
Faculteit van de Wetenschappen
Vakgroep Computerwetenschappen
Laboratorium voor Programmeerkunde

Modularising Context Dependency and Group
Behaviour in Ambient-oriented Programming

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Jorge Vallejos

Promotoren: Prof. Dr. Theo D’Hondt, Prof. Dr. Wolfgang De Meuter,
Dr. Pascal Costanza

Jul 2011

This work has been supported by the ICT Impulse Programme of the Institute for the
encouragement of Scientific Research and Innovation of Brussels (INNOVIRIS), and by the
Interuniversity Attraction Poles (IAP) Programme of the Belgian State, Belgian Science
Policy.

“Wie niet waagt, blijft maagd.”

– Popular Belgian saying.

iv

Samenvatting
In de visie van pervasive computing zijn computers ingebed in alledaagse apparaten. Zulke
apparaten vormen onderling dynamische communicatienetwerken waarvan de topologie
verandert naarmate de gebruikers zich verplaatsen. Van software services wordt verwacht
dat ze maximaal gebruik maken van de beschikbare apparaten en dat de vereiste coör-
dinatie transparant verloopt. Deze services moeten ook kunnen reageren op dynamische
veranderingen in de omgeving zodat ze hun gedrag automatisch kunnen aanpassen. Een
populaire aanpak om aan deze vereisten te voldoen bestaat erin om veranderingen in de
omgeving voor te stellen als events, zodat pervasive computing applicaties gemodelleerd
worden als event-gedreven systemen. Deze strategie heeft echter wel een impact op de on-
derhoudbaarheid van pervasive computing programma’s. Hoe meer verschillende events
een applicatie moet ondersteunen, hoe complexer het wordt om de control flow van het
programma te beheren. Door een gebrek aan geschikte taalconstructies om events te ma-
nipuleren, is het in het algemeen moeilijk om zulke programma’s te onderhouden en uit
te breiden.

In deze verhandeling bestuderen we de impact van event-gedreven distributie op de
modulaire structuur van programma’s. We bestuderen twee bekommernissen in detail:
Enerzijds bestuderen we de mogelijkheid van programma’s om zich aan te passen aan
veranderingen in de omgeving—een eigenschap die bekend staat als contextafhankelijk
gedrag—en anderzijds bestuderen we de capaciteit van programma’s om met elkaar te
coördineren—een eigenschap die bekend staat als groepsafhankelijk gedrag. We baseren
ons onderzoek op het ambient-georiënteerde programmeerparadigma (AmOP). Dit para-
digma definieert een event-gedreven programmeermodel dat specifiek ontworpen is voor
het pervasive computing domein. We identificeren een aantal vereisten voor het unifi-
ceren van event-gestuurde distributie, contextafhankelijk gedrag, en groepsafhankelijk
gedrag. In ons overzicht van de literatuur tonen we aan dat geen van de bestaande pro-
grammeermodellen aan al deze vereisten voldoet. Dit leidde ons ertoe een experimentele
programmeertaal te ontwikkelen voor pervasive computing, genaamd Lambic.

Lambic is een uitbreiding van het op generische functies gebaseerde objectmodel van
de programmeertaal Common Lisp. Ons model breidt de multiple dispatch semantiek
van generische functies uit om een modulaire programmastructuur mogelijk te maken
voor pervasive computing applicaties. Ter ondersteuning van event-gestuurde distributie,
vervult Lambic de eigenschappen van het AmOP paradigma via een mechanisme dat
we futurised generic functions noemen. Daarbovenop bieden we een nieuw mechanisme
aan om de flexibele selectie en samenstelling van gedrag toe te laten. Dit mechanisme

v

vi

noemen we predicated generic functions. Het laat ons toe om taalconstructies te definiëren
zodat method dispatch de dynamische context van het programma in acht neemt. Ter
ondersteuning van groepsafhankelijk gedrag, stellen we een derde uitbreiding voor, met
name group generic functions. Het idee achter dit mechanisme is om de coördinatie van
interacties tussen groepen in te kapselen in de definitie van services. Tot slot hebben we
een gemeenschappelijk uitvoermodel gedefinieerd zodat de drie mechanismen effectief in
combinatie met elkaar gebruikt kunnen worden. We valideren ons onderzoek door het
bespreken van een aantal case studies die aantonen hoe Lambic het mogelijk maakt om
vlot integreerbare en dynamisch aanpasbare pervasive computing services te ontwikkelen.

Abstract
The pervasive computing field envisions users surrounded by computers embedded in
everyday devices. Such devices form dynamic networks which change topology as users
move about. Software services are expected to maximise available computational capaci-
ties by seamlessly coordinating with each other. The services should also react to dynamic
changes in the environment and adapt their behaviour accordingly. An increasingly pop-
ular solution to cope with such requirements is to represent environmental changes as
events. Thus, pervasive computing software is often modelled as event-driven systems.
However, such support typically comes at a price in the evolvability of programs. The
more events a service has to be aware of, the more cumbersome its control flow becomes.
The lack of adequate language abstractions to handle such events results in programs that
are difficult to maintain and extend.

In this work, we study the effects of event-driven distribution on the modularity of
programs. We focus on the modularity of two concerns: the capacity of services to adapt to
environmental changes —a property known as context-dependent behaviour— and their
capacity to coordinate with each other —a property known as group behaviour. We
use the ambient-oriented programming (AmOP) paradigm as the basis of our research.
This paradigm proposes an event-driven programming model which has been designed
specifically for pervasive computing. We identify a list of requirements for a unified model
for event-driven distribution, context dependency and group behaviour. In the study of
the state of the art we demonstrate that no single approach fulfils these requirements
so far. This observation has led us to the definition of a proof-of-concept programming
language model, called Lambic.

Lambic is an extension of the generic function-based object system of the Common Lisp
programming language. Our model extends the multiple dispatch semantics of generic
functions to allow for modularity in pervasive computing. For event-driven distribution,
Lambic integrates the properties of the AmOP paradigm, in what we call futurised generic
functions. In addition, we provide a novel mechanism to allow flexible selection and
composition of behaviour, called predicated generic functions. This mechanism provides
language abstractions to influence method dispatch based on the program’s context. For
group behaviour, we propose a third extension called group generic functions. The main
idea of this feature is to encapsulate the coordination of group interactions in the definition
of services. Finally, a common underlying execution process ensures that these three
features can be effectively used in combination with one another. We validate our work
by showing in a number of case studies how Lambic facilitates the natural integration
and dynamic adaptation of pervasive computing services.

vii

viii

Acknowledgements

I would like to express my deepest gratitude to everyone who helped me to complete this
dissertation.

I would like to start thanking Theo D’Hondt and Wolfgang De Meuter for the in-
valuable opportunity you gave me to do the PhD. Many thanks for your advice and
encouragement throughout all these years. I would also like to thank Pascal Costanza
for his guidance. Many thanks for always believing in my work, especially during the
toughest periods. All my respect goes to you three!

I would like to thank the members of the jury: Prof. Dave Clarke, Prof. Didier Verna,
Prof. Viviane Jonckers, Prof. Beat Signer, Prof. Bernard Manderick and Prof. Luc
Steels. Thanks for the time you invested reading my dissertation and for the questions
and feedback during the private and public defences.

Many thanks to all the members of the Software Languages Lab. I am especially
indebted to my partners in crime: Peter Ebraert and Brecht Desmet for all the collab-
orations at the early stage of my PhD, Elisa Gonzalez Boix for the many works we did
together and for reviewing my dissertation, Tom Van Cutsem for those discussions which
significantly influenced my research, and Engineer Bainomugisha for the endless but ex-
tremely helpful brainstormings. Special thanks to Charlotte Herzeel for finding a name
to my programming language model, and for translating the abstract of this dissertation
to Dutch. Last but not least, thanks to Lydie Seghers, Brigitte Beyens and Simonne De
Schrijver for their permanent support with the administrative matters.

I also thank all the colleagues from other universities with whom I had the oppor-
tunity to collaborate in the context of the Moves and Varibru projects. Special thanks
to Boriss Mejías, Sebastián González, Éric Tanter, Alfredo Cádiz, Eddy Truyen, Frans
Sanen, Andreas Classen, Arnaud Hubaux and Patrick Heymans.

For the record: The hardest moments of writing the dissertation were when I thought
that this was such a busy matter that I could not spend time in other activities. Totally
nonsense. The fewer social activities I had, the worse I felt and less productive I became.
I am deeply grateful towards my friends who, despite my stubbornness, still invited me
to have a drink, to do sports, etc.

Finally, I would like to thank my family. Many thanks to the great family Petitprez
for the permanent support all these years. Thanks to my parents, Mary and Jorge, my
sister Macarena and my sons Benjamín and Nataniel. You all helped me to give my work
just the relevance it had. Lo hicimos, mierda!

ix

x

I dedicate this dissertation to my wife, Sonia. Obtaining the PhD degree makes sense
only because we are together. Many, many thanks for your patience and love.

Jorge Vallejos
7th July 2011

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Problem Statement . 3

1.2.1 Case Study: Pervasive Identities 4
1.3 Research Goals . 4
1.4 Programming Language Approach . 5

1.4.1 Ambient-oriented Programming . 5
1.4.2 Modularising Event-driven Distributed Programs 5
1.4.3 Extending Generic Functions-based Object-oriented Programming 6

1.5 Contributions . 7
1.6 Dissertation Roadmap . 8

2 Modularity in Ambient-oriented Programming 11
2.1 Motivating Scenario: Pervasive Identities 12

2.1.1 Kriek: a Pervasive Communication Service 12
2.1.2 Geuze: a Collaborative Drawing Editor 12
2.1.3 Pervasive Identities . 13

2.2 Ambient-oriented Programming . 14
2.2.1 Requirements for Distribution . 15

2.3 Context Dependency . 16
2.3.1 Requirements for Context Dependency 17

2.4 Group Behaviour . 18
2.4.1 Requirements for Group Behaviour 19

2.5 Entangled Concerns . 20
2.6 Summary . 21

3 Related Work 23
3.1 Event-driven Distributed Programming 23

3.1.1 Communicating Event Loops . 24
3.1.2 Event-driven Programming Styles 28
3.1.3 Event-driven Distributed Programming: Synthesis and Discussion 40

3.2 Modelling Context Dependency . 43
3.2.1 Evaluation of Context-oriented Programming Models 44

xi

xii CONTENTS

3.2.2 Context Dependency: Synthesis and Discussion 52
3.2.3 Context Dependency in Ambient-oriented Programming 54

3.3 Modelling Group Behaviour . 57
3.3.1 Evaluation of Models for Group Behaviour 58
3.3.2 Group Behaviour: Synthesis and Discussion 66
3.3.3 Group Behaviour in Ambient-oriented Programming 68
3.3.4 Context dependency and Group Behaviour 69

3.4 Summary: Modularity in AmOP . 70
3.4.1 Modelling Context Dependency in AmOP 71
3.4.2 Modelling Group Behaviour in AmOP 72

4 Ambient-oriented Programming in Lambic 75
4.1 Generic Function-based Object Orientation in

Lambic . 75
4.1.1 Class Definition and Instantiation 76
4.1.2 Generic Function and Method Definitions 77

4.2 Futurised Generic Functions . 78
4.3 Generic Function-based Event Loops . 79

4.3.1 Actors . 79
4.3.2 Asynchronous Generic Function Invocations 80
4.3.3 Asynchronous Return Values . 81
4.3.4 Summary . 82

4.4 Lambic’s Event-driven Programming Style 82
4.4.1 Decentralised Discovery . 82
4.4.2 Decoupled Communication . 85
4.4.3 Connection-independent Failure Handling 95
4.4.4 Summary . 98

4.5 Lambic’s Support for Communication Revisited 98
4.5.1 Managing Mutable State . 99
4.5.2 Inversion of Control . 99
4.5.3 Lost Continuations . 100
4.5.4 Event Interleaving . 101
4.5.5 Asynchrony Contagion . 103
4.5.6 Interoperability with Existing Libraries 106

4.6 Conclusion . 108

5 Context Dependency in Lambic 109
5.1 Predicated Generic Functions . 109

5.1.1 Defining Predicated Generic Functions 110
5.1.2 Invoking Predicated Generic Functions 112

5.2 Requirements for Context Dependency Revisited 116
5.2.1 Modularity . 116
5.2.2 Dynamic Selection . 119
5.2.3 Consistent Composition . 120

CONTENTS xiii

5.2.4 Restricted Scope . 120
5.2.5 Limitations . 120

5.3 Predicated Generic Functions in AmOP 122
5.3.1 Combining Futurised and Predicated Generic Functions 122
5.3.2 Discussion . 124

5.4 Conclusion . 127

6 Group Behaviour in Lambic 129
6.1 An Empathic Approach to Group Behaviour 129
6.2 Group Generic Functions . 130

6.2.1 Defining Group Classes . 133
6.2.2 Defining Group Generic Functions 133
6.2.3 Defining Group Methods . 133
6.2.4 Invoking Group Generic Functions 136

6.3 Lambic’s Support for Empathic Group Behaviour 142
6.3.1 Plurality Encapsulation . 142
6.3.2 Group Protocols . 143
6.3.3 Modularity . 143

6.4 Group Generic Functions in AmOP . 143
6.4.1 Combining Futurised and Group Generic Functions 143
6.4.2 Combining Predicated and Group Generic Functions 151
6.4.3 Discussion . 154

6.5 Conclusion . 157

7 Lambic at Work 159
7.1 Kriek: A Pervasive Communication Service 160

7.1.1 Step #1: Basic Behaviour for Communication 160
7.1.2 Step #2: Adding Support for Pervasive Identities 164
7.1.3 Evaluation . 168

7.2 Geuze: A Collaborative Drawing Editor 169
7.2.1 A Quick Overview of the Implementation of Geuze 170
7.2.2 Step #1: Basic Behaviour for Graphical Operations 172
7.2.3 Step #2: Modularisation and Dynamic Composition of

Graphical Operations . 174
7.2.4 Step #3: Modularisation and Dynamic Composition of

Group Behaviour . 178
7.2.5 Step #4: Context-dependent Propagation of Graphical Operations. 184
7.2.6 Step #5: Handling Distribution Issues 186
7.2.7 Evaluation . 189

7.3 Discussion . 193
7.3.1 Modularity of Context Dependency and Group Behaviour in AmOP

Revisited . 193
7.3.2 Related Work Revisited . 196

xiv CONTENTS

8 Conclusion 203
8.1 Research Goals Revisited . 203
8.2 Lambic in a Nutshell . 204
8.3 Contributions . 205
8.4 Work influenced by our Research . 207
8.5 Limitations and Future Work . 208

8.5.1 Allowing Efficient Predicate Evaluation 208
8.5.2 Managing Advanced Context Dependencies 209
8.5.3 Increasing Behaviour Reusability 210
8.5.4 Modularising State . 210
8.5.5 Detecting Event Interleaving Hazards 211

A Lambic in Common Lisp 213
A.1 Overview of Lambic Programming Model 213
A.2 Generic Function-based Event Loops . 214

A.2.1 Parameter Passing . 214
A.2.2 Concurrency . 215
A.2.3 Communication . 216
A.2.4 Connectivity . 217
A.2.5 Discovery . 218
A.2.6 Conditions . 220

A.3 Futurised Generic Functions . 221
A.3.1 Futurised Function Class . 221
A.3.2 Futurised Method Class . 223
A.3.3 Futurised Library . 223

A.4 Predicated Generic Functions . 224
A.4.1 Predicated Function Class . 224
A.4.2 Predicated Method Class . 225
A.4.3 Context-dependent Predicate Dispatch 227

A.5 Group Generic Functions . 228
A.5.1 Group Class . 229
A.5.2 Group Function Class . 230
A.5.3 Peer Function Class . 230
A.5.4 Peer and Group Methods . 230
A.5.5 Applying Peer and Group Generic Functions 233

A.6 Integration . 234
A.6.1 Composition of Behaviour . 234

A.7 A Push-based Cache Algorithm . 236
A.7.1 Example of Use . 236
A.7.2 Implementation of Push-based Cache Algorithm 237

CONTENTS xv

B Lambic Syntax and Libraries 241
B.1 Syntax . 241

B.1.1 Classes . 241
B.1.2 Generic Functions . 242
B.1.3 Methods . 242
B.1.4 Explicit Syntax for Event-driven Distribution 243

B.2 Lambic Library . 244
B.2.1 Library for Basic Functionality . 244
B.2.2 Library Supporting Furturised Generic Functions 244
B.2.3 Library Supporting Group Generic Functions 245

C Lambic Kriek 247
C.1 Kriek Group Class and Structs . 247
C.2 Kriek Operations . 249

C.2.1 Sending and Receiving Text Messages 249
C.2.2 Displaying Text Messages . 249
C.2.3 Storing and Retrieving Text Messages 250
C.2.4 Predicates for Kriek Operations . 251

C.3 Handling Discovery and Connectivity Events 252
C.4 Graphical User Interface . 253

C.4.1 GUI Classes . 253
C.4.2 GUI Operations . 253
C.4.3 User Interface of Contact Window 257
C.4.4 Contact Window’s Event handler 257
C.4.5 Main Window . 258
C.4.6 Main Window’s Event Handlers . 259
C.4.7 Auxiliary Parameters . 259
C.4.8 Main Function . 260

D Lambic Geuze 261
D.1 Geuze Classes . 261

D.1.1 Group Classes . 261
D.1.2 Auxiliary Structs . 263

D.2 Graphical Operations . 263
D.2.1 Adding a Shape . 263
D.2.2 Deleting a Shape . 265
D.2.3 Painting a Shape . 266
D.2.4 Moving a Shape . 267
D.2.5 Drawing a Shape . 268
D.2.6 Selecting a Shape . 270
D.2.7 Drawing Selection . 271
D.2.8 Deselecting a Shape . 272
D.2.9 Updating a Shape . 273
D.2.10 Predicates and Return Functions for Graphical Operations 274

xvi CONTENTS

D.3 Handling Discovery and Connectivity Events 275
D.4 User Interface Events . 277

D.4.1 Handling Mouse Events . 277
D.4.2 Other Event Handlers . 280

D.5 Main User Interface . 283
D.5.1 Auxiliary Parameters . 284
D.5.2 Main Function . 286

Bibliography 287

List of Figures

1 Our Daily Symphony [Oli11]. xxi

2.1 The Kriek pervasive communication service. 13
2.2 The Geuze collaborative drawing editor. 14

3.1 Actors in AmbientTalk . 25
3.2 Requirements for modularity of context dependency and group behaviour

in AmOP. 71

4.1 The communicating event loops model in Lambic 80
4.2 The Lambic futurised method execution process 90
4.3 Implicit futures handling in Lambic. 91
4.4 Propagation of the ruin of a future. 92
4.5 Leader editor as synchronisation point. 100
4.6 The invocation interleaving problem. 101
4.7 Uninterruptible methods in Lambic. 103

5.1 Standard method combination of applicable methods 114
5.2 Predicate evaluation and invocation interleaving. 126

6.1 The effective method for an invocation to the get-area group generic function.138
6.2 Default execution of multiple group methods. 141
6.3 Distributed group class. 145
6.4 Distributed propagation. 151
6.5 Context-dependent distributed propagation. 155

7.1 The Kriek chat service. 161
7.2 Sending and receiving chat messages. 163
7.3 Execution of display-text-message group generic function. 165
7.4 Execution of store-text-message group generic function. 167
7.5 Overview of the select-shape graphical operation in Geuze. 171
7.6 Modularisation and dynamic composition of graphical operations. 176
7.7 Propagation of select-shape group generic function. 181
7.8 Local propagation of move-shape group generic function. 182

xvii

xviii LIST OF FIGURES

7.9 Context-dependent propagation of graphical operation. 185
7.10 Handling discovery and connectivity events. 188
7.11 Lambic’s support for context dependency and group behaviour in AmOP. 193

A.1 Overview of implementation of Lambic. 214
A.2 Event-driven communication and discovery in Lambic. 216
A.3 Sequence diagram for remote communication. 217
A.4 Sequence diagram for connectivity management. 219
A.5 Sequence diagram for discovery. 220
A.6 Mapping predicates to priority classes. 226
A.7 Hierarchy of generic function metaclasses in Lambic. 236
A.8 Push-based cache for group class fields. 237

C.1 Kriek’s GUI . 248

D.1 Geuze’s GUI. 262

List of Tables

3.1 Programming style for event-driven distributed communication 39
3.2 Programming style for context-dependent behaviour 51
3.3 Programming style for group behaviour 65

4.1 Class definition and instantiation in Lambic 76
4.2 Generic functions and methods in Lambic (as in CLOS) 77
4.3 Lambic’s syntax for decentralised discovery 83
4.4 Lambic’s explicit syntax for communication. 85
4.5 Lambic’s uniform syntax for communication. 89
4.6 Lambic’s event-driven programming style for communication. 94
4.7 Lambic’s syntax for connection-independent failure handling 96

5.1 Predicate generic functions and methods in Lambic 110

6.1 Group generic functions in Lambic . 132
6.2 Lambic’s integrated syntax for futurised, predicated and group generic

functions. 144

7.1 Actions for Geuze operations . 175
7.2 Context conditions for Geuze operations 175
7.3 Methods and group methods processed asynchronously. 190
7.4 Lambic’s programming style for event-driven distributed communication . 197
7.5 Lambic’s programming style for context-dependent behaviour 197
7.6 Lambic’s programming style for group behaviour 197

A.1 Expansion of defgroupmethod macro. 231

xx LIST OF TABLES

Figure 1: Our Daily Symphony [Oli11].

xxii LIST OF TABLES

Chapter 1

Introduction

A central trope of pervasive computing is that software technology is moving “off the
desktop”, spread around computers embedded into everyday devices [BD07]. Pervasive
computing services are expected to combine their functionality, maximising the use of
devices available in living and working spaces. In doing so, the services have to deal with
the highly dynamic nature of pervasive computing environments: devices with limited
connectivity can appear and disappear from the users’ surroundings as they move about.
An increasingly popular way to deal with such dynamicity is to model the services in
an event-driven fashion [GDL+04]. In this model, services can discover, communicate
and react to changes in the environment, by means of asynchronous events. Then, the
services can manifest their interest in particular events by defining handlers in the form
of continuation or callback functions. This event-driven approach gives developers the
means to build services that react to their dynamic environment. However, such support
typically comes at a price in the evolvability of the programs. The more events a service
has to be aware of, the more cumbersome its control flow becomes [HCN08]. The lack of
adequate language abstractions to handle such events results in programs that are difficult
to maintain and extend.

This dissertation presents the results of our study on software modularity for per-
vasive computing. In particular, we focus on modularisation techniques for event-driven
distributed services. In our work, we identify two major concerns in the behaviour of such
services: the capacity to adapt their functionality to environmental changes —a prop-
erty known as context-dependent behaviour [GMH07]—, and the capacity to integrate
their functionality with each other —property known as group behaviour [GFGM98]. The
main issues concerning modularity is that both concerns require changes of behaviour
that in most cases are scattered in the programs, and that can be determined only at
runtime.

