
Jury:
Prof. Dr. María Cecilia Bastarrica
Prof. Dr. Alfonso Pierantonio
Prof. Dr. Jorge Villalobos
Prof. Dr. Dario Correal
Prof. Dr. Wolfgang De Meuter
Prof. Dr. Beat Signer

Promotors:
Prof. Dr. Rubby Casallas
Prof. Dr. Viviane Jonckers
Dr. Dirk Deridder

A non-invasive approach
for evolving

Model Transformation Chains

Andrés Yie
February 2011

A dissertation submitted in partial fulfillment
of the requirements for the degrees

of Doctor of Science at Vrije Universiteit Brussel
and Doctor of Engineering at Universidad de los Andes

VRIJE UNIVERSITEIT BRUSSEL
FACULTY OF SCIENCE

Department of
Computer Science

Software Languages Lab

UNIVERSIDAD DE LOS ANDES
FACULTY OF ENGINEERING

Department of
Systems and Computer Engineering

Software Construction Group

Dedication

Al chinito y su burbujita, y por supuesto a mi Adri.
(To my parents, and of course, to my wife.)

Abstract

Model-Driven Engineering (MDE) approaches promote the use of models ex-
pressed in terms of problem domain concepts (e.g. Entities, Services, etc) as
prime artifacts to develop software. These models, to which we refer as high-
level models, can be used as input for a Model Transformation Chain (MTC).
This chain is a sequence of transformation steps that converts the high-level
model, which is rooted in the problem domain, into a low-level model that is
rooted in the solution domain (e.g., Java, C#). In addition to the translation
from problem domain concepts to solution domain concepts (e.g., Java Class,
Java Annotation), the transformation chain adds implementation details in ev-
ery transformation step. In the last step of the chain, there is a model-to-text
transformation that produces the code of the software system.

Evolution is an inherent characteristic of software systems. For instance,
a software system must evolve if it is required to include new functionality,
new non-functional properties, or the migration of the technology platform.
Similar to this, MTCs are also susceptible to evolution. The evolution of an
MTC confronts us with several problems mainly related to the strong depen-
dencies between metamodels and models, metamodels and transformations,
and between each transformation step and the following.

The particular problem we address is the addition of a new concern (e.g.,
security, monitoring) that was not anticipated in an existing MDE implementa-
tion. No real problem arises if the new concern can be cleanly expressed using
the existing high-level metamodel. However, if this is not the case, the addi-
tion of the new concern will lead to a number of maintenance problems, such
as metamodels that are polluted with alien concepts, models which no longer
conform to the metamodels, transformations that are no longer compatible
with the new metamodels, or broken dependencies between transformations.
All of these problems are a detriment to the evolution of an existing MTC and
a single change can cause a ripple effect through every transformation step.

We present a strategy that consists of modularizing the new concern in a

iii

iv Abstract

new concern-specific MTC. First, we specify the new concern in a separate
high-level model. This leaves the original model unaltered and unaware of
the added concern. The concern-specific model can thus be specified using
concepts close to its domain which are expressed in a separate metamodel.
Therefore, we have two high-level models that conform to two different meta-
models. We align the high-level models using a Correspondence Model (CM)
[BBDF+06], which explicitly describes correspondence relationships among the
elements of different models. Next, both models are transformed by the MTCs
(i.e., the existing MTC and the new concern-specific MTC) that produce two
complementary low-level models that conform to the same metamodel. We use
the CM between the high-level models to derive a new CM between the lowest
level models. We use these correspondence relationships to identify the ele-
ments to compose. Finally, we perform a composition between homogeneous
concepts that conform to the same metamodel. Furthermore, when the low-
est level models conform to different metamodels (i.e., different technological
platforms) it is possible to use the correspondence relationships to check consis-
tency between the models or to generate code-level composition specifications
(e.g., the XML descriptors between a Java application and a database).

We have developed a mechanism to automatically derive the CM through
the various steps in the MTCs. This mechanism allows us to reuse the pre-
sented approach to add additional concern-specific MTCs to an existing MTC
reducing the impact to the existing MTC artifacts and modularizing the changes.

In this dissertation we present an approach that reduces the complexity
of evolving a model transformation chain. Our approach offers several advan-
tages: 1) it reuses the existing assets (metamodels, models and transforma-
tions), 2) it modularizes the changes in a new set of metamodels, models and
transformations, 3) it facilitates the modeling of different concerns in separated
models and close to the problem domain, 4) it offers an automatic derivation
mechanism to identify the elements to compose in the low-level models based
on relationships defined in the high-level, and 5) it eases the use of a reusable
mechanism to integrate the changes.

Samenvatting

Model-Driven Engineering (MDE) methodes stimuleren het gebruik van mod-
ellen uitgedrukt in concepten behorende tot het probleemdomein (zoals En-
tities, Services, etc) als primaire artefacten om software te gaan ontwikkelen.
Deze modellen, waarnaar gerefereerd wordt als hoog niveau modellen, kunnen
gebruikt worden als input voor een Model Transformation Chain (MTC). Een
MTC stelt een opeenvolging van tranformatiestappen voor die een hoog niveau
model, behorende tot het probleemdomein, omzet in een laag niveau model,
behorende tot het oplossingsdomein (e.g. Java, C#). Aanvullend aan de
omzetting van probleemdomein concepten naar oplossingsdomein concepten
(e.g. Java Class, Java Annotation) voegt de transformatie chain implemen-
tatiedetails toe aan elke transformatiestap. In de laatste stap van de chain
vindt er een model-to-text transformatie plaats die dan de code van het soft-
ware systeem produceert.

Evolutie is een inherent kenmerk van software systemen. Een software
systeem moet bijvoorbeeld evolueren als nieuwe functionaliteiten of nieuwe
niet-functionele eigenschappen moeten worden toegevoegd of als het technol-
ogisch platform gemigreerd moet worden. Gelijkaardig hieraan is dat MTCs
ook gevoelig zijn voor evolutie. De evolutie van een MTC brengt verschillende
problemen met zich mee hoofdzakelijk te wijten aan de sterke afhankelijkheden
tussen metamodellen en modellen, metamodellen en transformaties, en tussen
elke transformatiestap en de daaropvolgende.

Het specifieke probleem dat we hier willen aanpakken is de toevoeging van
een nieuw concern (zoals bv. security, monitoring) aan een bestaande imple-
mentatie die niet voorzien was in een reeds bestaande MDE implementatie.
Dit levert geen echte problemen op als de nieuwe concern netjes kan worden
uitgedrukt in het bestaande hoog niveau metamodel. Indien dit echter niet het
geval is zal het toevoegen van deze nieuwe concern leiden tot een aantal onder-
houdsproblemen, zoals metamodellen die vervuild zijn met vreemde concepten,
modellen die niet langer conform zijn met de metamodellen, transformaties die

v

vi Samenvatting

niet meer compatibel zijn met de nieuwe metamodellen, ofwel gebroken links
tussen verschillende transformaties. Al deze problemen doen afbraak aan de
evolutie van een bestaande MTC en één enkele verandering kan een cascade
effect teweegbrengen doorheen elke transformatiestap.

In deze thesis stellen we een strategie voor waarbij het nieuwe concern
gemodularizeerd wordt in een nieuwe concern-specifieke MTC. Ten eerste gaan
we het nieuwe concern specificeren in een afzonderlijk hoog niveau model zo-
danig dat het oorspronkelijke model onveranderd blijft en ook niets afweet
van het toegevoegde concern. Het concern-specifieke model kan bijgevolg
gedefinieerd worden in domein-specifieke concepten die worden uitgedrukt in
een afzonderlijk metamodel. Zo hebben we dus twee hoog niveau modellen
die conform zijn met twee verschillende metamodellen. De hoog niveau mod-
ellen worden met elkaar gelinkt aan de hand van een Correspondentie Model
(CM) [BBDF+06], dat expliciet de correspondentie relaties omschrijft tussen
de elementen van de verschillende modellen. Vervolgens worden beide modellen
getransformeerd door de MTC’s (i.e. de bestaande MTC en de nieuwe concern-
specifieke MTC) met als resultaat twee complementaire laag niveau modellen
die conform zijn met hetzelfde metamodel. We gebruiken het corresponden-
tiemodel tussen de hoog niveau modellen om een nieuw correspondentiemodel
af te leiden tussen de laag niveau modellen. We gebruiken de correspondentie
relaties om de samen te stellen elementen te identificeren. Tenslotte maken we
een samenstelling van de homogene concepten die conform zijn met hetzelfde
metamodel. Wanneer de laag niveau modellen conform zijn met verschillende
metamodellen (i.e. verschillende technologische platformen) is het mogelijk
om de correspondentie relaties te gebruiken om te checken of de modellen nog
steeds consistent zijn ten opzichte van elkaar, ofwel om compositie specificaties
op code niveau te gaan genereren (e.g. de XML descriptors tussen een Java
applicatie en een databank).

We hebben een mechanisme ontworpen om automatisch het CM te kun-
nen afleiden doorheen de verschillende stappen in de MTC. Dit mechanisme
laat ons toe om de hier voorgestelde aanpak te gaan hergebruiken om addi-
tionele concern-specifieke MTC’s te gaan toevoegen aan een bestaande MTC,
daarbij de impact reducerend voor de bestaande MTC artefacten alsook het
modularizeren van de aanpassingen.

In deze doctoraatsthesis stellen we een aanpak voor die de complexiteit
reduceert voor het evolueren van een Model Transformation Chain. Onze
aanpak biedt de volgende voordelen: 1) hergebruik van bestaande elementen
(modellen, metamodellen en transformaties) is mogelijk, 2) aanpassingen kun-
nen gemodulariseerd worden in een nieuwe set van metamodellen, modellen
en transformaties, 3) modellering van verschillende concerns in aparte mod-
ellen wordt vergemakkelijkt en laat toe om dicht bij het probleemdomein te
blijven, 4) een automatisch afleidingsmechanisme wordt aangeboden om de
elementen te identificeren om de low-level modellen te kunnen samenstellen

Samenvatting vii

gebaseerd op relaties gedefinieerd op een hoog abstractieniveau, en 5) gebruik
van een herbruikbaar mechanisme om de veranderingen te gaan integreren
wordt makkelijker gemaakt.

Acknowledgements

In this long and challenging journey, I received a large amount of support,
guidance and friendship. This is the place to show my gratitude to all the
people who walked with me and to make my Ph.D. possible.

First of all, I would like to thank my promoter Rubby Casallas not only for
offering me the opportunity to pursue this degree and accepting me as a PhD
student, but for teaching and guiding me for many years. I’d like to thank her
for her confidence, support and hard work throughout all these years. I hope
to reward her confidence by concluding my Ph.D. work with this dissertation.

The next person to whom I am especially grateful is my promoter Dirk
Deridder. He helped me to maintain the motivation in the difficult times and
the multiple discussions with him and his ever-accurate feedback improved my
work and kept my enthusiasm for doing research. I truly thank him for all the
effort that he spent on reading in detail my dissertation document.

Thank you to my promoter Viviane Jonckers for her support throughout
all these years. As head of the System and Software Engineering Lab where I
spent almost half of my research years, she succeeded in creating a challenging
environment for research.

I would like to thank the members of my jury committee, Jorge Villalobos,
Dario Correal, Beat Signer, Wolfgang De Meuter, María Cecilia Bastarrica,
and Alfonso Pierantonio for taking the time to read this dissertation in detail
and for providing me with valuable feedback.

Thank you to the ‘Vlaamse Interuniversitaire Raad (VLIR)’ as they funded
the CARAMELOS project and the Universidad de Los Andes for providing me
with the financial support to carry out my research.

A special thank you goes to Oscar Gonzalez and Mario Sanchez for being
my partners in the Ph.D. path. The three of us lived this process as a group,
supporting each other, learning from one another and growing together. It was
nice to ’walk’ with you guys. Additionally, I want to say thank you to Gigi
and Diana for understanding and supporting them.

ix

x Acknowledgements

I am grateful to the members of the QualDev research group for their
collaboration in my work. In particular, many thanks go to my colleagues and
friends, Hugo Arboleda, Rafael Meneses and Yeimi Peña with whom I have
shared good experiences and I have had interesting discussions.

I thank my colleagues at Software Languages Lab for the stimulating re-
search environment. I thank the friendship from my colleagues at the former
SSEL lab: Bruno De Fraine, Dennis Wagelaar, Niels Joncheere, Ragnhild Van
Der Straeten, and Eline Philips. I particularly want to thank Dennis for the
interesting discussions, guidance and help in the process of understanding the
dirty stuff inside the ATL-VM. Additionally, I want to say thank you to my
good friends Jorge Vallejos and Isabel Michiels with whom I have had deep and
motivating conversations about the Ph.D., life and so many things. I especially
want to thank Isabel for helping me with the Dutch version of the abstract

Being so far away from home was not always easy. I would like to thank all
my friends in Brussels, who helped me feel more at home and who accompanied
me during the years that I spent in Belgium. I want to say thank you to Carlos
Alvarez and Adriana Sotelo for taking care of me and becoming my family.
Rob Vanmeert for talking, playing, partying and being one of my best friends.
Carlos Noguera and Angela Lozano who shared with me so many Belgian days.
Sebastian Gonzalez, Nicolas Cardozo, Frank van der Kleij, Sonia Petitprez,
Nanny De Roover, Erik Hendrix, Lynsey Fox, Hernan Rios and Nadine Zillich
for being really good friends and sharing so many good things.

I want to say thank you to Giovanna Aguirre and Sarah Faur for distract-
ing me from the Ph.D. work, giving me some air to continue with my work.
I especially want to thank Sarah for reading, reviewing and correcting my
dissertation text. Additionally, I want to thank Changhee Hahn and Lina
Saldarriaga for their last-minute help with my text. Thank you to Juan Bo-
horquez as well for starting with me in the research path, he is a really good
friend and I hope to work with him again in the future.

I would like to thank to my wife’s family who has welcomed me as part of
their family and has helped me in the Ph.D. and so many other things. Many
thanks to Pacho, Teresita, Andres, Nata and Franco. Especially I want to say
thank you to Franco for helping me proofread my papers and dissertation.

I thank my family, who taught me to love knowledge. My dad who has
been always with me, my mom being my heart and soul, my brothers and
sisters which had been my strength, and helped me to take care of my family
when I was working on my Ph.D.

Finally, I want to thank my wife Adriana. She has been my friend, my
partner, and my lover during all these years. She quit her job and crossed the
ocean to be with me in Belgium. Then she quit her dream job again to come
back with me to Colombia. She has been taking care of me, of the house and
of my family, always with her strong and incredible smile and positivism that
can move mountains. From the bottom of my heart, thank you.

Table of Contents

Abstract iii

Samenvatting v

Acknowledgements ix

Table of Contents xiii

List of Figures xix

List of Tables xxiii

Abbreviations xxvi

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Problem 1 (P1):The detriment of maintainability and
understandability of MTC artifacts 6

1.1.2 Problem 2 (P2): Metamodel, Model and Transforma-
tions Co-evolution . 12

1.1.3 Problem 3 (P3): Ripple effect 14
1.2 Research Goals . 16

1.2.1 General Goal: Non-invasive evolution of an MTC 16
1.2.2 Specific Goals . 16

1.3 Approach . 18
1.4 Approach Scope . 20
1.5 Contributions . 21
1.6 Outline of the Dissertation . 22

xi

xii TABLE OF CONTENTS

2 MDE, Evolution in MDE, and Separation of Concerns in MDE 25
2.1 Introduction . 25
2.2 Context: Model Driven Engineering 26

2.2.1 Models . 27
2.2.2 Metamodels . 29
2.2.3 Domain Specific Modeling Languages 30
2.2.4 Model Transformations 32
2.2.5 Model Transformation Chains 34
2.2.6 Model Traceability . 35

2.3 Problem: Evolution in Model Driven Engineering 37
2.3.1 Metamodel Evolution . 38
2.3.2 Transformation Evolution 40
2.3.3 Ripple effect . 41

2.4 Solution: Separation of Concerns in MDE 41
2.4.1 Modeling Concerns . 42
2.4.2 Composing Concerns . 46

2.5 Summary . 50

3 Evolving a Model Transformation Chain 51
3.1 Introduction . 51
3.2 A running example: Business-to-Java MTC 51

3.2.1 High-Level Business Metamodel (MMbusiness) and Model
(Mbusiness): . 53

3.2.2 Architecture Metamodel (MMarchitecture) and Model (Marchitecture)
. 54

3.2.3 Business to Architecture Transformation (Tbus2arch) . . . 54
3.2.4 Java Enterprise Edition Metamodel (MMjee) and Model

(Mjee) . 56
3.2.5 Architecture to JEE Transformation (Tarch2jee) 56
3.2.6 Low-Level Java Metamodel (MMjava) and Model (Mjava)

: . 56
3.2.7 JEE to Java Transformation (Tjee2java) 57
3.2.8 Code Generation (Gjava): 59
3.2.9 Business-to-Java MTC 59

3.3 Adding a new Concern . 60
3.3.1 Key Criteria . 60

3.4 Evolution Strategies . 64
3.4.1 Extending the High-level Metamodel 64
3.4.2 Composing High-level Models 68
3.4.3 Composing Low-level Models 72
3.4.4 Mixed-level Composition 75
3.4.5 Parallel Model Transformation Chains 78

3.5 Summary . 80

TABLE OF CONTENTS xiii

4 Correspondence Relationships Derivation 83
4.1 Introduction . 83
4.2 Approach overview . 84

4.2.1 High-level correspondences 85
4.2.2 Tracing back to the sources 86
4.2.3 Constraining the relationships 87
4.2.4 Correspondence relationships resolution 88
4.2.5 General approach architecture 88

4.3 Case Study: Deriving Correspondence Relationships 89
4.3.1 Adding a new concern: Authorization 90
4.3.2 The new Security MTC 90
4.3.3 High-level Security Model 92
4.3.4 High-level Correspondence Model (CMhigh−level) 93
4.3.5 Low-level models . 94

4.4 Derivation Requirements . 96
4.5 Tracing back corresponding elements 99

4.5.1 Tracing Metamodel . 99
4.5.2 Generating tracing models 100
4.5.3 Composing tracing models 100

4.6 Constraining the correspondence relationships 102
4.6.1 Correspondence Derivation Model 104
4.6.2 Correspondence Derivation Metamodel 105
4.6.3 Compatible Link . 107
4.6.4 Final link . 108
4.6.5 Incompatible Link . 109
4.6.6 Composition Link . 110
4.6.7 Generating the Correspondence Model Transformation . 111
4.6.8 The Correspondence Model Transformation (CMT) . . . 113

4.7 Extending the scope of the derivation mechanism 114
4.7.1 Extending the tracing models 115
4.7.2 Extending the Correspondence Derivation Model 116

4.8 Summary . 118

5 Correspondence Relationships Resolution 121
5.1 Introduction . 121
5.2 Correspondence Metamodel . 122

5.2.1 Constraining relationships 124
5.3 High-level correspondences . 125

5.3.1 High-level Correspondence Metamodel Extension 126
5.3.2 High-level heterogeneous composition 127

5.4 Extended Correspondence Metamodel 129
5.5 Low-level correspondences . 133

5.5.1 Correspondences between homogeneous models 133

xiv TABLE OF CONTENTS

5.5.2 Correspondences between heterogeneous models 134
5.6 Resolving correspondence relationships 134

5.6.1 Resolution Strategy: Composition 135
5.6.2 Resolution Strategy: Checking consistency 140
5.6.3 Resolution Strategy: Mapping to code-level composition 142

5.7 Summary . 144

6 Tool Support 145
6.1 Introduction . 145
6.2 Architecture Overview . 146
6.3 MTC Developer Tasks . 148

6.3.1 Correspondence Derivation Model Editor 148
6.3.2 Composition Generator 153
6.3.3 Consistency Checker Generator 154

6.4 Application modeler Tasks . 154
6.4.1 Correspondence Model Editor 155
6.4.2 Traceability Processor 158

6.5 ATL traceability extension . 161
6.5.1 Runtime read access to the tracing information 161
6.5.2 Automatic storing of the tracing information 162

6.6 Summary . 163

7 Validation: Evolving Transformation Chains 165
7.1 Introduction . 165
7.2 Case Study: 4 Aligned MTCs 166

7.2.1 Business MTC . 167
7.2.2 Security MTC . 167
7.2.3 Navigation MTC . 168
7.2.4 Presentation MTC . 173
7.2.5 High-level correspondence models 177
7.2.6 Correspondence relationships derivation 178
7.2.7 Integrating the MTCs 180

7.3 Key Criteria Analysis . 183
7.3.1 Criterion 1 (C1): Impacted artifacts 183
7.3.2 Criterion 2 (C2): Use of high-level concern-specific con-

cepts . 185
7.3.3 Criterion 3 (C3): Metamodel pollution 186
7.3.4 Criterion 4 (C4): Monolithic model 187
7.3.5 Criterion 5 (C5): Identification of impacted model ele-

ments complexity . 187
7.3.6 Criterion 6 (C6): Complexity of identifying the impacted

model elements . 188
7.3.7 Criterion 7 (C7): Common integration mechanism 188

TABLE OF CONTENTS xv

7.4 Research Goals . 189
7.4.1 General Goal: Non-invasive evolution of an MTC 189
7.4.2 Goal 1 (G1): Concern-specific modularization 189
7.4.3 Goal 2 (G2): Specifying the different concerns at a high-

level of abstraction . 190
7.4.4 Goal 3 (G3): Enabling an oblivious mechanism to inte-

grate new concern-specific requirements 190
7.5 Limitations . 190
7.6 Summary . 191

8 Conclusion 193
8.1 Introduction . 193
8.2 Summary . 193
8.3 Contributions . 195

8.3.1 A novel strategy to perform a non-invasive evolution of
model transformation chains 195

8.3.2 A mechanism to automatically derive low-level corre-
spondence relationships 196

8.3.3 An analysis of the strategies that can be used to evolve
an MTC . 196

8.3.4 Tool support . 196
8.4 Discussion . 197
8.5 Future Work . 198

8.5.1 Future Research . 198
8.5.2 MTC Framework Toolkit Improvements 200

A Metamodels 203
A.1 Business Metamodel . 203
A.2 Architecture Metamodel . 204
A.3 JEE Metamodel . 207
A.4 Java Metamodel . 207
A.5 Security Metamodel . 212
A.6 Navigation Metamodel . 214
A.7 Presentation Metamodel . 214
A.8 JSF Metamodel . 216

B Transformation Rules 219
B.1 Tracing models Composer and Verifier Transformation 219
B.2 Correspondence Derivation Transformation 220

C ATL Tutorial 225

Bibliography 231

xvi TABLE OF CONTENTS

Index 241

List of Figures

1.1 An instance of a Model Transformation Chain (MTC) 3
1.2 Business metamodel . 4
1.3 Business model . 5
1.4 Extended Business metamodel 7
1.5 Extended Business model . 8
1.6 Existing Transformation Rules 9
1.7 Extended Transformation Rule 11
1.8 Metamodel and Model Co-evolution 13
1.9 Ripple effect . 15
1.10 General Schema . 18

2.1 Structure Chapter 2 . 26
2.2 The 4-level OMG metamodeling architecture 29
2.3 Ecore kernel metamodel (source: [SBPM09]) 30
2.4 Model-to-model transformation basic schema (source: [SBPM09]) 33
2.5 ATL Schema . 34
2.6 A possible instance of an MTC 36
2.7 Basic Traceability Metamodel 36
2.8 AMW Metamodel (source [DFBV06]) 47

3.1 Business-to-Java MTC . 52
3.2 Business model and metamodel 55
3.3 Business to Architecture Transformation (Tbus2arch) 56
3.4 Architecture to JEE Transformation (Tarch2jee) 57
3.5 Java Metamodel (MMjava) . 58
3.6 JEE to Java Transformation (Tjee2java) 58
3.7 A Risk screenshot . 59
3.8 Evolution strategies . 65
3.9 Extending the High-level Metamodel 66

xvii

xviii LIST OF FIGURES

3.10 Composing High-level Models 70
3.11 Composing Low-level Models . 73
3.12 Mixed-level Composition . 76
3.13 Parallel Model Transformation Chain 79

4.1 Geometrical Example . 85
4.2 How to generate the low-level CM 85
4.3 High-level correspondences . 86
4.4 Traces . 87
4.5 Corresponding elements . 88
4.6 Composed model . 89
4.7 General Schema . 90
4.8 The original MTC . 91
4.9 High-level Security Metamodel (MMsecurity) 92
4.10 High-level Security Model (Msecurity) 93
4.11 Security to Java Transformation (Tsec2java) 94
4.12 High-level Correspondence Model 95
4.13 Business 2 Java & Security 2 Java 97
4.14 Correspondence Derivation schema 99
4.15 Tracing Metamodel . 101
4.16 Tracing composition . 102
4.17 Composing tracing models . 103
4.18 Constraining the correspondence relationships 104
4.19 MMjava - MMjava Correspondence Derivation Model 106
4.20 Derivation Metamodel . 107
4.21 Compatible Link . 108
4.22 Final Link . 109
4.23 Incompatible Link . 110
4.24 Composition Link . 111
4.25 Insufficient Metaclass Information 115
4.26 The extended information . 117
4.27 Extended Correspondence Derivation Model 119

5.1 Chapter structure . 122
5.2 Correspondence Metamodel . 123
5.3 Correspondence Metamodel . 125
5.4 High-level Correspondence Model 128
5.5 Extended Correspondence Metamodel 131
5.6 Homogeneous Model Composition 135
5.7 Homogeneous Model Composition 136
5.8 Enhance resolution . 137
5.9 Include resolution . 138
5.10 Extend resolution . 139

LIST OF FIGURES xix

5.11 Override resolution . 140
5.12 CheckSameName resolution . 142
5.13 MapsTo resolution . 143

6.1 MTC Framework Toolkit architectural overview 146
6.2 MTC Framework Toolkit support 147
6.3 Correspondence Derivation Model Editor 149
6.4 Metamodel chooser dialog . 150
6.5 Creation of a Compatibility Constraint 151
6.6 Correspondence Derivation Model 151
6.7 Transformation Rule chooser dialog 152
6.8 Correspondence Derivation Model 153
6.9 Correspondence Derivation Model 154
6.10 Correspondence Model Editor 156
6.11 Model chooser dialog . 157
6.12 Creation of a Compatibility Constraint 158
6.13 Tracing model selector dialog 159
6.14 Traceability processor view . 160
6.15 ATL Launch configuration dialogs 162

7.1 Four interoperable MTCs . 166
7.2 Business MTC . 167
7.3 Security MTC . 168
7.4 Navigation MTC . 169
7.5 Navigation Metamodel . 170
7.6 Navigation Model . 171
7.7 Detailed Navigation Model . 172
7.8 Presentation MTC . 174
7.9 Presentation Metamodel . 175
7.10 Presentation Model . 176
7.11 JSF Metamodel . 177
7.12 High-level Correspondence Models 177
7.13 Correspondence Relationships Derivation 179
7.14 Integration of the MTCs . 181
7.15 Four interoperable MTCs . 184

A.1 Business Metamodel . 205
A.2 Architecture Metamodel . 206
A.3 JEE Metamodel . 208
A.4 ASTNode metaclass . 210
A.5 Model, Package & type declaration superclass 210
A.6 NamedElement and its hierarchy 210
A.7 TypeAccess . 211

xx LIST OF FIGURES

A.8 PackageAccess . 211
A.9 SingleVariableAccess . 211
A.10 MethodInvocation . 211
A.11 BodyDeclaration and its hierarchy 212
A.12 Security Metamodel . 213
A.13 Navigation Metamodel . 215
A.14 Presentation Metamodel . 217
A.15 JSF Metamodel . 218

List of Tables

3.1 Research Goals . 61
3.2 Key criteria . 62
3.3 Comparative analysis . 81

5.1 Correspondence Relationships Summary 130

7.1 Analysis of the key criteria . 185

xxi

Abbreviations

AMW Atlas Model Weaver

AOM Aspect Oriented Modeling

AOP Aspect Oriented Programming

AOSD Aspect Oriented Software Development

AS Application Server

ATL Atlas Modeling Language

ATL-VM ATL Virtual Machine

CDM Correspondence Derivation Model

CDMM Correspondence Derivation Metamodel

CIM Computation Independent Model

CM Correspondence Model

CMM Correspondence Metamodel

CMT Correspondence Model Transformation

CRUD Create, Read, Update and Delete

DSL Domain Specific Language

DSML Domain Specific Modeling Language

EA Enterprise Applications

EMF Eclipse Modeling Framework

xxiii

xxiv Abbreviations

GPL General Purpose Language

HOT High Order Transformation

JEE Java Enterprise Edition

JSF JavaServer Faces

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta-Object Facility

MTC Model Transformation Chain

MTC Model Transformation Chain

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query/View/Transformation

RBAC Role Based Access Control

SoC Separation of Concerns

TM Tracing Model

UML Unified Modeling Language

Chapter 1

Introduction

1.1 Problem Statement

Model-Driven Engineering (MDE) [Sch06] is a software development approach
that uses models as a mechanism to increase the level of abstraction. MDE
uses models as first class entities in the development process, meaning that
models are main artifacts throughout the entire development process. This is
a fundamental difference with other approaches (e.g. code-centric approaches)
that use models only as means of representation, documentation, and commu-
nication.

A large number of MDE-based approaches promote the use of models ex-
pressed in terms of problem domain concepts (e.g. Entities, Services) as the
prime artifact to develop software. These models, to which we refer as high-
level models, are used as input for a Model Transformation Chain (MTC). An
MTC is a sequence of transformation steps that converts the high-level model,
which is rooted in the problem domain, into a low-level model that is rooted
in the solution domain (e.g., Java, C#). In addition to the translation from
problem domain concepts to solution domain concepts (e.g., Java Class, Java
Annotation), the transformation chain adds implementation details in every
transformation step. The last step of the chain is typically a model-to-text
transformation that produces the code of the software system.

MDE implementations are an improvement to software development prac-
tices, in terms of increasing the abstraction by specifying applications close
to the problem domain and using reusable transformations to generate their
platform specific implementations. However, one is confronted with a num-
ber of problems if an MDE implementation needs to evolve. Evolution is an
inherent characteristic that affects software systems, for instance, to include
new functionality, to address new non-functional properties, or to migrate to
a new technological platform. The evolution of an MTC confronts us with
several problems, which are mainly related to the strong coupling that exists

1

2 Chapter 1. Introduction

between metamodels and models, metamodels and transformations, and each
transformation step and those which follow it.

The particular problem we address in this dissertation is the addition of a
new concern such as security or monitoring in an existing MDE implementa-
tion. No real problem arises if the new concern can be cleanly1 expressed using
the existing high-level metamodel. However, if this is not the case, the addi-
tion of the new concern will lead to a number of maintenance problems, such
as metamodels that are polluted with alien concepts, models which no longer
conform to the metamodels, transformations that are no longer compatible
with the new metamodels, or broken dependencies between transformations.
All of these problems are a detriment to the evolution of an existing MTC and
a single change can cause a ripple effect through every transformation step.

In order to illustrate the problems that arise when a new concern is added,
we will use an implementation of an existing MTC. This MTC was developed to
produce Enterprise Applications (EA) [SSJ02]. An EA is a component-based
application that supports the complex business requirements of an enterprise.
EAs are Web-based and must satisfy complex non-functional requirements (i.e.,
quality attributes) such as scalability, performance, security, etc. Usually, EAs
run in an Application Server (AS) that provides some support services such
as load balancing, security, etc. The most widely used AS are .NET and
Java Application Servers (e.g., Glassfish, JBoss), which implement the Java
Enterprise Edition (JEE) specification [CS09]. Our example MTC generates
EAs that run in a Java Application Server.

Using our example MTC we can generate JEE applications that run in a
Java AS. Some of the examples that we have developed using the MTC are:
a project management application, a change management application, a risk
management application, etc. The common functionality in all these appli-
cations is managing the information of their entities and their relationships.
The information of each entity is accessed and modified through basic Create,
Read, Update, and Delete (CRUD) services.

For instance, suppose that we need to specify a risk management applica-
tion named Risk. This application needs to manage multiple software projects
that are developed in a company and the risks that affect each project (e.g.,
personnel shortage, missing requirements, schedule slips). A project is threat-
ened by a set of risks and each risk has associated some mitigation plans. These
plans allow the reduction of the impact of each threat in the project.

In order to generate a JEE application using the example MTC, it must
be specified by the business expert in a high-level model using concepts that
belong to a Business metamodel. This means that the application is specified
in terms of business entities, their attributes, their relationships and the ser-
vices that they provide. Next, the high-level model is transformed by the MTC

1Cleanly means not forcing the use of existing concepts to express an alien concern

1.1 Problem Statement 3

into a low-level model that conforms to a Java metamodel. The MTC trans-
lates the high-level concepts into Java concepts. Additionally, the MTC adds
implementation details that are required to execute the application. Finally,
the low-level model is transformed into Java code with all the necessary infor-
mation to be executed in an AS. Figure 1.1 shows the example MTC, which
produces the JEE application from a high-level input model. The MTC uses
a high-level model that conforms to a Business metamodel and transforms it
into a low-level model that conforms to a Java metamodel. Finally, this model
is transformed into Java code.

JAVA CODE GENERATION
Gjava

HIGH-LEVEL
BUSINESS MODEL

LOW-LEVEL
BUSINESS JAVA MODEL

HIGH-LEVEL
BUSINESS METAMODEL

LOW-LEVEL
JAVA METAMODEL

Business To Java
MTC

Model

Metamodel

Model To Code Transformation

Model To Model Transformation

Source Code

Figure 1.1: An instance of a Model Transformation Chain (MTC)

Using the Business metamodel concepts, a business expert can specify a
high-level model that represents a desired application. In our example, in order
to specify a risk management application, the business expert must model the
risk management business. In other words, the business expert must specify all
risk management entities, their attributes, their relationships and the services
that they provide. For instance, the goal of a risk management application
is to identify the risks that threaten a project. Hence, the business expert
must specify the projects, the risks, and the relationship between them in the
high-level model.

Figure 1.2 presents a fragment of the Business metamodel used by the ex-
ample MTC. The goal of this metamodel is to specify EAs using high-level
business concepts that are free of technological platform details. The focus
of this metamodel is to describe the business, the entities that belong to it,
the relationships between them, and the services that each one offers. The
main concepts of this metamodel are: Business representing the business to
describe (e.g., project management, risk management), BusinessEntity repre-
senting the different business entities that belong to the business (e.g., project,
risk), Attribute representing the attributes of a BusinessEntity (e.g., the name

4 Chapter 1. Introduction

of a project), Association representing the relationships among the different
BusinessEntities (e.g., the relationship between a project and the risks that
threaten it), and Service representing the services that each BusinessEntity
offers (e.g., the services that allow to add new risk to a project).

Figure 1.2: Business metamodel

In the Risk high-level model, we will use the concept BusinessEntity to
describe each one of the entities that belong to the risk management business.
Figure 1.3 shows a fragment of a Business model2 for Risk that conforms
to the Business metamodel. This model presents two BusinessEntities named
Project and Risk, their Attributes (e.g., the project name), and an Association
between both BusinessEntities, which represents the risks that belong to a
project, called risks.

The Business model is processed through a series of transformation steps,
and finally a JEE application is produced. The generated application offers
basic JEE data management CRUD services of the business entities specified
in the high-level model. However, the generated application does not support
any authorization mechanism to protect access to the data and the different
services offered by it. The evolution with which we will illustrate the MTC
problems is the introduction of requirements for authorization support.

Having in mind to illustrate the addition of a new concern, we will evolve

2In this dissertation we will use the UML Object Diagram’s concrete syntax to represent
models.

1.1 Problem Statement 5

Project: BusinessEntity

name: Attribute dueDate: Attribute

Risk: BusinessEntity

name: Attribute

risks: Association

attribute attribute

association

businessEntity

Figure 1.3: Business model

the presented MTC to generate secure JEE applications. In the evolution of
the MTC we want to follow the MDE vision also used in the original MTC
by specifying authorization policies at a high-level of abstraction. Adding the
authorization policies at a high-level offers two major benefits: 1) it allows
to define the authorization policies using concepts close to the security do-
main thus giving an appropriate level of abstraction to the security experts,
2) it allows to use the generative power of the MDE implementation in order
to obtain the required application with the platform specific mechanisms for
authorization support (i.e., JEE annotations).

In the following sections we present the problems that are originated by the
addition of a new concern to an existing MTC. We need to avoid these problems
in order to reduce the impact of change in the evolution of an MTC. These
problems are: 1) the detriment of maintainability and usability of the MTC
artifacts caused by directly modifying them in order to support a new concern,
2) metamodel, model and transformations co-evolution when the metamodel is
adapted and the conformance relationship between metamodels and models is
broken, and the transformations that use it are no longer compatible, 3) ripple
effect due to the strong dependencies that exist between the MTC artifacts, a
single change will subsequently modify every artifact in the MTC by imposing
intricate changes (adding, updating or deleting MTC elements) to its existing
implementation.

Because of the strong dependencies that exist between the MTC artifacts, it
is common that theMTC developer is confronted with several of these problems
at the same time when he tries to directly evolve the artifacts of an existing
MTC. We can say that these problems are highly related and if one of them
affects the MTC, it is highly possible that the other problems affect the MTC
as well.

6 Chapter 1. Introduction

1.1.1 Problem 1 (P1):The detriment of maintainability
and understandability of MTC artifacts

When existing metamodels, models and transformations are directly adapted
in order to support new concern-specific requirements, it is possible to reduce
their understandability and maintainability. The detriment of maintainability
and understandability in each type of MTC artifact is caused by the complex-
ity of adapting the intricate relationships that exist between the elements of
each artifact: 1) at the metamodel level, the metamodels are polluted by the
inclusion of alien concepts into an existing metamodel, 2) at the model level,
the models become monolithic due to the specification of every involved con-
cern in a single model, and 3) at the transformation level, the complexity of
transformations is increased by the addition of new implicit intra-dependencies.

Metamodel pollution

The concepts of the metamodel presented in Figure 1.2 are not sufficient to
express authorization policies in the models. Therefore, one possibility is to di-
rectly extend the existing metamodel with security concepts. Figure 1.4 shows
the metamodel extended with notions of authorization policies based on the
Role Based Access Control (RBAC) model [SCFY96]. With these additional
concepts it is now possible to specify an application that includes authoriza-
tion policies. However, as shown in the figure, the simple metamodel presented
previously becomes a more complex metamodel with an amalgam of concepts
belonging to two different domains. Moreover, intricate relationships are cre-
ated between the existing business concepts and the new security concepts,
which creates a high coupling between the business and the security concern.
Therefore, this situation clearly reduces the maintainability and understand-
ability of the metamodel.

For instance, the extended metamodel presented in Figure 1.4 has security
specific concepts such as Role, Resource, Permission, etc. These concepts must
be merged with the concepts that belong to the original Business metamodel.
In this case the business concepts BusinessEntity, Attribute, Service and As-
sociation have an inheritance relationship with the security concept Resource.
These new concepts allow us to specify the idea of protection in the original
concepts. Next, the Action concept must be extended in order to define the
different actions that can be applied to a specific kind of resource (e.g. Create a
BusinessEntity or Read an Attribute). Finally, an intricate set of relationships
must be created between each type of Resources and its respective Actions.

Monolithic Models

The need for modularization and its benefits have been widely described and
acknowledged in literature [Par72, Rea89, KLM+97]. Thus, whenever a specific

1.1 Problem Statement 7

O
R

IG
IN

A
L

B
U

SI
N

ES
S

M
ET

A
M

O
D

EL

H
IG

H
-C

O
U

PL
IN

G
 B

ET
W

EE
N

 T
H

E
O

R
IG

IN
A

L
C

O
N

C
EP

TS
 A

N
D

 T
H

E
N

EW
 O

N
ES

F
ig
ur
e
1.
4:

E
xt
en
de
d
B
us
in
es
s
m
et
am

od
el

8 Chapter 1. Introduction

concern (e.g. authentication) requires to be specified, it is considered good
practice to try to modularize it in order to avoid having every involved concern
specified in a single monolithic model.

The extension of the metamodel with authentication concepts allows us to
express authentication policies such as the Permissions and Actions for every
BusinessEntity, Attribute, Service and Association that need to be protected.
This situation increases the amount of information in the model and converts
a simple model into a monolithic model. If more concerns are added to the
metamodel and the whole application is specified in one single model, then
this model will become incomprehensible and hard to maintain.

Figure 1.5 shows the updated monolithic model. This model contains the
different business entities, their relationships, and all the security policies. In
this model we have two policies: 1) the Role User is allowed to Read the
Attribute dueDate of the BusinessEntity Project, and 2) the Role Manager
that inherits the User policies is allowed to Read and Write the Attribute
dueDate of the BusinessEntity Project. Even though this is an extremely
simple model, these security policies increase the complexity in relation to the
original business model. Therefore, a model with several entities, roles, and
permissions will become difficult to maintain and understand.

name = "Project"
Project: BusinessEntity

name = "name"
name: Attribute

name = "dueDate"
dueDate: Attribute

name = "Risk"
Risk: BusinessEntity

name = "name"
name: Attribute

name = "risks"
risks: Association

attribute attribute

name = "User"
User: Role

name = "Manager"
Manager: Role

name = "ProjectUser"
ProjectUser: Permission

name = "ProjectManager"
ProjectManager: Permission

name = "writeProjectDueDate"
writeProjectDueDate: ActionWriteAttribute

name = "readProjectDueDate"
readProjectDueDate: ActionReadAttribute

permissionAssignment

permission

permission

read

write

association

attribute

businessEntity

permissionAssignment

roleHierarchy

AUTHORIZATION POLICIESORIGINAL BUSINESS MODEL

Figure 1.5: Extended Business model

Complex transformation implicit intra-dependencies

A model-to-model transformation is an intricate set of transformation rules
that may have implicit dependencies among them. If implicit dependencies
exist among the transformation rules and one of them is modified, then it will
be necessary to carefully verify the other rules in order to validate that the
implicit intra-dependencies are not broken.

For instance, Figure 1.6 presents an ATL transformation module [JK06]

1.1 Problem Statement 9

with two rules3. The rule BusinessEntity2Class (lines 1-15) takes a Busi-
nessEntity and produces a Class. The rule Attribute2Field (lines 16-32)
takes an Attribute and produces a FieldDeclaration, its getter MethodDeclara-
tion and its setter MethodDeclaration.

Between these two rules there are three implicit dependencies: 1) the bind-
ing of the feature fields in BusinessEntity2Class (line 8) and the output
variable field generated by Attribute2Field (lines 20-23), 2) the binding of
the feature methods in BusinessEntity2Class (lines 10-11) and the output
variable getter (lines 24-27) generated by Attribute2Field, and 3) the binding
of the feature methods in BusinessEntity2Class (lines 12-13) and the output
variable setter (lines 28-31) generated by Attribute2Field. If a change is ap-
plied to any rule, then the developer must validate that the intra-dependencies
are not broken.

1

1

2

3

2

3

Figure 1.6: Existing Transformation Rules

Figure 1.7 shows the extended ATL module. The rules in this module
allow us to produce secured classes, getters and setters. In order to obtain
this extended ATL module, several modifications are applied to the original

3A short ATL tutorial is presented in Appendix C.

10 Chapter 1. Introduction

module. First, the module needs to produce annotated4 Classes with the
list of all of the authorized roles (line: 14). The original rule was adapted
in order to generate such annotations by iterating over all of the authorized
Actions applied to the Attributes, Associations and Methods (lines: 16-29).
Second, annotations are needed for getter (line: 40-44) and setter (line: 45-
49) MethodDeclaration depending on the authorized Actions. This allows the
execution of the getter MethodDeclaration only for Read actions and the ex-
ecution of the setter MethodDeclaration only for Write actions. Finally, the
actual Annotation for the MethodDeclaration getter is generated by the new
rule ActionReadAttribute2Annotation (lines: 51-60). This shows the addi-
tional implicit dependency created between the rules Attribute2Field and
ActionReadAttribute2Annotation.

In the original transformation there were three implicit dependencies be-
tween BusinessEntity2Class and Attribute2Field rules. In the extended
transformation there are six dependencies, and this rule only manages one (i.e.,
ActionReadAttribute) of the twelve actions defined in the extended meta-
model (Figure 1.4). In the presented rules in Figure 1.7 the new dependencies
are: the dependency between the variable annotation (line 14) and the output
variable annotation (lines 16-29), and the double dependency added between
the Attribute2Field and the ActionReadAttribute2Annotation (i.e., one
dependency for the setter and one for the getter). Additionally, there is a non-
managed dependency between the role names specified in the @DeclaredRoles
annotation in the generated ClassDeclaration and the role names specified in
the @RolesAllowed annotation in the generated MethodDeclaration (i.e., an
allowed role that can execute a method must be declared in the class). There-
fore, the complexity of the original rule will be very high if the twelve Actions
are implemented.

In summary, this example illustrates the impact of change on an existing
model-to-model transformation by adding the security concern. The original
transformation rules had to be adapted and new (implicit) dependencies were
introduced. These dependencies increased the complexity of the transforma-
tions and made them harder to maintain and to understand.

4Java annotations are a JEE mechanism to offer authorization on its applications.

1.1 Problem Statement 11

1

1

2

3

2

3
4

5

4

6

5

6

Figure 1.7: Extended Transformation Rule

12 Chapter 1. Introduction

• Problem 1 (P1): The detriment of maintainability and
understandability of MTC artifacts
The direct adaptation of an existing MTC in order to include
a new concern will lead to the detriment of maintainability and
understandability of its artifacts. In the case of adding alien con-
cepts to a metamodel that clearly do not align with its existing
concepts, it causes what we refer to as metamodel pollution. In
the case of adding specifications of new concerns to an existing
model, it causes what we refer to as monolithic models. Finally,
in the case of modifying the existing transformation rules, it can
create new complex implicit intra-dependencies. The fragility of
the implicit dependencies inside a transformation rule makes the
adaptation of a transformation a complex task.

1.1.2 Problem 2 (P2): Metamodel, Model and Transfor-
mations Co-evolution

There are strong inter-dependencies between the artifacts of an MTC. These
dependencies exist between metamodels and models, and between metamodels
and transformations. This means that if a metamodel is modified in order to
include new concern concepts, it will be necessary to modify the models that
conform to it, and the transformations that use it as source or target.

Metamodel and model co-evolution

In some situations where the metamodel is adapted, such as by modifying or
eliminating existing concepts, the existing models will not conform to the new
version of the metamodel. Therefore, to fix the problem, every model must be
modified to correct the inconsistencies and restore the conformance relationship
between the models and the metamodel. For example, if an attribute of a
metaclass is eliminated, then every model must be modified by eliminating
the attribute. This problem is known as metamodel and model co-evolution
[Wac07, Fav03, CDREP].

For instance, Figure 1.8 shows a metamodel that has the metaclass User.
This metaclass has two attributes: firstName and lastName. A model that
conforms to version 1 of the metamodel has an instance of the metaclass User
with firstName John and lastName Doe. If the metamodel is adapted to have
only one attribute called name, then the model no longer conforms to version
2 of the metamodel. In order to fix this, the model must be modified by
combining both attributes and assigning John Doe to the merged attribute.

1.1 Problem Statement 13

firstName: String
lastName: String

User
name: String

User

firstName = "John"
lastName: "Doe"

: User

conformsTo conformsToX

metamodel Version 1 metamodel Version 2

model Version 1

Figure 1.8: Metamodel and Model Co-evolution

Metamodel and transformation co-evolution

Furthermore, when a metamodel is adapted, the existing transformation rules
need to be adapted as well. A transformation is highly dependent on the input
and output metamodels, and if either of them are modified, then the transfor-
mation will need to be adapted as well. The adaptation of the transformations
must be performed to support the new concepts or to fix the possible incom-
patibilities generated by the metamodel modification. The adaptation includes
the addition of a transformation rule for every new concept in the metamodel,
the modification of the existing rules when an existing concept is modified or
when the new concepts have more complex relations with the original ones.
We will call this problem metamodel and transformation co-evolution.

For instance, suppose we have a transformation that uses as input a model
that conforms to the version 1 of the metamodel presented in Figure 1.8. If
this metamodel is evolved, the transformation will not be compatible with the
version 2 of the metamodel. In this case the transformation will expect a User
element with two attributes (i.e., firstName, and lastName), and it will receive
User elements with only an attribute called name. Therefore, when the source
or target metamodels of a model-to-model transformation are modified, the
transformation will need to be modified as well.

14 Chapter 1. Introduction

• Problem 2 (P2): Metamodel, Model and Transforma-
tions Co-evolution
Adapting a metamodel by removing or modifying its concepts
could break the conformance relationship with its existing mod-
els as well as the transformations that use it as source or target.
When this happens, the models must be evolved to repair the
conformance relationship and transformations must be adapted.

1.1.3 Problem 3 (P3): Ripple effect

The ripple effect is the main problem when an MTC is adapted to include
a new concern. This problem subsumes the problems mentioned before and
replicates them in a chain reaction through the whole MTC. As explained
before, there are strong dependencies between the MTC artifacts. These de-
pendencies are between metamodels and models, metamodels and transforma-
tions, and between each transformation step and those which follow it. In
other words, when an MTC metamodel or transformation is modified to in-
clude a new concern, the subsequent metamodels and transformations must be
adapted as well. Moreover, the dependencies between the different rules and
steps are not explicitly defined. Therefore, if a change impacts a metamodel or
a transformation, then the complexity and cost of maintaining the consistency
among all the artifacts will increase. Therefore, every step should be carefully
adapted to assure that the chain is not broken and does indeed support the
new concepts [KKS07].

For instance, suppose that we have a four-step MTC that uses a high-level
model that conforms to a Business metamodel and produces Java applications.
These MTC steps are:

1. The first step is to transform the high-level business model into an archi-
tectural model that conforms to an Architectural metamodel that con-
tains concepts such as Layers and Communications that relate the Lay-
ers.

2. In the second step, the architectural model is transformed into a JEE
model that conforms to a JEE metamodel that contains concepts such
as EntityBeans and SessionBeans.

3. In the third step, the JEE model is transformed into a Java model that
conforms to a Java metamodel that contains concepts such as Classes,
Methods and Annotations.

4. In the final step, the Java model is transformed into Java code.

1.1 Problem Statement 15

Now, suppose that security concepts are added to the Business metamodel
in order to support authorization policies. This change will yield all the prob-
lems mentioned before. This means that the Business metamodel will be
polluted with security concepts, the models will not conform to the meta-
model, the transformation will not support the new models, the models will
be monolithic, resulting in a high probability of breaking the transformations
intra-dependencies. Hence, in order to translate the security concepts into the
next level (i.e., architectural level), we will need to include security concepts
in the architectural metamodel as well. Although we identify how to repre-
sent authorization concepts at the architectural level and have adapted the
Architectural metamodel, we will end again having the same problems as in
the business level (e.g., metamodel pollution). This situation will repeat one
after the other in each transformation step. Therefore, if one of the transfor-
mation steps is modified to support new concepts, then every following step
in the transformation chain must be modified as well. A simple change in the
first set of artifacts could require changes in all of the artifacts in the MTC
in a ripple effect. Figure 1.9 shows how a change in the highest level meta-
model triggers changes throughout the whole transformation (dashed arrows
represent the ripple effect). The only level that is not affected by the change
is the lowest level because it has all the necessary concepts to enforce secu-
rity (i.e., Java annotations). More details about this problem are presented in
Section 3.4.1.

BUSINESS/SECURITY MODEL

JAVA/SECURITY MODEL

BUSINESS/SECURITY METAMODEL

ARCHITECTURE/SECURITY MODEL

ARCHITECTURE/SECURITY METAMODEL

JEE/SECURITY MODEL

JEE/SECURITY METAMODEL

JAVA METAMODEL

TRANSFORMATION
BUSINESS/SECURITY TO ARCHITECTURE/SECURITY

TRANSFORMATION
ARCHITECTURE/SECURITY TO JEE/SECURITY

TRANSFORMATION
JEE/SECURITY TO JAVA

JAVA CODE GENERATION
Gjava

*

*

*

*
*

*

*

*
RIPPLE EFFECT

AFFECTED ARTIFACT

Figure 1.9: Ripple effect

16 Chapter 1. Introduction

• Problem 3 (P3): Ripple effect
The most complex problem that is originated by the addition of a
new concern in an existing MTC is the ripple effect. This means,
that if an artifact is modified by the addition of a new concern,
every subsequent artifact must be modified as well.

