
the e-learning context, a portfolio is a structured collection of information related
to a student, which can include information about his grades and the results of his
projects and homeworks. There are several complementing specifications close to
IMS-LD that define frameworks to structure and manage portfolios: what was
implemented in this experiment was a combination of several specifications that
include IMS Learner Information Packaging (IMS LIP) [IMS01], IMS ePortfolio
[IMS05], and IMS Reusable Definition of Competency or Educational Objective
(IMS RDCEO) [IMS02].

Similarly to the elements in the LDContents metamodel, the elements in a

7The implementation of portfolios into Garabato was the main result of the work of Gilberto
Pedraza at the Universidad de los Andes towards his MSc. degree [Ped09]. Gilberto worked in
this project with Nadya Calderón and Mario Sánchez, and his advisor was Jorge Villalobos.
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portfolio have a meaningful state but do not have a very interesting behavior.
Furthermore, each portfolio is associated to a single user, and must be updated
only by activities that involve the respective user. Since this was much more
complicated than other scenarios where we had dealt with the data concern, we
proposed a very different approach: instead of creating a portfolio metamodel,
creating a variable portfolio model for each user8, and then creating a single
instance of each model, we opted for the creation of the DMMmetamodel. This new
metamodel, which is shown in figure 7.25, is a generic metamodel to describe data
models. In this case, by generic we mean that DMM can be used in many domains
and is not restricted to the e-learning data. Conversely, models conformant to DMM
are indeed domain specific, and they structure the information that is relevant
for a domain. In the case of Garabato, the DMM model created included all the
elements required in a portfolio. The behavior of these models, which is defined
in the DMMmetamodel, is mainly related to the storage, query, and update of data.
In figure 7.25 many of the elements appear shaded in gray (non-open objects)
because they are either stateless with complex behavior, or just stateful without
relevant behavior.

Figure 7.25 The main elements of the DMM metmaodel

Results and conclusions

The implementation of Garabato was a very useful case study for Cumbia that
tested aspects such as its expressive power, the flexibility of the languages, and
the capabilities of the platform interfaces. Implementing a complex existing
language, with a very different structure from most workflow languages, and with
the specific requirements of the e-learning domain resulted in new requirements
for the platform. Most of these have since been implemented, assimilated, and
used in the engines of other languages.

Among the requirements not yet implemented, we believe that the most press-
ing are those related to the limitations of CCL to handle dynamic adaptation of
the models. Therefore, we have identified as work for the near future the design
and implementation of the extensions to CCL that will allow the weaver to react
to fine grained events produced when the structure of models change.

Finally, a very important result of this case study is to have a complete imple-
mentation of the language. Garabato implements all the core features required by

8The structure of a portfolio depends on the courses that a student has followed. Therefore,
it is not possible to define a single portfolio model and then reuse it for many students.
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the language specification, including the dynamicity defined in level C. As it was
previously mentioned, this is not supported by most existing implementations of
IMS-LD.

7.7 Other experiments

7.7.1 XPM

XPM [SVR09], which stands for eXtensible Process Metamodel, was the first work-
flow language implemented in Cumbia, and its development drove the develop-
ment of many characteristics of the platform9. XPM focuses exclusively on the
description of the control flow, but it can be composed with other metamodels
to complement a process description. Furthermore, when XPM was designed an
effort was made to keep the number of elements in it as low as possible. The
result was a fairly small language with only 8 basic elements (see figure 7.26).
Notwithstanding, XPM is very expressive and it supports most of the original con-
trol flow patterns [vdAtHKB03], albeit it is somewhat verbose to express certain
workflow definitions. The only pattern not supported is implicit termination, be-
cause all XPM processes explicitly state their termination conditions. Incidentally,
this pattern is neither supported in YAWL, whose designers were the proponents
of the patterns.

Figure 7.26 Metamodel of XPM

Figure 7.27 shows a simple process modeled using XPM, and it can be seen that
XPM’s design takes many ideas from the Abstract Process Machine of APEL
[DEA98, EVLA+03]. The top-level element of any XPM model is always an in-
stance of Process (Credit Application). To be executed, a process needs some
input data which is received through one of its entry Ports. Conversely, when a

9The design and development of XPM has benefited from the work of several former partici-
pants of the Cumbia project, including Pablo Barvo, Gabriel Pedraza, and Jaime Solano.
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process finishes its execution, output data is produced and external entities can
find the data in one of the process’ exit ports. Within a process, one can find
activities which perform concrete tasks (Consult Credit Rating, Evaluate Re-
quest, etc.), and other processes (XPMNodes). For each one of these elements, the
scheme <entry ports - element - exit ports> is repeated as for top level processes.
The structure of a process is completed by Dataflows, which connect exit ports
to entry ports and thus allow for the exchange of output and input data. The
structure of dataflows, entry ports and exit ports in XPM, is a simplified version
of the structure proposed in APEL.

Figure 7.27 A process modeled with XPM

There are three main kinds of elements that can be found as nodes in a
process. The first one are processes themselves, and this means that a hierarchy
of processes can be created with XPM. The second one are AtomicActivities,
which execute specific tasks, and which manage the input data that it requires
to run, and the output data that it produces. The specific tasks performed in an
AtomicActivity are encapsulated in elements of type Workspace: Workspaces
have a very basic behavior and therefore they have to be specialized for specific
applications. The third kind of elements in a process are MultiActivities,
which hold many similarities with AtomicActivities. The critical difference
is in the number of workspaces executed: while an AtomicActivity executes
a single instance of its Workspace, a MultiActivity can concurrently execute
several instances of the same Workspace. In this respect, MultiActivities are
similar to YAWL’s Multiple Tasks, or BPMN’s Parallel Tasks, although the
rules to complete the execution of a MultiActivity are slightly different in XPM.

There are two further characteristics of XPM. The first one is that each XPMNode
can have several entry ports and several exit ports. The second one is that each
port can have several dataflows connected to it. These two characteristics are
sufficient to implement complex control flow routes. Figure 7.28 shows how to
represent some common control flow routing patterns using XPM. As a result,
additional elements similar to BPMN’s Gateways are unnecessary.

From the point of view of the workflow language designer, XPM is not a very ad-
vanced language. Nevertheless, it presents the core characteristics shared by most
workflow languages, and presents a very interesting scenario to test Cumbia’s
characteristics. Although XPM has not many elements, it is capable of model-
ing control flow routing (including advanced patterns), modeling concurrency,
and modeling synchronization. Furthermore, XPM models can perform specific
tasks which are clearly encapsulated in workspaces’ extensions. In the case
of MultiActivities, XPM also stresses the capabilities of the Cumbia platform.
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Figure 7.28 Control flow routing in XPM

Since the exact number of workspaces to run in a MultiActivity may not be
known at design time, XPM’s models requires some dynamic adaptation capabil-
ities in order to create new workspace instances at run time via cloning (see
section 7.6). In the next section we will see how the genericity of this language
has been beneficial to use XPM as an intermediate workflow language.

XPM includes several features that are quite different from other workflow lan-
guages and that are possibly difficult to implement in other workflow platforms.
In particular, the reliance on data flows, and the management of multiple concur-
rent instances of activities is something that is not normally found in workflow
engines. The characteristic C1 of the platform contributed to avoiding this prob-
lem in this scenario. With respect to characteristics C2 and C3, we can comment
that the metamodel implementation reflects the structure of the language, and
that we have also done experiments where we extend this language and its meta-
models. As in other scenarios, we composed XTM models of time restrictions with
XPM processes.

7.7.2 BPMN

In chapters 1, 2, and 3 we discussed about the limitations and problematic as-
pects of workflow engines based on intermediate languages. We encountered some
of those probems when we did a case study on the implementation of an inter-
mediate language based on Cumbia. In this case study, called Alegre [Már08],
we implemented an engine for a subset of BPMN using XPM as an intermediate
language10. In addition to providing information about using intermediate work-
flow languages, Alegre also evidences that Cumbia can support the control flow
concern of languages similar to BPMN.

Figure 7.29 shows three aspects of the approach taken to model BPMN on top
of XPM. On the one hand, we built a metamodel for BPMN (MM BPMN) where we
included all the elements of the language. We also modeled the state machines

10Alegre is part of the results of the work of Pablo Márquez at the Universidad de los Andes
towards his MSc. degree. Pablo’s advisor was Jorge Villalobos. Diana Puentes also participated
in Alegre.
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Figure 7.29 Metamodels in Alegre

for these elements, but we only included the states that are relevant from the
perspective of a BPMN client. For example, tasks only included the states Active
and Inactive. Furthermore, the most important BPMN interfaces were modeled
(e.g. tasks offered services to receive data and to provide data), although their
behavior has not directly implemented. The final result of this was a metamodel
that was usable to create models, to query the state of models, and to receive
BPMN requests, but was not executable on its own.

The second aspect of Alegre was to extend the XPM metamodel to imple-
ment the semantics of BPMN elements (MM XPM_BPMN). For example, a specialized
workspace that acted as an XOR-Gateway of BPMN was created. This extended
workspace is capable of evaluating conditions associated to flows, and selecting
only one of them to proceed with the process. The extended metamodel served to
establish a mapping between BPMN models and XPM_BPMN models. Figure 7.30
shows a sample from this mapping that involves the aforementioned specialized
workspace.

Figure 7.30 Mapping of a BPMN XOR-Split into XPM_BPMN

The final aspect of the approach was to build an environment to execute the
BPMN models. This first required the construction of a program that used the
aforementioned mapping to generate XPM_BPMN models from BPMN models. On
the other hand, this also involved the creation of an architecture to execute, in a
synchronized way, BPMN models and their corresponding XPM_BPMN models.
This architecture is called Alegre and is schematized in figure 7.31.

The top part of figure 7.31 shows a BPMN engine built around the Cumbia
Kernel and configured with the BPMN metamodel. This engine is capable of
receiving requests and interactions from clients that interact with the BPMN
process, or users participating on it. This engine can also be queried about the
state of the process: since every element has a state machine, answers to these
queries can be found by inspecting the state of the open objects.

The bottom part of the figure shows the XPM engine used as an engine for
XPM_BPMN. This engine has access to external systems that support the processes
(i.e. data sources, legacy applications, etc.) but it does not receive direct requests
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Figure 7.31 Alegre structure and run time behavior

from clients or participants. Instead, this engine is controlled by requests and
events generated in the BPMN engine in response to external interactions. In
response to the requests and events, actions are executed in the XPM_BPMN model,
the state of the model is updated, and notifications are sent back to the BPMN
model. Finally, these notifications serve to update the state of BPMN elements
accordingly to the semantics of the language.