We ground our research in the object-oriented programming paradigm. At present,
we can find an important number of proposals that extend this paradigm with language
abstractions for event-driven distribution. Similarly, we find advanced object-oriented
techniques to modularise dynamic behavioural adaptations. However, thus far there is no

1

2 CHAPTER 1. INTRODUCTION

single approach that combine these two efforts.
Therefore, the central claim of this thesis is that in order to build evolvable pervasive

computing software, we need a programming model that provides unified support for
event-driven distribution and behavioural modularisation.

In the remainder of this chapter, we further introduce the context of our work and
the problems to be tackled. We then outline our programming language-driven solution,
giving an overview of its contributions. Finally, we provide the reader with a roadmap of
the dissertation.

1.1 Research Context
The research context of this dissertation is the following:

Pervasive computing Originally envisioned by Mark Weiser in [Wei91], pervasive, or
ubiquitous, computing is the result of hardware technology becoming increasingly
powerful and affordable. As such, a wide variety of computing devices can be
deployed throughout the users’ environments. These devices are expected to coor-
dinate with each other providing universal access to software services [Der99].

Mobile ad hoc networks We centre our research on a particular kind of pervasive com-
puting environment, known as mobile ad hoc networks or MANETs [VME+07].
MANETs consist of a set of wirelessly interconnected stationary and mobile devices,
which can dynamically change topology as users move about. These networks are
characterised mainly by the volatile connections that devices can sustain with each
other, and their very little or inexistent fixed infrastructure.

Modularisation techniques The dynamicity of MANETs requires that devices em-
brace the environmental change and adapt their behaviour accordingly [GDL+04].
Therefore, we focus on modularisation techniques to cleanly separate different be-
havioural variations, and to dynamically select and compose them. Thus far, we
observe that although there is a considerable amount of research on behavioural
modularisation, none of the existing approaches have been adapted to cope with
the characteristics of MANETs.

Programming language design The work described in this dissertation concentrates
on programming language design. We look into dedicated language abstractions to
achieve modular definitions of pervasive computing services. This choice is moti-
vated mainly by the expertise on this research domain at our laboratory.

Object-oriented programming We realise our research in the context of the object-
oriented programming paradigm. We adhere to the premise that objects are good
candidates for modelling units of distribution [GF99]. Therefore, this thesis inves-
tigates how the bastions of object-oriented programming (encapsulation, dynamic
dispatch, inheritance, etc.), can be adapted to cope with the need for modularisation
in pervasive computing.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement
The dynamicity of computing fields such as mobile and pervasive computing have been
the main reason for the uprising of event-driven distributed execution models [GDL+04,
VME+07, Eug07]. Object-oriented programming languages integrating such models typ-
ically assimilate event-driven interactions into message-passing object communication.
Special attention is paid to reflect the effects of distribution issues in remote interactions
(e.g. network failures). For this, the languages provide dedicated abstractions (e.g. for
remote message sending, message reception and result handling), which commonly differ
from those used in standard local object communication. Such explicit language sup-
port eases the understanding of event-driven remote communication in programs. It also
provides the adequate level of abstraction to deal with the distribution issues. Yet, this
support also entails a number of negative effects for the program modularity. That is,
for the ability of the languages to foster separation of the different concerns of a pro-
gram [Dij82]. As we extensively discuss in Chapter 3, current language approaches with
explicit support for event-driven distribution suffer from acknowledged issues such as in-
version of control [HO06], lost continuations [FMM07], asynchrony contagion and event
interleavings [SRRB10].

We analyse the impact of those issues on the modularity of two main concerns of perva-
sive computing services: context dependency and group behaviour. Context-dependent
behaviour represents the influence of environmental conditions on the functionality of
pervasive computing services [GMH07]. Group behaviour responds to the need for coor-
dinating services that provide similar or complementary functionality [GFGM98]. Both
concerns require a programming model that enables a modular definition, dynamic selec-
tion and composition of the different variations of behaviour.

The lack of an integrated support for event-driven distribution, context dependency
and group behaviour, forces developers to manually deal with non-trivial interferences
between these concerns:

• First, developers should ensure that the modularity boundaries of context-dependent
behavioural variations do not conflict with those of group behaviour.

• Second, developers should ensure that the boundaries of behavioural variations do
not conflict with those required to handle event-driven remote interactions.

• Last but not least, developers have to manually check that the issues of distribution
(such as disconnections) do not hamper the dynamic selection and composition of
behavioural variations.

To the best of our knowledge, no existing programming approach provides the means
to deal with all these issues. We support this claim presenting an exhaustive study of the
state of the art in object-oriented programming techniques for event-driven distribution
and for modularity of context dependency and group behaviour (cf. Chapter 3).

4 CHAPTER 1. INTRODUCTION

1.2.1 Case Study: Pervasive Identities
To illustrate the problems tackled in this thesis, we introduce a particular, yet represen-
tative, scenario of pervasive computing. Chapter 2 discusses the way in which traditional
“desktop” applications (e.g. drawing editors, communication applications, etc.) can be
redesigned to exploit pervasive computing environments. We observe that in a setting
with several computers available for a user, the need arises for such applications to be
replicated on several of those computers. The applications abstract from specific loca-
tions and identities, and run in the environment as a single pervasive service. We refer
to this characteristic as the need for pervasive identities. This requires that developers
deal at the same time with the concerns of distribution, context dependency and group
behaviour. An application with a pervasive identity should then be able to coordinate
the tasks among the participating (remote) entities, and adapt this coordination to the
dynamic changes in its context of use.

1.3 Research Goals
The primary goal of the research described in this dissertation is to enable the modular
definition of pervasive computing services. This implies the following subgoals:

• To propose a new understanding of the effects of the pervasive computing paradigm
in the identity and behaviour of software services.

• To review the interactions between programming language models for event-driven
distribution, context dependency and group behaviour. We then propose a list of
requirements for modularity in pervasive computing.

• To extend the object-oriented programming paradigm with a unified set of ab-
stractions for distribution, context dependency and group behaviour. This way, we
achieve our primary goal by means of a “proof by construction” that does not hinder
the benefits of modularity of object-oriented programming.

We achieve our proof by construction by developing a novel set of language constructs
in a programming model called Lambic.

Lambic. Lambic is a proof-of-concept extension to the Common Lisp programming lan-
guage, used for our experiments on software development of pervasive computing services.
Lambic achieves event-driven distribution by adopting a programming paradigm recently
defined at our laboratory, called the ambient-oriented programming [DVCM+06] (AmOP)
paradigm. This paradigm provides dedicated properties to deal with distribution issues
of pervasive computing.

Lambic extends the Generic function-based model of the Common Lisp object sys-
tem [BDG+88] with a combined language support for event-driven distribution, context
dependency and group behaviour. In Lambic, pervasive computing services are modelled

1.4. PROGRAMMING LANGUAGE APPROACH 5

as classes and their behaviour as methods contained in generic functions. Generic func-
tions can be accessed both locally and remotely. Remote invocations to generic functions
are processed in an event-driven manner. Additionally, Methods can be specialised not
only on the class of their arguments, but also on arbitrary context predicates. Finally,
in Lambic we enable group behaviour to be part of generic function definitions, cleanly
modularised in special abstractions, called group methods. All these extensions have been
implemented in such a way that the original semantics of Common Lisp’s generic functions
are preserved.

1.4 Programming Language Approach

The dynamic nature of pervasive computing environments requires highly adaptable ser-
vices. Yet this adaptability should not hamper the maintainability and extensibility of
the programs. A primary goal of our research was to look for a programming language
solution that ensures these three conditions.

1.4.1 Ambient-oriented Programming

To cope with the dynamicity of pervasive computing, we base our solution on an ex-
tension of the object-oriented programming paradigm, called ambient-oriented program-
ming [DVCM+06] (AmOP). The distinctive characteristic of AmOP is that it is the only
paradigm designed especially for mobile ad hoc networks. This paradigm identifies a
number of requirements to keep programs from inconsistencies resulting from distribu-
tion issues such as volatile connectivity and limited infrastructure. As we extensively
explain in Chapter 3, such requirements promote an event-driven execution model that
allows for highly decoupled interactions between distributed services, with an underlying
support for disconnections.

The AmOP paradigm has been realised in an object-oriented programming language,
called AmbientTalk [VME+07]. AmbientTalk fulfils the requirements of AmOP by fea-
turing a model for event-driven concurrency and distribution, known as the event loops
model. In our solution, we used this model as the starting point of our research on
modularity for pervasive computing.

1.4.2 Modularising Event-driven Distributed Programs

In the object-oriented programming research literature, the introduction of explicit sup-
port for concurrency and distribution has given rise to a number of long-lasting debates.
Two examples that are relevant in the context of our research are the myth of transparent
distribution [GF99] and the inheritance anomaly problem [MY93]. In what follows, we
briefly introduce these problems and discuss their implications for our research.

6 CHAPTER 1. INTRODUCTION

The Myth of Transparent Distribution

In object-oriented distributed computing, there has been a long-standing discussion about
the inconvenience of hiding distribution behind traditional object communication abstrac-
tions [WWWK96, GF99, EGS00]. Several works have pointed out that distributed in-
teractions are inherently unreliable due to the effects of network failures, and thus can
be hardly comparable to local interactions. Guerraoui and Fayad refer to this issue as
the myth of transparent distribution [GF99], arguing for an alternative approach where
developers need to be aware of distribution. As such, the complicated aspects of this con-
cern can be exposed in a controlled manner by means of explicit language abstractions.
Yet, as we previously explained in this chapter, such a special support can also become a
major obstacle for the modularity promoted by object-oriented programming.

In this thesis, we adhere to this idea of making distribution explicit in the programs.
Yet, to mitigate the conflict with modularity, we re-evaluate existing event-driven distri-
bution approaches in the light of this concern. We then reflect the insights gained in this
study in our model which allows for modular event-driven distributed programs.

The Inheritance Anomaly Problem

The problem of inheritance anomaly was originally coined by Matsuoka and Yonezawa
in [MY93]. It focuses on the implications that concurrency models have on standard
object techniques for behaviour encapsulation and reuse (classes and inheritance). In
a nutshell, concurrency models require the specification of synchronisation constraints.
Such constraints can become intertwined with the behaviour of the classes which can
severely obfuscate the semantics of inheritance. During the 90s, the quirks arising from
the coexistence of inheritance and concurrency were considered so critical as to suggest
the removal of inheritance from concurrent object-oriented languages [MS04, Ame91].

As Van Cutsem states in [Van08], concurrency is a natural phenomenon of services
deployed in distributed networks. Hence, the question about the conflicts with inheritance
is also applicable to this domain. At present, we can find a number of approaches that
tackle the inheritance anomaly problem by extracting concurrency specifications from
the behaviour of programs [MS04, VME+07, HO09]. However, we also observe that the
explicit language support that such approaches provide for event-driven distribution, can
raise additional conflicts with inheritance. For instance, when the effects of distribution
cannot be fully encapsulated in a method definition, non-trivial interdependencies between
a class and its subclasses are created. In this thesis, we refer to this issue as asynchrony
contagion. We then propose a programming model for event-driven distribution which
properly handles such contagion.

1.4.3 Extending Generic Functions-based Object-oriented Pro-
gramming

In our work, we use Common Lisp as our implementation platform. This language pro-
vides advanced support to facilitate the definition and extension of object-oriented pro-
gramming models, both in terms of syntax (e.g. through its macro system) and execution

1.5. CONTRIBUTIONS 7

semantics (e.g. through its metaobject protocol [KRB91]).
Common Lisp features a generic function-based object model, known as the Common

Lisp object system (acronym CLOS) [BDG+88]. In the context of event-driven distributed
services, we observe that a proper integration between the semantics of event-driven
execution and generic functions still remains an open issue. Event-driven interactions
are typically represented as messages exchanged between objects. However, in a generic
function-based approach programs are written in terms of function invocations. Several
extensions to CLOS have acknowledged this problem by introducing message-passing
semantics, e.g. a “send” remote operation [HT99, GSW+02, Ger05, Har08]. However, if
the non-distributed part of a service is written using plain generic functions, the overall
program is forced to combine the two different paradigms, which is far from trivial.
Furthermore, such a combination seriously diminishes the benefits of generic functions,
not in the least their multiple method dispatching semantics [BDG+88].

In this work, we present an object-oriented programming model that reconciles event-
driven programming with generic functions for concurrency and distribution (cf. Sec-
tion 4.2). The main idea of this model is to represent event notifications as asynchronous
generic function invocations which are sequentially processed by the actors dispatching
to the appropriate generic functions.

1.5 Contributions
In this section, we highlight the major contributions of this thesis.

Modularity in Ambient-oriented Programming. In the context of pervasive com-
puting, we augment the ambient-oriented programming paradigm definition with a list of
requirements for modularity. In particular, our model modularises context dependency
and group behaviour in event-driven distributed programming. For this, we characterise
the issues of existing event-driven distributed models. We then evaluate the impact of
such issues on the modularity of context dependency and group behaviour.

A Generic Function-based Model for Event-driven Distribution. We propose an
object-oriented programming language model that gracefully aligns generic functions with
event-driven distributed programming. In this model, called futurised generic functions,
we introduce the notion of asynchronous remote invocations of generic functions. That
is, the possibility to invoke remote generic functions in an event-driven manner, without
reverting to traditional message-passing semantics. As such, we preserve the multiple
dispatching semantics of generic functions in a distributed setting.

Explicit and Uniform Language Support for Event-driven Distribution. We
provide an in-depth study of the programming language support required for models
of event-driven distribution. We investigate the extent to which such support can be
aligned to standard object-oriented techniques. The result of this study is a flexible pro-
gramming language syntax which allows for different levels of explicitness of distribution

8 CHAPTER 1. INTRODUCTION

interactions in the programs. We have integrated this syntax into the futurised generic
function model. Futurised generic functions provide explicit syntax for distribution, i.e.
for asynchronous generic function invocations and for asynchronous result handling. Ad-
ditionally, this model provides an internal process to handle asynchronous results. This
model allows distributed computations to use the same syntax as local computation, while
internally still executing them in an asynchronous manner. Providing both styles of syn-
tax has enabled us to better understand their benefits and drawbacks for coping with the
distribution issues.

Generic Functions with Context Predicate Dispatch. We provide a novel mech-
anism to allow flexible behaviour selection and composition, called predicated generic
functions. This mechanism provides language abstractions to influence method dispatch-
ing semantics based on the programs’ context. In our model, method definitions can be
guarded by context predicates, which are used to decide on the applicability of the method
for a list of actual arguments. Predicated generic functions enable users to establish a pri-
ority order between possibly logically unrelated predicates. If more than one predicated
method is applicable, the order in which the predicates are declared in the corresponding
generic function is used as tiebreaker. These main tools offer a fine-grained control of
applicability and specificity of methods.

Generic Functions for Group Behaviour. We propose an innovative approach to
deal with distributed service groups in object-oriented programming, called group generic
functions. In this model, group identities are represented as group classes. A method
invoked on an instance of such a class can be implicitly propagated to some or all the
instances of the group class. This is defined in a group protocol which is cleanly modu-
larised in group methods. Group protocols are defined on a per-method basis: for each
method representing an operation of the class, there can be a group method defining the
group protocol for such operation.

Pervasive Identities. We validate our work by realising a unique characteristic for
software services in the pervasive computing paradigm, known as pervasive identities.
Pervasive identities promote the natural integration of nearby services to provide ubiqui-
tous access to their functionality. By implementing this condition, we illustrate how the
three components of our solution can seamlessly work in coordination.

1.6 Dissertation Roadmap
The central scientific contribution of this work is to propose a model for software modu-
larity in the Ambient-oriented Programming paradigm. Below we summarise the chapters
of this dissertation.

Chapter 2: Modularity in Ambient-oriented Programming presents the non-
trivial requirements for modularity of pervasive computing services. We illustrate

1.6. DISSERTATION ROADMAP 9

these requirements by means of a number of scenarios, envisioning a novel way for
software services to exploit their environment, called pervasive identities. Then, we
introduce the ambient-oriented programming paradigm and the two properties of
behaviour we aim to modularise: context dependency and group behaviour.

Chapter 3: Related Work gives a detailed view of the state of the art of object-
oriented programming models for event-driven distribution, context dependency and
group behaviour. We review each approach according to the requirements identi-
fied in Chapter 2. Special emphasis is given to analyse the interaction between the
language abstractions proposed for the different concerns. We end the chapter with
a revised version of the list of requirements for modularity in pervasive computing.

Chapter 4: Ambient-oriented Programming in Lambic presents the incarnation
of the ambient-oriented programming paradigm in our programming language model,
named Lambic. While the traditional AmOP paradigm is based on remote messag-
ing, our incarnation will be based on so-called futurised generic functions. First, we
explain how futurised generic functions gracefully align ambient-oriented program-
ming with multiple dispatch semantics of generic functions. Then, we propose and
compare two complementary approaches for explicit and uniform language syntax
for communication, which guarantees the event-driven execution of remote interac-
tions.

Chapter 5: Context Dependency in Lambic describes predicated generic functions,
a novel mechanism to allow flexible behaviour definition and selection according to
context. First, we explain how predicated generic functions allow the expression of
context-dependent behaviour in a declarative and modular manner, providing fine-
grained control of method applicability and method specificity. Then, we present
the integration between futurised and predicated generic functions. As result of
this integration, context-dependent behaviour can preserve its modularity despite
the distributed interactions implied in the behaviour.

Chapter 6: Group Behaviour in Lambic introduces a novel approach to group be-
haviour, called group generic functions. We explain the rationale behind this ap-
proach by means of a metaphor on the social conduct, known as empathy. The main
idea is to associate group behaviour with classes. This way we abstract group con-
cern from client programs. Group behaviour is defined in dedicated group methods.
Thus, it is explicitly separated from the base logic of the classes.

Chapter 7: Validation illustrates the benefit of Lambic by implementing a number of
scenarios of pervasive computing services. We present the development of the cases
of pervasive computing services introduced in Chapter 2. In these scenarios, we show
a number of programming patterns that become possible thanks to the integrated
support for event-distribution, context dependency and group behaviour.

Chapter 8: Conclusion summarises the contributions made in this dissertation. We
provide a global evaluation to Lambic with respect to the requirements of modu-
larity. We then discuss the open issues and potential directions for future research.

10 CHAPTER 1. INTRODUCTION

Appendix A: Lambic in Common Lisp explain the main details of the implementa-
tion of our proof-of-concept programming model in Common Lisp. We pay special
attention to show the use of the meta-object protocol of Common Lisp to achieve
the integration between the three models composing our solution.

Appendix B: Lambic Syntax and Libraries summarises the syntax and built-in op-
erations provided by the Lambic programming language model.

Appendix C: Lambic Kriek presents the full implementation of our first validation
case, a pervasive communication service called Kriek.

Appendix D: Lambic Geuze completes the dissertation presenting the implementa-
tion of our second validation case, a pervasive computing drawing editor called
Geuze.

Chapter 2

Modularity in
Ambient-oriented
Programming

A central idea in Mark Weiser’s original definition of pervasive computing is that de-
vices co-located in a certain environment should seamlessly interoperate with each other.
This would enable the devices to integrate their functionality in order to maximise the
environment’s available computational capacities. At present, however, we observe that
achieving such interoperation is far from trivial. This is mainly caused by the highly dy-
namic nature of pervasive computing environments: devices with limited connectivity can
appear and disappear from the environment. To cope with this dynamicity, a new pro-
gramming paradigm has been defined, called ambient-oriented programming [DVCM+06]
(AmOP). This paradigm identifies a number of requirements for the software develop-
ment, especially for distribution concerns such as service discovery, communication and
network failure handling. Such requirements are the essential ground for the develop-
ment of collaborative services in pervasive computing environments. Yet, the AmOP
paradigm says very little about how to deal with the effects of dynamic environments
on the behaviour of the collaborating devices themselves. As we explain in this chap-
ter, pervasive computing devices are expected to dynamically adapt their behaviour in
response to changes in their environment —a property known as context-dependent be-
haviour (cf. Section 2.3). In addition, devices should adapt their behaviour according to
the coordination schemes required for the collaborative services —a property referred as
group behaviour (cf. Section 2.4).

As we will see, the lack of adequate support to define such behavioural variations
may lead to programs that are hard to maintain and extend. We augment the AmOP
paradigm with a list of requirements for the modularisation of context dependency and
group behaviour in pervasive computing services.

11

12 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

2.1 Motivating Scenario: Pervasive Identities
To illustrate pervasive computing and its effects on the software development, we intro-
duce two well-known types of software services —a communication service and a drawing
editor— and discuss their adaptation to a pervasive computing environment. While it is
trivial to directly extend the case study to other “desktop” services (e.g. mail applica-
tions, music players, etc.), it is also worth noting that there are other and new kinds of
services envisioned for pervasive computing that exhibit similar characteristics and issues.
In Chapter 7 we further evaluate these scenarios.

2.1.1 Kriek: a Pervasive Communication Service
Consider the case of a software application for communication. The main property of
such an application is to offer multiple communication services (based on text, audio
and video) requiring only one identity for every user. Assume that such an application
—called Kriek in this thesis— runs in a pervasive computing environment comprising a
smart phone, a laptop and a smart TV, as shown in Figure 2.1. It should be possible that
the user has a single account that he can simultaneously use on all devices. This plurality
of devices is transparent to the user’s contacts who should still be able to address the user
employing only one location. Additionally, the user may have some preferences on how to
bring into play the different communication services. For instance, he may want to receive
notifications of incoming communications at all the devices (e.g. a pop-up message), but
get the corresponding chat windows in only one location (e.g. the smart phone for audio
and text chat and the TV for videoconference). The user may also prefer to store the
conversation records by the same device or set of devices. Finally, all communication
services are conditioned to the context in which the communication occurs. For example,
if the smart phone is about to run out of power, Kriek could suggest its user to proceed
with the audio and text chats on the laptop instead; or if somebody else is watching TV
at the moment the user receives a videoconference call, he may also prefer to use this
service on the laptop.

2.1.2 Geuze: a Collaborative Drawing Editor
Consider as a second example a drawing editor —called Geuze— shown in the left part
(side a) of Figure 2.2. In a pervasive computing environment, Geuze enables its users to
have drawing sessions for sharing and editing each other’s shapes in a common canvas. In
this case, the operations a user performs are propagated to the rest of the participants of
the session. As with the previous scenario, collaboration in Geuze is also influenced by the
context in which it occurs. For instance, to keep a consistent drawing in all the session’s
editors, Geuze provides means to constrain the editing of a shape to only one user at a
time, and to react to the disconnection of the participants, e.g. by hiding the disconnected
participant’s shapes. Similarly, Geuze controls the network traffic that the collaborative
edition entails by supporting different propagation strategies for the graphical operations.
For example, an editor propagates its user’s performed operations (e.g. moving a shape,
as shown in the right side of Figure 2.2) to the rest of the participants of the session, by

2.1. MOTIVATING SCENARIO: PERVASIVE IDENTITIES 13

Traditional computing environment Pervasive computing environment

Figure 2.1: The Kriek pervasive communication service.

communicating the shape’s intermediate positions only to the editors that are currently
displaying the part of the drawing where the shape appears,1 and merely transmitting its
final position otherwise.