1.2 Research Goals

Having in mind the problems presented in the previous section, we envision an
approach that avoids the modification of the existing assets (i.e., metamodels,
models and transformations) when an existing MTC is evolved.

1.2.1 General Goal: Non-invasive evolution of an MTC

The general objective of our research is to propose an approach that avoids
changing the original MTC. This means that the original metamodels, models
and transformations are not changed when the new concern is introduced. By
avoiding the direct modification of the original MTC artifacts, we avoid all
the problems mentioned before (See Problems P1 - P3). This prevents the
maintainability and understandability detriment of the original MTC assets.
Additionally, the conformance relationship between models and metamodels is
not broken because the metamodel remains unchanged. Similarly, the trans-
formations remain compatible with the metamodel. Moreover, because no
artifact is modified, the ripple effect problem does not arise. In other words,
we can say that the original MTC remains oblivious of the change.

1.2.2 Specific Goals

In order to perform a non-invasive evolution of an existing MTC, we want
to maintain the changes modularized without performing any modification
to the original MTC while following the Separation of Concerns principle
(SoC) [Dij82]. The SoC principle states that the different aspects of a sys-
tem should be specified separately. In other words, we envision an approach
where the changes are modularized and are specified using concern-specific
concepts. Moreover, the proposed approach must offer a mechanism to specify
the concern-specific requirements at the correct level of abstraction. Finally,
the proposed approach must provide a reusable mechanism to identify the el-
ements affected by the change. This mechanism must be independent of the
MTC, allowing the original artifacts to remain oblivious of the changes. In ad-
dition, the mechanism must be able to introduce these changes into the MTC

1.2 Research Goals 17

at the most suitable moment. The most suitable moment is selected by iden-
tifying the place in the MTC where the original artifacts remain unchanged.
From these ideas we extract a set of specific goals:

Goal 1 (G1): Concern-specific modularization

The first specific goal is to offer an approach that allows the MTC developer to
encapsulate the introduced changes in concern-specific modules. These mod-
ules must contain the concern-specific changes that support the new require-
ments and affect the existing metamodels, models and transformations. If
our approach offers such modularization, we will keep the original assets un-
modified and we will improve the maintainability and understandability of the
MTC by following the SoC principle. Additionally, as we maintain the original
artifacts unchanged, we do not need to worry about metamodel, model and
transformation co-evolution problems or triggering a ripple effect through the
MTC steps. This goal will help us to avoid Problems P1, P2 and P3.

Goal 2 (G2): Specifying the different concerns at a high-level of
abstraction

The second specific goal is to allow the application modeler to specify multi-
ple application concerns at a high-level of abstraction. In other words, each
concern must be specified at the highest possible level of abstraction while
using concern-specific concepts. This will allow the application modeler to
create multiple concern-specific specifications where the multiple application
requirements are modeled. Using high-level metamodels gives the domain and
concern experts the appropriate abstractions to define the application specifi-
cation, improving the maintainability and understandability of the MTC. This
goal will avoid Problem P1.

Goal 3 (G3): Enabling an oblivious mechanism to integrate new
concern-specific requirements

The third specific goal is to provide an oblivious mechanism that allows MTC
developers to integrate the new concern-specific requirements. This mecha-
nism must be metamodel independent, enabling the MTC developers to reuse
it for adding non-supported concern-specific requirements to existing MTCs.
This mechanism should allow MTC developers to relate the new requirements
with the existing elements that they impact. The existing elements must be
oblivious of the new requirements. Finally, this mechanism must transparently
integrate the new requirements without modifying the existing artifacts. This
will avoid triggering a ripple effect through the MTC steps (See Problem P3).

18 Chapter 1. Introduction

1.3 Approach

The problems we discussed originate from the impact of change on the original
assets (i.e., metamodels, models and transformations). We want to apply the
SoC principle to evolve an MTC. Additionally, we want to apply the SoC prin-
ciple in the context of MTC evolution in order to gain the advantages obtained
in other contexts such as Aspect Oriented Programming (AOP) [KLM+97].

Figure 1.10 presents a general schema of our approach. In our approach we
modularize the changes in a new concern-specific MTC. This new MTC should
be added next to the existing one, using a high-level concern-specific model as
input and producing a low-level concern model as output. This means that
the required application can be specified using both the original model and a
new concern model. Both high-level models (i.e., existing model and concern
model) should be aligned in order to identify corresponding elements in each
high-level model. This means that the new high-level model must be aligned
with the original one by using a Correspondence Model (CM) [BBDF+06]. A
CM explicitly describes the correspondence relationships among the elements
of different models.

HIGH-LEVEL
BUSINESS MODEL

LOW-LEVEL
BUSINESS JAVA MODEL

LOW-LEVEL
SECURITY JAVA MODEL

HIGH-LEVEL
BUSINESS METAMODEL

LOW-LEVEL
JAVA METAMODEL

LOW-LEVEL
JAVA METAMODEL

Business To Java
MTC

Security To Java
MTC

HIGH-LEVEL
SECURITY MODEL

HIGH-LEVEL
SECURITY METAMODEL

LOW-LEVEL
FULL JAVA MODEL

Model Composition

Correspondence
Model

Derivation
Mechanism

CM

CM

JAVA CODE GENERATION
Gjava

Model Metamodel Relationships model Transformation

Figure 1.10: General Schema

1.3 Approach 19

The two MTCs produce two low-level models, that are the translation of
the high-level specification into a common low-level metamodel (e.g., Java).
Both models are complementary low-level models that can be composed using
a common composition mechanism because both models conform to the same
metamodel (e.g., Java metamodel). This type of composition is called a homo-
geneous composition and is much simpler to accomplish than a heterogeneous
composition which involves different metamodels. A homogeneous composi-
tion only requires identifying corresponding elements and does not require a
semantic alignment. Additionally, a homogeneous composition mechanism can
be reused by any concern that can be expressed using the same metamodel.
When we compose both models, we obtain a full low-level model with all the
requirements in it. However, in order to compose both low-level models, the
corresponding elements that exist between both models must be identified.

The main challenge is to define a mechanism that automatically derives
the new correspondence relationships between the low-level models, keeping in
mind that every step of the MTC increases the complexity of the models by
adding elements at each step. Commonly, these new elements are implemen-
tation details of the application.

We propose a correspondence derivation mechanism that uses the high-
level correspondence model to automatically obtain a correspondence model
between the low-level models.

As said before, when we reach the lowest level, the models conform to the
same metamodel. The derived correspondences between the low-level models
are used to identify the corresponding elements and to perform the composi-
tion.

In order to use the presented approach, one must:

• facilitate the use of different metamodels with suitable constructs in order
to independently express the different involved concerns following the
SoC principle.

• provide a high-level alignment between different concern models that con-
form to different metamodels. The alignment should allow the reasoning
about the relationships between the different models. The main objec-
tive of aligning the high-level models is to reduce the amount of manu-
ally defined alignment relationships. This is because at a high-level of
abstraction fewer concepts are defined than at a low-level of abstraction.

• maintain an alignment between the added concern-specific MTC and the
original MTC in order to derive the correspondence relationships be-
tween the low-level models to be able to use them to perform a compo-
sition.

• use a common composition mechanism to integrate the concern model
with the existing model when both models conform to the same common

20 Chapter 1. Introduction

low-level metamodel (e.g. Java metamodel). Moreover, if an additional
concern can be specified using the common low-level metamodel, then
the composition mechanism can be reused.

1.4 Approach Scope

As was introduced before, the main goal of our research is to provide a non-
invasive approach to evolve an existing MTC by adding a unexpected concern.
In other words, we envision a solution to the problem of adding complex con-
cerns to an existing MTC and avoiding the modification of the existing assets.
Additionally, we want to be able to encapsulate these complex concerns in
modules following the SoC principle (G1).

The type of changes that we want to introduce to the existing MTC must
be related with a concern that was not expected in the development of the
existing assets (i.e., metamodels, models and transformations). As we want to
specify the added concern at a high-level of abstraction (G2), we will need to
define a self-contained concern metamodel. This means that all the concepts
required to specify the concern for the required application must be in the
metamodel. There are many possible concerns that can be modularized such
as: security, monitoring, user interface, business rules, etc.

Our approach, does not include support for evolution caused by small
changes in the existing metamodels or transformations. The changes to the
high-level metamodel usually are caused by the evolution of the problem do-
main. When this happens the high-level metamodel must be adapted and in
the best-case scenario extended with new concepts. Our approach focuses only
in adding concern concepts that do not fit with the concepts of the existing
high-level metamodel.

When the low-level metamodel or the transformations require to be modi-
fied, it is usually caused by the evolution of the solution domain. For instance
when the technological platform evolves or new requirements related to it are
added. When the changes that are required to perform are fully related with
the existing infrastructure, our proposal in not suitable for evolve the MTC ar-
tifacts. We want to provide support for independently modeling a new concern
and integrating it automatically to the existing infrastructure (G3).

In summary, if the required changes are simple, such as adding a new
attribute, or a couple of metaclasses, our approach is not suitable for it. Ad-
ditionally, if the changes only require to modify the transformations or the
low-level metamodel, our approach is not suitable either. For this type of
changes, there are some works that we will present in the next chapter.

1.5 Contributions 21

1.5 Contributions

The main contributions of the research presented in this dissertation,can be
summarized as follows:

• A novel strategy to perform a non-invasive evolution of
model transformation chains
The main contribution of our approach is a strategy to per-
form a non-invasive evolution of an existing model transforma-
tion chain. This evolution is limited to the introduction of new
concerns. In other words, we do not consider MTC re-factoring
or the introduction of new functionality within the same con-
cern. The approach modularizes the changes by adding an addi-
tional concern-specific model transformation chain. It allows the
specification of a high-level concern model with concepts that
do not belong to the original model transformation chain. This
new concern model is consequently transformed into a low-level
model and composed with the original low-level model. This
strategy avoids changes to the original MTC, and encapsulates
the new concern concepts and the new required transformations
in a concern-specific transformation chain. This was published
in [YCDW09a, YCDW09b, YCDW10a, YCDW10b].

• A mechanism to automatically derive low-level corre-
spondence relationships
We provide a mechanism that automatically derives correspon-
dence relationships between two target low-level models. These
relationships are generated by analyzing the traceability models
generated by the transformations and a correspondence deriva-
tion model that defines how and which elements should be re-
lated. Even though the mechanism was originally developed to
work with the same target metamodel, we have also extended it
to work with different target metamodels. This was published in
[YCDW09a, YCDW09b, YCDW10a, YCDW10b]

The secondary contributions of the research in this dissertation are the
following:

22 Chapter 1. Introduction

• An analysis of the strategies that can be used to evolve
an MTC
We studied multiple works seeking out strategies that allow the
specification of several concerns and automatically compose them
to produce a full application. We translated the ideas of these
works to the field of MTC evolution. We compared the chosen
strategies with key criteria in order to select the most suitable
strategy. The analysis of the possible strategies was presented in
[YCDS08].

• Tool support
We have developed a set of Eclipse plug-ins and extensions that
help to use our approach in the evolution of MTCs. These tools
are available at http://qualdev.uniandes.edu.co. The tools are:

1. Correspondence Modeler: a modeler to specify correspon-
dence relationship between two high-level models that con-
form to two different metamodels.

2. Correspondence Derivation Modeler: a modeler to specify
restrictions on deriving correspondence relationships. Addi-
tionally, this plug-in generates the transformation required
to derivate the correspondence relationships.

3. Composition Generator: a plug-in that generates a compo-
sition transformation.

4. Correspondence Checker Generator: a plug-in that gener-
ates a checking transformation.

5. Traceability Processor: a plug-in that analyzes a set of trac-
ing models and generates its transitive closure.

6. ATL traceability mechanism: we extended the ATL-VM to
offer advanced traceability mechanisms. This extension was
presented in [YW09].

1.6 Outline of the Dissertation
This section presents an overview of the structure of this dissertation.

Chapter 2: MDE, Evolution in MDE, and Separation of Concerns in MDE

http://qualdev.uniandes.edu.co

1.6 Outline of the Dissertation 23

This chapter gives an in-depth explanation of MDE. The main concepts
of MDE, such as model, meta-model and model transformation, are dis-
cussed in detail. Additionally, we present the use of DSMLs in multi-
modeling environments and composition techniques. Finally we discuss
the evolution of MDE.

Chapter 3: Evolving a Model Transformation Chain
In this chapter, we present an analysis of several strategies that can
be used to evolve a model transformation chain. These strategies are
analyzed using a set of key criteria that allow the identification of the
most suitable strategy.

Chapter 4: Correspondence Relationships Derivation
This chapter presents the strategy we use to derive a correspondence
model between the target low-level models. This mechanism uses trace-
ability models and a correspondence derivation model that restricts the
generation of low-level correspondence relationships.

Chapter 5: Correspondence Relationships Resolution
The objective of this chapter is to present the correspondence relation-
ships in detail, their semantics and how we use them to relate models at
different levels of abstraction. Additionally, we present our approach to
resolve the relationships.

Chapter 6: Tool Support
This chapter provides in-depth discussion of the provided tools and how
they can be used to support the evolution of existing model transforma-
tion chains. First, the global architecture of the tools is explained. Then
all the components that are necessary to correctly extend a MTC. Fol-
lowing that, the required tasks in order to extend a MTC are discussed.
Finally, the limitations and future directions of the tools are discussed.

Chapter 7: Validation: Evolving Transformation Chains
This chapter presents the validation of our work. This validation is
presented with the help of two case studies. The first case study adds an
authorization mechanism to the existing MTC. The second case study
adds a web layer to the same existing MTC.

Chapter 8: Conclusion
This chapter concludes this dissertation with an evaluation of the ap-
proach we have presented. An overview of our contributions is given and
future research directions are explored.

Chapter 2
MDE, Evolution in MDE, and

Separation of Concerns in MDE

2.1 Introduction
We dedicate this chapter to presenting the notions and concepts that are be-
hind the evolution of a Model Transformation Chain (MTC), with the objective
of fully understanding the context where our work is delineated, the problems
that we face, and the main characteristics of our approach. Simultaneously,
we present some current research related with the presented subjects.

We divide this chapter in three main parts where we group the necessary
concepts to comprehend our work. In the first part, we present the concepts
to understand the context of our research. In the second part, we introduce
current research that focuses on solving the main problems in the area of
MDE evolution. Finally, in the third part we describe the concepts behind
the Separation of Concerns (SoC) principle applied to MDE that will allow for
comprehending our proposed solution.

Figure 2.1 presents a schema of the distribution of this chapter, relating its
sections with the elements of our approach. In Section 2.2, we introduce the
ideas behind Model Driven Engineering (MDE) and how it increases the ab-
straction level by using models and metamodels. Additionally, in this section
we present model transformations and how models, metamodels and transfor-
mations are combined in an MTC in order to generate applications. Finally,
in this section we present the ideas of model traceability. The objective of
this section is to present the background knowledge required to appreciate
our work. In Section 2.3 we present the main problems in the area of MDE
evolution and current research used to tackle these problems. These works
are directly related with our work in MTC evolution. Finally, in Section 2.4
we show how the SoC principle is used in MDE in order to specify multiple
concerns in different models and then how to compose them in order to obtain
the final application. This section presents background material that inspired

25

26
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

us to formulate our solution.

2.2 CONTEXT:
 MODEL DRIVEN ENGINEERING

2.3 PROBLEM:
EVOLUTION IN MDE

2.4 SOLUTION:
SEPARATION OF CONCERNS IN MDE

2.2.1 Models
 * High-level vs. Low-level models
2.2.2 Metamodels
 * MOF & EMF

2.2.4 Transformations
 * QVT & ATL

2.2.5 Model Transformation Chains

2.3.1 Metamodel and Model Co-evolution

2.3.2 Metamodel and Transformations
 Co-evolution

2.4.1 Modeling Concerns
 * AOM
 * Multi-modeling
2.4.2 Composing Concerns
 * Correspondence models & AMW
 * Homogeneous composition
 * Heterogeneous composition

2.2.3 Domain-specific Modeling Languages
 * Metamodel-based DSML
 * UML Profiles

MODEL

MODEL MODEL

METAMODEL

METAMODEL METAMODEL

MTC MTC

MODEL

METAMODEL

MODEL
Model Composition

CM

CM

CODE GENERATION

Model Metamodel Relationships model Transformation

2.2.6 Model Traceability

2.3.3 Ripple effect

Figure 2.1: Structure Chapter 2

2.2 Context: Model Driven Engineering

Model-Driven Engineering (MDE)[Sch06] has reduced the gap between prob-
lem and solution domains by using concepts that belong to the problem do-
main to specify a system, and by using automatic transformations to bring
this specification to the solution domain.

MDE uses models to increase the level of abstraction. MDE considers

2.2 Context: Model Driven Engineering 27

models as first class entities in the development process [BJRV05]. This means
that they are main artifacts throughout the entire development process. This
is a fundamental difference in comparison with other movements (e.g. code-
centric approaches) that use only models as mechanisms of representation,
documentation, and communication. In the next section we will present several
definitions of a model in order to identify a common notion of it.

2.2.1 Models

There are several definitions of what a model is. Usually, models are used
to analyze the specified system or to generate the actual implementation of
the required system. It is almost impossible to have a universally accepted
definition[Lud03].

The OMG states that “A model of a system is a description or specification
of that system and its environment for some certain purpose. A model is often
presented as a combination of drawings and text.” [MM03]. This definition
presents the general idea of what a model is and how it is represented.

Bézivin states that "A model is a simplification of a system built with an
intended goal in mind. The model should be able to answer questions in place
of the actual system." [BG01]. In this definition it is important to notice that
a model is a representation of the system and allows to reason about the actual
system.

There are two types of models based on their analytical or synthetical
intention [MFB09]. On the one hand, an analytical model allows us to make
predictions or inferences about the system. On the other hand, the intention
of a synthetical model is to generate the system from it.

From these definitions we can gather that a model represents a system and
can be used to analyze or to make inferences over the system. Additionally,
the model can be used as a mechanism to specify and generate the required
system.

In our research, we use models as mechanisms to generate a system. Con-
sequently, it is important for us to differentiate the kind of models based on
the amount of technological details in them. For this reason we divide them
in high-level models and low-level models.

High-level vs. Low-level models

In MDE several types of models are used. A specific division used in the gen-
eration of applications using models is related to the amount of computational
and technological platform details existing in the models. This division is used
in the MDE initiative of the OMG that is called Model Driven Architecture
(MDA) [MM03]. The main goals of MDA are portability, interoperability and
reusability through architectural separation of concerns.

28
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

MDA promotes the use of three types of models related to the level of
abstraction and the amount of technological details in it:

1. Computation Independent Model (CIM): this is the model at the highest
level of abstraction focused on the environment and the requirements
of the system; the details of the structure and processing of the system
are hidden or undetermined. In this model the system requirements are
expressed using the domain concepts as vocabulary. The goal of the CIM
is to reduce the gap between the business experts and the system design
experts.

2. Platform Independent Model (PIM): the focus of this model is on the
operation of a system while hiding the details necessary for a particular
platform. A platform independent model does not change from one plat-
form to another. This model describes the actual system without the
technological platform details.

3. Platform Specific Model (PSM): this is the model at the lowest level of
abstraction. In the PSM the system is specified by combining all of the
elements specified in the PIM with the addition of technological platform
specific details.

The important notion behind this division is that each kind of model is at
a different level of abstraction, starting from the highest level (CIM) to the
lowest level (PSM). The level of abstraction is determined by the amount of
computational and technological platform details in the models. Although this
division is part of the MDA specification, in real life it is difficult to differentiate
between these three levels. Because of this difficulty, in this dissertation we
divide the models into two types: 1) the first group that we call high-level
models which are specified using concepts that belong to the problem domain,
and 2) the second group that we call low-level models which are specified using
concepts that belong to the solution domain. In actual MDE implementations,
multiple levels are used starting from a high-level model that is specified in
terms of problem domain concepts (e.g. Entities, Services), and transformed
in several steps into a low-level model that is specified in terms of the solution
domain concepts (e.g. Classes, Methods). The lowest-level model has all the
requirements specified in the high-level models plus the technological platform
details in it, and are expressed in terms of the solution domain concepts.

In order to be able to create a model, it is necessary to use a modeling
language. This modeling language is expressed in the form of a metamodel. A
metamodel is a model and is also a model of a modeling language [CSW05].

2.2 Context: Model Driven Engineering 29

2.2.2 Metamodels

Models are specified in a modeling language, and in MDE a modeling language
is defined by a metamodel . Favre states "A metamodel is a model of a language
of models" [Fav04]. A metamodel describes the abstract syntax of the modeling
language, using the concepts of the domain and their relationships.

A metamodel should be part of a metamodeling architecture, which enables
a model to be viewed as a model, and in a similar way it is itself described by
another metamodel. This allows all metamodels to be described by a single
metamodel named meta-metamodel [CSW05]. The OMG proposes a standard
metamodel architecture that consist of four levels. These levels are depicted
in Figure 2.2.

M2: METAMODEL

M3: META-METAMODEL

M1: MODEL

M0: DATA

conformsTo

conformsTo

instanceOf

conformsTo

Figure 2.2: The 4-level OMG metamodeling architecture

Moreover, the OMG proposes a standard meta-metamodel namedMeta Ob-
ject Facility (MOF) [Obj01] that allows the definition of metamodels. A frame-
work that follows this standard is the Eclipse Modeling Framework (EMF)
[SBPM09]. We use EMF extensively in our research and in the implementa-
tion of the tools. In the next subsection, MOF and EMF are briefly explained.

MOF & EMF

The OMG proposes the Meta-Object Facility (MOF) standard as a metadata
management framework and a set of metadata services to enable the devel-
opment and interoperability of model and metadata driven systems. MOF
mainly serves as the platform-independent metadata management foundation
for MDA [Obj01].

30
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

Eclipse Modeling Framework (EMF) [SBPM09] is a modeling framework
and code generation facility for building tools and other applications based on
a structured data model. Although EMF intends to comply with MOF, its
metamodeling language Ecore differs from the MOF specification. Figure 2.3
shows a simplified subset of the Ecore meta-model.

name : String
EClass

name : String
EAttribute

name : String
EDataType

name : String
containment : boolean
lowerBound : int
upperBound : int

EReference

eAttributes
0..*

eAttributeType
1

eSuperTypes
0..*

eReferences

eReferenceType

eOpposite

0..*

0..1

1

Figure 2.3: Ecore kernel metamodel (source: [SBPM09])

The key EMF concept is EClass, which is a concept that represents a
metaclass and is the main building block to define an Ecore metamodel. Ad-
ditionally, EMF has the concepts EAttributes and EReferences. The difference
between EAttribute and EReference is that the type of an EAttribute is always
a primitive type, such as string, boolean or integer, while the type of an ERef-
erence is always an EClass. Moreover, as an implementation framework, EMF
allows the behavior of EOperations to be specified in Java.

The models used in MDE are usually defined by a Domain Specific Modeling
Language (DSML) [TK05]. A DSML increases the level of abstraction and
gives suitable concepts to domain experts for specifying an application close
to the problem domain (e.g., insurance domain, finance domain). The domain
concepts and their relationships that are available in the DSML are specified
in a metamodel.

2.2.3 Domain Specific Modeling Languages

A Domain Specific Language (DSL) [VDKV00] is a programming language spe-
cialized in a particular problem domain or technological platform. In contrast,
General Purpose Languages (GPLs) are created to solve problems in many
domains. For instance, SQL is a DSL for the relational databases domain, in
contrast to Java which is a GPL.

In MDE, there are approaches that follow the DSL idea by using models
instead of textual languages. These approaches use Domain-Specific Modeling
Languages (DSMLs) [TK05], which increase the level of abstraction and give

2.2 Context: Model Driven Engineering 31

domain experts concepts that belong to the problem domain (e.g., insurance
domain, finance domain) in order to specify an application. Additionally, be-
cause domain experts are familiar with the concepts of the domain, they can
quickly learn, use, and evolve the language. Finally, The use of DSMLs reduces
accidental complexities that are introduced if an application is specified using
an unsuitable language. For instance, trying to specify technological platform
specific properties at domain level.

There are two main methods of defining a DSML. The first method starts
from scratch defining a new metamodel. This is a common method that uses
a minimalistic approach to develop a language. The second method takes an
existing language and extends it by including domain concepts. Usually, this
method takes a General Purpose Modeling Language (GPML) such as UML
and adds domain concepts to it.

Metamodel based DSML

When DSML is defined from scratch, it is specified using a metamodel that
describes all the domain concepts and their relationships. The language de-
velopers specify the abstract syntax of the modeling language using the meta-
model. Additionally, they need to define the concrete syntax and the semantics
of the DSML. There are several DSML definition environments that help the
language developers to create languages and tools. Among these are some com-
mercial tools such as MetaEdit+[Met10], open source such as GEMS[GEM10]
and openArchitectureWare[ope10a], or academic such as GME[GME10].

The main critique of this method is the necessity to create a language
from scratch, including its editors, compilers, and tools. Additionally, the
application modelers will need to go through the extra effort of learning a
new language. Instead, starting from scratch allows for the specification of a
language without inheriting any problems of an existing language. The new
DSML is created only with necessary concepts following a minimalist vision of
the language.

UML Profiles

Another approach to create a DSML is to use a GPML such as UML and ex-
tend it with domain concepts. UML offers a mechanism named UML Profile
that is commonly used in the DSML field. A Profile provides a lightweight ex-
tension mechanism to customize the semantics of UML for particular domains
or platforms. This means that each Profile follows the UML semantics, but
introduces domain specific semantics that narrow down existing UML seman-
tics. A Profile is defined by using stereotypes, tag values, and constraints that
are applied to specific model elements, such as Classes, Attributes, Operations,
etc.

32
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

There are several domain specific extensions defined using UML Profiles
such as: SysML[Obj10] used for modeling system engineering applications, or
MARTE[Obj09b] used for modeling real-time and embedded applications.

The main critique of using UML Profiles comes from transfering the ex-
isting problems of UML to the new DSML. UML offers a large amount of
commercial and non-commercial tools, and it is a well-known language that
has a considerable amount of practitioners.

Either of the two options (i.e., metamodel based or profiles) can be used
to specify models in order to represent or to generate a system. Whichever
model will conform to a DSML metamodel or to the UML metamodel plus the
profile. In this dissertation we choose to work with the minimalist approach
(from the language point of view) of defining our DSML from scratch. We
prefer to have absolute control over all the concepts in our metamodels and do
not need to understand and use the more than 200 classes of UML.

Now that we have the notions of models, their relationship with metamod-
els and how they are defined using DSMLs, we will explain how models are
processed by Model Transformations in order to produce new models or to
generate source artifacts from them.

2.2.4 Model Transformations

Model Transformations are a key component in MDE that process models in
order to generate several types of artifacts, such as source code, simulation
inputs, XML deployment descriptions, or alternative model representations
[Sch06]. Transformations use input models to generate source artifacts or new
models that describe a different representation of the modeled system. They
are used to navigate models using the structure defined by their metamod-
els. Thus, transformations are defined in terms of metamodel concepts and
they can process any model that conforms to the metamodels used by the
transformation.

Transformations can be divided in two major categories: model-to-text and
model-to-model transformations. The model-to-text transformations category
takes a model as input and produces text artifacts using visitor-based or
template-based approaches. We can find languages in this category such as
Acceleo [Obe10], and Xpand[ope10b]. The model-to-model transformations
category produces a new model that conforms to a target metamodel. We can
find languages in this category such as ATL [JK06], and QVT[Obj09a].

Figure 2.4 presents a schema of a simple model-to-model transformation,
where a transformation is defined in terms of the source and target metamodels.
This means that any model that conforms to the source metamodel can be
processed by the transformation engine using the transformation definition,
and that it will produce a new model that conforms to the target metamodel
[JK06, Obj09a].

2.2 Context: Model Driven Engineering 33

Source Metamodel

Source Model

Transformation Definition Target Metamodel

Target ModelTransformation
Engine

Conforms To Conforms To

Refers To Refers To

Reads Writes

Executes

Figure 2.4: Model-to-model transformation basic schema (source: [SBPM09])

The model-to-model transformation standard proposed by the OMG is
the MOF Query/View/Transformation (QVT) transformation language. Al-
though there are some implementations of QVT languages (e.g., medini QVT,
QVTd and SmartQVT), they are not broadly used currently mainly because of
their recent stable implementations and lack of documentation. As an alterna-
tive, some "QVT-like" transformation languages are becoming more commonly
used in research and industry projects. One of these QVT-like languages is
the Atlas Transformation Language (ATL) [JK06] that is one the most widely
used transformation languages in the MDE community. ATL is the transfor-
mation language that we use in our implementation and examples. These two
languages are presented in the next subsection.

Transformation Languages: QVT and ATL

On the one hand, MOF Query/View/Transformation (QVT) is the standard
transformation language proposed by the OMG to process MOF based models
[Obj09a]. As previously stated, model transformations are a critical compo-
nent of MDE. For this reason, in 2002 the OMG asked for a proposal in order
to seek a standard compatible with the MDA standard. Consequently, the
first complete version of the QVT standard was published in 2008. QVT is
divided in three main languages: QVT Operational, QVT Relations, and QVT
Core. QVT Operational is a language that allows the definition of a trans-
formation using an imperative approach (e.g., SmartQVT). QVT Relations is
a declarative language in which bidirectional mappings are defined between
two metamodels (e.g., medini QVT, QVTd). Finally, QVT Core is a low-level
declarative language.

On the other hand, it is possible to say that ATL is the de facto standard
due to its user base. ATL is a hybrid transformation language that supports
declarative and imperative constructs. The main declarative construct of ATL
is a matched rule. This kind of rule consists of a left-hand side that uses a
source pattern to identify matched elements and a right-hand side that pro-
duces a target pattern for every match. Additionally, ATL has two imperative
constructs: called rule and action block. A called rule must be explicitly called
similarly to a procedure. These kinds of rules have a target pattern that cre-
ates an element every time that the rule is called. Finally, Action blocks are

34
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

sequences of imperative instructions.
A transformation rule in ATL is specified in modules. An ATL module can

be expressed as a model that conforms to the ATL metamodel. The ATL trans-
formation schema is presented in Figure 2.5. Although this schema is similar
to the generic model transformation schema that was presented in Figure 2.4,
it is important to notice that an ATL transformation module is a model that
conforms to the ATL metamodel. Furthermore, the ATL metamodel conforms
to the EMF metamodel.

Source Metamodel

Source Model ATL Transformation Module

Target Metamodel

Target Model

ATL
Transformation

Engine

Conforms To Conforms To

Refers To Refers To

Reads Writes

Executes

ATL Metamodel

Conforms To

EMF

Conforms To Conforms To

Conforms To

Conforms To

Figure 2.5: ATL Schema

Because of the model nature of the ATL modules, it supports Higher Order
Transformations (HOT). A higher-order transformation is a model transforma-
tion whose input and/or output models are themselves transformation models
[TCJ10]. This kind of transformations are essential in our proposal in order to
be able to automatically generate new model-to-model transformations that
support the evolution of an existing MTC. An MTC is a set of transforma-
tions that is put together to convert a high-level model, which is rooted in the
problem domain, into a low-level model that is rooted in the solution domain.
The notions behind an MTC are presented in the next subsection.

2.2.5 Model Transformation Chains

MDA promotes the specification of a software system in a high-level model
(PIM). The PIM is specified only in terms of problem domain concepts and
without any technological platform information. A model transformation takes
the PIM as input and produces a low-level model (PSM) where the software
system is specified in terms of the technological platform. However, the use
of a single "almighty" model transformation to produce applications is im-
practical and almost impossible to maintain and evolve [VVBH+06]. Having

2.2 Context: Model Driven Engineering 35

a single PIM-to-PSM transformation goes against the notions of abstraction
and modularity. Instead, in order to tackle complexity in the generation of an
application from a high-level model, it is necessary to split the transformation
in several steps. Each of the transformation steps should be in charge of adding
details to the transformed model.

A Model Transformation Chain (MTC) [PVSGB08, KGZ09, VVBH+06] is
a set of transformations that are put together to convert a high-level model,
which is rooted in the problem domain, into a low-level model that is rooted
in the solution domain. In addition to the translation from problem domain
concepts (e.g., Entity, Service) to solution domain concepts (e.g., Java Class,
Java Annotation), the transformation chain adds implementation details in
every transformation step. In the last step of the chain, there is a model-to-
text transformation that produces the code of the software system. In this
research we propose an approach for evolving MTC’s.

Using this multi-step strategy allows developers to focus on one level of
abstraction at a time and to reuse small transformations. There is not a fixed
number of transformation steps in an MTC. The number of steps depends on
the generation strategy taken, which depends on factors such as: concerns,
stakeholders, transformation reusing, etc.

A possible MTC is presented in Figure 2.6. In the figure, the MTC ar-
tifacts (i.e., metamodels, models, and transformations) are presented as well.
In this particular MTC, four transformation steps are combined in order to
generate applications. This MTC takes a high-level model that conforms to a
Business metamodel and transforms it in several steps into a low-level model
that conforms to a Java metamodel. Finally, this model is transformed into
Java code.

When it is necessary to analyze the impact of a change in the source mod-
els, to propagate changes, or to verify if the requirements are fulfilled by the
code, tracing models are required. These models are generated when the model
MTCs are executed and they identify the source elements and their correspond-
ing target elements through the whole set of transformations. We discuss this
in the following subsection.

2.2.6 Model Traceability

In MDE, when tracing information is required outside the scope of the exe-
cution, it is stored in the form of tracing models . These models represent the
relationships between source elements and the target elements generated by
the transformation. There are several uses for these models [ARNRSG06]. For
instance, to analyze the impact of a change in the source models, to propagate
the changes, to verify if the requirements are fulfilled in the code, or as input in
complex transformation chains. [VBJB]. In our approach, traceability models
are a fundamental element to evolve an existing MTC.

36
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

BUSINESS MODEL
Mbusiness

JAVA MODEL
Mjava

BUSINESS METAMODEL
MMbusiness

JAVA METAMODEL
MMjava

ARCHITECTURE MODEL
Marchitecture

ARCHITECTURE METAMODEL
MMarchitecture

JEE MODEL
Mjee

JEE METAMODEL
MMjee

TRANSFORMATION
BUSINESS TO ARCHITECTURE

Tbus2arch

TRANSFORMATION
ARCHITECTURE TO JEE

Tarch2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

JAVA CODE GENERATION
Gjava

Figure 2.6: A possible instance of an MTC

Tracing models must conform to a tracing metamodel. A simple tracing
metamodel is presented in Figure 2.7. This metamodel has two metaclasses:
TraceLink and TracedElement. The first metaclass represents a tracing link
that relates a set of source elements with a set of target elements. The second
metaclass represents any element that is used by the transformation as a source
or any element that is generated by the transformation.

TraceLink TracedElementsources

targets

*

*

Figure 2.7: Basic Traceability Metamodel

This metamodel can be extended in order to have multiple types of trace
links and to store additional tracing information. A tracing model richer in
semantics and in traceability information can be used as input for subsequent
transformations. For instance, the work by Vanhooff et al. [VBJB] presents a
Global Traceability Graph (GTG) which is used as a mechanism to navigate
several models involved in a transformation chain. These models represent
different aspects of a system. The GTG is generated by the MTC. Sometimes,
in order to produce a new model, it is necessary to know something from a
different model in the transformation chain (e.g. to know the database table
that stores a particular attribute from the functional model). In this approach,
a transformation chain always starts from a single root model, and produces
different kinds of models (e.g. application model, GUI model, database model)

2.3 Problem: Evolution in Model Driven Engineering 37

by using several transformation branches. With the GTC it is possible to
navigate every single model produced by the transformation chain.

There are several options to generate tracing models:

1. To extend the existing transformation rules with the tracing generation
logic [FHN06].

2. To use a high-order transformation that automatically adds the tracing
generation logic to the existing transformation rules [Jou05].

3. To use tracing provided by the transformation engine or tracing con-
structs of the language [JK06].

In our research we choose the last option and extend the ATL virtual
machine implementation to automatically generate tracing models every time
that a transformation is executed. The objective of this extension is to improve
the usability of our approach and to give access to the traceability information
for the ATL users. This extension is presented in Section 6.5.

In the previous sections we introduced the notions behind the use of models
as prime artifacts to develop software in MDE. Also, we explained how models
are specified by using a DSML, which is defined in a metamodel. Finally, we
presented how models are processed by several transformations, which are put
together in form of an MTC.

Although MDE offers advantages to the software development process in
terms of increasing the level of abstraction, as every software system, MDE
implementations should evolve. In the specific case of MDE, its evolution
poses several problems related to the strong dependencies existing between its
artifacts. Specifically, the problems caused by the evolution of metamodels
and transformations are extremely challenging.

2.3 Problem: Evolution in Model Driven Engi-
neering

Evolution is an inherent characteristic of software systems. For instance, to
include new functionality, to address new non-functional properties, or to mi-
grate to a new technological platform. Similarly, MDE implementations are
also susceptible to evolution. Even though these MDE implementations are a
considerable improvement allowing better platform independence and stabil-
ity of the application models, one is confronted with a number of problems if
models, metamodels, or transformations need to evolve. Evolution of MDE
confronts several problems mainly related to the strong dependencies between
metamodels and models, metamodels and transformations, and between each

38
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

transformation step and those which follow it. In [VWDD07], Van Deursen et
al. divide MDE evolution into four categories:

• Regular evolution: this type of evolution affects the existing models when
the specified application needs new requirements and is managed by the
capabilities and abstractions of the modeling language. Hence, the mod-
els are modified but metamodels and transformations remain fixed. MDE
is optimized for managing this type of evolution due to the higher level
of abstraction promised by the modeling approach.

• Metamodel evolution: this type of evolution is required when the lan-
guage needs to evolve and it has a huge impact on the existing models
that conform to the original metamodel. Usually, the existing models
need to be migrated. This is an important research field in the MDE
community and is commonly know as metamodel and model coevolution
problem [Wac07, Fav03, CDREP, GJCB09].

• Platform evolution: this type of evolution is when new requirements
related to the target platform are added. When this happens, the model-
to-model and the model-to-text transformation must be modified. The
existing models and metamodels remain fixed. A research that focuses
on this type of evolution in presented in [RB08].

• Abstraction evolution: this type of evolution appears when new modeling
languages are added to and existing set of (modeling) languages to reflect
an increased understanding of a technical or a business domain. This
requires the modification of models, metamodels and transformations. A
research that focuses on this type of evolution in presented in [MV09].
In this dissertation a solution to this type of evolution is presented as
well.

In the next subsections we present a research related to the main problems
that MDE evolution needs to tackle. As we explained before, these problems
are caused by the strong dependencies that exist between metamodels and
models, metamodels and transformations, and between each transformation
step and those which follow it. We group these problems based on the artifact
that is evolved (i.e., metamodels and transformations). Finally, we discuss the
problem that we call ripple effect, which is the necessity of changing several ar-
tifacts in an MTC as a consequence of a single change in one of the metamodels
or transformations.

2.3.1 Metamodel Evolution

When the domain evolves, then its metamodel needs to evolve as well. The
evolution of a metamodel means that new concepts could be added or existing

2.3 Problem: Evolution in Model Driven Engineering 39

concepts could be modified or eliminated. If concepts are added to a meta-
model, then models are still conforming to the evolved metamodel. However,
if the existing concepts are modified or eliminated, then the existing models
may not conform to the new version of the metamodel. Therefore, to fix the
problem, every model that conforms to the evolved metamodel must be modi-
fied to correct the inconsistencies. For instance, if an attribute of a metaclass
is eliminated, it will be necessary to fix the models eliminating the attribute
from them. If the models are not co-evolved with the metamodel, then they
become invalid. This is known as metamodel and model coevolution, which is
addressed by several researches [Wac07, Fav03, CDREP]. Additionally, when
the metamodel is adapted, a transformation that uses it as a source or target
must be adapted as well. The problem of transformation evolution is presented
in Subsection 2.3.2.

In [RHW+09], Rose et al. divide the approaches to coevolve a metamodel
and the models that conform to it into three groups:

• The first group is called manual specification and the idea is to manu-
ally develop a migration strategy in a programming or a transformation
language. This strategy requires a huge effort from the metamodel de-
veloper.

• The second group is called operator based coevolution. In this group the
metamodel is evolved by using a set of operators that are provided. Each
one of these operators is specified with a migration strategy to be applied
to the models that need to be migrated.

• Finally, the last group is calledmetamodel matching, in which a difference
model is calculated by differentiating the old and new metamodels or by
recording the changes to the existing metamodel.

In the group of manual specification, models are adapted manually in order
to evolve them. Manually performing this adaptation is an error-prone task
that could introduce inconsistencies between models and metamodels. The
ideal is to automatically update the models in order to avoid inconsistencies.

In the second group we find the work of Wachsmuth [Wac07]. In this work
the author proposes a transformational approach to assist metamodel evolu-
tion by stepwise adaptation. This means that the metamodel is evolved by
using transformations that abstract common operations such as refactoring,
constructing or destructing metamodel elements. This approach offers several
advantages over manual ad-hoc adaptation: 1) changes become explicit and
can be used as means of documentation and traceability, 2) several preser-
vation properties of transformations are stated that allow for qualifying an
adaptation according to semantics or instance-preservation, 3) coadaptation
of models is achieved automatically by co-transformations, and 4) adaptation

40
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

scripts are pieces of software on their own that can be reused in similar adap-
tation scenarios or can be modified to alter adaptation decisions.

Finally in the last group there are works like the one presented by Cicchetti
et al. in [CDREP, GJCB09]. In this work, it is proposed that the problem
of metamodel evolution is tackled in a high level way by using a difference
metamodel together with the related change representation mechanism. In
particular, the proposed automation is based on a model difference represen-
tation, which is used to record the metamodel changes in a difference model.
Thus, the coevolution is performed by using a HOT which takes the differ-
ence model and produces a model transformation able to coevolve the existing
models.

When a metamodel is adapted, the transformations that use the metamodel
as source or target must be modified as well. In the next subsection, we will
present researches that tackle the problems of metamodel and transformation
coevolution.

2.3.2 Transformation Evolution

Similar to metamodels, transformations are evolved due to the necessity of
supporting new domain concepts, new platforms, etc. The situations where
model transformations must be evolved are:

1. When the source or target metamodels are modified and the transforma-
tions must be adapted to support the new or modified concepts.

2. When the technological platform evolves or new requirements related
with the platform are added.

3. When new languages are added to the implementation and the new con-
cepts need to be integrated in the model transformations.

A research work that offers a solution to model transformation evolution
is presented by Roser and Bauer in [RB08]. In this work the authors pro-
pose an approach of ontology-based model transformation. This approach
integrates ontologies to automate the generation and evolution of model trans-
formations. Their proposal facilitates methods to generate and adjust model
transformations despite of the structural and semantic differences of metamod-
els. Different representation formats and different semantics are overcome by
annotating metamodels using concepts of a reference ontology. The reasoning
over the annotated metamodels allows for generating and adjusting common
model transformations automatically.

There are not many works related with the evolution of model transfor-
mations, mainly the evolution is managed by source evolution techniques or
with model transformation composition techniques. In model transformation

2.4 Solution: Separation of Concerns in MDE 41

composition techniques, there are several works such as the work presented
by Vanhoof et al. in [VB05], in which traceability information is injected and
used by transformation steps that are composed one after the other. The work
presented by Wagelaar et al. in [WVDSD10] propose a superimposition tech-
nique for composing rule-based model transformation languages. Finally, the
work presented by Etien et al. in [EMLB10] propose a mechanism to reuse
transformations in MTCs. The idea of this mechanism is to extend an ex-
isting transformation by obtaining a new transformation that has as source
metamodel an extended version of the original source metamodel.

However, when a metamodel or a transformation of a MTC is adapted, it
will trigger a series of changes in the metamodels and transformations that
follow the adapted artifact.

2.3.3 Ripple effect

As mentioned before, there are strong dependencies between the MTC arti-
facts. These dependencies are between metamodels and models, metamodels
and transformations, and between each transformation step and those which
follow it. In other words, when an MTC metamodel or transformation is mod-
ified due to the reasons mentioned before (e.g., domain evolution, platform
evolution), the subsequent metamodels and transformations must be adapted
as well in order to support the new domain concepts, or the new platform.
Therefore, if a change impacts a metamodel or a transformation, then the
complexity and cost of maintaining the consistency among all the artifacts
will increase. Therefore, every step should be carefully adapted to assure that
the chain is not broken and does indeed support the new concepts [KKS07].

In order to avoid directly modifying the existing metamodels and trans-
formations and to avoid the problems presented in Section 1.1, we envision a
solution that allows us to add the new concern independently of the existing
MTC. A strategy that can be used to maintain the existing MTC oblivious of
the change is to follow the SoC principle in the evolution of an existing MTC.
In order to understand how we apply the SoC principle in our solution, we
introduce the SoC ideas applied into MDE in the next section.

2.4 Solution: Separation of Concerns in MDE

There are some MDE approaches that follow the Separation of Concerns (SoC)
principle [Dij82] which states that the different aspects of a system should be
specified separately. In this section we present the two main approaches (i.e.,
AOM and multi-modeling) from which we take some ideas for our solution
to evolve an existing MTC. We use these ideas to specify the new concerns
independently of the existing MTC artifacts. Additionally, in this section we

42
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

present the notions behind model composition that we use in order to include
the new concern in the generated application.

2.4.1 Modeling Concerns

One of the approaches that follows the SoC principle is Aspect Oriented Mod-
eling (AOM)[SSK+07], which is based on the ideas of Aspect Oriented Software
Development (AOSD). This approach aims to provide new ways of modular-
ization in order to separate crosscutting concerns from traditional units of de-
composition during software development. Another approach that follows the
SoC principle and goes further is Multi-modeling [LH09]. In Multi-modeling,
multiple Domain Specific Modeling Languages (DSMLs) are used to specify
multiple concern models in order to specify a complex system. Each DSML
provides the most appropriate abstractions for each concern involved.

Aspect Oriented Modeling

The idea of encapsulating crosscutting concerns separately from the main pro-
gram in stand-alone modules was applied first by Aspect Oriented Program-
ming (AOP) [KLM+97]. The main goal of AOP is to offer developers a way
to specify crosscutting code in separated modules. These modules are called
aspects that contain the advice. The advice is the code that is going to be
inserted with the base program. The execution point where the advice is in-
serted is called a join point. The possible join points are specified (quantified)
by a pointcut expression. In AOP the composition of advices with the base
program is called weaving. Finally, AOP languages usually use a syntax sim-
ilar to the base language that improves their usability and homogeneity. An
example of an AOP language is ApectJ which uses Java signatures as pointcut
expressions.

With the arrival of model based techniques, AOP principles were trans-
lated to earlier phases in the software development cycle such as requirements,
analysis and design [SSK+07]. The goal of Aspect Oriented Modeling (AOM)
approaches is to specify a complex system by modeling multiple concerns at
a high-level of abstraction and to offer a mechanism to integrate the different
models.

It is possible to divide AOM approaches into two main categories [FR07].
On the one hand, there are approaches that provide modeling abstractions for
AOP concepts. Works in this category allow for modeling concepts such as join
points and advices to use extensions to UML. Once the main program and its
aspects are modeled, it is possible to generate AOP code using transforma-
tions. On the other hand, there are approaches that offer modeling techniques
for the requirements, analysis and design phases that allow us to specify mul-
tiple concern models separately and to analyze interactions across the concern

2.4 Solution: Separation of Concerns in MDE 43

models.

As presented before, in the first category, concepts such as join points and
advices are modeled [JCC09, Nai09]. It should be noted that these concepts
belong to the solution domain and not to the problem domain. As a result, this
situation creates a dissonance between the MDE goal of leaving out platform
concepts at high-level of abstraction and the AOP concepts used at a high-level
of abstraction. In this category, the models are translated to AOP code and
composition of the different aspects is performed by the weaving mechanism.

In the second category, multiple concerns are specified in the early phases
of the software development cycle [GS09, MBC09, BCA+06]. Traditionally,
AOSD has focused on the implementation phase: aspects are identified and
captured mainly in code. However, aspects are evident earlier in the life cycle,
such as during requirements gathering and architecture development. Identi-
fying these early aspects ensures that you can appropriately capture aspects
related to the problem domain. Additionally, it offers opportunities for early
recognition and negotiation of trade-offs and allows forward and backward as-
pect traceability. This makes requirements, architecture, and implementation
more seamless and lets you apply aspects more systematically. In the field of
AOM, the early aspects are defined as models are specified at high-level of ab-
straction. At a high-level of abstraction, each model represents a concern in its
early stages and is specified using concepts that belong to the problem domain.
In order to analyze the interactions among multiple concerns or to generate
the full application, these approaches must offer a composition mechanism.
Usually, the composition mechanism is based on name matching techniques to
identify the elements to compose.

A commonality between both categories is the use of a common modeling
language, such as UML. In the first category the common modeling language
is extended to specify join points and advices, and in the second category it is
extended to specify the different application concerns. In the case of the first
category, models are translated to the code level where they can be composed
using an AOP weaving mechanism. In the second category, the elements are
integrated based on syntactical similarities (e.g., model element name) and
take advantage of the common modeling language used to specify the base
model and its concerns. In both cases the use of a common language to specify
the base model and the different concerns avoids the complexity of integrating
models specified using heterogeneous languages. This heterogeneity would
impose the definition of a semantic alignment.

An additional approach that follows the SoC principle and uses multiple
DSML to specify various concerns is called Multi-modeling. Multi-modeling is
presented in the next subsection.

44
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

Multi-modeling

As presented before, DSMLs are created to reduce the gap between the problem
and the solution domains through the use of domain abstractions. However,
when a complex system is specified, it usually does not fit cleanly in a single
domain. Additionally, following the SoC principle, if it is necessary to specify
several concerns closer to the problem domain, then it is necessary to use
multiple DSMLs [HCW07]. These approaches are grouped in multi-modeling
techniques. In these approaches, the system should be specified using the
most appropriate modeling language(s) at the most appropriate level(s) of
abstraction [MV02].

An example of a multi-modeling approach is presented by Cicchetti and Di
Ruscio in [CDR08]. In this work the authors present a proposal for modeling a
web application using three independent models: a data model, a composition
model, and a navigation model. Each of these models is expressed with an
appropriate DSML, such as a Presentation DSML that expresses the presenta-
tion model using concepts of the presentation domain, such as dialogs, fields,
buttons, etc.

Multi-modeling approaches use several models which are specified using dif-
ferent DSMLs in oder to specify a complex system. Consequently, each model
conforms to a different metamodel. Although the use of different metamod-
els helps to specify the systems with concepts that are close to the problem
domain, it increases the complexity of combining, merging, and integrating
models that are specified at different levels of abstraction and conform to dif-
ferent metamodels. Additionally, Architectural Description Languages propose
the use of several views to specify a complex system. These languages are pre-
sented in the next subsection.

Architecture Description Languages (ADLs)

As the size and complexity of software systems grows, there is a increasing need
to describe the underlying structures of a system. The Architectural Descrip-
tion (AD) is used to specify these structures as a collection of architectural
models grouped into views. An Architectural Description Language (ADL)
defines the language concepts and semantics in which an AD is expressed
[MT00]. Early ADLs typically provide a language to describe a single concern
of an architecture [MDT07]. Later ADLs provide broader support, and try to
build a language that can be extended to support several concerns. Among
these extended ADLs we can find xADL. xADL is conceived as a language for
constructing domain specific ADLs. [DHT05].