As with most intermediate languages, the presence of XPM_BPMN is transparent
to participants in the BPMN process. However, from the point of view of the
implementor of the engine, this architecture created a few difficulties. On the
one hand, the semantics of BPMN still had to be implemented, although it ended
up scattered across the BPMN metamodel, the XPM_BPMN metamodel, and even
the model generator. Compared to the scenarios where the semantics of the
languages are packaged inside metamodels, we consider that the Alegre solution
is more difficult to maintain and to evolve. Another problem is that three different
mappings had to be considered: the first one served to convert BPMN models
into XPM_BPMN models; the second one served to convert requests from BPMN
to XPM_BPMN, and the third one served to convert XPM_BPMN state updates and
responses into BPMN state updates and responses. Creating those mappings for
the case study was not trivial, and maintaining similar mappings in the face of
language evolution can also be a considerable problem.

To conclude this section we would like to discuss two positive aspects of this
intermediate language case study. The first aspect is that the approach was made
possible by the high expressive power of XPM: since XPM is capable of modeling
such a high number of control flow patterns, we did not find BPMN’s structures
that were impossible to map into XPM structures. Nevertheless, not all of the
mappings were trivial, and most XPM_BPMN models were more complex than the
original BPMN models. The second positive aspect was making reified BPMN
models available to inquire about the state of the processes. This simplified
answering queries because requests and responses did not have to be translated



Validation 225

into XPM_BPMN terms. However, this created the necessity of keeping the BPMN
models updated with respect to the state of the XPM_BPMN models.

7.7.3 WS-BPEL

To further validate Cumbia with a well known language, we also did a case study
based on WS-BPEL v2.0 [OAS05]. In this case, the engine that we produced was
named Caffeine11 and it implemented most of the language constructs[Muñ09,
Rom07]. The elements not supported are mostly related to exception handling
and they were left out of the case study because of time constraints. In spite
of this, Caffeine is interesting because of the language specific elements that it
required. These elements fulfill a very important role because they enable all the
web-services communication. Figure 7.32 shows a schematic view of the elements
and interfaces found in this engine.

Figure 7.32 Schematic view of the WS-BPEL Engine (Caffeine)

Similarly to every Cumbia-based engine, the central component of Caffeine
is the Cumbia Kernel which is configured with the WS-BPEL metamodel spec-
ification. This is complemented by a component that provides communication
services. Through this component WS-BPEL instances can send requests to
external web-services and receive their responses. The communication services
component also supports asynchronous requests, although this entails the extra
complexity of pairing responses to requests: this is achieved through a routing
mechanism based on the correlation data included in the messages. Finally, the
communication services component is also capable of identifying control mes-
sages and route them to the component called BPEL Controller which enacts
them. This serves, for example, to load new process definitions, or to create new
instances.

11Caffeine is the main result of the work of Manuel Muñoz at the Universidad de los Andes
towards his MSc. degree. Manuel collaborated with Mario Sánchez in this project and his
advisor was Jorge Villalobos. Daniel Romero, a former MSc. student at Universidad de los
Andes also participated in Caffeine.
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Introducing a component to handle all the communications was not abso-
lutely necessary for the construction of Caffeine. An alternative would have been
to implement all the communication behavior inside the metamodel. However,
technical restrictions of the SOAP protocol and of the SOAP library used (AXIS)
pushed us towards this solution.

In retrospective, the WS-BPEL case study did not gave us a lot of extra
information about the expressiveness and extensibility of Cumbia and of the open
objects. Nevertheless, because of the ubiquity of WS-BPEL and its usage as the
base for other languages, it was a relevant scenario to implement. Furthermore,
from the point of view of the engine architecture, Caffeine was an interesting
case study that gave us valuable information about language specific elements
and about patterns of interaction with external applications.

7.7.4 SCA

Service Component Architecture (SCA) is a set of specifications produced by
OASIS which describe a model for building systems using a Service-Oriented Ar-
chitecture (SOA) [OSO07, Bar07]. The idea behind SOA is that business func-
tions can be provided as services. These can either be simple services, or service
compositions (composites) formed by other services and by functions supported
by existing applications. SCA provides the means to describe how services should
be composed in composites, and also to describe how new services should be cre-
ated. To enable the reuse of existing applications, SCA builds on open standards
and supports binding components to systems implemented on technologies such
as web-services, JMS, JCA, EJB, C++, and WS-BPEL.

SCA is the language used in another case study for Cumbia 12. This language
was selected because it is not a workflow specification language, but still has
several similarities. Therefore, SCA served to test the applicability of Cumbia
outside the context of workflow applications.

The principal elements defined in the SCA specification are shown in fig-
ure 7.33. An SCA Domain is a space in a container to deploy composites. Each
composite assembles SCA elements in deployable logical groupings, and provides
one or several services. A composite can also use references to declare the
need for some externally defined components. The contents of a composite are
components whose implementation is defined within the composite, and wires:
wires are used to compose components by connecting references declared in
one component to services provided by another one. A component can be an
instance of another composite, or it can be implemented by another application
(e.g. a Java, C++, or WS-BPEL application). Finally, the SCA model also de-
fines properties both at the composite and at the component level: composite
properties are defined when the composite is deployed; component level prop-
erties can be defined when the composite is built, or they can take their value
from composite level properties.

Figure 7.34 uses SCA’s graphical notation and depicts the structure of a
new composite service. This “Account Service” is composed by two composites
(“bigBank.Account” and “bibBank.AccountData”) and the following three compo-
nents: “Account Service Component”, “Account Data”, and “Account DataService

12The SCA scenario is the main result of the work of John Espitia at the Universidad de
los Andes towards his MSc. degree [Esp09]. John worked closely with Mario Sánchez in this
project and his advisor was Jorge Villalobos.
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Figure 7.33 Elements of SCA, based on figures from [OSO07]

Component”. The first two of these components are supported by external sys-
tems which are not visible in the figure. The third one, “Account DataService
Component” is implemented by the composite “bigBank.AccountData”. Finally,
this application depends on an external service which is referred as “StockQuote
Service”.

The construction of the SCA container entailed the development of an SCA
metamodel (see figure 7.35)13, and wrapping the Cumbia Kernel as an SCA con-
tainer. Subsequently we integrated this container with Oracle Business Activity
Monitoring (Oracle BAM) [Ora09] to monitor the execution of the composites
through dashboards. This integration was achieved using a JMS-based bridge
and the open objects’ coordination mechanisms. In particular, we installed ac-
tions on transitions and listeners for some events. Additionally, this case study
also involved using other tools in the Cumbia platform, including the Cumbia
Debugger and the Cumbia Test Framework.

This case studied the application of Cumbia in a domain that did not included
workflows, and did so by implementing an existing language. The main conclusion
that we can take from this is that Cumbia is also applicable in other contexts.
A probable reason for this is that the metamodeling platform does not have a
lot of restrictions and is not tied to particular workflow models and languages.
Conversely, attempting a similar implementation on top of a platform such as
OPERA would probably result in a flawed or limited implementation of SCA.

The SCA contained developed using Cumbia also benefits from characteristic
C2: the elements of the specification were mapped to a Cumbia metamodel and

13Since the SCA scenario was developed the Cumbia platform has evolved in several ways,
making obsolete the original implementation of the SCA metamodel. The image presented in
this section corresponds to an updated, but not yet implemented, version of this metamodel,
which takes advantage of all of the current features of Cumbia.
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Figure 7.34 A sample SCA application. This figure can be found in [Bar07]

Figure 7.35 Metamodel for SCA (see note)

the implementation of its semantics was associated to elements of this metamodel.
As a consequence of this, the container is flexible and it can take advantage of the
extensibility mechanisms offered by open objects. This mechanisms can be used,
for example, the create new bindings and implementation types by extending
other elements already present in the metamodel.
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With respect to all the discussed scenarios, in this one the characteristics C4
and its advantages can be more clearly analyzed. In the first place, the platform
was clearly reused: the only SCA specific elements were introduced either in the
metamodel or as SCA-specific interfaces to the container. This not only reduced
the effort to implement the container, but also allowed for the usage of tools
like the debugger and the testing framework. On the other hand, the container
that we developed is open, which makes it easy for external elements to observe
its behavior, and to control it when necessary. On top of that, the facilities
to observe events from outside of the container served to integrate it with the
external monitoring application (Oracle BAM).

7.8 Review of the findings

In this chapter we have presented nine case studies built on top of Cumbia, which
illustrate the application of the proposal to creating engines for a variety of work-
flow languages. For each language, we have presented its main characteristics and
the most important details about its implementation. In those presentations we
have focused on the aspects that made each case study different from the others,
and the aspects that complicated the implementation and which required im-
provements to the platform. Furthermore, for some of the case studies we have
also described some additional experiments that served to evaluate the extensi-
bility of those Cumbia-based engines and applications.

The scenarios developed in this chapter were selected because they constitute
an interesting subset of the spectrum of the workflow languages. The languages
selected include some well known languages, as well as some ad hoc languages
that we developed. Furthermore, we also included languages that target specific
workflow domains. Finally, these languages are also based on different execution
models, and thus they provided interesting scenarios to test the expressiveness of
Cumbia and of the open objects.

Because of their different qualities, each case study has contributed to a dif-
ferent extent in demonstrating how the objective established in chapter 1, and
revisited in section 7.1, was attained in the Cumbia platform. Furthermore, these
case studies have served to illustrate the main characteristics of the platform and
show how they contributed to achieving the objective. Table 7.1 summarizes how
each scenario can be matched with each characteristic.

Characteristic C1 makes reference to the lack of dependencies between the
platform and specific workflow languages or type of execution model. Although
we can not claim that Cumbia can support any workflow language, the case
studies that we developed suggest that the objective of supporting a wide variety
of workflow languages in a wide variety of domains was reasonably fulfilled. We
implemented engines for representative languages and with profound differences
in their structure, their notation, and their underlying execution model. These
scenarios show that Cumbia supports several execution models, and does not
depend on any of the traditional ones.