2.1.3 Pervasive Identities
The scenarios above envision two orthogonal kinds of pervasive computing services. Kriek
is a single-user service that has to dynamically distribute its functionality among the user’s
devices. Geuze, on the other hand, is a manifestation of realtime group collaboration.
It integrates the work of several users ensuring consistency between their simultaneous
interactions. Yet, the two scenarios share a common characteristic which stems from the
very essence of the pervasive computing paradigm: In a setting where computers spread
through the user’s environment, software entities providing similar functionality should
abstract from specific locations and identities, and run in the environment as a single
pervasive service.

This service should be able to distribute the tasks among the participating entities,
and adapt this distribution to the dynamic changes in its context of use. We call this
property the pervasive identity of the services. Pervasive identities entail a number of
issues which we roughly classify in three major concerns: distribution, context-dependent
behaviour, and group behaviour. For the distribution concern we base our solution on the
research results offered by the AmOP paradigm, described in the next section. We then
present the requirements for context dependency and group behaviour. These concerns
are not entirely mutually exclusive; in fact, both scenarios combine elements of the three
concerns. As we discuss at the end of the chapter, this interdependency is actually more
challenging than the issues raised by each concern individually.

1Assuming that there is a zoom functionality so that the canvas can have a different size at each
editor’s window.

14 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

Peer modifying
a shape

b)a)

Propagation
of modification

Figure 2.2: The Geuze collaborative drawing editor.

2.2 Ambient-oriented Programming
Pervasive computing services run in an inherently concurrent and distributed environ-
ment. This environment consists of a set of stationary and mobile devices which are
wirelessly interconnected, forming a network that dynamically changes its topology as
the users move about. Van Cutsem et al. [VME+07] characterise such a mobile ad hoc
network —or MANET— essentially by two hardware phenomena that clearly distinguish
it from traditional fixed networks: volatile connections and zero infrastructure.

Volatile connections. The first phenomenon present in MANETs is related to the
fact that connections between devices may be regularly interrupted as result of the user
mobility and the limited capabilities of the devices in terms of network connectivity,
transmission range and battery life. In several cases the disconnection is temporary
which means that the devices may eventually meet again and require their connection to
be re-established. As an example consider the case of Kriek whose user wants to always
store this conversation records on the same device, e.g. on the laptop. For a situation in
which the user is text chatting on his cell phone, it is not guaranteed that the connection
with the laptop will remain always available (e.g. if the user moves away from the laptop
with his cell phone). However, eventually it should not be a problem to transmit the chat
transcripts from the cell phone to the laptop as presumably these devices will connect
again at some moment later in time.

Zero infrastructure. The second phenomenon in MANETs is their non-existent shared
infrastructure. In such networks, services become dynamically available according to the
connection state of the devices that contain them. A service that relies on other services
in its environment to perform its task needs to be aware of the availability of such devices.
The lack of a shared infrastructure demands the devices (or more accurately their services)
to be autonomous so that they can cope with necessary resources being unavailable for an

2.2. AMBIENT-ORIENTED PROGRAMMING 15

extended period of time. This is a major issue for services such as Geuze, which cannot
rely on a particular machine, i.e. a fixed server, to ensure consistent collaborative editing
(as in web-based collaborative applications [Goo09]), as there is no certainty that the
connection with such machine will be permanently available.

2.2.1 Requirements for Distribution

These phenomena entail a number of requirements for the development of pervasive
computing services, which Dedecker et al. [DVCM+06] initially bundled as the ambient-
oriented programming paradigm, and Van Cutsem et al. [VME+07] further refine as fol-
lows:

RD.1 Decentralised service discovery Any application that relies on other devices to
perform its task should be able to discover its dynamic network environment. Yet
this discovery should not be centralised in one machine. A decentralised service
discovery protocol needs to be introduced to enable the services to autonomously
act upon the availability and unavailability of nearby services.

RD.2 Decoupled communication In MANETs, the communication between services
should be independent of the volatile connectivity of their devices. This means that
the services do not necessarily need to be online at the same time to communicate
with each other (a condition known as time decoupling). Similarly, the potentially
extended periods of disconnection during a communication imply that synchronisa-
tion between different parties should be performed without blocking their control
flow, i.e. without suspending their thread of control (synchronisation decoupling).

Services should also be able to communicate without knowing each other’s address
or location beforehand (space decoupling). This enables the services to better adapt
to changes in their physical environment as the conceptually same service may be
provided by several instances hosted by different devices. Such anonymity also
enables a service to be represented as more than one instance (arity decoupling).

RD.3 Connection-independent failure handling Services should be able to perform
failure handling independent of any network failure. The reason for this is that
disconnections can be transient and as such services may want to resume compu-
tation upon reconnection. Treating disconnections as a normal mode of operation
is an optimistic form of partial failure handling (and also higher level than physical
network failures).

Remember that the common principle in all these requirements is that it is not possible
to hide distribution completely from our programs [WWWK96]. Distribution has a major
impact in the interaction of the services with their environment, and as such this concern
should be properly supported at the program level.

16 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

2.3 Context Dependency
Context dependency is the ability of a software service to acquaint its execution envi-
ronment and adapt its behaviour accordingly. As Hirschfeld et al. indicate in [HCN08],
this ability is already an integral part of regular business applications, where the con-
text is any information computationally accessible upon which behavioural variations may
depend. Information such as the users’ personal data and preferences have always been
employed to customise services (noticeably in internet computing). Also, the state and
historical information of the services have been used to change their functionality at
runtime, as illustrated in behavioural design patterns such as the state and strategy pat-
terns [GHJV95]. But context dependency is becoming even more critical because of the
ever larger sensing technology embedded in today devices. Sensors reify the devices’
physical environment making available a broad set of information such as location, light,
temperature, movement, and proximity [BKZD04]. In an application domain such as
pervasive computing, where users are permanently surrounded by such devices and sens-
ing data, software services are expected to become highly context aware, adapting their
behaviour to the users’ environmental state. In doing so, the services have to cope with
a number of issues related to the nature of such contextual information, and the way it
is incorporated in the services’ behaviour.

In the research literature, we find two main issues that characterise the context of
a pervasive computing service and influence the development of context-dependent be-
haviour: dynamicity and heterogeneity [BC06, SDA99, DVC+07].

Context dynamicity. In pervasive computing, the context of a service can dynamically
change over time without any periodicity and predictability, depending on diverse factors
ranging from user mobility to operations performed by the devices (automatically or
in response to user interactions). Concerning the context-dependent behaviour of the
service, the possibility exists that with such dynamic changes some context condition
becomes invalid while the behaviour it has triggered is already being executed. In fact,
the injudicious abortion or continuation of context-dependent behaviour could lead the
service into an inconsistent program state [DVC+07]. The problem increases if we take the
inherent concurrency of pervasive computing environments into account. As concurrent
changes of context may presumably require different behavioural adaptations, it is often
difficult to ensure that services do not end up with adaptations that conflict with each
other.

When dealing with context dynamicity it is important to notice that not all the changes
in the services’ context leads to adaptations in their behaviour. Similarly, not all the
context changes that concern a service influence its behaviour in the same way. There are
some context changes that can directly prompt an adaptation, e.g. an immediate change
in the service’s state. Others, instead, are taken into account only for later computations,
e.g. to determine the appropriate adaptation to process an invocation to the service’s
functionality.

In the scenarios presented in this chapter, we find situations that require either kind
of adaptation. Examples of prompt context-dependent adaptations are the Geuze edi-

2.3. CONTEXT DEPENDENCY 17

tors that react to a peer joining or leaving the editing session by immediately adding or
removing the peer’s shapes from their canvas respectively. Examples of delayed context-
dependent adaptations are the different configurations that the Kriek service can adopt
to receive a communication call, i.e. the user’s devices that should be involved in the
communication. These may depend on the type of communication (video, audio or tex-
tual), the devices’ internal conditions (e.g. battery level) and the number of people using
a device (e.g. the smart TV). In this second case, adaptation is required only when the
call occurs and not every time the devices’ conditions change or a user logs into or out of
a device.

Context heterogeneity. A context is a heterogeneous collection of information which
varies from one device to another depending on the devices’ accessible sensing data, its
various user profiles, and services in which it is involved. In some cases, the same type
of information can have dissimilar data formats tightly related to the sensing sources.
A typical example of this is the location data which can come from global positioning
systems, GeoLocation services (location deduced from the devices’ IP address), and WiFi
triangulation or active badges (used for indoor location) [Wik11a]. To provide uniform
access to such data, sensing details are often abstracted using transformation techniques
based on context ontologies [PVW+04]. A major consequence of context heterogeneity,
though, is that as the number of available data increases, developers have to deal with a
combinatorial explosion of possible context-dependent adaptations [DVC+07]. An adap-
tation may depend on a combination of context conditions (in some cases referred as
context aggregation2 [YB05]) and a context condition may trigger several adaptations,
often affecting different parts of the overall service’s functionality. Reasoning about such
combinations inside of the program would lead to undesirable situations such as scat-
tered conditional statements, resulting in cluttered code that is hard to maintain and
evolve [CH05].

The issues raised by context heterogeneity can be perceived in the graphical operations
of the Geuze editor. Each operation has its own interaction pattern defined in handlers
for GUI events. A pattern can require a combination of GUI events (e.g. moving a
shape is specified in handlers for the mouse-down, mouse-move and mouse-up events).
Additionally, the same GUI event can be used in several patterns (e.g. the mouse-move
event is used to move, paint and draw shapes). We further develop this develop this
scenario in the Section 7.2.

2.3.1 Requirements for Context Dependency
Context dependency requires explicit programming technology support which we sum-
marise in the following requirements derived from Hirschfeld et al.’s notion of context-
oriented programming [HCN08]:

RC.1 Modular behavioural variations Introducing context-dependent behaviour to
a service does not imply that the code required to reason about the context should

2The term context aggregation is mostly used to combine and refine raw sensor data [YB05].

18 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

get entangled with the rest of the service’s program. Context-dependent adapta-
tions, as well as the reasoning process that they require, should be modularised to
avoid their entanglement and scattering in the main functionality of the program.

RC.2 Dynamic Selection Context-dependent adaptations should be selected dynami-
cally at runtime, either in response to context changes or proactively at specific
points in the program execution.

RC.3 Consistent composition An important requirement for using partial adaptations
is that the resulting behaviour of the application should be a consistent composition
of its default behaviour and the adaptations.

RC.4 Restricted Scope In most cases, context-dependent adaptations affect only parts
of the program. Therefore, adaptations must be circumscribed to a restricted scope
of action, which should be unambiguous even in the presence of concurrent interac-
tions.

2.4 Group Behaviour
By encapsulating a set of cooperating services, group abstractions have proven to be very
convenient for achieving continuous availability through replication or sharing computa-
tional load [GFGM98]. In pervasive computing, group behaviour also responds to the
need for coordinating the functionality of software services in order to maximise the use
of the resources available in the users’ surroundings. Service groups therefore become a
natural way to interact with their users and to cope with the dynamicity of pervasive
computing environments.

Natural Grouping. In pervasive computing, the availability of the services is deter-
mined by the set of devices found in the users’ environment. In some cases, the services
may correspond to software applications originally conceived to run autonomously in one
device, and for single users (e.g. “desktop” applications). However, the multiplicity of
devices in the environment can bring about situations in which the users have several of
such services at their disposal, possibly providing similar functionality (e.g. instances of
the same desktop application) and similar properties (e.g. a common user). Instead of
remaining autonomous, the services are expected to be grouped together in such cases,
combining their functionality and interacting with their users as a single entity. Requests
issued to such service groups are thus transparently propagated and processed by the
group members.

We can observe the natural grouping of services in the scenarios of Kriek and Geuze.
The group abstraction enables maximising the use of surrounding resources required for
communication (text, audio and video inputs and outputs) in the case of Kriek, and to
keep a consistent collaborative edition in the case of Geuze.

2.4. GROUP BEHAVIOUR 19

Group coordination. Coordinating service groups in pervasive computing corresponds
to managing the dependencies between the participating services in order to achieve a
consistent and resilient form of collaboration, even in the presence of network failures.
As Guerraoui and Rodrigues explain in [GR06], group collaborations can be modelled as
cases of distributed agreement problems. For instance, the services may need to agree on
whether a certain event did (or did not) take place, the order by which a set of requests
need to be processed, or a common sequence of actions to be performed. Additionally,
more sophisticated agreements can emerge from solutions to simpler agreement problems.
For instance, the services need to agree on a common representation of their identity and
a reliable way to communicate with each other. In case of having several ways to perform
a group task (e.g. the number of participants involved in the task), the services need
to reach a consensus on the most appropriate option according to the context in which
the task occurs. The services may even need to agree on each step corresponding to the
execution of the task (agreement problem known as atomic commitment) and also on the
order in which such steps should take place (agreement problem known as total order
broadcast).3

Similar to the case of context dependency, the risk exists that the support required
for dealing with all of the above coordination concerns gets tangled with the functional
behaviour of the services as stand-alone applications, still used when there are no nearby
peer services. This situation is particularly cumbersome for pervasive computing services
which should be able to dynamically switch behaviour, from stand-alone to group member
and vice versa, as they can join or leave a group (voluntarily or as consequence of network
failures). The inadequate modularity of these two behaviours can lead to undesirable
scattered conditional statements.

2.4.1 Requirements for Group Behaviour
To support the development of group behaviour in pervasive computing services, we
identify the following requirements based on the works of Black [BI93] and Guerraoui et
al. [GFGM98]:

RG.1 Plurality encapsulation In a pervasive computing environment, services sharing
common functionality and properties should be able to naturally become a group.
The number of services that compose the group should be hidden from clients who
interact with the services as if they were a single entity. In the existing research
literature, this requirement has been formulated as the need for encapsulating plu-
rality [BI93] or arity decoupling [VDM07].

RG.2 Group coordination protocols Service groups require a coordination protocol
to consistently manage the dynamics of the groups in terms of membership and
communication, even in the presence of network failures and disconnections. Such a

3Atomic commitment is particularly relevant for processing distributed transactions, whereas total
order broadcast is the basis of one of the most fundamental techniques to replicate computation in order
to achieve fault tolerance [GFGM98].

20 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

coordination protocol should provide means to define agreements according to the
conditions of each group collaboration.

RG.3 Modular group behaviour The coordination protocol should not interfere with
the functional logic of the service. It should be possible to transparently plug this
protocol into services that were originally developed without group concerns in
mind.

2.5 Entangled Concerns
The three concerns described in this chapter (i.e. distribution, context dependency and
group behaviour) reveal a number of issues that characterise pervasive computing services.
For each concern, we have presented a list of requirements to cope with such issues. Yet,
these concerns do not occur in isolation. The interdependence between them is in our
experience a major problem. This means that developers have to reason not only about
how to introduce distribution, context dependency and group behaviour in the programs,
but also about the interference that can occur between these concerns, which is far from
trivial.

To illustrate this issue we outline a concrete use case of the Geuze service about the
editing of a shape (further elaborated in Chapter 7). It consists mainly of two steps:
selecting the shape (a user selects a shape from his editor; the editor acknowledges the
selection e.g. by drawing a halo around the shape), and modifying the shape (e.g. the user
moves the shape). The implementation of this use case for the Geuze editor running as a
stand-alone service implies basically the handling of a number of events triggered by the
editor’s GUI. When modelling the editor as a pervasive computing service, however, this
use case should also cope with the distribution, context dependency and group behaviour
concerns as follows:

Group behaviour The edition of the shape should adapt to the context of collaborative
drawing sessions. This implies working in accordance with coordination schemes
required to keep consistent replicas of the drawing in the session’s editors. Such a
scheme may involve, for instance, the designation of a leader editor that regulates
the access to the different shapes of the drawing, allowing each shape to be modified
in only one peer editor at the time. In this setting, the step of selecting the shape
should include a request to the leader editor, which acknowledges the selection only
if the shape is not already in use. Then the leader should inform the selection to
the session’s editors so that all of them display the selection effect (the halo) on
the shape. Also, in a collaborative session the modification (the move of the shape)
should be propagated to all the session’s editors.

Context dependency There are several ways in which context information influence
the editing of a shape. Most of them can be detected only at runtime requiring
the introduction of conditional expressions in the implementation of the use case.
For instance, the interaction with the leader and the propagation of the selection
and move of the shape, should be performed only if the editor is participating in a

2.6. SUMMARY 21

session. Also, the shape can be selected only if it is available (condition evaluated
by the leader editor). Finally, propagating the move of the shape depends on the
window’s position at each editor, as explained in Section 2.1. The shape’s interme-
diate positions during the move are propagated only to the editors displaying the
shape.

Distribution Collaborative sessions as described in the previous points, make the editing
of a shape prone to distribution issues. First, the two operations composing this use
case require one or more interactions with a remote editor (with the leader editor in
the case of the selection, and with all the editors in the case of the move), and as such
they can be affected by network failures. The implementation of these operations
should then provide some means to handle possible disconnections (transient or
permanent) during the remote interactions. Second, editing a shape should have
consistent effects in the collaborative session even if the leader editor is affected by
a network failure. Because the leader is used as a synchronisation point to avoid
simultaneous editing of the same shape, the session should deal with the leader’s
disconnections, e.g. by electing a new leader or by keeping replicated leaders. Thus,
some issues that need to be tackled in the implementation of the use case are, for
instance, how the editors can be aware of the changes of leader, or what to do in
case the leader gets disconnected while a peer editor is editing a shape (e.g. after
allowing the selection but before the move is finished).

In the above description of the use case, we observe that the three concerns are tightly
interconnected. The group behaviour of the Geuze service is deeply influenced by the
context (e.g. state of the editors and network failures). Context-dependent adaptations
may depend on distributed context information which makes the adaptation process also
vulnerable to network failures. None of the different sets of requirements identified for
each concern can cope independently with this issue. This situation drives us to the
definition of our last requirement:

RI Interdependent support For situations in which distribution, context dependency
and group behaviour cannot be handled in isolation, it should be possible to inte-
grate the support provided for these concerns.

2.6 Summary
In this chapter, we identified three major concerns for the development of pervasive com-
puting services —distribution, context dependency and group behaviour. We discussed
the issues that each concern implies and derived a set of requirements for the development
of pervasive computing services:

• The major issues of distribution are related to network failures and zero infrastruc-
ture of the devices. A model for this concern should then provide a decentralised
service discovery mechanism, a decoupled communication scheme and connection-
independent failure handling.

22 CHAPTER 2. MODULARITY IN AMBIENT-ORIENTED PROGRAMMING

• Context dependency is characterised by the dynamicity and heterogeneity of the
contextual information that can influence the behaviour of pervasive computing
services. A model for this concern should therefore enable the definition of mod-
ular context-dependent adaptations, which can be dynamically deployed within a
restricted scope of action, and can consistently interact with the default behaviour
of the service.

• Group behaviour in pervasive computing responds to the need for coordinating soft-
ware services that provide similar or complementary functionality. A model for this
concern should encapsulate this plurality of services so that they can be addressed
as a single entity, and enable the modular definition of coordination protocols.

• Last but not least, these concerns do not occur in isolation. This implies that the
technological support for each of these concerns should also work in coordination
with the technological support required for the others.

In the next chapter, we review the state of the art of software development models for
pervasive computing in the light of these requirements.

Chapter 3

Related Work

We present the state of the art of software development models that deal with the concerns
identified in the previous chapter: distribution, context dependency and group behaviour.
As stated in the introduction of this dissertation, our target research domain is the object-
oriented programming paradigm. Similarly, our starting point for distribution is event-
driven programming, as required by the AmOP paradigm. We therefore focus the present
literature study on solutions based on these programming models. Most of the existing
work we describe in this chapter provides support for only one or two of the concerns
of pervasive computing. Still, we include them as their understanding on they have
significantly influenced the design of our contribution.

3.1 Event-driven Distributed Programming
Event-driven programming has increasingly gained popularity among emerging distribu-
ted computing paradigms such as mobile and pervasive computing [VME+07]. In this
programming model, software services discover, communicate and deal with network fail-
ures by means of events. Languages with an event-driven execution model are built
around the concept of an event loop: a perpetual loop that processes events (usually, but
not necessarily, from an event queue) and dispatches them to the appropriate event han-
dlers, one at a time. The event handlers themselves are usually not allowed to suspend
the thread of the event loop because doing so would make the entire event loop, and
all other event handlers, unresponsive. Instead, an event handler posts follow-up event
handlers (callbacks) that will be invoked by the event loop when subsequent events occur.
Thus, waiting between concurrent activities is not performed by blocking but rather by
registering the continuation of the computation with the event loop.

The actor model of concurrent programming [Agh86] is an archetypical example of
such an event loop architecture. Actors are concurrent processes that share no state
and interact strictly by means of asynchronous events in the form of messages. This
means that actors cannot access each other’s state synchronously which prevents race
conditions on such data. Actors have also proven to be a clean abstraction for distributed

23

24 CHAPTER 3. RELATED WORK

systems where processes generally have no shared state and communicate via network
messages [VA01, BBC+06, DVCM+06].

The actor model was originally conceived as a functional model, but extensions have
been formulated that combine the actor model with object-oriented programming. In
this dissertation, we use the object-oriented extension to the actor model featured by
the AmbientTalk programming language [VME+07], as the basis of our research. Such
extension, known as communicating event loops, has been designed especially to fulfil
the distribution requirements of ambient-oriented programming presented in Section 2.2.
In this section, we describe the distinguishing properties of communicating event loops
and refer to [Van08] for an exhaustive definition of their semantics and comparison with
other event-driven distributed models. We then extend this comparison by discussing the
programming style featured by the different approaches. We use this extra criterion to
evaluate the integration of these models with existing language support for the context
dependency and group behaviour.

3.1.1 Communicating Event Loops
In early actor languages (e.g. Lieberman’s ACT-1 language [Lie87]), all values were repre-
sented as actors. This enabled a flexible and uniform programming model, but also made
local sequential, non-distributed computing more complicated than necessary. Subse-
quent object-oriented extensions to the actor model represented actors as special active
objects: objects with their own execution process and accessible via asynchronous mes-
sage passing (for example, ABCL/1 [YBS86], NetCLOS [HT99], ProActive [BBC+06],
Salsa [VA01]). This enabled programs to explicitly distinguish remote from local com-
putations, but also put an extra burden on the developers who had to determine for
each part of the program whether it should be modelled as an active or standard object,
which is far from trivial [Van08]. Recently, the E [MES05] and AmbientTalk [VME+07]
programming languages have introduced an execution model that allows objects and ac-
tors to gracefully co-exist. In these languages, actors are not represented as objects but
rather as containers of objects. Both local and remote computations are modelled as
message-passing interactions exclusively among regular objects (not actors).