When an AD consists of multiple models, an architect faces the problem
of bringing these models back together. In other words, a key requirement
when using multiple models is knowing how the individual models are related

2.4 Solution: Separation of Concerns in MDE 45

and knowing how the information in the models can be integrated to get a
better understanding of the architecture as a whole. Furthermore, the rela-
tionships that can be defined among the multiple AD models can be used for
several purposes, such as: composition [BH08, DRMM+10], consistency check-
ing [NEFE03] and achieving consistent changes through the multiple models
[THA07].

In [BH08], Boucke et al. propose an extension to xADL that offers three
new types of relationships that allow specifying and composing structural
views. These relationships are:

Unification: Unifies elements from different structural views with each other.
In other words it expresses that elements that appear in the different
views are actually the same element.

Mapping: Maps individual elements or groups of elements (called subjects)
from one structural view on a single element of another structural view
(called target). The subjects then become subelements of the target
element.

Refinement: Defines that a specific structural view (referred to as inner struc-
ture) describes a substructure for an architectural component (referred
to as outer component) of another structural view.

These relationships are first-class in the AD and supported by the ADL.
Additionally, they implemented a composition mechanism that integrates the
multiple views in a single model.

In [DRMM+10] Di Rucio et al. proposes a framework, called BYADL for
developing new generation of ADLs. This framework uses model-driven tech-
niques that allow a software architect, to define its own new generation ADL
by 1) adding domain specificities, new architectural views, or analysis aspects,
2) integrating ADLs with development processes and methodologies, and 3)
customizing ADLs by fine tuning them. Additionally, BYADL proposes four
types of composition operators:

Match: the related metaclasses semantically overlap and then they are merged
into a single metaclass. The composed metaclass contains the union of
all the structural features of the related metaclasses.

Inherit: this operator specifies that one related metaclass will be a subtype
of another related metaclass in the resulting composed metamodel.

Reference: In the composed metamodel one related metaclass references to
the other related metaclass.

46
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

Expand: The attributes of one related metaclass are copied into the other
related metaclass. It is possible to specify if the source is copied to the
composed metamodel.

One of the differences between the Di Rucio work [DRMM+10] and the
Boucke work [BH08] is that in the former the composition relationships are
independently defined at metamodel level between two different metamodels
in order to interoperate multiple ADLs. In the latest the relationships are
integrated in a fixed ADL to integrate its different views. The Di Rucio work
allows a more flexible solution to integrate models that are specified using
different languages. In our work we choose a similar approach as Di Rucio
independently defining our composition operators at metamodel level.

In the next subsection we will explain the concepts behind model compo-
sition.

2.4.2 Composing Concerns

When several models are used to define a complex system, these models must
be integrated in order to obtain the required application. Each one of these
models represents a concern of the complex system and can be specified using
a common modeling language or multiple DSMLs. In order to obtain the
required application we will need to perform a model composition.

Model composition is an operation that integrates two or more models into
a single model [DFBV06]. This composition is performed by using a model-to-
model transformation that requires two or more models as input and integrates
their elements into a single output model.

The most basic requirement to be able to compose two models is to identify
which elements will be composed [JFB08]. Most compositional approaches are
based on the use of the signature of the elements or a syntactical matching
algorithm to identify if two model elements represent the same concept or not.
However, it is not always possible to rely on syntactical properties and it is
necessary to use semantic properties than can be expressed as constraints or
as specifications of behavior when matching model elements [FR07].

When it is not possible to use syntactical or semantical properties to au-
tomatically identify the elements to compose, the only possible solution is to
manually identify the elements that represent the same concept. This iden-
tification can be done by establishing correspondence relationships between
the elements to compose. These relationships can be defined in a Correspon-
dence Model (CM) that contains the links between the models to compose
[BBDF+06].

2.4 Solution: Separation of Concerns in MDE 47

Correspondence Models & AMW

In [BBDF+06], Bézivin et al. define a Correspondence Model as a model rep-
resenting links between elements of different models. The metamodel of the
correspondence model (correspondence metamodel) needs to be extensible, be-
cause different matching and composition links can be defined (e.g., match,
override, correspondence, equality, merge, joint). The main elements in the
correspondence metamodel are: link and link endpoint. A link represents a
correspondence relationship between two elements in two different models. A
link endpoint refers to an element in one of the models by means of identifica-
tion functions. An identification function takes a link endpoint as input and
returns an element of a model.

A current implementation of a correspondence model is the Atlas Model
Weaver (AMW) [DFBV06]. AMW is a model composition framework that uses
model weaving and model transformations to produce and execute composition
operations. AMW is used to define relationships (i.e., links) between models.
The links are stored in a model, called weaving model that conforms to a
weaving metamodel.

In Figure 2.8 the weaving metamodel provided by AMW is presented. This
metamodel allows the creation of links between model elements and can be
extended to add other correspondence semantics. The main elements are:

1. WModel that represents the root element that contains all model ele-
ments.

2. WLink that expresses a link between model elements.

3. WLinkEnd that represents a linked model element.

name : String
description : String

WElement

WModel

WModelRef

ref : String
WRef

WElementRef

WLink

WLinkEnd

ownedElements

model

wovenModel

modelRef ownedElementsRef

element

link

parent

child

1..*

1..*

0..*

1..* end

0..*

Figure 2.8: AMW Metamodel (source [DFBV06])

In our research, we took inspiration from the AMW metamodel and plugin.
We did not use AMW because of compatibility and stability problems with the

48
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

new versions of Eclipse and ATL that were used in our research. The AMW
implementation was not maintained during the time of this research. For this
reason, we chose to define the Correspondence Metamodel. This metamodel
is presented in Section 5.2. Additionally a modeling tool was implemented
to allow creating instances of this metamodel. This tool is presented in Sec-
tion 6.4.1.

Once the corresponding elements in two models are identified, a composi-
tion of both models must be performed. In the next section we will explain
how model composition is performed.

On the one hand, when two or more models are expressed in a single DSML
(i.e., the models conform to the same metamodel) a homogeneous composition
is performed. On the other hand, when the models are expressed in differ-
ent DSMLs a problem arises because a heterogeneous composition is required.
Next, we will explain both types of composition.

Homogeneous composition

A homogeneous composition is the integration of models that conform to the
same metamodel. This means that the composition is performed between ele-
ments that conform to the same metaclass (e.g., composition of two Classes).
This is an ideal situation because there is no need to semantically align the
concepts of the language (i.e., they are the same concepts), and a single com-
position mechanism can be used. Additionally, if the two models conform to a
GPL based metamodel it is possible to go a little further and take advantage
of existing GPL based composition mechanisms.

In summary, the advantage of a homogeneous composition it that it is
possible to use the same composition mechanism for any number of concern
models because every model conforms the same metamodel. Additionally, if
we transform the multiple models into actual code, we can use code-based
composition mechanisms such as AOP.

Heterogeneous composition

Sometimes a system is specified using two or more models using several DSMLs
that are close to the problem domain. When this happens a heterogeneous
composition must be performed.

A heterogeneous composition is the integration of two models expressed
in two different languages. This means that the compositional semantics for
every pair of concepts in both languages needs to be defined for each pair of lan-
guages to compose. For instance to compose a Business model that conforms
to a Business metamodel and a Security model that conforms to a Security
metamodel a heterogenous composition will be required. For example, if we
have the concept Entity that belongs to a Business modeling language, and

2.4 Solution: Separation of Concerns in MDE 49

the concept Resource that belongs to a Security modeling language, then we
have to define what it means to compose them. For example, if the composi-
tion means that the Entity is protected, then every Service and Attribute of
the Entity will be protected as well. Similar, if a third language is added, a
composition semantics for each pair of languages will be required, increasing
the complexity of implementing a multi-modeling solution.

If the involved DSLs are fixed then it is possible to define a composition
mechanism that is capable of integrating the models expressed using the de-
fined languages. For instance, in the work that we mentioned before by Ci-
cchetti and Di Ruscio in [CDR08], a web application is modeled using three
independent models: a data model, a page structure model, and a navigation
model. Each of these models is expressed with an appropriate DSML, for ex-
ample a Presentation DSML expresses the presentation model using concepts
of the presentation domain, such as dialogs, fields, buttons, etc. In this pro-
posal, the three models are the inputs of a transformation rule that composes
them and generates an integrated model that conforms to a common target
metamodel. In this case the three input languages are fixed and implementing
a composition mechanism for them is a suitable option.

However, if a new DSML (e.g., a Security DSML) is added to the existing
three (i.e., Data DSML, Page Structure DSML and Navigation DSML), then
an adaptation of the composition transformation will be required. This adap-
tation should manage the concepts of the new DSML as well as integrate the
new models specified with the new DSML with the other three models. There-
fore, for any unanticipated added DSML, the composition mechanism must be
modified increasing the costs of maintenance of the MDE implementation.

In [VdL02], Vangheluwe et al. state that in order to simulate a system that
is specified in different formalisms (e.g., Petri Nets, Finite State Automata,
State Charts, Queueing networks) there are three options:

1. Using a super-formalism which subsumes the different formalisms of the
sub-models (e.g., DEVS&DESS Zeigler et al., 2000)

2. Transforming the different sub-models into one common formalism.

3. Using a co-simulation approach, where each of the sub-models is simu-
lated with a formalism-specific simulator.

In our work, in order to reuse a low-level composition mechanism and to re-
duce the complexity of evolving an existing MTC, the strategy that fits best is
transforming each model into a common formalism (i.e., a common metamodel
in our case). Using this strategy, we avoid having to perform a heterogeneous
composition at high-level of abstraction and having to perform a homogeneous
composition at the low-level of abstraction. Moreover, if the common meta-
model is a technological platform metamodel, it is possible to take advantage

50
Chapter 2. MDE, Evolution in MDE, and Separation of Concerns

in MDE

of an existing composition mechanism for the platform. Usually, at platform
level there are several tested and commonly used composition mechanisms,
such as AspectJ for Java.

2.5 Summary
In this chapter we have presented the concepts and ideas behind Model Driven
Engineering (MDE), several works that try to tackle the problems that arise
when an MDE is evolved, and the concepts behind the application of the SoC
principle to MDE, which are used in our solution.

In the first sections, we show how MDE helps to increase the level of ab-
straction using models, metamodels, and transformations. The models that
are expressed at the high-level of abstraction are used to generate low-level
implementations by using automatic model transformations. Several of these
model transformations are chained together in order to produce applications.
The use of several transformation steps helps to tackle the complexity of imple-
menting a single "almighty" transformation. Additionally, we have explained
the importance of model traceability when automatic transformations are used.
Next, several works are presented showing the state of the art in MDE evolu-
tion. Finally, in addition to the leverage given by abstraction, when complex
systems are specified, it is important to follow the SoC principle to modularize
the system. We apply the SoC principle in our solution by using the concepts
behind AOM and Multi-modeling techniques.

Chapter 3
Evolving a Model Transformation Chain

3.1 Introduction
As we search for a suitable strategy to evolve an existing Model Transformation
Chain (MTC), we look for inspiration in other research fields such as Aspect
Oriented Programming (AOP) [KLM+97], Aspect Oriented Modeling (AOM)
[SSK+07], Multi-modeling [LH09], etc. We have studied multiple works seeking
out strategies that allow the specification of several concerns and which are
automatically composed to produce a full application. We translate the ideas
of these works into the field of MTC evolution and we analyze the strategies in
order to identify advantages and disadvantages of each one. We define the key
criteria that allow us to compare the strategies. These criteria allow us to select
the most suitable strategy according to our goal of performing a non-invasive
evolution of an existing MTC.

In order to explain the selected strategies, we first introduce a case study in
Section 3.2 where an instance of an MTC and its components (i.e., metamodels,
models and transformations) are illustrated. In Section 3.3, we present an
evolution scenario where a new concern is added which cannot be expressed
using the existing MTC’s metamodels. Additionally, in this section we describe
the key criteria that we use to compare the potential strategies. Finally, in
Section 3.4 we present the analysis and comparison of the different strategies
using the key criteria.

3.2 A running example: Business-to-Java MTC
As presented in Section 2.2.5, an MTC is a set of transformations that are put
together in order to convert a high-level model that is rooted in the problem
domain into a low-level model that is rooted in the solution domain. In addition
to the translation from problem domain concepts to solution domain concepts,
the transformation chain adds implementation details in every transformation

51

52 Chapter 3. Evolving a Model Transformation Chain

step. In the last step of the chain, there is a model-to-text transformation that
produces the code of the software system.

In order to illustrate the problems that arise when a non-expected concern
is added to an existing MTC, we will use a running example. For this, we use
an instance of an MTC that allows specifying applications based on compo-
nents and generating their implementation in Java Enterprise Edition (JEE)
[CS09]. The MTC takes the high-level model that conforms to the Business
metamodel and transforms it in several steps into a low-level model that con-
forms to the Java metamodel. Finally, this model is transformed into Java
code. The generated applications will offer basic CRUD functionalities such as
insert, update, delete, and retrieve for the information of the business entities.
This particular case study is used throughout this dissertation for illustration
purposes. Figure 3.1 presents the MTC with its metamodels, models, and
transformations. We use this MTC to produce a risk management application
named Risk. This application needs to manage multiple software projects that
are developed in a company and the risks that affect each project (e.g., per-
sonnel shortage, missing requirements, schedule slips). A project is threatened
by a set of risks and each risk has associated some mitigation plans. These
plans allow the reduction of the impact of each threat in the project.

BUSINESS MODEL
Mbusiness

JAVA MODEL
Mjava

BUSINESS METAMODEL
MMbusiness

JAVA METAMODEL
MMjava

ARCHITECTURE MODEL
Marchitecture

ARCHITECTURE METAMODEL
MMarchitecture

JEE MODEL
Mjee

JEE METAMODEL
MMjee

TRANSFORMATION
BUSINESS TO ARCHITECTURE

Tbus2arch

TRANSFORMATION
ARCHITECTURE TO JEE

Tarch2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

JAVA CODE GENERATION
Gjava

Figure 3.1: Business-to-Java MTC

Our case study uses a high-level metamodel in which the concepts of En-
terprise Applications are represented. We call this metamodel the Business

3.2 A running example: Business-to-Java MTC 53

Metamodel , which contains metaclasses such as BusinessEntity and Service.
Using this metamodel we specify a Business Model for Risk. By applying
several model-to-model transformations to the Business model, we obtain a
low-level Java model that conforms to a Java based metamodel. We call this
metamodel the Java Metamodel which contains metaclasses such as Class,
Field and Method. Finally, this low-level model is transformed into Java code
using a model-to-text transformation.

In this specific case study we decide to split the transformations from Busi-
ness to Java into three model-to-model transformations and one model-to-text.
The rationale behind this division is based on having four levels of abstraction
related to the experts involved. The first level of abstraction is related to the
business modeler. At this level the business modeler can specify the applica-
tion using business concepts. Next, the first model-to-model transformation
brings the business concepts into the level of software architecture concepts.
These concepts are defined in the Architecture Metamodel. This metamodel
contains concepts such as Layers and Communication between the layers. The
next model-to-model transformation brings the architecture concepts into the
JEE platform concepts. In this level, the architecture concepts are transformed
into the actual JEE mechanisms. The used JEE Metamodel contains concepts
such as EntityBean and SessionBean. The last model-to-model transformation
transforms the JEE model into a Java model. This last step transforms the
JEE concepts into actual Java concepts such as Class and Method. Finally, a
model-to-text transformation transforms the Java model into text generating
the application Java code and other required artifacts such as XML descrip-
tors. This final transformation uses as input a model that conforms to a Java
metamodel and serializes it in the form of Java files.

3.2.1 High-Level Business Metamodel (MMbusiness) and
Model (Mbusiness):

Figure 3.2(a) presents a part of the high-level business metamodel. The es-
sential concept of this metamodel is BusinessEntity, which represents business
entities of the application, such as Project or Risk. A BusinessEntity has
Attributes, Associations and Services. Figure 3.2(b) shows a part of the Risk
high-level model: Project represents a managed project; Risk represents a
risk that threatens the Project. Additionally, each risk has mitigation plans
represented by Plan. Project, Risk and Plan are concepts that conform to
the BusinessEntity concept. In this model the BusinessEntity Project has the
Attributes name, and dueDate. The BusinessEntity Project has the Associa-
tion risks to the BusinessEntity Risk representing all the risks that threaten
the project. Additionally, the BusinessEntity Risk has the Association plans
to the BusinessEntity Plan representing the mitigation plans for a specific risk.

54 Chapter 3. Evolving a Model Transformation Chain

The complete metamodel is presented in Appendix A.1.

3.2.2 Architecture Metamodel (MMarchitecture) and Model
(Marchitecture)

The main objective of the Architecture Metamodel is to provide concepts that
allow the specification of a multi-tier application as well as platform inde-
pendent architectural patterns such as the BusinessDelegate pattern. Subse-
quently, the main concept is Layer, which is an abstract concept specialized
into PresentationLayer, ApplicationLayer, SystemServicesLayer, BusinessSer-
vicesLayer, PersistenceLayer and DataSourceLayer. These layers are related
to each other by Communications that are constrained to only communicate
"adjacent" layers. The constraints are expressed as OCL constraints in the
metamodel. The complete metamodel is presented in Appendix A.2.

3.2.3 Business to Architecture Transformation (Tbus2arch)

The Business to Architecture model-to-model transformation (Tbus2arch)1 takes
each BusinessEntity and transforms it into the multiple layers involved in the
required multi-level application. The transformation is responsible for connect-
ing each of these layers to the adjacent ones. Additionally, the transformation
should connect the layers that came from a BusinessEntity with the layers that
came from other BusinessEntity related to the first one. For instance, Fig-
ure 3.3 presents part of the transformation2. In this transformation the Busi-
nessEntities Project, Risk and Plan are each transformed into six Layers.
The PresentationLayer Project should be connected with the Application-
Layer Project, the ApplicationLayer Project with the SystemServicesLayer
Project, the SystemServicesLayer Project with the BusinessServicesLayer
Project and so on. Additionally, the SystemServicesLayer Project should be
connected to both the BusinessServicesLayer Project and BusinessServices-
Layer Risk due to the relation risks between them. In Figure 3.3 only the
transformation of the BusinessEntity Project is presented and even though
for a simple element, one immediately sees the complexities involved in the
corresponding transformation.

1The code of this transformation is available at http://qualdev.uniandes.edu.co/
mtcframework

2The UML Package representation is used to depict a model.

http://qualdev.uniandes.edu.co/mtcframework
http://qualdev.uniandes.edu.co/mtcframework

3.2 A running example: Business-to-Java MTC 55

(a) Business metamodel

Project: BusinessEntity

name: Attribute dueDate: Attribute

Risk: BusinessEntity

name: Attribute

risks: Association

attribute attribute

association

businessEntity

(b) Business model

Figure 3.2: Business model and metamodel

56 Chapter 3. Evolving a Model Transformation Chain

Marchitecture

Mbusiness

Project: PresentationLayer

Project: Entity

Project: ApplicationLayer Project: SystemServicesLayer Project: BusinessServicesLayer Project: PersistenceLayer Project: DataSourceLayer

: Communication

source target

: Communication

source target

: Communication

source target

: Communication

source target

: Communication

source target

Tbus2arch

Figure 3.3: Business to Architecture Transformation (Tbus2arch)

3.2.4 Java Enterprise Edition Metamodel (MMjee) and
Model (Mjee)

The main objective of the Java Enterprise Edition Metamodel is to provide
concepts that belong to the JEE Application Server platform. This metamodel
contains platform specific concepts of JEE such as EntityBean and Session-
Bean. These concepts are the mechanisms that implement the SystemSer-
vicesLayer and the BusinessServicesLayer in the JEE platform. The complete
metamodel is presented in Appendix A.3.

3.2.5 Architecture to JEE Transformation (Tarch2jee)

TheArchitecture to JEE model-to-model transformation (Tarch2jee)3 is in charge
of translating the architectural concepts into actual technological platform con-
cepts. For instance, the SystemServicesLayer is implemented in JEE as a
SessionBean. Additionally, the BusinessServicesLayer is implemented in JEE
as a EntityBean. At this level, the model represents the required application
from the JEE expert point of view. Figure 3.4 shows the transformation for
the SystemServicesLayer Project and Risk and for the SystemBusinessLayer
Project and Risk into JEE concepts.

3.2.6 Low-Level Java Metamodel (MMjava) and Model
(Mjava) :

The main objective of the Java Metamodel is to provide a representation of the
Java Language. This metamodel contains concepts such as ClassDeclaration,

3The code of this transformation is available at http://qualdev.uniandes.edu.co/
mtcframework

http://qualdev.uniandes.edu.co/mtcframework
http://qualdev.uniandes.edu.co/mtcframework

3.2 A running example: Business-to-Java MTC 57

Marchitecture

Project: SystemServicesLayer Project: BusinessServicesLayer

: Communication

source target

Risk: SystemServicesLayer Risk: BusinessServicesLayer

: Communication

source target

: Communication

source

target

Mjee

Project: SessionBean Project: EntityBean

: Association

source target

Risk: SessionBean Risk: EntityBean

: Association

source target

: Association

source

target

Tarch2jee

Figure 3.4: Architecture to JEE Transformation (Tarch2jee)

MethodDeclaration, FieldDeclaration, etc. At this level of abstraction every
platform specific detail of the required application is specified in the model.
The metamodel is based on the J2SE5 Metamodel of the MoDisco project
(http://wiki.eclipse.org/MoDisco/J2SE5). This metamodel is the reflec-
tion of the Java language and a small fragment of it is presented in Figure 3.5.
Additional fragments of the metamodel are presented in Appendix A.4.

3.2.7 JEE to Java Transformation (Tjee2java)

The final model-to-model transformation translates the JEE concepts into
low-level Java concepts4. For instance, the SessionBean Project is trans-
formed into the ClassDeclaration ProjectSession and the InterfaceDeclara-
tions IProjectLocal and IProjectRemote. The ClassDeclaration implements
both InterfaceDeclaration, which correspond to the actual Java implementa-
tion of a SessionBean. In addition, an Attribute is transformed into a Field
and a getter and a setter DeclareMethod are added for it. Figure 3.6 presents
part of the transformation.

4The code of this transformation is available at http://qualdev.uniandes.edu.co/
mtcframework

http://wiki.eclipse.org/MoDisco/J2SE5
http://qualdev.uniandes.edu.co/mtcframework
http://qualdev.uniandes.edu.co/mtcframework

58 Chapter 3. Evolving a Model Transformation Chain

PackageDeclaration

AbstractTypeDeclaration

TypeDeclaration

ClassDeclaration

InterfaceDeclaration

BodyDeclaration

FieldDeclaration

MethodDeclaration

Annotation

ownedElements

bodyDeclarations

annotations

Figure 3.5: Java Metamodel (MMjava)

Mjee

Project: SessionBean Project: EntityBean

: Association

source target

name: Attribute

attribute

Mjava

ProjectSession: DeclaredClass Project: DeclaredClass

name: Field

IProjectLocal: DeclaredInterface

superInterface

bodyDeclaration

getName: DeclaredMethod

setName: DeclaredMethod

bodyDeclaration

bodyDeclaration

entity: Field

bodyDeclaration
type

Tjee2java

IProjectRemote: DeclaredInterface

superInterface

Figure 3.6: JEE to Java Transformation (Tjee2java)

3.2 A running example: Business-to-Java MTC 59

3.2.8 Code Generation (Gjava):

The last step is a model-to-text transformation that generates the Java files
of the application. The code generation process takes every element in the
model and serializes it in the form of Java files, method signatures and Java
statements. These Java files are the platform specific representation of the
required application. Moreover, XML descriptors are generated as well.

3.2.9 Business-to-Java MTC

The Business-to-Java MTC is used to produce a risk management Web ap-
plication by transforming a high-level model into Java code. The high-level
model is processed by three model-to-model transformations that translate
the concepts of the Business model into Architecture concepts, then into JEE
concepts, and finally into Java concepts. Each transformation translates the
concepts and adds implementation details to the model. Finally, the Java code
is generated by a model-to-code transformation. Figure 3.7 presents a screen-
shot of Risk. However, as the number of users of Risk increases, it becomes
necessary to protect the application by adding authentication and authoriza-
tion mechanisms. In the next section, we present an evolution scenario in
which we will add a security concern to the existing MTC in order to generate
secured Web applications.

Figure 3.7: A Risk screenshot

60 Chapter 3. Evolving a Model Transformation Chain

3.3 Adding a new Concern

Suppose that the number of Risk users has increased and as a consequence
it is now required to modify the MTC in order to generate a secured ver-
sion of it. Specifically, we must control the users access to Risk information
and services. The new authorization requirements for Risk cannot be speci-
fied and implemented using the existing MTC. In other words, the Business
metamodel concepts cannot be used to specify security, neither the existing
transformations. A possible solution is to directly extend the existing MTC.
However, with this solution we will find several problems due to the impact
of the changes in the MTC artifacts. These changes are necessary in order to
include the security concepts and platform specific mechanisms to enforce the
authorization policies.

In order to choose the best strategy to evolve the existing MTC, we look
for inspiration in other research fields such as Aspect Oriented Programming
(AOP) [KLM+97], Aspect Oriented Modeling (AOM) [SSK+07], Multi-modeling
[LH09], etc. We choose works where a concern was independently specified
from the main application and automatically composed with it. Inspired by
these works we identify five possible strategies that can be used to evolve an
existing MTC and we compare them using the key criteria. From the analysis
of the different strategies we identify the most suitable one and adapt it to
evolve an existing MTC.

3.3.1 Key Criteria

When it is necessary to modify an existing MTC by adding a new set of re-
quirements that cannot be specified using the existing assets, it is important to
use an approach that preserves the original MTC artifacts. We have identified
the key criteria as a basis to compare potential strategies and choose the most
suitable one to evolve an existing MTC. Each key criterion is related with one
or more of the research goals presented in Section 1.2. Additionally, each key
criterion is paired with a question that allows us to determine if the strategy
has a positive or a negative impact on the evolution of an MTC. A summary of
the research goals that were presented in Section 1.2.2 is showed in Table 3.1
and a summary of the key criteria and their respective questions is presented
in Table 3.2.

Criterion 1 (C1): Impacted artifacts

As previously explained, there are strong dependencies between the MTC ar-
tifacts. These dependencies are between metamodels and models, metamodels
and transformations, and each transformation step and those that follow it.
Thus, if a change impacts a metamodel or a transformation, then the com-

3.3 Adding a new Concern 61

Goal Description
Goal 1 (G1) Concern-specific Modularization
Goal 2 (G2) Specifying multiple concerns at high-level of abstraction
Goal 3 (G3) Enabling an oblivious mechanism to integrate new concern-

specific requirements

Table 3.1: Research Goals

plexity of maintaining the consistency among all the artifacts will be increased
[KKS07]. Therefore, the strategy used must minimize the changes to the ex-
isting MTC artifacts reducing the impact of adding a new concern. This is
one of the most desired criterion in order to reduce the complexity of change.
Therefore, we must identify the impacted artifacts (i.e., metamodels, models
and transformations).

Related Goals: G1: Concern-specific Modularization, G2: Specifying
multiple concerns at high-level of abstraction, and G3: Enabling an oblivious
mechanism to integrate new concern-specific requirements.

The question to answer is: Do the existing metamodels, models and
transformation remain unchanged?

Criterion 2 (C2): Use of high-level concern-specific concepts

The use of Domain-Specific Modeling Languages (DSMLs) increases the level
of abstraction and gives domain experts suitable concepts for specifying an ap-
plication close to the problem domain [TK05]. The use of high-level concern-
specific concepts will allow the concern experts to specify the new concern re-
quirements close to the concern domain. This means that MTC metamodel(s)
should offer concern concepts that allow us to model the new requirements.
These new concern concepts should be defined at a correct level of abstraction.

Related Goals: G2: Specifying multiple concerns at high-level of abstrac-
tion.

The question to answer is: Are concern-specific concepts available in
the metamodel(s) to specify the added concern?

Criterion 3 (C3): Metamodel pollution

As presented in Section 1.1.1, adding concepts to a metamodel that clearly
do not align with its existing concepts is detrimental to the metamodel un-
derstandability and maintainability. A key criterion to analyze a strategy for
evolving an MTC is to avoid metamodel pollution.

Related Goals: G1: Concern-specific Modularization, and G2: Specifying
multiple concerns at high-level of abstraction.

62 Chapter 3. Evolving a Model Transformation Chain

Criterion Goals Question
C1: Impacted Artifacts G1, G2 G3 Do the existing metamodels,

models and transformations re-
main unchanged?

C2: High-level concern con-
cepts

G2 Are concern-specific concepts
available in the metamodel(s) to
specify the added concern?

C3: Metamodel Pollution G1, G2 Are the metamodels free of alien
concepts that do not belong to
their domain?

C4: Monolithic Models G1 Is a set of concern-specific models
used to specify the whole applica-
tion?

C5: Number of impacted ele-
ments

G3 Are the model elements impacted
by the new concern specified at a
high-level of abstraction?

C6: Identification complexity G3 Is the new concern specified at the
same level of abstraction as the el-
ements it affects?

C7: Integration mechanism G1, G3 Is it possible to use a common in-
tegration mechanism?

Table 3.2: Key criteria

The question to answer is: Are the metamodels free of alien concepts
that do not belong to their domain?

Criterion 4 (C4): Monolithic model

Section 1.1.1 explains that adding specifications of new concerns to an existing
model increases the complexity of the model and makes it more difficult to
comprehend and maintain. It is undesirable to specify the complete application
in a single monolithic model. The use of several concern-specific models follows
the SoC principle reducing the complexity of specifying and evolving each
model [Rea89, KLM+97]. Additionally, the existing models are unchanged
and the new concerns are added externally.

Related Goals: G1: Concern-specific Modularization.

The question to answer is: Is a set of concern-specific models used to
specify the whole application?

3.3 Adding a new Concern 63

Criterion 5 (C5): Number of impacted model elements

At a high-level of abstraction, a large number of implementation details are
excluded. In addition to the translation from problem domain concepts to
solution domain concepts, the transformation chain adds implementation de-
tails in every transformation step. This results in a reduced set of elements
in high-level models with respect to the low-level models. This implies that
the number of impacted elements is lower in higher-levels than in lower-levels.
Therefore, identifying the changed model elements will be a simpler task at
the high-level than in the lowest level.

Related Goals: G3: Enabling an oblivious mechanism to integrate new
concern-specific requirements.

The question to answer is: Are the model elements impacted by the new
concern specified at a high-level of abstraction?

Criterion 6 (C6): Complexity of identifying the impacted model
elements

When the new concern requirements are specified at a different level of abstrac-
tion than the existing elements that they affect, you need to have knowledge
of the two abstraction levels involved (e.g., concern level and platform level).
This will increase the complexity of identifying the impacted model elements.
The ideal scenario would be to define the changes and identify the changed
elements at the same level of abstraction.

Related Goals: G3: Enabling an oblivious mechanism to integrate new
concern-specific requirements.

The question to answer is: Is the new concern specified at the same
level of abstraction as the elements it affects?

Criterion 7 (C7): Common integration mechanism

Once the new requirements are specified they need to be integrated with the
existing artifacts. Having in mind to reuse the evolution strategy with several
existing MTCs and multiple added concerns, a common integration mechanism
should be used. This mechanism should be metamodel independent in order
to be reusable for adding different concerns to an existing MTC.

Related Goals: G1: Concern-specific Modularization, and G3: Enabling
an oblivious mechanism to integrate new concern-specific requirements.

The question to answer is: Is it possible to use a common integration
mechanism?

64 Chapter 3. Evolving a Model Transformation Chain

3.4 Evolution Strategies
Studying several works in other fields such as AOP, AOM, and multi-modeling,
we found five strategies that use multiple concern specifications to describe an
application. All have in common that the specifications should be integrated
in order to obtain the required application. We have adapted these strategies
in order to evolve an existing MTC. These strategies have both advantages and
drawbacks. We will analyze the different strategies using the criteria presented
before in order to identify the most appropriate one to evolve an MTC. It is
important to consider that these strategies are used in other research fields in
the context of describing an application using multiple concern specifications.

Figure 3.8 shows a schema of each strategy. In this figure it is possible to
see where (i.e., high-level vs. low-level) the new concern is added, how it is
related with the existing artifacts and where it is integrated with the existing
MTC. The strategies are:

(a) Extending the high-level metamodel (presented in Figure 3.8(a)). In this
strategy, new concepts are directly added to the existing metamodel and
they are used to express the new requirements.

(b) Composing high-level models (presented in Figure 3.8(b)). In this strategy,
a new concern model is added at a high-level of abstraction, and immedi-
ately composed with the existing high-level model.

(c) Composing low-level models (presented in Figure 3.8(c)). In this strategy, a
low-level concern model is added and composed with the existing low-level
model.

(d) Mixed-level composition (presented in Figure 3.8(d)). In this strategy,
a high-level concern model is added and it is related with the existing
low-level model, after which the new concern model is transformed and
composed.

(e) Parallel model transformation chain (presented in Figure 3.8(e)). In this
strategy, a new concern-specific MTC is added and aligned with the ex-
isting one. The alignment is propagated through the whole MTCs and is
used to guide the composition of the low-level models.

3.4.1 Extending the High-level Metamodel

The first strategy is to directly extend the high-level metamodel with the
new concern concepts. For instance, to extend the Business metamodel with
authorization concepts. Figure 3.9 shows the detailed strategy schema and the
impacted artifacts.

3.4 Evolution Strategies 65

HIGH-LEVEL
FULL

MODEL

LOW-LEVEL
FULL

MODEL

*
*

* CHANGED ARTIFACT

HIGH-LEVEL
FULL

METAMODEL*

LOW-LEVEL
METAMODEL

(a) Extending the High-level Metamodel

HIGH-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

HIGH-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

HIGH-LEVEL
FULL

MODEL

CM

LOW-LEVEL
FULL

MODEL

HIGH-LEVEL
FULL

METAMODEL

*
* CHANGED ARTIFACT

(b) Composing High-level Models

HIGH-LEVEL
MODEL

LOW-LEVEL
MODEL

LOW-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

LOW-LEVEL
FULL

MODEL

CM

(c) Composing Low-level Models

HIGH-LEVEL
MODEL

LOW-LEVEL
MODEL

LOW-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

HIGH-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
FULL

MODEL

CM

CM

(d) Mixed-level Composition

HIGH-LEVEL
MODEL

LOW-LEVEL
MODEL

LOW-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

LOW-LEVEL
METAMODEL

HIGH-LEVEL
MODEL

HIGH-LEVEL
METAMODEL

LOW-LEVEL
FULL

MODEL

CM

CM

(e) Parallel Model Transformation
Chains

Figure 3.8: Evolution strategies

66 Chapter 3. Evolving a Model Transformation Chain

JAVA/SECURITY MODEL

BUSINESS/SECURITY MODEL

BUSINESS/SECURITY METAMODEL

ARCHITECTURE/SECURITY MODEL

ARCHITECTURE/SECURITY METAMODEL

JEE/SECURITY MODEL

JEE/SECURITY METAMODEL

JAVA METAMODEL

TRANSFORMATION
BUSINESS/SECURITY TO ARCHITECTURE/SECURITY

TRANSFORMATION
ARCHITECTURE/SECURITY TO JEE/SECURITY

TRANSFORMATION
JEE/SECURITY TO JAVA

JAVA CODE GENERATION

*

*

*

*
*

*

*

*

*

* CHANGED ARTIFACT

Specific Security concepts

+ ADDED ARTIFACT

Figure 3.9: Extending the High-level Metamodel

In [BDL06], an approach called Model-Driven Security is presented. The
goal of this research is to model an application and its security requirements
using a high-level modeling language. This approach presents a general schema
that is called dialect for constructing languages that combine system modeling
languages with a security modeling language. Using this approach, an entire
application can be specified together with access control requirements.

In order to extend the existing MTC using this approach, the first step is
to extend the Business metamodel using the dialect mechanism and to add the
concepts of the SecureUML metamodel [LBD02] to it. The SecureUML meta-
model contains concepts that belong to the authorization concern. Applying
this approach we obtain a single adapted metamodel that allows us to express
the complete application and its security requirements in a single model. How-
ever, extending a metamodel with concepts from a different domain makes the
metamodel polluted with alien concepts, increasing its complexity and reduc-
ing its comprehensibility, as presented in Section 1.1.1.

Once the extended metamodel (i.e. Business Metamodel and Security
metamodel) is defined, it is possible to use the new concepts to specify the au-
thorization policies of the application in the same model in which the business
concepts are specified. As presented in Section 1.1.2, using a single monolithic
model that expresses every involved concern in the application increases the
complexity of evolving it.

Additionally, not only the Business metamodel should be extended, but the
Architectural model and the JEE metamodel should be extended as well having
in mind to include the security concepts at their specific level of abstraction

3.4 Evolution Strategies 67

(i.e., architectural level, Java application server level). The Java metamodel
does not need to be extended because it offers the required concepts to express
authorization (i.e., Java annotations).

It is obvious that if the Business metamodel, the Architectural metamodel
and the JEE metamodel change, the Business to Architecture (Tbus2arch) and
the Architecture to JEE (Tarch2jee) transformations must be modified as well.
Finally, the JEE to Java transformation (Tjee2java) must be modified due to
the changes to the JEE Metamodel and to be able to generate security anno-
tations with the required authorization policies in the Java model. The Code
Generation (Gjava) does not require to be extended because the fact that the
Java metamodel is unchanged and that Java annotations belong to it.

In conclusion, this strategy is only suitable also for evolving a small MTC
(i.e., small set of metamodel elements, simple transformations). However, it
is not appropriate for adding a new concern into large MTC. Because this
strategy requires the modification of almost every metamodel and transforma-
tion to be able to manage the new security concepts we consider this strategy
inappropriate to evolve an existing MTC. The use of this approach is more
appropriate for a new MTC built with security in mind. Table 3.3 shows a
summary of the criteria analysis. Below, we briefly discuss the criteria for this
strategy.

Criterion 1 (C1): Impacted Artifacts

This strategy is highly invasive. It requires the modification of almost every
MTC existing artifact in order to introduce the new concern. The modi-
fied artifacts are: Business Metamodel (MMbusiness), Architecture Metamodel
(MMarchitecture), JEE Metamodel (MMjee), Business model (Mbusiness), Busi-
ness to Architecture Transformation (Tbus2arch), Architecture to JEE Transfor-
mation (Tarch2jee), and JEE to Java Transformation (Tjee2java). Therefore, this
criterion is negative.

Criterion 2 (C2): Use of high-level concern-specific concepts

This strategy offers high-level concepts to specify the authentication policies.
This allows security experts to specify their requirements using suitable con-
cepts. Therefore, this criterion is positive.

Criterion 3 (C3): Metamodel pollution

The Business metamodel is polluted with Security concepts. This reduces the
comprehensibility of the metamodel and increases the complexity of evolving
it as well as of specifying models that conform to it. Therefore, this criterion
is negative.

68 Chapter 3. Evolving a Model Transformation Chain

Criterion 4 (C4): Monolithic Model

The Security authentication policies are specified in the same model as the
Business specification. This increases the complexity of specifying the appli-
cation and its security. Additionally, having a monolithic model makes the
evolution of the required application a difficult task. Therefore, this criterion
is negative.

Criterion 5 (C5): Number of impacted model elements

The model elements affected by the new requirement are identified at the high-
level model, thus the number of changed elements are less than in the lower
level models. Therefore, the tasks that the application modeler should perform
in order to identify the elements to be secured is simpler than in a lower level.
Therefore, this criterion is positive.

Criterion 6 (C6): Complexity of identifying the impacted model
elements

The new requirements and the changed elements are at the same level of ab-
straction. This is to change the high-level Business model adding the autho-
rization policies to its elements. Therefore, this criterion is positive.

Criterion 7 (C7): Common integration mechanism

The changes are manually added into the existing business model, metamodel
and transformations. If an additional concern is added, then it will be necessary
to manually add in the changes again. Therefore, this criterion is negative.

3.4.2 Composing High-level Models

Another possible strategy is to add a new independent high-level model where
the new security requirements are specified. This new model conforms to a
security metamodel and it will allow the concern experts to specify the new
requirements using authorization concepts. Using this strategy, it is possible
to maintain the Business Metamodel clean and the Business model oblivious
of the added concern models. Having separate models reduces the complex-
ity of specifying and evolving the modeled applications. For instance, in the
presented case study, we have a Business model and a Security model. As a
Business model it is possible to use one of the existing business models (e.g.,
the Risk business model), and protect it without any direct modification. The
Security model can be defined by a security expert using the SecureUML meta-
model independently. In the Security model the authorization policies required
to protect the application can be specified. There are two possible options to

3.4 Evolution Strategies 69

bring the two high-level models to the platform specific level. The first one
is to directly compose the models into a merged high-level model and then
transform that model into a low-level model. Figure 3.10(a) shows the de-
tailed schema of this strategy when the models are composed into a high-level
merged model. The second option is to transform and compose the two high-
level models into a low-level model. Figure 3.10(b) shows the detailed schema
of this strategy when the models are composed and translated into a low-level
platform model at the same time.

Once both models are defined, it is necessary to align them. This can be
done by using correspondence relationships between the models. These rela-
tionships allow the application modeler to identify the corresponding elements
in each model. The modeler must identify the corresponding elements and
obtain the correspondence model.

Once the Business model and the Security model are aligned using corre-
spondence relationships, it is necessary to integrate the models. This is done
by performing a composition. However, at a high-level of abstraction, both
models conform to different metamodels and a heterogeneous composition is
required. This means that one has to define how each pair of business and
security concepts should be composed. For instance, a BusinessEntity with a
secured Resource, an Attribute with a secured Resource, etc. A heterogeneous
composition requires the definition of a composition semantics for every pair
of involved concerns and the implementation of a composition mechanism that
increases the complexity of evolving an MTC.

After the two models are composed, it is possible to obtain a model that
conforms to a metamodel containing concepts of the business domain and
the security domain similar to the extended metamodel used by the previous
strategy. This means that a high-level metamodel that allows to express every
involved concern must be used. This kind of composition is used in [CDR08],
in which a Web application is specified using three high-level models: a Data
model where the data structures and their relationships are specified, a Nav-
igation Model where the navigation paths are specified, and a Composition
model where the Web pages’ structure is specified. These three models are
aligned using correspondences between them and eventually composed into a
single model that conforms to a combined metamodel containing concepts of
the three domains (i.e., data, navigation and composition). Finally, the com-
posed high-level model should be transformed into a low-level platform specific
model in order to obtain the required application. The goal of the research
presented in [CDR08] is to reduce the complexity of specifying and evolving
web applications, but it does not consider the evolution of the used MTC. In
our case study the use of this kind of composition will bring us back to the
previous strategy, starting from a single model where the Business and Secu-
rity are specified at the same time. Therefore, we will need to extend the MTC
metamodels and transformations in the same way as the previous strategy.

70 Chapter 3. Evolving a Model Transformation Chain

JAVA/SECURITY MODEL

BUSINESS MODEL

BUSINESS METAMODEL

SECURITY MODEL

SECURITY METAMODEL

BUSINESS/SECURITY MODEL

BUSINESS/SECURITY METAMODEL

ARCHITECTURE/SECURITY MODEL

ARCHITECTURE/SECURITY METAMODEL

JEE/SECURITY MODEL

JEE/SECURITY METAMODEL

JAVA METAMODEL

TRANSFORMATION
BUSINESS/SECURITY TO ARCHITECTURE/SECURITY

TRANSFORMATION
ARCHITECTURE/SECURITY TO JEE/SECURITY

TRANSFORMATION
JEE/SECURITY TO JAVA

JAVA CODE GENERATION

*

*

*

*
*

*

*

Heterogeneous Composition

Correspondence Model

CM

* CHANGED ARTIFACT

Specific Security concepts

+ ADDED ARTIFACT

+
+

+

(a) High-level composition metamodel

JAVA/SECURITY MODEL

BUSINESS MODEL

BUSINESS METAMODEL

SECURITY MODEL

SECURITY METAMODEL

JAVA METAMODEL

JAVA CODE GENERATION

Transformation and
Heterogeneous Composition

Correspondence Model

CM

* CHANGED ARTIFACT

Specific Security concepts

*

+ ADDED ARTIFACT

+

+
+

(b) High-level composition

Figure 3.10: Composing High-level Models

3.4 Evolution Strategies 71

An additional situation can be presented by composing both models and
producing a low-level platform model. This avoids having a combined high-
level metamodel with every involved concern in it. However, this makes us
develop a completely new set of transformations that should compose and
translate the models to the platform level at the same time. This ends up
making the MTC even more complex and difficult to maintain.

In conclusion, this strategy requires us to modify almost every MTC arti-
fact, similar to the previous strategy. Additionally, this strategy requires us to
perform a heterogeneous composition, increasing the complexity of the MTC.
Therefore, this strategy is not appropriate for adding a new concern to an ex-
isting MTC. The use of this approach is more appropriate when the concerns
involved in the application specification are fixed and a merged metamodel is
available for those concerns. The evaluation of our criteria for this strategy is
presented in Table 3.3. Below, we briefly discuss the criteria for this strategy.

Criterion 1 (C1): Impacted Artifacts

This approach is highly invasive. Any of the possible options (Figure 3.10)
requires us to modify almost every existing MTC artifact in order to in-
troduce the new concern. The modified artifacts are: Business Metamodel
(MMbusiness), Architecture Metamodel (MMarchitecture), JEEMetamodel (MMjee),
Business model (Mbusiness), Business to Architecture Transformation (Tbus2arch),
Architecture to JEE Transformation (Tarch2jee), and JEE to Java Transforma-
tion (Tjee2java). Therefore, this criterion is negative.

Criterion 2 (C2): Use of high-level concern-specific concepts

This approach offers high-level concepts to specify the authentication policies
in an independent metamodel. This allows security experts to specify their
requirements using suitable concepts. Therefore, this criterion is positive.

Criterion 3 (C3): Metamodel pollution

The Business metamodel is free of security concepts. This helps the application
modeler to understand each metamodel, and to define models that conform to
them. Therefore, this criterion is positive.

Criterion 4 (C4): Monolithic Model

The security authentication policies are specified independently of the Business
specification. This reduces the complexity of specifying the application and its
security. Therefore, this criterion is positive.

72 Chapter 3. Evolving a Model Transformation Chain

Criterion 5 (C5): Number of impacted model elements

The elements affected by the new requirements are identified at the high-level
model, thus the number of changed elements are less than in the lower-level
models. Therefore, the tasks that the modeler should perform identifying the
elements to secure is simpler than in the lowest level. Therefore, this criterion
is positive.

Criterion 6 (C6): Complexity of identifying the impacted model
elements

The new requirement specification and the changed elements are at the same
level of abstraction. A high-level security model is defined and related to
the existing business model, identifying the changed elements. Therefore, this
criterion is positive.

Criterion 7 (C7): Common integration mechanism

The composition of both specifications (i.e, business and security) is performed
by special-purpose transformation that is developed for this specific pair of
metamodels. It cannot be reused for a different concern. Therefore, this crite-
rion is negative.

3.4.3 Composing Low-level Models

In the previous approaches, if a new concern cannot be expressed using the
existing metamodels, it is impossible to add a new concern to the MTC without
changing it. Having in mind to avoid changing the existing metamodels, models
and transformations, it is necessary to find the best point to introduce the
changes, minimizing the modifications to the MTC.

In order to avoid triggering the ripple effect, it is clear that the least in-
trusive point is after the last model-to-model transformation. At this point it
is possible to keep all the metamodels, models and transformation unchanged.
This strategy is similar to traditional AOP where the main application and
the concern are specified using the same language.

When the lowest-level model (i.e., Java model) is produced by the existing
MTC, it is possible to specify the new concern requirements in a model that
conforms to the same platform metamodel (e.g., the Java metamodel) as the
existing model. The Java metamodel allows the application modelers to ex-
press all the application concerns without any modification. For instance, the
security mechanism used are Java annotations that are concepts that belong
to the Java metamodel.

Once the security requirements are specified using the Java metamodel, it
is necessary to identify the place in the existing Java model where they need to

3.4 Evolution Strategies 73

be introduced. Similar to the previous strategy, we can use a correspondence
model to identify where we need to change the existing application model. In
the case study this means we must identify which methods will be protected by
Java security annotations. Finally, both models can be composed in order to
obtain a secure application model. Due to the fact that both models conform
to the same metamodel, it is possible to perform a homogeneous composition.
This means that it is possible to use the same composition mechanism for the
concerns that can be expressed using the Java metamodel. Using the same
composition mechanism allows the MTC developers to reuse it with several
concerns. Figure 3.11 shows how the low-level security model is added after
the lowest model was generated. This model contains all the platform-specific
implementation details for the application and it can be composed with the
low-level security model.

SECURITY JAVA MODEL

JAVA METAMODEL

Correspondence Model

CM

BUSINESS MODEL

JAVA MODEL

BUSINESS METAMODEL

JAVA METAMODEL

ARCHITECTURE MODEL

ARCHITECTURE METAMODEL

JEE MODEL

JEE METAMODEL

TRANSFORMATION
BUSINESS TO ARCHITECTURE

TRANSFORMATION
ARCHITECTURE TO JEE

TRANSFORMATION
JEE TO JAVA

JAVA CODE GENERATION

FULL JAVA MODEL* CHANGED ARTIFACT

Specific Security concepts

+ ADDED ARTIFACT

+ +

+ Homogeneous
 Composition

Figure 3.11: Composing Low-level Models

Unfortunately, at a high-level of abstraction, a large number of implemen-
tation details are excluded, and the transformation chain adds implementation
details in every transformation step. This results in a higher set of elements in
the low-level models with respect to the high-level models. Therefore, specify-
ing a security model using Java concepts is an overwhelming task where you
actually lose most of the benefits of using a model-driven approach (i.e. you
are programming not modeling).

In conclusion, this strategy is not appropriate for adding a new concern to
an existing MTC. This strategy requires knowledge about the technology and
how the application is built in order to specify the new concern. Moreover,

74 Chapter 3. Evolving a Model Transformation Chain

defining the correspondences at this level is an overwhelming task because of
the higher number of elements in the low-level models with respect to higher
level models. The evaluation of our criteria for this strategy is presented in
Table 3.3. Below, we briefly discuss the criteria for this strategy.

Criterion 1 (C1): Impacted Artifacts

This approach is slightly invasive. It does not modify any existing artifact by
adding an independent security model at the lowest level of the MTC. At the
lowest level, the existing MTC is completely reused and a common composition
mechanism can be used to perform the integration of the security specification
with the application model. Therefore, this criterion is positive.

Criterion 2 (C2): Use of high-level concern-specific concepts

This approach uses low-level concepts (e.g., Java concepts) to specify the au-
thentication policies. This increases the complexity of specifying the security.
Therefore, this criterion is negative.

Criterion 3 (C3): Metamodel pollution

The Business metamodel is not polluted with security concepts. This helps in
using the business metamodel, and in evolving the models that conform to it.
Therefore, this criterion is positive.

Criterion 4 (C4): Monolithic Model

The security authentication policies are specified independently of the existing
models. This reduces the complexity of specifying the application and its
security. Therefore, this criterion is positive.

Criterion 5 (C5): Number of impacted model elements

The elements affected by the new requirement are identified at the low-level
model, thus the number of changed elements are greater than in the higher
level models. Furthermore, the tasks that the modeler should perform in order
to identify the elements that need to be secured are more complex compared to
if it had been done at the highest level. Therefore, this criterion is negative.

Criterion 6 (C6): Complexity of identifying the impacted model
elements

The changes and the changed elements are at the same level of abstraction.
This means that the existing low-level models are changed by adding the au-

3.4 Evolution Strategies 75

thorization policies that are specified at the same level of abstraction (e.g., Java
annotations are added to Java methods). Therefore, this criterion is positive.

Criterion 7 (C7): Common integration mechanism

At the lowest level, it is possible to use a common integration mechanism
in order to perform a homogeneous composition. Therefore, this criterion is
positive.