In all of the scenarios studied characteristic C2 can be clearly seen. In each
case, the language was modeled using metamodels, and its semantics was inte-
grated into these metamodels. In some cases, such as in the WS-BPEL scenario,
some elements had to be left out of the metamodel and be implemented as ad-
ditional components in the engine. However, these elements were not central
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Table 7.1 Match between case studies and characteristics of the platform

C1 C2 C3 C4
MiniBPMN + ++ +
YAWL + + +−

Petri Nets + +
PaperXpress + ++ +
IMS-LD + + +− +
XPM + + +−
BPMN + +

WS-BPEL + +
SCA + + +

parts of the languages. Instead, they provided complementing services that did
not determine the core parts of the language semantics. The other aspect of
characteristic C2, namely aligning the evolution of languages and metamodels,
was only studied in the case studies about MiniBPMN and PaperXpress. In those
scenarios, the evolution of the languages can be easily mapped into the evolution
of the metamodels.

Characteristic C3 makes explicit the need for a platform where engines for
new workflow languages could be easily changed. The case studies for MiniBPMN
and PaperXpress illustrate that this goal was achieved in Cumbia. The changes
introduced into these languages included changes to the behavior of existing
elements, and the introduction of new elements. Furthermore, not all of the
changes had to be introduced using the same means, because Cumbia offers
different mechanisms to support different kinds of language extensions. The
case studies for YAWL, IMS-LD, and XPM also contributed to demonstrating
this objective, although in a different way. In these cases, the base languages
were not extended, but they were complemented with additional languages. This
mechanism supports a different kind of extensions that can be useful in other
situations. Additionally, it promotes the reuse of engines.

With respect to characteristic C4 there are three aspects to analyze. On the
one hand, there is the fact that Cumbia is a reusable platform. All the scenarios
studied are based on the same platform in spite of the profound differences be-
tween the languages. Furthermore, the advantage of reusing the platform is also
evident in the permanent reuse of the Cumbia Debugger and the Cumbia Test
Framework.

The second aspect is the open nature of the engines based on Cumbia. In
particular, the scenario about IMS-LD showed that the interface of the Cumbia
Kernel allows for complex manipulations of the models, even at run time. With-
out such a powerful interface, it would have been difficult to implement the
dynamic adaptation functionalities required in the e-learning domain.

Finally, the third aspect has to do with the reuse of applications that interact
with the new engines. Unfortunately, to test this aspect we were limited by the
lack of reusable existing tools. Therefore, we can only present as evidence the
reuse of our own tools, and the reuse of the Oracle BAM. The former include the
Cumbia Debugger, the OO Editor, and the Cumbia Test Framework. The later,
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which was integrated to the SCA engine, was integrated using the event-based
coordination mechanisms.
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8
Conclusion

8.1 Summary and reflection

The popularization of workflows and their application to many different domains
has given rise to a large number of workflow specification languages. Since each
language has been designed following different goals, each one includes a different
set of features and offers different advantages and disadvantages. Because of this,
selecting the workflow specification language to use in a project requires a careful
evaluation of the characteristics of the language, of the project, and of the domain
where it is used.

Workflow specification languages can be classified as domain specific work-
flow languages (DSWfL) or as generic workflow languages (GWfL) depending on
whether they target specific domains or not. Currently, the usage of GWfL is
more extended, and the majority of the available tools target languages standard-
ized by worldwide organizations and consortiums, such as BPMN or WS-BPEL.
However, there are downsides in using GWfLs. The first one is that, in order
to be generic, they manage concepts which are technical and are far from the
concepts of the domains of application. Therefore, domain experts without a lot
of technical knowledge cannot take advantage of many of the features present in
these languages, which is paradoxical since they were originally intended to be
the main beneficiaries of workflow technologies. The second aspect is the lim-
ited flexibility offered by those languages. Since the specifications are fixed, and
since many implementations are proprietary, it is very difficult to adapt these
languages to offer support for new requirements that were not considered when
they were designed.

On the other hand, domain specific workflow languages explicitly handle con-
cepts taken from the domains of the application, and are expected to handle ad
hoc requirements. The problems with those languages arise from the high costs
associated to their development and maintenance. This has happened because
existing engines are tightly coupled to the languages that they support, and be-
cause there is relative lack of tools to support the definition and execution of
DSWfLs. As a result, the engines for new workflow languages are developed al-

233



234 8.1. Summary and reflection

most from scratch, and requires the re-development of all the necessary associated
tools.

Given this context, the goal of this dissertation was to develop the means to
support the implementation of new workflow languages, and, at the same time,
to favor and support flexibility at the language level. The proposal to achieve
this goal was a novel architecture to build workflow engines, based on meta-
models and on the modularization of workflow definitions. In this architecture,
engines are built on top of a metamodeling platform and an execution kernel:
for each workflow language, a metamodel and an engine are developed, but this
development does not entail as much effort as it is normally required.

The proposed architecture introduces the possibility of modularizing work-
flows according to concerns, and using concern specific languages to describe
each one of those. Since these languages target narrow facets of the workflows,
they can be very expressive and manage concepts that are familiar to domain
experts. At the same time, the number of elements managed in these languages
is small, and this reduces the effort required to implement and maintain each
language. On top of that, the proposed platform offers elements and tools that
can be reused in many languages and that also reduce the effort to support new
languages. All these facts favor the creation of new concern specific languages
as an alternative to reusing complex and monolithic generic workflow languages
that manage concepts which are far from specific domains.

Besides facilitating the creation of new languages, the proposed approach also
favors language adaptability, extensibility, and reuse. Adaptability is favored be-
cause implementing the languages directly in metamodels aligns languages and
their implementations in ways that are not achievable in other approaches. In
this way, changes to the languages’ elements and structures are easy to map
into changes to the metamodels. Extensibility is favored because the underlying
metamodeling platform offers extensible constructs and encapsulates in each el-
ement as much as possible of its own behavior. Thus, the impact of extending
the elements of a language is minimal. In addition to this, applications can also
be extended by introducing new languages that are externally composed to the
existing ones. With respect to reuse, modularizing the languages increases their
chances of been used in several applications, either with a few changes or with
no changes at all.

The proposed architecture also introduces elements that favor the creation
of open engines that can be easily integrated with external tools. At the base
of this, there are very open interfaces that can be used to observe and control
the execution of the models, and even to modify their structure at run time.
The widespread usage of events is also helpful as every event generated in an
engine can be easily observed by external applications. Therefore, it is easy
to develop external applications to monitor these engines where their run time
behavior is described as reactions to events. Finally, in the proposed architecture
all the engines share a number of components. External applications that use the
interfaces proposed by the reusable platform have the potential to be used with
multiple engines without requiring substantial changes.

All the above has been implemented in the Cumbia platform, on top of a
notion that we developed which is called open object. Open objects can be con-
sidered the core of the metamodeling platform: they are the modeling abstraction
to describe the elements in the metamodel, which includes their run time state
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and behavior. To describe this behavior, open objects rely on coordination mech-
anisms like events and method invocations, and on externalized and reified state
machines. These coordination mechanisms are not limited to be used just within
a model. They can also be used from outside each model to get information
about its execution and to control it. In the proposed platform, all of this is used
to coordinate the execution of multiple models representing different concerns of
a workflow.

The metamodels for various concerns are normally developed independently.
Because of this, external descriptions are required to establish the relations be-
tween models using a language called CCL. With CCL it is possible to describe
how to weave model instances using the coordination mechanisms offered by the
open objects (events and method invocation).

All the aforementioned elements of the proposal contribute to achieving the
intended goals and support the development of engines for new workflow lan-
guages, while making them adaptable and extensible. It is evident that many
of the functionalities commonly required in workflow engines do not have to be
re-implemented for each language, as they are provided by the platform itself.
Furthermore, complementary tools can be reused as long as they target the plat-
form and do not depend on language specific features. However, it is not easy to
argue whether the resulting engine implementations are more or less complex to
produce than comparable implementations based on more traditional approaches.
Compared to those, developing metamodels based on open objects requires other
skills, such as familiarity with the open objects, and the capacity to design highly
concurrent models. In this particular aspect we have encountered the most prob-
lems while developing our case studies. While the structure of the metamodels
and the internal behavior of each element are easy to design, it can be very
complex to design their interaction. In some cases, it required a lot of effort to
stabilize the metamodels, i.e. achieve the correct synchronization of the elements
and eliminate problems such as deadlocks or race conditions. We consider that
some of these problems can be mitigated with adequate tool support, and thus we
have included the development of new and more powerful tools in the proposed
future work.

To guide the usage of the numerous elements of the proposal, we have de-
scribed a generic development process. This process describes the steps to create
new applications based on Cumbia, and organizes them according to the prod-
ucts that they require and they produce. We have also identified the tools that
support each step, and the skills that participants need to successfully perform
each one of the tasks.

Cumbia was used in a number of case studies that we presented in chapter 7.
In each one of those, a different workflow language was implemented, and sev-
eral experiments were performed, including an implementation of an engine. The
languages studied in those case studies were a representative set of both generic
workflow languages, and domain specific workflow languages. The domains stud-
ied included those of business process management, e-learning, and collaborative
writing. Furthermore, we also performed some experiments using SCA, a speci-
fication that serves to describe services in service oriented architectures.



236 8.2. Conclusions

8.2 Conclusions

In this section we summarize and discuss the main contributions of this disserta-
tion.

A novel architecture for workflow management systems

In this dissertation we presented the elements of a novel architecture to build
workflow management systems. In this architecture, languages can vary but
the implementation of functionalities common to most workflow languages is
always reused. This strategy contributes to diminishing the costs associated to
supporting new languages, and facilitates the reuse of external complementary
tools.

The fundamental elements in this architecture are the metamodeling platform
based on open objects, and a kernel for the execution of models – the Cumbia
Kernel. The metamodeling platform provides the elements to create metamodels
to implement workflow languages. Models conformant to those metamodels, and
thus representing specific workflows, are executed by the Cumbia Kernel. This
means that the kernel follows the semantics of the language to update the state of
the models and to control the interaction with external elements. The proposed
architecture is complemented by the Cumbia Weaver. This component is in
charge of interpreting CCL programs and materializing the relations between
models that are necessary to coordinate their execution.

Finally, it is important to highlight the central role of open objects in this
architecture. Firstly, open objects provide the elements to describe the meta-
models, including the structure of valid models, the behavior of its elements, and
the interactions between those elements. Furthermore, open objects offer various
extension mechanisms which contribute to the evolution of the languages. The
interaction mechanisms of the open objects are also used by the Cumbia Weaver
to realize the coordination between models. Finally, the open objects expose as
much as possible of their state in order to facilitate the development of open
engines, and the integration with external applications.