Actors as Object Containers. Actors define boundaries of concurrent execution
around groups of objects. Each object is owned by an actor. An actor can own mul-
tiple objects, but each object is owned by exactly one actor. Two objects owned by the
same actor can communicate synchronously, by means of traditional message passing.
However, objects may also refer to objects owned by other actors. Object references that
span different actor boundaries are named far references and only allow asynchronous
access to the referenced object. Any message sent to a receiver object via a far reference
is enqueued in the mailbox of the actor that owns the receiver object and processed by
the owner itself. Actors are event loops: they take messages one by one (i.e. sequentially)
from their mailbox and dispatch them to the receiver object by invoking its appropriate
method. Figure 3.1 depicts actors and objects in AmbientTalk.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 25

A B

Actor Actor

Object
Far reference

Message from A to B

Event
loop

Message
queue

Figure 3.1: Actors in AmbientTalk

Asynchronous Message Passing. E and AmbientTalk combine the actor primitives
to send and receive asynchronous messages with object-oriented message passing. Neither
language features an explicit receive or react statement to receive messages from remote
objects (as in the Erlang [Eri11] and Scala [Pro10] programming languages). Rather,
message reception is represented simply as method invocation. An object can thus accept
any messages for which it defines a corresponding method.

Non-blocking Futures. By default, asynchronous message sends do not return a re-
sult. E and AmbientTalk allow asynchronous message sends to return values by means of
futures [Hal85]. A future is a placeholder for the return value of an asynchronous message
send. Once the return value is computed, it replaces the future object; the future is then
said to be resolved with the value.

To make the discussion more concrete, consider the following example. Assume mes-
senger represents a far reference to a remote object that represents a communication
service (as that explained in Section 2.1). The following AmbientTalk code shows how to
query this service for its user’s username:

def f := messenger<-getName();
when: f becomes: { |val| display(val) } catch: { |exception| ... }

The <- operator denotes an asynchronous send of the message getName to the remote
messenger object. This operation returns a future f. In the communicating event loops
model, an actor cannot suspend on an unresolved future. Actions that depend on the
result of an asynchronous message are defined by registering an observer for its corre-
sponding future, using the when:becomes:catch: construct. When the future is resolved,
the observer (a closure passed as the becomes: argument) is called with the resolved value
(val). To be able to respond to a getName message, it suffices for the messenger object to
define a getName method as follows:

26 CHAPTER 3. RELATED WORK

def createMessenger(name) {
object: {

def getName() { name }
}

}

In the example above, the return value of the getName method is used to resolve the
future that was created as a result of the messenger<-getName() message send. Exceptions
raised during the asynchronous execution of the method, propagate up to the level of
the asynchronous invocation. Since at this point the only available continuation is the
future attached to the message, the exception is signalled by “ruining” the future. The
exception of the ruined future can then be handled with the closure passed as the catch:
argument. The execution of either the becomes: or catch: closures is always scheduled
in the owning actor’s message queue, such that their execution is serialised with respect
to other messages processed by the actor.

Communicating Event Loops and Pervasive Computing

AmbientTalk adapts the communicating event loops model to cope with the hardware
phenomena of pervasive computing environments, i.e. volatile connections and zero in-
frastructure (cf. Section 2.2).

Far References and Partial Failures. AmbientTalk’s far references are by default
resilient to network disconnections. When a network failure occurs, a far reference to a
disconnected object starts buffering all messages sent to it. When the network partition
is restored at a later point in time, the far reference flushes all accumulated messages to
the remote object in the same order as they were originally sent. Hence, network failures
have no immediate impact on the program’s control flow, which is the desirable behaviour
to cope with often temporary disconnections of pervasive computing environments. To
cope with persistent failures, AmbientTalk uses a time-based failure handling mechanism
founded on the notion of leasing (as in Jini [Wal99]). In its simplest expression, this
mechanism enables an asynchronous message to be annotated with a timeout representing
the time in which the message should be processed (including message send, remote
method execution and resolution of the message’s future).1 If the timeout is reached the
future is ruined with a timeoutException, as shown in the following example:

1 A further explanation about AmbientTalk leases is beyond the scope of this thesis. We refer
to [GBCV+09] for a deep discussion on this subject.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 27

when: messenger<-receiveText(aTextMessage)@Due(minutes(1)) becomes: { |ack|
// message received successfully

} catch: TimeoutException using: { |e|
// message timed out

}

Publish/subscribe Service Discovery. In most distributed systems, objects are ex-
ported to the network by means of a simple name, a universal unique identifier (UUID) in
a name server or by a URL. In pervasive computing, though, name servers are impractical
due to the limited infrastructure and the URL of a service may not be known to other
actors [DVCM+06]. Instead, AmbientTalk objects are exported and imported by means
of type tags which are intensional descriptions denoting the services the objects provide.
The following code shows how to export a service with the MessengerType type tag (using
the export:as: construct):

deftype MessengerType;
def localMessenger := object: { ... };
export: localMessenger as: MessengerType;

AmbientTalk employs a decentralised service discovery protocol based on the pub-
lish/subscribe programming paradigm [EFGK03]. The type tag serves as a topic known
to both publishers and subscribers [VME+07]. A subscription takes the form of the reg-
istration of an event handler on a type tag (using the whenever:discovered: construct),
which is triggered whenever an exported object under that tag has become available in
the network:

deftype MessengerType;
whenever: MessengerType discovered: { |remoteMessenger| ... };

The whenever:discovered: function takes as arguments a type tag and an event han-
dler represented as a closure which is executed whenever an exported object matching the
type tag is encountered. The parameter of this closure is then bound to a far reference
to the discovered object.

Discussion

AmbientTalk’s communicating event loops comply with the requirements of distribution
identified in Section 2.2 as follows:

28 CHAPTER 3. RELATED WORK

Decentralised service discovery In AmbientTalk, objects are discovered using a de-
centralised publish/subscribe protocol based on type tags. Type tags are indepen-
dent of any particular device address, catering for anonymous interactions among
objects (space decoupling). Because each actor can both publish services and sub-
scribe in order to be notified of services that become available in the network, no
intermediary server is required.

Decoupled communication Event-driven communication between objects owned by
different actors suits the volatile connections of pervasive computing environments.
Asynchronous message passing and result handling decouple the communication in
synchronisation, whereas far references and their means to buffer messages sent to
a disconnected object (and to flush them when the object becomes available again),
decouple communication in time.2

Connection-independent failure handling The time-based failure handling mecha-
nism of Ambienttalk enables programs to abstract away from —possibly transient—
network disconnections. A network failure during an asynchronous message execu-
tion is considered permanent (and signalled with an exception) only after a timeout
is reached.

3.1.2 Event-driven Programming Styles
Distributed object-oriented programming languages featuring models for event-driven ex-
ecution differ in the way they unify event-driven distribution and object-oriented prim-
itives. In this section, we focus on the support that such languages provide for remote
communication, i.e. their abstractions for remote message sending, message reception and
result handling.3 As we explain in Sections 3.2.3 and 3.3.3, these abstractions have a di-
rect impact on the modularity of the systems. The differences between existing object
communication models with event-driven semantics can be characterised as follows:

Uniform versus non-uniform message sending Programming languages can differ
in the programming style they attribute to event-driven remote interactions. This
style can be either uniform with respect to local object communication primitives,
i.e. using the same operation for local and remote message sending, or non-uniform,
introducing an explicit asynchronous send operator. The former typically implies
an implicit transformation process to ensure remote interactions to still be sent and
processed in an event-driven way.

Direct versus continuation-passing message and result handling In order to re-
ceive asynchronous messages and to asynchronously handle their results, event-

2AmbientTalk also achieves arity decoupling by means of a language feature known as Ambient
References. We discuss this feature when reviewing the state of the art of group behaviour abstractions
(cf. Section 3.3).

3A further study of the other aspects of distribution such as service discovery and parameter passing
semantics is beyond the scope of this thesis, and for which we stick to the choices made by Ambi-
entTalk [VME+07].

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 29

driven programming language models can provide either a direct or continuation-
passing programming style. A programming language with direct style aligns asyn-
chronous message reception with method invocation (an asynchronous message is
implicitly handled by invoking a method on the receiver object), and handles asyn-
chronous return values using the standard request/reply pattern of object commu-
nication (the result of the asynchronous message execution is implicitly returned
to the sender object). Conversely, we say that a programming language enforces
a continuation-passing programming style if its communication primitives require
the programmer to perform some sort of explicit continuation management. Typ-
ical manifestations of such continuations are callback functions, listener objects,
token-passing continuations, receive and when:becomes:catch: statements to react
to incoming messages.

In the object-oriented programming research literature we find a considerable number
of approaches that advocate different combinations of the above alternatives of program-
ming style, which we roughly classify as implicit versus explicit language support for
event-driven distribution (uniform message sending and direct message and result han-
dling for the former, non-uniform message sending and continuation-passing message and
result handling for the latter). In what follows, we summarise the different positions
about this language design concern and then discuss the proposed solutions of existing
event-driven distributed programming languages.

Explicit Language Support

Explicit language support for distribution helps developers to better cope with the fun-
damental differences between local and remote object communication. As Eugster et al.
state in [EGS00], distributed interactions are inherently unreliable due to the effects of
network latency and failures, and thus can be hardly comparable to local interactions.
In the same line, Waldo et al. [WWWK96] claim that network failures render unifying
local and remote computing models impossible without making undesirable compromises.
Treating remote interactions as local interactions may lead to a model which is essentially
non-deterministic in the presence of partial network failures: When a component (ma-
chine, network link) fails it is usually expensive and hard, if not impossible to determine
the state of the distributed system that caused the failure and the state of the system
after the failure. On the contrary, treating all interactions as remote interactions, may
introduce unnecessary semantics (to deal with network failures) for objects that are never
used remotely, increasing the complexity of the overall system. Guerraoui and Fayad refer
to this issue as the myth of distribution transparency [GF99], arguing for an alternative
approach where developers can be aware of distribution and where the non essential as-
pects of this concern can be encapsulated inside language features with a well-defined
interface.

For all that an object-oriented programming language can comply with the above re-
quirement by featuring a dedicated event-driven execution model for distribution, explicit
language abstractions are nevertheless needed to ease the understanding of where event-
driven remote object communication occurs in the programs, and where control may yield

30 CHAPTER 3. RELATED WORK

back to the event loop.

Implicit Language Support

Recent distributed programming language models with implicit support for event-driven
execution respond to the need to cope with a number of issues found in existing explicit
programming approaches: inversion of control [HO06], lost continuations [FMM07] and
asynchrony contagion.

Inversion of Control. Event-driven programming models often require the decompo-
sition of a program into separated event handlers (e.g. the continuations for receiving
messages and handling results). Because such handlers are often not invoked by the pro-
gram itself but by an external source in the execution environment (e.g. the event loop),
the control over the execution of the program’s logic is said to be “inverted” [HO06].
Hohpe [Hoh06] relates this problem to the impossibility to use a call stack in the event-
driven execution of programs: Event handlers are processed with no program-specific
stack frames on the runtime stack. As such, developers have to manually encode the con-
tinuation and execution context among event handlers (a problem also referred as stack
ripping [AHT+02]).

Lost Continuations. In [FMM07], Fischer et al. explain that the lost continuation
problem occurs when an event handler has an execution path in which its continuation
is neither invoked nor passed along to the next continuation in the event chain. A lost
continuation causes the intended sequential behaviour of the program to be broken, often
producing errors that are difficult to trace to their source. Exceptions raised during the
execution of an event handler can also be lost as they are not properly tackled by the
subsequent continuation, potentially causing the program to crash or continue executing
in undefined ways.

Asynchrony Contagion. Explicit distinctions between local and remote computations
can have negative consequences on the evolvability of the programs. Any change of loca-
tion or rebinding of an object (from local to remote or vice versa) has direct consequences
on the clients of such object. Calls to the object’s methods have to be manually adapted
to conform to the programming model that corresponds to the service’s current location
(e.g. switching from synchronous to asynchronous message sending, and from direct to
continuation-passing message and result handling). Often, a ripple effect occurs because
the changes made to the immediate callers of the method themselves trigger cascading
changes in their callers, and so on. We refer to this problem as asynchrony contagion.

The three problems above are consequences of the dedicated language abstractions
for distribution and their interactions with standard object mechanisms such as message
passing, method encapsulation and inheritance4. Hence, programming languages featur-

4The interaction between concurrent and distributed object models and inheritance have been thor-
oughly studied in an issue known as the inheritance anomaly problem [MY93]. We discuss details of such
studies in Section 3.2.3.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 31

ing implicit support for event-driven distribution aim to cope with such problems by
enabling the definition of local and remote computations using the uniform and direct
style of object-oriented programming, while internally still executing the remote compu-
tations in an event-driven fashion.

The Event Interleaving Hazard.

An additional concern we use to evaluate event-driven programming models is known as
the event interleaving hazard [SRRB10]. In [AHT+02], Adya et al. explain that event-
driven execution models provide the developer with the ability to consider the handling of
a single event as the unit of concurrent interleaving. This is a major benefit in comparison
to other concurrency approaches such as multithreading systems, in which interleaving can
occur even at the level of each basic instruction. Yet, event interleaving can still represent
a hazard for the execution of the programs, especially for those cases that require mutual
exclusion and cooperation among remote event loops [SRRB10]. For an event-driven
program defined in terms of local and remote method invocations, the execution of a
method can be interrupted as it asynchronously invokes one on a remote object. Because
the continuation of the invoking method (i.e. an explicit callback continuation, or the
rest of the method in models with implicit language support) is processed only after the
result of the remote invocation is asynchronously returned, the possibility exists that the
executing event loop processes other invocations in between. This may cause the method’s
continuation to be processed in a possibly modified execution environment, leading the
complete program to an inconsistent state.

Note that the interleaving problem is not a consequence of the programming style of
even-driven models but of their non-blocking execution semantics. Still, if those seman-
tics are to be preserved because of its suitability to deal with network failures (cf. Sec-
tion 3.1.1), the language should enable developers to at least identify the points in the
methods where the interleaving can occur. In this sense, a programming language style
with explicit abstractions for distribution seems more appropriate, although other alter-
natives have been proposed, as we describe in the next section.

Evaluation of Event-driven Programming Styles

We now evaluate existing programming languages with support for event-driven execu-
tion, focusing our attention mainly on the four issues identified in the previous sections:
inversion of control, lost continuations, asynchrony contagion and the event interleaving
hazard.

E and AmbientTalk Revisited. In Section 3.1.1 we described E’s and AmbientTalk’s
explicit language support for distribution. Asynchronous messages are specified via the
<- operator (different to the dot notation used for synchronous message passing). Mes-
sage reception is represented as method invocation which enables objects to be completely
unaware of whether their methods invoked synchronously or asynchronously. The futures
representing the result of asynchronous messages are handled with explicit continuations

32 CHAPTER 3. RELATED WORK

registered via when:becomes:catch: forms. Regarding the problems of event-driven mod-
els with explicit language support, E and AmbientTalk behave as follows:

Inversion of control These languages alleviate the problem of inversion of control by
modelling the continuations (to handle futures) as closures which can be defined
“in line”, i.e. using when:becomes:catch: forms inside the methods that issue the
asynchronous invocations. This makes the flow of the programs easier to trace and
also prevents developers from having to manually encode the execution environment
of the continuations (as it is implicitly captured by the closures at the moment they
are registered).

Lost continuations E and AmbientTalk avoid the problem of lost continuations by us-
ing futures as the implicit return address of asynchronous messages. A continuation
defined for a future is bound to be processed, as the future is always resolved with
a result or ruined with an exception.5 In particular, in case that a network failure
occurs that impedes the remote result (or exception) to be returned to the future,
the time-based failure handling mechanism of AmbientTalk ensures that the future
is ruined with a timeout exception. This is unless the future is explicitly configured
to wait indefinitely for its resolution, despite any network failure [VME+07].

Asynchrony contagion E’s and AmbientTalk’s explicit language support for distribu-
tion poses a degree of difficulty for the evolvability of the programs. While local
and remote message reception are uniformly handled through method invocations,
local and remote message sending and result handling have completely different se-
mantics. Although in these languages message sending can eventually be expressed
using only the asynchronous <- operator, this would imply to also explicitly han-
dling the resulting futures for each invocation. Explicit continuations can be avoided
by an implicit resolution mechanism called future or promise pipelining [MES05].
However, this mechanism cannot be used in combination with standard control
structures such as looping or conditional expressions.

Event interleaving hazard E and AmbientTalk deal with the problem of event inter-
leaving by providing dedicated abstractions for asynchronous remote invocations
and result handling. For all that these abstractions make clear where the interleav-
ing can occur, developers have to manually ensure the consistent execution between
the method that makes the asynchronous invocation, and its continuation defined
in a when:becomes:catch: form.

Similar solutions to E and AmbientTalk can be found in other language models such
as Twisted [Kin05] and Tweak Islands [Mil06], and thus the above analysis also applies
to them.

Salsa. Salsa [VA01] is an actor-based programming language extension of Java for in-
ternet and mobile computing. Salsa differs from E and AmbientTalk in that it represents

5Of course, one can still forget to register a listener on the future.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 33

actors as active objects which are defined akin to Java classes (but with a behaviour
keyword instead). Salsa communication semantics are tightly coupled to the nature of
the objects: Active objects can be accessed remotely and asynchronously, whereas passive
(Java) objects are accessible only locally and via synchronous messages. Salsa provides
a <- operator to denote asynchronous message sending, which can be associated with
continuation messages (by means of the @ symbol) to handle the messages’ return values.
This return value is passed to the continuation message in the form of a token variable,
as shown in the following example:

remoteMessenger<-getUsername() @
localMessenger<-addContact(remoteMessenger,token) @

standardOutput<-println(“contact added”);

As with E and AmbientTalk, Salsa does not require extra language support to receive
asynchronous messages; an asynchronous message is implicitly handled by invoking a
method on the actor’s behaviour.

Inversion of control Salsa enables writing distributed programs as sequences of conti-
nuation messages parameterised by a token containing the return value of the previ-
ous continuation. As such, programs can have an unambiguous control flow even in
the presence of remote interactions. However, continuation messages are still pro-
cessed in different execution environments (possibly, also in different hosts). Only
the token and the arguments of the continuation message (including the receiver
actor) are implicitly passed to the environment where the continuation message is
executed. Moreover, the scope of the token is restricted exclusively to one conti-
nuation message. Reusing a token in another context such as another message is
possible only by introducing callback functions (as shown by Dedecker in [Ded06]),
which breaks the sequential semantics of the continuation chain.

Lost continuations Salsa avoids the lost continuation problem by enforcing asynchro-
nous messages and their corresponding continuation messages to be explicitly con-
nected via the @ operator. Standard Java exception handlers can be defined for
such continuation chains, although this language does not provide support for cop-
ing with the effects of network failures on remote interactions.

Asynchrony contagion Salsa’s explicit support for remote message sending and re-
sult handling (different from the one used for object interactions) exhibits similar
evolvability issues as E’s and AmbientTalk’s solution. However, Salsa’s dual pas-
sive/active object model also entails a number of additional changes, e.g. for a
passive object to be reachable remotely it needs to be redefined as an actor, enforc-
ing the adaptation of existing local interactions with the object (from synchronous
to asynchronous).

34 CHAPTER 3. RELATED WORK

Event interleaving hazard Salsa does not provide any means to prevent inconsisten-
cies due to event interleaving hazards, other than making explicit remote interac-
tions via the <- asynchronous operator and the use of continuation messages.

A further limitation of Salsa is the use of centrally managed UUIDs, considered im-
practical in our context due to the zero infrastructure of pervasive computing networks
(cf. Section 2.2).

ProActive. ProActive [BBC+06] is another extension to Java for distributed program-
ming which combines the dual passive/active object model with futures. As in Salsa, only
active objects are remotely accessible. ProActive uses Java’s communication model for
both passive and active objects. Yet, this approach ensures that messages sent to active
objects are asynchronously processed. Synchronisation on the futures’ value is handled
by a mechanism known as wait-by-necessity [BBC+06]: Asynchronously invoked methods
return a future which, when used in a subsequent computation, suspends the active ob-
ject’s execution process until the future is resolved with the result of the remote method
invocation.

Inversion of control and lost continuations ProActive does not provide explicit con-
tinuation management which means that it does not suffer from the problems of
inversion of control and lost continuations. Similar to AmbientTalk, network fail-
ures during the execution of a method invocation are notified by updating the cor-
responding future with a runtime exception. This exception can be handled with
the standard Java try-catch forms.

Asynchrony contagion ProActive’s uniform programming style for local and remote
interactions provided by this model also facilitate the evolvability of programs. Yet
that language suffers from the same problems as Salsa due to the distinction between
active and passive objects (for a passive object to become remotely accessible it has
to be redefined as active object).

Event interleaving hazard The blocking semantics of the wait-by-necessity future han-
dling mechanism prevents the programs from event interleaving hazards; the body
of a method is executed completely without releasing the active object’s process,
even in the presence of remote interactions. However, these blocking semantics are
also the main drawback when considering the distribution requirement of decoupling
communication (cf. Section 2.2).

Scala. Scala [HO09] is a programming language that provides both functional and
object-oriented programming styles. Scala supports event-driven program execution by
featuring an actor library based on the concurrency model of the Erlang [Eri11] functional
language. Asynchronous message sends use a dedicated ! operator while asynchronous
message reception. Result handling require explicit react form. These forms contain a
number of case statements which are selected to handle the messages through a pattern
matching mechanism.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 35

Inversion of control Scala copes with the problem of inversion of control by making
actors “thread-less”. Actors waiting for messages are not represented by a blocked
thread but by a closure (using the react statement) that captures the rest of the
actor’s computation. The execution of the closure can be executed by the same
thread that sends the asynchronous message to the actor, although it is not specified
how this scheme extends to remote interactions. The control is returned when the
closure terminates or blocks in a nested react form. As in the case of E’s and
AmbientTalk’s when:becomes:catch: expressions, a react form can be defined “in
line” and captures its execution environment.

Lost continuations Scala’s actor library enforces developers to explicitly encode the
continuations of asynchronous messages. The sender actor has to pass itself as an
argument in the message and then define a receive form to handle the message’s
result. The actor receiving the message has to explicitly send the result to the sender
actor. Hence, avoiding lost continuations during the communication between actors
is completely the responsibility of the developer. A request/reply pattern has been
proposed in [HO09] but it still requires developers to manually return the result
(using a reply message), and to handle it at the sender actor in a match statement.
Furthermore, in Scala developers have to manually encode support for network
failures to avoid lost continuations, as in Salsa and ProActive.