3.4.4 Mixed-level Composition

At its main advantage, the High-level composition strategy presented in Sec-
tion 3.4.2 offers the use of an independent high-level metamodel that allows
the domain experts to express the new concern requirements in a suitable
way. The main advantage of the Low-level composition strategy is to reduce
the impact on the existing artifacts by introducing the changes after the last
model-to-model transformation. These two characteristics are essential in re-
ducing the complexity of evolving an MTC and in offering appropriate concepts
to the concern experts to be able to express their requirements. The Mixed-
level composition strategy has these two advantages, as it offers a high-level
language to the concern experts as well as reduces the impact on the existing
artifacts.

The idea of the Mixed-level composition is to add a new high-level model
in which the new concern requirements are specified. This strategy is used
in [FTD08]. This work presents an approach that modularizes transactions
as aspects and specifies them with a high-level transaction language. The
high-level transaction aspect is related to low-level application models using
pointcut expressions. Next, the transaction aspect is refined and a low-level
aspect is generated. Finally, the low-level aspect is weaved with a low-level
application.

If we use these ideas to add security to the MTC presented in Section 3.2,
a Security metamodel is required, and the security experts should define a new
Security model. Figure 3.12 shows the Mixed-level composition of the original
MTC with a high-level Security model. In this model, all of the elements of
the security specification must be expressed using high-level security concepts.
Using this strategy, it is necessary to define correspondences between the high-
level Security model and the low-level Java model. For instance, a high-level
security permission such as Read must be related to all the getter Methods
in the Java model. The next action is transforming the high-level Security
model into a low-level Java Model. Additionally, it is necessary to derive
correspondences between the Java model and the Java security model using
the correspondences defined between the high-level Security model and the
Java model. Finally, a homogeneous composition is performed between both

76 Chapter 3. Evolving a Model Transformation Chain

low-level Java models, producing a full Java model. This low-level Java model
contains all of the specific platform concepts for the application and its access
control mechanisms (i.e., Java annotations).

BUSINESS MODEL

JAVA MODEL

BUSINESS METAMODEL

JAVA METAMODEL

ARCHITECTURE MODEL

ARCHITECTURE METAMODEL

JEE MODEL

JEE METAMODEL

TRANSFORMATION
BUSINESS TO ARCHITECTURE

TRANSFORMATION
ARCHITECTURE TO JEE

TRANSFORMATION
JEE TO JAVA

SECURITY MODEL

SECURITY METAMODEL

Correspondence
Model

CM

SECURITY JAVA MODEL

JAVA METAMODEL

Homogeneous Composition

JAVA CODE GENERATION

FULL JAVA MODEL

TRANSFORMATION
SECURITY TO JAVA

CM

* CHANGED ARTIFACT

Specific Security concepts

+ ADDED ARTIFACT

+
+

+

+

+

+ CM TRANSFORMATION

Figure 3.12: Mixed-level Composition

However, this strategy has a drawback due to the definition of the corre-
spondence model between two different levels of abstraction. This increases
the complexity because the modeler must define correspondence between ele-
ments that belong to the high-level Security model and elements that belong
to the low-level Java model. Therefore, the modeler must have knowledge of
the concern concepts as well as the technological platform, which goes against
the MDE goals.

In summary, this strategy offers high-level concepts in order to specify the
security and minimize the changes in the existing MTC. However, it requires
a high effort to be able to specify the correspondence relationships between
the high-level Security model and the low-level Java model. Consequently,
this strategy is not suitable to evolve an existing MTC. The evaluation of our
criteria for this strategy is presented in Table 3.3. Below, we briefly discuss
the criteria for this strategy.

Criterion 1 (C1): Impacted Artifacts

This approach is non-invasive. It does not modify any existing artifact by speci-
fying an independent high-level security model. This model is transformed into
a low-level model and composed with the existing low-level model. Using this

3.4 Evolution Strategies 77

strategy, the existing MTC is completely reused and a common composition
mechanism can be used to perform the integration of the security specification
with the application model. Therefore, this criterion is positive.

Criterion 2 (C2): Use of high-level concern-specific concepts

This approach uses a high-level metamodel to express the new concern. This
reduces the complexity of specifying the authentication policies. Therefore,
this criterion is positive.

Criterion 3 (C3): Metamodel pollution

The Business metamodel is free of security concepts. This helps in understand-
ing each metamodel, and in defining models that conform to them. Therefore,
this criterion is positive.

Criterion 4 (C4): Monolithic Model

The security authentication policies are specified independently of the Business
specification. This reduces the complexity of specifying the application and its
security. Therefore, this criterion is positive.

Criterion 5 (C5): Number of impacted model elements

The elements affected by the new requirement are identified at the low-level
model, thus the number of changed elements are greater than in the higher
level models. Furthermore, the tasks that the modeler should perform in order
to identify the elements that need to be secured are more complex compared to
if it would be done at the highest level. Therefore, this criterion is negative.

Criterion 6 (C6): Complexity of identifying the impacted model
elements

The requirements and the changed elements are at different levels of abstrac-
tion. This increases the complexity of evolving the MTC. Therefore, this cri-
terion is negative.

Criterion 7 (C7): Common integration mechanism

At the lowest level, it is possible to use a common integration mechanism to
perform a homogeneous composition. Therefore, this criterion is positive.

78 Chapter 3. Evolving a Model Transformation Chain

3.4.5 Parallel Model Transformation Chains

The last strategy that we analyze is the Parallel Model Transformation Chain.
In this strategy, a new MTC is added and then aligned with the existing MTC.
Both MTCs transform a pair of high-level models into two complementary low-
level models. These low-level models are composed by taking advantage of the
fact that at the lowest level: 1) the existing MTC artifacts are unmodified,
and 2) it is possible to use a common low-level metamodel for both models.

Figure 3.13 shows this strategy. In this strategy a high-level security model
is defined independently of the existing business high-level model. The new
security model conforms to a security metamodel that has the required autho-
rization concepts. The application modeler must define correspondence rela-
tionships between the existing high-level business model and the new security
model by taking advantage of the fact that these two models are at the same
level of abstraction. Additionally, as previously explained, high-level models
exclude implementation details. This results in a smaller number of elements
in high-level models with respect to the low-level models. This means that the
modeler needs to identify a smaller number of correspondences at a high-level.

Once both models and the correspondences between them are specified, the
existing model is transformed by the existing MTC into a low-level model and
the new security model is transformed by the new specific security MTC into
a Java model. These low-level models need to be composed to generate the
final application and the application modeler needs to identify the elements to
compose by defining correspondence relationships between the low-level mod-
els. These correspondence relationships between the low-level models are au-
tomatically derived by a transformation using the high-level correspondence
relationships. Using the low-level correspondence relationships, a homoge-
neous composition is performed and a full Java model is obtained with the
application specification and the new concern.

This strategy is used in the work presented in [CD06]. This work uses this
strategy to specify business rules as a concern. The business rules are modeled
using a high-level modeling language and then related to the application model
using a high-level connection language. This connection language abstracts
the different AOP patterns of how the business rules are connected with the
application code. Next, both models are refined to low-level models. The
connections are also refined and aspect code is generated from it.

In summary, this strategy offers several advantages to evolve an MTC.
First, the existing artifacts are unchanged because the new concern is intro-
duced after the last model-to-model transformation. Second, the new concern
is modeled independently by using security specific concepts that belong to
an independent security metamodel. This means that several smaller models
are used to specify the required application and that the metamodels are not
polluted. Third, the composition is postponed to the lowest level of abstrac-

3.4 Evolution Strategies 79

BUSINESS MODEL

JAVA MODEL

BUSINESS METAMODEL

JAVA METAMODEL

ARCHITECTURE MODEL

ARCHITECTURE METAMODEL

JEE MODEL

JEE METAMODEL

TRANSFORMATION
BUSINESS TO ARCHITECTURE

TRANSFORMATION
ARCHITECTURE TO JEE

TRANSFORMATION
JEE TO JAVA

SECURITY MODEL

SECURITY METAMODEL
Correspondence

Model

CM

SECURITY JAVA MODEL

JAVA METAMODEL

Homogeneous Composition

JAVA CODE GENERATION

FULL JAVA MODEL

TRANSFORMATION
SECURITY TO JAVA

CM

Correspondence
Model

* CHANGED ARTIFACT

Specific Security concepts

+ ADDED ARTIFACT

+
+

+

+

+

+

CM TRANSFORMATION

Figure 3.13: Parallel Model Transformation Chain

tion where both models conform to the same metamodel. This means that
a homogeneous composition can be performed. However, a generalization of
this strategy is required in order to use it for adding new concerns to existing
MTCs. The evaluation of our criteria for this strategy is presented in Table 3.3.
Below, we briefly discuss the criteria for this strategy.

Criterion 1 (C1): Impacted Artifacts

This approach is non-invasive. It does not modify any existing artifact by
specifying an independent high-level security model. Rather, this model is
transformed into a low-level model and composed with the existing low-level
model. Using this strategy, the existing MTC is completely reused and a
composition mechanism can be used to perform the integration of the security
specification with the application model. Therefore, this criterion is positive.

Criterion 2 (C2): Use of high-level concern-specific concepts

This approach uses a high-level metamodel to express the new concern. This
reduces the complexity of specifying the authentication policies. Therefore,
this criterion is positive.

Criterion 3 (C3): Metamodel pollution

The Business metamodel is free of security concepts. This helps in understand-
ing each metamodel, and in defining models that conform to them. Therefore,

80 Chapter 3. Evolving a Model Transformation Chain

this criterion is positive.

Criterion 4 (C4): Monolithic Model

The security authentication policies are specified independently of the Business
specification. This reduces the complexity of specifying the application and its
security. Therefore, this criterion is positive.

Criterion 5 (C5): Number of impacted model elements

The elements affected by the new requirement are identified at the high-level
model, thus the number of changed elements are fewer than in the lower level
models. Therefore, the tasks that the modeler should perform in order to
identify the elements that need to be secured are less complex than at the
lowest level. Therefore, this criterion is positive.

Criterion 6 (C6): Complexity of identifying the impacted model
elements

The new requirements and the changed elements are at the same level of ab-
straction. This reduces the complexity of evolving the MTC. Therefore, this
criterion is positive.

Criterion 7 (C7): Common integration mechanism

At the lowest level, it is possible to use a common integration mechanism to
perform a homogeneous composition. Therefore, this criterion is positive.

3.5 Summary

Table 3.3 presents a summary with the key criteria analysis for each strat-
egy. This table indicates that the worst strategy for our problem context is
Extending the High-level Metamodel because this strategy fails in several key
criterion. Additionally, this table indicates that the best strategy is Parallel
Model Transformation Chain.

This strategy succeeds in every key criterion and it can be generalized to ful-
fill our research goals presented in Section 1.2. Although in the work of Cibran
[CD06] this strategy is used to specify and weave a concern independently of
the main application, we need to translate its ideas to the MDE context and
specifically to the evolution of an existing MTC. Additionally, several elements
must be generalized in order obtain a non-invasive and reusable approach to
evolve existing MTCs.

3.5 Summary 81

Metamodel
Extension

High-
level
Comp.

Low-
level
Comp.

Mixed-
level
Comp.

Parallel
Model
Transf.

C1: Impacted Arti-
facts

– – + + +

C2: High-level con-
cern concepts

+ + – + +

C3: Polluted Meta-
model

– + + + +

C4: Monolithic
Model

– + + + +

C5: Number of im-
pacted elements

+ + – – +

C6: Identification
complexity

+ + + – +

C7: Integration
mechanism

– – + + +

Table 3.3: Comparative analysis

The focus of our research is to generalize the mechanism to automatically
obtain a low-level CM and to compose the low-level homogeneous models.
The generalization of the mechanism to automatically obtain a low-level CM
is presented in Chapter 4. In Chapter 5 we present the use of CMs to integrate
different concerns with the existing MTC at lowest level of abstraction reducing
the impact on the existing artifacts. In Chapter 6 we present the tool support
that we provide to help MTC developers and application modelers to use our
approach. Finally, in Chapter 7 we present the validation of our work with the
help of a full-fledged case study.

Chapter 4

Correspondence Relationships Derivation

4.1 Introduction

In the previous chapter, we presented an analysis of possible strategies that
can be used to evolve an existing MTC. These strategies were extracted from
several works that specify concerns independently. The independent concerns
are automatically integrated with the main application. From the analysis
we found that the strategy that scored best in our criteria (presented in Sec-
tion 3.3.1) is: Parallel Model Transformation Chain.

In this chapter we present our approach to evolve a MTC. This approach
is based on the generalization of the Parallel Model Transformation Chains
strategy. The goal of this generalization is to use this strategy to evolve exist-
ing MTCs with new concerns. The generalization of this strategy is based on
the use of an automatic correspondence relationships derivation mechanism.
This mechanism allows to keep two independent MTCs (i.e., the existing MTC
and the new concern specific MTC) aligned through their whole set of trans-
formation steps.

The automatic correspondence relationship derivation mechanism uses the
correspondence relationships between high-level models to derive a new set
of relationships between the generated low-level models. In order to produce
the low-level correspondences, the mechanism uses tracing models(TMs) to
identify elements in the low-level models that are generated from a couple of
high-level elements related by a correspondence relationship. Additionally, the
new set of correspondence relationships between the generated elements are
constrained by a Correspondence Derivation Model (CDM). The CDM con-
tains constraints that allow or restrict the generation of relationships between
a couple of low-level elements. The reason of this is to only relate valid corre-
sponding1 elements in the low-level models and to avoid false positives.

1Elements that must be composed at the low-level of abstraction in order to obtain the
full application.

83

84 Chapter 4. Correspondence Relationships Derivation

In this chapter we use two examples to illustrate our proposal. The first
example is presented in Section 4.2 and it focuses on showing our general
strategy to evolve an existing MTC in a simple and abstract way. The second
example is presented in Section 4.3 and it revisits the presented strategy but
uses a concrete real-life example. This example shows in detail our ideas and
explains the implementation details. Next, in Section 4.4 the requirements for
the derivation mechanism are presented. In Section 4.5 we explain in detail how
we generate and use tracing models. Next, in Section 4.6 we present how we
constrain the derived correspondence relationships. Finally, in Section 4.7 we
explain how we extend the scope of the Correspondence Derivation Mechanism.

4.2 Approach overview

The overall approach transforms two high-level models that conform to dif-
ferent metamodels into low-level models that conform to the same existing
metamodel. To illustrate this, we use a very simple example where we use
geometrical shapes as metaphors for metaclasses. This allows us to represent
different metamodels and to leave out the details of the models and what they
represent. We will retake the strategy with model-level details in Section 4.3.

In the example we want to model an application using two concerns. The
first concern is the Elliptical domain and the second concern is the Circular
domain. At the top part of the Figure 4.1 the two domains are depicted. The
Elliptical and the Circular domains are at the problem level. Our application
is implemented in the Polygonal platform. At the bottom part of the Fig-
ure 4.1 the Polygonal domain is depicted at solution level. One the one hand,
the Elliptical expert specified a set of requirements using the concepts of the
Ellipse metamodel. On the other hand, the Circular expert specified other
requirements using concepts from the Circle metamodel. These two sets of
requirements can be translated in terms of Polygonal domain concepts using
MTCs. The Polygonal concepts are specified in the low-level Polygon meta-
model. At this level we have several "platform" concepts, such as: Square,
Triangle, Diamond, and Pentagon.

Figure 4.2 shows an MTC that transforms Ellipse models into Polygon
models, and an MTC that transforms Circle models into Polygon models.
The Ellipse and the Circle models represent two concerns of an application
that need to be integrated to produce the full application. Both models are
related by a correspondence model. This high-level model needs to be prop-
agated through the complete transformation chains. The question is how we
can obtain correspondence relationships between the low level models (i.e., the
Polygon models). The main challenge is to define a mechanism that will au-
tomatically derive the new correspondence relationships, keeping in mind that
the MTC increments the complexity of the models by adding elements at each

4.2 Approach overview 85

Polygon Model

Circle ModelEllipse Model

A C

B D

B3B2

B1

A3

A2

A1

PR
O

BL
EM

 L
EV

EL
SO

LU
TI

O
N

 L
EV

EL

ELLIPTICAL DOMAIN CIRCULAR DOMAIN

POLYGONAL DOMAIN (PLATFORM)

Figure 4.1: Geometrical Example

step.

Tellipse2polygon Tcircle2polygon

Ellipse
metamodel

Circle
metamodel

Ellipse
model

Polygon-Ellipse
model

Circle
model

CMhigh-level

CMlow-level
Polygon-Circle

model

Polygon
Metamodel

Polygon
metamodel

Model Metamodel Relationships model Transformation

Figure 4.2: How to generate the low-level CM

4.2.1 High-level correspondences

At a high-level of abstraction, we have the Ellipse and the Circle models.
These two models have some overlapping concepts that are aligned using a cor-
respondence model (i.e., elements that partially represent the same "thing" in
each domain). With the correspondence model we identify these correspond-
ing concepts. Figure 4.3 shows the Ellipse and Circle high-level models.
As we stated before, the model Ellipse and the model Circle conform to
different metamodels. The model Ellipse has the following Ellipse concepts:
A and B, and the model Circle has the following Circle concepts: C and D.

86 Chapter 4. Correspondence Relationships Derivation

Additionally, the elements A and C represent the same element in different do-
mains. Due to this A and C are related by a correspondence relationship. We
want to integrate both models, but "intuitively" it is not possible to compose
Ellipse elements with Circle elements because they belong to different meta-
models. Therefore, a complex heterogeneous composition would be required.
It is crucial to remember that what the models represent is not important in
this example; what is important, however, are the corresponding elements and
the metaclasses to which these conform to.

A C

B D

HIGH-LEVEL
ELLIPSE MODEL

HIGH LEVEL CIRCLE
MODEL

correspondence

Figure 4.3: High-level correspondences

In order to avoid a heterogeneous composition, we transform both mod-
els into low-level models that conform to the same metamodel (i.e., Polygon
metamodel). If both models conform to the same metamodel we can perform
a homogeneous composition.

4.2.2 Tracing back to the sources

Once the MTCs are executed, two low-level models that conform to the Poly-
gon metamodel are generated. We need to identify the corresponding elements
in these low-level models based on their sources. Specifically we need to know
if an element was generated from a high-level element that has a correspon-
dence relationship. In order to verify this we need to trace back the elements
of the low-level models and to check if they are generated from pairs of re-
lated elements at the higher-level. For instance, Figure 4.4 shows the two
MTCs (Tellipse2polygon and Tcircle2polygon). These two MTCs transform
the high-level models into low-level models that conform to the Polygon meta-
model. On the one hand, the first MTC (Tellipse2polygon) transforms the
elements A and B into the elements A1, A2, A3, B1, B2 and B3. On the other
hand, the second MTC (Tcircle2polygon) transforms the elements C and D into
the elements C1, C2, C3, D1, D2 and D3. Additionally, the high-level elements
A and C are related by a correspondence relationship.

Keeping in mind the identification of the corresponding elements in the
low-level models, we need a mechanism that can identify and verify that the
source elements were related by a high-level correspondence relationship. For
instance, in Figure 4.4 the elements A1, A2, A3, and the elements C1, C2,
C3 are generated from the elements A and C. With a Tracing Model (TM)
[ARNRSG06] we are able to determine the elements in both low-level models

4.2 Approach overview 87

A

B3B2

C

B
D

B1 A3A2

A1

C3
C2

C1

D3D2

D1

LOW-LEVEL
POLYGON-ELLIPSE MODEL

HIGH LEVEL
ELLIPSE MODEL HIGH LEVEL

CIRCLE MODEL

correspondence LOW-LEVEL
POLYGON-CIRCLE MODEL

Tellipse2polygon Tcircle2polygon

Figure 4.4: Traces

that were generated from a couple of related elements at the higher-level. How
we use Tracing Models to trace back the elements generated by an MTC is
presented in Section 4.5. Once again, the focus of this example is to identify
which elements have corresponding relationships in the high-level models, into
which elements these elements are transformed, and which metaclasses they
conform to (i.e., which shape they have).

4.2.3 Constraining the relationships

Once we establish which elements in the low-level models are generated from a
pair of corresponding elements in the high-level models, we must relate them
to each other by identifying the correct match for each one. Figure 4.5 shows
part of the low-level models Polygon-Ellipse and Polygon-Circle. The
presented elements (in the colored circles) are generated from high-level cor-
responding elements that need to be correctly matched. Assume that only
elements that conform to the same metaclass (i.e., have the same shape) can
be related. Although in this case it is possible to define 9 possible relationships
(e.g., A1-C1, A1-C2, ...) between the generated elements (in the colored cir-
cles), only the correspondence relationships between elements with the same
shape are correct. In this example the correct match is: the Diamond A1 with
the Diamond C1 and the Pentagon A3 with the Pentagon C3. The element
A2 and the element C2 cannot be related because they have different shapes.
Although the element B1 and the element D1 have the same shape, they cannot

88 Chapter 4. Correspondence Relationships Derivation

be related because they are generated from non-related high-level elements.

correspondenceB3B2

B1 A3A2

A1

C3

C2

C1

D3D2

D1

LOW-LEVEL
POLYGON-ELLIPSE MODEL

LOW-LEVEL
POLYGON-CIRCLE MODEL

Figure 4.5: Corresponding elements

Therefore, we need a language that helps us to constrain the possible cor-
respondence relationships that can be defined between the low-level models.
We call this mechanism a Correspondence Derivation model (CDM) and it is
presented in Section 4.6.1.

4.2.4 Correspondence relationships resolution

When the correspondence model is generated between the low-level models,
a resolution of the correspondence relationships is required to obtain a full
model. The term resolution in our work is defined as the interpretation of
the correspondence relationships and processing them in order to produce the
application. Suppose that in the presented example the resolution of a corre-
spondence relationship is to compose the element in the left side of the cor-
respondence relationship with the element in the right. Figure 4.6 shows the
composition of the two low-level models. In this example, the composition of
two corresponding elements (e.g., A1 and C1) will produce in the full model
only the element in the left side (e.g., A1). The element in the right side (e.g.,
C1) is eliminated from the full model. Additionally, all the elements that are
related with the element in the right (e.g. D1 and C2 are related with C1) will
be related with the element in the left side. In the figure the elements C1 and
C3 are removed from the model, and the elements C2 and D1 are now related
with A1. Additionally, the element D2 is now related with A3.

More details about the correspondence relationship models, correspon-
dence relationship semantics and correspondence relationship resolution are
presented in Chapter 5.

4.2.5 General approach architecture

Figure 4.7 presents the general schema of our approach for adding a Circle
MTC to the existing Ellipse MTC. On the left, the Ellipse high-level model

4.3 Case Study: Deriving Correspondence Relationships 89

LOW-LEVEL
POLYGON-FULL MODEL

B3B2

B1

A3

A2

A1

C2

D3

D2

D1

correspondence

B3
B2

B1 A3A2

A1

C3

C2

C1

D3D2

D1

Composition
Transformation

LOW-LEVEL
POLYGON-ELLIPSE MODEL

LOW-LEVEL
POLYGON-CIRCLE MODEL

Figure 4.6: Composed model

is transformed into a low-level Polygon model. On the right, the Circle high-
level model is also transformed into a low-level Polygonmodel. The application
modeler should add manually the CMhigh−level that is the high-level correspon-
dence model that aligns the two high-level models. TMellipse and TMcircle
are the automatically generated tracing models that relate the high-level mod-
els with the low-level models. The MTC modeler must manually specify the
CDM that relates the low-level metamodels with constraints between their
metaclasses2. The CDM is used to define which elements can be related by
a correspondence relationship. The Tcm is an automatically generated trans-
formation that uses the information in the high-level correspondence model
CMhigh−level, the tracing models, and the CDM to automatically generate the
low-level correspondence model CMlow−level. Finally, the low-level models are
composed and transformed into code by a model-to-text transformation.

4.3 Case Study: Deriving Correspondence Re-
lationships

In Section 4.2 the general idea of our proposed schema was presented with the
help of a simple example. This example used geometric shapes as metaphor of
metaclasses. The goal of the geometric example was to leave out the details
of what the models mean and explain our strategy at metamodel level in an
abstract and simple way. In the example we introduce the automatic corre-
spondence derivation mechanism as the main element of our approach. The

2The CDM relates the low-level metamodels and is different from the CMlow−level that
is automatically generated between the low-level models

90 Chapter 4. Correspondence Relationships Derivation

Tellipse2polygon Tcircle2polygon

Ellipse
metamodel

Circle
metamodel

Ellipse
model

Polygon-Ellipse
model

Circle
model

CMhigh-level

CMlow-level

Polygon-Circle
model

Polygon
metamodel

Polygon
metamodel

DM

Polygon-full model
Application code

TMellipse TMcircle
Tcm

Model Metamodel Relationships model Transformation

*
*

* MANUALLY DEFINED

Figure 4.7: General Schema

goal of this mechanism is to provide tools to the modelers in order to align
two MTCs. The next sections explain each element of our approach in detail
with the help of the case study of the MTC introduced in Section 3.2. The
correspondence relationships, their semantics, and resolutions are presented in
Chapter 5.

4.3.1 Adding a new concern: Authorization

In this section we will briefly reintroduce the example presented in Section 3.2
in order to illustrate in detail our approach at model level. As we previously
presented, the MTC that we choose as a case study is used to produce an
application named Risk by transforming a Business Model in several steps
into a Java Model. Finally, this model is transformed into Java code. The
generated applications will offer basic CRUD functionalities such as insert,
update, delete, and retrieve the information of business entities. Figure 4.8
presents the original MTC with its metamodels, models, and transformations.

Suppose now that the number of Risk users increased and it is required
to modify the MTC in order to generate a secure version of it. Specifically,
we require to control the user access to Risk information and services. The
new authorization requirements for Risk cannot be specified and implemented
using the existing MTC. In order to evolve the existing MTC, we will add
an authorization specific MTC following the strategy Parallel Transformation
Chain presented in Section 3.4.5.

4.3.2 The new Security MTC

Having in mind to specify authorization policies without modifying the existing
MTC, it is necessary to implement a Security specific MTC. For this, we need

4.3 Case Study: Deriving Correspondence Relationships 91

BUSINESS MODEL
Mbusiness

JAVA MODEL
Mjava

BUSINESS METAMODEL
MMbusiness

JAVA METAMODEL
MMjava

ARCHITECTURE MODEL
Marchitecture

ARCHITECTURE METAMODEL
MMarchitecture

JEE MODEL
Mjee

JEE METAMODEL
MMjee

TRANSFORMATION
BUSINESS TO ARCHITECTURE

Tbus2arch

TRANSFORMATION
ARCHITECTURE TO JEE

Tarch2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

JAVA CODE GENERATION
Gjava

Figure 4.8: The original MTC

to choose or define a metamodel that allows us to specify the new security
requirements independently of the existing Business Metamodel. The selected
metamodel must be maintained independently from the existing one in order
to avoid the Metamodel pollution problem presented in Section 1.1.1. With
the concepts offered by the metamodel, the new authorization requirements
should be specified in a Security Model. Similar to the metamodel, this model
should be independent of the existing one, in order to avoid the Monolithic
model problem presented in Section 1.1.1.

High-level Security Metamodel

In our case study, we use the SecureUML metamodel presented in [LBD02],
which in turn is based on the Role Based Access Control (RBAC) model
[SCFY96]. The main elements are Users and Groups that can be assigned
to a Role. A Role can perform a set of Actions on a Resource. The Actions
are grouped as a Permission.

The original SecureUML goal is to be part of another modeling language,
to cover access control aspects [LBD02]. This means that the SecureUML
metamodel is an abstract metamodel and it was designed to be extended with
the concrete resources and actions that need to be protected. In our case
study we extend Resource and Action to include the resources and the actions
that we need to protect. For instance, we extend the concept Resource with
ResourceEntity, ResourceAttribute and ResourceService. Additionally, the con-
cept Action is extended to define every action that can be protected in the con-
crete resources. Finally, the metamodel is extended to constrain the Actions

92 Chapter 4. Correspondence Relationships Derivation

that can be applied on a concrete Resource. For instance, an ActionExecuteSer-
vice can only be applied to a ResourceService and not to a ResourceAttribute.
Figure 4.9 shows the extended metamodel that we call Security Metamodel .
Additional details of this metamodel are presented in Appendix A.5.

Figure 4.9: High-level Security Metamodel (MMsecurity)

4.3.3 High-level Security Model

A fragment of the Security Model (Msecurity) for Risk is presented in Fig-
ure 4.10 and it shows two roles: User and Manager. The Role User has a per-
mission over Read actions on the ResourceEntity Project. Additionally, the
User has a permission over Write actions on the ResourceAttribute dueDate.
This means that a User can read the information about a Project, but only
can change the project due date. The role Manager inherits User permissions
and adds Write actions on the Project. In summary, the Manager has read
and write Permissions on the information of a Project.

Low-level Java Metamodel (MMsecurity−java)

We use as a target low-level for security the same metamodel used by the exist-
ing MTC: the Java Metamodel . As presented in Section 3.2.6, this metamodel
is based on the J2SE5 Metamodel of the MoDisco project (http://wiki.
eclipse.org/MoDisco/J2SE5). This metamodel is the reflection of the Java
language and some parts of it are presented in Appendix A.4. This metamodel
contains concepts such as ClassDeclaration, MethodDeclaration, FieldDeclara-
tion, etc.

http://wiki.eclipse.org/MoDisco/J2SE5
http://wiki.eclipse.org/MoDisco/J2SE5

4.3 Case Study: Deriving Correspondence Relationships 93

project: ResourceEntity
Manager: RoleProjectManager: Permission

writeProject: ActionWriteAttribute

actionAssignmentwrite

dueDate: ResourceAttribute User: RoleProjectUser: Permission

readProject: ActionReadEntity

permissionAssignment

actionAssignment

write

read

permissionAssignment

writeDueDate: ActionWriteEntity

actionAssignment

roleHierarchy

Figure 4.10: High-level Security Model (Msecurity)

Security to Java MTC (Tsec2java)

When the source and target metamodels are selected, it is necessary to imple-
ment the MTC that is going to transform high-level security models into Java
Models. In this case we only use one transformation step that translates the
authorization concepts into Java concepts. This model-to-model transforma-
tion is called Tsec2java

3. Tsec2java transforms a high-level security Resource into
a secured Class, MethodDeclaration, or Field. An Action is transformed into an
annotated MethodDeclaration, and Roles are added as Properties in the meth-
ods Annotations. For example, the AttributeResource dueDate is transformed
into a private Field, the action/permission ActionWriteAttribute on dueDate
is transformed into an annotated method MethodDeclaration and the Role
Manager into a Property of the Annotation. The Annotation @RolesAllowed
is the mechanism used by JEE to offer access control [CS09].

4.3.4 High-level Correspondence Model (CMhigh−level)

When the new MTC is built and the new high-level Security model is speci-
fied, it is necessary to identify the corresponding elements. We align the two
high-level models using a CM which relates the elements that represent the
same "thing" in both domains (e.g., business and security domains). For ex-
ample, in Figure 4.12 the Business Model (Mbusiness) contains the BusinessEn-
tity Project and the Security Model (Msecurity) contains the ResourceEn-
tity Project that needs to be protected. The CM between both models
CMhigh−level is represented in Figure 4.12 by black lines with circles at the
ends. In this chapter we are not going to explain the semantics of the correspon-

3The code of this transformation is available at http://qualdev.uniandes.edu.co/
mtcframework.

http://qualdev.uniandes.edu.co/mtcframework
http://qualdev.uniandes.edu.co/mtcframework

94 Chapter 4. Correspondence Relationships Derivation

Msecurity

Mjava-security

writeDueDate: DeclaredMethod

value="User"
@RolesAllowed: Annotation

annotation

modifier = "private"
dueDate: Field

Tsec2java

dueDate: ResourceAttribute User: RoleProjectUser: Permission
permissionAssignment

write

writeDueDate: ActionWriteEntity

actionAssignment

Figure 4.11: Security to Java Transformation (Tsec2java)

dences, this is going to be explained in Chapter 5. The CMhigh−level contains
a correspondence relationship with links to the BusinessEntity Project and
the ResourceEntity Project. This relationship means that the ResourceEn-
tity Project and the BusinesEntity Project represent the same "thing" in
two different domains. Additionally, the Attribute dueDate in the Business
model is related in the CM to the ResourceAttribute dueDate in the security
model. The modeler manually creates these correspondence links because he
understands the meaning of the relationships between elements. Although
the corresponding elements are "cloned" in both models, only the information
relevant to each domain is copied. For instance, the structural relationships
between resources is not important in the security model, therefore there is no
association between the ResourceEntity Project and the ResourceAttribute
dueDate.

4.3.5 Low-level models

In the presented example, the two low-level models (Mjava and Mjava−security)
are partial complementary specifications of the required application. These
two models need to be statically integrated into one single model in order to
obtain the complete Java application. As explained in Section 2.4.2, in order to
integrate two models we need to identify what to compose, i.e., which elements
in the models have to be composed [JFB08]. Although in some models it is

4.3 Case Study: Deriving Correspondence Relationships 95

M
bu
si
ne
ss

M
se
cu
rit
y

pr
oj

ec
t:
R
es
ou
rc
eE
nt
ity

M
an

ag
er

: R
ol
e

Pr
oj

ec
tM

an
ag

er
: P
er
m
is
si
on

w
rit

eP
ro

je
ct

: A
ct
io
nW

rit
eA
ttr
ib
ut
e

ac
tio

nA
ss

ig
nm

en
t

w
rit

e

du
eD

at
e:

 R
es
ou
rc
eA
ttr
ib
ut
e

U
se

r:
R
ol
e

Pr
oj

ec
tU

se
r:
Pe
rm
is
si
on

re
ad

Pr
oj

ec
t:
A
ct
io
nR
ea
dE
nt
ity

pe
rm

is
si

on
As

si
gn

m
en

t

ac
tio

nA
ss

ig
nm

en
t

w
rit

e re
ad

pe
rm

is
si

on
As

si
gn

m
en

t

w
rit

eD
ue

D
at

e:
 A
ct
io
nW

rit
eE
nt
ity

ac
tio

nA
ss

ig
nm

en
t

ro
le

H
ie

ra
rc

hy

Pr
oj

ec
t:
B
us
in
es
sE
nt
ity

 na
m

e:
 A
ttr
ib
ut
e

 du
eD

at
e:

 A
ttr
ib
ut
e

R
is

k:
 B
us
in
es
sE
nt
ity

 na
m

e:
 A
ttr
ib
ut
e

ris
ks

: A
ss
oc
ia
tio
n

at
tri

bu
te

at
tri

bu
te

as
so

ci
at

io
n

at
tri

bu
te

bu
si

ne
ss

En
tit

y

 Pl
an

: B
us
in
es
sE
nt
ity

 na
m

e:
 A
ttr
ib
ut
e

 pl
an

s:
 A
ss
oc
ia
tio
n

at
tri

bu
te

bu
si

ne
ss

En
tit

y

F
ig
ur
e
4.
12

:
H
ig
h-
le
ve
lC

or
re
sp
on

de
nc
e
M
od

el

96 Chapter 4. Correspondence Relationships Derivation

possible to use heuristics to identify corresponding elements (e.g., elements
with the same name), we choose to manually create the CM because sometimes
the semantic differences between the metamodels is too high and only an expert
modeler can create the CM. Correspondence Models are presented in the next
chapter.

Once, the CM model between the high-level models is constructed manually
by the modeler it is time to obtain the CM model between the low-level models.
At the low-level of abstraction we use our proposed Correspondence Derivation
Mechanism (CDM) to identify which are the corresponding elements. The end
result is that the CDM will generate the CM between the low-level models.
This is a key characteristic of our approach because it frees the application
modeler from working at implementation level and fulfill one of our goals of
working at high-level of abstraction.

On the left side, Figure 4.13 presents the transformation of the Business
Model Mbusiness into a Java Model Mjava. On the right side, Figure 4.13
presents the transformation of the Security Model Msecurity into a Java Model
Mjava−security

4. For now, suppose that the Attribute dueDate is only trans-
formed into the FieldDeclaration dueDate and its setter MethodDeclaration
setDueDate.

On the bottom, Figure 4.13 shows that there are some elements (i.e., colored
elements) that are generated from high-elements that have a correspondence
relationship between them. As presented in the geometrical example, this
intuitively means that they are corresponding elements, but we need to identify
the "correct" matches. In the next section, the correspondence derivation
process is presented in detail.

4.4 Derivation Requirements
In the previous section the new MTC was implemented with the purpose of
transforming a high-level security model into a partial Java implementation.
Additionally, a CM was defined between the high-level models identifying the
corresponding elements. In this section, we define the two conditions required
to create a correspondence relationship between two target elements.

On the one hand, in Section 4.2.2 we intuitively introduced the necessity of
tracing back the elements in the low-level models and to verify if they originate
from a pair of elements related by a correspondence relationship. On the other
hand, in Section 4.2.3 we intuitively introduced that we need to constrain the
possible correspondence relationships that can be created between the target
elements. Initially, these constraints are only based on the metaclasses that
the target elements conform to.

4In this figure only the transformation of the Attribute dueDate is presented to illustrate
our approach.

4.4 Derivation Requirements 97

M
se
cu
rit
y

M
bu
si
ne
ss

Pr
oj

ec
t:

B
us

in
es

sE
nt

ity

 du
eD

at
e:

 A
ttr

ib
ut

e

at
tri

bu
te

M
ja
va
-s
ec
ur
ity

w
rit

eD
ue

D
at

e:
 D

ec
la

re
dM

et
ho

d

va
lu

e=
"U

se
r"

@
R

ol
es

Al
lo

w
ed

: A
nn

ot
at

io
n

an
no

ta
tio

n

m
od

ifi
er

 =
 "p

riv
at

e"
du

eD
at

e:
 F

ie
ld

Ts
ec
2j
av
a

du
eD

at
e:

 R
es

ou
rc

eA
ttr

ib
ut

e
U

se
r:

R
ol

e
Pr

oj
ec

tU
se

r:
Pe

rm
is

si
on

pe
rm

is
si

on
As

si
gn

m
en

t
w

rit
e

w
rit

eD
ue

D
at

e:
 A

ct
io

nW
rit

eE
nt

ity

ac
tio

nA
ss

ig
nm

en
t

M
ja
va Pr

oj
ec

t:
D

ec
la

re
dC

la
ss

du
eD

at
e:

 D
ec

la
re

dF
ie

ld

bo
dy

D
ec

la
ra

tio
n

se
tD

ue
D

at
e:

 D
ec

la
re

dM
et

ho
d

bo
dy

D
ec

la
ra

tio
n

Tb
us
2j
av
a

F
ig
ur
e
4.
13

:
B
us
in
es
s
2
Ja
va

&
Se
cu
ri
ty

2
Ja
va

98 Chapter 4. Correspondence Relationships Derivation

Generalizing these two conditions, we can state: two elements a′ and b′,
from the MA and MB models respectively, will have a correspondence relation-
ship if they fulfill two conditions:

• Tracing back targets that are generated from corre-
sponding sources
There is a CM relationship at the higher level between a and b,
from MA and MB models respectively, where a′ was generated
from a by the transformation T1, and b′ was generated from b by
the transformation T2.

• Constraining the generated correspondence relation-
ships
The metaclasses ma′ and mb′ where a′ conforms to ma′ and b′

conforms to mb′ have a constraint that allows for correspondence
relationship between their instances. If a constraint does not ex-
ist between the metaclasses this condition is not fulfilled.

Intuitively, the first condition establishes that elements a′ and b′ trace back
to a pair of elements that have a high-level correspondence relationship between
them. The second condition means that the metaclasses ma′ and mb′ are the
same metaclass or extensions of the same one. Therefore, it is permitted to
define correspondence relationships between their instances. If both conditions
are satisfied for a pair of elements a′ and b′, the Correspondence Derivation
Mechanism will produce a correspondence relationship between a′ and b′. On
the contrary, a corresponding relationship between two elements c′ and d′,
which trace back to a and b respectively, cannot be created if there is no
constraint that allows corresponding relationships between their metaclasses
mc′ and md′.

Figure 4.14 shows the correspondence derivation schema. In the figure a
correspondence relationship is created by the correspondence derivation mech-
anism between a′ and b′ because the two conditions are fulfilled. However, the
elements c′ and d′ do not fulfill the constraints. Hence, no relationship is cre-
ated. In this figure we use an "allowed" relation between the metaclasses ma′

and mb′ to intuitively introduce the idea of derivation constraints. The deriva-
tion constraints and the derivation metamodel are explained in Section 4.6.

4.5 Tracing back corresponding elements 99

ma' mb'

a

a' b'

b

ma mb

"allowed"

c' d'

mc' md'

T1
T1

conformsTo conformsTo

conformsTo conformsTo

T2
T2

conformsToconformsTo

Figure 4.14: Correspondence Derivation schema

4.5 Tracing back corresponding elements

As explained intuitively in Section 4.2.2 it is required to identify the low-level
elements that are generated from a pair of high-level corresponding elements.
A Tracing Model is the mechanism needed in order to identify the sources for
each target low-level element.

4.5.1 Tracing Metamodel

A Tracing Metamodel should offer concepts that allow the representation of
tracing links between the source and target elements for each transformation.
A Tracing metamodel should at least have a concept that represents the root
of the tracing model and a concept that represents the tracing relationships.
Each tracing relationship should identify the source elements and the target
elements that were generated by the transformation.

In the implementation of the correspondence derivation mechanism we use
the Tracing metamodel presented in Figure 4.15. This metamodel was devel-
oped as part of an extension of the ATL Virtual Machine (ATL-VM). This ex-
tension is presented in Section 6.5 and allows to automatically generate tracing
models when an ATL transformation is executed. This metamodel was devel-
oped for the ATL-VM, but it can be used to generate tracing models with any
EMF based transformation engine, such as OpenArchitecture [ope10a].

The Tracing metamodel has a TransientLinkSet5 metaclass that represents
the root of the tracing model, which is a collection of tracing links. The

5The name of the metaclasses of the Tracing metamodel are selected in order to have
compatibility with the internal types of the ATL-VM.

100 Chapter 4. Correspondence Relationships Derivation

TransientLink metaclass represents a tracing link. Each tracing link has a
collection of sourceElements and a collection of targetElements. Finally, this
metamodel has a TransientElement metaclass that represents traced elements.
A TransientElement has the attribute name and a reference called value. This
reference points to the actual elements in the source and target models.

4.5.2 Generating tracing models

There are several options to generate a tracing model when a transformation
is executed:

1. The first strategy is to manually add the tracing logic to the existing
transformation rules.

2. The second option is to use a High-Order Transformation (HOT). In
[Jou05], a HOT is presented to automatically append the additional out-
put elements to the original rules in order to generate a required tracing
model. Nevertheless, this solution creates an overhead problem because
every time that the original transformation rules are changed, it is nec-
essary to re-apply the HOT.

3. The final option depends on the functionality of the transformation en-
gine. As we mentioned before, we extend the ATL-VM to automatically
generate tracing models.

For instance, when a transformation is applied to the Attribute dueDate in
the Business model, it is transformed into the FieldDeclaration dueDate and
the MethodDeclaration setDueDate. In order to make this information avail-
able for the derivation mechanism, we generate tracing links between target el-
ements and source elements. The same happens on the security side, where the
derivation mechanism needs to know if the MethodDeclaration writeDueDate
traces back to a related ResourceAttribute. Once both transformations are ex-
ecuted, two tracing models are generated (TMbus and TMsec). With these two
tracing models, the derivation mechanism can find the elements in both lower-
level models that trace back to the pair of related elements in both higher-level
models. We generate a tracing model when each transformation is executed.
This model conforms to a Tracing Metamodel presented before, and it has
links between every source element and its target elements.

4.5.3 Composing tracing models

When several transformation steps are used in a MTC, each transformation
step produces a Tracing Model. In order to find if an element of the lowest level
model comes from a corresponding element in the high-level model, we need to

4.5 Tracing back corresponding elements 101

Figure 4.15: Tracing Metamodel

compose all the traces. In other words, we need to obtain the transitive closure
for each target element. Therefore, to trace back from the lowest level model
to the highest one, all the TMs generated by the MTC must be composed into
a single tracing model that relates the highest level model with the lowest one.

For instance, in the MTC presented in Section 3.2, three transformations
are executed. Figure 4.16 shows how each transformation produces a Tracing
model: 1) the tracing model TMbus2arch that relates the Business model with
the Architecture model, 2) the tracing model TMarch2jee that relates the Ar-
chitecture model with the JEE model, and 3) the tracing model TMjee2java
that relates the JEE model with the Java model.

Keeping in mind the need of identifying the correspondences in the lowest
level models, one needs to verify which elements are generated from corre-
sponding high-level elements. For this reason, the three tracing models must
be composed. Figure 4.17 shows how these tracing models are composed6.

The first step is to compose the first two models in order to obtain the trac-
ing model TMbus2jee (Figure 4.17(b)) that relates the Business model with
the JEE model. This composition is performed by identifying the source ele-
ments in TMarch2jee that are the same as the target elements of TMbus2arch.
In the Figure 4.17(a) the tracing relationship T1 has the same element as tar-
get as the sources of the tracing relationships T2 and T3. For each one of the
elements that match the target and source element, a new tracing relationship
is created between the source element of the first model and the targets in the
second model. In Figure 4.17(b), the TA tracing link is created between the
source of T1 and the target of T2. The ATL transformation that we use to
compose two tracing models is presented in Appendix B.1.

The second step is to compose the third TM model TMjee2java with the
new tracing model TMbus2jee that relates the Business model with the JEE

6The relationship between the models elements are excluded for simplicity

102 Chapter 4. Correspondence Relationships Derivation

BUSINESS MODEL
Mbusiness

JAVA MODEL
Mjava

ARCHITECTURE MODEL
Marchitecture

JEE MODEL
Mjee

TRANSFORMATION
BUSINESS TO ARCHITECTURE

Tbus2arch

TRANSFORMATION
ARCHITECTURE TO JEE

Tarch2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

TRACING MODEL
TMbus2arch

TRACING MODEL
TMbus2arch

TRACING MODEL
TMbus2arch

TRACING MODEL
TMbus2jee

TRACING MODEL
TMbus2java

Figure 4.16: Tracing composition

model. The result of this composition is a tracing model TMbus2java that
relates the Business model with the Java model. This composition is performed
identifying the source elements in TMjee2java that are the same as the target
elements of TMbus2jee. Next a new tracing relationship is created between the
source element of the first model and the targets in the second model. This
model can be used by the correspondence derivation mechanism to identify
which low-level target elements are generated from a pair of corresponding
high-level elements.

Although composing the tracing models allows us to easily identify if the
source of a target element has a correspondence relationship, we loose in-
termediate information. The reason for this is the lack of dedicated-tracing
operations to navigate through the different tracing steps involved in a trans-
formation chain in ATL. However, this information is only useful when is not
possible to differentiate between the target elements of a single source element
(i.e., when two or more target elements conform the same metaclass and share
the same trace name). When this happens, the tracing composer transforma-
tion will inform us of the problem. This is going to be explained in detail in
Section 4.7.

4.6 Constraining the correspondence relationships

As presented in Section 4.2.3, once we identify the elements that are generated
from a couple of corresponding high-level elements, we need to verify if it is
possible to define a correspondence between them. For instance, we have two
corresponding high-level elements a and b, and the MTCs T1 and T2. The
MTC T1 transforms a into a1 and the MTC T2 transforms b into b1. It is
obvious that a relationship exists between a1 and b1 (Figure 4.18(a)).

However, Figure 4.18(b) presents a slightly more complex case. In this case

4.6 Constraining the correspondence relationships 103

Project : BusinessEntity

Project : SystemServicesLayerProject : BusinessServicesLayer

Project : SessionBeanProject : EntityBean

ProjectSession : DeclaredClass

Project : DeclaredClass
IProjectLocal : DeclaredInterface

IProjectRemote : DeclaredInterface

T1

T2 T3

T5 T6

TMbus2arch

TMarch2jee

TMjee2java

(a)

Project : BusinessEntity

Project : SessionBeanProject : EntityBean

ProjectSession : DeclaredClass

Project : DeclaredClass
IProjectLocal : DeclaredInterface

IProjectRemote : DeclaredInterface

TA

T5
T6

TMbus2jee

TMjee2java

(b)

Project : BusinessEntity

ProjectSession : DeclaredClass

Project : DeclaredClass
IProjectLocal : DeclaredInterface

IProjectRemote : DeclaredInterface

TB

TMbus2java

(c)

Figure 4.17: Composing tracing models

104 Chapter 4. Correspondence Relationships Derivation

a b

a1 b1

T1 T2

(a)

a b

a2

a1

b2

b1

T1

T1 T2

T2

?

(b)

Figure 4.18: Constraining the correspondence relationships

the MTC T1 transforms a into a1 and a2 and the MTC T2 transforms b into b1
and b2. In this case, it is possible to define four different relationships between
the elements (i.e., a1 and b1, a1 and b2, a2 and b1, or a2 and b2). Therefore,
only with the tracing information it is not enough to identify which are the
correct relationships to generate.

In order to constrain the possible correspondence relationships that can be
generated between the target elements, we define a Correspondence Deriva-
tion Model (CDM), in which we use the metaclass information to identify the
correct match. In Figure 4.18 the metaclass information is represented by the
geometric shapes (i.e., ellipse, circle, diamond, pentagon). For instance, the
only valid relationships that can be defined are between elements that conform
to the same metaclass (i.e., with the same shape). In the Figure 4.18(b) the
only valid relationships are between a1 and b1, and a2 and b2.

4.6.1 Correspondence Derivation Model

The Correspondence Derivation Model (CDM) is a key element in the gen-
eration of the low-level correspondence model. Using this model, we specify
constraints that allow or restrict the generation of correspondence relationships
between the low-level elements.

The CDM explicitly defines if a correspondence relationship can be defined
between the instances of two metaclasses, in two metamodels. The related
metamodels can be the same when the target platform (e.g., Java) is the same
or different when the target platforms are different (e.g., Java and SQL).

If it is possible to define a correspondence relationship between the two
elements, we state that they conform to compatible metaclasses. The MTC
developer must decide if two metaclasses are compatible or not. Similarly, the
modeler must decide about the propagation of the compatibility relationships.
If two metaclasses are compatible, he needs to decide if their submetaclassess
or their composites are compatibles as well. Whether or not correspondence

4.6 Constraining the correspondence relationships 105

relationships are allowed between certain model elements is defined using com-
patibility constraints .

MTC developers must define a CDM between the target metamodels to
make explicit if the instances of two metaclasses are allowed to be related by
a correspondence relationship or not. Figure 4.19 shows a fragment of the
CDM specified with the Java Metamodel (MMjava). In this case, the Java
metamodel is the target metamodel for both MTCs and the compatibility con-
straints must be defined between its metaclasses. For instance, in Figure 4.19
a CompatibleLink is defined between the metaclass ClassDeclaration and the
metaclass ClassDeclaration, meaning that it is possible to generate a corre-
spondence relationship between the classes that conform to them. In other
words, if two metaclasses come from the same source they are going to be
composed. There are CompatibleLinks between DeclaredPackages, Declared-
Interfaces MethodDeclarations and FieldDeclarations as well. These are the
elements that are compatibles and we expect to compose in order to produce
the full application.

Moreover, in Figure 4.19 there is one CompositionLink between the re-
lationship ownedElements (PackageDeclaration and AbstractTypeDeclaration)
and the AbstractTypeDeclaration. This relationship will allow to propagate
correspondence relationships from two corresponding packages to their owned
elements (e.g., Classes and Interfaces). Similarly, a CompositionLink is de-
fined between the relationship bodyDeclarations (AbstractTypeDeclaration and
BodyDeclarations) and BodyDeclarations in order to propagate the correspon-
dence relationships to any method and field declared in a class.

In summary, the developer must decide about the propagation of the com-
patibility relationships. It is possible to say that in the Correspondence Deriva-
tion Model the MTC developer specifies intensional formulas to derive the
low-level correspondence model. How a correspondence relationship is prop-
agated is specified by using different types of constraints, that are defined in
the Correspondence Derivation Metamodel.