A novel approach for workflow modularization

This dissertation explored a multimodeling approach to modularize workflow def-
inition. In this approach, workflow specifications are decomposed among a num-
ber of concerns, and each part is specified using a concern specific language. This
approach brings advantages both from the point of view of the implementors of
the languages and from the point of view of its users. In the first case, this is
explained because concern specific workflow languages tend to be simpler and
smaller than fully fledged workflow languages. Therefore, both the development
and maintenance of each one of those languages is simplified. From the point of
view of the users, which in many cases are domain experts, these languages are
easier to use and to learn, because they manage concepts that are closer to their
domains of expertise.

This workflow modularization approach is implemented on top of the open
objects based metamodeling platform. For each concern specific language, one
metamodel has to be developed. Later on, CCL and the open object coordination



Conclusion 237

mechanisms are used to coordinate the execution of the concern specific models
and thus reconstruct the semantics of the modularized languages.

Open Objects, a base element for executable modeling

In this dissertation we developed the notion of open objects and used it as the
main building block for metamodels. Since we were interested in having exe-
cutable models, the specification of the metamodels and of the element types
had to fulfill special requirements. Firstly, each element type needed a way to
store the run time state of its instances. Secondly, the metamodel had to define
the structure of conformant models. And thirdly, each element type had to define
the behavior of its instances with respect to other elements and to the execution
environment.

These requirements were all fulfilled by open objects. The attributes of the
entities, and the states in the state machines, provide the means to store and
structure the run time state of element and model instances. Each open object
also defines how its instances can relate to other elements in the metamodels,
thus restricting the structure of valid models. Finally, the behavior implemented
in the methods of the entities and in the actions, together with the state machines
and the event passing mechanisms, provide the means to define the behavior of
metamodels. The previously mentioned characteristic also makes open objects
very open, and thus it is easy to observe their execution, receive notifications
about their state changes, or extend their behavior with new actions.

Finally, open objects’ usage is not exclusive to workflows: they can be used
in other contexts, as was demonstrated in the SCA case study.

The Cumbia platform

We implemented all the elements proposed in the approach in a platform called
Cumbia. This platform supports the definition and implementation of workflow
languages using metamodels based on open objects. It also supports the exe-
cution of models conformant to those metamodels, and supports the run time
coordination of multiple models. Furthermore, the Cumbia platform exposes
powerful interfaces to control and monitor the execution of the models.

The core of Cumbia has three main elements. Firstly, a metamodeling plat-
form and a framework for open objects that serves to design and implement
metamodels and models. Secondly, a component called the Cumbia Kernel,
where models can be executed accordingly to the semantics of each language.
And thirdly, a component that weaves the models so their executions can be
coordinated, the Cumbia Weaver. Additionally, we have also implemented com-
plementary tools that aid in the development of applications based on Cumbia.
These tools include a debugger, an editor to structure the metamodels, and a
framework to create testing environments. To guide the usage of all these com-
ponents and tools we have suggested a development process that describes the
steps that participants with different roles have to perform to create new appli-
cations based on Cumbia.

From the technological point of view, the Cumbia platform uses Java and
XML: metamodels and models are described using XML files, while the behavior
of open objects’ entities is implemented in Java classes.
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Validation of the Cumbia platform

The Cumbia platform was validated with nine case studies that present relevant
characteristics commonly shared by workflow languages. The languages, spec-
ifications and models studied in these cases comprised both generic workflow
languages and domain specific workflow languages. Among the domain specific
languages we also included SCA, a specification to design service oriented archi-
tectures that shares many characteristics with traditional workflow languages.
Furthermore, the languages selected for the case studies used various types of
execution models (based on Petri nets, transition based systems, extended work-
flow nets), thus validating that our platform is not tied to a particular type of
execution model.

In each case study, we built an engine for one of the languages using the
elements provided in the Cumbia platform. Furthermore, in several of the case
studies we performed additional experiments that included modifications and
extensions to the languages, the development of new complementary languages,
and the composition with existing languages.

With these case studies we concluded that Cumbia fulfills the objectives of
this dissertation: it is a platform where engines for workflow languages can be
implemented while favoring language extensibility and reusability.

8.3 Future work

This section presents a number of directions for future research related to Cumbia,
as well as some possible improvements to its current implementation.

8.3.1 Possible improvements and additions for Cumbia

Verification of metamodels

The current implementation of the Cumbia platform is capable of detecting syn-
tactic problems in the metamodels. For example, it can detect if an element’s
state machine depends on an event that it will never receive because it is not de-
clared by any element. Similar problems can be detected in models by analyzing
its elements and matching them to the metamodels. These verifications are very
useful to metamodel developers as they reveal errors such as simple typos and
omissions.

Unfortunately, the problems faced by metamodel developers are frequently
much more complex than syntactic errors. For example, it is relatively easy to
introduce deadlocks, i.e. two elements mutually waiting an event from the other
to generate their event. It is not as easy to detect these situations, especially
when the deadlock involves long chains of elements. Other potential problems
are those where elements can reach inconsistent states because events can be
received in an unexpected order.

In complex concurrent contexts such as Cumbia, test-based approaches can-
not rule out the possibility that models conformant to some metamodel are ever
going to reach inconsistent states. These approaches provide insights about the
quality of the design, and can uncover problems, but they do not serve to prove
whether a metamodel is flawless. Therefore, it is necessary to develop or adapt
tools and methods to perform analytical verification of metamodels. Eventu-
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ally, these tools will have to focus on three aspects. Firstly, detecting if some
generic problematic situations can occur (e.g. deadlocks). Secondly, detecting if
some undesirable states are reachable. Since the specific states depend on the
metamodel, this aspect would also require some mechanisms to describe the unde-
sirable states. Finally, the same tool that detects the reachability of undesirable
states would also be used to decide if desirable states (final or intermediate) are
always reachable.

Further changes to the platform and to the open objects model

This dissertation presented an open objects model that differs in many aspects
from its first version. Many changes have been introduced gradually into the
platform, motivated by new requirements and by the findings in the case studies
developed. At some points, we have even introduced features that we have re-
tracted later on. We anticipate that the platform will continue to evolve in the
near future as new experiments are performed, but we expect the changes to be
less profound as the platform matures.

Given the necessity that we have seen for verification mechanisms, and given
the current complexity of the platform, we believe that it is desirable to explore
mechanisms to simplify it. This does not necessarily has to occur in the main
trunk of the platform. For example, we could create a parallel version geared
specifically towards verification and reasoning. In this branch for verification we
would sacrifice expressiveness to facilitate the analysis and validation of the core
aspects of a metamodel design.

Another idea for the open objects model that we should explore in the near
future is the inclusion of guards in transitions. Currently, transitions in state
machines are triggered whenever an event of the right type, and emitted by the
right element, is received. The problems related to deadlocks and unreachable
states that we faced during the development of the case studies were mainly
caused by events received and processed at the wrong moment. Associating
guards to transitions seems like a viable alternative to reduce these problems.
Additionally, putting guards in transitions also seems useful to facilitate the
validation (via testing) of metamodel designs, as they can fulfill a function similar
to that of assertions in Java and similar languages.

Finally, another interesting extension to the open objects model could involve
the declaration of expressions about the intended behavior of some metamodels
or about their constraints. The objective behind these could be to prevent the
introduction of errors by metamodel extensions, or by metamodel compositions.

Relations between metamodels

In this dissertation we have presented all the mechanisms that Cumbia offers
to first modularize the languages, and then to allow the coordinated execution
of definitions written with those modularized languages. The modularization of
the languages is based on the identification of concerns, and it is reflected in a
collection of concern specific metamodels that are largely independent. Never-
theless, not in all situations it is possible, or desirable, to achieve such a clean
separation between concerns and between metamodels. For example, if concerns
are not completely orthogonal, it may be desirable to see the same element in
several concerns and several metamodels. The current approach totally decou-
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ples the models and leaves to CCL programs the responsibility of guaranteeing
consistency. Also, a mechanism is missing to ensure that the elements in one
metamodel offer the composition hooks that the elements in another metamodel
needs.

Because of these reasons, we consider that future developments of the Cumbia
platform should introduce the possibility of having explicit dependencies between
metamodels. We currently envision two kinds of dependencies. In the first and
simpler, one metamodel will import an element from another metamodel, and
use it as if it was locally defined. In the second one, an interface element will be
described and the rest of the elements will be developed against that interface.
At a later time, the interface will be bound to a concrete element defined in
another metamodel. At the model level, these two approaches will probably
require the usage of placeholders, and CCL will have to be enriched to replace
the placeholders with references to the real elements, at weaving time.

Other improvements to CCL

CCL is a low level language based on low level coordination primitives. Therefore,
to write CCL programs it is necessary to have a strong understanding of the
structure of the open objects involved in the composition. In particular, the
author of a CCL program has to know all the details about the structure of
the relevant state machines, about the elements behavior, and about the events
expected and generated. The developer needs this knowledge to ensure that the
composition is not going to break the models: without this information, he simply
cannot write CCL programs. These requirements restrict the usage of CCL to
expert users. A further problem is the absence of relations between metamodels,
which make it impossible to define what a semantically valid composition is.
Thus, only syntactic verifications are made on CCL programs, and semantic
errors cannot be caught.

To address these issues, we will have to extend the Cumbia architecture with
the means to describe valid compositions at the metamodel level [RSV11]. We
are currently doing so by implementing a solution that reflects the approaches
used to describe model weaving in AMW [FBJ+05]. In this solution, compo-
sition models are used to establish the relations between elements in different
metamodels that can be considered valid. The descriptions of those relations
also include information to map relations to CCL programs. By doing so, when
the relations are instantiated at the model instance level, a corresponding CCL
program can be generated and executed. This is also inspired in the approach
of Melusine and Focas, where i) a composition domain is established to relate
existing domains; ii) composition models conformant to the composition domain
are used to establish relationships between application models; iii) and at last
the execution of the application models is synchronized using the information
described in the composition model [EIV05, PE08].

The strategy that we are developing has four key points that make it a solution
to our problems. The first one is that the valid relations can be of a high level and
thus be usable by non-technical users. Furthermore, this approach enables the
construction of composition editors that provide more assistance to users than the
CCL editor that we currently have. A third key point of this approach is allowing
the detection of semantic problems in the compositions. Since compositions are
limited to the relations established between the metamodels, semantic problems
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can only be introduced if the relation definitions have errors. Finally, it is impor-
tant that this solution is based on CCL and the Cumbia Weaver. Because of this
particular detail, defining the relations between two or more metamodel requires
an effort similar to the one was previously required to write a CCL program. The
difference is that, in this case, this work is done by a metamodel developer, while
previously it was supposed to be a task of a model developer.