Asynchrony contagion Scala supports local and remote computations in a different
way, to send messages, receive messages and handle the results. In addition, it
explicitly distinguishes between objects and actors, exhibiting the same problems
as Salsa and ProActive.

Event interleaving hazard Scala actors avoids the event interleaving hazard by means
of a receive form. Unlike the react form, the receive form is represented as a
blocked thread. An actor suspended in a receive form waiting for the result of
an asynchronous message, can resume only to process messages matching a pattern
defined in such a receive form.

Kilim. Kilim [SM08] extends Java with an event-driven execution model for concurrent
programming. Kilim features a dual passive/active object model in which asynchronous
interactions are possible only among active objects (referred as actors), and can be writ-
ten using the standard Java programming style (message sending, reception and result
handling). Methods that may block waiting for the results of asynchronous method in-
vocations in their body, have to be explicitly annotated with a @pausable qualifier. This
allows Kilim to ensure an event-driven execution for such methods (transforming the
method definition into continuation passing style). The @pausable qualifier is similar in
spirit to checked exceptions in that both are “viral”: all callers and overriding methods
of the pausable method, must be marked @pausable as well.

Inversion of control and lost continuations Kilim’s implicit event-driven execution
semantics enables developers to preserve the direct and imperative programming

36 CHAPTER 3. RELATED WORK

style of Java. At the same time, the @pausable annotation makes the parts of the
program (the methods) explicit for developers that are processed asynchronously.

Asynchrony contagion Kilim exhibits the evolvability problems of programming lan-
guages with a dual object model described so far in this section. However, its
internal transformation process allows actor method invocations to look the same
as object method invocations. Only the @pausable annotation is used to indicate the
asynchronous execution of the method. The main benefit of this approach is that
the developer can use a uniform model for passive and active object communication,
while still ensuring event-driven execution for active objects.

Event interleaving hazard Kilim’s event-driven execution semantics are non blocking
which means that that approach may still be affected by event interleaving issues.
Yet, the @pausable annotation helps developers to spot those places. If a method is
not marked as @pausable, then developers know that there can be no event inter-
leaving.

Thus far Kilim does not support distributed programming, although the authors ar-
gue that Kilim’s communication model lends naturally to a seamless view of local and
distributed message-passing object interactions [SM08].

TaskJava. TaskJava [FMM07] is another extension of Java that provides event-driven
program execution by means of a cooperative multitasking mechanism based on corou-
tines, called tasks. A task is a class that encapsulates an independent unit of work which
can be defined using the standard Java programming style, while internally being executed
in an event-driven manner (also using a form of transformation to continuation-passing
style, as in Kilim). TaskJava features an async qualifier to annotate the methods that
should be executed asynchronously. Additionally, that model also provides a wait prim-
itive that programs use to register their interest for one or more events. Conceptually, a
wait call blocks until one of the requested events has occurred, therefore avoiding the use
of explicit continuation callbacks. Internally, the execution of a task blocked in a wait
call yields the control thread enabling the execution of other tasks.

Inversion of control and lost continuations As in Kilim, TaskJava avoids the prob-
lems of inversion of control and lost continuations by implicitly transforming meth-
ods annotated as async, so that they can be processed in an event-driven manner.
Yet, thus far we observe that the model has only limited support for distribution
concerns, such as network failures: Tasks can deal with issues produced by network
failures while sending remote messages (expressed as I/O exceptions and handled
with standard Java exception handlers), but they do not have any means to handle
(transient or permanent) disconnections while awaiting events.

Asynchrony contagion TaskJava’s uniform communication semantics avoids evolvabil-
ity issues, although their explicit distinction between classes and tasks entail com-
parable problems to those of models with active and passive objects (in order for a

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 37

method to be processed asynchronously it must be defined as part of a class that
extends the Task class).

Event interleaving hazard The “conceptual” blocking execution semantics of tasks in
TaskJava (by means of the wait primitive), together with the fact that there is
no data sharing among tasks, prevent programs from problems caused by event
interleaving.

Lua. Lua [Rob10] is a scripting language that features both explicit and implicit sup-
port for event-driven distributed programming, using a RPC-like communication model
(called ALua [SRRB10]). The explicit support relies on a rpc.async primitive which as-
sociates remote procedure calls with their corresponding result handlers (to handle both
the effective return value of the procedure and eventual exceptions). Both the remote
call and the result handler are executed asynchronously by the Lua event loop. As in E
and AmbientTalk, Lua represents a result handler as a closure which has access to the
execution environment in which the remote call is issued. Lua’s implicit programming
support, on the other hand, features a rpc.sync primitive which allows the definition of
direct remote calls and result handling, while internally keeping the same asynchronous
execution described above. This is achieved by using a coroutine-based mechanism with
implicit control transfer.

Lua separates the definition of a remote procedure call from its invocations in the pro-
gram. The rpc.sync and rpc.async primitives define a remote procedure call indicating
the process and name of the procedure (and the result handler in the case of rpc.async).
These primitives return a function which can then be invoked with the necessary argu-
ments. The main benefit of this separation is that programs preserve the same style of
invocation for local and remote invocations.

Inversion of control Lua’s explicit support alleviates the problems of inversion of con-
trol by enforcing developers to declare the continuation of remote procedure call
(the function to handle the result) as part of the call. Also, this function can be
defined in line, capturing the lexical environment the function that makes the re-
mote call. Lua’s implicit support provides a direct programming style that does not
exhibit inversion of control.

Lost continuation Lua’s explicit support alleviates the problems of lost continuations
by enforcing developers to declare the continuation of a remote procedure call as
part of the call. This means that asynchronously invoked procedures do not have
to explicitly call the continuation. Again, Lua’s implicit handling of continuations
(using rpc.sync) also avoids lost continuations. However, both approaches have the
same limitations to deal with network failures as in TaskJava (while waiting for the
result of the remote procedure call).

Asynchrony contagion Lua’s explicit support presents evolvability problems similar
to those of E’s and AmbientTalk’s models (due to the explicit handling of asyn-
chronous results). On the contrary, Lua’s implicit support enables the definition of
computations using a direct programming style.

38 CHAPTER 3. RELATED WORK

Event interleaving hazard Lua’s asynchronous execution of remote procedure calls
does not prevent event interleaving. As their authors explain in [SRRB10], while
a coroutine is blocked, other invocations may arrive and modify shared variables,
leaving them in a state different from that which the blocked coroutine expects
upon being resumed. To solve this problem Lua provides an additional library
with synchronisation constraints (originally proposed by Frølund and Agha [Frø92,
AFK+93]), which allows for the definition of conditional method executions.

JCoBox. JCoBox [SPH10] is an extension of Java that combines E’s and AmbientTalk’s
communicating event loops with the standard direct and sequential programming style of
Java, by means of a coroutine-like mechanism, also called tasks (as in TaskJava). However,
unlike TaskJava, a task in JCoBox is implicitly created as a method and is asynchronously
invoked on an object.

JCoBox actors (called coboxes) encapsulates objects, as in E and AmbientTalk, but also
tasks. A task processing a method invocation has exclusive access to its containing actor’s
state, and has to release control explicitly to allow other tasks to become active (as in
standard coroutines). Asynchronous method calls are expressed by using the ! operation
which returns a future as an immediate result. In that approach, the value of a future
has to be explicitly claimed in two different ways: a blocking one (using a get method)
which prevents other tasks from being executed in the same actor, and a cooperative one
(using an await method) which gives up the control allowing the interleaved execution of
other tasks. In the latter case, the future is resolved asynchronously. Finally, it is also
possible to yield control using the JCoBox.yield() method.

Inversion of control and lost continuations By preserving the direct programming
style of Java, JCoBox does not exhibit the problems of inversion of control and lost
continuations. Further, exceptions occurred during the execution of asynchronous
method calls are thrown when the future of the call is claimed (as in E and Am-
bientTalk) but which in addition enables the use of standard exception handlers.
Yet, JCoBox has only rudimentary support for distribution (mostly based on Java
RMI), and its documentation does not mention whether the support for network
failures is aligned with the same exception mechanism.

Asynchrony contagion JCoBox features dedicated programming language abstractions
for synchronous and asynchronous message sending but still more sensitive is the
explicit claim of futures: For a local object to become remote the communication
should be changed to explicitly claim the future, which also implies deciding for
each future whether it is claimed blockingly or cooperatively.

Event interleaving hazard JCoBox’s two ways to claim futures enable the develop-
ers to selectively deal with event interleaving. For preventing computations from
compromising state changes, futures can be claimed in a blocking manner.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 39

!
!

!
!

"
!

"
"

!
!

!
!

!
!

"
!

"
"

!
!

"
!

"
!

"
!

"
"

!
"

!
!

"
!

!
!

!
!

"
!

!
"

"
!

"
"

"
!

!
"

!
!

"
"

!
!

!
"

!
"

!
!

"
"

!
!

"
!

!
"

!
!

!
!

"
!

"
!

!
"

!
!

!
!

"
!

!
!

!
"

!
!

!
!

"
!

"
!

!
"

Ta
bl

e
3.

1:
Pr

og
ra

m
m

in
g

st
yl

e
fo

r
ev

en
t-

dr
iv

en
di

st
rib

ut
ed

co
m

m
un

ic
at

io
n

40 CHAPTER 3. RELATED WORK

3.1.3 Event-driven Distributed Programming: Synthesis and Dis-
cussion

Table 3.1 summarises the evaluation of the programming styles of the models presented
in the previous section:

Inversion of Control. To cope with the problem of inversion of control, i.e. to avoid
fragmented control flows and manual stack ripping, existing programming models have
proposed solution such as: closures (as in E, AmbientTalk, Scala actors and Lua rpc.async)
which enable continuations to be defined in the same context where the remote invocation
is done; token-based continuation messages (as in Salsa), which can also be associated with
the remote invocations, but with some problems of loss of context (e.g. limited scope
of tokens); and implicit asynchronous continuation management (as in ProActive, Kilim,
TaskJava, Lua rpc.sync and JCoBox) which enables remote interactions to be written in a
direct style (as in standard local object interactions). In the cases of Kilim and TaskJava,
this implicit management process can be performed only on methods annotated with the
@pausable and async qualifiers respectively.

Lost Continuations. To cope with the problem of lost continuations, i.e. to cover all
the possible ways in which an asynchronous request may terminate, programming models
have proposed the following solutions: To use futures as the implicit return address for
remote calls (as in E, AmbientTalk, ProActive, JCoBox and optionally in Lua6); to encode
such return addresses in the internal CPS transformation of the methods (as in Kilim,
TaskJava and Lua rpc.sync); and to implicitly send the continuation message (as in Salsa)
or call the continuation procedure (as in Lua rpc.async). Scala actors, on the contrary,
require that the developers manually manage the continuations.

To deal with exceptions that occur during remote executions, future-based continua-
tion models ruin the corresponding futures with the exceptions, which are then handled
with the when:becomes:catch form in E and AmbientTalk, and with standard Java excep-
tion handlers in ProActive and JCoBox. Standard exception handlers of the languages
are used also in the rest of the approaches. However, thus far we observe that only E,
AmbientTalk and ProActive properly deal with exceptional conditions caused by network
failures, as we explain at the end of this discussion.

Asynchrony Contagion. The asynchrony contagion is related to the degree of uni-
formity in the language support for local and remote interactions. Table 3.1 shows the
following operations where such support can be observed:

Object definition Approaches such as Salsa, ProActive, Scala, TaskJava and Kilim ex-
plicitly distinguish objects that are locally and synchronously addressable (passive
standard objects), from those that can be remotely and asynchronously addressable
(active objects or tasks). The main drawback of this design is that it enforces de-
velopers to distinguish upfront the passive and active parts of the programs. Those

6Although only when using the rpc.future form.

3.1. EVENT-DRIVEN DISTRIBUTED PROGRAMMING 41

approaches also make evolvability more difficult than necessary. E.g. to make the
functionality of an existing object available for the network, developers have to con-
vert the object into an actor or task and then adapt the existing local interactions
with the object.

Method definition All the models included in this evaluation enable methods to contain
asynchronous invocations in their body. In particular, Kilim and TaskJava require
that developers annotate such methods so that they can be internally executed
asynchronously without requiring explicit continuation management.

Message sending Language models such as E, AmbientTalk, Salsa, Scala, and JCoBox
provide an explicit operator for remote message sending. Alternatively, ProActive’s,
Kilim’s and TaskJava’s implicit handling of remote invocations enable them to use
the same syntax of uniform invocations. Lua obtains a similar result with the
separation of the specification of remote procedure calls from their invocations in
the programs: After a remote procedure call has been specified, it can be invoked
using the same syntax for local procedure calls.

Message reception Most approaches handle local and remote message reception uni-
formly, i.e. by invoking a method on the receiver object. The only exception is Scala
which requires the use of a react form.

Result handling ProActive, Kilim and Lua rpc.sync provide a direct programming
style for handling asynchronous results. E, AmbientTalk, Salsa, Scala and Lua
rpc.async require some sort of explicit continuation management (closures, token-
based continuation). JCoBox and TaskJava also enable the direct handling of asyn-
chronous results but only after having explicitly claimed the futures (as in JCoBox)
or registered for an result reception event (as in TaskJava).

The Event Interleaving Hazard. To cope with event interleaving hazards, program-
ming languages (re)introduce blocking semantics, to claim futures as in ProActive and
in JCoBox (using get), or to wait for events as in Scala and TaskJava. Alternatively,
Lua has proposed the use of higher-level language patterns such as dynamic monitors and
synchronisers which allow for a selective reception of events.

Note that all the approaches, with the exception of ProActive, comply with the syn-
chronisation decoupling requirement for communication, described in Section 2.2. While
E, AmbientTalk, Salsa and Kilim feature non-blocking execution semantics of the actors’
event loop, Scala makes actors thread-less which is in spirit similar to the coroutine-based
solutions of TaskJava, Lua and JCoBox (the three featuring thread-less cooperative tasks).
Notably, in the case of JCoBox the non-blocking execution semantics are optional, ob-
tained only by cooperatively claiming futures (using the await method).

Finally, regarding the support that the different language models provide to cope with
network failures during the communication, we observe that thus far only E, AmbientTalk
and ProActive have dedicated means to deal with network disconnections. Additionally,
AmbientTalk includes a time-based failure handling support which makes remote invoca-
tions resilient to transient disconnections.

42 CHAPTER 3. RELATED WORK

Other Approaches of Event-driven Distributed Programming

Several other programming paradigms have been proposed that deal with distribution
concerns, but the evaluation criteria for object-oriented programming style we focus on
this thesis can hardly apply to their solutions:

Publish/subscribe and Tuple spaces There is an important amount of research on
publish/subscribe [Eug07] and tuple spaces [MPR06] middleware. In this middle-
ware, communication occurs in the form of services subscribing to the events they
are interested in, and services anonymously and asynchronously publishing events.
These events are notified to clients with matching subscriptions by sending them
the data associated with these events. Hence, remote communication is highly de-
coupled in terms of space, time and arity, and also in synchronisation in some more
recent variations of these models [EGS00]. At the programming level, these mod-
els imply the use of generic interfaces to publish and register for events enforcing
distributed programs to be expressed essentially as sequences of callbacks. Other
than that, in this chapter we focus on models that preserve interactions based on
standard object-specific interfaces, and with some built-in support for correlating
events, as in bidirectional reply/request schemes afforded by message passing. Yet,
those approaches have significantly influenced several aspects of our work, e.g. as
the publish/subscribe discovery mechanism which we inherit from AmbientTalk
(cf. Section 3.1.1), and their space and arity decoupling property which allows for
group communication, discussed later in Section 3.3.

Reactive programming Reactive programming is a functional paradigm that empha-
sises on the data dependencies and change propagation of the programs [CK06].
That approach provides explicit means to represent values as continuously chang-
ing over time, and functions depending on such values that automatically re-evaluate
every time the values change. This is unlike conventional imperative programming
where changing values can be captured only indirectly and discreetly, through state
and mutations. Reactive programming enables developers to write event-driven sys-
tems using a direct programming style (without explicit callbacks). Event streams
can be directly defined as changing values (called reactive values [MGB+09]) while
actions that depend on the events can be modelled as function calls with the reac-
tive values as arguments. Nevertheless, that solution involves an important switch
of mindset in the developers that set this paradigm apart from the object-oriented
programming models we include in this chapter. Reactive programs are defined not
in terms of imperative message-passing communication, but in terms of reactions
that are automatically recomputed when the other reactions they depend on have
been modified.

Aspect-oriented programming Several extensions to aspect-oriented programming
models have been proposed to deal with distribution [NCT04, PSDF01, NSV+06].
The central idea is to enable developers to define distributed aspects, in which spe-
cific points in a program executed at certain host (e.g. method invocations), can

3.2. MODELLING CONTEXT DEPENDENCY 43

implicitly trigger some action in another host.7 This support enables the transparent
handling of method invocations on remote objects. However, most of these models
make developers to deal with RMI-like code at the aspect level (to forward invoca-
tions and to handle results and network failures), which is far from trivial [NSV+06].
Furthermore, most of such approaches provide only synchronous execution seman-
tics. Benavides et al. [NSV+06] define a model for asynchronous aspect execution
with blocking futures as results (as in ProActive). Yet, such futures must be han-
dled exclusively at the aspect level (to preserve aspects’ obliviousness property). It
still implies non-trivial definitions and combinations of aspects. We further evalu-
ate this solution when discussing about programming models for distributed group
behaviour (cf. Section 3.3).

3.2 Modelling Context Dependency
The lack of linguistic support for encoding context dependency forces programmers to
scatter these dependencies throughout application code in the form of conditional state-
ments. In object-oriented programming, ad hoc polymorphism alleviates this problem
by means of dynamic method dispatch. That mechanism enables behavioural variations
based on a receiver argument, or potentially multiple arguments, in languages based on
generic functions (also known as multimethods). Methods and their overriding relation-
ships are defined along inheritance chains of classes or objects. Although an improvement,
object-oriented dispatch has been found to be limiting in many situations. Contempo-
rary computing paradigms such as ambient-oriented programming require means to make
the behaviour of programs depend on arbitrary information available in their context.
Several programming models have acknowledged this issue, extending OOP to model the
programs’ context-dependent behavioural variations.

In [GMH07], Gonzalez presents an extensive list of diverse programming paradigms
that can be used for modelling context dependency in the programs. In this dissertation,
we focus on the solutions of context-oriented programming language models, i.e. mod-
els with dedicated language abstractions to express context-dependent behaviour. We
evaluate such approaches according to the requirements of context dependency presented
in Section 2.3. In this evaluation we use the mapping of the requirements for context-
dependent behaviour to object-oriented features, introduced by Hirschfeld et al. [HCN08]
and Gonzalez [GMH07]:

Modularity. A context-oriented programming model should enable the definition of
more than one behavioural variation for a given event. In object orientation, such events
typically correspond to method invocations. The behavioural variations are defined in
terms of modules provided by the underlying programming model, such as methods or
classes. Each variation should be specialised on a particular context situation.

7Or in several hosts, as we discuss in Section 3.3.

44 CHAPTER 3. RELATED WORK

Dynamic Selection. The selection of the behavioural variations must be late bound:
Context-dependent adaptations should be decided at runtime [GMH07]. Dynamic be-
haviour selection is one of the flagships of object orientation, usually referred to as dy-
namic dispatch. A context-oriented programming model should extend that mechanism
(based on inheritance hierarchies) to enable the behaviour selection according to the cur-
rent context.

Consistent Composition. A context-oriented programming model should enable the
consistent composition between the behavioural variations required for a certain context,
and the base (context-independent) system behaviour. In object orientation, behaviour
composition is usually realised through various forms of inheritance. However, other
composition techniques have been proposed to complement or replace that mechanism.

Restricted Scope. Context-dependent behavioural variations should have an unam-
biguous scope of action. This scope can de restricted lexically or dynamically. Lexically-
scoped behavioural variations affect a specific part of the program, e.g. a method defini-
tion. Dynamically-scoped variations affect a dynamic extent of the program execution,
e.g. the execution of a method, including all the code that the method calls directly or
indirectly.

3.2.1 Evaluation of Context-oriented Programming Models
This section presents the evaluation of context-oriented programming language models
with respect to the above requirements.

ContextL. ContextL [CH05] was the first object-oriented language model that explic-
itly supports context-oriented programming. It extends CLOS with the notion of layers
which are first-class entities encapsulating partial class definitions. The layers represent
the different contexts in which a program execution can occur. The partial definitions
correspond to the behaviour expected from the classes in those different contexts. Layers
must be explicitly activated, i.e. selected for execution. A with-active-layers language
construct is provided to enable the layers to be activated anywhere in the program, and
at any point in the program execution. The with-active-layers construct delimits a
dynamic scope for the activation of layers. It receives as arguments a list of layers and a
body containing the computations that should be executed using those layers. The layers
are active only during the execution of the body, including all the code that the body
calls directly or indirectly. Likewise, layers can be explicitly deactivated for a dynamic
execution extent, using the with-inactive-layers construct.

Modularity ContextL provides two levels of modularity. First, this model allows context-
dependent behaviour to be cleanly separated into partial class definitions. Second,
that model can group the partial definitions (of different classes) that are required
for the same context in layers.

3.2. MODELLING CONTEXT DEPENDENCY 45

Dynamic selection In ContextL, layers can be activated dynamically at runtime. Yet,
no explicit abstractions are provided to encode the context-dependent selection of
layers.

Consistent composition In ContextL, layers can be dynamically composed. The com-
position order between layers depends on the order in which they are activated. A
call-next-layered-method construct enables layers to reuse behaviour from less spe-
cific layers. Additionally, ContextL supports a number of composition rules [CD08]
to represent advanced relationships between layers (e.g. exclusion, conditional de-
pendency, etc.).

Restricted scope The scope within which layers are activated can be controlled explic-
itly in the programs by means of with-active-layers forms. This form delimits the
dynamic scope for layer activation to the execution of its body. Layer activations
can be further constrained by nesting the with-inactive-layers forms.

Several other implementations of ContextL’s layer-based model for context depen-
dency have been defined for other languages (ContextJ for Java, ContextS for SmallTalk,
ContextR for Ruby, to name a few). A similar evaluation can be done for those variations,
as described in [AHH+09].

PyContext. PyContext [vLDN07] is a framework for context-oriented programming
in Python [Fou11]. PyContext is a variation of the layer-based model of ContextL. It
supports implicit layer activations and dynamic variables as means to access context-
dependent state. PyContext alleviates ContextL’s modularity issue of explicit activations:
If a context condition that should trigger a layer activation can become true at any time
in the program (and if it is necessary that the program reacts to the context change
quickly), the check for the change of condition may need to be added in many places.
Eventually, the code to activate the layers becomes scattered and larger than the actual
contextual behaviour. To solve this problem, PyContext layers provide an active method
which contains a condition that is implicitly evaluated when a layered method is called.
The partial definition of a layer is used only if its active method evaluates to true. Yet,
that implicit activation mechanism also prevents developers from defining the priority
order between layers (no details about activation order is provided in the documentation
of that model).