4.6.2 Correspondence Derivation Metamodel

Compatibility relationships represent constraints that allow or deny the cre-
ation of a correspondence relationship between target models. We have defined
different types of compatibility relationships in the Correspondence Derivation
Metamodel (CDMM) which offers the developer the possibility of specifying
how a low-level correspondence relationship between two elements in the tar-
get models is propagated, provided that they come from two elements related
by a high-level correspondence relationship. Figure 4.20 presents the CDMM.
The base concept of the metamodel is the DerivationLink that relates two
metaclasses. The DerivationLink is an abstract concept that has several spe-
cializations representing the types of constraints: CompatibleLink, FinalLink,

106 Chapter 4. Correspondence Relationships Derivation

PackageD
eclaration

A
bstractTypeD

eclaration

TypeD
eclaration

C
lassD

eclaration

InterfaceD
eclaration

B
odyD

eclaration

FieldD
eclaration

M
ethodD

eclaration

A
nnotation

PackageD
eclaration

A
bstractTypeD

eclaration

TypeD
eclaration

C
lassD

eclaration

InterfaceD
eclaration

B
odyD

eclaration

FieldD
eclaration

M
ethodD

eclaration

A
nnotation

com
patible

com
patible

com
patible

com
patible

com
patible

com
position

com
position

ow
nedElem

ents

bodyD
eclarations

annotations

ow
nedElem

ents

bodyD
eclarations

annotations
com

position

F
igure

4.19:
M

M
ja

v
a
-
M

M
ja

v
a
C
orrespondence

D
erivation

M
odel

4.6 Constraining the correspondence relationships 107

IncompatibleLink and CompositionLink. The DerivationLink metaclass con-
tains the attribute targetType which is the type of the correspondence relation-
ship that must be created. The types of target relationships are presented in
the next chapter. Finally, the metamodel has the metaclass DerivationElement
that represents a metaclass in a metamodel. This metaclass has a reference
to an EObject that allows us to relate the CDMM to any Ecore based meta-
model. The explanation of each type of DerivationLink is presented in the
next subsections.

Figure 4.20: Derivation Metamodel

4.6.3 Compatible Link

Figure 4.21 shows the Compatible link derivation schema. A Compatible link
relates two metaclasses ma’ and mb’, each one in a different metamodel. In
the figure, a correspondence relationship is created between a′ and b′ because:

• a′ and b′ are generated from a and b in the higher-level models.

• a and b are connected by a high-level correspondence relationship.

• a′ and b′ conform to the metaclasses ma′ and mb′ respectively.

• there is a Compatible link between ma′ and mb′.

108 Chapter 4. Correspondence Relationships Derivation

Additionally, a correspondence relationship is created between c′ and d′

because:

• c′ and d′ are generated from a and b in the higher-level models.

• a and b are connected by a high-level correspondence relationship.

• c′ and d′ conform to the metaclasses mc′ and md′ respectively.

• the metaclasses mc′ and md′ are submetaclasses of ma′ and mb′

respectively.

• there is a Compatible link between ma′ and mb′ that can be
propagated to its subclasses.

ma' mb'

a

a' b'

b

ma mb

compatible

c' d'

mc' md'

T1
T1

conformsTo conformsTo

conformsTo conformsTo

T2
T2

conformsToconformsTo

Figure 4.21: Compatible Link

For instance, a Compatible link is used between the metaclass FieldDecla-
ration in MMjava and the metaclass FieldDeclaration in MMjava−security
will be related with a CompatibleLink, because we want to protect every Field-
Declaration in the application. Therefore, an instance of FieldDeclaration or
an instance of one of its submetaclasses will be private.

4.6.4 Final link

Figure 4.22 shows the Final link derivation schema. A Final link relates two
metaclasses ma’ and mb’, each one in a different metamodel. Similar to the
Compatible Link a correspondence relationship is created between a′ and b′.
However, a correspondence relationship cannot be created between c′ and d′

because:

4.6 Constraining the correspondence relationships 109

• c′ and d′ are generated from a and b in the higher-level models.

• a and b are connected by a high-level correspondence relationship.

• c′ and d′ conform to the metaclasses mc′ and md′ respectively.

• the metaclasses mc′ and md′ are submetaclasses of ma′ and mb′

respectively.

• there is a Final link between ma′ and mb′ that cannot be prop-
agated to its subclasses.

ma' mb'

a

a' b'

b

ma mb

final

c' d'

mc' md'

T1
T1

conformsTo conformsTo

conformsTo conformsTo

T2
T2

conformsToconformsTo
X

Figure 4.22: Final Link

For instance, a Final link is used between the metaclass MethodDeclaration
in MMjava′ and the metaclass MethodDeclaration in MMjava−security will
be related with a FinalLink, because we want to protect only the method types
and not their subclasses. If we use a CompatibleLink for these metaclasses and
there are subclasses of them, then the instances of those subclasses will be
related as well.

4.6.5 Incompatible Link

Figure 4.23 shows the Incompatible link derivation schema. An Incompatible
link relates two metaclasses mc’ and mb’, each one in a different metamodel.
Similar to the Compatible Link, a correspondence relationship is created be-
tween a′ and b′. However, a correspondence relationship cannot be created
between c′ and d′ because:

110 Chapter 4. Correspondence Relationships Derivation

• c′ and d′ are generated from a and b in the higher-level models.

• a and b are connected by the a high-level correspondence rela-
tionship.

• c′ and d′ conform to the metaclasses mc′ and md′ respectively.

• the metaclasses mc′ and md′ are submetaclasses of ma′ and mb′

respectively.

• there is an Incompatible link between mc′ and md′ that explicitly
forbids to create correspondence relationships between the their
instances.

ma' mb'

a

a' b'

b

ma mb

c' d'

mc' md'

T1
T1

conformsTo conformsTo

conformsTo conformsTo

T2
T2

conformsToconformsTo
X

compatible

incompatible

Figure 4.23: Incompatible Link

This type of link is used to explicitly block the propagation of Compati-
bleLinks and CompositionLinks in some specific submetaclasses or composite
metaclasses respectively.

4.6.6 Composition Link

Figure 4.24 shows the Composition link derivation schema. A Composition
link relates two composition associations ra and rb, each one in a different
metamodel and relating two different metaclasses in each metamodel. In the
figure, a correspondence relationship is created between c′ and d′ because:

4.6 Constraining the correspondence relationships 111

• a′ and b′ are generated from a and b in the higher-level models.

• a and b are connected by a high-level correspondence relationship.

• c′ and d′ are not generated from a and b in the higher-level mod-
els.

• a′ and b′ conform to the metaclasses ma′ and mb′ respectively.

• c′ and d′ conform to the metaclasses mc′ and md′ respectively.

• ra is a containment relationship between the metaclasses ma′ and
mc′.

• rb is a containment relationship between the metaclasses mb′ and
md′.

• there is a Composition link between ra and rb.

ma' mb'

a

a' b'

b

ma mb

c' d'

mc' md'

T1

conformsTo conformsTo

conformsTo conformsTo

T2

conformsToconformsTo
X

compositionra rb

Figure 4.24: Composition Link

For instance, with a CompositionLink between the containment ClassDecla-
ration/FieldDeclaration relationship, we can explicitly express that if a Class-
Declaration is protected, then every contained FieldDeclaration is protected
as well.

4.6.7 Generating the Correspondence Model Transfor-
mation

Once a high-level correspondence model is specified, the tracing models are
obtained, and the Correspondence Derivation Model is defined by the MTC

112 Chapter 4. Correspondence Relationships Derivation

developer, they need to be processed by a transformation. This transformation
that we call Correspondence Model Transformation (CMT) is responsible for
analyzing the information of the models in order to generate the low-level cor-
respondence model. However, the CDM is defined at metamodel level and the
CMT needs information at model level. Therefore, it is necessary to express
the constraints as part of the transformation rules. For this reason, we use a
high-order transformation that receives the CDM as input and produces the
CMT. As we explained before, a HOT is a transformation rule that produces
another transformation rule as output. The HOT that we implemented uses
the CDM as input and adds a new rule to CMT for each constraint specified
in the CDM. The added rules are in charge of selecting and connecting the el-
ements depending on the constraint in the CDM and the tracing information.
For instance, a CompatibleLink is defined between the metaclass MethodDec-
laration in MMjava and the metaclass MethodDeclaration in MMjava. The
semantics of this constraint allows the derivation of correspondence relation-
ships between elements that conform to the related metaclasses or their sub-
metaclasses. Listing 4.1 presents part of the HOT rule that we implemented
in ATL.

1 rule CompatibleLink2Rule {
2 from
3 inlink : DerivationMM!CompatibleLink
4 to
5 outrule : ATL!MatchedRule (
6 name <- ’CompatibleLink ’ + inlink.left.name + inlink.right.name ,
7 inPattern <- inPattern ,
8 outPattern <- outPattern
9),

10 inPattern : ATL!InPattern (
11 elements <- Sequence{leftInElement , rightInElement , link},
12 filter <- derivationConstraint
13),
14 derivationConstraint : ATL!OperationCallExp (...),
15 ...
16 outPattern : ATL!OutPattern (
17 elements <- Sequence{outLink}
18 ...
19),
20 outLink : ATL!SimpleOutPatternElement (
21 varName <- ’outlink ’,
22 bindings <- Sequence {linkName , linkModel , leftElement , righElement}
23 ...
24),
25 ...
26 }
27 ...

Listing 4.1: High Order Transformation
The main goal of the presented HOT is to produce an ATLMatchedRule for

each Derivation Constraint specified in the DM. For instance, the rule takes the
CompatibleConstraint as input (line 3) and produces a new MatchedRule (line
5-9). An inPattern and an outPattern are defined for the new MatchedRule.
The inPattern (lines 10-13) specifies the type of the elements that are going

4.6 Constraining the correspondence relationships 113

to be matched by the rule, such as MethodDeclaration and MethodDeclaration.
Additionally, the inPattern has a filter where the derivation constraint is de-
fined. In the derivationConstraint (line 14) an intensional formula is specified
based on the type of constraint. These formulas are expressed as OCL con-
straints that are applied as a filter to the matched elements. The outPattern
(lines 16-19) specifies the output elements that will be generated. In this case
a new correspondence link between the matched elements.

Using an ATL HOT to generate the CMT allows to align an arbitrary pair
of complementary MTCs. The requirements as presented before are: 1) both
MTCs must generate tracing models, 2) the Correspondence Derivation Model
between the target metamodels must be defined by the MTC developer.

4.6.8 The Correspondence Model Transformation (CMT)

When the HOT presented in Section 4.6.7 is executed, the Correspondence
Model Transformation is generated. As explained before, the HOT processes
the CDM and produces a rule for each specified constraint. The CMT is
responsible for generating the low-level correspondence model. For instance,
one of the rules generated from the CDM presented in Figure 4.19 is presented
in Listing 4.2. This transformation rule takes three elements as input: 1)
an element of type MethodDeclaration (line 3) from the Mjava model, 2) an
element of type MethodDeclaration (line 4) from the Mjava−security, and 3)
a correspondence link that relates elements which are the sources for (1) and
(2) (lines 5-10). This rule has three outputs: 4) a correspondence link (lines
12-16), 5) a reference to the left element that is the left input element (1) (line
17) and 6) a reference to the right element that is the right input element (2)
(line 18). The types of the input and output correspondence links are explained
in Chapter 5. The complete generated rule is presented in Appendix B.2.

As presented in Listing 4.2, the CMT is specified for both low-level meta-
models (lines 3-4), and the types of the metaclasses are hard-coded in the
inputs of the rule; the metaclass information comes from the CDM constraints
because we automatically generate CMT using the presented HOT. In our
case study, the MethodDeclaration setDueDate at the application side can be
connected to the MethodDeclaration writeDueDate, because the metaclasses
MethodDeclaration and MethodDeclaration are compatible. As we presented
before, a constraint exists that allows these two elements to be connected. This
makes it possible to relate only the compatible pairs of elements and not every
generated element in each side.

114 Chapter 4. Correspondence Relationships Derivation

1 rule EnhanceLink_MethodDeclaration_MethodDeclaration {
2 from
3 leftElement : LEFTOUT!MethodDeclaration ,
4 rightElement : RIGHTOUT!MethodDeclaration ,
5 inlink : CORRESPONDENCE!CompositionLink(
6 (inlink.left.getTargets(’leftTrace ’)->flatten()->select(e |
7 e = leftElement)->notEmpty ()) and
8 (inlink.right.getTargets(’rightTrace ’)->flatten()->select(e |
9 e = rightElement)->notEmpty ())

10)
11 to
12 outlink : CORRESPONDENCE!EnhanceLink (
13 model <- thisModule.matchModel ,
14 left <- leftEnd ,
15 right <- rightEnd
16),
17 leftEnd : CORRESPONDENCE!LeftElement (ref <- leftElement),
18 rightEnd : CORRESPONDENCE!RightElement (ref <- rightElement)
19 }
20 }

Listing 4.2: Correspondence Model Transformation (CMT)

4.7 Extending the scope of the derivation mech-
anism

The use of relationships between the target metamodels is sufficient only when
every target element generated from a single source element is an instance of
a different metaclass. However, usually MTCs transform a single source into
several elements that conform to the same metaclass. Figure 4.25 shows on
the one hand how the MTC Tbus2java transforms the Attribute dueDate from
the Business model into the FieldDeclaration dueDate, the setter MethodDec-
laration setDueDate and the getter MethodDeclaration getDueDate. On the
other hand the MTC Tsec2java transforms the ResourceAttribute dueDate
from the Security model into a private FieldDeclaration dueDate, and the an-
notated MethodDeclaration writeDueDate.

Therefore, these five target elements (i.e., the FieldDeclaration dueDate,
the setter MethodDeclaration setDueDate, the getter MethodDeclaration get-
DueDate, the private FieldDeclaration dueDate, and the annotated Method-
Declaration writeDueDate) are generated from corresponding high-level ele-
ments (i.e., the Attribute dueDate and the ResourceAttribute dueDate). In
other words, these elements trace back to corresponding elements. Addition-
ally, as is specified in the CDM (Figure 4.19) there is a compatible constraint
between the metaclass FieldDeclaration in the business MTC and the meta-
class FieldDeclaration in the security MTC. This means that we can generate
a correspondence relationship between the FieldDeclaration dueDate and the
private FieldDeclaration dueDate. Although there is a compatible constraint
between the metaclass MethodDeclaration in the business MTC and the meta-
class MethodDeclaration in the security MTC, it is not possible to identify
the correct match between the setter MethodDeclaration setDueDate, and the

4.7 Extending the scope of the derivation mechanism 115

getter MethodDeclaration getDueDate in the Mjava model and the annotated
MethodDeclaration writeDueDate. Intuitively a correspondence relationship
must be created between the setter MethodDeclaration setDueDate and the
annotated MethodDeclaration writeDueDate. A correspondence relationship
should not be created between the getter MethodDeclaration getDueDate and
the annotated MethodDeclaration writeDueDate because we want allow the
Role User to modify the dueDate value.

Consequently, more than the type information is required to identify the
correct matches between the target elements.

MsecurityMbusiness

dueDate: Attribute

Mjava-security

writeDueDate: DeclaredMethod

value="User"
@RolesAllowed: Annotation

annotation

modifier = "private"
dueDate: Field

Tsec2java

dueDate: ResourceAttribute User: RoleProjectUser: Permission
permissionAssignment

write

writeDueDate: ActionWriteEntity

actionAssignment

Mjava

dueDate: DeclaredField

setDueDate: DeclaredMethod

Tbus2java

getDueDate: DeclaredMethod

Figure 4.25: Insufficient Metaclass Information

4.7.1 Extending the tracing models

Keeping in mind that more information is needed to identify the correct match
between the generated elements, we need additional information in the tracing
models. This information is related to the name of the transformation rule that
transformed the element and the name of the output variable. For instance,
Listing 4.3 presents the rule that transforms an Attribute into a FieldDecla-
ration, the getter MethodDeclaration, and the setter MethodDeclaration. Ad-
ditionally, Listing 4.4 shows the rule that transforms an AttributeResource
into a private FieldDeclaration and an annotated MethodDeclaration when a
WriteAttributeAction is protecting it.

Figure 4.26 illustrates the results of applying these transformations to our
case study. In particular in this figure it is possible to see the tracing informa-
tion tagged with the transformation rule name and the output variable name.
For instance, the tracing link between the Attribute dueDate and the Method-
Declaration setDueDate is tagged with the rule name Attribute2Field-
Declaration and the output variable setter.

116 Chapter 4. Correspondence Relationships Derivation

1 rule Attribute2FieldDeclaration {
2 from
3 attribute : BUSINESS!Attribute
4 to
5 field : JAVA!FieldDeclaration
6 (
7 name <- attribute.name
8),
9 getter : JAVA!MethodDeclaration

10 (
11 name <- ’get ’ + attribute.name
12),
13 setter : JAVA!MethodDeclaration
14 (
15 name <- ’set ’ + attribute.name
16)
17 }

Listing 4.3: Attribute to Declared Field Transformation
1 rule ResourceAttribute2FieldDeclaration {
2 from
3 attribute : SEC!ResourceAttribute (
4 not attribute.write.oclIsUndefined ()
5)
6 to
7 field : JAVA!FieldDeclaration
8 (
9 name <- attribute.name ,

10 modifier <- ’private ’
11),
12 writemethod : JAVA!MethodDeclaration(
13 name <- ’write ’ + attribute.name ,
14 annotations <- Sequence{annotation}
15),
16 annotation : JAVA!Annotation(
17 type <- ’RolesAllowed ’,
18 value <- attribute.actions ->collect(e |
19 e.permission ->collect(f | f.role)
20)->flatten ()
21)
22 }

Listing 4.4: Correspondence Model Transformation (CMT)

We modify the Tracing metamodel presented in Section 4.5.1 to store the
information about the rule and the output variable. Additionally, the extension
to the ATL-VM automatically adds this information to the tracing links.

4.7.2 Extending the Correspondence Derivation Model

Having in mind to use the tags in the tracing links, the CDMM is adapted
by adding the name of the rules and the output variables to each side of a
constraint link. Each DerivationElement is enriched with a the name of the
rules and its output variables that are potentially compatible. This allows the
MTC developer to specify the additional conditions to each constraint of the
Correspondence Derivation Model in order to generate the correct matches
when several elements conform to the same metaclass and share the same

4.7 Extending the scope of the derivation mechanism 117

R
es

ou
rc

eA
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

:w
rit

em
et

ho
d

R
es

ou
rc

eA
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

:fi
el

d

M
se
cu
rit
y

M
bu
si
ne
ss

 du
eD

at
e:

 A
ttr

ib
ut

e

M
ja
va
-s
ec
ur
ity

w
rit

eD
ue

D
at

e:
 D

ec
la

re
dM

et
ho

d

va
lu

e=
"U

se
r"

@
R

ol
es

Al
lo

w
ed

: A
nn

ot
at

io
n

an
no

ta
tio

n

m
od

ifi
er

 =
 "p

riv
at

e"
du

eD
at

e:
 F

ie
ld

Ts
ec
2j
av
a

du
eD

at
e:

 R
es

ou
rc

eA
ttr

ib
ut

e
U

se
r:

R
ol

e
Pr

oj
ec

tU
se

r:
Pe

rm
is

si
on

pe
rm

is
si

on
As

si
gn

m
en

t
w

rit
e

w
rit

eD
ue

D
at

e:
 A

ct
io

nW
rit

eE
nt

ity

ac
tio

nA
ss

ig
nm

en
t

M
ja
va

du
eD

at
e:

 D
ec

la
re

dF
ie

ld

se
tD

ue
D

at
e:

 D
ec

la
re

dM
et

ho
d

Tb
us
2j
av
a ge

tD
ue

D
at

e:
 D

ec
la

re
dM

et
ho

d

At
tri

bu
te

2D
ec

la
re

dF
ie

ld
:g

et
te

r

At
tri

bu
te

2D
ec

la
re

dF
ie

ld
:s

et
te

r

At
tri

bu
te

2D
ec

la
re

dF
ie

ld
:fi

el
d

R
es

ou
rc

eA
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

:a
nn

ot
at

io
n

F
ig
ur
e
4.
26

:
T
he

ex
te
nd

ed
in
fo
rm

at
io
n

118 Chapter 4. Correspondence Relationships Derivation

source. Figure 4.27 shows the extended CDM for the presented example. The
figure presents the extra condition as an annotation to the MethodDeclaration.
This condition is:

(left.name = “Attribute2FieldDeclaration : setter”

and

right.name = “ResourceAttribute2FieldDeclaration.writemethod”)

or

(left.name = “Attribute2FieldDeclaration : getter”

and

right.name = “ResourceAttribute2FieldDeclaration.readmethod”)

This condition requires that the MethodDeclaration in the Mjava model
must be generated by the rule Attribute2FieldDeclaration and the output
variable setter7 and the MethodDeclaration in the Mjava − security model
must be generated by the rule ResourceAttribute2FieldDeclaration and
the output variable writemethod. If a couple of MethodDeclarations fulfill this
condition and if these are generated from a couple of corresponding elements,
then a correspondence relationship is created between them. Additionally, the
condition is used to create correspondences between the getter methods and
the read methods.

Listing 4.5 shows a fragment of the generated CMT for the extended Cor-
respondence Model. The condition is presented in lines 10 to 14.

It is important to notice that there is a situation that makes it impossible
to differentiate between two target elements. This situation occurs when both
elements share the same source, conform to the same metaclass, and are tagged
with the same rule name/output variable. This situation is originated when
the tracing information is not correctly generated and does not allow the dif-
ferentiation of all low-level elements. When this happens, the transformation
used in Section 4.5.3 to compose the tracing models will alert the MTC devel-
oper about the problem. Two possible solutions are verifying if the required
information is lost in the trace composition or extending the information stored
in the tracing relationships.

4.8 Summary

In this chapter, the key element of our proposal was presented. This element
is the automatic derivation mechanism that is responsible for generating cor-
respondence relationships between the elements of the low-level models. This

7The name of a trace link is the name of the rule plus the name of the output variable.

4.8 Summary 119

Pa
ck
ag
eD
ec
la
ra
tio
n

A
bs
tr
ac
tT
yp
eD
ec
la
ra
tio
n

Ty
pe
D
ec
la
ra
tio
n

C
la
ss
D
ec
la
ra
tio
n

In
te
rf
ac
eD
ec
la
ra
tio
n

B
od
yD
ec
la
ra
tio
n

Fi
el
dD
ec
la
ra
tio
n

M
et
ho
dD
ec
la
ra
tio
n

A
nn
ot
at
io
n

Pa
ck
ag
eD
ec
la
ra
tio
n

A
bs
tr
ac
tT
yp
eD
ec
la
ra
tio
n

Ty
pe
D
ec
la
ra
tio
n

C
la
ss
D
ec
la
ra
tio
n

In
te
rf
ac
eD
ec
la
ra
tio
n

B
od
yD
ec
la
ra
tio
n

Fi
el
dD
ec
la
ra
tio
n

M
et
ho
dD
ec
la
ra
tio
n

A
nn
ot
at
io
n

co
m
pa
tib
le

co
m
pa
tib
le

co
m
pa
tib
le

co
m
pa
tib
le

co
m
pa
tib
le

co
m
po
si
tio
n

co
m
po
si
tio
n

ow
ne
dE
le
m
en
ts

bo
dy
D
ec
la
ra
tio
ns

an
no
ta
tio
ns

ow
ne
dE
le
m
en
ts

bo
dy
D
ec
la
ra
tio
ns

an
no
ta
tio
ns

co
m
po
si
tio
n

(le
ft.

na
m

e
=

"A
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

:s
et

te
r"
an
d

rig
ht

.n
am

et
 =

 "R
es

ou
rc

eA
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

.w
rit

em
et

ho
d"

)
or

(le
ft.

na
m

e
=

"A
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

:g
et

te
r"
an
d

rig
ht

.n
am

e
=

"R
es

ou
rc

eA
ttr

ib
ut

e2
D

ec
la

re
dF

ie
ld

.re
ad

m
et

ho
d"

)

F
ig
ur
e
4.
27

:
E
xt
en
de
d
C
or
re
sp
on

de
nc
e
D
er
iv
at
io
n
M
od

el

120 Chapter 4. Correspondence Relationships Derivation

1 rule EnhanceLink_MethodDeclaration_MethodDeclaration {
2 from
3 leftElement : LEFTOUT!MethodDeclaration ,
4 rightElement : RIGHTOUT!MethodDeclaration ,
5 inlink : CORRESPONDENCE!CompositionLink(
6 (inlink.left.getTargets(’leftTrace ’)->flatten()->select(e |
7 e = leftElement)->notEmpty ()) and
8 (inlink.right.getTargets(’rightTrace ’)->flatten()->select(e |
9 e = rightElement)->notEmpty ()) and (

10 (left.name = "Attribute2FieldDeclaration:setter" and
11 right.name = "ResourceAttribute2FieldDeclaration.writemethod ")
12 or
13 (left.name = "Attribute2FieldDeclaration:getter" and
14 right.name = "ResourceAttribute2FieldDeclaration.readmethod ")
15)
16)
17 to
18 outlink : CORRESPONDENCE!EnhanceLink (
19 model <- thisModule.matchModel ,
20 left <- leftEnd ,
21 right <- rightEnd
22),
23 leftEnd : CORRESPONDENCE!LeftElement (ref <- leftElement),
24 rightEnd : CORRESPONDENCE!RightElement (ref <- rightElement)
25 }
26 }

Listing 4.5: Correspondence Model Transformation (CMT)

derivation mechanism uses tracing information in order to identify elements
that are generated from a couple of high-level corresponding elements.

The tracing information is generated in the form of tracing models. When
the transformation rules are executed, the tracing models are generated auto-
matically. These models relate each source element with their target elements.
Additionally, each tracing link is tagged with the name of the rule and the
output variable.

Furthermore, tracing information is not enough to identify the correct cor-
responding elements in the lowest level models. For this reason, the MTC
developer needs to restrict the potential correspondence relationships between
the low-level elements. The Correspondence Derivation Model defines con-
straint links between the target metaclasses. In these constraint links, it is
specified if the derivation of a correspondence relationship is allowed or not.
The CDM is processed by a High-Order Transformation that analyzes the
constraint links and produces the Correspondence Model Transformation. The
CMT is responsible for analyzing the models (i.e., high-level models, high-level
correspondence model, tracing models, and low-level models) and producing
the low-level correspondence model.

In the next chapter we elaborate on the Correspondence Model semantics
and how the different correspondence relationships are resolved at the lowest-
level of abstraction.

Chapter 5

Correspondence Relationships Resolution

5.1 Introduction

Once the existing Model Transformation Chain (MTC) and the new concern
specific MTC produce the low-level models and the correspondence derivation
mechanism produces the low-level correspondence model between these mod-
els, we need to resolve these relationships. For us the term resolve means
to interpret the correspondence relationships and to process them in order
to produce the application. We support three types of correspondence rela-
tionship resolutions: 1) composition resolution when the low-level models are
complementary parts of the application that need to be integrated in order to
produce the final application, 2) checking resolution when each model stands
on its own and it is recommendable to check that they are consistent, and
3) mapping resolution when the responsibility of the integration is given to a
platform specific code based mechanism and the correspondence relationships
are translated into the composition specification of the used platform specific
mechanism.

In this chapter we present how the application modeler identifies corre-
sponding elements between the high-level models by using different types of
relationships that allow him to express the type of resolution that must be
performed to obtain the final application. The different types of relationships
are explained in this chapter as well. Finally, we explain how we resolve each
type of relationship using our three resolution mechanisms (i.e., composition,
checking or mapping).

Figure 5.1 outlines the structure of this chapter based on the schema of our
approach. In this chapter we present the semantics of a set of correspondence
relationships used in this research. This set is specified in a Correspondence
Metamodel that is presented in Section 5.2. This metamodel is used to de-
fine correspondence models that relate the high-level models. At a high-level
of abstraction, the correspondence relationships are manually defined between

121

122 Chapter 5. Correspondence Relationships Resolution

the high-level models by using simple types of relationship. In Section 5.3 we
present how a high-level correspondence model is created using an example.
Next, the relationships are propagated through the transformation steps by
the correspondence derivation mechanism presented in Chapter 4. This cor-
respondence derivation mechanism adds semantics to the existing correspon-
dence relationships by using the extended metaclasses defined in the extende
Correspondence Metamodel that is presented in Section 5.4. The types of
relationships defined in this metamodel are used to specify correspondence re-
lationships between low-level models. In Section 5.5 we present an example
of a derived correspondence model between the lowest-level models that were
generated by the MTCs. Additionally, when the relationships that connect
the lowest-level models are obtained, we need to resolve them as explained
before. Finally, in Section 5.6 we present the resolution mechanism we have
implemented in order to obtain a complete model of the required application.

CMhigh-level

CMlow-level

CM resolution

2

3

5

6

1. Correspondence Metamodel: Presented in Section 5.2
2. High-level correspondence model: Presented in Section 5.3
3. Derivation mechanism: Presented in Chapter 4
4. Extended Correspondence Metamodel: Presented in Section 5.4
5. Low-level correspondence model: Presented in Section 5.5
6. Correspondence resolution mechanism: Presented in Section 5.6

CMM1

Extended CMM4

Figure 5.1: Chapter structure

5.2 Correspondence Metamodel

As presented in Section 2.4.2, a Correspondence Model (CM) represents rela-
tionships between elements of different models. These relationships must iden-
tify corresponding elements and the type of they will represent what kind of

5.2 Correspondence Metamodel 123

resolution operation the modeler wants to perform between the corresponding
elements. The different types of relationships are defined in a Correspondence
Metamodel (CMM).

Figure 5.2 presents the Correspondence Metamodel that was defined in
our research and was based on the ideas of the AMW Metamodel [DFBV06]
presented in Section 2.4.2. The main elements of the Correspondence Meta-
model are: 1) the CorrespondenceModel that represents the root element of the
model, 2) the CorrespondenceElement that represents a corresponding element
in one of the models, and 3) the CorrespondenceLink that represents a cor-
respondence relationship between two corresponding elements in two different
models.

Figure 5.2: Correspondence Metamodel

The CorrespondenceElement is an extensible concept that has an external
reference1 to an EMF EObject. Having a reference to an EObject allows us
to point to the actual EMF elements in the related models. This metaclass

1A external reference is a reference to a different model or metamodel

124 Chapter 5. Correspondence Relationships Resolution

is extended into a MainElement, which represents an element in the existing
model, and also into a ConcernElement, which represents an element in the
new model.

A CorrespondenceLink relates two CorrespondenceElements, representing a
correspondence relationship between two elements that belong to two different
models. A CorrespondenceLink is a high-level relationship that needs to be
extended in order to specify a concrete composition semantics.

5.2.1 Constraining relationships

The Correspondence metamodel allows us to connect any element in an EMF
based model with any element in another EMF based model. This means
that the application modeler will have a large amount of potential pairs of
elements. In this large set of elements the application modeler will need to
identify the correct matches. Having a huge amount of potential pairs can
cause the modeler to make mistakes by specifying false positives and also to
omit to specify some required pairs. In order to facilitate the creation of the
CM, the MTC developer can extend this metamodel to constrain the possible
correspondences to be defined by the application modeler.

The extension of the Correspondence Metamodel requires that the MTC
developer performs three tasks:

1. Extending the metaclass CorrespondenceElement or its submetaclasses
in order to constrain them to have an external reference to an element
that conforms to a specific metaclass in the left metamodel instead of an
EObject,

2. Extending the metaclass CorrespondenceElement or its submetaclasses
in order to constrain them to have an external reference to an element
that conforms to a specific metaclass in the right metamodel instead of
an EObject, and

3. Extending the metaclass CorrespondenceLink in order to assure that it
is only possible to define correspondence links between a pair of already
constrained CorrespondenceElements.

Figure 5.3 shows an example of a possible extension for creating corre-
spondence relationships between the Business and Security metamodels. In
order to constrain the CM that is going to be created between a Business
Model and a Security Model, a constrained link is defined by: 1) extending
the metaclass MainElement into the metaclass CorrespondenceBusinessEn-
tity that has an external reference to the metaclass BusinessEntity in the
Business metamodel, and 2) extending the metaclass ConcernElement into
the metaclass CorrespondenceResourceEntity that has an external reference

5.3 High-level correspondences 125

to the metaclass ResourceEntity in the Security Metamodel, and 3) extend-
ing the metaclass CorrespondenceLink into the metaclass CorrespondenceLink-
BusinessEntityToResourceEntity that relates the metaclasses Correspondence-
BusinessEntity and CorrespondenceResourceEntity. Extending the metamodel
will reduce the amount of possible pairs and will improve the usability of our
solution.

Figure 5.3: Correspondence Metamodel

The MTC developer must adapt the Correspondence Modeler presented in
Section 6.4.1 in order to add constraints to the possible relationships that can
be defined. If the MTC developer performs the adaptation to the Correspon-
dence Modeler, then the tool will become metamodel specific for the pair of
related metamodels.

5.3 High-level correspondences
Using the relationships defined in the correspondence metamodel, it is possible
to specify correspondences between two models. At a high-level of abstraction,
it is possible to define the CM using three strategies: intensional, extensional,
or the combination of both [RJV09].

The first strategy is based on an intensional specification of the correspon-
dence relationships. In this strategy, intensional formulas are used to infer the
corresponding elements in both models. For instance, an intensional formula

126 Chapter 5. Correspondence Relationships Resolution

could state that if an element that conforms to the metaclass BusinessEntity
and an element that conforms to the metaclass ResourceEntity have the same
name, a correspondence relationship between them should be created. There
are several works that use various techniques and heuristics to automatically
obtain such correspondences [GJCB09].

The second strategy is based on an extensional specification of the corre-
spondence relationships. This means that every pair of corresponding elements
is explicitly specified by the modeler. The extensional strategy tackles the
problem of matching corresponding elements that requires human intervention
to identify them. In our case we chose this strategy in order to focus on the
derivation process and not on the definition of the high-level strategies.

In the third strategy, a combination of the previous two is used. Some
corresponding elements are identified by intensional formulas, and the most
complex ones are identified manually by a domain expert.

5.3.1 High-level Correspondence Metamodel Extension

The application modeler must identify the corresponding elements in the high-
level models. Additionally, he needs to express the type of operation that
he wants to perform with that pair of corresponding elements. At a high-
level of abstraction, how these relationships are resolved is not completely
defined and needs to be translated to the lowest-level of abstraction where the
resolution mechanism is able to resolve the relationships. In our research, we
propose three types of high-level correspondences that will represent the kind
of resolution that will be performed at the low-level of abstraction. These
types of relationships are:

CompositionLink: this relationship represents the intent of the application
modeler to integrate the related elements. The composition of the related
elements will be performed at the lowest level where it is clear how to
integrate the models.

CheckLink: this relationship represents the intent of the application modeler
to check the related elements. The checking of the related elements will
be performed at the lowest level where every element is complete.

MapLink: this relationship represents the intent of the application modeler
to map the related elements. The actual mapping of the related elements
will be performed at the lowest level where the elements are totally gen-
erated.

We will define the refinement of each type links towards the lower levels
later in this chapter. Though, first we will reintroduce our case study.

5.3 High-level correspondences 127

Example: Business and Security High-level Models

As presented in Section 4.3.2, we align the two high-level models using a CM
that conforms to the extended Correspondence Metamodel presented in Sec-
tion 5.3.1. In our example, the application modeler aims to integrate the
Business Model and the Security Model presented in the previous chapter. He
knows that these two models are complementary and that they need to be
composed in order to produce a secure application. In Figure 5.4 the Business
Model (Mbusiness) contains the BusinessEntity Project and the Security Model
(Msecurity) contains the ResourceEntity Project that needs to be protected.
In this example the Msecurity needs to be composed with the Mbusiness pro-
tecting the business resources. In this figure, the correspondence relationships
between both models CMhigh−level are represented by black lines marked with
ComposeLink. This is what the application modeler aims to do with the ele-
ments that he relates. In this case all of the corresponding elements need to be
composed. The CMhigh−level contains a correspondence relationship with links
to the BusinessEntity Project and the ResourceEntity Project. This rela-
tionship means that the ResourceEntity Project will be composed with the
BusinessEntity Project. The composition of these two elements will cause the
BusinessEntity to be protected. Moreover, the Attribute dueDate is related
in the CM to the ResourceAttribute dueDate. The modeler manually creates
these correspondence links because it is assumed that he knows which ele-
ments are corresponding and he understands the meaning of the relationships
between the elements.

5.3.2 High-level heterogeneous composition

As presented in Section 2.4.2, if the models are expressed in different DSMLs,
it is necessary to perform a heterogeneous composition (e.g., composition of a
business entity from a business DSML and a secured resource from the security
DSML). The use of heterogeneous DSMLs inherently increases the complexity
of integrating multiple models.

Although it is possible to define the compositional semantics for a pair of
high-level metamodels, if an unanticipated metamodel is added to an existing
MTC, a huge amount of work will be required to specify the compositional
semantics for the existing metamodel and the new unanticipated metamodel.
Therefore, a way of reusing an existing composition mechanism is required.

In order to reuse a low-level composition mechanism and to reduce the
complexity of evolving an existing MTC, an appropriate choice is to transform
each model into a common metamodel. Using this strategy allows us to avoid
performing a heterogeneous composition at a high-level of abstraction. More-
over, if the common metamodel is a technological platform metamodel (e.g.,
Java), it is possible to take advantage of an existing composition mechanism

128 Chapter 5. Correspondence Relationships Resolution

M
business

M
security

project: R
esourceEntity

M
anager: R

ole
ProjectM

anager: Perm
ission

w
riteProject: A

ctionW
riteA

ttribute

actionAssignm
ent

w
rite

dueD
ate: R

esourceA
ttribute

U
ser: R

ole
ProjectU

ser: Perm
ission

readProject: A
ctionR

eadEntity

perm
issionAssignm

ent

actionAssignm
ent

w
riteread

perm
issionAssignm

ent

w
riteD

ueD
ate: A

ctionW
riteEntity

actionAssignm
ent

roleH
ierarchy

Project: B
usinessEntity

 nam
e: A

ttribute
 dueD

ate: A
ttribute

R
isk: B

usinessEntity

 nam
e: A

ttribute

risks: A
ssociation

attribute
attribute

association

attribute

businessEntity

 Plan: B
usinessEntity

 nam
e: A

ttribute

 plans: A
ssociation

attribute

businessEntity

C
om

poseLink

ComposeLink

F
igure

5.4:
H
igh-levelC

orrespondence
M
odel

5.4 Extended Correspondence Metamodel 129

for the platform. Usually, at the platform level there are several tested and
commonly used composition mechanisms, such as AspectJ for Java.

If it is not possible to transform both models into a common metamodel,
then the solution will be to transform both models into different platform based
metamodels that have a composition mechanism defined (e.g., Java and SQL
metamodels).

Therefore, to propagate the high-level correspondence relationships from
the high-level to the low-level, we use the Correspondence Relationships Deriva-
tion mechanism presented in Chapter 4.

5.4 Extended Correspondence Metamodel

At the lowest-level of abstraction we need to define a concrete set of correspon-
dence relationships that can be resolved by a reusable resolution mechanism,
or an existing one, such as AOP.

In order to increase the level of reusability of the proposed correspondence
relationships, we chose to have a set of correspondences that can be used to
relate models that conform to any metamodel. Although this allows better
reusability, using metamodel independent relationships restricts the expres-
siveness of the relationships.

We extend the CompositionLink, CheckLink and MapLink metaclasses in
order to offer concrete compositional semantics between low-level models. The
compositional semantics is implemented in a transformation rule that is written
in ATL. This transformation rule allows us to resolve a set of correspondence
relationships between two models and was inspired by the UML Package merge
algorithm [DDZ08].

The concrete correspondence relationships that we propose allow us to per-
form the three types of resolution presented before. For the CompositionLink
we propose to use composition operators that were inspired by several works
in composition [SNEC06, BWH+08, Bri05]. These composition operators offer
the required mechanisms to integrate two homogeneous models. Additionally,
these composition operators are similar to the ones used in the composition
of different views in an architecture description (AD) that were presented in
Section 2.4.1. In the case of the extensions for the CheckLink relationships
we offer a couple of checking operators that explicitly allow us to check con-
sistency properties between two models. These checking operators are very
simple and were implemented as proof of concept. More powerful consistency
checking can be performed by using the check-only mode of QVT Relations
[Obj09a]. Finally, we offer one extension for MapLink that can be used to
generate code-level composition specification such as XML descriptors.

The types of relationships that we define in our resolution are explained
next. Figure 5.5 shows the extended Correspondence Metamodel that contains

130 Chapter 5. Correspondence Relationships Resolution

the new relationships. For each relationship we will state to which group of
resolution type it belongs (i.e., Composition, Checking or Mapping), and if it
allows us to relate homogeneous and/or heterogeneous models.

Table 5.1 presents a summary of the relationships provided. In this table
each relationship is categorized by how it is resolved (i.e., Composing, Check-
ing, or Mapping) and the kind of models that it can relate (i.e., heterogeneous
or homogeneous models). Although it is possible to define more complex corre-
spondence relationships such as those introduced in aspect-oriented program-
ming [KLM+97], subject-oriented programming [HO93], and multidimensional
separation of concerns [BLS03], they were not implemented in the context of
this research. Instead, in this research we focus on the propagation of the re-
lationships through the MTCs. The types of relationships defined in our work
are:

Compose Check Map Homo-
geneous

Hetero-
geneous

Enhance
√ √

Include
√ √

Extend
√ √

Override
√ √

CheckSameName
√ √ √

CheckSameAttribute
√ √ √

MapsTo
√ √ √

Table 5.1: Correspondence Relationships Summary

Enhance: this is a composition relationship that enhances the element in
the main model with the features of the element in the concern model.
This relationship is only used between elements that conform to the
same metaclass and belong to homogeneous models. This relationship
is resolved by a model composition transformation that will add all the
features from the concern model element into the main model element.
For instance, a Java Class in the main model will be enhanced by the
Attributes, Methods and Annotations of a Java Class in the concern
model.

Includes: this is a composition relationship that connects two elements: the
element in the concern model will be added as a feature of the element
in the main model. This relationship is only used between homogeneous
models which conform to different metaclasses. A containment relation-
ship must exist between both metaclasses. This relationship is resolved
by adding the element from the concern model into the main model el-
ement containment association. For instance, a Java Class in the main

5.4 Extended Correspondence Metamodel 131

F
ig
ur
e
5.
5:

E
xt
en
de
d
C
or
re
sp
on

de
nc
e
M
et
am

od
el

132 Chapter 5. Correspondence Relationships Resolution

model is related with a Java Attribute in the concern model. When
the composition is performed, the Attribute is added to the collection of
Attributes of the Java Class in the main model .

Extend: this is a composition relationship that creates an inheritance rela-
tionship between the related elements that must conform to homogeneous
metamodels. In order to create an inheritance relationship between the
elements, the metamodels must support inheritance between their con-
cepts (i.e., the metamodel of an object oriented language). This relation
will connect the two lowest level classes. For instance, if two Java Classes
are related, when the composition is performed, the Class in the main
model will be the superclass of the Class in the concern model.

Override: this is a composition relationship that connects elements of the
same type in homogeneous models. When the composition is performed,
the element in the concern model will replace the element in the main
model. For instance, if two Java Methods are connected, when the com-
position is performed, the Method in the concern model will replace the
Method in the main model.

CheckSameName: this is a checking relationship that connects two ele-
ments that could belong to heterogeneous metamodels. When this re-
lationship is resolved, a checking operation is performed between both
elements by comparing if the elements have the same name. This rela-
tionship is used to check consistency between properties in the low-level
models. For instance, a Java Annotation @Table in a Java model must
have the same name of a Table that exists in an SQL model. This rela-
tionship can be used to detect if the Annotation and the table have the
same name.

CheckSameAttribute: this is a checking relationship that connects two
elements that could belong to heterogeneous metamodels. When this
relationship is resolved, a checking operation is performed between both
elements by comparing if the elements have an attribute (i.e., feature)
with the same name and the same value. This relationship is used to
check consistency between properties in the low-level models. The name
of the Attribute to check must be specified in the relationship.

MapsTo: this is a mapping relationship that connects two elements. These
elements belong to homogeneous or heterogeneous models. This rela-
tionship represents the same concept in different domains at a high-level
of abstraction or two elements in different platforms at the lowest level
of abstraction. At the lowest level of abstraction these two elements re-
main separated and will be connected by code level mechanisms. For

5.5 Low-level correspondences 133

instance, a Table in a SQL schema and an EJB Entity in a Java appli-
cation. This relationship could be transformed into a XML descriptor
where the mapping of the elements is specified. Finally, these two ele-
ments are "composed" by the Application Server (e.g. JBoss, Glassfish)
using the XML descriptor.

5.5 Low-level correspondences

The correspondence relationship derivation mechanism presented in Chapter 4
can generate a CM for both homogeneous and heterogeneous models. The
generated CM will identify corresponding elements in low-level models that
conform to the same metamodel or to different metamodels.

5.5.1 Correspondences between homogeneous models

When a couple of high-level models are processed by two MTCs, it is possi-
ble to generate two low-level models that conform to the same metamodel.
Moreover, at the lowest level of abstraction, this metamodel could be based on
the technological platform (e.g., Java metamodel); each of the two generated
models is a complementary part of the final application.

On the one hand, the models can be orthogonal to each other without
overlapping elements. For instance, each model could represent an application
module, and the correspondence relationships could represent the dependencies
between the modules. In this case the correspondence resolution mechanism
must check for consistency problems between the generated models by com-
paring names or attributes of the related elements.

On the other hand, the generated models could have overlapping elements
that need to be composed to generate the final application. In this case each
one of the related elements can contain part of the information of the final
element. The correspondence relationship represents how both parts should
be integrated in order to obtain a complete version of the element. In this
case the correspondence resolution mechanism must compose the models and
produce a single model with all the information that was generated in the
related models.

The main advantage of having both models conform to the same meta-
model is that a single composition mechanism can be reused for any pair of
concerns given that the concerns can be expressed using the common meta-
model. Reusing a composition mechanism helps to evolve an MTC avoiding
the need to specify new composition semantics for each new concern and to
implement a new composition mechanism.

134 Chapter 5. Correspondence Relationships Resolution

5.5.2 Correspondences between heterogeneous models

Depending on the application, at the lowest level of abstraction it is possible
that the generated models conform to different metamodels. At this level, each
metamodel is related to a technological platform (e.g., a Java metamodel or a
JSP metamodel). In this situation each MTC transforms the high-level model
into a different platform specific model. For instance, an MTC which takes as
input a Business model and produces a Java Model while another MTC takes
as input a Presentation model and produces a JSP model. These two models
represent different parts of the required application, but they need to work
together.

The correspondences generated between these two models should map ele-
ments that represent the same concept in the related platforms. For instance,
a Field in the Java model could be mapped to a TextField in the JSP model.
This will mean that the TextField represents the FieldDeclaration in the JSP
platform and it will be responsible for presenting or capturing the value of the
FieldDeclaration in the user interface.

At this level metamodels are based on the technological platform. Thus
their semantics are clear and completely defined2. Similarly, how the involved
platforms interact and are composed is clearly defined. For instance, how a
Java application accesses a database or how a JSP calls methods in a Java
application are clearly defined in the Application Server.

In summary, at the platform level, it is clear how each platform specific
part of the application interacts with the other. Therefore, the ideal is to leave
the composition of the different parts to the platform mechanisms. This means
translating the correspondence relationships into a platform specific code-level
composition specification. Additionally, the correspondence relationships can
be used to check the consistency between the models.

5.6 Resolving correspondence relationships

When two models are generated from two complementary MTCs, and a Cor-
respondence Model relates the models identifying corresponding elements, one
has to resolve the correspondences. The term resolution in our work is defined
as the interpretation of the correspondence relationships and processing them
in order to produce the application. In our work we identify three possible sce-
narios that are resolved in different ways: 1) The first scenario is composition.
In this situation the generated models are complementary parts of the appli-
cation that have overlapping elements that need to be integrated in order to

2At a higher level of abstraction the semantics of the metamodels are specified in the
transformations. Thus it is necessary to look into the transformations for fully understanding
the semantics of each metamodel concept.

5.6 Resolving correspondence relationships 135

produce the final application. 2) The second scenario is checking. In this situa-
tion, the models represent different views, parts, subsystems or modules of the
final application. These models can be translated directly into code without
any composition operation. However, it is advisable to check that the mod-
els are consistent. We resolve the correspondences by performing a property
check between the corresponding elements. 3) The third scenario is mapping.
In this scenario, each model represents a model of the system that needs to
be integrated. The responsibility of this integration is given to a platform
specific code based mechanism. Therefore, the correspondence relationships
should be translated into the composition specification of the platform specific
mechanism used (e.g., XML descriptors in JEE).

5.6.1 Resolution Strategy: Composition

We offer a reusable composition mechanism that supports the previously men-
tioned relationships and is able to compose homogeneous models. The idea
of the composition mechanism is to integrate two models that conform to the
same metamodel and to produce a model that conforms to the same meta-
model as well. Figure 5.6 shows a possible composition example. At the top
part of the figure, the Business and the Security models are presented. These
two models conform to the Java metamodel.The Correspondence Model relates
the models identifying all the corresponding elements. Then in the middle of
the figure the composition mechanism is represented as black arrows. The
composition mechanism is a transformation rule that takes the two models
and the CM as input and produces a single model as output. The generated
model is presented in the bottom of the figure and is the full model of the
application that conforms to the Java metamodel as well.

LOW-LEVEL
BUSINESS JAVA MODEL

LOW-LEVEL
SECURITY JAVA MODEL

LOW-LEVEL
FULL JAVA MODEL

Model Composition

CM

JAVA
METAMODEL

Figure 5.6: Homogeneous Model Composition

Composition strategy

The composition strategy that we use is based on classifying the elements
of the input models into two groups: 1) the elements that are not related

136 Chapter 5. Correspondence Relationships Resolution

by a correspondence relationship, and 2) the elements that are related by a
correspondence relationship.

The second group is constituted by elements that are incomplete and need
to be integrated in the final model. These elements are related by a correspon-
dence relationship and the type of this relationship indicates how they need to
be composed. In other words, the information of these elements is located in
the two source models and needs to be integrated in the final model.

Figure 5.7 illustrates our composition strategy by means of the example
that was presented in Section 4.2. In the figure, the elements that are not
related by a correspondence relationship (i.e., in white) are copied directly to
the target model without any modification. The elements that are related by
a correspondence relationship (i.e., in color) are partial representations of the
same concept and need to be integrated. For this reason they are composed and
a single element is generated in the target model from each pair. This single
element will have the information that was specified in the source pair. In the
example we maintain the left side elements, but we include the relationships
of the right side elements.

LOW-LEVEL
POLYGON-FULL MODEL

B3B2

B1

A3

A2

A1

C2

D3

D2

D1

correspondence

B3
B2

B1 A3A2

A1

C3

C2

C1

D3D2

D1

Composition
Transformation

LOW-LEVEL
POLYGON-ELLIPSE MODEL

LOW-LEVEL
POLYGON-CIRCLE MODEL

Figure 5.7: Homogeneous Model Composition

When a pair of corresponding elements is processed, the first step is to
identify the type of correspondence relationship that connects them. Having
identified this type, the composition transformation decides how to integrate
both elements.

Relationships resolution

As presented before, the generated CM (CMlow−level) is an essential input for
composing both low-level models in order to obtain a complete model of the
application. The low-level CM model has the information of what will be

5.6 Resolving correspondence relationships 137

composed by identifying pairs of corresponding elements. Additionally, the
type of the correspondence relationship is used to define how the two elements
will be integrated. The composition transformation must resolve each type
of composition relationship in order to produce an integrated model. The
resolution of each type is presented next with the help of an example.

Enhance: this type of composition is resolved by adding the features of
the concern element into the main element. Figure 5.8 shows the Class
Project in the application low-level model (Mjava) that is related with
the Class Project in the security low-level model (Msec−java). These two
Classes are related by an Enhance relationship. When the composition is
performed, the Annotations of the Class in the security low-level model
are added to the Class in the application low-level model. A single Class
Project is obtained with the features of the two related Classes (i.e., its
Attributes, Methods and Annotations).