Other improvements to CCL will serve to handle finer grained events, instead
of the coarse ones that are currently supported. As an example, we expect to be
able to describe that a given block of weaving code has to be executed when a
certain kind of element is dynamically created into a model. The need for such
improvements comes, in general, from scenarios that require dynamic adaptation,
and specifically, from IMS-LD.

8.3.2 Concrete syntax

In this dissertation we have focused on the behavioral aspect of the languages
and we have only provided support for the definition of their abstract syntaxes.
Nevertheless, the concrete syntaxes are essential to many applications and are
naturally the next step to tackle in Cumbia. Some of the metamodeling platforms
that currently support the definition of language notations include MetaCase
[LKT04], GME [Ins08], and Fujaba [GZ05]. However, they cannot be used with
Cumbia because they are incompatible with the open objects: their metamodeling
stack has a fixed height and it is based on a fixed meta-metamodel. As a result,
it is not possible to replicate, inside those platforms, the metamodeling structure
that we have presented throughout this dissertation.

To support the definition and usage of notations in Cumbia we have identified
two alternatives. The first one is to develop the necessary tools and theories from
the ground up and make them compatible with open objects since their inception.
However, to support advanced notations (including graphical ones) and offer the
features found in most DSL platforms a big development effort is going to be
required. The second alternative is to adapt one of the existing platforms. The
difficulty of this approach will depend on the specific characteristics of the selected
platform, and on the level of integration sought with the rest of the Cumbia
platform.

8.3.3 Management of evolution

Throughout this dissertation we have discussed the topics of language and meta-
model evolution. A related topic that we have not addressed is that of model and
metamodel co-evolution: since metamodels representing languages are going to
evolve, it is relevant to consider how this is going to affect the models conformant
to them. Currently, we have avoided consistency problems by using a version-
based system. However, this means that models conformant to old metamodels
cannot be used with the newer versions unless they are manually updated. Some-
times, this only requires changing an attribute in their specification. This simple
strategy eliminates some evolution problems because creating a new version of
a metamodel does not affect existing models. On the other hand, this strategy
makes it difficult to upgrade old models or fix bugs in the metamodel imple-
mentations. Therefore, this is an interesting topic to study with Cumbia, and it
seems like it would be possible to apply techniques similar to those presented in
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COPE [HBJ09]. The reason for this is that the coupled evolution of models and
metamodels can happen with types of changes that are known in advance.



A
Interfaces of the Open Objects

This appendix lists the main Java interfaces for model elements in Cumbia. The
framework provides default implementations for these interfaces, and thus meta-
model developers do not have to worry about implementing them. The services
described in these interfaces are heavily used by the Cumbia Kernel, and they
can also be used in specific metamodels.

A.1 INavigable

Listing A.1: INavigable

1 /∗∗
2 ∗ This interface defines the methods implemented by elements in navigable

models
3 ∗/
4 public interface INavigable
5 {
6 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 // Methods
8 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9

10 /∗∗
11 ∗ Follows a relation and obtains the referenced element
12 ∗ @param relationName The name of the relation to follow
13 ∗ @return Returns the element found, or null if the relation is empty
14 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
15 ∗ @throws InvalidCardinalityException This exception is raised if the

cardinality of the relation is more than 1
16 ∗/
17 INavigable getElement( String relationName ) throws

InvalidRelationException, InvalidCardinalityException;
18

19 /∗∗
20 ∗ Follows a relation and builds a collection with the elements

currently referenced in the relation. If the relation is a
sequence, the

21 ∗ collection returned is implemented with a List.
22 ∗ @param relationName The name of the relation to follow
23 ∗ @return Returns a collection with referenced elements. If no elements

are referenced, the return is an empty collection. If the

243
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24 ∗ cardinality of the relation is one, a collection is still
returned.

25 ∗ @throws InvalidRelationException This exception is raised if the name
of the relation does not exist

26 ∗/
27 Collection<INavigable> getElements( String relationName ) throws

InvalidRelationException;
28

29 /∗∗
30 ∗ Follows a sequential relation and obtains the element referenced in a

given position.
31 ∗ @param relationName The name of the relation
32 ∗ @param position The position in the sequence of references sought.
33 ∗ @return Returns the referenced element
34 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
35 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a sequence
36 ∗ @throws InvalidKeyOrPositionException This exception is raised if the

position indicated does not exist in the sequence
37 ∗/
38 INavigable getElement( String relationName, int position ) throws

InvalidRelationException, InvalidTypeException,
InvalidKeyOrPositionException;

39

40 /∗∗
41 ∗ Follows a map relation and obtains the element referenced with a

given key.
42 ∗ @param relationName The name of the relation
43 ∗ @param key The key in the map of references sought.
44 ∗ @return Returns the referenced element
45 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
46 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a map
47 ∗ @throws InvalidKeyOrPositionException This exception is raised if the

key indicated does not exist in the sequence
48 ∗/
49 INavigable getElement( String relationName, String key ) throws

InvalidRelationException, InvalidTypeException,
InvalidKeyOrPositionException;

50

51 /∗∗
52 ∗ Sets the element referenced in a relation. If another element was

referenced before, that reference is lost.
53 ∗ @param relationName The name of the relation
54 ∗ @param referenced The object that will now be referenced
55 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
56 ∗ @throws InvalidCardinalityException This exception is raised if the

cardinality of the relation is more than 1
57 ∗/
58 void setElement( String relationName, INavigable referenced ) throws

InvalidRelationException, InvalidCardinalityException;
59

60 /∗∗
61 ∗ Adds a reference to a relation implemented with a sequence
62 ∗ @param relationName The name of the relation
63 ∗ @param referenced The new object to be referenced
64 ∗ @return Returns the position where the element was stored in the

sequence
65 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
66 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a sequence
67 ∗/
68 int addElement( String relationName, INavigable referenced ) throws

InvalidRelationException, InvalidTypeException;
69

70 /∗∗
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71 ∗ Adds a reference to a relation implemented with a map. If there was
already a reference stored with the same key, the old reference

72 ∗ is lost.
73 ∗ @param relationName The name of the relation
74 ∗ @param key The key in the map of references
75 ∗ @param referenced The new object to be referenced
76 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
77 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a map
78 ∗/
79 void addElement( String relationName, String key, INavigable referenced

) throws InvalidRelationException, InvalidTypeException;
80

81 /∗∗
82 ∗ Adds a list of references to a relation implemented with a sequence.

The order of the references is maintained, and the new
83 ∗ references are added at the end of the sequence. If an element is

duplicated, it is added twice.
84 ∗ @param relationName The name of the relation
85 ∗ @param referenced The collection of objects to be referenced
86 ∗ @return Returns the number of references added to the sequence
87 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
88 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a sequence
89 ∗/
90 int addAll( String relationName, List<INavigable> referenced ) throws

InvalidRelationException, InvalidTypeException;
91

92 /∗∗
93 ∗ Adds a map of references to a relation implemented with a map. The

new references always replace existing references if they are
94 ∗ stored with the same key.
95 ∗ @param relationName The name of the relation
96 ∗ @param referenced The collection of objects to be referenced
97 ∗ @return Returns the number of references added to the map
98 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
99 ∗ @throws InvalidTypeException This exception is raised if the relation

is not implemented with a map
100 ∗/
101 int addAll( String relationName, Map<String, INavigable> referenced )

throws InvalidRelationException, InvalidTypeException;
102

103 /∗∗
104 ∗ Removes the element referenced in a relation. The relation has to be

simple. If there is no referenced element nothing happens.
105 ∗ @param relationName The name of the relation
106 ∗ @return Returns the reference that was removed
107 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
108 ∗ @throws InvalidCardinalityException This exception is raised if the

relation is not simple.
109 ∗/
110 INavigable removeElement( String relationName ) throws

InvalidRelationException, InvalidCardinalityException;
111

112 /∗∗
113 ∗ Removes an element referenced in a relation, given its position. The

relation has to be a sequence.
114 ∗ @param relationName The name of the relation
115 ∗ @param position The position of the reference in the sequence
116 ∗ @return Returns the reference that was removed
117 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
118 ∗ @throws InvalidTypeException This exception is raised if the relation

is not a sequence.
119 ∗ @throws InvalidKeyOrPositionException This exception is raised if the

position is inexistent in the sequence
120 ∗/
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121 INavigable removeElement( String relationName, int position ) throws
InvalidRelationException, InvalidTypeException,
InvalidKeyOrPositionException;

122

123 /∗∗
124 ∗ Removes an element referenced in a relation, given its key. The

relation has to be a map.
125 ∗ @param relationName The name of the relation
126 ∗ @param key The position of the reference in the map
127 ∗ @return Returns the reference that was removed
128 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
129 ∗ @throws InvalidTypeException This exception is raised if the relation

is not a map.
130 ∗ @throws InvalidKeyOrPositionException This exception is raised if the

key is not found the map
131 ∗/
132 INavigable removeElement( String relationName, String key ) throws

InvalidRelationException, InvalidTypeException,
InvalidKeyOrPositionException;

133

134 /∗∗
135 ∗ Removes an element referenced in a relation, given the object to

remove.
136 ∗ @param relationName The name of the relation
137 ∗ @param referencedElement The element to remove from the relation
138 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
139 ∗ @throws InvalidCardinalityException This exception is raised if the

relation is not multiple.
140 ∗ @throws InvalidKeyOrPositionException This exception is raised if the

element is not part of the relation
141 ∗/
142 void removeElement( String relationName, Object referencedElement )

throws InvalidRelationException, InvalidCardinalityException,
InvalidKeyOrPositionException;

143

144 /∗∗
145 ∗ Removes all the references associated to a relation. This can be

applied either to multiple or to single relations.
146 ∗ @param relationName The name of the relation
147 ∗ @return Returns the number of references removed
148 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
149 ∗/
150 int removeAll( String relationName ) throws InvalidRelationException;
151

152 /∗∗
153 ∗ This method retrieves the information about the relation
154 ∗ @param relationName The name of the relation
155 ∗ @return The information about the relation
156 ∗ @throws InvalidRelationException This exception is raised if the name

of the relation does not exist
157 ∗/
158 RelationInfo getRelationInfo( String relationName ) throws

InvalidRelationException;
159

160 /∗∗
161 ∗ This method adds a new relation to a navigable element
162 ∗ @param newRelation The information about the new relation
163 ∗ @throws InvalidRelationException This exception is raised if there is

an existing relation with the same name
164 ∗ @throws InvalidRelationInformationException This exception is raised

if the information provided is not valid
165 ∗/
166 void addRelation( RelationInfo newRelation ) throws

InvalidRelationException, InvalidRelationInformationException;
167

168 /∗∗
169 ∗ This method removes a relation. If there were references associated

to this relation, those are lost.
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170 ∗ @param relationName The name of the relation
171 ∗ @throws InvalidRelationException This exception is raised if there

isn’t a relation with the name provided
172 ∗/
173 void removeRelation( String relationName ) throws

InvalidRelationException;
174

175 /∗∗
176 ∗ Queries the number of references currently contained in a relation.
177 ∗ @param relationName The name of the relation.
178 ∗ @return Returns the number of elements: for simple relations, the

number can be 0 or 1; for multiple relations it depends on the
name

179 ∗ of ’used’ positions (or keys). If there are keys with non−
binded references those should not be counted.