PyContext’s dynamic variables have been defined to avoid passing context information
as parameters in the method invocations. Such variables are represented as globally
accessible objects, whose values are dynamically determined within the dynamic extent
of a layer activation. Previous values are shadowed and available again after leaving the
current extent.

Modularity PyContext keeps the two levels of modularity provided by ContextL: layers
and layered methods. In addition, PyContext also abstracts the layer activation
code away from the programs. It is contained in each layer in the form of an
active method, which describes the context condition for layer activation. The

46 CHAPTER 3. RELATED WORK

main disadvantage of this approach is that it prevents developers from explicitly
defining the activation order between the layers.

Dynamic selection Layer activation occurs dynamically in response to layered method
invocations. This is an implicit process. A layer is taken into account for execution if
its activation condition is accomplished (if the layer’s active method returns true).

Consistent composition PyContext follows the same semantics of layer composition
as ContextL. The partial definitions for a layered method can be aggregated, and a
proceed construct is provided to reuse behaviour.

Restricted scope In PyContext, the scope of an implicit layer activation is restricted by
the execution of a layered method. No support is provided to deal with concurrent
invocations.

Ambience. Ambience [GMH07] is a programming language with dedicated means for
explicit context representation and context-dependent behaviour definition. That model
proposes a subjective dispatching mechanism in which the execution of a message depends
not only on its arguments but also on the context in which it occurs. The context is
represented by one or more objects structured in a delegation hierarchy, which is implicitly
passed as the first argument of every message. Correspondingly, an implicit parameter is
added to every method definition, using the current context as specialiser. Methods can
thus be specialised on their context of definition. Alternatively, developers can explicitly
specify the context for which a method should be specialised. For this purpose Ambience
provides an in-context construct which receives as arguments a context object and the
code (e.g. a method definition) to be evaluated using that context.

Ambience’s subjective dispatch ensures that there is always only one multimethod
which is the most specific according to the current context. Such a mechanism is driven by
the delegation hierarchies in which their arguments are involved, including the hierarchy
of the (implicit or explicit) context argument. Access to less specific methods are possible
by means of resend calls.

Modularity In Ambience, context-dependent behavioural variation is modelled as mul-
timethods. Each multimethod is specialised on a context situation represented as
a list of objects. Such a context can be specified both explicitly by developers or
implicitly by the Ambience interpreter. Unlike ContextL and PyContext, Ambience
does not have an explicit construct to group context-dependent behaviour. Note,
however, that such groups can still be implicitly created by specialising different
multimethods on the same context object.

Dynamic selection Ambience’s subjective dispatch enables the method selection and
combination to depend not only on the received arguments but also on the message
sender’s context.

Consistent composition In Ambience, the composition of multimethods is driven by
the delegation hierarchies of the arguments received in the invocation. Complemen-

3.2. MODELLING CONTEXT DEPENDENCY 47

tary techniques are used to resolve ambiguities in the process of selecting the most
specific multimethod according to the current context.8

Restricted scope Ambience enables programs to be aware of the dynamic context
changes and to react to them adapting their behaviour accordingly. To ensure
this, the scope of action of context-dependent behavioural variations is strictly lim-
ited to the execution of one multimethod. Ambience (re)evaluates the context for
each method invocation, and upon each super call inside a multimethod’s body.

The CDR Model. The context-dependent role (CDR) model [VED+07] is an extension
of the AmbientTalk programming language for the development of context-dependent
behaviour in mobile distributed systems.9 In this model, services are represented as
actors provided with a set of context-dependent behavioural variations organised in a
delegation hierarchy. Each variation is represented as a role that the actor can adopt
to respond to a message. The hierarchical delegation structure, originally presented in
[Lie86], enables the adaptations to extend the default behaviour of the actor —placed at
the root of the hierarchy— or any other more general adaptation situated higher up the
delegation tree. The delegation semantics ensure a consistent interaction between the role
objects [Lie86]. These objects cannot receive messages directly. Instead, actors receive
messages and respond to them by first selecting the appropriate role and then executing
the corresponding method in the adaptation object of that role.

The selection of which role an actor has to adopt to respond to a message is a decision
made autonomously by the actor receiving the message. This decision is based on the con-
text of both the message sender and receiver. This means that the sender cannot indicate
the role required for the message execution (as in traditional role-based models [BD96]).
Instead, it should pass part of its own context information along with the message. The
role selection process is supported by a dedicated logic reasoning engine within the actor,
called the context-dependent role selector.

Modularity Behavioural adaptations in the CDR model are encapsulated in role objects.
Interaction between adaptations are regulated by the semantics of the delegation
mechanism. The context reasoning is also concentrated in a single entity called the
context-dependent role selector.

Dynamic selection Dynamic adaptations of behaviour occur transparently for the pro-
grammer as a result of the selection of a context-dependent role. This role indicates
the behavioural adaptation (object) to which the actor has to address the message.

Consistent composition The composition of behavioural adaptations is defined by the
delegation hierarchy. This hierarchy is a flexible structure in which the adaptations
can specialise and consistently share behaviour.

8As the ordering algorithm C3 [BCH+96] to select the current most specific context for an invocation.
9The CDR model was the first result of our research and the direct precursor of the model presented

in this dissertation (cf. Chapter 5).

48 CHAPTER 3. RELATED WORK

Restricted scope Behavioural adaptations are active only within the scope of a message
execution. This means that an actor adopts a certain role only to process a single
message. Because actors can process only one message at the time, there are no
interaction issues between adaptations required for different messages.

Context-aware Aspects. Tanter et al. [TGDB06] propose a reflective framework for
Context-aware Aspects, i.e. aspects whose behaviour depends on the context. That ap-
proach provides language constructs to scope aspects to specific execution contexts, and
to allow an aspect advice to be parameterised by context. That framework extends the
traditional notion of context in aspect-oriented programming, which is limited to infor-
mation directly associated to jointpoints, e.g. arguments of messages or control flow. In
that approach, developers can reify any information about the state of a program, in
dedicated context objects (in a similar way to Ambience). Special attention is put on
enabling aspects to depend on “past” contexts (e.g. the context in which a certain object
was created). For this, context information can be snapshot so that it is accessible at any
point in the program execution.

Modularity The framework expresses behavioural variations in the form of aspect ad-
vice. Context reasoning is also encapsulated in context objects and pointcut defi-
nitions.

Dynamic selection The applicability of an aspect is determined by the evaluation of its
pointcut, which in this framework can be constrained to a specific context situation.

Consistent composition The framework enables the composition between the context-
aware aspect and the base behaviour. However, it is not specified how to ensure the
consistent composition between several applicable context-aware aspects. There is
also no explicit support to define context-dependent priorities between the aspects.

Restricted scope Context-aware aspects are lexically scoped. They are applied only to
the parts of the programs, the join points, that adhere to the pointcut definitions.
These definitions are evaluated each time a joint point is executed. The framework
does not provide any support for concurrency.

JCop. JCop [AHM+10] is an extension of ContextL’s layer-based model of context-
oriented programming for the definition of dynamic behavioural variations in event-driven
systems. The approach uses aspect-oriented programming to enable the specification of
layer composition (activations) to span several event handlers. This prevents the programs
from having composition statements scattered over several locations. JCop introduces the
notion of context types which contain a declarative composition statement similar to a
pointcut-advice construct. Context types can explicitly specify all the methods that
should be included in the scope of a layer activation. Alternatively, context types can
define guards for some properties in the system, and make activations depend on the
changes of state of such properties. Context types are re-evaluated for every execution of
the methods they are bound to.

3.2. MODELLING CONTEXT DEPENDENCY 49

Modularity JCop inherits ContextL’s two levels of modularity of context-dependent
behaviour, partial method definitions and layers. Additionally, JCop encapsulates
layer composition statements (conditions and layers to be activated) in context
types.

Dynamic selection Layer selection is a dynamic process based on the evaluation of
predicates included in the context types. These predicates are evaluated either
when a layered method is invoked, or upon a change in the state of the system.

Consistent composition JCop’s context types allow for declarative composition of lay-
ers. Using context types, developers can specify the layers that should be activated
(and deactivated), and the order of activation. Furthermore, any expression return-
ing a list of layers can be used, so layer compositions can be dynamically computed.
Yet, no language support is provided to determine the consistent composition be-
tween the layers.

Restricted scope The scope of a layer activation is determined by the context type.
In addition to the original dynamic scope of layers defined in ContextL, in JCop a
layer can also be applied to several independent control flows.

Filtered Dispatch. Filtered Dispatch [CHVD08] is a generalisation of the generic
function-based method dispatch mechanism of CLOS. It draws inspiration from a pro-
gramming model called specialisation-oriented programming [NR08]. That model enables
methods to specialise their arguments on filter expressions. Such filters map arguments
to representatives of equivalence classes. Filtered arguments are then used in place of the
original arguments for method selection and combination. Still, the chosen methods are
invoked using the original arguments. This explicit separation between method selection
and execution resembles the lookup ◦ apply decomposition of method dispatch investi-
gated by Malenfant et al. [MDC96]. In Filtered Dispatch, lookup receives the filtered
arguments, and apply receives the unfiltered (original) ones.

The priorities between the filters are specified in a per-generic-function basis: Filtered
generic functions contain not only the methods with a common name and argument
structure (as in standard generic function models [BDG+88, CLCM00]), but also the
predicates on which such methods can be specialised. To determine method specificity,
methods using different filters are compared using the order in which the respective filter
specifications appear in the generic function definition.

Filtered Dispatch has been originally conceived for the implementation of a Lisp in-
terpreter. An alternative use case, though, which concerns our goal on the modelling of
context-dependent behaviour, is to use filters as predicates on the runtime state of the
arguments.

Modularity Filtered Dispatch allows behavioural variations to be modelled as methods
with the filters representing the context conditions for their applicability. As in the
case of Ambience, “layers” of adaptations can be implicitly defined by using the
same filter in several generic functions.

50 CHAPTER 3. RELATED WORK

Dynamic selection The selection of context-dependent behaviour is dynamically per-
formed as part of the method dispatch. An extra step is added to the dispatch
mechanism in order to evaluate the filters on the received arguments and thus de-
termine the applicability of the methods. The selected methods are sorted according
to the order in which the filters are specified in the generic function.

Consistent composition A consistent composition between the selected methods is
manually ensured by developers through the order of definition of the filters in
generic functions. Code reuse is achieved by enabling “super calls” between filtered
methods (using a call-next-method construct, as in CLOS).

Restricted scope The filter-based selection and ordering of methods is calculated for
each method invocation. Changes in the state of the arguments while processing a
method invocation are taken into account only for future invocations (unlike Am-
bience). This approach does not specify any semantics for dealing with concurrent
invocations.

Predicate Dispatch. The use of predicates for method dispatch has been explored
before in a model called Predicate Dispatch [EKC98, MFRW09], which in turn drew
inspiration from predicate classes [Cha93] and mode classes [Tai93]. However, in that
model the method overriding relationship is based on the logical implications between
predicates. Thus, the set of method predicates must be restricted to a well-chosen subset
that can be statically analysed. This leads to a viable approach, but can be limiting in
some circumstances, as users cannot extend Predicate Dispatch with their own arbitrary
predicates (as those required for context-dependent behaviour).10 Furthermore, Predicate
Dispatch does not allow the composition of the selected methods (only the most specific
is applied to the arguments).

Filtered Dispatch alleviates these restrictions by enabling users to establish a prior-
ity order between logically unrelated predicates (in a per-generic-function basis), and to
potentially access all the selected methods (by means of super calls). Yet, there are still
some properties of predicates in Predicate Dispatch that are not present in filters. Firstly,
even though many filters can be defined for a given generic function in Filtered Dispatch,
corresponding methods can use only one of those filters at a time. As a consequence, each
possible combination of the filters that could prove useful needs to be anticipated and
encoded as an additional filter in the generic function. Secondly, filtered expressions are
parameterised exclusively on the argument they filter; they cannot depend on the value of
other arguments of the method. This restriction renders Filtered Dispatch less amenable
to express context adaptations, because the conditions for applicability (the predicates)
cannot harness all available contextual information.

10Predicates without logical implications can still be added but they are treated as black boxes and the
overriding relationship between two syntactically different expressions is considered ambiguous [EKC98].

3.2. MODELLING CONTEXT DEPENDENCY 51

!
!

"
!

!
!

!
!

!
!

!
!

!
"

!
!

!
!

!
!

"
!

!
!

!
"

!
!

"
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
"

"
!

Ta
bl

e
3.

2:
Pr

og
ra

m
m

in
g

st
yl

e
fo

r
co

nt
ex

t-
de

pe
nd

en
t

be
ha

vi
ou

r

52 CHAPTER 3. RELATED WORK

3.2.2 Context Dependency: Synthesis and Discussion
Table 3.2 summarises our study of the language features provided by today’s models for
explicitly supporting context-dependent behaviour:

Modularity. The solutions provided for modularity of context-dependent behaviour
can be classified according to three different concerns: modular partial behaviour defini-
tions, modular groups of partial behaviour definitions, and modular behaviour selection.

Modular partial behaviour definitions In the approaches included in this evaluation,
context-dependent behaviour is modelled in the form of partial method definitions.
These definitions can correspond to layered methods, multimethods, aspect’s advice
or role objects.

Modular groups of partial definitions Additionally, some models provide explicit or
implicit means to group partial behaviour definitions of different classes, that are
required for the same context. Approaches such as ContextL, PyContext and JCop
provide a dedicated layer abstraction for this purpose. Alternatively, methods can
be implicitly grouped by defining them with the same context-dependent specialiser
(e.g. the same context object, filter and predicate in Ambience, Filtered Dispatch,
and Predicate Dispatch respectively). An important drawback of such implicit
approaches, however, is that it requires that the groups of behaviour are stateless.
Because a group of behaviours does not have a first-class representation, it cannot
encapsulate data. This leads to entanglements between the program’s default state
and the state required for context-specific groups of methods. Furthermore, it makes
it more difficult to model variables that may have different values according to the
context [CH05, Tan08].

Modular behaviour selection Finally, the code required to select the behaviour ac-
cording to the context, can also be modularised. This can be observed in the active
methods of PyContext which encapsulate the context conditions under which a layer
should be activated. A similar role is played by pointcuts in Context-aware Aspects
and JCop, filters in Filtered Dispatch, and predicates in Predicate Dispatch. In the
CDR model, the rules required to determine the roles are also contained in one en-
tity, the role selector. Ambience bases its support for behaviour selection in context
objects which are used as implicit arguments of the multimethods. However, that
approach does not provide any support to select the context objects that should be
used at a particular situation. ContextL exhibits a similar issue. That approach
enables relating methods to layers but it does not provide any dedicated support to
define the context conditions under which a layer should be activated.

Dynamic Selection. We can observe that almost all the models have means to dynam-
ically select the behaviour for a method invocation according to the context. This selec-
tion process is closely related to the method dispatch mechanism of the languages. They
provide diverse means to enable developers to define the dependency between method

3.2. MODELLING CONTEXT DEPENDENCY 53

definitions and context information. Some approaches enable dispatching methods on en-
tities representing particular context situations (layers or context objects). Others enable
the method dispatch to be based on filters or predicates on the received arguments’ states,
and possibly on any other information accessible in the execution environment. This is the
case for Filtered Dispatch and Predicate Dispatch. However, this also applies for aspect-
based and role-based solutions. The applicability of Context-aware Aspects depends on
the evaluation of their pointcuts which can contain arbitrary conditions about the pro-
gram’s context. Similarly, the CDR model selects the role object based on the context of
the message’s sender and receiver. Finally, the selection of context-dependent behaviour
can also be explicit in the programs. This is the case of ContextL and its constructs for
layer activation and deactivation. The main drawback of this explicit mechanism, though,
is that it can potentially lead to scattered code.

Consistent Composition. In this evaluation, we observe that consistently composing
context-dependent behaviour corresponds mainly to ensuring an unambiguous combina-
tion between the different partial definitions required to process a method execution. For
this, most of context-oriented programming models provide means to define priorities
between the partial definitions. There is always a definition that is the most specific.
Less specific definitions can be accessed via super calls. In layer-based approaches, the
priority between partial definitions is given by the order of activation of the layers. This
activation order can be dynamically computed (as in JCop), or assisted with composition
rules representing advanced relationships between layers (as in ContextL). In the CDR
model, the composition is driven by the delegation semantics of the role hierarchy. A
similar situation occurs in Ambience where the combination of multimethods is driven
by the delegation hierarchy of the multimethods’ implicit context argument (and pos-
sibly also by the delegation hierarchies of the other arguments). In Filtered Dispatch,
method combination is based on the priorities between the filters defined in a per-generic
function basis. Context-aware Aspects do not specify any support for composition of
context-dependent behaviour. In Predicate Dispatch, logical implication between predi-
cates defines the overriding relationship between corresponding methods. However, that
approach has limited facilities to resolve method combination ambiguities since the logical
implications between predicates cannot be decided in the general case. Thus, the set of
method predicates must be restricted to a well-chosen subset and thus can be statically
analysed. This leads to a viable approach, but can be limiting in some circumstances,
since users cannot extend Predicate Dispatch with their own arbitrary predicates in a
straightforward way.

Restricted Scope. In most of the above models the scope of the activation of context-
dependent behaviour is limited to the execution of a method invocation. A special case is
ContextL which keeps the layer for a dynamic extent restricted by the with-active-layer
form (and possibly by nested without-active-layer forms). Another special case are the
aspect-based models which extend the scope of the behaviour activation to all join points
in the program captured by the aspect poincuts. In particular, JCop combines the layers
with aspects enabling the activations to have a dynamic extent at all join points. At

54 CHAPTER 3. RELATED WORK

the other extreme, there is Ambience which scopes the behaviour activation to only one
multimethod execution. For all the other approaches, an activation is kept until the end
of the processing of the method invocation. This might include the execution of a chain
of methods accessible via super calls. Ambience, however, will re-evaluate the context at
each super call to select the next applicable method. That approach enables the behaviour
to keep consistent with the context changes. Yet, in some cases changing the composition
of applicable methods during a method execution might lead to inconsistencies.

Finally, thus far we observe that with the exception of the CDR model, none of those
approaches has been developed to deal with distribution issues. As we explain in the next
section, these issues affect the definition and selection of context-dependent behaviour
significantly.

Other Approaches for Context Dependency

There is a huge amount of research on frameworks that support the development and
deployment of context-aware systems like WildCAT [DL05], ContextToolkit [SDA99] or
Java Context Awareness Framework [Bar05]. The aim of these frameworks is to pro-
vide a generic programming infrastructure that deals with common functionalities like
uniform interfaces to access sensor data, event-based system to signal context changes,
and reasoning mechanism to aggregate context information. Context-aware frameworks
are useful for both pro-active and reactive systems. In the former case, callback meth-
ods are used, as part of an event-driven system, to automatically invoke some behaviour
in response to relevant context changes. Additionally, framework solutions also provide
the ability to query for actual context information such that reactive systems can adopt
their behaviour accordingly. Developers have to rely on traditional dispatching constructs
like conditional statements or polymorphism to establish the behavioural adaptation. As
soon as context-dependent behaviour appears to be the rule rather than the exception,
these language constructs become unmanageable. We therefore argue that context-aware
frameworks and a programming model for context-oriented programming are actually
complementary. Whereas the framework solutions provide the required functionalities to
develop context-aware systems, a context-oriented programming model focuses on how
context-dependent adaptations can be decently modelled inside of software systems. The
synergy between both proposals supports the development of pervasive systems.

3.2.3 Context Dependency in Ambient-oriented Programming
We now discuss the issues that show up when combining programming models for context-
dependent behaviour and for distribution. In this discussion, we use the ambient-oriented
programming paradigm and its manifestation in AmbientTalk’s communicating event
loops, as the basis of distribution. Yet, the present analysis can also apply to other
event-driven programming approaches (cf. Section 3.1.2). In this chapter, we have pre-
sented context dependency essentially as the need for adapting the program’s behaviour
to respond to communication events (i.e. method invocations) according to the context.
Thus, we focus the following discussion on the interactions between AmbientTalk’s event-
driven communication model, and the language support required for context-dependent

3.2. MODELLING CONTEXT DEPENDENCY 55

behaviour.11 We distinguish three aspects in this combination: the propagation of han-
dling asynchronous computations, the propagation of network failure handling, and the
activation scope of event-driven behaviour.

Propagation of Asynchrony

The interactions between synchronisation and behaviour specifications have long been
studied in the object-oriented programming field. Briot et al. [BGL98] observe that
synchronisation is particularly difficult to combine with standard object techniques for
behaviour encapsulation and reuse (e.g. classes and inheritance). This is due to the high
interdependency among synchronisation conditions required for different methods and
classes, and the various uses of inheritance (to inherit variables, methods and synchroni-
sations) which may conflict with each other. This limitation is known as the inheritance
anomaly problem [MY93].

AmbientTalk’s communicating event loop model avoids this limitation by explicitly
separating synchronisation from behaviour definition. Synchronisation is handled strictly
at the actor level whereas behaviour is specified exclusively in terms of objects (cf. Sec-
tion 3.1.1). Therefore, techniques such as object inheritance have no influence on the
synchronisation semantics of the programs. Still, some issues can occur due to the use of
dedicated syntax for handling asynchronous remote method invocations. In particular,
this is due to the cascading effect that such special handling causes in the interact-
ing objects and their clients, the problem previously identified as asynchrony contagion
(cf. Section 3.1.2). In this section, we discuss the consequences of this problem for the
dynamic method dispatch and inheritance-based composition mechanisms, required for
context-dependent behaviour. We refer to this concern as the propagation of asynchrony.

Event-driven Selection of Behaviour. In Section 2.5, we have discussed that in a
distributed setting, the selection of behaviour may require the evaluation of remote con-
text conditions. For this, the selection process should include remote interactions which
AmbientTalk (and all the other event-driven programming models) represents as asyn-
chronous remote method invocations (cf. Section 3.1.1). The result of asynchronous
invocations is also asynchronously handled, in most cases, by means of explicit continua-
tions. The problem occurs when trying to combine such explicit handling of asynchronous
interactions with the implicit selection process promoted by models for context-dependent
behaviour. Most of these models modularise the context conditions (in activation func-
tions, filters, predicate functions or pointcuts) which are evaluated as part of the method
dispatch mechanism (cf. Section 3.2.1). However, current implementations of this mech-
anism will fail if the evaluation of context conditions does not return an immediate result.
Context conditions leading to asynchronous results force the method dispatch mechanism
to be modelled as part of the continuations defined to handle such results. Yet, method
dispatch is hidden from the programs; developers do not have any means to introduce
handlers for the asynchronous results of the conditions.

11A similar analysis for AmOP’s support for discovery is beyond the scope of this dissertation.