Mjava-securityMjava

Project: DeclaredClass

dueDate: DeclaredField

bodyDeclaration

getDueDate: DeclaredMethod

bodyDeclaration

setDueDate: DeclaredMethod

bodyDeclaration

value = "user", "manager"
@DeclaredRoles: Annotation

Enhance Project: DeclaredClass

annotation

Mjava-full

Project: DeclaredClass

dueDate: DeclaredField

bodyDeclaration

getDueDate: DeclaredMethod

bodyDeclaration

setDueDate: DeclaredMethod

bodyDeclaration

value = "user", "manager"
@DeclaredRoles: Annotation

annotation

Enhance composition

Figure 5.8: Enhance resolution

Include: this type of composition adds the element in the concern model
as a feature of the element in the main model. Figure 5.9 shows the
Class Project in the application low-level model (Mjava) that is related
with the Attribute principal in the security low-level model (Msec−java).
These two elements are related by an Include relationship. When the
composition is performed, the Attribute is added to the collection of
Class attributes. A single Class Project is obtained with the added
Attribute.

138 Chapter 5. Correspondence Relationships Resolution

Mjava Mjava-security

type = java.security.Principal
principal: DeclaredField

include composition

IncludeProject: DeclaredClass

dueDate: DeclaredField

bodyDeclaration

getDueDate: DeclaredMethod

bodyDeclaration

setDueDate: DeclaredMethod

bodyDeclaration

Mjava-full

Project: DeclaredClass

dueDate: DeclaredField

bodyDeclaration

getDueDate: DeclaredMethod

bodyDeclaration

setDueDate: DeclaredMethod

bodyDeclaration

type = java.security.Principal
principal: DeclaredFieldbodyDeclaration

Figure 5.9: Include resolution

5.6 Resolving correspondence relationships 139

Extend: this type of composition relates two Classes with an inheritance
relationship3. Figure 5.10 shows the Class User in the main low-level
model that is related with the Class Manager in the concern low-level
model. These two Classes are related by an Extend relationship. When
the composition is performed, the two Classes are connected by a subtype
relationship.

Mconcern-javaMmain-java

User: DeclaredClass

name: DeclaredField

bodyDeclaration

getName: DeclaredMethod

bodyDeclaration

setName: DeclaredMethod

bodyDeclaration

Mjava-full

Extend composition

Manager: DeclaredClassExtend

User: DeclaredClass

name: DeclaredField

bodyDeclaration

getName: DeclaredMethod

bodyDeclaration

setName: DeclaredMethod

bodyDeclaration

Manager: DeclaredClasssuperType

Figure 5.10: Extend resolution

Override: this type of composition relates two elements that conform to the
same metaclass. When the composition is performed, the element in the
concern model will replace the element in the main model. Figure 5.10
shows the Attributes dueDate. The Attribute in the main model has
public access. The Attribute in the concern model has private access.
When the composition is performed, the Attribute in the concern model
replaces the Attribute in the main model. This means that the Attribute
in the full model has private access.

Composition Transformation

In our approach we use the CDM to generate a composition transformation.
The CDM is processed by a HOT and a composition transformation is pro-
duced. The HOT analyzes each compatibility relationship and produces two
ATL matched rules. The first rule is responsible for copying the elements in

3Note that the extend relationship is only possible for metamodels that support a notion
of object-oriented extensions.

140 Chapter 5. Correspondence Relationships Resolution

Mjava-securityMjava

visibility = "public"
dueDate: DeclaredField

Mjava-full

Override composition

visibility = "private"
dueDate: DeclaredFieldOverride

visibility = "private"
dueDate: DeclaredField

Figure 5.11: Override resolution

the main and concern models to the complete model without any modification.
This rule specifically selects elements that are not related by a correspondence
relationship. The second rule is responsible for composing a pair of corre-
sponding elements that depend on the semantics of the target relationship in
the CDM.

Listing 5.1 presents the three rules generated for the composition of a Pack-
ageDeclaration. In the CDM there is a CompatibleLink between the Pack-
ageDeclaration metaclasses and an Enhance composition relationship is se-
lected as target. The first rule (i.e., PackageDeclarationCopy) is a copy rule
that copies any package that is not related by a correspondence relationship.
Lines 3-8 are the filter that allows us to select only the non-related elements.
The second rule (i.e., PackageDeclarationEnhanced) is responsible for com-
posing two corresponding PackageDeclarations. This rule performs a union
of the metaclass structural features that have a cardinality greater than 1. If
the cardinality is 1, the rule checks if a structural feature is defined in the
main model. If it is defined, it copies its value to the final model. If it is not
defined, then the value of the concern model is copied to the final model. In
the example, name and proxy features have a cardinality of 1 and comments,
ownedElements and ownedPackages greater than 1.

5.6.2 Resolution Strategy: Checking consistency

When the generated models are orthogonal and do not share overlapping el-
ements, a potential use for correspondence relationships is to perform a con-
sistency check between the related elements. For instance, they are used to
verify if two related elements have the same name or if a given property has

5.6 Resolving correspondence relationships 141

1 rule PackageDeclarationCopy {
2 from
3 s : METAMODEL !"j2se5:: PackageDeclaration" (
4 (thisModule.mainElements ->includes(s) and
5 not thisModule.linkedMainElements ->includes(s)) or
6 (thisModule.concernElements ->includes(s) and
7 not thisModule.linkedConcernElements ->includes(s))
8)
9 to

10 t : METAMODEL !"j2se5:: PackageDeclaration" (
11 name <- s.name ,
12 proxy <- s.proxy ,
13 comments <- s.comments ,
14 ownedElements <- s.ownedElements ,
15 ownedPackages <- s.ownedPackages
16)
17 }
18
19 rule PackageDeclarationEnhanced {
20 from
21 s : METAMODEL !"j2se5:: PackageDeclaration" (
22 thisModule.mainElements ->includes(s) and
23 thisModule.linkedMainElements ->includes(s))
24 using {
25 link : MATCHMM!AligmentLink = thisModule.getLink(s);
26 }
27 to t : METAMODEL !"j2se5:: PackageDeclaration" (
28 name <- i f not s.name.oclIsUndefined () then
29 s.name
30 else
31 link.right.ref.name
32 endif ,
33 proxy <- i f not s.proxy.oclIsUndefined () then
34 s.proxy
35 else
36 link.right.ref.proxy
37 endif ,
38 comments <- s.comments ->union(link.right.ref.comments),
39 ownedElements <- s.ownedElements ->union(link.right.ref.ownedElements),
40 ownedPackages <- s.ownedPackages ->union(link.right.ref.ownedPackages)
41)
42 }

Listing 5.1: Attribute to Declared Field Transformation

the same value.
We implement a basic checking mechanism that helps the application mod-

eler and the MTC developer to identify inconsistencies between the generated
models. The potential inconsistencies in the generated models could be intro-
duced as modeling errors in the high-level models, incorrect correspondences
at high-level model, problems in the transformations or a poorly defined Cor-
respondence Derivation Model.

Relationship resolution

The consistency checking mechanism that we implement only verifies basic
properties between the models. The checking is performed by comparing only
the elements that are related by a correspondence relationship. The elements

142 Chapter 5. Correspondence Relationships Resolution

that are not related by a correspondence relationship are not checked.
For each pair of corresponding elements, a simple check is performed de-

pending on the type of the relationship. Finally, a report is presented reflecting
which corresponding elements fulfill the condition and which elements do not.

CheckSameName: this relationship connects two elements only when they
have a feature called name. Additionally, the value of the feature name
must be the same. For instance, a Java Annotation @Table in a Java
model has a feature called name that must have the name of a Table that
exists in an SQL model. This relationship can be used to detect if the
Annotation and the Table have the same name. Figure 5.12 shows the
CheckSameName relationship between the Annotation and the Table.
In this case the result of the name check is true and no warnings are
produced.

Msql

Mjava

Project: DeclaredClass

name = "T_PROJECT"
T_PROJECT: Table

name = "T_PROJECT"
@Table: Annotation CheckSameName

annotation

Figure 5.12: CheckSameName resolution

CheckSameAttribute: this relationship connects two elements only when
they have the same specified attribute. This specified attribute must have
the same name and the same value. This relationship is used to check
consistency between properties in the low-level models. For instance,
an MTC generates a Java model and the other MTC generates a JSP
model. The JSP model must refer to an existing element in the Java
model. Therefore, it is possible to use this type of checking to verify that
the element in the JSP model has the same value as the element in the
Java model. The name of the Attribute to be checked must be specified
in the relationship.

5.6.3 Resolution Strategy: Mapping to code-level com-
position

In some situations when the two generated models conform to two different
platform based metamodels (i.e., Java metamodel and SQL metamodel), the
composition can be delegated to the platform specific composition mechanisms.

5.6 Resolving correspondence relationships 143

For instance, a JEE Application Server knows how to communicate with a
database. Therefore, the responsibility of the correspondence relationships is
to generate the code level specification of the composition. One example of
this is generating the XML descriptors which configure the Java application
to interact with the database.

Relationships resolution

MapsTo: this relationship connects two elements that represent the same
concept in different domains at a high-level of abstraction or two ele-
ments in different platforms at the lowest level of abstraction. At the
lowest level of abstraction, these two elements that remain separated
will be connected by code level mechanisms. For example, a Table in an
SQL schema and a EJB Entity in a Java application. This relationship
could be transformed into an XML descriptor where the mapping of the
elements is specified. Finally, these two elements are "composed" by the
Application Server (e.g. JBoss, Glassfish) using the XML descriptor.

Figure 5.13 shows the correspondences used to generate an XML descrip-
tor between the Java model and the SQL model. In this case, annotations
are not used and the relations are created between the ClassDeclarations
and also the Tables, and the FieldDeclarations and Columns. For exam-
ple, there is a MapTo correspondence relationship between the ClassDec-
laration Project and the Table T_PROJECT. Another MapTo correspon-
dence relationship is derived between the FieldDeclaration name and the
Column PROJECT_NAME.

MsqlMjava

Project: DeclaredClass

projectID: DeclaredField

bodyDeclaration

T_PROJECT: Table

PROJECT_NAME: Column

column

PROJECT_ID: Column

columnname: DeclaredField

bodyDeclaration
key

MapsTo

MapsTo

MapsTo

Figure 5.13: MapsTo resolution

Once the correspondence model is generated, it is used by a code generator
that transforms each relationship into XML code. The generated XML code
is presented in Listing 5.2. This XML illustrates how each ClassDeclaration is
mapped to its corresponding Table and how every FieldDeclaration is mapped
to its corresponding Column. Finally, when the application is executed, the
two models are composed.

144 Chapter 5. Correspondence Relationships Resolution

1<entity -mappings >
2 <entity class="Project"
3 metadata -complete="true">
4 <table name="T_PROJECT" />
5 <attributes >
6 <id name="id">
7 <column name="PROJECT_ID"/>
8 </id>
9 <basic name="name">

10 <column name="PROJECT_NAME"/>
11 </basic >
12 ...
13 </attributes >
14 </table >
15 </entity >
16 ...
17</entity -mappings >

Listing 5.2: Transformation Rule (Tbus2sql)

5.7 Summary
In summary, this chapter presents the semantics of the correspondence rela-
tionships and how each type of correspondence can be resolved. The semantics
of the correspondence relationship is defined in a Correspondence Metamodel.
This metamodel can be extended in two different ways: 1) by adding con-
straints to the types of elements that can be related, and 2) by adding new
types of correspondences. We show how we can perform these two types of
extensions.

At the high-level of abstraction, we manually define the correspondence
relationships that are used by our correspondence derivation mechanism in
order to generate a low-level CM. The correspondence derivation mechanism
adds semantics to the relationships by selecting from the different types of
relationships defined in the Correspondence Metamodel. These low-level cor-
respondences must be resolved in order to obtain the final application. The
resolution of the low-level correspondences can be performed in three different
ways: 1) composing the related models, 2) checking consistency between the
models, and 3) transformed into code-level composition specifications, such as
XML descriptors.

Chapter 6

Tool Support

6.1 Introduction

We have developed a set of proof-of-concept tools, called MTC Framework
Toolkit to support the evolution of an existing MTC and the generation of
applications using an evolved MTC. We present this set of tools keeping in
mind the target users. The first group of tools helps the MTC developer to
evolve an existing MTC. The second group supports the application modeler
by generating an application using an evolved MTC.

On the one hand, the main goal of the toolkit targeted for the MTC de-
veloper is to support him in the evolution of an existing MTC. This means to
assist the developer in the alignment of two MTCs and in the generation of
the required transformation rules to be able to compose the generated models
or to check the consistency of the generated models.

On the other hand, the main goals of the toolkit targeted for the application
modeler is to help him: 1) to define correspondence relationships between the
high-level models, and 2) to execute the different transformations that derive
the correspondences and compose or check models.

In the first part of this chapter we will use the security case study used
in the previous chapters to illustrate how our tools help each target user in
performing his tasks. The remainder of this chapter is structured as follows:
Section 6.2 describes the architecture of the MTC Framework Toolkit compo-
nents. Section 6.3 explains all the tasks that the MTC developer must perform
to evolve an existing MTC and the tools that we provide him to assist in this
process. Section 6.4 presents the tasks that the application modeler must
execute in order to produce an application using the evolved MTC. Next, we
present an ATL-VM extension that allows us to automatically generate tracing
models. Finally, Section 6.6 summarizes this chapter.

145

146 Chapter 6. Tool Support

6.2 Architecture Overview

The MTC Framework Toolkit consists of six components. Three of them sup-
port the MTC developer tasks, two of them support the application modeler,
and one is for infrastructure support. These components make use of two
third-party components. These components are the Eclipse Modeling Frame-
work (EMF)[SBPM09] and the Atlas Transformation Language (ATL)[JK06].
Figure 6.1 gives an overview of the components and how they are related to
each other.

EMF ATL

Correspondence
Derivation Model Editor

Correspondence
Model Editor

ATL-VM
Traceability
Extension

Correspondence
Checker

Generator
Traceability
Processor

Composition
Generator

3rd party
plug-in

Application Modeler
plug-in

MTC Developer
plug-in

Infrastructure
plug-in

Figure 6.1: MTC Framework Toolkit architectural overview

The MTC Framework Toolkit Eclipse plug-ins add functionality to the
Eclipse Integrated Development Environment to support the evolution of an
MTC. On the one hand, the toolkit offers two model editors that allow the
MTC developer and the application modeler to specify the Correspondence
Derivation Model (CMD) and the Correspondence Model (CM) respectively.
These two model editors are built using EMF as the modeling framework. On
the other hand, we implement a set of tools that use the ATL framework to
generate models, analyze models and generate new transformations. Addition-
ally, we extend the ATL Virtual Machine (ATL-VM) in order to automatically
generate tracing models.

Figure 6.2 shows how each plug-in supports our approach to evolve an
existing MTC. In the following sections, each plug-in is explained using the
case study of adding the security concern to an existing MTC. With the help
of this case study, we illustrate the steps that the MTC developer and the
application modeler must follow and the tools used in each step.

6.2 Architecture Overview 147

Tb
us

2j
av

a
Tc

dt
Ts

ec
2j

av
a

M
M
bu
s

M
M
se
cu
rit
y

M
M
ja
va

M
M
se
c-
ja
va

M
bu
s

M
ja
va

M
se
c-
ja
va

M
se
c

C
M
hi
gh
-le
ve
l

M
fu

ll

C
M
lo
w
-le
ve
l

co
m

po
si

tio
n/

ch
ec

ki
ng

Ap
pl

ic
at

io
n

co
de

G
ja

va

TM
ja

va
TM

se
cu

rit
y

C
D

M

M
od

el
M

et
am

od
el

R
el

at
io

ns
hi

ps
 m

od
el

Tr
an

sf
or

m
at

io
n

C
or

re
sp

on
de

nc
e

M
od

el
 E

di
to

r

Tr
ac

ea
bi

lit
y

Pr
oc

es
so

r

Tr
ac

ea
bi

lit
y

Pr
oc

es
so

r

C
or

re
sp

on
de

nc
e

D
er

iv
at

io
n

M
od

el
 E

di
to

r

C
om

po
si

tio
n/

C
he

ck
in

g
G

en
er

at
or

AT
L

tra
ce

ab
ilit

y
ex

te
ns

io
n

AT
L

tra
ce

ab
ilit

y
ex

te
ns

io
n

To
ol

F
ig
ur
e
6.
2:

M
T
C

Fr
am

ew
or
k
To

ol
ki
t
su
pp

or
t

148 Chapter 6. Tool Support

6.3 MTC Developer Tasks

The first step that the MTC developer must perform is to implement a new
concern-specific MTC (e.g., Security MTC). This new concern-specific MTC
must transform a high-level model that conforms to a concern-specific meta-
model and generate a low-level concern-specific model that conforms to the
same low-level metamodel used by the existing MTC.

The second step that the MTC developer needs to perform is to use a
tracing mechanism for the MTCs, such as the ATL traceability extension that
we have provided or to manually modify the transformation rules to generate
tracing models.

Next, the MTC developer needs to define the Correspondence Derivation
Model (CDM) with the help of the Correspondence Derivation Model Editor.
The CDM must contain constraints between the target metamodel specifying
how the correspondences are propagated through the MTCs. Once the CDM is
defined, it is necessary to generate the Correspondence Model Transformation
(CMT). The Correspondence Derivation Model Editor allows the MTC de-
veloper to automatically generate an ATL transformation with the derivation
constraints in it.

Finally, the MTC developer should generate both the composition transfor-
mation and the correspondence checker transformation. These two transforma-
tions are generated using the CMD defined in the last step. The Composition
Generator and the Correspondence Checker Generator will process the CMD
and generate the ATL transformations that compose the models or check the
models respectively. The final result is the evolved MTC, ready to be used by
the application modeler.

6.3.1 Correspondence Derivation Model Editor

Once the new concern-specific MTC is implemented and the tracing support
has been added to both MTCs (i.e., existing and concern-specific MTC), the
MTC developer should define how the correspondence relationships are propa-
gated through the transformations in the CDM. Once the CDM is defined, the
information in it is used to obtain the CMT. In order to perform these tasks,
the MTC developer should use the Correspondence Derivation Model Editor .

The Correspondence Derivation Model Editor is the prime plug-in in our
approach and helps the developer to visualize the target metamodels and the
transformations in order to define derivation constraints between them. Addi-
tionally, the Correspondence Derivation Model Editor allows the MTC devel-
oper to automatically generate the CMT using the derivation constraints as
input. Figure 6.3 shows a screenshot of the Correspondence Derivation Model
Editor plug-in with an empty model.

This is an EMF based model editor that allows us to load the two target

6.3 MTC Developer Tasks 149

In this panel the
elements of the left

metamodel are
presented

In this panel the
elements of the right

metamodel are
presented

In this panel the left
transformation rule is

presented

In this panel the right
transformation rule is

presented

In this panel the Compatibility
Constraints are presented

In this panel the rule filter for a
selected Compatibility Constraint is

presented

Figure 6.3: Correspondence Derivation Model Editor

metamodels as well as the two transformations. When the metamodels and the
transformations for each MTC are loaded, the plug-in shows them in the left
and right sections of the model editor. In the middle section, the model editor
shows each constraint relationship defined in the CDM and the transformation
filters applied to each constraint. Furthermore, the Correspondence Derivation
Model Editor adds a set of action buttons to the eclipse toolbar that allow the
MTC developer to load the metamodels, transformations or an existing CDM.
Additionally, these buttons allow the MTC developer to create the multiple
compatibility constraints defined in Section 4.6.2.

In the following subsections, we will use the security case study presented
in Section 4.3 to illustrate the functionality of the Correspondence Derivation
Model Editor and how it supports the MTC developer.

A. Create a new Correspondence Derivation Model

The first step is to create a new CDM for the existing MTC and the new
concern-specific MTC. The Correspondence Derivation Model Editor plug-in
will allow the MTC developer to create one empty CDM.

B. Load the target Metamodels

Once the empty model editor window is open, the next step is to load the target
metamodels. A metamodel chooser dialog is provided by the plug-in to select
the two target metamodels. Figure 6.4 shows the metamodel chooser dialog.
This dialog only shows the metamodels that exist in the EMF metamodel

150 Chapter 6. Tool Support

registry.

Figure 6.4: Metamodel chooser dialog

In our case study, the target metamodel for both MTCs is the Java Meta-
model. Therefore, we load the Java metamodel in both sides. The metamodel
chooser dialog shows all the metamodels that are listed in the EMF registry.

C. Compatibility Constraints creation

Once the target metamodels are selected, the MTC developer creates com-
patibility constraints which are the mechanisms used to define how the corre-
spondence relationships will be propagated. This was previously explained in
Section 4.6.

As presented in Section 4.6.2, there are four kinds of derivation constraints.
For each kind the Correspondence Derivation Model Editor has a button to
add a constraint in the CDM. A constraint is defined by selecting a pair of
compatible metaclasses in the target models.

For instance, in our case study the metaclasses MethodDeclaration and
MethodDeclaration are compatible. Hence, to define a compatibility constraint
between this pair of metaclasses it is necessary to choose the MethodDeclara-
tion metaclass in both sides of the model editor. When the metaclasses are
selected, the type of desired constraint is selected, and a CompatibleLink is
created between the selected metaclasses. In Figure 6.5 the target metamodels

6.3 MTC Developer Tasks 151

are loaded and the MethodDeclaration and MethodDeclaration metaclasses are
selected.

Figure 6.5: Creation of a Compatibility Constraint

Similarly, the different compatibility constraints are defined until the com-
plete CDM is specified. Figure 6.6 presents the CDM that was shown in
Figure 4.19 in Section 4.6.1.

Figure 6.6: Correspondence Derivation Model

In Figure 6.6 each derivation constraint is shown with the name of the
related metaclasses on each side and the type of the constraint in the mid-
dle. When a compatibility constraint is selected, the model editor is refreshed
automatically by selecting the related metaclasses.

D. Filtering Derivation Constraints with Rule information

As presented in Section 4.7, when a transformation rule produces several ele-
ments that conform to the same metaclass, the metaclass information is not
enough to define compatibility constraints. In this situation the MTC de-
veloper must add information about the transformation rule and the output
variable. This information will be matched with the information added to the
tracing models.

152 Chapter 6. Tool Support

The MTC developer must add the left and right transformation rules using
the Rule chooser dialog presented in Figure 6.7. This dialog only shows the
transformation rules that exist in the Eclipse workspace.

Figure 6.7: Transformation Rule chooser dialog

In our case study the MTC developer needs to choose the final transfor-
mations of each MTC. The ATL module for the final transformation of the
Business to Java MTC is called JEE2J2SE5.atl and the ATL module for the
transformation from Security to Java MTC is called SEC2J2SE5.atl. When
both are added to the model, every time that an element is selected in the meta-
model window, the list of rules is filtered by the metaclass type. This means
that only the rules with an output of the chosen type are shown. For instance,
Figure 6.8 shows a derivation constraint between the metaclassesMethodDecla-
ration and MethodDeclaration. In order to be able to restrict the application of
this derivation constraint to only some elements, a rule filter was added. This
particular rule filter is only applied when both elements conform to Method-
Declaration and were generated by the rules Attribute2FieldDeclaration
in the left rule and ResourceAttribute2WriteFieldDeclaration in the right
rule. Additionally, the name of the output variable in the left is setter and
the output variable in the right is writemethod. The information of the rule
filter is presented in the bottom-middle section of Figure 6.8.

This filter creates a correct correspondence between the field setter and the
annotated method in order to write or modify a field, but does not create an
incorrect correspondence between the field getter and the annotated method
in order to read a field.

6.3 MTC Developer Tasks 153

Figure 6.8: Correspondence Derivation Model

Using rule name/output variable filters, we extend the scope of the corre-
spondence derivation mechanism by increasing the differentiation capabilities
between the generated elements.

E. Generating the Correspondence Derivation Transformation

Once the CDM is complete, the developer must generate the Correspondence
Derivation Transformation. As previously explained in Section 4.6.7, the CDM
is defined at the metamodel level and cannot be used to directly generate the
correspondence relationships. The CDM must be processed by a High-Order
Transformation (HOT) and a transformation rule will be generated from it.
This transformation will have the constraints specified in the CDM. Figure 6.9
shows the dialog that is opened when the MTC developer performs the gener-
ation. In this dialog the developer must choose the directory and file name of
the Correspondence Derivation Transformation.

6.3.2 Composition Generator

The Composition Generator plug-in supports the MTC developer during the
generation of a transformation rule that composes two models that conform
to the same metamodel. This plug-in is implemented as an Eclipse view that
allows the MTC developer to select the CDM and use the compatibility con-
straints to generate a transformation in order to compose to two models.

This composition generator is based on the compositional semantics pre-
sented in Section 5.6 where each pair of elements related by a correspondence
relationship is composed. The plug-in processes the CDM and produces an

154 Chapter 6. Tool Support

Figure 6.9: Correspondence Derivation Model

ATL transformation. For each compatibility relationship, the plug-in analyzes
the output correspondence and produces a composition rule using the specified
semantics. This generator is based on the use of an ATL High-Order transfor-
mation that takes the CDM and the metamodels related by it, and generates a
composition transformation. For each compatibility link, the HOT produces a
rule that allows the composition of two models. A generated rule was presented
in Section 5.6.1.

6.3.3 Consistency Checker Generator

The Consistency Checker Generator is similar to the previous plug-in. This
tool analyzes the CDM and identifies constraints that have as a target a Check-
Link, for each of them, the tool creates an ATL rule that compares two elements
in the target model. On the one hand, if the target link was a CheckSame-
Name, the rule verifies that the structural feature name in both models has the
same value. On the other hand, if the target link was a CheckSameAttribute,
the rule verifies that the given structural feature in both models has the same
value. Similarly to the Composition Generator, this plug-in uses a HOT to
analyze the CDM.

6.4 Application modeler Tasks

In the case of the application modeler, the main goal of the MTC Framework
Toolkit is to help him to define correspondence relationships between the high-
level models. Having in mind this goal, an application modeler has to perform
the following steps:

6.4 Application modeler Tasks 155

1. Defining a new application model or choosing an existing one, such as
the existing Business Model presented in Section 3.2.1

2. Defining the new concern model, such as the Security model presented
in Section 4.3.3.

3. Specifying the correspondences between the different models using the
Correspondence Model Editor plug-in.

4. Executing the MTC transformations.

5. Checking the tracing models for ambiguities using the Traceability Pro-
cessor plug-in.

6. Generating the low-level correspondence model by executing the CDT
generated by the MTC developer.

7. Composing/Checking the generated models by using the composing/check-
ing transformations generated by the MTC developer.

8. Generating the application code using the existing model-to-text trans-
formation.

The final result of performing all these tasks is the desired application code.

6.4.1 Correspondence Model Editor

Once the new concern-specific MTC is added to the existing MTC by the MTC
developer and all of the derivation and composition transformations are gen-
erated using the presented plug-ins, the application modeler uses the evolved
MTC to generate applications.

A developer has two options: the first one is to use an existing high-level
model (e.g., the existing Business Model) and to specify a new one for the
new specific concern, or the second option is to specify the two models from
scratch. In both situations, once both of the models are ready, the application
modeler must identify the corresponding elements that exist between both
high-level models. A correspondence relationship must be defined between
each pair of corresponding elements by the application modeler. The developer
is assisted by the Correspondence Model Editor plug-in in order to identify the
corresponding elements and to define the high-level correspondence model.

In the following subsections, we will continue using the security case study
presented in Section 4.3 to illustrate the functionality of the Correspondence
Model Editor and how it supports the application modeler.

156 Chapter 6. Tool Support

A. Creating a new Correspondence Model

The first step is to create a new CM by using the Correspondence Model Editor
plug-in. This plug-in is implemented as an Eclipse view in order to allow the
definition of the CM without closing other model editors.

The bottom of Figure 6.10 shows a screenshot of the Correspondence Model
Editor view with an empty model. In the top part of Figure 6.10, the Risk
business model is presented using a Topcased1 generated model editor. As
previously presented, it is possible to see the model (e.g., business model) and
the CM at the same time, helping the application modeler to specify the CM.

In this panel the
Corresponding
elements in the
left model are

presented

In this panel the
Corresponding
elements in the
right model are

presented

In this panel the
correspondence
relationships are

presented

Figure 6.10: Correspondence Model Editor

The plug-in is divided into three sections: 1) the left section that shows the
main model, 2) the middle section that presents the CM and its correspondence
relationships, 3) the right section that shows the concern model. Additionally,
in the top-right part of the view, there are action buttons to load the models,
edit the CM and save it.

1http://www.topcased.org

http://www.topcased.org

6.4 Application modeler Tasks 157

B. Loading the corresponding Models

Once the empty model editor view is open, the first step is to load the models.
The plug-in provides a model chooser dialog that allows the application modeler
to select among the models located in the Eclipse workspace. Figure 6.11 shows
the model chooser dialog.

Figure 6.11: Model chooser dialog

In our case study, we choose the Risk Business model and Security models.
These two models have several corresponding elements that need to be identi-
fied by the application modeler. Once the models are loaded, it is possible to
create the correspondence relationships, identifying elements in both models
that represent the same concept in different domains.

C. Creating correspondence relationships

As presented in Section 5.4, at a high-level of abstraction there are 3 kinds
of correspondence relationships. For each kind there is a button that adds a
relationship in the CM. A relationship is defined by selecting a pair of corre-
sponding elements in the related models.

For instance, in our case study, the BusinessEntity Project and ResourceEn-
tity Project represent the same element in two different domains (i.e., Business
domain and Security domain). Hence, to define a CompositionLink between
these pair of elements, it is necessary to choose the BusinessEntity Project in
the main model and the ResourceEntity Project in the concern model. Once

158 Chapter 6. Tool Support

both elements are selected, the CompositionLink relationship can be defined.
As presented in Section 4.3.4, at a high-level of abstraction the application
modeler does not know how exactly these two elements will be composed, he
only knows that he wants to compose them in order to protect the information
of the entity Project. In Figure 6.12 a fragment of the CM for our case study
is presented.

Figure 6.12: Creation of a Compatibility Constraint

In the middle part of Figure 6.12, each correspondence relationship is pre-
sented. The left side shows the element in the main model, the right side
presents the element in the concern model and the middle shows the type of
correspondence relationship between both elements.

Finally, when all the corresponding elements are identified and the rela-
tionships are specified in the correspondence model, the application modeler
must save the model. This model will be used by the Correspondence Deriva-
tion Transformation that was generated by the MTC developer to generate
correspondence relationships between the low-level models.

6.4.2 Traceability Processor

As presented in Section 4.5.3, each transformation rule produces a tracing
model. Additionally, all the tracing models generated by the execution of an
MTC must be composed into a single tracing model in order to calculate the
transitive closure of the traces. In order to assist the application modeler in
composing the generated tracing models, we implement an Eclipse view plug-in
called Traceability processor . The plugin has two main functionalities:

1. To compose a set of tracing models.

2. To analyze the composed tracing model and tell the user if the model
has ambiguous traces.

If there is any ambiguity in the traces, the correspondence derivation mech-
anism will not be able to generate the low-level correspondence model. This
means that the MTCs are not correctly aligned, and the MTC developer must

6.4 Application modeler Tasks 159

fix the correspondence derivation model. In the following subsections, we will
present the tasks that the Traceability processor performs:

A. Composing tracing models

The application modeler should select the set of tracing models to compose.
These models must conform to the tracing metamodel presented in Section 4.5.1.
Each model must be added in the right order, starting by the tracing model
that relates the highest-level model with the model that follows. Each model
is selected using the trace model selector presented in Figure 6.13.

Figure 6.13: Tracing model selector dialog

Figure 6.14 shows the Traceability processor with a set of tracing models
loaded. Once all the MTC tracing models are selected, the developer must
execute the composition of the models. The composition produces a single
model that relates the source elements in the highest-level model with tar-
get elements in the lowest-level model. For instance, for the existing MTC,
three tracing models where generated: 1) the tracing model between the
Business model and the Architecture model (i.e., Risk.EA-EARCH.trace), 2)
the tracing model between the Architecture model and the JEE model (i.e.,
Risk.EARCH-JEE.trace), and 3) the tracing model between the JEE model
and the Java model (i.e., Risk.JEE-JAVA.trace). When these three models
are processed by the Traceability processor plug-in, a complete tracing model
is generated. This complete tracing model is called Risk.EA-JAVA.trace.

160 Chapter 6. Tool Support

Figure 6.14: Traceability processor view

B. Ambiguity analysis results

Once the composition of the tracing models is executed, the Traceability pro-
cessor plug-in will inform the developer of the results of the composition. There
are three possible types of results:

• Correct model : the composed model is correct and can be used without
problems

• Extended CDM required: the composed model has traces with the same
source and several elements that conform to the same metaclass as tar-
gets. This means that it is not possible to differentiate between the
generated elements using the basic CDM. In this case, it is necessary to
use an extended CDM where the compatibility constraints are extended
with filters containing information about the transformation rule and
output variable that generates the elements.

• Tracing model cannot be used: in this case, there are several traces that
share the same source, have targets that conform to the same metaclass
and are additionally tagged with the same transformation rule name
and output variable. In this situation, the MTC developer must check
the transformation rules to identify the reason of this problem. The
possible solutions to this problem are fixing the alignment of the MTCs
or extending the information stored in the tracing model in order to
correctly identify each corresponding element.

6.5 ATL traceability extension 161

6.5 ATL traceability extension

As previously mentioned, tracing information is one of the main requirements
to be able to apply our approach. The MTC developer should provide the
application modeler with a mechanism that automatically generates tracing
models each time that an MTC is executed.

Depending on the transformation engine used, there are several options to
generate tracing models:

• The extension of the existing transformation rules with the tracing gen-
eration logic.

• The use of a high-order transformation that automatically adds the trac-
ing generation logic to the existing transformation rules [Jou05].

• The use of tracing mechanisms provided by the transformation engine
[JK06].

In the specific case of ATL-VM, we want to avoid the actual modification
of the transformation rules. The HOT option creates an overhead problem
because every time that the original transformation rules are changed, it is
necessary to re-apply the HOT. This means that we have to inject the modified
transformation rule into an ATL model, execute the HOT, and extract the
ATL code from the generated model. Moreover, the modification of the HOT
for adding customized tracing information, or for using a different tracing
metamodel is a complex task. These are some reasons why we extend the ATL-
VM to offer a better access to the tracing information when a transformation
is executed.

We propose two methods that offer access to tracing information to the
MTC developer. The first one is a small extension of the ATL-VM providing
richer access to the tracing information during the transformation execution.
This richer access can be used with an endpoint rule2 to generate a tracing
model. The second method is based on ATL byte-code adaptation that allows
for automatically serializing the existing internal tracing model together with
the target model. This method has minimal impact on the performance of the
ATL-VM, and offers a user-friendly tracing functionality to the transformations
developer.

6.5.1 Runtime read access to the tracing information

One possibility to create a tracing model is to have read access the ATL im-
plicit tracing mechanism at the end of the transformation and to recreate the

2A called rule automatically executed at the end of the transformation.

162 Chapter 6. Tool Support

tracing links in a new model. Therefore, we extend the ATL native types
implementation to offer an improved access to the implicit tracing mechanism.

This method offers two main advantages over the HOT method. First, the
possibility of adding a superimposed module [Wag08] to almost any existing
transformation rule to generate a tracing model, keeping the original rules and
the tracing-specific rules nicely separated in two different modules. Second,
the rules used to generate this model are simpler and easy to change when a
customized tracing metamodel is used. However, the drawback of this method
is its poor performance. The cause behind this is the necessity to create a copy
of the internal tracing model as a final step of the transformation.

6.5.2 Automatic storing of the tracing information

The performance drawback of the previous method is caused by the necessity to
iterate and recreate the tracing model. A better strategy, is to directly export
the implicit tracing model, minimizing the impact in the execution performance
of the transformation rules. This method is the most end-user friendly, because
no extra tracing rules are required. The MTC developer only needs to activate
the generation of the tracing model in the launch configuration. The launch
configuration dialogs are presented in Figure 6.15. Once the transformation is
executed, the tracing model is stored in the selected path.

Figure 6.15: ATL Launch configuration dialogs

This method is based on byte-code adaptation similar to the way that
superimposition is implemented in ATL, and is based on three steps: 1) tracing
metamodel and model loading, 2) bytecode adaptation and 3) tracing model
serialization.

The main advantages of this method are that it does not require changes
to the original transformations, it is end-user friendly and it has low per-
formance overhead. Although the __TRACE metamodel and the output

6.6 Summary 163

__trace model cannot be customized by the end user, they offer the same
rich access to the implicit tracing mechanism as the method presented in Sec-
tion 6.5.1.

6.6 Summary
In this chapter, we have described the architecture of the MTC Framework
Toolkit and how it can be used by the MTC developer and the application
modeler to perform various tasks. The MTC Framework Toolkit consists of
six Eclipse plug-ins that are used during the alignment of two MTCs as well as
in the specification and generation of applications. The MTC developer’s tasks
cover the different steps of the alignment of the two MTCs with a CDM and the
generation of the necessary transformations in order to derive the correspon-
dences and to compose/check the generated models. The application modeler’s
tasks cover the different steps of the definition of correspondences between the
high-level models and the execution of the multiple transformations until the
final application code is generated. The limitations and directions for future
work of the MTC Framework Toolkit are discussed in Section 8.5.2.

Chapter 7
Validation: Evolving Transformation

Chains

7.1 Introduction
This chapter presents the validation of our approach, which uses a complex
case study that adds three Model Transformation Chains (MTCs) to an exist-
ing MTC. This case study is quite challenging since it tries to align multiple
MTC’s at once, instead of the case study used in the text, which was limited to
aligning two MTC’s. The case study used in this chapter evolves the Business
MTC presented in Section 3.2 and adds: 1) the Security MTC presented in
Section 4.3, 2) a Navigation MTC that allows to specify Web navigation sce-
narios using concepts of the navigation domain, and 3) a Presentation MTC
that allows the specification of a Web user interface using high-level presenta-
tion concepts. These four MTCs are aligned using Correspondence Derivation
Models (CDMs) between them. These CDMs are used to derive correspon-
dence relationships between the low-level models that are generated by the
four MTCs. Finally, the low-level models are integrated using the derived
correspondence relationships in order to produce a secure Web application.

This case study is analyzed in order to evaluate if our approach fulfills the
key criteria defined in Section 3.3.1. As present above, when a new set of
requirements is added to an existing MTC which cannot be specified using the
existing assets, it is beneficial to use an approach that preserves the original
MTC artifacts. In Section 3.3.1 we present a set of key criteria used to compare
between several possible strategies. Furthermore, we will use these key criteria
to analyze how the addition of new concern-specific MTCs affect the existing
MTC using our approach.

Finally, based on the evaluation of the key criteria, we will analyze if our
approach achieves the goals presented in Section 1.2 and overcomes the prob-
lems that affect the direct extension of an existing MTC.

In Section 7.2, we present the case study that we will use to validate our

165

166 Chapter 7. Validation: Evolving Transformation Chains

work. Section 7.3 presents the analysis of the key criteria using the case study.
Next, in Section 7.4, we show how our approach achieves our research goals.
Finally, we discuss the limitations of our work in Section 7.5

7.2 Case Study: 4 Aligned MTCs
In order to perform the validation of our approach we will use the addition of
three new MTCs to the existing MTC presented in Section 3.2. As previously
introduced, this MTC generates JEE code that supports basic CRUD functions
for any business entity defined in a high-level Business Model. Three more
concern-specific MTCs are added to this existing MTC in order to extend the
functionalities of the original generated applications. These three extra MTCs
illustrate several situations that allow us to demonstrate the advantages and
limitations of our approach.

This validation demonstrates how we can add new MTCs without disturb-
ing the original assets (i.e., metamodels, models and transformations). These
four MTCs are used to generate secured Web applications. The new concern-
specific MTCs are: 1) the Security MTC, 2) the Navigation MTC, and 3) the
Presentation MTC. Figure 7.1 shows a schema of the 4 interoperating MTCs
that are aligned by our Correspondence Derivation Mechanism. In the upper
section of the figure presents the 4 MTCs and the derivation relationships. In
the lower section of the figure presents the integration of the models that are
generated by the MTCs and the code generation step.

Business
MTC

Security
MTC

Navigation
MTC

Presentation
MTC

JSF
Model

Full Java
Model

Checking

Java code JSF code

Composition

ORIGINAL MTC

D
ER

IV
AT

IO
N

IN
TE

G
R

AT
IO

N

Figure 7.1: Four interoperable MTCs

On the one hand, the Business, Security and Navigation MTCs generate

7.2 Case Study: 4 Aligned MTCs 167

Java models that conform to the same Java metamodel. These three mod-
els are composed and a full Java model containing all the business, security
and navigation requirements is obtained. On the other hand the Presentation
MTC generates a JavaServer Faces (JSF) model that conforms to a JSF meta-
model. A consistency check between the full Java model and the JSF model
is performed and, if successful, the Java and JSF code is generated.

7.2.1 Business MTC

This is the existing MTC which uses a high-level business model to specify JEE
applications. The high-level business model conforms to a Business metamodel
that defines an application in terms of BusinessEntities, their Attributes, the
Services that they provide, and the Relationships between them. The high-
level model is processed by three model-to-model transformations that bring
the business concepts to the technological platform level, where the application
is expressed in terms of Java concepts. Additionally, in these three transfor-
mations several implementation details are added to the model. Figure 7.2
shows the Business MTC and its four levels of abstraction.

BUSINESS MODEL
Mbusiness

JAVA MODEL
Mjava

BUSINESS METAMODEL
MMbusiness

JAVA METAMODEL
MMjava

ARCHITECTURE MODEL
Marchitecture

ARCHITECTURE METAMODEL
MMarchitecture

JEE MODEL
Mjee

JEE METAMODEL
MMjee

TRANSFORMATION
BUSINESS TO ARCHITECTURE

Tbus2arch

TRANSFORMATION
ARCHITECTURE TO JEE

Tarch2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

BUSINESS MTC

Figure 7.2: Business MTC

7.2.2 Security MTC

The first added MTC allows to specify authorization policies and to generate
the security enforcing mechanisms in Java in order to protect the generated

168 Chapter 7. Validation: Evolving Transformation Chains

applications. This MTC was presented in Section 4.3 and uses a high-level
security model as input. Authorization policies are specified in this high-
level security model using high-level authorization concepts. Subsequently,
the MTC translates these high-level concepts into Java annotations that are
the JEE mechanism to enforce authorization policies. This MTC produces
Java Classes, Methods and Attributes with security annotations such as @De-
claredRoles and @RolesAllowed.

As presented in Chapter 4, this MTC uses a high-level metamodel based
on the SecureUML metamodel [LBD02]. Using this metamodel, a high-level
security model is defined where the authorization policies of an application
are independently specified. This high-level security model is processed by a
one-step model-to-model transformation that produces a low-level model that
conforms to a Java metamodel. This Java metamodel is the same one that is
used by the existing Business MTC. Figure 7.3 shows the Security MTC and
its two levels of abstraction.

SECURITY MODEL
Msecurity

JAVA MODEL
Mjava-security

SECURITY METAMODEL
MMsecurity

JAVA METAMODEL
MMjava

TRANSFORMATION
SECURITY TO JAVA
Tsecurity2java

SECURITY MTC

Figure 7.3: Security MTC

7.2.3 Navigation MTC

Even though the original MTC was able to generate the JEE application’s
business logic, it did not allow to specify user navigation scenarios and to gen-
erate the required Java code to control the specified navigation. An additional

7.2 Case Study: 4 Aligned MTCs 169

functionality that we want to include in the MTC, is the ability to specify
customized user navigation scenarios for each application.

A navigation specific MTC is added, offering navigation specific concepts
in order to allow to the application modeler to specify user navigation sce-
narios. This MTC has a high-level navigation metamodel with concepts that
belong to the navigation domain. These concepts can be used by the appli-
cation modeler to define a high-level navigation model in terms of navigable
nodes that can be accessed via navigation links. Next, the MTC transforms
the high-level navigation model into a JEE metamodel, that conforms to the
existing JEE metamodel presented in Section 3.2.4. At this level, the naviga-
tion scenarios are expressed in the form of JEE Backing Beans1. Finally, the
JEE model is transformed into a Java model that conforms to the existing Java
metamodel. We reuse the original JEE to Java model-to-model transformation
with the purpose of translating the JEE concepts to Java. Figure 7.4 shows
the Navigation MTC and its three levels of abstraction.

NAVIGATION MTC

NAVIGATION MODEL
Mnavigation

JAVA MODEL
Mjava-navigation

NAVIGATION METAMODEL
MMnavigation

JAVA METAMODEL
MMjava

JEE MODEL
Mjee

JEE METAMODEL
MMjee

TRANSFORMATION
NAVIGATION TO JEE

Tnav2jee

TRANSFORMATION
JEE TO JAVA
Tjee2java

Figure 7.4: Navigation MTC

1A JEE Backing Bean represents the controller bean of a use case and is directly refer-
enced by JSF pages.

170 Chapter 7. Validation: Evolving Transformation Chains

Navigation metamodel

The Navigation metamodel is defined using platform independent Web naviga-
tion concepts. This metamodel contains concepts that allow the representation
of multiple navigations paths of a Web application. The most important con-
cepts are: NavigationFlow, NavigationClass, ProcessClass and Link. A Naviga-
tionFlow represents a use path between navigation nodes. A NavigationClass
represents navigable nodes that allow information retrieval or input from the
presentation layer. A ProcessClass represents a navigation node where infor-
mation is processed by the application. A Link represents a path that interre-
lates the two navigation nodes. Figure 7.5 shows the Navigation metamodel.
Additional details of this metamodel are presented in Appendix A.6.

Figure 7.5: Navigation Metamodel

Navigation Model

Figure 7.6 (top) presents a schema of the Risk navigation paths between two
Web pages. The application starts with a list of Projects. From that point,
it is possible to modify a Project by accessing the update project page. If the
action throws an error, the update page is presented again. If the update was
successful, the application returns to the list of the Projects page.

Figure 7.7 presents a fragment of the Risk navigation model, which contains
the specification of the update project use case scenario. The scenario starts in
the Index node ListProject. This node offers a list of registered Projects

7.2 Case Study: 4 Aligned MTCs 171

showing their id, names, and dueDates. The user can then choose the UPDATE
Link that takes him to the NavigationClass UpdateProject. This node allows
modifying the Project NavigationProperties (e.g., name and dueDate). Once
the user modifies the information, he can execute the ProcessClass UpdateProject.
This ProcessClass performs the actual modification of the chosen Project. If
the process is successful (i.e., OK) the user returns to the Index node. If the
process produces an ERROR (e.g., bad-formed date), the application redirects
the user to the NavigationClass UpdateProject, where the details of the error
are presented in the NavigationProperty error.

ERROR

UPDATE

OK

PROJECT LIST PROJECT UPDATE

ListProject: Index

id: NavigationProperty

accessedProperty

UpdateProject: NavigationClass

accessedProperty

dueDate: NavigationProperty

accessedProperty

UpdateProject: ProcessClass

UpdateProject: ProcessContract

contract

name: NavigationProperty

UPDATE: Link

EXECUTE: Link

OK: Link

ERROR: Link

target

link

target

linktarget

link

link link

error: NavigationProperty

accessedProperty

name: NavigationProperty

accessedProperty

dueDate: NavigationProperty

accessedProperty

id: NavigationPropertyaccessedProperty

description: NavigationProperty

accessedProperty

manager: NavigationProperty

accessedProperty

NAVIGATION LINKS

1

2

3

4

5

Figure 7.6: Navigation Model

172 Chapter 7. Validation: Evolving Transformation Chains

ListProject: Index

id: N
avigationProperty

accessedProperty

U
pdateProject: N

avigationC
lass

accessedProperty

dueD
ate: N

avigationProperty

accessedProperty

U
pdateProject: ProcessC

lass

U
pdateProject: ProcessC

ontract

contract

nam
e: N

avigationProperty

U
PD

ATE: Link

EXEC
U

TE: Link

O
K: Link

ER
R

O
R

: Link

target

link

target

link
target

link

link
link

error: N
avigationProperty

accessedProperty

nam
e: N

avigationProperty

accessedProperty

dueD
ate: N

avigationProperty

accessedProperty

id: N
avigationProperty

accessedPropertydescription: N
avigationProperty

accessedProperty

m
anager: N

avigationProperty

accessedProperty

N
AVIG

ATIO
N

 LIN
KS

1

2

3

4

5

F
igure

7.7:
D
etailed

N
avigation

M
odel

7.2 Case Study: 4 Aligned MTCs 173

Navigation to JEE transformation

This model-to-model transformation translates the navigation concepts into
JEE concepts that belong to the metamodel presented in Section 3.2.4. For
instance, each NavigationFlow is transformed into a Controller which is a
special BackingBeans that controls the navigation flow of the application. Ad-
ditionally, each NavigationClass is transformed into a BackingBean that al-
lows the presentation layer to access the information of the entities, into a
BusinessDelegate and into a BusinessObject. The BusinessDelegate and the
BusinessObject are elements that are already generated in the Business MTC
and will be composed with the elements that are generated by the Navigation
MTC.

JEE to Java transformation

The final model-to-model transformation translates the JEE concepts into low-
level Java concepts, as presented in Section 3.2.7. In this case, this transfor-
mation is responsible for translating the Controllers, Backing Beans, the Busi-
nessObjects and BusinessDelegates into Java classes. It is important to notice
that only the classes generated by the BusinessObjects and BusinessDelegates
will be composed.

7.2.4 Presentation MTC

As in the case of the application’s navigation, the original MTC did not allow
specifying the Web user interface, and it did not support the generation of the
Web layer and JavaServes Faces (JSF) [CS09] pages.

The purpose of adding a presentation specific MTC is to provide a mech-
anism to the application modeler in order to specify and generate customized
Web interfaces. The Presentation MTC offers a metamodel with high-level
Web user interface concepts to the application modeler, which can be used to
specify the structure of a particular presentation for each application.

The Presentation MTC offers a Presentation metamodel that allows the
application modeler to define the structure and content of the Web interface.
The application modeler can use the platform independent presentation con-
cepts in order to define the different Pages that are provided to the final user.
The content included in each Page is specified by using UIControls. Then, the
high-level presentation model is transformed by the Presentation MTC into
a JSF model. Figure 7.8 shows the Presentation MTC and its two levels of
abstraction. The generated JSF pages need to access the information that is
provided by the business logic through the backing beans. The backing bean
classes are generated by the Navigation MTC. Therefore, the Presentation
MTC must be aligned with the Navigation MTC.

174 Chapter 7. Validation: Evolving Transformation Chains

PRESENTATION MTC

PRESENTATION MODEL
Mpresentation

JSF MODEL
Mjsf

PRESENTATION METAMODEL
MMpresentation

JSF METAMODEL
MMjsf

TRANSFORMATION
PRESENTATION TO JSF

Tpre2jsf

Figure 7.8: Presentation MTC

Presentation metamodel

The Presentation metamodel is defined using platform independent Web pre-
sentation concepts. This metamodel contains concepts that allow to represent
the different Web pages of a Web application and their respective content.
The main concept is Page, which represents a Web page. Each Page can
have multiple Views that represent the multiple simultaneous views of a page.
In addition, each view can be associated with a PresentationClass. A Pre-
sentationClass is an element that represents content that is provided by the
application logic. Each PresentationClass should be connected to a Naviga-
tionClass in the high-level navigation model. A PresentationClass contains a
set of UIElements that represent the Web user interaction components that
displays and captures information. The UIElements are specialized in several
metaclasses, such as: TextInputs, Tables, Buttons, etc. Figure 7.9 shows the
Presentation metamodel. Additional details of this metamodel are presented
in Appendix A.7.