180 ∗ @throws InvalidRelationException This exception is raised if there
isn’t a relation with the name provided

181 ∗/
182 int getCurrentRelationCardinality( String relationName ) throws

InvalidRelationException;
183

184 /∗∗
185 ∗ Returns a collection with the names of all the relations in the

element.
186 ∗ @return A collection with relation names. This collection can be

empty. Relations should be included, even if they don’t have
187 ∗ associated references.
188 ∗/
189 Collection<String> getRelationNames( );
190 }
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A.2 IModelElement

Listing A.2: IModelElement

1 public interface IModelElement extends INavigable
2 {
3 /∗∗
4 ∗ Returns the name of the element
5 ∗
6 ∗ @return elementName
7 ∗/
8 String getElementName( );
9

10 /∗∗
11 ∗ Returns the type of the element
12 ∗
13 ∗ @return typeName
14 ∗/
15 String getTypeName( );
16

17 /∗∗
18 ∗ Returns the memory of the element
19 ∗
20 ∗ @return memory
21 ∗/
22 Memory getMemory( );
23

24 /∗∗
25 ∗ Returns the instance where the element is used. This method has been

restricted to return instances of KernelModelInstance
26 ∗
27 ∗ @return modelInstance
28 ∗/
29 IModelInstance getModelInstance( );
30

31 /∗∗
32 ∗ Changes the model instance referenced in the element
33 ∗
34 ∗ @param modelInstance the new model instance
35 ∗/
36 void setModelInstance( IModelInstance modelInstance );
37

38 /∗∗
39 ∗ Returns the information about the type of the element. The

information is taken from the metamodel.
40 ∗ @return typeInformation
41 ∗/
42 ITypeInformation getTypeInformation( );
43 }

A.3 IOOKernelElement

Listing A.3: IOOKernelElement

1 /∗∗
2 ∗ This is the interface that defines all the methods offered by a Kernel

Element, that is, an element that is used in a model.
3 ∗/
4 public interface IOOKernelElement extends IModelElement
5 {
6

7 /∗∗
8 ∗ Returns the instance where the element is used. This method has been

restricted to return instances of KernelModelInstance
9 ∗

10 ∗ @return modelInstance
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11 ∗/
12 OOModelInstance getModelInstance( );
13

14 /∗∗
15 ∗ Returns the information about the type of the element. The

information is taken from the metamodel.
16 ∗ @return typeInformation
17 ∗/
18 OOTypeInformation getTypeInformation( );
19

20 /∗∗
21 ∗ Returns the events manager that handles the event generators of this

element
22 ∗
23 ∗ @return eventsManager
24 ∗/
25 EventsManager getEventsManager( );
26

27 /∗∗
28 ∗ This method registers in the EventsManager of the element, all the

events that are generated by this entity.
29 ∗ @param generatedEvents This is a list of the events declared as

generated by the entity
30 ∗/
31 void registerGeneratedEvents( List<Integer> generatedEvents );
32

33 /∗∗
34 ∗ This method returns the queue where events directed to this element

can be delivered. If the element doesn’t expects messages, this
method returns null.

35 ∗
36 ∗ @return returns the event queue of the element or null if the element

should not receive events
37 ∗/
38 IEventListener getEventQueue( );
39

40 /∗∗
41 ∗ If it is necessary, this method starts processing the events received

by the element.
42 ∗/
43 void startProcessingEvents( );
44

45 /∗∗
46 ∗ This method should subscribe this element to the events it requires

to control its execution. For achieving this, this method should
use the method

47 ∗ registerForEvent(EventInformation information), which implements all
the steps necessary to create the subscription.

48 ∗/
49 void subscribeToEvents( );
50

51 /∗∗
52 ∗ Registers this object’s eventQueue as a listener for the given event
53 ∗
54 ∗ @param information Information about the event that the event queue

expects.
55 ∗/
56 void registerForEvent( EventInformation information );
57

58 /∗∗
59 ∗ This method should subscribe this element to the events it requires

to control its execution and can be generated by the new element.
For achieving this, this method

60 ∗ should use the method registerForEventOfNewElement(EventInformation
information, KernelElement newGenerator), which implements all the
steps necessary to create the

61 ∗ subscription.
62 ∗/
63 void subscribeToEventsOfNewElement( IOOKernelElement newGenerator );
64

65 /∗∗
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66 ∗ If necessary, this method registers this object as a listener of an
event generated by the new element. If the new element does not
fulfills the role described in the

67 ∗ event, this method has no effect.
68 ∗
69 ∗ @param information Information about the event that the event queue

expects.
70 ∗ @param newGenerator The new element that will generate the event.
71 ∗/
72 void registerForEventOfNewElement( EventInformation information,

IOOKernelElement newGenerator );
73

74 /∗∗
75 ∗ This method disconnects the element from all the elements that

generate events that its event queue expects.
76 ∗
77 ∗ @param generators A list of elements that generate events that this

element’s event queue expects.
78 ∗/
79 void disconnectFromAllGenerators( List<IOOKernelElement> generators );
80

81 /∗∗
82 ∗ This method disconnects the element from all its listeners. This is

achieved by disconnecting each of the event generators that are
managed by the EventsManager.

83 ∗/
84 void disconnectFromAllListeners( );
85

86 /∗∗
87 ∗ Initializes the element after it has been created and the entire

model has been connected
88 ∗/
89 void initialize( );
90 }

A.4 IOpenObject

Listing A.4: IOpenObject

1 /∗∗
2 ∗ This is the interface of an object. The main difference between an open

object and a plain kernel element is the existence of a state
3 ∗ machine.
4 ∗/
5 public interface IOpenObject extends IOOKernelElement
6 {
7

8 /∗∗
9 ∗ Returns the state machine

10 ∗
11 ∗ @return stateMachine
12 ∗/
13 IStateMachine getStateMachine( );
14

15 /∗∗
16 ∗ Sets the state machine of the open object
17 ∗
18 ∗ @param stateMachine State machine that has to be associated to the

open object
19 ∗/
20 void setStateMachine( IStateMachine stateMachine );
21

22 }
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Metamodel and Model Specification Schemas

B.1 Metamodel definition schema

Listing B.1: Metamodel definition schema

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="

qualified">
3 <xs:element name="metamodel">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element minOccurs="0" maxOccurs="unbounded" name="state−machine−

reference"
7 type="sm−reference_type"/>
8 <xs:element minOccurs="0" maxOccurs="unbounded" name="type" type="

type_type"/>
9 <xs:element minOccurs="0" maxOccurs="unbounded" name="extended−type"

10 type="extended−type_type"/>
11 <xs:element minOccurs="1" maxOccurs="1" name="runtime" type="

runtime_type"/>
12 </xs:sequence>
13 <xs:attribute name="name" use="required" type="xs:NCName"/>
14 <xs:attribute name="version" use="required" type="xs:decimal"/>
15 </xs:complexType>
16 </xs:element>
17 <xs:complexType name="relation_type">
18 <xs:attribute name="cardinality" use="required" type="xs:NCName"/>
19 <xs:attribute name="name" use="required" type="xs:NCName"/>
20 <xs:attribute name="relationType" use="required" type="xs:NCName"/>
21 <xs:attribute name="targetTypeName" use="required" type="xs:NCName"/>
22 </xs:complexType>
23 <xs:complexType name="role_type">
24 <xs:sequence>
25 <xs:element maxOccurs="unbounded" name="role−detail" type="role−

detail_type"/>
26 </xs:sequence>
27 <xs:attribute name="name" use="required" type="xs:NCName"/>
28 </xs:complexType>
29 <xs:complexType name="type_type">
30 <xs:sequence>
31 <xs:element minOccurs="0" maxOccurs="unbounded" name="relation" type="

relation_type"/>
32 <xs:element minOccurs="0" maxOccurs="unbounded" name="event" type="

event_type"/>

251
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Figure B.1 Graphical representation of the metamodel definition schema
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33 <xs:element minOccurs="0" maxOccurs="unbounded" name="role" type="
role_type"/>

34 </xs:sequence>
35 <xs:attribute name="abstract" type="xs:boolean"/>
36 <xs:attribute name="entityClass" use="required"/>
37 <xs:attribute name="interface"/>
38 <xs:attribute name="name" use="required" type="xs:NCName"/>
39 <xs:attribute name="statemachine" use="required" type="xs:NCName"/>
40 </xs:complexType>
41 <xs:complexType name="event_type">
42 <xs:attribute name="name" use="required" type="xs:NCName"/>
43 </xs:complexType>
44 <xs:complexType name="trigger−event_type">
45 <xs:attribute name="event−name" use="required" type="xs:NCName"/>
46 <xs:attribute name="source−name" use="required" type="xs:NCName"/>
47 </xs:complexType>
48 <xs:complexType name="runtime_type">
49 <xs:attribute name="class" use="required"/>
50 </xs:complexType>
51 <xs:complexType name="sm−reference_type">
52 <xs:attribute name="file" use="required" type="xs:NCName"/>
53 <xs:attribute name="name" use="required" type="xs:NCName"/>
54 </xs:complexType>
55 <xs:complexType name="new−entity_type">
56 <xs:sequence>
57 <xs:element minOccurs="0" maxOccurs="unbounded" name="new−event" type=

"event_type"/>
58 </xs:sequence>
59 <xs:attribute name="entityClass" use="required"/>
60 <xs:attribute name="interface" use="required"/>
61 </xs:complexType>
62 <xs:complexType name="sm−extensions_type">
63 <xs:sequence>
64 <xs:element minOccurs="0" maxOccurs="unbounded" name="add−actions"

type="add−actions_type"/>
65 <xs:element minOccurs="0" maxOccurs="unbounded" name="add−transition"
66 type="add−transition_type"/>
67 <xs:element minOccurs="0" maxOccurs="unbounded" name="add−intermediate