56 CHAPTER 3. RELATED WORK

Consider as example the following AmbientTalk-like code in which a receiveCall
method of a messenger object, uses an isUrgentCall function to determine the applica-
bility:

def messenger := object: {
def receiveCall(caller,callee) when: isUrgentCall(caller,callee) {

... }
}

def isUrgentCall (caller,callee) {
caller<-isCurrentLocation(“hospital”);

}

Listing 3.1: AmbientTalk-like predicated method.

In this example, we assume an extension of AmbientTalk in which method definitions
can be associated with a predicate function, indicated in a when argument (as in Predicate
Dispatch [EKC98]12). The isUrgentCall function determines the urgency of an incoming
call according to whether the caller’s current location is “hospital”. For this, the isCur-
rentLocation method is asynchronously invoked on the caller object. The problem is
that this invocation returns a future which can be handled only via a when:becomes:catch:
form. Developers are therefore forced to move any computation depending on the pred-
icate’s future (e.g. the content of the method’s body), inside the when:becomes:catch:
form.

Composition of Event-driven Behaviour. Event-driven distribution can also hin-
der the composition of context-dependent behaviour. Especially for the composition
approaches based on some sort of dynamic inheritance (as in all the models reviewed
in Section 3.2.1, except for Context-aware Aspects and Predicate Dispatch). Upon a
method invocation, those approaches select and order the available behaviour definitions
(role objects, methods, aspects), according to their specificity to the invocation’s context.
Less specific definitions can be accessed by means of super calls. The problem occurs
when the super calls access behaviour definitions whose results depend on asynchronous
remote invocations, i.e. the remote invocation is contained in the body of the context-
dependent behaviour. This means that the return value of the super call also has to be
asynchronously handled. And this problem propagates all down the composition chain
(i.e. there is asynchrony contagion through super calls). To cope with this situation, de-
velopers are forced to always handle super calls asynchronously, affecting the readability
of the program’s control flow.

12A similar extension has been defined by JPred [MFRW09] which introduces predicate dispatching
semantics to Java.

3.3. MODELLING GROUP BEHAVIOUR 57

Propagation of Network Failures

Another aspect of including remote interactions in context-dependent behaviour, is that
the processes of behaviour selection and composition become vulnerable to network fail-
ures. Adequate language support should therefore be provided to handle the failures
while respecting the semantics of method dispatch and inheritance. As in the case of
the propagation of asynchrony, this requirement makes less suitable the approaches sup-
porting failures as part of asynchronous result handlers (as in E and AmbientTalk). For
instance, it would not be possible to use such handlers in predicate functions, as the
handlers’ outcome cannot be easily used as the result of the predicate functions. Network
failures (and any other kind of exceptions) cannot be propagated to the method dispatch
mechanism either. This would imply polluting such mechanism with application-specific
logic to handle the exceptions (or defining awkwardly generic handlers for all kinds of
exceptions). Similar problems appear when propagating exceptions through super calls.

Activation Scope of Event-driven Behaviour

In event-driven distributed programming models, computations are often expressed in
terms of multiple event handlers. The question regarding context-dependent behaviour is
how to restrict the scope of behavioural adaptations for such event-driven computations.
Two strategies have been proposed for this which Desmet et al. [DVC+07] defined as
loyal and prompt adaptations. A loyal adaptation can span over the several handlers
that compose the computation. An example of this strategy is found in JCop which
uses a pointcut language to define the scope of adaptations. Models based on prompt
adaptations, on the other hand, can change the adaptation for an ongoing computation as
immediate reaction to context events. This strategy is implemented by Ambience which
reevaluates the adaptation for a method invocation, even when making super calls.

Another concern related to the scope of the adaptations in event-driven distributed
programming, is that there can be several computations occurring at the same time.
In addition, those computations are not processed atomically (due to their event-driven
nature) but they can be interleaved. In such a case, developers have to take care not
only of the interactions between different adaptations for a computation, but also of
those required by different computations. Since presumably these computations require
different adaptations, the possibility exists that the programs end up with adaptations
that conflict with each other. Part of this problem is directly related to the natural
concurrency of distributed systems. Therefore, adaptations must be circumscribed to a
restricted scope of action that is unambiguous even in the presence of concurrent and
interleaved interactions.

3.3 Modelling Group Behaviour
Group data structures and group behaviour have been a natural extension to the object-
oriented programming paradigm in the past. Several models with group abstractions
have been defined to coordinate the work of distributed services. We review such models

58 CHAPTER 3. RELATED WORK

according to the requirements presented in Section 2.4. We map these requirements to
object-oriented features based on the works of Guerraoui [GFGM98], Black [BI93] and
Van Cutsem [Van08], as follows:

Plurality encapsulation A group language abstraction should make it easy to encap-
sulate objects that implement the same service. Group abstractions should treat a
plurality of objects as if they were a single object. This way, interactions can be
expressed without explicit reference to the identities and total number of the re-
ceiver objects. This also implies that interactions can use the standard request/reply
scheme of object-oriented communication.

Group coordination protocols Coordination protocols should ensure consistency and
continuous availability of the object group, despite concurrency and network fail-
ures. The protocols should enable developers to express group membership and
communication mechanisms. Group membership mechanisms should include sup-
port for dynamic reconfigurations due to objects joining and leaving the group.
Communication mechanisms should include means to propagate method invoca-
tions and to handle their results. This also means handling network failures during
the group execution of methods.

Modular group behaviour Group protocols should comply with the modularity pro-
moted by object-oriented programming. First, it should be possible to decouple
the definition of group behaviour (i.e. coordination protocols) from the definition
of the functional behaviour of the object members. At the same time, it should
be possible that the group behaviour does not affect the interface provided by the
object members.

3.3.1 Evaluation of Models for Group Behaviour
The approaches we present in this section have rather different ways to address object-
oriented group behaviour. Although they share general concerns about membership and
communication, most of them emphasise different aspects of the modelling of object
groups. This makes the comparison less simple, but at the same time it helps us to have
a broader picture about the language features required for group behaviour. Section 3.3.2
presents a summary of such language features.

Gaggles. Gaggles [BI93] are a mechanism for grouping and naming objects in a dis-
tributed system. It has been implemented as an extension to the Emerald [HRB+91]
object-oriented programming language. Using Gaggles programs can interact with groups
without regard for the number of objects that a gaggle encapsulates. A gaggle behaves
like an object: It can be named and addressed in the same way as an object. If a gaggle
is invoked, one of its members is randomly chosen to receive the invocation. The caller
programs are oblivious to this choice. Gaggles do not provide abstractions for group coor-
dination and failure handling. They neither handle an explicit membership list. Instead,
gaggles enable developers to construct their own protocols in whatever way is appropriate,

3.3. MODELLING GROUP BEHAVIOUR 59

and to encapsulate the result. Such protocols have to be defined inside the behaviour of
the object members of the gaggle. In that model, each gaggle (as a whole) is represented
by an object. However, such an object can be used only to add members and to get
references to the gaggle. It cannot be extended to allow other invocation mechanisms.

Gaggles can be members of other gaggles. In case that the member gaggle is chosen
to process a method invocation, the invocation will be recursively forwarded to one of its
members.

Plurality encapsulation Gaggles encapsulate plurality in that they can represent one
or more objects (or even several gaggles). A gaggle can be named and invoked
exactly like an object. When a gaggle is invoked, one of the objects that it represents
is randomly chosen to receive the invocation.

Group coordination Gaggles do not provide a built-in support for group coordination
protocols. They just ensure that each invocation is handled by one of their members.

Modularity Gaggles provide restricted support to separate the group concern from the
base functionality of the programs. Advanced invocation protocols have to be built
within the methods of the objects that compose the gaggles.

The Mailer/Encapsulator Model. Mailer/encapsulator [GFGM98] is a reflective
programming model that provides support for group behaviour using standard object-
oriented mechanisms. The purpose of this model is two-fold: to provide an extensible
built-in library of group coordination protocols, and to enable developers to transparently
plug a protocol underneath object interactions (property known as group transparency).
For this, group coordination protocols are explicitly separated from the application func-
tional code, contained in two kinds of meta-objects: encapsulators and mailers. Encapsu-
lators wrap the object members of a group, controlling the way they treat incoming and
outgoing requests. Mailers are proxies to the object group. These proxies control the re-
quests made by the object group’s clients. Mailers define the propagation of the requests
and the way to handle results and network failures during the communication. The Mail-
er/Encapsulator model has been implemented as extensions of SmallTalk and CORBA.
Each implementation provides a library of encapsulator and mailer classes defining dif-
ferent memberships and communication strategies. New classes can be created although
this implies dealing directly with lower-level protocols for asynchronous communication,
intra-group concurrency control, persistence and replication. Group coordination pro-
tocols are organised with the aid of the strategy pattern, which is used in a recursive
manner [GG97]. While such organisation allows for a flexible composition of protocols, it
also forces the developers of the new classes to be aware of the non-trivial dependencies
between the protocols.

Plurality encapsulation The Mailer/Encapsulator model achieves plurality encapsula-
tion. Group coordination protocols are reflectively plugged into object invocations,
within a program originally defined without group behaviour in mind.

60 CHAPTER 3. RELATED WORK

Group protocols Group coordination protocols are provided by means of a complete
library of encapsulator and mailer classes. Such classes provide support for impor-
tant aspects of group membership and communication. Furthermore, new protocols
can be added to the library, although this requires considerable knowledge on the
definition and organisation of the existing protocols.

Modularity In the model, there is a strict separation between the group concerns and the
base logic of the programs (the group transparency property). Group interactions
are defined exclusively in encapsulator and mailer classes.

Distributed Asynchronous Collections. Distributed Asynchronous Collections or
DACs [EGS00] are a language model to manipulate groups of distributed objects in Java,
using a publish/subscribe programming style (discussed in Section 3.1.3). A DAC asso-
ciates objects according to a topic. Developers interact with DACs by means of standard
operations for collections. Adding an element to the collection corresponds to publishing
an event, while invoking an operation on the collection corresponds to a subscription
to notifications of elements added to the collection. Notifications are asynchronous and
thus subscriptions have to be modelled in callback objects. These callbacks can contain
conditions representing subscription filters.

DACs enable the unification of different publish/subscribe styles in a single framework.
Each type of DAC supports different qualities of service (in a similar way as the library
of coordination protocols in the Mailer/Encapsulator model). Examples of these qualities
of service are reliable delivery semantics, handling of duplicate elements, delivery and
insertion order, etc.

Regarding our concern on modelling group behaviour, a DAC defines two kinds of
collections: the explicit collection of objects it encapsulates (which commonly correspond
to event and callback objects), and the implicit collections of clients (publishers and sub-
scribers) interacting through the DAC. In this evaluation we focus on the latter collection
as the former only represents a means of communication between the clients. Group mem-
bership is defined by the topic of the DAC. Each process containing a reference to the
DAC can communicate with all the clients registered to the DAC. Yet this communication
is indirect. It occurs only through the DAC, by publishing or subscribing to events.

Plurality encapsulation A DAC effectively encapsulates a group of objects. Publish-
ers and subscribers can interact through the DAC without being concerned about
each other’s identities. Yet, this model does not use the request/reply object com-
munication model. Communication is possible only through the generic interface
of the DAC. Developers have to explicitly create and publish message objects, and
register callbacks for notifications about new message arrivals.

Group protocols That model provides support for different aspects of group commu-
nication. A library of DAC classes is provided with different styles of publish/sub-
scribe communication. New classes can eventually be implemented, although no
special semantics for extensibility are mentioned by the authors.

3.3. MODELLING GROUP BEHAVIOUR 61

Modularity There is a clear separation between the definition of the client’s behaviour
and the group behaviour contained in DAC classes. Still, there are different com-
munication semantics for addressing the clients as individual objects and as part of
the registered members of the DAC.

Ambient References. Ambient References [VCDDM07] in AmbientTalk are references
to a volatile set of objects. This set often denotes all objects of a certain type which are
in communication range. Ambient references designate remote objects anonymously, by
means of an intensional description. Any object that adheres to the description becomes
part of the group addressed by the ambient reference. AmbientTalk provides several
delivery policies to carry messages through ambient references. These policies are ex-
pressed in terms of annotations for the messages, indicating the way to propagate the
message (to one or to all), to receive its answer, and to handle disconnections during the
communication.

AmbientTalk’s decoupled communication model (cf. Section 3.1.1) can also be ob-
served in ambient references. Communication through this abstraction is strictly asyn-
chronous. The sender of a message is unaware of the identities of the group of objects
designated by the ambient references. Ambient references can be used to interact with
services which are not yet available (buffering the messages until one or more match-
ing services become available). Remote objects are implicitly grouped by matching the
same description. All these properties are shared by publish/subscribe-based solutions
for group behaviour such as Distributed Asynchronous Collections. However, ambient
references do maintain the specific communication interface of object-oriented message
passing. Messages sent to ambient references are handled by invoking a method provided
by the interface of the service objects. Furthermore, messages can include annotations
indicating how they should be propagated to the group of remote objects.

The result of a message sent to an ambient reference is a multifuture, a future that
is resolved with the result returned by each service object the ambient reference invokes.
Several extensions to the when:becomes: construct of AmbientTalk (cf. Section 3.1.1) are
provided to handle one or all the resolutions of the multifuture.

Plurality encapsulation Ambient references achieve plurality encapsulation by implic-
itly grouping a volatile set of proximate service objects. This abstraction obeys
the request/reply communication semantics of AmbientTalk. Ambient references
do not provide generic interfaces. Messages can directly refer to methods specified
in the grouped services’ interface. The messages are asynchronously handled and
return a future as immediate result of the messages.

Group protocols Group coordination protocols (known as delivery policies) are speci-
fied in a per-message basis, by means of annotations in the messages and different
multifuture handlers.

Modularity The delivery policies are cleanly encapsulated by the ambient references.
Developers have to explicitly specify the policy for each message and the handler
for its multiple results. This scheme gives more control to the clients of the object

62 CHAPTER 3. RELATED WORK

group. However, it also implies scattering such specifications over the programs, at
each interaction with the ambient references.

Distributed MapReduce. Distributed MapReduce is a programming pattern to sup-
port distributed computations on large data sets [DG08]. Computations are expressed
in terms of user-defined map and reduce operations (based on the homologous primitives
of functional languages). The map operation defines a function which is applied to each
element of a data set received as an argument. This results in another set of intermediate
values. The reduce operation receives such an intermediate set and merges its elements
to form a possibly smaller set of values, typically zero or one output value.

This pattern relies on the assumption that the function defined in the map operation
can be independently applied to each element of a data set. As such, rather than invoking
map with a big set, it is possible to partition the set and make several calls to map with
the different subsets. Such calls can then be processed by different machines in parallel.
The reduce operation cannot be partitioned, although several reduce calls for different
data sets can still occur simultaneously. For each group of machines involved in the
MapReduce pattern, there is a master node which receives the invocation to the pattern’s
main function, mapreduce. That function receives as arguments the data set together with
the map and reduce operations (encapsulated in an object). The master distributes the
tasks among the worker nodes and returns the final result. Special support is provided
to efficiently parallelise the work and to handle network and machine failures.

The focus of the Distributed MapReduce pattern on data parallelisation significantly
differs from our focus on improving the language support for modelling group behaviour.
While that pattern groups machines to distribute mapping and reduction operations, we
aim to interact with a group of objects providing similar functionality. The map and reduce
operations could still be used to propagate method invocations to the group members and
to handle their results. However, this would contradict the pattern’s original intention
to execute each invocation to those operations independently, on one machine. All the
guarantees of distribution provided by that pattern (failure handling and efficiency) are
conceived only to coordinate several invocations to map and reduce.

Plurality encapsulation The Distributed MapReduce pattern does not provide plural-
ity encapsulation. Developers have to directly deal with each object of the group.
The request/reply communication scheme is replaced by invocations to the pattern’s
main functions.

Group protocols The pattern provides distribution protocols only to coordinate several
map and reduce invocations on the same data set.

Modularity The pattern hides the distribution details from the programs. Computa-
tions are defined in objects implementing the map and reduce operations.

The Typed Group Model. The Typed Group Model [BBC02] is an extension to
the ProActive programming language (cf. Section 3.1.2) for group behaviour in grid
computing. This model enables developers to group remote objects providing a similar

3.3. MODELLING GROUP BEHAVIOUR 63

functionality (i.e. with a common super class). The model preserves ProActive’s principle
of uniform language syntax. Typed groups can be invoked using the classical dot notation,
and addressing the public class interface of the members’ common class. A method
invocation is asynchronously propagated to all the group members. It returns a future
as a result which is itself a typed group that automatically gathers all the results of the
propagated invocation (which are also futures). As any standard ProActive future, a
group future can be immediately used for further invocations. In that case, the wait-by-
necessity semantics are used. An invocation on the group future blocks until one of the
future receives the result. The execution of the invocation ends when all futures have
been resolved.

Typed groups handle failures in a per-member-invocation way. Failures are not directly
propagated but transparently caught and stored for later handling (as in AmbientTalk).
If a member of a group communication raises an exception, it is stored in the result group
at the exact place where the result is expected. Invocations on failed group members
(exceptions) are omitted.

This model provides special semantics for passing typed groups as parameters. In
case that an invocation on a group receives another group as argument, that model
allows scattering the elements of the argument group in the different invocations to the
members of the invoked group. This scattering is done in a one-to-one correspondence
between nth member of the argument group and the nth member of the invoked group
(where n indicates the order in which the members joined the groups). Several strategies
are adopted if the two groups have dissimilar cardinality.

Finally, typed groups share two properties with Gaggles. First, typed groups can have
other groups as members. The same transitive propagation scheme is applied in such a
case. Second, a typed group is represented as an object which can be used to manage the
group as a collection, and to get references to the group.

Plurality encapsulation Typed groups encapsulate plurality in that they can gather a
set of remote objects of a common class. Method invocations preserve the syntax
and implicit execution semantics of ProActive asynchronous remote invocations.
The results of a group invocation are implicitly collected and do not require special
event handlers.

Group protocols The model’s support for group coordination is restricted to one com-
munication protocol (full propagation of method invocations, implicit collecting of
futures or exceptions). Further schemes would involve applying standard operations
for collections to the typed group.

Modularity Using the Typed Group model, the group communication is abstracted
from the functional aspects of the programs. Group concerns are defined at the
meta level, where invocations are managed as first class entities and evaluated with
the required semantics.

AWED. AWED [NSV+06] is a programming language and execution platform for as-
pects with explicit features for distribution. It allows developers to modularise coor-

64 CHAPTER 3. RELATED WORK

dination concerns in distributed programs. AWED uses as main abstractions remote
pointcuts, remote advice and an explicit notion of host groups. Remote pointcuts are
declarative definitions that can predicate over different points in the execution of a dis-
tributed program (called distributed join points). The pointcuts can contain conditions
about groups of hosts where certain join points (e.g. a method invocations) occur. They
can also indicate the hosts where the advice (the behaviour defined by the aspect) should
be executed. Conditions on advice execution may further specify host selection strategies,
e.g. to decide the order of application of the advice in the group of hosts. Advice is also
used to manage group membership. Finally, remote pointcuts include means to manage
how parameters of a given joint point (e.g. caller and target objects) are distributed.
This model allows those variables to be passed by value or by reference.

Special support is provided to model group communication patterns by means of a
finite-state automaton integrated into the pointcut mechanism. This support enables
the definition of crosscutting (distributed) data accesses. An aspect is applied to two
groups of hosts, called source and target hosts. When the aspect’s pointcut matches
execution events on the source hosts, its remote advice is executed on the target hosts.
This adds a deterministic manipulation of distributed messages to the model by means
of causally ordered protocols. In particular, the propagation of a method invocation
corresponds to a farm pattern, where the group of sources is restricted to a single host.13

Also, because pattern-defining aspects can be composed, nested group propagations (as
proposed by Gaggles and the Typed Group model) can be straightforwardly defined as
sequences of aspects. Yet, this propagation occurs implicitly, as result of the execution
of the advice in the target hosts. This means that in case that the invocation expects
a return value (as when using around aspects), the developers cannot handle the results
of the propagation in one place. No single part in the program expects the results of
the propagated invocation. Furthermore, developers do not have a way to deal with
disconnections during the propagation.

Plurality encapsulation AWED encapsulates plurality in that it hides group communi-
cation concerns from the programs. Standard method invocations can be implicitly
propagated to remote objects (providing the same interface). However, the model
does not enable developers to handle the results of the propagation as well as net-
work failures occurring during this process.

Group protocols Developers can declaratively specify the hosts that should be involved
in the execution of a method invocation. They have fine control over the definition
of remote pointcuts and the application of the remote advice (in terms of order of
execution, parameter passing and synchronisation semantics). Furthermore, AWED
provides a number of advanced communication patterns. Yet, very little or no
support is provided to handle remote results and network failures.

Modularity AWED succeeds in modularising distribution and group concerns in aspects.

13Other patterns also restrict the number of target hosts or even of both groups.

3.3. MODELLING GROUP BEHAVIOUR 65

!
!

!
"

!
"

!
"

"

!
!

!
!

!
"

!
!

!

"
"

!
"

!
"

"
"

!

"
!

!
!

!
"

!
!

!

"
"

"
"

!
"

"
"

!

"
!

!
"

!
!

!
!

"

!
!

!
"

!
!

"
"

!

Ta
bl

e
3.

3:
Pr

og
ra

m
m

in
g

st
yl

e
fo

r
gr

ou
p

be
ha

vi
ou

r

66 CHAPTER 3. RELATED WORK

3.3.2 Group Behaviour: Synthesis and Discussion
Table 3.3 summarises the language support provided by the models for group behaviour
presented in this section:

Plurality Encapsulation. The main purpose of plurality encapsulation is to access a
remote service without regard for the number of objects that provide the service. We can
evaluate this property according to two aspects of the communication between the object
groups and their clients:

Communication style There are a number of models that preserve the standard re-
quest/reply object communication model (Gaggles, the Mailer/Encapsulator model
and AWED). Requests correspond to ordinary method invocations and the replies
are implicitly returned as results of the execution of the invocations. The rest of
the approaches define dedicated support for group requests (the group annotations
in invocations on Ambient References, or the MapReduce object in the Distribu-
ted MapReduce pattern), and for group replies (multifutures in AmbientTalk and
ProActive, and callback objects in DACs). Note that this explicit support is not
necessarily related to the asynchronous execution semantics featured by some of the
approaches. The Mailer/Encapsulator model provides asynchronous execution yet
it does not require special abstractions for group requests or replies.

Communication interface Most of the models enable developers to invoke methods
that correspond to the interface provided by the class of the group members. The
only exceptions are DACs and the Distributed MapReduce pattern which use generic
operations.