Presentation Model

Figure 7.10 (top) shows a Risk Web page that presents the list of projects.
Figure 7.10 (bottom) presents a Risk presentation model fragment that rep-
resents this Web page. A page that has a table with the list of projects is

7.2 Case Study: 4 Aligned MTCs 175

Figure 7.9: Presentation Metamodel

specified in this fragment. The Page ProjectList has a View, and the View
has a PresentationClass. The PresentationClass ProjectList must be related
by a correspondence relationship with a NavigationClass in the high-level nav-
igation model. Additionally, the PresentationClass ProjectList contains a
Table with four Columns : 1) a Column with the id of the Project, 2) a Col-
umn with the name of the Project, 3) a Column with the dueDate of the
Project, and 4) a Column with three Buttons. These Buttons will call the
services offered by the BackingBeans in the navigation model. The services
called are: DetailProject, UpdateProject and DeleteProject.

JSF metamodel

The JSF Metamodel is defined using the concepts of the technological platform
JavaServer Faces (JSF). This metamodel contains concepts that allow the
representation of different JSF pages and their user interface components. For
instance, to present information, to capture data and to perform advanced
interaction with the end-user. The main concept is Page that represents a
JSF page. A Page is included in a Folder and contains UIElements that are
the user interface components. There are several types of components such as:
Forms, TextFields, Tables, Buttons, etc. Figure 7.11 shows the JSF metamodel.
Additional details of this metamodel are presented in Appendix A.8.

Presentation to JSF transformation

This model-to-model transformation translates the platform independent Web
presentation concepts into low-level JSF concepts. Generally speaking, this is
a simple transformation where most of the elements are directly transformed

176 Chapter 7. Validation: Evolving Transformation Chains

title = "Project List"
ProjectList: Page

ProjectList: View

ProjectList: ProjectClass

view
presentationClass

ProjectList: Table
title = "Name"

: Column Name: TextOutPut

DueDate: TextOutPut
title = "Due Date"

: Column

title = "Actions"
: Column Update: Button

Delete: Button

Detail: Button

element

column
column

column

element

element

element
element
element

title = "ID"
: Column id: TextOutPut

column

element

Figure 7.10: Presentation Model

7.2 Case Study: 4 Aligned MTCs 177

Figure 7.11: JSF Metamodel

to JSF concrete concepts. Additionally, the transformation adds some JSF
specific details to the target model.

7.2.5 High-level correspondence models

Once the four MTCs are implemented and aligned by the MTC developer,
and the four high-level models are defined by the application modeler, the
application modeler must identify the corresponding elements between these
high-level models. Three correspondence models are needed in this case study:

1. A CM between the business model and the security model (CMb−s).

2. A CM between the business model and the navigation model (CMb−n).

3. A CM between the navigation model and the presentation model (CMn−p).

Figure 7.12 shows the four high-level models and the three correspondence
models.

PRESENTATION MTCNAVIGATION MTCBUSINESS MTCSECURITY MTC

BUSINESS MODEL
Mbusiness

NAVIGATION MODEL
Mnavigation

SECURITY MODEL
Msecurity

PRESENTATION MODEL
Mpresentation

CMb-nCMb-s CMn-p

Figure 7.12: High-level Correspondence Models

178 Chapter 7. Validation: Evolving Transformation Chains

Business/Security Correspondence Model

The CM that is defined between the Business high-level model and the Security
high-level model CMb−s was described in Section 5.3.1. This CM relates the
protected Resources in the security model with the BusinessEntities, Attributes
and Services in the business model.

Business/Navigation Correspondence Model

To extend the Business MTC functionality with the functionality offered by
the Navigation MTC, we need to identify the corresponding elements between
the Business high-level model and the Navigation high-level model.

As previously explained, multiple usability scenarios are modeled in the
navigation model. The scenarios are specified in terms of navigation nodes
and the links between them. We use correspondence relationships to identify
which entities offer or receive information as navigation nodes.

The high-level correspondence model (CMb−n) is defined between the Risk
business high-level model and its navigation high-level model. This CM con-
tains relationships between three pairs of elements: 1) BusinessEntities with
NavigationClass, 2) Attributes with NavigationProperties and 3) Services with
ProcessContracts. These pairs represent the same concept in different domains.
For instance, the BusinessEntity Project is the base for a series of navigation
scenarios where a Project is created, updated, and listed. Consequently, all
the NavigationClasses that access or modify the BusinessEntity Project must
be related by a correspondence relationship with this BusinessEntity.

Navigation/Presentation Correspondence Model

The high-level correspondence model (CMn−p) that is defined between the
Risk navigation model and its presentation model relates the navigation nodes
with the Web pages that present and capture information from the final user.
This CM has relationships between: 1) a PresentationClass in the presentation
model and a NavigationClass in the navigation model, and 2) a UIElement in
the presentation model and a NavigationProperty or a ProcessContract in the
navigation model. The UIElements will show to the final user the information
provided by the NavigationProperties or execute ProcessContracts.

7.2.6 Correspondence relationships derivation

As explained in Section 4.4, there are two requirements to obtain a low-level
correspondence model: 1) tracing back the targets that are generated from
corresponding sources, and 2) constraining the generated correspondence re-
lationships. The first requirement (i.e., tracing models) is automatically gen-
erated by the extension that we did to the ATL-VM. In order to fulfill the

7.2 Case Study: 4 Aligned MTCs 179

second requirement, the MTC developer needs to define a CDM for each pair
of MTCs. In this case we need three CDMs: 1) Business/Security CDM, 2)
Business/Navigation CDM, and 3) Navigation/Presentation CDM. Figure 7.13
presents a detailed schema of the correspondence relationships derivation for
the four MTCs.

Model Metamodel Relationships model Transformation

NAVIGATION MTCBUSINESS MTCSECURITY MTC

Tpre2jsf

Mnavigation

Mjava-navigation Mjsf

MpresentationCMhigh-level

CMlow-level

Tsec2java CDT Tbus2java

Mjava-security Mjava-business

MbusinessCMhigh-level

CMlow-level

CMhigh-level

CMlow-level

CDT CDT

PRESENTATION MTC

Msecurity

Tnav2java

Figure 7.13: Correspondence Relationships Derivation

Deriving the Business/Security low-level correspondence model

Chapter 4 explained the derivation of the correspondence relationships between
the lowest level models that are generated by the Business MTC and the
Security MTC.

Deriving the Business/Navigation low-level correspondence model

The MTC developer needs to define a CDM between the lowest level metamod-
els in both MTCs in order to derive the correspondence relationships between
the lowest level models that are generated by the Business MTC and the Nav-
igation MTC

In this case both lowest level models conform to the Java metamodel, which
allow us to perform a homogeneous composition between them.

As was mentioned in Section 7.2.3, the Navigation MTC produces a model
which contains several classes. These classes are the actual Java implemen-
tations of BackingBeans, BusinessObjects and BusinessDelegates. In this sce-
nario, the BackingBeans are completely generated by the Navigation MTC,
but the BusinessObjects and the BusinessDelegates are "place holders" that
will be replaced by the "real" ones that are generated by the Business MTC.
In other words, the correspondence derivation mechanism must create correct
matches between the Java classes of the BusinessObjects and the BusinessDel-
egates in both models.

180 Chapter 7. Validation: Evolving Transformation Chains

Deriving the Navigation/Presentation low-level correspondence model

The Navigation MTC produces a model that conforms to the Java metamodel,
and the Presentation MTC produces a model that conforms to a JSF meta-
model. At the code-level, Java and JSF are dynamically composed by the
Application Server (e.g., GlassFish, JBoss). Therefore, we do not need to
compose them at the model-level. However, we need to verify if the generated
models are consistent, or in other words, if the elements that are called in the
JSF Pages are present in the Java model.

The correspondence derivation mechanism should identify which elements
in the navigation model are called or accessed by the elements in the JSF
model. For instance, the CDM must contain a relationship between the De-
claredClass metaclass in the Java metamodel and the Page metaclass in the
JSF metamodel. This will generate a low-level correspondence relationship
between each generated Page and the Java class that implements the Back-
ingBean.

7.2.7 Integrating the MTCs

The correspondence relationships between the 4 lowest level models must be
resolved to produce a complete application. On the one hand, a homogeneous
composition can be performed between the models generated by the Business
MTC, the Navigation MTC and the Security MTC, which conform to the
Java metamodel. On the other hand, a consistency checking can be executed
between the models generated by the Navigation MTC, and the Presentation
MTC, which conform to different metamodels.

In the case of the homogeneous composition that will be performed between
the three Java models, the composition order does not affect the final result.
This is due to the fact that the corresponding elements between the business
low-level model and the security low-level model differ from the corresponding
elements between the business low-level model and the navigation low-level
model. This means that we have two options to compose the three models: 1)
we can compose the business low-level model with the security low-level model,
and then the composed model with the navigation low-level model, or 2) we can
compose the business low-level model with the navigation low-level model, and
then the composed model with the security low-level model. In addition, the
security low-level model cannot be directly composed with the navigation low-
level model due to the fact that there are no direct correspondence relationships
between these two models.

In the case of the consistency checking between the navigation low-level
model and the presentation low-level model, we can perform this check before
or after the business/navigation composition. The only requirement is that
if the composition is performed before, a new set of correspondences must be

7.2 Case Study: 4 Aligned MTCs 181

derived between the composed model and the presentation low-level model.
Finally, after performing the composition of the three java models and

checking the presentation low-level model, we reuse the existing model-to-text
transformation that generates the Java code from the composed Java model.
For the presentation low-level model (i.e., JSF model) a JSF specific model-
to-text transformation is used.

Figure 7.14 presents the composition execution order: 1) Business/Security
composition, 2) Secured Business/Navigation composition, 3) full Java mod-
el/Presentation checking, and finally 4) the Java code and JSF code generation
step.

MMjava MMjsf

Mnav-java

Mjsf

Mjsf (Checked)

CMlow-level

checking

JSF code

Gjsf

Model Metamodel Relationships model Transformation

MMjava MMjava

Msec-java

Mbus-java

Mfull

CMlow-level

composition

Java code

Gjava

composition

CMlow-level

1
2

3

4

Figure 7.14: Integration of the MTCs

1. Business/Security Composition

As previously described in Chapter 5 the Java model (Msec− java) generated
by the Security MTC is integrated with the Java model (Mbus − java) gen-
erated by the existing Business MTC. The integration of these two low-level
models takes advantage of the homogeneous nature of the common low-level
Java metamodel. This allows the reusing of the composition mechanism that
we implemented for the Java metamodel. The correspondence model between
these two low-level models is used to perform this composition. The details of

182 Chapter 7. Validation: Evolving Transformation Chains

this composition were presented in Chapter 5. The product of this composition
is a secured Java model.

2. Secured Business/Navigation Composition

Before preforming the second composition between the composed model, which
was generated in the previous step, with the Java model that was generated by
the Navigation MTC, we need to derive a new CM between these two models.
This correspondence derivation is a simple task since the composition copies
every element in the business java model into the composed model. Addition-
ally, it adds the elements of the security java model to the composed model.
Therefore, for each corresponding element in the business java model, the
copied element in the composed model will have a corresponding relationship
as well. Our derivation mechanism only needs to follow the traces.

Once the derivation mechanism generates the new CM between the com-
posed model and the Java model, which was generated by the Navigation
MTC, we can perform the second homogeneous composition. In this composi-
tion the empty Java classes for the BusinessDelegates and BusinessObjects in
the navigation low-level model are composed with the complete Java classes
BusinessDelegates and BusinessObjects, which were generated by the Business
MTC and copied to the composed model generated in the previous step.

The new composed model contains all the business entities that were spec-
ified in the high-level business model, and for each business entity we offer
basic CRUD access to their information. Additionally, this model has security
annotations that enforce the authorization policies that were specified in the
high-level security model. Finally, this model has all the BackingBeans that
control the navigation of the application and provide the information required
by the user interface.

3. Full Java model/Presentation Checking

Once the full Java model is obtained by composing the models generated by
the Business MTC, the Security MTC and the Navigation MTC, we perform a
consistency check between the full Java model and the JSF model, which was
generated by the Presentation MTC. The objective of this check is to verify
that the elements in the JSF model that access the Java application have the
correct references to the elements in the Java model. This means that if an
element in the Java model has a correspondence relationship with an element
in the JSF model, then these two elements must have the same name or have
an attribute with the same value. We use our checking mechanism to verify
corresponding elements and to report if contains consistency problems.

7.3 Key Criteria Analysis 183

4. Code generation

Finally, the application code can be produced once the consistency between
the full Java model and the JSF model is verified. To produce the Java code
we use the model-to-text transformation that belongs to the original Business
MTC. This transformation can be directly reused because we did not add
any concept to the Java metamodel, and the full Java model conforms the
original Java metamodel. Additionally, we need to implement a model-to-text
transformation that translates the JSF model into JSF code.

Figure 7.15 presents a detailed schema of all the models involved in our
JEE Web applications generator, which is formed by four concern-specific
MTCs (i.e., Business MTC, Security MTC, Navigation MTC, and Presen-
tation MTC). The elements in the colored squares are created or generated
using our MTC Framework Toolkit.

7.3 Key Criteria Analysis

To evaluate our approach we use the key criteria that were presented in Sec-
tion 3.3.1. These key criteria were chosen to compare different strategies that
can be used to evolve an existing MTC. Each key criterion includes a question
that allows us to discern if the strategy has a positive or a negative impact in
the evolution of an MTC. In addition, each key criterion is related with one
or more of our research goals, which were presented in Section 1.2. In this
section, we analyze our approach using these key criteria. A summary of this
analysis is presented in Table 7.1. The analysis for each criterion applied to
our approach is presented below.

7.3.1 Criterion 1 (C1): Impacted artifacts

Measuring the impact of the changes in the MTC artifacts is the most impor-
tant key criterion that our approach must fulfill in order to evolve an existing
MTC. We want to avoid to cause a detriment in the maintainability and under-
standability of MTC artifacts due to changes to them. Additionally, we want to
avoid breaking the multiple dependencies that exist between metamodels and
models, metamodels and transformations, and each transformation step and
those which follow it. In summary, we want to avoid a ripple effect of these
problems throughout the entire MTC, and in addition preserve the original
artifacts unchanged.

The original Business MTC artifacts (i.e., metamodels, models and trans-
formations) are preserved using our approach, as three additional concern-
specific MTCs are added. These three MTCs were aligned with the existing
one using correspondence models and this alignment is kept throughout the

184 Chapter 7. Validation: Evolving Transformation Chains

T
nav2java

T
pre2jsf

M
M
nav

M
M
pre

M
M
java

M
M
jsf

M
nav

M
nav-java

M
jsf

M
pre

C
M
high-level

M
jsf(checked)

C
M
low

-level

checking

JSF code

G
jsf

TM
nav

TM
pre

M
odel

M
etam

odel
R

elationships m
odel

Transform
ation

T
sec2java

C
D

T

T
bus2arch

M
M
sec

M
M
bus

M
M
java

M
M
java

M
sec

M
sec-java

M
bus-java

M
bus

C
M
high-level

M
full

C
M
low

-level

com
position

Java code

G
java

TM
sec

TM
java

M
M
java

C
M
high-level

C
M
low

-level

com
position

M
M
arch

M
M
jee

T
arch2jee

T
jee2java

C
D

T
C

D
T

M
M
jee

M
arch

M
jee

M
nav-jee

F
igure

7.15:
Four

interoperable
M
T
C
s

7.3 Key Criteria Analysis 185

Criteria Question Result
C1: Impacted Arti-
facts

Do the existing metamodels, mod-
els and transformations remain un-
changed?

Yes (+)

C2: High-level con-
cern concepts

Are concern-specific concepts avail-
able in the metamodel(s) to specify
the added concern?

Yes (+)

C3: Metamodel Pollu-
tion

Are the metamodels free of alien
concepts that do not belong to their
domain?

Yes (+)

C4: Monolithic Mod-
els

Is a set of concern-specific models
used to specify the whole applica-
tion?

Yes (+)

C5: Number of im-
pacted elements

Are the model elements impacted
by the new concern specified at a
high-level of abstraction?

Yes (+)

C6: Identification
complexity

Is the new concern specified at the
same level of abstraction as the ele-
ments it affects?

Yes (+)

C7: Integration mech-
anism

Is it possible to use a common inte-
gration mechanism?

Yes (+)

Table 7.1: Analysis of the key criteria

whole set of transformation steps with our correspondence derivation mecha-
nism. Consequently, the three generated Java models are composed by using
the derived correspondence relationships. In addition, the JSF model and the
composed Java model are checked in order to verify consistency between them.
Finally, the full Java model is transformed into code by reusing the original
model-to-text transformation, and the JSF is transformed into code by a new
model-to-text transformation. In summary, it can be said that the Business
MTC is oblivious of the added MTCs.

As we can see, every existing artifact is unmodified and the impact of the
changes is minimized. The answer to the question “Do the existing meta-
models, models and transformation remain unchanged? ” is YES, the existing
metamodels, models and transformation remain unchanged.

7.3.2 Criterion 2 (C2): Use of high-level concern-specific
concepts

The use of Domain-Specific Modeling Languages (DSMLs) increases the level
of abstraction and gives suitable concepts to domain experts to specify an

186 Chapter 7. Validation: Evolving Transformation Chains

application close to the problem domain. This means that MTC high-level
metamodel(s) should offer concern-specific concepts that allow the application
modeler to specify the new concern-specific requirements.

We implement each MTC in our case study by using four concern-specific
metamodels (i.e., Business metamodel, Security metamodel, Navigation Meta-
model and Presentation metamodel). These metamodels, allow the applica-
tion modelers to specify the application using concepts that belong to each
concern. For instance, the business experts can express the application struc-
ture by using BusinessEntities, and their Attributes, Associations and Services.
The security experts can specify the authorization policies of the application
with the use of concepts such as Resources, Permissions, Actions and Roles.
The navigation experts can define use case paths by using NavigationFlows,
NavigationClasses and Links between them. Finally, the presentation expert
can specify the structure of the presentation with concepts such as Pages and
UIElements. UIElements are concepts that represent user interface controls
that allow the interaction with the final user.

As we can see, every MTC has a DSML that enables the concern experts
to specify the application with the use of appropriate concepts. The answer
to the question “Are concern-specific concepts available in the metamodel(s) to
specify the added concern? ” is YES, the existing metamodels offer concern-
specific concepts that allow the domain experts to specify the application using
the most appropriate concepts.

7.3.3 Criterion 3 (C3): Metamodel pollution

In order to avoid the metamodel pollution problem presented in Section 1.1.1,
it is important to avoid adding concepts to a metamodel that clearly do not
align with its existing concepts. This is detrimental to the understandability
and maintainability of the metamodel.

Four concern-specific metamodels are used in our case study to specify an
application. For the purpose of preserving each one of these metamodels inde-
pendent and oblivious of the others, we avoid to pollute them with concepts
that do not clearly align with their concern-specific concepts. For instance, we
did not add presentation concepts such as Page or UIElement in the Business
metamodel. On the one hand, the concepts that belong to the Business meta-
model are suitable to be used by business experts in order to define the business
structure. On the other hand, the concepts that belong to the Presentation
metamodel are suitable to be used by the Web user interfaces designer with
the purpose of specifying the application Web pages. By maintaining these
two metamodels encapsulated, we avoid to pollute the metamodels with alien
concepts that are detriment for their maintainability and understandability.

As we can see, each metamodel is independent of the others and contains
all the concepts that belong to its concern to specify each high-level model.

7.3 Key Criteria Analysis 187

The answer to the question “Are the metamodels free of alien concepts that do
not belong to their domain? ” is YES, the used metamodels contains only the
concepts that belong to the specific concern.

7.3.4 Criterion 4 (C4): Monolithic model

As explained in Section 1.1.1, the use of a monolithic model to specify multiple
concerns of an application increases the complexity of the model and making
it more difficult to comprehend and to maintain. The use of several concern-
specific models follows the SoC principle, which reduces the complexity of
specifying each concern model.

Each MTC in our case study uses an independent model as input, which
conforms to a concern-specific metamodel. In each one of these models, the
concern experts specify the application requirements with the use of a suitable
language for each concern. These independent models help to comprehend, to
specify and to evolve each concern model. In our example, the presentation
modeler can specify the multiple Web pages of the application without think-
ing about the different entities of the application or how they relate between
each other. In a similar manner, the security modeler does no need to know
which are the navigation paths of the application. The fact that each model
is oblivious of the others helps to specify and understand the requirements of
each concern.

As we can see, each model is independent of the others and contains only
the specification of a concern. The answer to the question “Is a set of concern-
specific models used to specify the whole application” is YES, multiple inde-
pendent concern-specific models are used to specify an application.

7.3.5 Criterion 5 (C5): Identification of impacted model
elements complexity

Identifying the model elements that are impacted by a new concern-specific
requirement will be a simpler task at the high-level than at the lowest level.
The reason behind this is that at a high-level of abstraction, a large number of
implementation details are hidden. This will reduce the amount of work that
the application modeler needs to perform in order to identify the elements that
are impacted by the addition of new concern-specific requirements.

We align the different models at a high-level of abstraction by using a cor-
respondence model. This correspondence model allows the application modeler
to identify the elements that are impacted by a new concern-specific require-
ment. For instance, suppose that a new authorization policy for BusinessEntity
Project is required. This new authorization-specific requirement can be spec-
ified independently of the existing BusinessEntity Project and subsequently,
a correspondence between them at the high-level of abstraction can be created.

188 Chapter 7. Validation: Evolving Transformation Chains

In other words, the correspondence relationships are used as a mechanism to
identify the elements that are affected by a new concern-specific requirement.
In contrast, if the application modeler wants to identify, at a low-level of ab-
straction, all the classes, methods and attributes that need to be modified
in order to add the authorization mechanisms, he will need to posses deep
knowledge of the Java platform and the application.

In our case study, we manually identify each element that is affected by a
new concern-specific requirement at a high-level of abstraction. The answer
to the question “Are the model elements impacted by the new concern specified
at a high-level of abstraction? ” is YES, we identify with a correspondence
relationship which elements are affected by a new requirement at a high-level
of abstraction.

7.3.6 Criterion 6 (C6): Complexity of identifying the im-
pacted model elements

We want to specify the new concern-specific requirements and identify the
impacted model elements at the same level of abstraction. If new concern-
specific requirements are specified at a different level of abstraction than the
existing elements that they impact, then this will require the knowledge of the
two involved levels of abstraction (e.g., concern level and platform level). This
will increase the complexity of identifying the impacted model elements.

We define a correspondence model in our case study that relates models
that are at the same level of abstraction. This CM is propagated throughout
the whole MTC relating models always at the same level of abstraction. This
reduces the complexity to manually specify the correspondence relationships
at a high-level of abstraction and to automatically derive the correspondence
relationships throughout the whole set of transformation steps. Additionally,
we take advantage of the same level of abstraction at the lowest level in or-
der to perform the compositions between homogeneous models and to check
consistency between heterogeneous models.

We define correspondence relationships between models at the same level of
abstraction in our case study. The answer to the question “Is the new concern
specified at the same level of abstraction as the elements it affects? ” is YES,
we specify the correspondence relationship at the same level of abstraction.
These correspondence relationships identify which elements are affected by
new requirements at a high-level of abstraction.

7.3.7 Criterion 7 (C7): Common integration mechanism

We want to use a reusable integration mechanism that allows to integrate the
existing models with the new concern-specific requirements. Using a reusable

7.4 Research Goals 189

integration mechanism will reduce the costs of adding different concern-specific
requirements.

We transform each concern-specific model (i.e., Business model, Security
model, Navigation model) in our case study into platform-specific models that
conform the same metamodel (i.e., Java metamodel). As previously explained,
having each model conform to the same metamodel allows to perform a ho-
mogeneous composition and to reuse the composition mechanism. In our case
we have a single composition mechanism that is used to compose three models
where different concerns are specified in terms of Java concepts.

In our case study, we use a composition mechanism to integrate multiple
models. The answer to the question “Is it possible to use a common integration
mechanism? ” is YES, we use the same composition mechanism for integrating
models where business, security and navigation were specified independently.

7.4 Research Goals

After analyzing our approach using the key criteria that we presented in Sec-
tion 3.3.1 we can now check if the research goals that we presented in Sec-
tion 1.2 are fulfilled by our approach. We chose these goals in order to avoid
the problems that we presented in Section 1.1.

7.4.1 General Goal: Non-invasive evolution of an MTC

Our general research goal was to avoid the modification of the original MTC.
In other words, the main purpose of our research was to preserve the origi-
nal metamodels, models and transformations once the new concern was intro-
duced. As our case study shows, we are capable of adding three new concern-
specific MTCs (i.e., Security MTC, Navigation MTC and Presentation MTC)
without performing any change to the original Business MTC. This avoids the
maintainability and understandability detriment of the original Business MTC
assets. Furthermore, we kept conformance relationship between models and
metamodels because the metamodel remains unchanged. Similarly, the origi-
nal transformations remain compatible with the MTC metamodels. Moreover,
because no artifact is modified, the ripple effect problem did not arise. There-
fore, we can say that the original Business MTC remained oblivious of the new
added MTCs.

7.4.2 Goal 1 (G1): Concern-specific modularization

By creating concern-specific MTCs (i.e., Security MTC, Navigation MTC and
Presentation MTC), we achieve our first specific goal, which was to encap-
sulate the introduced changes in concern-specific modules. In our approach

190 Chapter 7. Validation: Evolving Transformation Chains

we group each concern-specific artifact in a concern-specific MTC. This allows
the MTC developer to focus on each concern-specific metamodel or transfor-
mation when he is building the MTC. In addition, the application modeler can
independently specify the concern-specific requirements using suitable DSML
concepts. Finally, we keep the original assets unmodified, thus improving the
maintainability and understandability of the MTC by following the SoC prin-
ciple. This goal is achieved because our approach obtains positive grades in
Criterion 1, Criterion 3, Criterion 4, and Criterion 7.

7.4.3 Goal 2 (G2): Specifying the different concerns at a
high-level of abstraction

The second specific goal is achieved by using concern-specific metamodels (i.e.,
Business metamodel, Security metamodel, Navigation metamodel, Presenta-
tion metamodel) that allow the specification of each concern-specific require-
ment at a high-level of abstraction. As explained previously, the use of a
high-level metamodel gives the domain and concern experts the appropriate
abstractions to define the application specification. Additionally, this goal is
achieved because our approach obtains positive grades in Criterion 1, Criterion
2 and Criterion 3.

7.4.4 Goal 3 (G3): Enabling an oblivious mechanism to
integrate new concern-specific requirements

Finally, we use an oblivious composition mechanism that facilitates the integra-
tion of the three Java models as well as the consistency check of the composed
model with the generated JSF model. The composition mechanism is gener-
ated from the correspondence derivation model by a HOT that allows having
a metamodel independent composition mechanism that can be reused. More-
over, we choose to perform the composition at the lowest level of abstraction
where we can have models that conform to the same metamodel. Therefore,
this goal is achieved because our approach obtains positive grades in Criterion
5, Criterion 6 and Criterion 7.

7.5 Limitations

One of the limitations of our approach has is the concern model co-evolution.
This problem occurs when one of the high-level model needs to evolve and the
other models will be required to be evolved as well. This is a typical problem in
AOP when the base program is modified, and the pointcut expressions become
inconsistent with it [KS04].

7.6 Summary 191

For instance, if the business model is modified, then all the models that
have correspondence relationships with it (i.e., security and navigation models)
will be required to be adapted in order to become consistent with the changes.
Additionally, the presentation model that is related with the navigation model
will be required to be changed as well. In spite of the above, the correspondence
relationships between the models will help the application modeler to identify
which elements need to be adapted to become consistent with the changes.

An additional current limitation is that only two concern-specific mod-
els can be related by a CM. However, a typical situation arises when several
concerns are specified and interact between each other. This is a well-know
problem in the AOSD community, and it affects our approach as well. In the
current state of our work there is no possibility to express how more than two
concern-specific models interact between each other or in which order they
need to be integrated.

7.6 Summary
Validation of our work was presented in this chapter. This validation was
performed with the help of a case study where three concern-specific MTCs
(i.e., Security MTC, Navigation MTC, and Presentation MTC) were added
to an existing Business MTC. Subsequently, we included an analysis of our
approach using the key criteria that were presented in Section 3.3.1. All these
key criteria are fulfilled by our approach showing the good features of it in the
evolution of an existing MTC. Next, these key criteria are used to verify how
our approach achieve the goals presented in Section 1.2. Finally, we discuss
the limitations of our work in Section 7.5.

Chapter 8

Conclusion

8.1 Introduction

In this dissertation, we proposed a novel strategy to evolve an existing Model
Transformation Chain. We have shown that our approach helps to add new
concern-specific MTCs that can be combined with the existing one.

In this chapter we summarize the work presented in this dissertation and
situate our work in the context of the research goals that were presented in
the introduction. Next, we summarize the contributions made and explore
alternatives for future research.

8.2 Summary

A large number ofModel-Driven Engineering (MDE) implementations promote
the use of models expressed in terms of problem domain concepts (e.g. Bank
Account, Insurance Claim) as the prime artifact to develop software. These
models, to which we refer as high-level models, are used as input for a Model
Transformation Chain (MTC). This chain is a sequence of transformation steps
that converts the high-level model, which is rooted in the problem domain, into
a low-level model that is rooted in the solution domain (e.g., Java, C#). In
addition to the translation from problem domain concepts to solution domain
concepts (e.g., Java Class, Java Annotation), the transformation chain adds
implementation details at each transformation step. Finally, the latest step
in the chain is a model-to-text transformation that produces the code of the
software system.

Evolution is an inherent characteristic of software systems. For instance,
a software system must evolve if it is required to include new functionality,
new non-functional properties, or the migration of the technology platform.
Similar to this, MTCs are also susceptible to evolution. The evolution of an

193

194 Chapter 8. Conclusion

MTC confronts us with several problems, mainly related to the strong depen-
dencies between metamodels and models, metamodels and transformations,
and between each transformation step and those which follow it.

The particular problem we address in this dissertation is the addition of
a new concern (e.g., security, monitoring, business rules, etc.) that was not
anticipated in the existing MTC implementation. No real problem arises if the
new concern can be cleanly expressed using the existing high-level metamodel.
However, if it is not the case, to extend the existing high-level metamodel with
new concepts, such as security concepts into a business domain metamodel,
arises some issues: 1) the existing metamodel has to be polluted with con-
cepts that do not belong to the main problem domain, 2) if the metamodel is
adapted, it is possible that the conformance relationship between metamod-
els and models is broken 3) including new elements in the application model
produces a (large) monolithic model reducing maintainability, and 4) to man-
age the new concepts the transformation chain requires to adapt the existing
steps or to add new ones. These changes increase the dependencies among the
transformation chain steps adding complexity to it. These issues increase the
difficulty to evolve the existing MDE implementation and to maintain appli-
cations.

We propose an approach that follows the SoC principle by adding new
concern-specific MTCs. Our strategy consists of specifying the new concern
in a separate high-level model, which leaves the original model untouched and
oblivious of the added concern. This new model is specified using concepts
close to the concern domain to keep our solution in line with the original vi-
sion of MDE. Therefore, we have two high-level models that conform to two
different metamodels. In order to obtain the final application, it is necessary
to compose both models, if the composition is executed at a high-level, we face
a heterogeneous composition because both models conform to two different
metamodels (e.g., composition of a business entity from the business domain
and a secured resource from the security domain). A heterogeneous compo-
sition is a complex task and requires a particular composition mechanism for
every added concern. Instead, we align the high-level models using a Corre-
spondence Model (CM) [BBDF+06]. A CM is a model that explicitly describes
the relationships among the elements of different models. We use correspon-
dence relationships to identify the elements to compose. We have developed
a strategy to derive the correspondence relationships throughout the various
steps of the transformation chain. We postpone the composition to the lowest-
level avoiding the overhead of developing a composition mechanism for each
additional concern. At the lowest-level, every model conforms to the same
metamodel (e,g,. Java metamodel) or to metamodels that are extensions of
this metamodel. Additionally, a derived low-level CM relates these models
maintaining the relationships defined in the high-level CM. The low-level CM
is derived by an automatic transformation that uses as inputs the high-level

8.3 Contributions 195

CM, trace models, which relate the elements of the high-level models and their
generated elements in the low-level models, and a set of constraints defined in
the Correspondence Derivation Model (CDM).

Having models conform to the same low-level metamodel (e,g,. Java meta-
model) and a low-level CM relating these models allows us to do a homogeneous
composition (e.g., composition of two Classes). This reduces the complexity of
the composition and it is possible to use a single composition mechanism for
different concerns. Moreover, it is possible to go a step further and transform
the models into code to take advantage of existing general-purpose composi-
tion mechanisms such as AOP. Finally, we can transparently use the existing
model-to-text transformation to generate the application code from the com-
posed model.

In this dissertation we presented an approach that reduces the complexity
of evolving a model transformation chain. Our approach offers several advan-
tages: 1) it facilitates the modeling of different concerns in separated models
and close to the problem domain, 2) it offers an automatic correspondence
derivation mechanism to identify the elements to compose in the low-level
models based on relationships defined in the high-level, 3) it eases the use of a
single composition mechanism at a low-level of abstraction, 4) it reuses the ex-
isting assets (metamodels, models and transformations), and 5) it modularizes
the changes in a new set of metamodels, models and transformations.

8.3 Contributions

In this section, we summarize the major contributions of this thesis, that have
been published in [YCDW09a, YCDW09b, YCDW10a, YCDW10b].

8.3.1 A novel strategy to perform a non-invasive evolu-
tion of model transformation chains

The main contribution of this dissertation is a novel strategy to perform a non-
invasive evolution of an existing model transformation chain. This evolution
is limited to the introduction of new concerns. The approach modularizes the
changes by adding additional concern-specific Model Transformation Chains.

The new MTCs allow to describe new concern-specific requirements in a
high-level model by using concepts that belong to the particular concern and
can be transparently used by concern experts. Each concern-specific high-level
model is related to the existing high-level model using correspondence rela-
tionships. These relationships help to identify which elements are affected by
the new requirements. Next, the correspondence relationships are propagated
through the whole set of transformations until the lowest level of abstraction.
At this level, it is possible to perform a homogeneous composition. This kind

196 Chapter 8. Conclusion

of composition allows us to reuse a composition mechanism or to go a step
further and take advantage of a code-level composition mechanism.

Our strategy avoids changes to the original MTC, and encapsulates the new
concern concepts and the new required transformations in a concern-specific
transformation chain.

8.3.2 A mechanism to automatically derive low-level cor-
respondence relationships

In Chapter 4 we explained our correspondence relationships derivation mech-
anism that allows to propagate a Correspondence Model throughout a set
of transformation steps. Finally, a new Correspondence Model between the
generated lowest-level models is obtained. This derivation mechanism inten-
sively uses tracing models, which relate the high-level source elements to the
generated low-level elements. Additionally, our derivation mechanism uses a
Correspondence Derivation Model in order to constrain the possible correspon-
dence relationships that can be generated between the elements in the low-level
models.

8.3.3 An analysis of the strategies that can be used to
evolve an MTC

In Chapter 3 we presented an analysis of several strategies that can be used to
add new concern-specific requirements to an existing MTC. These strategies
are extracted from a study that we did, seeking for inspiration on multiple
previous works that allowed the specification of several concerns and automat-
ically compose them to produce a full application. We translated the ideas of
these works to the field of MTC evolution.

In the presented analysis, we compare the chosen strategies with key cri-
teria that allow us select the most suitable one. The analysis of the possible
strategies was presented in [YCDS08].

8.3.4 Tool support

In Chapter 6, we presented a set of proof-of-concept tools, called MTC Frame-
work Toolkit to support the evolution of an existing MTC, and the generation
of applications using an evolved MTC. These tools were developed having in
mind the two principal roles involved with an MTC: the MTC developer, which
is responsible of building the metamodels and transformations, and the appli-
cation modeler, who is responsible of creating the models and using the MTCs
in order to generate applications.

8.4 Discussion 197

On the one hand, the main goal of the toolkit regarding the MTC devel-
oper is to support him to evolve an existing MTC. This means to assist the
developer in alignment of the two MTC and in the generation of the required
transformations rules to compose the generated models or to check the consis-
tency of the generated models. The tools that were developed having in mind
the MTC developer are: Correspondence Derivation Modeler, the Composition
Generator and the Correspondence Checker Generator.

On the other hand, the main goals of the toolkit regarding the applica-
tion modeler is to help him to define correspondence relationships between
the high-level models, and to execute the different transformations that derive
correspondences, and to compose, or to check models. The tools that were de-
veloped having in mind the MTC developer are: the Correspondence Modeler
and the Traceability Processor.

Finally, we implemented an ATL-VM extension that allows us to automat-
ically generate tracing models. The objective of this extension was presented
in [YW09].

8.4 Discussion

Our approach offers a strategy to align and modularize concern-specific MTCs.
The models that are generated by these concern-specific MTCs are composed
or checked, with the model generated by the existing MTC. We achieved this by
using correspondence relationships, to identify corresponding elements between
models that represent multiple concerns of an application. We implement a
correspondence derivation mechanism that allows to propagate the correspon-
dence relationships through the whole set of transformations steps. Finally,
we offer a mechanism that allows composing low-level models that conform to
the same metamodel.

The key of our approach relies on the ability of generating tracing links
between the elements that belong to the models that are inputs of an MTC
and the elements that are generated by the MTC. Tracing models are a fun-
damental element in the MDE field and they are required in order to offer
an advanced mechanism to automatically generate tracing information when
transformations are applied. Additionally, it is essential to have advanced
tracing constructs that allow querying and navigating through complex nets
of tracing models.

The different tracing links allow us to identify the elements that are gener-
ated from a pair of corresponding elements. However, it is necessary to have
a mechanism to identify the correct matches between the generated elements.
We define a Correspondence Derivation Metamodel that allows the MTC de-
veloper to specify constraints that restrict or allow pairs of elements that can
be related by a correspondence relationship. If the Correspondence Derivation

198 Chapter 8. Conclusion

Model (CDM) is created only with information about the target metamodels,
then the CDM is more robust. However, this only happens when the trans-
formation rules generate elements that conform to different metaclasses from
a single element. If the transformation rules produce elements that conform
to the same metaclass from a single source element, then it will be necessary
to use the information of the transformation rules. The problem with this
method is that transformation rules are more prone to change than metamod-
els. Therefore, if a change introduced into a transformation rule, then it will
be necessary to check the CDM.

The main goal of our approach is to support the MTC developer in adding
a new concern-specific MTC where the Application modeler can specify a set
of concern-specific requirements independently from the original MTC. Our
approach and the toolkit provided will help them to perform their tasks and
obtain an application with the new concern requirements in it. However, our
approach is only useful to add new complex and complete concerns that can be
encapsulated in a concern-specific MTC. Our approach is too heavy-weight to
introduce small changes to the existing artifacts. In other words, if it is required
to add a couple of metaclasses or attributes to the existing metamodels, or to
extend them, it is better to use a different approach. For instance, to directly
modify the existing MTC artifacts or to use a combination of the approaches
presented in in Section 2.3.

Furthermore, using correspondence relationships to align MTCs is a pow-
erful tool for interoperable MTCs. This allow us to have several MTCs that
work together to produce an application and the correspondence relationships
will allow to represent the dependencies between them.

8.5 Future Work

This section describes a number of directions for future research in this area,
as well as a number of possible improvements to our tool support.

8.5.1 Future Research

Our work opened several research paths that are discussed in this section.

Concerns interaction

A common situation that takes place whenever several concerns are specified is
that they interact with each other. This is a well-know problem in the AOSD
community, and it affects our approach as well.

Although we implemented a case study that aligns 4 independent MTCs,
these MTCs are totally orthogonal to each other. This means that there is

8.5 Future Work 199

no interaction between the four generated models, and the composition can
be cleanly performed between pairs of models. Thisecomposition can be per-
formed because there is no element in the lowest level models that is linked by
a correspondence relationship to two other elements in two different models.

In order to extend the scope of our approach to the interacting concerns,
we need a mechanism to express composition order. This will permit to specify
which pair of elements should be composed first and which pair next. Addition-
ally, we need a mechanism to detect interaction conflicts between overlapping
concerns. This mechanism should inform the application modeler of the pos-
sible conflicts, and offer a set of possible solutions.

High-level models co-evolution

One of the problems of our approach is the model co-evolution. For instance,
if the high-level model evolves, this will cause the rest of the high-level models
(i.e., security, navigation and presentation) and the correspondence models, to
become inconsistent. We need a mechanism that allows us to maintain the
different models consistent or at least informs us the possible inconsistencies.

A possible solution is offered by Ruiz-Gonzalez et al. in [RGKK+09] who
proposes an approach that allow the synchronization between multiple models
where a Web application is specified. This approach helps to propagate the
changes that are applied to one model into the other using correspondence
relationships. These correspondence relationships are used to synchronize the
multiple models.

We envision a solution that uses extended types of correspondence relation-
ships. The correspondence relationships must allow for interoperating different
MTCs and additionally, they must permit the synchronization of the different
models.

Transformation Chain Interoperability

A possible research direction is to investigate the transformation chain inter-
operability. The strategy used in this dissertation to evolve MTCs can be
generalized in order to describe relationships between multiple MTCs. These
relationships can be used to allow for the interoperability among them.

To build a single "almighty" MTC that would be in charge of every de-
sign, implementation and specific platform concern is a complex task. Instead,
we can use several smaller MTCs that are easier to develop and maintain,
because each of them is independently developed focusing on a specific con-
cern. However, the MTCs must interoperate to produce complete applications;
this inherently creates dependencies between them due to the fact that each
MTC generates a part of the final low-level model. We can use our approach
to track dependencies between the MTCs, which can be used to automati-

200 Chapter 8. Conclusion

cally derive correspondence relationships between the final models generated
by each MTC. Similar to the work presented in this dissertation, we can use
these relationships to integrate the generated models.

We envision an interoperability language that allows defining relationships
between multiple MTCs, which can be implemented by using multiple trans-
formations languages. Our interoperability language will maintain aligned the
multiple MTCs and will integrate the models produced by these MTCs.

8.5.2 MTC Framework Toolkit Improvements

This section discusses the limitations of the MTC Framework Toolkit and
suggests how these limitations can be mitigated. Directions for future work
will also be discussed.

UML Profiles support

In the current implementation of our correspondence derivation mechanism, we
only support compatibility constraints that use the metaclass types and the
rule name/output variable as filters. Sometimes, when the models are defined
using UML Profiles, these constraints are not enough to identify the generated
elements.

It is possible that the MTCs are developed using DSMLs that use UML
as the core modeling language and UML Profiles as an extension to specify
domain concepts. When this happens, the Correspondence Derivation Modeler
is limited and is unable to use stereotypes as a mechanism to identify the
metaclass type. It is only able to use the UML metamodel metaclasses to
specify the compatibility constraints.

We want to extend the Correspondence Derivation Modeler to allow the
specification of compatibility constraints not only using metaclass types, but
profile stereotypes as well. In other words, we want to use the domain concepts
expressed as an UML Profile as elements to permit or restrict the propagation
of correspondence relationships.

OCL based compatibility constraints

Moreover, we need to provide an extension that allows the use of OCL con-
straints to improve the identification of the generated elements using meta-
model concepts. This will reduce the use of rule name/output variable infor-
mation due to its fragility.

Although using rule name/output variable information to extend the com-
patibility constraints helps to increase the ability of identifying generated el-
ements, the transformation rules are more susceptible to change than meta-
models. This means that if the transformation rules are modified, the CDM

8.5 Future Work 201

must be checked to verify the consistency with the new version of the trans-
formations.

A possible way to avoid this situation is to use metamodel-based compat-
ibility constraints, which can be enriched with OCL expressions that extend
the scope of the constraints. If we provide a mechanism to add complex OCL
expressions to the compatibility constraints, we will reduce the probability
of using rule name/output variable information to identify the generated ele-
ments.

Constraining the Correspondence Modeler

The current implementation of the Correspondence Modeler allows the defini-
tion of correspondence relationships between elements that conform any meta-
class. This represents a usability problem with big models due to the huge
amount of possible relationships. In Section 5.2.1 we present an extension to
the Correspondence Metamodel that allows to constrain the possible corre-
spondence relationships that can be created. This means that it is possible
to define a pair of metaclasses that can be used to define valid relationships.
However, this extension will require modifying the Correspondence Modeler.

We have in mind an extension that allows loading text based OCL con-
straints that specify the pairs of valid metaclasses. With this type of extension
the MTC developer can pre-configure the Correspondence Modeler for a pair
of metamodels, and the application modeler will have a restricted modeler that
only allows the definition of constraints between the allowed metaclasses.

Correspondence derivation performance

The Correspondence Derivation Transformation (CDT) is a declarative ATL
rule. Although declarative style is the ATL preferred style, it has poor perfor-
mance when several models are used as inputs of a transformation. Therefore,
the generated CDT presents a poor performance when a correspondence model
is derived from models with a large number of elements. A possible solution
is to use the ATL imperative style to improve the performance of the CDT.

An interesting alternative to improve performance in the correspondence
relationship resolution is the use of a solver. The use of solvers will help us to
obtain the low-level correspondence model. In order to use solvers we will need
to translate the high-level correspondence model, the two trancing models, the
correspondence derivation model, and the input and output elements into facts
that the solver can understand and resolve. Additionally, the use of solvers
will help us to express more complex derivation constraints.

202 Chapter 8. Conclusion

Advanced traceability operations

To have a complete traceability solution for the MTC Framework Toolkit it is
necessary to consider several possible improvements. First, in order to calculate
transitive closures over a set of tracing models, the current implementation
composes the different models and generates a full model. This leads to a loss
of information of the intermediate traces. We envision a solution that allows
us to use traceability dedicated operations to navigate through the different
tracing steps involved in a transformation chain ,without actually composing
the trace models. Second, the current implementation of ATL does not trace
the elements created by a called rule. It is necessary to define a representation
for these elements, and relate them with the matched rules that trigger the
called rule. Finally, in some cases the rule’s name and the variable’s name is
not the most suitable meta-data for the tracing links and a more customized
information is required. This could be possible if we add trace annotations to
the transformation rules that can be added to the trace model automatically.

Appendix A

Metamodels

In this appendix the metamodels used in this example are briefly presented.

A.1 Business Metamodel

The goal of the Business metamodel is to specify Enterprise Applications using
high-level business concepts that are free of technological platform details. The
focus of this metamodel is to describe the business, the entities that belong
to it, the relationships between them, and the services that each one offers.
Figure A.1 presents the metamodel. The main concepts of this metamodel are:

Business

An instance of the Business metaclass represents the business of the Enterprise
Application that is described in the model (e.g., project management, risk
management). This metaclass is the root of the model.

BusinessEntity

The BusinessEntity metaclass is the main concept of a business model. This
metaclass represents all the entities that belong to the business (e.g., project,
risk). The generated application will manage the information of all the modeled
entities.

Attribute

The metaclass Attribute represents the attributes of a BusinessEntity (e.g.,
the name of a project).

203

204 Chapter A. Metamodels

Association

The metaclass Association represents the relationships among the different
BusinessEntities (e.g., the relationship between a project and the risks that
threaten it).

Service

The metaclass Service represents the services that each BusinessEntity offers
(e.g., the services that allow to add new risk to a project). This metaclass
is specialized in the CRUD services that each entity will offer. The main
specialization are: Create, Detail, List, Update, Delete.

A.2 Architecture Metamodel

The main objective of the Architecture Metamodel is to provide concepts that
allow the description of a multi-layered application. Additionally, this meta-
model offers some platform independent architectural patterns. Figure A.2
presents the metamodel. The main concepts of this metamodel are:

Layer

Layer is the main concept is Layer of the Architecture Metamodel. This is
an abstract concept specialized into the concrete architectural layer. The spe-
cializations are: PresentationLayer, ApplicationLayer, SystemServicesLayer,
BusinessServicesLayer, PersistenceLayer and DataSourceLayer.

Communication

The Communication metaclass represents a communication channel between
two layers. This metaclass is constrained to to only communicate "adjacent"
layers. The constraints are expressed as OCL constraints in the metamodel.

BusinessDelegate

The BusinessDelegate metaclass represents an architectural pattern that allows
to encapsulate the business services of an application.

BusinessObject

The BusinessObject metaclass represents an architectural pattern that allows
to transport the data of an entity between different layers.

A.2 Architecture Metamodel 205

F
ig
ur
e
A
.1
:
B
us
in
es
s
M
et
am

od
el

206 Chapter A. Metamodels

F
igure

A
.2:

A
rchitecture

M
etam

odel

A.3 JEE Metamodel 207

A.3 JEE Metamodel

The main objective of the Java Enterprise Edition Metamodel is to provide
concepts that belong to the JEE Application Server platform. Figure A.3
presents the metamodel. This metamodel contains platform specific concepts
of JEE such as:

EntityBean

An instance of the EntityBean metaclass will represent the persistent data of a
business entity. A BusinessServicesLayer instance in the Architectural model
will be transformed into an instance of the EntityBean metaclass.

SessionBean

An instance of the SessionBean metaclass will provide the services that ac-
cess or modify the information of a business entity. A SystemServicesLayer
instance in the Architectural model will be transformed into an instance of the
SessionBean metaclass.

ConnectionManager

The ConnectionManager metaclass represent a data access manager. An in-
stance of this metaclass will manage all the connections to the database engine.

EJBDeploy

The EJBDeploy metaclass represents a JEE deployment unit. An instance of
this metaclass will contain all the elements of an application module and will
be executed in a JEE Application Server.

A.4 Java Metamodel

This appendix a summary of the MoDisco Java metamodel description pre-
sented at http://wiki.eclipse.org/MoDisco/J2SE5).

The MoDisco Java metamodel is the reflection of the Java language, as
defined in version 3 of "Java Language Specification" from Sun Microsystems
("JLS3" corresponds to JDK 5). The Java metamodel contains 126 meta-
classes. To better understand it, we will introduce its main features (meta-
classes and links).

http://wiki.eclipse.org/MoDisco/J2SE5

208 Chapter A. Metamodels

F
igure

A
.3:

JE
E

M
etam

odel

A.4 Java Metamodel 209

ASTNode

Every metaclass (apart from the Model metaclass) inherits from ASTNode.
As its name indicates, ASTNode represents a graph node. ASTNode has a
reference to the Comment metaclass because almost every java element can be
associated to a comment (block or line comment and Javadoc).

Model, Package, & AbstractTypeDeclaration

The root element of each Java model is an instance of the Model metaclass.
It is a translation of the concept of java application, so it contains package
declarations (instances of the Package metaclass). And package declarations
contain type declarations (instances compatible with the AbstractTypeDecla-
ration metaclass), and so on.

NamedElement & notion of Proxy

A lot of java elements are named, and this name could be considered as an iden-
tifier: methods, packages, types, variables, fields, etc. So all the corresponding
metaclasses inherit from the NamedElement metaclass.

Another goal of this metaclass is to indicate whether an element is part of
the current Java application or not (element from an external library of from
the JDK). So, external elements are tagged as proxy through a dedicated at-
tribute and can be easily filtered. For example, instruction System.out.println
has been decomposed into three named elements (one class, one variable and
one method) the definitions of which are not part of the current Java applica-
tion. So, the attribute proxy of these elements has been initialized to true.

TypeAccess, PackageAccess, SingleVariableAccess, UnresolvedItemAc-
cess

To represent links between Java elements, metaclasses TypeAccess, PackageAc-
cess, SingleVariableAccess and UnresolvedItemAccess were introduced. Each
allows to navigate directly to a NamedElement (proxy or not) in the graph.

A TypeAccess represents a reference on a type. A PackageAccess repre-
sents a reference on a package. A SingleVariableAccess represents a refer-
ence on a variable. On the contrary, references to methods are direct.

BodyDeclaration

A type declaration has different kinds of contents : fields, methods, static
block, initialization block or other type declarations. All of these elements are
of type BodyDeclaration metaclass.