−state"
68 type="add−intermediate−state_type"/>
69 <xs:element minOccurs="0" maxOccurs="unbounded" name="add−state" type=

"add−state_type"/>
70 </xs:sequence>
71 </xs:complexType>
72 <xs:complexType name="add−actions_type">
73 <xs:sequence>
74 <xs:element maxOccurs="unbounded" name="action" type="action_type"/>
75 </xs:sequence>
76 <xs:attribute name="transitionName" use="required" type="xs:NCName"/>
77 </xs:complexType>
78 <xs:complexType name="add−transition_type">
79 <xs:sequence>
80 <xs:element name="source−event" type="trigger−event_type"/>
81 <xs:element name="before−event" type="event_type"/>
82 <xs:element name="after−event" type="event_type"/>
83 <xs:element minOccurs="0" maxOccurs="1" name="actions" type="

actions_type"/>
84 </xs:sequence>
85 <xs:attribute name="name" use="required" type="xs:NCName"/>
86 <xs:attribute name="source−state" use="required" type="xs:NCName"/>
87 <xs:attribute name="successor" use="required" type="xs:NCName"/>
88 </xs:complexType>
89 <xs:complexType name="add−intermediate−state_type">
90 <xs:sequence>
91 <xs:element name="additional−state" type="additional−state_type"/>
92 </xs:sequence>
93 <xs:attribute name="location" use="required" type="xs:NCName"/>
94 <xs:attribute name="transitionName" use="required" type="xs:NCName"/>
95 </xs:complexType>
96 <xs:complexType mixed="true" name="role−detail_type">
97 <xs:attribute name="type" use="required" type="xs:NCName"/>
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98 </xs:complexType>
99 <xs:complexType name="basicTransition_type">

100 <xs:sequence>
101 <xs:element name="source−event" type="trigger−event_type"/>
102 <xs:element name="before−event" type="event_type"/>
103 <xs:element name="after−event" type="event_type"/>
104 <xs:element minOccurs="0" name="actions" type="actions_type"/>
105 </xs:sequence>
106 <xs:attribute name="name" use="required" type="xs:NCName"/>
107 </xs:complexType>
108 <xs:complexType name="fullTransition_type">
109 <xs:complexContent>
110 <xs:extension base="basicTransition_type">
111 <xs:attribute name="source−state" type="xs:NCName"/>
112 <xs:attribute name="successor" type="xs:NCName"/>
113 </xs:extension>
114 </xs:complexContent>
115 </xs:complexType>
116 <xs:complexType name="incomingTransition_type">
117 <xs:complexContent>
118 <xs:extension base="basicTransition_type">
119 <xs:attribute name="source−state" type="xs:NCName"/>
120 </xs:extension>
121 </xs:complexContent>
122 </xs:complexType>
123 <xs:complexType name="outgoingTransition_type">
124 <xs:complexContent>
125 <xs:extension base="basicTransition_type">
126 <xs:attribute name="successor" type="xs:NCName"/>
127 </xs:extension>
128 </xs:complexContent>
129 </xs:complexType>
130 <xs:complexType name="incoming−transitions_type">
131 <xs:sequence>
132 <xs:element maxOccurs="unbounded" name="transition" type="

incomingTransition_type"/>
133 </xs:sequence>
134 </xs:complexType>
135 <xs:complexType name="outgoing−transitions_type">
136 <xs:sequence>
137 <xs:element maxOccurs="unbounded" name="transition" type="

outgoingTransition_type"/>
138 </xs:sequence>
139 </xs:complexType>
140 <xs:complexType name="action_type">
141 <xs:attribute name="class" use="required"/>
142 <xs:attribute name="name" use="required" type="xs:NCName"/>
143 </xs:complexType>
144 <xs:complexType name="actions_type">
145 <xs:sequence>
146 <xs:element minOccurs="0" maxOccurs="unbounded" name="action" type="

action_type"/>
147 </xs:sequence>
148 </xs:complexType>
149 <xs:complexType name="add−state_type">
150 <xs:sequence>
151 <xs:element name="incoming−transitions" type="incoming−

transitions_type"/>
152 <xs:element name="outgoing−transitions" type="outgoing−

transitions_type"/>
153 </xs:sequence>
154 <xs:attribute name="enter−event" use="required" type="xs:NCName"/>
155 <xs:attribute name="exit−event" use="required" type="xs:NCName"/>
156 <xs:attribute name="initial−state" use="required" type="xs:boolean"/>
157 <xs:attribute name="name" use="required" type="xs:NCName"/>
158 </xs:complexType>
159 <xs:complexType name="additional−state_type">
160 <xs:sequence>
161 <xs:element name="additional−transition" type="basicTransition_type"/>
162 </xs:sequence>
163 <xs:attribute name="enter−event" use="required" type="xs:NCName"/>
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164 <xs:attribute name="exit−event" use="required" type="xs:NCName"/>
165 <xs:attribute name="name" use="required" type="xs:NCName"/>
166 </xs:complexType>
167 <xs:complexType name="extended−type_type">
168 <xs:sequence>
169 <xs:element minOccurs="0" maxOccurs="unbounded" name="new−relation"

type="relation_type"/>
170 <xs:element minOccurs="0" maxOccurs="unbounded" name="new−role" type="

role_type"/>
171 <xs:element minOccurs="0" maxOccurs="unbounded" name="new−entity" type

="new−entity_type"/>
172 <xs:element minOccurs="0" maxOccurs="1" name="new−state−machine" type=

"sm−reference_type"/>
173 <xs:element minOccurs="0" maxOccurs="1" name="state−machine−extensions

"
174 type="sm−extensions_type"/>
175 </xs:sequence>
176 <xs:attribute name="extends" use="required" type="xs:NCName"/>
177 <xs:attribute name="name" use="required" type="xs:NCName"/>
178 </xs:complexType>
179 </xs:schema>
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B.2 State machine definition schema

Figure B.2 Graphical representation of the state machine definition schema

Listing B.2: State machine definition schema

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="

qualified">
3 <xs:element name="state−machine">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element maxOccurs="unbounded" name="state" type="

state_type"/>
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7 </xs:sequence>
8 <xs:attribute name="initial−state" use="required" type="

xs:NCName"/>
9 <xs:attribute name="name" use="required" type="xs:NCName"/>

10 </xs:complexType>
11 </xs:element>
12 <xs:complexType name="basicTransition_type">
13 <xs:sequence>
14 <xs:element name="source−event" type="trigger−event_type"/>
15 <xs:element name="before−event" type="event_type"/>
16 <xs:element name="after−event" type="event_type"/>
17 <xs:element minOccurs="0" name="actions" type="actions_type"/>
18 </xs:sequence>
19 <xs:attribute name="name" type="xs:NCName" use="required"/>
20 </xs:complexType>
21 <xs:complexType name="outgoingTransition_type">
22 <xs:complexContent>
23 <xs:extension base="basicTransition_type">
24 <xs:attribute name="successor" type="xs:NCName"/>
25 </xs:extension>
26 </xs:complexContent>
27 </xs:complexType>
28 <xs:complexType name="event_type">
29 <xs:attribute name="name" type="xs:NCName" use="required"/>
30 </xs:complexType>
31 <xs:complexType name="trigger−event_type">
32 <xs:attribute name="event−name" type="xs:NCName" use="required"/>
33 <xs:attribute name="source−name" type="xs:NCName" use="required"/>
34 </xs:complexType>
35 <xs:complexType name="action_type">
36 <xs:attribute name="class" use="required"/>
37 <xs:attribute name="name" type="xs:NCName" use="required"/>
38 </xs:complexType>
39 <xs:complexType name="actions_type">
40 <xs:sequence>
41 <xs:element maxOccurs="unbounded" minOccurs="0" name="action"

type="action_type"/>
42 </xs:sequence>
43 </xs:complexType>
44 <xs:complexType name="state_type">
45 <xs:sequence>
46 <xs:element minOccurs="0" maxOccurs="unbounded" name="transition

"
47 type="outgoingTransition_type"/>
48 </xs:sequence>
49 <xs:attribute name="enter−event" use="required"/>
50 <xs:attribute name="exit−event" use="required" type="xs:NCName"/>
51 <xs:attribute name="name" use="required" type="xs:NCName"/>
52 </xs:complexType>
53 </xs:schema>

B.3 Model definition schema

Listing B.3: Model definition schema

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="

qualified">
3 <xs:element name="definition">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name="metamodel−extensions" type="metamodel−

extensions_type"/>
7 <xs:element name="runtime" type="runtime_instance_type"/>
8 <xs:element name="model−structure" type="model−structure_type"/>
9 </xs:sequence>
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Figure B.3 Graphical representation of the model definition schema

10 <xs:attribute name="metamodel" use="required" type="xs:NCName"/>
11 <xs:attribute name="modelName" use="required"/>
12 <xs:attribute name="version" use="required" type="xs:decimal"/>
13 </xs:complexType>
14 </xs:element>
15 <xs:complexType name="runtime_type">
16 <xs:attribute name="class" use="required"/>
17 </xs:complexType>
18 <xs:complexType name="memory_type">
19 <xs:sequence>
20 <xs:element maxOccurs="unbounded" name="data" type="data_type"/>
21 </xs:sequence>
22 </xs:complexType>
23 <xs:complexType mixed="true" name="data_type">
24 <xs:attribute name="name" use="required"/>
25 <xs:attribute name="type" use="required" type="xs:NCName"/>
26 </xs:complexType>
27 <xs:complexType name="runtime_instance_type">
28 <xs:complexContent>
29 <xs:extension base="runtime_type">
30 <xs:sequence>
31 <xs:element name="memory" type="memory_type"/>
32 </xs:sequence>
33 </xs:extension>
34 </xs:complexContent>
35 </xs:complexType>
36 <xs:complexType name="model−structure_type">
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37 <xs:sequence>
38 <xs:element name="elements" type="elements_type"/>
39 <xs:element name="connections" type="connections_type"/>
40 </xs:sequence>
41 <xs:attribute name="root" use="required" type="xs:NCName"/>
42 </xs:complexType>
43 <xs:complexType name="elements_type">
44 <xs:sequence>
45 <xs:element maxOccurs="unbounded" name="element" type="element_type"/>
46 </xs:sequence>
47 </xs:complexType>
48 <xs:complexType name="element_type">
49 <xs:sequence>
50 <xs:element minOccurs="0" name="memory" type="memory_type"/>
51 </xs:sequence>
52 <xs:attribute name="name" use="required" type="xs:NCName"/>
53 <xs:attribute name="typeName" use="required" type="xs:NCName"/>
54 </xs:complexType>
55 <xs:complexType name="connections_type">
56 <xs:sequence>
57 <xs:element maxOccurs="unbounded" name="connection" type="

connection_type"/>
58 </xs:sequence>
59 </xs:complexType>
60 <xs:complexType name="connection_type">
61 <xs:attribute name="relationName" use="required" type="xs:NCName"/>
62 <xs:attribute name="sourceElement" use="required" type="xs:NCName"/>
63 <xs:attribute name="targetElement" use="required" type="xs:NCName"/>
64 </xs:complexType>
65 <xs:complexType name="metamodel−extensions_type">
66 <xs:sequence>
67 <xs:element maxOccurs="unbounded" name="extended−type" type="extended−

type_type"/>
68 </xs:sequence>
69 </xs:complexType>
70 <xs:complexType name="extended−type_type">
71