For more information, please access MoDisco online information at http:
//wiki.eclipse.org/MoDisco/J2SE5.

http://wiki.eclipse.org/MoDisco/J2SE5
http://wiki.eclipse.org/MoDisco/J2SE5

210 Chapter A. Metamodels

Figure A.4: ASTNode metaclass

Figure A.5: Model, Package & type declaration superclass

Figure A.6: NamedElement and its hierarchy

A.4 Java Metamodel 211

Figure A.7: TypeAccess

Figure A.8: PackageAccess

Figure A.9: SingleVariableAccess

Figure A.10: MethodInvocation

212 Chapter A. Metamodels

Figure A.11: BodyDeclaration and its hierarchy

A.5 Security Metamodel

The Security metamodel used in this research is based on the SecureUML
metamodel presented in [LBD02], which in turn is based on the Role Based
Access Control (RBAC) model [SCFY96]. The goal of this metamodel is rep-
resent authorization policies based of the RBAC model. Figure A.12 presents
the metamodel. The main concepts of this metamodel are:

Resource

An instance of the metaclass Resource is an element that we need to protect.
This is an abstract concepts that needs to be extended. In our case study we
extended it into ResourceEntity, ResourceAttribute, and ResourceOperation.

Role

The Role metaclass is the main concept to assign access permissions over the
application Resources. A Role can be composed of Groups and Users.

Action

The metaclass Action represent the type of operations that can be performed
over a Resource. This is an abstract metaclass that needs to be extended. In
our case study we extended it for each kind of resource.

Permission

The Permission metaclass combine several actions over the Resources, and
assign them to the Roles.

A.5 Security Metamodel 213

F
ig
ur
e
A
.1
2:

Se
cu
ri
ty

M
et
am

od
el

214 Chapter A. Metamodels

A.6 Navigation Metamodel

The Navigation metamodel is defined using platform independent Web naviga-
tion concepts. This metamodel contains concepts that allow the representation
of multiple navigations paths of a Web application. Figure A.13 presents the
metamodel. The main concepts of this metamodel are:

NavigationFlow

The metaclass NavigationFlow contains a set of navigation nodes that are
connected by navigation links allowing the final user to interact and navigate
between the different application services.

NavigationClass

A NavigationClass represents a navigation node that allow the retrieving or
capturing of information.

ProcessClass

A ProcessClass represents a navigation node where information is processed
by the application.

Link

A Link represents a navigation path that interrelates the two navigation nodes.
Each navigation node can have multiple links to other nodes or to other navi-
gation flow.

A.7 Presentation Metamodel

The Presentation metamodel is defined using platform independent Web pre-
sentation concepts. This metamodel contains concepts that allow to represent
the different Web pages of a Web application and their respective content.
Figure A.14 presents the metamodel. The main concepts of this metamodel
are:

Page

The main concept of the Presentation metamodel is the metaclass Page. This
metaclass represents a Web page.

A.7 Presentation Metamodel 215

F
ig
ur
e
A
.1
3:

N
av
ig
at
io
n
M
et
am

od
el

216 Chapter A. Metamodels

View

A Page can have multiple Views. This metaclass represent the multiple simul-
taneous views of a page.

PresentationClass

Each View can be associated with a PresentationClass. A PresentationClass
is an element that represents content that is provided by the application logic.

UIElement

A PresentationClass contains a set of UIElements that represent the Web user
interaction components that displays and captures information. The UIEle-
ments are specialized in several metaclasses, such as: TextInputs, Tables, But-
tons, etc.

A.8 JSF Metamodel
The JSF Metamodel is defined using the concepts of the technological platform
JavaServer Faces (JSF). This metamodel contains concepts that allow the
representation the different JSF pages and their user interface components.
For instance, to present information, to capture data and to perform advanced
interaction with the end-user. Figure A.15 presents the metamodel. The main
concepts of this metamodel are:

Page

The main concept of the JSF metamodel is the metaclass Page. This metaclass
represents a JSF page.

Folder

A Page is contained in a Folder.

UIElements

UIElements are the user interface components. There are several types of
components such as: Forms, TextFields, Tables, Buttons, etc.

A.8 JSF Metamodel 217

F
ig
ur
e
A
.1
4:

P
re
se
nt
at
io
n
M
et
am

od
el

218 Chapter A. Metamodels

F
igure

A
.15:

JSF
M
etam

odel

Appendix B
Transformation Rules

B.1 Tracing models Composer and Verifier Trans-
formation

--
-- TRACE MERGE TRANSFORMATION
-- SOURCE METAMODEL: TRACE : Tracing Metamodel
-- TARGET METAMODEL: TRACE : Tracing Metamodel
--

module TraceMerge;

create outTrace : TRACE from inTrace : TRACE , inTrace2: TRACE , outM : MM;

-- ==
-- helper attributes begin
-- ==

helper def : startLinks : Sequence(TRACE!TransientLink) = TRACE!TransientLink
.allInstancesFrom(’inTrace ’)->flatten ();

helper def : numOutElements : Integer = TRACE!"ecore :: EObject ".
allInstancesFrom(’outM ’).size();

helper def : endLinks : Sequence(TRACE!TransientLink) =TRACE!TransientLink.
allInstancesFrom(’inTrace2 ’)->flatten ();

helper def : getTargets (inElement : TRACE!TransientElement): Sequence(TRACE!
TransientElement) =

thisModule.endLinks ->select(e |
(e.getSourceElements ()->select(f |

(f.value = inElement.value)))->notEmpty ())->flatten ()->collect(e | e.
getTargetElements ());

-- ==
-- helper attributes end
-- ==

-- ==
-- transformation rules begin
-- ==

219

220 Chapter B. Transformation Rules

entrypoint rule createTransientLinkSet () {
to

trace : TRACE!TransientLinkSet (
links <- thisModule.startLinks ->collect(e |

thisModule.getTraceLink(e))->flatten ()
)

do {
trace.links ->collect(e | e.getSourceElements ())->flatten ()->size().debug(’

in ’);
trace.links ->collect(e | e.getTargetElements ())->flatten ()->size().debug(’

out ’);
thisModule.numOutElements ->debug(’Real Output ’);
((trace.links ->collect(e | e.getTargetElements ())->flatten ()->size()/

thisModule.numOutElements)*100).debug(’Trace Coverage ’);

}
}

rule getTraceLink(inLink : TRACE!TransientLink) {
to

trace : TRACE!TransientLink (
--rule <- inSource.getRule ().toString (),
sourceElements <- inLink.getSourceElements ()->collect(e | thisModule.

getSourceElement(e)),
targetElements <- inLink.getTargetElements ()->collect(e | thisModule.

getTargets(e))->flatten ()->collect(e | thisModule.getTargetElement(e
))

)
do {

trace;
}

}

rule getSourceElement(inElement : TRACE!TransientElement) {
to

outelement : TRACE!TransientElement (
name <- inElement.name ,
value <- inElement.value

)
do {

outelement;
}

}

rule getTargetElement(inElement : TRACE!TransientElement) {
to

outelement : TRACE!TransientElement (
name <- inElement.name ,
value <- inElement.value

)
do {

outelement;
}

-- ==
-- transformation rules end
-- ==

B.2 Correspondence Derivation Transformation

--
-- CORRESPONDENCE DERIVATION TRANSFORMATION FOR BUSINESS/NAVIGATION

B.2 Correspondence Derivation Transformation 221

-- SOURCE MODEL cmIN : High -Level Correspondence Model
-- SOURCE METAMODEL: CM : Correspondence Metamodel
-- SOURCE MODEL leftIN : left high -level Model
-- SOURCE METAMODEL: LEFTIN : left high -level Metamodel
-- SOURCE MODEL leftOUT : left low -level Model
-- SOURCE METAMODEL: LEFTOUT : left low -level Metamodel
-- SOURCE MODEL rightIN : right high -level Model
-- SOURCE METAMODEL: RIGHTIN : right high -level Metamodel
-- SOURCE MODEL rightOUT : right low -level Model
-- SOURCE METAMODEL: RIGHTOUT : right low -level Metamodel
-- SOURCE MODEL leftTrace : left Trace Model
-- SOURCE MODEL righttTrace : right Trace Model
-- SOURCE METAMODEL: TRACE : TRACE Metamodel

-- TARGET MODEL: cmOUT : Low -level Correspondence Model
-- TARGET METAMODEL: CM : Correspondence Metamodel
--

module EA_NAV_2_J2SE_J2SENAV_Derivation;

create cmOUT : CM from cmIN : CM , leftIN : LEFTIN , leftOUT: LEFTOUT , leftTrace
:TRACE , rightIN : RIGHTIN , rightOUT : RIGHTOUT , rightTrace : TRACE;

-- ==
-- helper attributes begin
-- ==

helper def: cmModel : CM!AlignmentModel =
OclUndefined;

helper def: cmLinks : Sequence(CM!AlignmentLink) = CM!AlignmentLink.
allInstancesFrom(’cmIN ’);

helper context CM!AlignmentLink def: isCorresponding (left : CM!EObject , right
: CM!EObject) : Boolean =

(thisModule.getTrace(left , ’leftTrace ’)->select(e | e.sourceElements ->first
().value = self.left.ref)).notEmpty ()

and (thisModule.getTrace(right , ’rightTrace ’)->select(e | e.sourceElements
->first().value = self.right.ref)).notEmpty ();

helper context CM!AlignmentLink def: isCorrespondingFiltered (left : CM!
EObject , right : CM!EObject , rules : Sequence(TupleType(leftRule : String ,
rightTuple : String))) : Boolean =

rules ->select(r |
(thisModule.getTrace(left , ’leftTrace ’)->select(e | r.leftRule = e.getName(

left) and e.sourceElements ->first().value = self.left.ref)).notEmpty ()
and (thisModule.getTrace(right , ’rightTrace ’)->select(e | r.rightRule = e.

getName(right) and e.sourceElements ->first().value = self.right.ref)).
notEmpty ()).notEmpty () ;

helper def: getTrace(element : CM!EObject , model : String) : TRACE!
TransientLink =

TRACE!TransientLink.allInstancesFrom(model)->select(e |
e.targetElements ->select(f | f.value = element).notEmpty ()

);

helper context TRACE!TransientLink def: getName(element : TRACE!
TrasientElement) : String =

self.targetElements ->select(e | e.value = element)->first().name;

-- ==
-- helper attributes end
-- ==

-- ==

222 Chapter B. Transformation Rules

-- transformation rules begin
-- ==

rule CorrespondenceModel2CorrespondenceModel {
from

inmodel : CM!AlignmentModel
to

outmodel : CM!AlignmentModel (
name <- inmodel.name

)
do {

thisModule.matchModel <- outmodel;
}

}

rule EnhanceLink_MethodDeclaration_MethodDeclaration {
from

leftElement : LEFTOUT!Model ,
rightElement : RIGHTOUT!Model ,

inLink : CM!AlignmentLink(
inLink.isCorresponding(leftElement , rightElement)
)

to
outlink : CM!AlignmentLink (

model <- thisModule.matchModel ,
elements <- Sequence{leftEnd , rightEnd},
left <- leftEnd ,
right <- rightEnd

),
leftEnd : CM!LeftElement (ref <- leftElement),
rightEnd : CM!RightElement (ref <- rightElement)

}

rule EnhanceLink_PackageDeclaration_PackageDeclaration {
from

leftElement : LEFTOUT!PackageDeclaration ,
rightElement : RIGHTOUT!PackageDeclaration ,

inLink : CM!AlignmentLink(
inLink.isCorrespondingFiltered(leftElement , rightElement ,

Sequence {
Tuple{leftRule = ’JEE5System2Model.co’, rightRule = ’System2Model.co

’},
Tuple{leftRule = ’JEE5System2Model.edu ’, rightRule = ’System2Model.

edu ’},
Tuple{leftRule = ’JEE5System2Model.uniandes ’, rightRule = ’

System2Model.uniandes ’},
Tuple{leftRule = ’JEE5System2Model.system ’, rightRule = ’

System2Model.system ’},
Tuple{leftRule = ’JEE5System2Model.bo’, rightRule = ’System2Model.bo

’},
Tuple{leftRule = ’JEE5System2Model.delegate ’, rightRule = ’

System2Model.delegate ’}
}

)
)

to
outlink : CM!AlignmentLink (

model <- thisModule.matchModel ,
elements <- Sequence{leftEnd , rightEnd},
left <- leftEnd ,
right <- rightEnd

),
leftEnd : CM!LeftElement (ref <- leftElement),
rightEnd : CM!RightElement (ref <- rightElement)

}

B.2 Correspondence Derivation Transformation 223

rule EnhanceLink_NamedElementRef_NamedElementRef {
from

leftElement : LEFTOUT!NamedElementRef ,
rightElement : RIGHTOUT!NamedElementRef ,

inLink : CM!AlignmentLink(
inLink.isCorrespondingFiltered(leftElement , rightElement ,

Sequence {
Tuple{leftRule = ’BO2ClassDeclaration.typeBO ’, rightRule = ’

BusinessObject.typeBO ’},
Tuple{leftRule = ’BO2ClassDeclaration.typeCollection ’, rightRule = ’

BusinessObject.typeCollection ’}
}

)
)

to
outlink : CM!AlignmentLink (

model <- thisModule.matchModel ,
elements <- Sequence{leftEnd , rightEnd},
left <- leftEnd ,
right <- rightEnd

),
leftEnd : CM!LeftElement (ref <- leftElement),
rightEnd : CM!RightElement (ref <- rightElement)

}

rule EnhanceLink_ClassDeclaration_ClassDeclaration {
from

leftElement : LEFTOUT!ClassDeclaration ,
rightElement : RIGHTOUT!ClassDeclaration ,

inLink : CM!AlignmentLink(
inLink.isCorrespondingFiltered(leftElement , rightElement ,

Sequence {
Tuple{leftRule = ’Delegate2ClassDeclaration.delegate ’, rightRule = ’

BusinessDelegate.delegate ’},
Tuple{leftRule = ’BO2ClassDeclaration.b’, rightRule = ’

BusinessObject.bo ’}
}

)
)

to
outlink : CM!AlignmentLink (

model <- thisModule.matchModel ,
elements <- Sequence{leftEnd , rightEnd},
left <- leftEnd ,
right <- rightEnd

),
leftEnd : CM!LeftElement (ref <- leftElement),
rightEnd : CM!RightElement (ref <- rightElement)

}

rule EnhanceLink_ParameterizedType_ParameterizedType {
from

leftElement : LEFTOUT!ClassDeclaration ,
rightElement : RIGHTOUT!ClassDeclaration ,

inLink : CM!AlignmentLink(
inLink.isCorrespondingFiltered(leftElement , rightElement ,

Sequence {
Tuple{leftRule = ’BO2ClassDeclaration.parameterizedType ’, rightRule

= ’BusinessObject.parameterizedType ’}
}

)
)

to
outlink : CM!AlignmentLink (

224 Chapter B. Transformation Rules

model <- thisModule.matchModel ,
elements <- Sequence{leftEnd , rightEnd},
left <- leftEnd ,
right <- rightEnd

),
leftEnd : CM!LeftElement (ref <- leftElement),
rightEnd : CM!RightElement (ref <- rightElement)

}

-- ==
-- transformation rules end
-- ==

Appendix C
ATL Tutorial

This appendix is a brief ATL tutorial that is extracted from the ATL User
Guide (http://wiki.eclipse.org/ATL/User_Guide).

As an answer to the OMG MOF/QVT RFP, ATL mainly focuses on the
model to model transformations. Such model operations can be specified by
means of ATL modules. An ATL module corresponds to a model to model
transformation. This kind of ATL unit enables ATL developers to specify the
way to produce a set of target models from a set of source models. Both source
and target models of an ATL module must be "typed" by their respective
metamodels. Moreover, an ATL module accepts a fixed number of models as
input, and returns a fixed number of target models. As a consequence, an ATL
module can not generate an unknown number of similar target models (e.g.
models that conform to a same metamodel).

An ATL module defines a model to model transformation. It is composed
of the following elements:

1. A header section that defines some attributes that are relative to the
transformation module;

2. An optional import section that enables to import some existing ATL
libraries;

3. A set of helpers that can be viewed as an ATL equivalent to Java meth-
ods;

4. A set of rules that defines the way target models are generated from
source ones.

Helpers and rules do not belong to specific sections in an ATL transforma-
tion. They may be declared in any order with respect to certain conditions (see
ATL Helpers section for further details). These four distinct element types are
now detailed in the following subsections.

225

http://wiki.eclipse.org/ATL/User_Guide

226 Chapter C. ATL Tutorial

Header section

The header section defines the name of the transformation module and the
name of the variables corresponding to the source and target models. It also
encodes the execution mode of the module. The syntax for the header section
is defined as follows:
module module_name;
create output_models [from| re f in ing] input_models;

The keyword module introduces the name of the module. The target models
declaration is introduced by the create keyword, whereas the source models
are introduced either by the keyword from (in normal mode) or refining (in
case of refining transformation). The declaration of a model, either a source in-
put or a target one, must conform the scheme model_name : metamodel_name.
It is possible to declare more than one input or output model by simply sepa-
rating the declared models by a coma. The following ATL source code repre-
sents the header of the Book2Publication.atl file, e.g. the ATL header for the
transformation from the Book metamodel to the Publication metamodel:
module Book2Publication;
create OUT : Publication from IN : Book;

Import section

The optional import section enables to declare which ATL libraries have to be
imported. For instance, to import the strings library, one would write:
uses strings;

Helpers

ATL helpers can be viewed as the ATL equivalent to Java methods. They
make it possible to define factorized ATL code that can be called from different
points of an ATL transformation. An ATL helper is defined by the following
elements:

• a name (which corresponds to the name of the method);

• a context type. The context type defines the context in which this
attribute is defined (in the same way a method is defined in the context
of given class in object-programming);

• a return value type. Note that, in ATL, each helper must have a return
value;

• an ATL expression that represents the code of the ATL helper;

227

• an optional set of parameters, in which a parameter is identified by a
couple (parameter name, parameter type).

This is, for instance, the case for a helper that just multiplies an integer
value by two:

helper context Integer def : double () : Integer = self * 2;

The ATL language also makes it possible to define attributes. An attribute
helper is a specific kind of helper that accepts no parameters, and that is
defined either in the context of the ATL module or of a model element. Thus,
the attribute version of the double helper defined above will be declared as
follows:

helper context Integer def : double : Integer = self * 2;

Rules

In ATL, there exist three different kinds of rules that correspond to the two
different programming modes provided by ATL (e.g. declarative and imper-
ative programming): the matched rules (declarative programming), the lazy
rules, and the called rules (imperative programming).

Matched rules: The matched rules constitute the core of an ATL declar-
ative transformation since they make it possible to specify:

1) for which kinds of source elements target elements must be generated,
2) the way the generated target elements have to be initialized.
A matched rule is identified by its name. It matches a given type of source

model element, and generates one or more kinds of target model elements.
The rule specifies the way generated target model elements must be initialized
from each matched source model element. A matched rule is introduced by the
keyword rule. It is composed of two mandatory (the source and the target
patterns) and two optional (the local variables and the imperative) sections.
When defined, the local variable section is introduced by the keyword using.
It enables to locally declare and initialize a number of local variables (that
will only be visible in the scope of the current rule). The source pattern of a
matched rule is defined after the keyword from. It enables to specify a model
element variable that corresponds to the type of source elements the rule has
to match. This type corresponds to an entity of a source metamodel of the
transformation. This means that the rule will generate target elements for each
source model element that conforms to this matching type. In many cases, the
developer will be interested in matching only a subset of the source elements
that conform to the matching type. This is simply achieved by specifying
an optional condition (expressed as an ATL expression, see OCL Declarative
Expressions section for further details) within the rule source pattern. By this

228 Chapter C. ATL Tutorial

mean, the rule will only generate target elements for the source model elements
that both conform to the matching type and verify the specified condition.

The target pattern of a matched rule is introduced by the keyword to. It
aims to specify the elements to be generated when the source pattern of the
rule is matched, and how these generated elements are initialized. Thus, the
target pattern of a matched rule specifies a distinct target pattern element for
each target model element the rule has to generate when its source pattern
is matched. A target pattern element corresponds to a model element vari-
able declaration associated with its corresponding set of initialization bindings.
This model element variable declaration has to correspond to an entity of the
target metamodels of the transformation.

Finally, the optional imperative section, introduced by the keyword do,
makes it possible to specify some imperative code that will be executed after
the initialization of the target elements generated by the rule. As an example,
consider the following simple ATL matched rule between two metamodels,
MMAuthor and MMPerson:

rule Author {
from

a : MMAuthor!Author
to

p : MMPerson!Person (
name <- a.name ,
surname <- a.surname

)
}

This rule, called Author, aims to transform Author source model elements
(from the MMAuthor source model) to Person target model elements in the
MMPerson target model. This rule only contains the mandatory source and
target patterns. The source pattern defines no filter, which means that all Au-
thor classes of the source MMAuthor model will be matched by the rule. The
rule target pattern contains a single simple target pattern element (called p).
This target pattern element aims to allocate a Person class of the MMPerson
target model for each source model element matched by the source pattern.
The features of the generated model element are initialized with the corre-
sponding features of the matched source model element. Note that a source
model element of an ATL transformation should not be matched by more than
one ATL matched rule. This implies the source pattern of matched rules to
be designed carefully in order to respect this constraint. Moreover, an ATL
matched rule can not generate ATL primitive type values.

Lazy rules: Lazy rules are like matched rules, but are only applied when
called by another rule.

Called rules: The called rules provide ATL developers with convenient
imperative programming facilities. Called rules can be seen as a particular

229

type of helpers: they have to be explicitly called to be executed and they can
accept parameters. However, as opposed to helpers, called rules can generate
target model elements as matched rules do. A called rule has to be called from
an imperative code section, either from a match rule or another called rule.

As a matched rule, a called rule is introduced by the keyword rule. As
matched rules, called rules may include an optional local variables section.
However, since it does not have to match source model elements, a called rule
does not include a source pattern. Moreover, its target pattern, which makes
it possible to generate target model elements, is also optional. Note that, since
the called rule does not match any source model element, the initialization of
the target model elements that are generated by the target pattern has to be
based on a combination of local variables, parameters and module attributes.
The target pattern of a called rule is defined in the same way the target pattern
of a matched rule is. It is also introduced by the keyword to. A called rule
can also have an imperative section, which is similar to the ones that can be
defined within matched rules. In order to illustrate the called rule structure,
consider the following simple example:
rule NewPerson (na: String , s_na: String) {

to
p : MMPerson!Person (

name <- na
)

do {
p.surname <- s_na

}
}

This called rule, named NewPerson, aims to generate Person target model
elements. The rule accepts two parameters that correspond to the name and
the surname of the Person model element that will be created by the rule
execution. The rule has both a target pattern (called p) and an imperative
code section. The target pattern allocates a Person class each time the rule
is called, and initializes the name attribute of the allocated model element.
The imperative code section is executed after the initialization of the allocated
element. In this example, the imperative code sets the surname attribute of
the generated Person model element to the value of the parameter s_na.

Bibliography

[ARNRSG06] Neta Aizenbud-Reshef, Brian T. Nolan, Julia Rubin, and Yael
Shaham-Gafni. Model traceability. IBM Systems Journal,
45:515–526, July 2006. 2.2.6, 4.2.2

[BBDF+06] Jean Bézivin, Salim Bouzitouna, Marcos Del Fabro, Marie-
Pierre Gervais, Fréderic Jouault, Dimitrios Kolovos, Ivan
Kurtev, and Richard Paige. A canonical scheme for model com-
position. In Arend Rensink and Jos Warmer, editors, Model
Driven Architecture – Foundations and Applications, volume
4066 of Lecture Notes in Computer Science, pages 346–360.
Springer Berlin / Heidelberg, 2006. 10.1007/11787044_26. (doc-
ument), 1.3, 2.4.2, 2.4.2, 8.2

[BCA+06] Elisa Baniassad, Paul C. Clements, Joao Ara?, Ana Moreira,
Awais Rashid, and Bedir Tekinerdogan. Discovering early as-
pects. IEEE Software, 23:61–70, 2006. 2.4.1

[BDL06] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model
driven security: From UML models to access control infrastruc-
tures. ACM Transactions in Software Engineering and Method-
ology, 15:39–91, January 2006. 3.4.1

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of
the OMG/MDA framework. In Proceedings of the 16th IEEE in-
ternational conference on Automated software engineering, ASE
’01, pages 273–, Washington, DC, USA, 2001. IEEE Computer
Society. 2.2.1

[BH08] Nelis Boucké and Tom Holvoet. View composition in multiagent
architectures. International Journal of Agent-Oriented Software
Engineering, 2:3–33, January 2008. 2.4.1

231

232 BIBLIOGRAPHY

[BJRV05] J Bézivin, F Jouault, P Rosenthal, and P Valduriez. Model-
ing in the large and modeling in the small. In Model Driven
Architecture, pages 33–46. 2005. 2.2

[BLS03] Don Batory, Jia Liu, and Jacob Neal Sarvela. Refinements and
multi-dimensional separation of concerns. SIGSOFT Software
Engineering Notes, 28:48–57, September 2003. 5.4

[Bri05] Johan Brichau. Integrative Composition of Program Generators.
PhD. Dissertation, 2005. 5.4

[BWH+08] Nelis Boucké, Danny Weyns, Rich Hilliard, Tom Holvoet, and
Alexander Helleboogh. Characterizing relations between archi-
tectural views. In Proceedings of the 2nd European conference
on Software Architecture, ECSA ’08, pages 66–81, Berlin, Hei-
delberg, 2008. Springer-Verlag. 5.4

[CD06] María Cibrán and Maja D’Hondt. A slice of MDE with AOP:
transforming high-level business rules to aspects. In Oscar Nier-
strasz, Jon Whittle, David Harel, and Gianna Reggio, editors,
Model Driven Engineering Languages and Systems, volume 4199
of Lecture Notes in Computer Science, pages 170–184. Springer
Berlin / Heidelberg, 2006. 10.1007/11880240_13. 3.4.5, 3.5

[CDR08] Antonio Cicchetti and Davide Di Ruscio. Decoupling Web ap-
plication concerns through weaving operations. Science of Com-
puter Programming, 70:62–86, January 2008. 2.4.1, 2.4.2, 3.4.2

[CDREP] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Al-
fonso Pierantonio. Meta-model differences for supporting model
co-evolution. Proc. of the 2nd Int. Workshop on Model-Driven
Software Evolution (MoDSE 2008), Athens (Greece). 1.1.2, 2.3,
2.3.1

[CS09] Roberto Chinnici and Bill Shannon. JavaTM Platform, Enter-
prise Edition (Java EE) Specification, v6. Sun Microsystems,
2009. 1.1, 3.2, 4.3.3, 7.2.4

[CSW05] Tony Clark, Paul Sammut, and James Willans. Applied Meta-
modelling - A Foundation for Language Driven Development.
2005. 2.2.1, 2.2.2

[DDZ08] Jürgen Dingel, Zinovy Diskin, and A. Zito. Understanding and
improving UML package merge. Software and Systems Model-
ing, 7(4):443–467, October 2008. 5.4

BIBLIOGRAPHY 233

[DFBV06] Marcos Didonet, Del Fabro, Jean Bézivin, and Patrick Val-
duriez. Weaving models with the Eclipse AMW plugin. Eclipse
Modeling Symposium, Eclipse Summit Europe, 2006, 2006. (doc-
ument), 2.4.2, 2.4.2, 2.8, 5.2

[DHT05] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor.
A comprehensive approach for the development of modular soft-
ware architecture description languages. ACM Transactions on
Software Engineering and Methodology (TOSEM), 14:199–245,
April 2005. 2.4.1

[Dij82] Edsger W Dijkstra. On the role of scientific thought. Selected
Writings on Computing: A Personal Perspective, pages 60–66,
1982. 1.2.2, 2.4

[DRMM+10] Davide Di Ruscio, Ivano Malavolta, Henry Muccini, Patrizio
Pelliccione, and Alfonso Pierantonio. Developing next genera-
tion ADLs through MDE techniques. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering,
ICSE ’10, pages 85–94, New York, NY, USA, 2010. ACM. 2.4.1

[EMLB10] Anne Etien, Alexis Muller, Thomas Legrand, and Xavier Blanc.
Combining independent model transformations. In Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10,
pages 2237–2243, New York, NY, USA, 2010. ACM. 2.3.2

[Fav03] Jean-Marie Favre. Meta-model and model co-evolution within
the 3D software space. Evolution of Large-scale Industrial Soft-
ware Applications (ELISA 2003), 3:98–109, 2003. 1.1.2, 2.3,
2.3.1

[Fav04] Jean-Marie Favre. Towards a Basic Theory to Model Model
Driven Engineering. In In Workshop on Software Model Engi-
neering, WISME 2004, joint event with UML2004, 2004. 2.2.2

[FHN06] Jean-Remy Falleri, Marianne Huchard, and Clémentine Nebut.
C.: Towards a traceability framework for model transformations
in Kermeta. In: ECMDA- Traceability Workshop, 2006. 1

[FR07] Robert France and Bernhard Rumpe. Model-driven develop-
ment of complex software: A research roadmap. In 2007 Future
of Software Engineering, FOSE ’07, pages 37–54, Washington,
DC, USA, 2007. IEEE Computer Society. 2.4.1, 2.4.2

234 BIBLIOGRAPHY

[FTD08] Johan Fabry, Éric Tanter, and Theo DHondt. KALA: kernel
aspect language for advanced transactions. Science of Computer
Programming, 71:165–180, May 2008. 3.4.4

[GEM10] GEMS. Generic Eclipse Modeling System (GEMS). http://
www.eclipse.org/gmt/gems/, 2010. 2.2.3

[GJCB09] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin.
Managing model adaptation by precise detection of meta-
model changes. In Proceedings of the 5th European Confer-
ence on Model Driven Architecture - Foundations and Applica-
tions, ECMDA-FA ’09, pages 34–49, Berlin, Heidelberg, 2009.
Springer-Verlag. 2.3, 2.3.1, 5.3

[GME10] GME. Generic Modeling Environment (GME). http://www.
isis.vanderbilt.edu/Projects/gme/, 2010. 2.2.3

[GS09] Hassan Gomaa and Michael E. Shin. Separating application
and security concerns in use case models. Proceedings of the
15th workshop on Early aspects, pages 1–6, 2009. 2.4.1

[HCW07] Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wą-
sowski. Guided Development with Multiple Domain-Specific
Languages. In ACM/IEEE 10th International Conference On
Model Driven Engineering Languages and Systems (MODELS
2007, 2007. 2.4.1

[HO93] William Harrison and Harold Ossher. Subject-oriented pro-
gramming: a critique of pure objects. ACM SIGPLAN Notices,
28:411–428, October 1993. 5.4

[JCC09] José Uetanabara Júnior, Valter Vieira Camargo, and Christina
Von Flach Chavez. UML-AOF: a profile for modeling aspect-
oriented frameworks. Proceedings of the 13th workshop on
Aspect-oriented modeling, pages 1–6, 2009. 2.4.1

[JFB08] Cédric Jeanneret, Robert France, and Benoit Baudry. A refer-
ence process for model composition. In AOM ’08: Proceedings
of the 2008 AOSD workshop on Aspect-oriented modeling, pages
1–6, New York, NY, USA, 2008. ACM. 2.4.2, 4.3.5

[JK06] Frédéric Jouault and Ivan Kurtev. On the architectural align-
ment of ATL and QVT. In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 1188–1195, New
York, NY, USA, 2006. ACM. 1.1.1, 2.2.4, 2.2.4, 3, 6.2, 6.5

http://www.eclipse.org/gmt/gems/
http://www.eclipse.org/gmt/gems/
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.isis.vanderbilt.edu/Projects/gme/

BIBLIOGRAPHY 235

[Jou05] Frederic Jouault. Loosely coupled traceability for ATL. Proceed-
ings of the European Conference on Model Driven Architecture
(ECMDA) workshop on traceability, Nuremberg, Germany, 91,
2005. 2, 2, 6.5

[KGZ09] Jochen M. Küster, Thomas Gschwind, and Olaf Zimmermann.
Incremental Development of Model Transformation Chains Us-
ing Automated Testing. Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Sys-
tems, pages 733–747, 2009. 2.2.5

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model trans-
formation in the large. Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineer-
ing, pages 285–294, 2007. 1.1.3, 2.3.3, 3.3.1

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. Proceedings European Confer-
ence on Object-Oriented Programming, May 1997. 1.1.1, 1.3,
2.4.1, 3.1, 3.3, 3.3.1, 5.4

[KS04] Christian Koppen and Maximilian Störzer. PCDiff: Attacking
the fragile pointcut problem. European Interactive Workshop on
Aspects in Software (EIWAS), 2004. 7.5

[LBD02] Torsten Lodderstedt, David Basin, and Jürgen Doser. Se-
cureUML: A UML-based modeling language for model-driven
security. UML 2002 - The Unified Modeling Language : 5th
International Conference, Dresden, Germany, September 30 -
October 4, 2002. Proceedings, pages 426–441, 2002. 3.4.1, 4.3.2,
7.2.2, A.5

[LH09] Henrik Lochmann and Anders Hessellund. An Integrated View
on Modeling with Multiple Domain-Specific Languages. Pro-
ceedings of the IASTED International Conference Software En-
gineering (SE 2009), pages 1–10, February 2009. 2.4.1, 3.1, 3.3

[Lud03] Jochen Ludewig. Models in software engineering – an in-
troduction. Software and Systems Modeling, 2:5–14, 2003.
10.1007/s10270-003-0020-3. 2.2.1

[MBC09] Ana Luisa Medeiros, Thais Batista, and Christina Chavez.
MARISA-DP – from architecture to design: an MDD approach.

236 BIBLIOGRAPHY

Proceedings of the 15th workshop on Early aspects, pages 37–42,
2009. 2.4.1

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor.
Moving architectural description from under the technology
lamppost. Journal Information and Software Technology, 49:12–
31, January 2007. 2.4.1

[Met10] MetaCase. Metaedit+. http://www.metacase.com/, 2010.
2.2.3

[MFB09] Pierre-Alain Muller, Frédéric Fondement, and Benoît Baudry.
Modeling Modeling. Model Driven Engineering Languages and
Systems, 5795:2–16, 2009. 2.2.1

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1.
2003. 2.2.1, 2.2.1

[MT00] N. Medvidovic and R.N. Taylor. A classification and comparison
framework for software architecture description languages. Soft-
ware Engineering, IEEE Transactions on, 26(1):70 –93, January
2000. 2.4.1

[MV02] Pieter J. Mosterman and Hans Vangheluwe. Guest editorial:
Special issue on computer automated multi-paradigm model-
ing. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 12:249–255, October 2002. 2.4.1

[MV09] Bert Meyers and Hans Vangheluwe. Evolution of Modelling Lan-
guages. BENEVOL 2009 The 8 th BElgian-NEtherlands soft-
ware eVOLution seminar, page 43, 2009. 2.3

[Nai09] Mariam Nainan. Modeling interaction join point adaptations in-
dependent of pointcut models using UML stereotypes. Proceed-
ings of the 13th workshop on Aspect-oriented modeling, pages
25–30, 2009. 2.4.1

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein,
and Ernst Ellmer. Flexible consistency checking. ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
12:28–63, January 2003. 2.4.1

[Obe10] Obeo. Acceleo - Transforming models into code. http://www.
eclipse.org/acceleo/, 2010. 2.2.4

http://www.metacase.com/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/

BIBLIOGRAPHY 237

[Obj01] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Core Specification. (formal/06-01-01), 2001. OMG
Available Specification. 2.2.2, 2.2.2

[Obj09a] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Query/View/Transformation (QVT) Specification.
OMG, 2009. 2.2.4, 2.2.4, 5.4

[Obj09b] Object Management Group (OMG). UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems. pages
1–738, Nov 2009. 2.2.3

[Obj10] Object Management Group (OMG). OMG Systems Modeling
Language (SysML). 2010. 2.2.3

[ope10a] openArchitectureWare. openArchitectureWare (oAW). http:
//www.eclipse.org/workinggroups/oaw/, 2010. 2.2.3, 4.5.1

[ope10b] openArchitectureWare. Xpand, 2010. 2.2.4

[Par72] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 15:1053–
1058, December 1972. 1.1.1

[PVSGB08] Jens Pilgrim, Bert Vanhooff, Immo Schulz-Gerlach, and Yolande
Berbers. Constructing and Visualizing Transformation Chains.
Proceedings of the 4th European conference on Model Driven
Architecture: Foundations and Applications, pages 17–32, 2008.
2.2.5

[RB08] Stephan Roser and Bernhard Bauer. Journal on Data Seman-
tics XI. chapter Automatic Generation and Evolution of Model
Transformations Using Ontology Engineering Space, pages 32–
64. Springer-Verlag, Berlin, Heidelberg, 2008. 2.3, 2.3.2

[Rea89] Chris Reade. Elements of functional programming. Addison-
Wesley, Wokingham, UK, Jan 1989. 1.1.1, 3.3.1

[RGKK+09] Daniel Ruiz-Gonzalez, Nora Koch, Christian Kroiss, José-Raul
Romero, and Antonio Vallecillo. Viewpoint synchronization of
UWE models. In Proceedings of Model-Driven Web Engineering
Workshop 2009, 2009. 8.5.1

[RHW+09] Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams,
Dimitrios S. Kolovos, Kelly Garces, Richard F. Paige, and

http://www.eclipse.org/workinggroups/oaw/
http://www.eclipse.org/workinggroups/oaw/

238 BIBLIOGRAPHY

Fiona A.C. Polack. An analysis of approaches to model mi-
gration. In Proceedings of the Joint MoDSE-MCCM Workshop,
pages 6–15, 2009. 2.3.1

[RJV09] José Raùl Romero, Juan Ignacio Jaen, and Antonio Valle-
cillo. Realizing Correspondences in Multi-viewpoint Specifica-
tions. Proceedings of the 2009 IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2009), pages
163–172, 2009. 5.3

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework. Addison-Wesley,
2. edition, 2009. (document), 2.2.2, 2.2.2, 2.3, 2.4, 6.2

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-Based Access Control Models. Com-
puter, 29:38–47, 1996. 1.1.1, 4.3.2, A.5

[Sch06] Douglas C Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39(2):25–31, Feb 2006. 1.1, 2.2, 2.2.4

[SNEC06] Mehrdad Sabetzadeh, Shiva Nejati, Steve Easterbrook, and
Marsha Chechik. A relationship-driven approach to view merg-
ing. ACM SIGSOFT Software Engineering Notes, 31:1–2,
November 2006. 5.4

[SSJ02] Inderjeet Singh, Beth Stearns, and Mark Johnson. Designing
enterprise applications with the J2EE platform. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2002. 1.1

[SSK+07] A Schauerhuber, W Schwinger, E Kapsammer, W Retschitzeg-
ger, M Wimmer, and G Kappel. A survey on aspect-oriented
approaches. Relatorio tecnico, Vienna University of Technology,
2007. 2.4.1, 2.4.1, 3.1, 3.3

[TCJ10] Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Improving
Higher-Order Transformations Support in ATL. Theory and
Practice of Model Transformations, 6142:215–229, 2010. 2.2.4

[THA07] Bedir Tekinerdogan, Christian Hofmann, and Mehmet Aksit.
Modeling Traceability of Concerns for Synchronizing Architec-
tural Views. Journal of Object Technology, 6(7):7–25, August
2007. 2.4.1

BIBLIOGRAPHY 239

[TK05] Juha-Pekka Tolvanen and Steven Kelly. Defining domain-
specific modeling languages to automate product derivation:
Collected experiences. Software Product Lines, pages 198–209,
2005. 2.2.2, 2.2.3, 3.3.1

[VB05] Bert Vanhooff and Yolande Berbers. Supporting modular trans-
formation units with precise transformation traceability meta-
data. ECMDA-Traceability Workshop, SINTEF, pages 15–27,
2005. 2.3.2

[VBJB] Bert Vanhooff, Stefan Van Baelen, Wouter Joosen, and Yolande
Berbers. Traceability as input for model transformations. Third
ECMDA Traceability Workshop 2007. 2.2.6, 2.2.6

[VDKV00] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. ACM SIGPLAN Notices,
35:26–36, June 2000. 2.2.3

[VdL02] Hans Vangheluwe and Juan de Lara. An introduction to multi-
paradigm modelling and simulation. In Proceedings of the
AIS’2002 Conference (AI, Simulation and Planning in High Au-
tonomy Systems), pages 9–20, 2002. 2.4.2

[VVBH+06] Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan, Wouter
Joosen, and Yolande Berbers. Towards a transformation chain
modeling language. Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, 4017:39–48, 2006. 2.2.5

[VWDD07] Eelco Visser, Jos Warmer, Arie Van Deursen, and Arie Van
Deursen. Model-driven software evolution: A research agenda.
In Proceedings Int. Workshop on Model-Driven Software Evolu-
tion held with the ECSMR’07, 2007. 2.3

[Wac07] Guido Wachsmuth. Metamodel adaptation and model co-
adaptation. In Erik Ernst, editor, ECOOP 2007 – Object-
Oriented Programming, volume 4609 of Lecture Notes in Com-
puter Science, pages 600–624. Springer Berlin / Heidelberg,
2007. 1.1.2, 2.3, 2.3.1

[Wag08] Dennis Wagelaar. Composition techniques for rule-based model
transformation languages. Proceedings of the 1st international
conference on Theory and Practice of Model Transformations,
pages 152–167, 2008. 6.5.1

240 BIBLIOGRAPHY

[WVDSD10] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Derid-
der. Module superimposition: a composition technique for rule-
based model transformation languages. Software and Systems
Modeling, 9:285–309, 2010. 10.1007/s10270-009-0134-3. 2.3.2

[YCDS08] Andres Yie, Rubby Casallas, Dirk Deridder, and Ragnhild
Straeten. Multi-step concern refinement. EA ’08: Proceedings
of the 2008 AOSD workshop on Early aspects, Mar 2008. 1.5,
8.3.3

[YCDW09a] Andrés Yie, Rubby Casallas, Dirk Deridder, and Dennis Wage-
laar. An approach for evolving transformation chains. Model
Driven Engineering Languages and Systems, pages 551–555,
2009. 1.5, 8.3

[YCDW09b] Andres Yie, Rubby Casallas, Dirk Deridder, and Dennis Wage-
laar. A practical approach to multi-modeling views composition.
Electronic Communications of the EASST, 21(Proceedings of
the 3rd International Workshop on Multi-Paradigm Modeling
(MPM 2009)):1–11, Oct 2009. 1.5, 8.3

[YCDW10a] Andrés Yie, Rubby Casallas, Dirk Deridder, and Dennis Wage-
laar. Deriving correspondence relationships to guide a multi-
view heterogeneous composition. Models in Software Engineer-
ing, 6002:225–239, 2010. 1.5, 8.3

[YCDW10b] Andrés Yie, Rubby Casallas, Dirk Deridder, and Dennis
Wagelaar. Realizing model transformation chain interoper-
ability. Software and Systems Modeling, pages 1–21, 2010.
10.1007/s10270-010-0179-3. 1.5, 8.3

[YW09] Andres Yie and Dennis Wagelaar. Advanced traceability for
atl. In 1st International Workshop on Model Transformation
with ATL, pages 78–87, 2009. 6, 8.3.4

Index

Architecture Metamodel, 50
Aspect Oriented Modeling, 40
Aspect Oriented Programming, 40
Aspect Oriented Software Development,

40
Atlas Model Weaver, 43
Automatic correspondence derivation

mechanism, 90

Business Metamodel, 49

Compatibility constraint, 105
Compatibility constraints

Compatible link, 107
Final link, 109
Incompatible link, 110

Compatible constraints
Composition link, 110

Complex transformation implicit intra-
dependencies, 8

Composition Generator, 153
Computation Independent Model, 26
Consistency Checker Generator, 154
Correspondence Derivation Mechanism,

95, 98
Correspondence Derivation Metamodel,

107
Correspondence Derivation Model, 83,

88, 104

Correspondence Derivation Model Ed-
itor, 148

Correspondence Metamodel, 123
Correspondence Model, 42, 122
Correspondence Model Editor, 155
Correspondence Model Transformation,

112, 113
Correspondence relationships resolution,

88

Domain Specific Language, 28
Domain Specific Modeling Language,

29

Eclipse Modeling Framework, 28

General Purpose Language, 28

High-level Models, 26

Java Metamodel, 52, 93
JEE Metamodel, 52
JSF Metamodel, 178

Low-level Models, 26

Meta-metamodel, 27
Meta-Object Facility, 27
Metamodel, 27
Metamodel and model co-evolution, 12
Metamodel and transformation co-evolution,

13

241

242 INDEX

Metamodeling Architecture, 27
Model, 25
Model composition, 42

Heterogeneous composition, 44, 127
Homogeneous composition, 44

Model Transformation Chain, 33
Model Transformations, 30
Model-Driven Architecture, 25
Model-Driven Engineering, 24
MOF Query/View/Transformation, 31
Multi-modeling, 41

Navigation Metamodel, 170

Platform Independent Model, 26
Platform Specific Model, 26
Presentation Metamodel, 174

Ripple effect, 14
Role Based Access Control, 91

SecureUML Metamodel, 62, 91
Security Metamodel, 92
Security Model, 92
Separation of Concerns principle, 39

Traceability processor, 158
Tracing Metamodel, 99
Tracing Model, 87
Tracing Models, 33, 83, 99

Unified Modeling Language
Profile, 29

	Abstract
	Samenvatting
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.1.1 Problem 1 (P1):The detriment of maintainability and understandability of MTC artifacts
	1.1.2 Problem 2 (P2): Metamodel, Model and Transformations Co-evolution
	1.1.3 Problem 3 (P3): Ripple effect

	1.2 Research Goals
	1.2.1 General Goal: Non-invasive evolution of an MTC
	1.2.2 Specific Goals

	1.3 Approach
	1.4 Approach Scope
	1.5 Contributions
	1.6 Outline of the Dissertation

	2 MDE, Evolution in MDE, and Separation of Concerns in MDE
	2.1 Introduction
	2.2 Context: Model Driven Engineering
	2.2.1 Models
	2.2.2 Metamodels
	2.2.3 Domain Specific Modeling Languages
	2.2.4 Model Transformations
	2.2.5 Model Transformation Chains
	2.2.6 Model Traceability

	2.3 Problem: Evolution in Model Driven Engineering
	2.3.1 Metamodel Evolution
	2.3.2 Transformation Evolution
	2.3.3 Ripple effect

	2.4 Solution: Separation of Concerns in MDE
	2.4.1 Modeling Concerns
	2.4.2 Composing Concerns

	2.5 Summary

	3 Evolving a Model Transformation Chain
	3.1 Introduction
	3.2 A running example: Business-to-Java MTC
	3.2.1 High-Level Business Metamodel (MMbusiness) and Model (Mbusiness):
	3.2.2 Architecture Metamodel (MMarchitecture) and Model (Marchitecture)
	3.2.3 Business to Architecture Transformation (Tbus2arch)
	3.2.4 Java Enterprise Edition Metamodel (MMjee) and Model (Mjee)
	3.2.5 Architecture to JEE Transformation (Tarch2jee)
	3.2.6 Low-Level Java Metamodel (MMjava) and Model (Mjava) :
	3.2.7 JEE to Java Transformation (Tjee2java)
	3.2.8 Code Generation (Gjava):
	3.2.9 Business-to-Java MTC

	3.3 Adding a new Concern
	3.3.1 Key Criteria

	3.4 Evolution Strategies
	3.4.1 Extending the High-level Metamodel
	3.4.2 Composing High-level Models
	3.4.3 Composing Low-level Models
	3.4.4 Mixed-level Composition
	3.4.5 Parallel Model Transformation Chains

	3.5 Summary

	4 Correspondence Relationships Derivation
	4.1 Introduction
	4.2 Approach overview
	4.2.1 High-level correspondences
	4.2.2 Tracing back to the sources
	4.2.3 Constraining the relationships
	4.2.4 Correspondence relationships resolution
	4.2.5 General approach architecture

	4.3 Case Study: Deriving Correspondence Relationships
	4.3.1 Adding a new concern: Authorization
	4.3.2 The new Security MTC
	4.3.3 High-level Security Model
	4.3.4 High-level Correspondence Model (CMhigh-level)
	4.3.5 Low-level models

	4.4 Derivation Requirements
	4.5 Tracing back corresponding elements
	4.5.1 Tracing Metamodel
	4.5.2 Generating tracing models
	4.5.3 Composing tracing models

	4.6 Constraining the correspondence relationships
	4.6.1 Correspondence Derivation Model
	4.6.2 Correspondence Derivation Metamodel
	4.6.3 Compatible Link
	4.6.4 Final link
	4.6.5 Incompatible Link
	4.6.6 Composition Link
	4.6.7 Generating the Correspondence Model Transformation
	4.6.8 The Correspondence Model Transformation (CMT)

	4.7 Extending the scope of the derivation mechanism
	4.7.1 Extending the tracing models
	4.7.2 Extending the Correspondence Derivation Model

	4.8 Summary

	5 Correspondence Relationships Resolution
	5.1 Introduction
	5.2 Correspondence Metamodel
	5.2.1 Constraining relationships

	5.3 High-level correspondences
	5.3.1 High-level Correspondence Metamodel Extension
	5.3.2 High-level heterogeneous composition

	5.4 Extended Correspondence Metamodel
	5.5 Low-level correspondences
	5.5.1 Correspondences between homogeneous models
	5.5.2 Correspondences between heterogeneous models

	5.6 Resolving correspondence relationships
	5.6.1 Resolution Strategy: Composition
	5.6.2 Resolution Strategy: Checking consistency
	5.6.3 Resolution Strategy: Mapping to code-level composition

	5.7 Summary

	6 Tool Support
	6.1 Introduction
	6.2 Architecture Overview
	6.3 MTC Developer Tasks
	6.3.1 Correspondence Derivation Model Editor
	6.3.2 Composition Generator
	6.3.3 Consistency Checker Generator

	6.4 Application modeler Tasks
	6.4.1 Correspondence Model Editor
	6.4.2 Traceability Processor

	6.5 ATL traceability extension
	6.5.1 Runtime read access to the tracing information
	6.5.2 Automatic storing of the tracing information

	6.6 Summary

	7 Validation: Evolving Transformation Chains
	7.1 Introduction
	7.2 Case Study: 4 Aligned MTCs
	7.2.1 Business MTC
	7.2.2 Security MTC
	7.2.3 Navigation MTC
	7.2.4 Presentation MTC
	7.2.5 High-level correspondence models
	7.2.6 Correspondence relationships derivation
	7.2.7 Integrating the MTCs

	7.3 Key Criteria Analysis
	7.3.1 Criterion 1 (C1): Impacted artifacts
	7.3.2 Criterion 2 (C2): Use of high-level concern-specific concepts
	7.3.3 Criterion 3 (C3): Metamodel pollution
	7.3.4 Criterion 4 (C4): Monolithic model
	7.3.5 Criterion 5 (C5): Identification of impacted model elements complexity
	7.3.6 Criterion 6 (C6): Complexity of identifying the impacted model elements
	7.3.7 Criterion 7 (C7): Common integration mechanism

	7.4 Research Goals
	7.4.1 General Goal: Non-invasive evolution of an MTC
	7.4.2 Goal 1 (G1): Concern-specific modularization
	7.4.3 Goal 2 (G2): Specifying the different concerns at a high-level of abstraction
	7.4.4 Goal 3 (G3): Enabling an oblivious mechanism to integrate new concern-specific requirements

	7.5 Limitations
	7.6 Summary

	8 Conclusion
	8.1 Introduction
	8.2 Summary
	8.3 Contributions
	8.3.1 A novel strategy to perform a non-invasive evolution of model transformation chains
	8.3.2 A mechanism to automatically derive low-level correspondence relationships
	8.3.3 An analysis of the strategies that can be used to evolve an MTC
	8.3.4 Tool support

	8.4 Discussion
	8.5 Future Work
	8.5.1 Future Research
	8.5.2 MTC Framework Toolkit Improvements

	A Metamodels
	A.1 Business Metamodel
	A.2 Architecture Metamodel
	A.3 JEE Metamodel
	A.4 Java Metamodel
	A.5 Security Metamodel
	A.6 Navigation Metamodel
	A.7 Presentation Metamodel
	A.8 JSF Metamodel

	B Transformation Rules
	B.1 Tracing models Composer and Verifier Transformation
	B.2 Correspondence Derivation Transformation

	C ATL Tutorial
	Bibliography
	Index