72 .... OMITTED ....
73

74 </xs:schema>
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C
Navigation Language

The following specification describes the concrete syntax of the Navigation Lan-
guage of Cumbia. The notation used to describe this syntax is that of JavaCC
- Java Compiler Compiler [Ora10b], a parser generator based on Java. In the
implementation of Cumbia we use JavaCC to describe the structure of the Nav-
igation Language and generate a parser that builds the corresponding syntax
trees. A visitor on those trees is used to interpret navigation expressions.
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Table C.1 Tokens

<DEFAULT> SKIP : {
" "
| "\r"
| "\t"
| "\n"
}

<DEFAULT> TOKEN : {
<LT: "<" >
| <GT: ">" >
| <LE: "<=" >
| <GE: ">=" >
| <EQ: "==" >
| <IS_OF_TYPE: "isOfType" >
| <IS_ASSIGNABLE_TO_TYPE: "isAssignableToType" >
}

<DEFAULT> TOKEN : {
<ROOT: "#root" >
| <SELF: "#self" >
| <THIS: "#this" >
| <LAST: "#last" >
| <NIL: "nil" >
| <TRUE: "true" >
| <FALSE: "false" >
| <IS_TRUE: "isTrue?" >
| <IS_FALSE: "isFalse?" >
| <IS_NIL: "isNil?" >
| <IS_NOT_NIL: "isNotNil?" >
}

<DEFAULT> TOKEN : {
<IDENTIFIER: "\"" <LETTER> (<LETTER> | <DIGIT> )* "\"" >
| <RELATION: <LETTER> (<LETTER> | <DIGIT> | "_")* >
| <METHOD: <LETTER> (<LETTER> | <DIGIT> | "_")* "(" ")" >
| <NUMBER: (<DIGIT>)+>
| <#LETTER: ["$","A"-"Z","_","a"-"z","...omitted..."]>
| <#DIGIT: ["0"-"9","...omitted..."]> }
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Table C.2 NON-Terminals

element_path ::= local_root ( "." decomposition )* <EOF>
temporal_path ::= temporal_root ( "." decomposition )*
element_value ::= temporal_path ( "::" method_call )?
local_root ::= ( <ROOT> | <SELF> )
temporal_root ::= ( <ROOT> | <THIS> | <SELF> )
method_call ::= <METHOD>
decomposition ::= ( relation | selector )
relation ::= <RELATION> ( "[" relation_filter "]" )?
relation_filter ::= range | keys
range ::= ( <LAST> | <NUMBER> )

( "-" ( <LAST> | <NUMBER> ) )?
keys ::= <IDENTIFIER> ( "," <IDENTIFIER> )*
selector ::= simple_selector

| cond_selector
| recursive_selector

cond_selector ::= "{" conditional_expr "}"
recursive_selector ::= "<" conditional_expr "->" temporal_path ">"
simple_selector ::= "{?" boolean_expr "}"
conditional_expr ::= "(" boolean_expr ")" "?"

"(" temporal_path2 ")" ":"
"(" temporal_path2 ")"

temporal_path2 ::= ( <NIL> | temporal_path )
boolean_expr ::= or_expr
or_expr ::= and_expr ( "||" and_expr )*
and_expr ::= truth_expr ( "&&" truth_expr )*
truth_expr ::= ( "!" )? boolean_value
boolean_value ::= ( boolean_operation | ( "(" boolean_expr ")" ) )
boolean_operation ::= ( unary_operation | binary_operation )
unary_operation ::= ( op_boolean | op_relation )
op_boolean ::= ( <IS_TRUE> | <IS_FALSE> ) value_boolean
value_boolean ::= ( element_value | <TRUE> | <FALSE> )
op_relation ::= ( <IS_NIL> | <IS_NOT_NIL> ) temporal_path
binary_operation ::= value_anytype

( <EQ> | <LT> | <GT>
| <LE> | <GE> | <IS_OF_TYPE>
| <IS_ASSIGNABLE_TO_TYPE> )
value_anytype

value_anytype ::= ( element_value
| <IDENTIFIER>
| <NUMBER> )
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D
Cumbia Composition Language - CCL

The following specification describes the concrete syntax of CCL. The notation
used to describe this syntax is that of Xtext [The10b], an Eclipse-based framework
for the development of language infrastructures. In particular, we used Xtext to
develop an editor for CCL.

Listing D.1: CCL Xtext specification

1 grammar uniandes.cumbia.ccl.CCL with org.eclipse.xtext.common.Terminals
2

3 generate CCL "http://www.cumbia.uniandes/ccl/CCL"
4

5 CCLAssembly:
6 ’assembly’ ’{’
7 loadBlock=LoadBlock
8 (globals+=Global)∗
9 (events+=OnBlock)+

10 ’}’;
11

12 LoadBlock:
13 ’load’ ’(’
14 models+=ModelAliasDefinition (’,’ models+=ModelAliasDefinition)∗
15 ’)’ ’;’;
16

17 Global:
18 ’global’ ’(’ variable=UntypedVariable ’)’ ’;’;
19

20 OnBlock:
21 ’on’ ’:’ name=ID (’(’ parameters+=TypedVariable (’,’ parameters+=

TypedVariable)∗ ’)’)?
22 statementBlock=StatementBlock;
23

24 StatementBlock:
25 {StatementBlock}
26 ’{’
27 (statements+=CCLStatement)∗
28 ’}’;
29

30 CCLStatement:
31 FlowControl | ConpoundStatement;
32

33 ConpoundStatement:
34 LineStatement ’;’;
35

36 LineStatement:
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37 VoidStatement | NonVoidStatement;
38

39 FlowControl:
40 ForEach;
41

42 VoidStatement:
43 VariableAssignment | ActionLink | FixReference | ResolveInInstance |

EventLink;
44

45 NonVoidStatement:
46 ModelElementOrUnknownStatement | ElementPath | SimpleTypeValue;
47

48 ModelElementOrUnknownStatement:
49 NewInstance | VariableUsage | Find;
50

51 ForEach:
52 name=’Foreach’ ’(’ iteratorAssignment=IteratorAssingment ’)’
53 statementBlock=StatementBlock;
54

55 VariableAssignment:
56 variable=UntypedVariable ’=’ variableValue=NonVoidStatement;
57

58 IteratorAssingment:
59 variable=UntypedVariable ’in’ iterationPath=ElementPath;
60

61 ActionLink:
62 ’createActionLink’ ’(’ name=STRING ’)’ ’{’
63 (abLinks+=ABLink)∗
64 (classNameActionLinks+=ClassNameActionLink)∗
65 ’}’;
66

67 ABLink:
68 sourcePath=ElementPath ’|’ transitionName=ID ’−>’ targetPath=ElementPath ’

::’ targetMethod=ID ’(’ (parameterValues+=SimpleTypeValue (’,’
parameterValues+=SimpleTypeValue)∗)? ’)’ ’;’;

69

70 ClassNameActionLink:
71 sourcePath=ElementPath ’|’ transitionName=ID ’−>’ ’createAction’ ’(’

actionClassName=STRING (’,’ argument=ElementPath)? ’)’ ’;’;
72

73 EventLink:
74 ’createEventLink’ ’(’ name=STRING ’)’ ’{’
75 sourcePath=ElementPath ’:’ sourceEvent=ID ’−>’ targetPath=ElementPath ’|

’ transitionName=ID ’;’
76 ’}’;
77

78 FixReference:
79 name=’FixReference’ ’(’ sourceElement=ElementPath ’,’ targetElement=

ElementPath ’)’;
80

81 ResolveInInstance:
82 name=’ResolveInInstance’ ’(’ elementPath=ElementPath ’,’ model=

VariableUsage ’)’;
83

84 SimpleTypeValue:
85 StringValue | IntegerValue | BooleanValue | RealValue;
86

87 StringValue:
88 value=STRING;
89

90 IntegerValue:
91 value=INT;
92

93 BooleanValue:
94 value=BOOLEAN;
95

96 RealValue:
97 value=REAL;
98

99 NewInstance:
100 ’new’ model=[ModelAliasDefinition] (’{’ memoryData=MemoryData ’}’)?;
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101

102 MemoryData:
103 {MemoryData}
104 (data+=MemoryParam)∗;
105

106 MemoryParam:
107 param=ID ’=’ value=STRING ’;’;
108

109 VariableUsage:
110 variableReference=[VariableDeclaration];
111

112 Find:
113 ’findByName’ ’(’ model=VariableUsage ’,’ elementName=STRING ’)’;
114

115 ElementPath:
116 elementRoot=ModelElementOrUnknownStatement (’[’ expression=STRING ’]’)?;
117

118 VariableDeclaration:
119 TypedVariable | UntypedVariable;
120

121 TypedVariable:
122 ModelVariable | ElementVariable | GenericVariable | ModelAliasVariable;
123

124 UntypedVariable:
125 name=ID;
126

127 ModelVariable:
128 type=[ModelAliasDefinition] name=ID;
129

130 ModelAliasVariable:
131 alias=ID name=ID;
132

133 ElementVariable:
134 type=TypeElement name=ID;
135

136 GenericVariable:
137 type=TypeSimple name=ID;
138

139 ModelAliasDefinition:
140 domainName=ID ’:’ modelName=ID name=ID;
141

142 TypeElement:
143 domainName=ID ’::’ elementName=ID;
144

145 TypeSimple:
146 domainName=TypeSimpleEnum;
147

148 enum TypeSimpleEnum:
149 string=’String’ | integer=’Integer’ | real=’Real’ | boolean=’Boolean’;
150

151 BOOLEAN:
152 ’True’ | ’False’;
153

154 REAL:
155 INT ’.’ INT;
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