Group Protocols. In Table 3.3, we focus on the protocols for group membership and
communication. Further protocols are provided, remarkably in the Mailer/Encapsulator
model and DACs (for data replication management, transactional operations, etc.). Yet,
group membership and communication are the basis of the other protocols. Regarding
the protocol for group membership, two properties can be distinguished:

Group management All the models provide some sort of support for group manage-
ment, i.e. to add and remove group members. In most cases, such operations are
provided by the entity that represents the group as a whole, e.g. a group manager,
a group reference or a collection. In all other approaches, group management is
an implicit process. In DACs, for instance, members are added and removed by
registering to, or unregistering from a topic. Similarly, Ambient References use a
publish/subscribe discovery mechanism based on intensional descriptions.

Failure handling An important aspect of the management of a group is to provide
means to react to failures affecting its members’ availability. In this sense, we
observe that only the Mailer/Encapsulator model and Ambient References provide
support for handling such failures. In the former model, this support is included

3.3. MODELLING GROUP BEHAVIOUR 67

as part of the behaviour of the encapsulator meta object. In the latter, member
failures are supported at the program level, by means of connectivity handlers.

With respect to the protocols for group communication, we distinguish four concerns:

Method propagation Several mechanisms have been proposed to propagate a method
invocation to the group. Gaggles and Typed Groups feature a unique and implicit
propagation strategy (to one member and to all members, respectively). Mod-
els such as DACs, Ambient References and AWED allow the invoking program to
declaratively specify the propagation (in the conditions of callback objects, group
annotations of messages, and aspects’ pointcut, respectively). The Mailer/Encapsu-
lator model provides different propagation strategies contained in the mailer meta
classes.

Parameter passing Few of the approaches provide special parameter passing semantics
for group communication. By default, the parameters of a method invocation on
a group are broadcast to all the group members. Each parameter is then passed
according to the semantics provided by the language, e.g. by copy, by reference, by
move, etc., typically specified in the class definition of the parameter object. The
only two exceptions are AWED and Typed Groups. AWED enables developers to
specify the propagation of the parameters (by copy or by reference) at the aspects’
pointcuts. Typed Groups define extra semantics to cope with groups used as pa-
rameters (giving the possibility to scatter the members of the group parameter over
the invocations on the members of the invoked group).

Results handling Several strategies are proposed to handle the results of group method
invocations. In Gaggles, the results are handled implicitly; the result produced by
the member executing the group invocation is transparently sent to the invoking
object. Ambient References and Typed Groups, on the other hand, provide a set of
synchronisation abstractions, to wait for one or all the results (modelled as futures).
In Ambient References, the synchronisation is specified as a property of the method
invocation (as part of the group annotations). In Typed Groups, the synchronisation
can be indicated directly in the result future. The Mailer/Encapsulator model also
provides several synchronisation schemes which are contained in the mailer meta
classes. The other models allow the developers to manually synchronise the results
of the group invocation: inside the callback objects in DACs, and in the reduce
operation in the Distributed MapReduce model. AWED does not allow the handling
of the results of group invocations.

Failure handling Most of the schemes proposed to deal with failures during group
communication, use the failure handling semantics of the underlying programming
model. Ambient References and Typed Groups notify failures during the invocation
on a group member, by ruining the future created by the invocation. In the Mail-
er/Encapsulator model, failures are implicitly handled at the meta level, as part
of the behaviour of the mailer meta classes. Similarly, the DAC classes contain
different strategies to handle failures.

68 CHAPTER 3. RELATED WORK

Modularity. In terms of modularity, we can observe that all the approaches in the sur-
vey provide specific entities to contain the group protocols. Most of these entities can be
adapted without losing their modularity. The only exceptions are the group managers of
Gaggles and Typed Groups which can be modified only from within the class definition of
their members. For the rest, different levels of adaptability are provided. Using Ambient
References, the membership protocols can be modified by means of the references’ inten-
sional description. Communication protocols can be selected by means of the annotations
attached to the method invocations. In the cases of DACs, Distributed MapReduce and
AWED, the group protocols can be adapted by directly redefining the classes that con-
tain the protocols. Similarly, the Mailer/Encapsulator model allows the definition of new
mailer and encapsulator meta classes (or redefinition of existing ones). That model is
also the one that offers the highest degree of flexibility for adapting the protocols, due to
its reflective capabilities. Yet, such flexibility also entails more complexity.

Another point of comparison that can be derived from this evaluation is the basis on
which a group behaviour is selected, i.e. the scope of use of the group communication
protocols (in a way similar to the scope of context-dependent behaviour, cf. Section 3.2).
Models such as Gaggles, the Mailer/Encapsulator model, DACs and Typed Groups, spec-
ify such protocols on a per-group basis. This means that the same communication strategy
is used for handling all invocations to the group. Alternatively, Ambient References and
the Distributed MapReduce model specify the group communication strategy on a per-
invocation basis. Finally, AWED’s scope of the group communication protocol is per
aspect, i.e. a set of methods matched by the aspects’ pointcut definitions.

3.3.3 Group Behaviour in Ambient-oriented Programming
We have focused on programming models for group behaviour on distributed systems.
For this reason, some of the models already include support for coping with distribution
issues, e.g. for network failures, as we summarise in the previous subsection. Regarding
the distribution requirements of the ambient-oriented programming paradigm, we observe
the following consequences for modelling group behaviour.

Decentralised Group Behaviour Management

AmOP’s decentralised discovery property, as realised in AmbientTalk for example, re-
quires that the members of a group can autonomously act upon the dynamic changes in
the availability of their peers. The execution of group protocols, therefore, cannot rely
on a specific host (i.e. a fixed group leader) as there is no certainty that the connec-
tion with that host will remain accessible. Approaches such as the Mailer/Encapsulator
model, DACs, Ambient References and AWED have acknowledged this issue enabling
group protocols to work in a peer-to-peer fashion.

Decoupled Group Communication

To deal with volatile connections, the AmOP paradigm fosters a communication model
which is decoupled in time, space, synchronisation and arity (cf. Section 2.2). An ap-

3.3. MODELLING GROUP BEHAVIOUR 69

proach for group behaviour in this case should support the same decoupling in the in-
teractions between the groups and their clients. This is accomplished by the Mailer/En-
capsulator model, DACs, Ambient References, and to some extent, by Gaggles, Typed
Groups and AWED. Furthermore, it should also be possible that the decoupled commu-
nication is ensured for intra-group interactions, as those required in the definition of the
group communication protocols. However, this is not the case for the models that enable
redefinitions of the communication protocol. Developers have to interact with the group
as a collection (no arity decoupling), using explicit references to the object members (no
space decoupling), only with the members that are online (no time decoupling), and in
some cases, only via synchronous messages (no synchronisation decoupling).

Group’s External and Internal Connection-independent Failure Handling

To properly deal with connection volatility, interactions with object groups should support
for connection-independent failure handling, similar to the one provided by Ambient
References. This support should also be provided for interactions between the members
of the group (inside the definition of the communication protocols).

3.3.4 Context dependency and Group Behaviour

A final matter we have to discuss is the combination between context dependency and
group behaviour. The main challenge here is that the language abstractions defined for
both concerns should work without interfering with each other. This implies coping with
the following issues.

Context-dependent Selection of Group Behaviour

Dynamic changes in the context of an object group can influence its behaviour. Such
changes can cause requests to the group, possibly for the same functionality, to be ex-
ecuted using a different communication protocol. Similarly, different context conditions
may lead to different ways to react to member disconnections. Consider as a simple
example a communication application running simultaneously on several devices (for a
common user, as the case presented in Section 2.1). For such a service, the default group
communication protocol can be to signal incoming messages in all the devices but to store
them in only one of them. Yet, if the device that stores the messages becomes unavail-
able, a new group strategy should be adopted. Chapter 7 presents further examples of
context-dependent group behaviour. We observe that in all these cases the selection of
the adaptation of the group behaviour according to the context, is application dependent.
This makes approaches with generic group protocols (defined in a per-group basis) less
suitable, especially those that are more difficult to adapt (as the reflective Mailer/Encap-
sulator model).

70 CHAPTER 3. RELATED WORK

Activation Scope of Group Behaviour

Allowing context-dependent variations of group behaviour also implies dealing with the
activation scope of such variations. The issue is how to react to context changes occurring
during the execution of an invocation to the group (i.e. during the propagation of the
invocation, distributed execution and handling of results). This brings back the discussion
about loyal and prompt behavioural adaptations (cf. Section 3.2.3), which can be included
as part of the definition of the group protocols. Similarly, additional support should be
provided to deal with concurrent invocations to the group, eventually leading to the
selection of different group protocols.

Preserving Modularity and Composability

Last but not least, when modelling context dependency and group behaviour, the possi-
bility exists that the organisation of a program required for one of these concerns hinders
the modularity of the other. The challenge in this case is how to ensure the modularity of
both concerns while preserving the program readability. Additionally, a flexible compo-
sition mechanism is required to allow a consistent combination of the different variations
of context-dependent group behaviour.

3.4 Summary: Modularity in AmOP
In this chapter, we have reviewed the state of the art of three fundamental concerns
in the software development for pervasive computing: distribution, context dependency
and group behaviour. We have used as the basis for our study the ambient-oriented
programming paradigm and its event-driven execution semantics. We have described
the way in which such semantics have been combined with object-oriented programming.
We presented a number of language models to support context dependency and group
behaviour, and discussed the conditions for their integration with event-driven execution
semantics of AmOP. From these conditions we derived a list of requirements which further
refine the requirement for interdependent support proposed in Section 2.5. Figure 3.2
shows the requirements for AmOP, context dependency and group behaviour, and the
requirements for interdependent support.

In summary, in object-oriented programming languages with an event-driven execu-
tion model, objects discover, communicate and deal with network failures, by means
of events in the form of asynchronous messages. Such languages support event-driven
distribution either explicitly, by providing dedicated language syntax for remote commu-
nication, or implicitly, by using a uniform syntax (for local and remote communication).
Explicit language support makes clear the effects of distribution in the programs, but hin-
ders their evolvability (in what we call the asynchrony contagion problem). Furthermore,
some models with explicit event-driven abstractions suffer from the problems of inversion
of control and lost continuations. Implicit language support, on the other hand, eases
the programs’ evolvability but hampers the understandability on the effects of distribu-
tion. Finally, event-driven program execution models suffer from the event interleaving

3.4. SUMMARY: MODULARITY IN AMOP 71

AmOP

Group
behaviour

Context
dependency

- Decentralised service discovery
- Decoupled communication
- Connection-independent failure handling

- Modular variations
- Dynamic selection
- Consistent composition
- Restricted scope

- Modular group behaviour
- Plurality encapsulation
- Group coordination protocols

Context dependency in AmOP
- Controlled propagation of asynchrony
- Controlled propagation of network failures
- Restricted scope of event-driven behaviour

Group behaviour in AmOP
- Decentralised group behaviour
- Decoupled group communication
- Connection-independent failure handling

Context dependency in Group Behaviour
- Dynamic selection of group behaviour
- Restricted scope of group behaviour
- Preserving modularity and composability

Figure 3.2: Requirements for modularity of context dependency and group behaviour in
AmOP.

problem. Although this is not a problem of programming syntax, languages with implicit
support for distribution make this problem more difficult to identify.

In the programming language models reviewed in Section 3.1.2, we observe that to
cope with the above issues the models make specific decisions on the use of implicit and
explicit syntax for each aspect of communication (for invoking methods, receiving the
invocations, and handling their results).

In what follows, we recapitulate the requirements for modelling context dependency
and group behaviour in AmOP.

3.4.1 Modelling Context Dependency in AmOP
Object-oriented programming languages with support for context dependency enable be-
havioural variations to be modularised and specialised on particular context conditions.
Context-dependent variations are dynamically selected, activated and composed for a
specific scope of the program execution. The modularity required for context-dependent
behaviour is decomposed into three aspects: modular partial behaviour definition (mostly
expressed as method definition), modular groups of partial definitions (e.g. in layers or
aspects), and modular behaviour selection (e.g. in predicate functions or context objects).
The selection and composition of context-dependent behaviour are modelled as part of the

72 CHAPTER 3. RELATED WORK

method dispatch mechanism of the programming languages. Special support is provided
to select and order behavioural variations according to the context (based on hierarchies
of context, roles or predicates). The scope of context-dependent behavioural variations is
mostly defined by the lexical or dynamic extent of the execution of a method invocation.

Regarding the combination between the event-driven communication model of AmOP,
and the models for context-dependent behaviour, we derive the following requirements:

RI.1 Controlled propagation of asynchrony The selection of behaviour can depend
on remote context conditions. Because the selection process is commonly modelled
as part of the languages’ method dispatch mechanism, language support required
for asynchronously requesting remote context conditions should not interfere with
the semantics of method dispatch. Similarly, in case that the selection process leads
to a composition of context-dependent behaviour, the possibility exists that the
asynchrony contagion occurs through super calls. Programming language models
should enable developers to handle such results without hampering the readability
of the programs (e.g. without forcing the methods to be defined in a continuation-
passing style).

RI.2 Controlled propagation of network failures Dynamic dispatch and composi-
tion mechanisms based on inheritance can be affected by network failures. Pro-
gramming language models should therefore provide explicit support to deal with
failures while respecting the semantics of such mechanisms.

RI.3 Restricted scope of event-driven behaviour An event-driven computation is
fragmented into a number of event handlers. In case that such a computation re-
quires context-dependent behavioural adaptations, programming language models
should ensure a consistent scope for the adaptations. This scope should be unam-
biguous even in the presence of concurrent and interleaved computations.

3.4.2 Modelling Group Behaviour in AmOP
Object-oriented programming languages with support for group behaviour provide differ-
ent ways to achieve plurality encapsulation, group protocols and modularity. Plurality
encapsulation aims to enable programs to interact with a remote service without re-
gard for the number of objects that provide the service. This property can be evaluated
with regard to two different aspects: the group communication style (in comparison to
the standard request/reply object communication model), and the group communication
interface (whether invocations to the group are handled using the interface of the mem-
ber objects or a generic group interface). A model for group behaviour should define a
number of protocols for group coordination. At the basis of these protocols there is the
support for group membership and communication. For both cases, the models should
define the handling of network failures. Group protocols should be modularised so that
group behaviour is separated from the base functionality of the programs. Programming
language models achieve this by encapsulating the group behaviour in dedicated entities
(e.g. group objects, meta objects, references or aspects). Each of these entities define a

3.4. SUMMARY: MODULARITY IN AMOP 73

particular scope of use of the group protocols, which can be per group, per invocation,
and per aspect.

Regarding the combination of the event-driven communication model of AmOP, and
models for group behaviour, we derive the following requirements:

RI.4 Decentralised group behaviour management The decentralised discovery pro-
moted by the AmOP paradigm requires that the member of a group can au-
tonomously act upon the dynamic changes in the availability of their peers. Group
protocols should be able to work in a peer-to-peer fashion.

RI.5 Decoupled group communication AmOP’s decoupled communication should be
ensured for both the communication between the group and their clients, and for
the intra-group communication (the latter required inside the definition of the group
protocols).

RI.6 Connection-independent failure handling Language support should be pro-
vided for handling network failures during both the interactions with the group and
those between the group members. This support should be connection-independent
to properly deal with transient disconnections.

Finally, to build an integrated object-oriented model that deals with context-dependent
and group behaviour, the following requirements should be accomplished:

RI.7 Dynamic selection of group behaviour Programming models should enable the
definition and dynamic selection of group protocols according to context.

RI.8 Restricted scope of group behaviour Context-dependent variations of group
behaviour should have a consistent scope during the complete execution of a method
invocation (i.e. during the propagation of the invocation, distributed execution and
handling of results). This also means to keep consistency even in the presence of
possible network failures affecting the intra-group interactions.

RI.9 Preserving modularity and composability It should be possible that the mod-
ularity required for context-dependent behaviour does not interfere with the modu-
larity required for group behaviour. The same applies to the dynamic composition
of either kind of behaviour.

74 CHAPTER 3. RELATED WORK

Chapter 4

Ambient-oriented
Programming in Lambic

This chapter introduces Lambic, a new incarnation of the ambient-oriented programming
paradigm [VME+07]. However, instead of starting with the single-receiver OOP vari-
ant, Lambic is an extension of the generic function-based object system of Common Lisp
(acronym CLOS). Our model extends the multiple dispatch semantics of generic functions
to cope with the concerns of pervasive computing, identified in Chapter 2. For concur-
rency and distribution, Lambic combines the properties of the AmOP paradigm with
generic functions, in what we call futurised generic functions. For context dependency
and group behaviour, Lambic provides two other extensions, called predicated generic
functions and group generic functions respectively. Additionally, a common underlying
execution process ensures that these three features can be effectively used in combination
with one another.

An in-depth discussion of CLOS is beyond the scope of this thesis. Instead, in the next
section we briefly explain the essentials of its object model required to understand Lambic
—especially the part concerning generic functions. We introduce further details as we go
along. The remainder of the chapter presents futurised generic functions, and Chapters 5
and 6 introduce predicated and group generic functions respectively. In the course of
these chapters we also describe the execution process that enables the integration of the
three features.

4.1 Generic Function-based Object Orientation in
Lambic

Lambic adheres to the mainstream idea of object-oriented programming (established by
Simula) to organise a program around classes and then associate operations with those
classes, in the form of methods. However, in CLOS methods do not belong to classes
but to generic functions. A generic function defines an abstract operation, specifying a

75

76 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

Class definition ::=
(defclass class-name (parent-class)({field})) → new-class

field ::= (field-name field-option)
field-option ::= [:initarg initarg-name]

[:initform form]
[:reader reader-function-name] ...

Class instantiation ::=
(make-instance class-name [init-values]) → new-object

Table 4.1: Class definition and instantiation in Lambic

name and a parameter list that its methods can specialise on. Methods are accessible
only by invoking the corresponding generic function. This means that programs are
written in terms of generic function invocations rather than messages exchanged between
objects. Thus, generic functions preserve the procedural programming style of Common
Lisp. However, in CLOS, this does not imply that we lose the virtues of OOP. Generic
functions allow the methods to specialise on the class of all their parameters, establishing
the basis for multiple dispatch semantics (also known as multimethods).

4.1.1 Class Definition and Instantiation
Table 4.1 shows Lambic’s syntax for the definition and instantiation of classes. For this, we
use an adaptation of the EBNF notation.1 Classes are defined by means of the defclass
form which receives as arguments a name, a list of parent classes2 and a list of fields. A
basic field definition consists of a symbol denoting the name of the field. Alternatively,
Lambic enables complementing such a definition with a number of options (inherited from
CLOS) in the form of keyword arguments. For instance, the :initarg option specifies a
name that can be used as a keyword parameter when instantiating the class (using the
make-instance function), and whose argument will be stored in the field. The :initform
option is used to specify a default value for the field if no :initarg is passed to the make-
instance function. Finally, the :reader option specifies the name of the generic function
used to access the field (similar to a getter method in other languages). As an example,
consider the definition and instantiation of a chat class shown in Listing 4.1. The chat
class has two fields representing the name of the user (username) and the list of the user’s
contacts (address-book). The username field can be initialised when instantiating the
class, using the :username keyword (specified in the :initarg option). The address-book

1Due to the central role of parentheses in Lambic’s syntax, we have substituted this symbol in the
EBNF specification (used for grouping terms), with angle brackets. The expressions after the arrows
indicate the return values.

2Although Lambic preserves the multiple inheritance semantics of CLOS, a complete analysis of the
interaction between these semantics and our extension remains part of future work.

4.1. GENERIC FUNCTION-BASED OBJECT ORIENTATION IN LAMBIC 77

Generic function definition ::=
(defgeneric function-name parameter-list) → new-generic

parameter-list ::= ({parameter})

Method definition ::=
(defmethod method-name specialised-parameter-list body) → new-method

specialised-parameter-list ::= ({parameter | (parameter specialiser)})

Generic function invocation ::=
(function-name {argument}) → result

Table 4.2: Generic functions and methods in Lambic (as in CLOS)

field is bound to a hash table by default (indicated in the :initform option). The second
expression in the listing creates a new instance of the chat class with the string “Bob” as
the initial value for the username field. This instance is then bound to the local-chat
variable.

(defclass chat ()
((username :initarg :username

:reader get-username)
(address-book :initform (make-hash-table)

:reader get-address-book)))

(defvar local-chat (make-instance ’chat :username “Bob”))

Listing 4.1: Class definition in Lambic.

4.1.2 Generic Function and Method Definitions
Table 4.2 shows the language constructs for the definition of generic functions and methods
in Lambic. Just as in plain CLOS, generic functions are defined using the defgeneric form
which receives as parameters a name and a parameter list. This list consists of one or
more symbols denoting the name of each parameter. The generic function’s individual
methods are defined independently by means of the defmethod form. This form receives
the name of a generic function and a specialised parameter list. A specialised parameter
is a parameter associated with a symbol denoting the name of a class (the specialiser).
All the method’s parameters can have a specialiser. The specialised parameter list should
have the same arity as the parameter list of the method’s generic function.

78 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

(defgeneric receive-text (receiver sender text))

(defmethod receive-text ((receiver chat) sender text)
(display “Message from ” sender “: ” text))

Listing 4.2: Generic function and method definitions in Lambic.

The above listing shows the definition of the receive-text generic function. This
generic function specifies the behaviour of the chat class to receive a text message. A
method is defined for this generic function with the receiver parameter specialised in the
chat class. The generic function is invoked as follows:

> (receive-text local-chat “Alice” “Hi there”)
Message from Alice: Hi there

Listing 4.3: Invoking a generic function in Lambic.

We defer the explanation on how Lambic processes generic function invocations to
Chapter 5. For now, it suffices to assume the traditional CLOS semantics.

4.2 Futurised Generic Functions
The existing incarnations of the AmOP paradigm use the popular single-receiver OOP
variant. In Lambic, we adhere to the paradigm by means of a model, called futurised
generic functions. It is a variation of the communicating event loops model of the Am-
bientTalk [VME+07] programming language, which combines the non-blocking execution
process of event loops with the multiple dispatching semantics of generic functions. In
this model, software services can discover, communicate and deal with network failures
by means of events, which are represented as generic function invocations asynchronously
processed by actors.

Futurised generic functions comply with the three properties of AmOP: decentralised
discovery, decoupled communication and connection-independent failure handling. We
put special emphasis on the language support for communication which, as explained in
Chapter 3, has a significant influence on the modularity of the behaviour of pervasive
computing services. For this reason, futurised generic functions extend the execution
process of communicating event loops, for handling the results of non-blocking remote
invocations. As such, Lambic enables the definition of distributed computations using
explicit syntax (as originally proposed in the event loops model, cf. Section 3.1.1), and
also uniform syntax (the same syntax of local invocations).

4.3. GENERIC FUNCTION-BASED EVENT LOOPS 79

The contributions of futurised generic functions are two-fold:

1. To reconcile multiple dispatch semantics with the communicating event loops model.
Lambic gracefully aligns generic functions with event-driven programming for ser-
vice discovery, communication and failure handling.

2. To provide explicit and uniform syntax for communication, while guaranteeing the
event-driven execution of remote interactions.

In the remainder of this chapter, we present Lambic’s generic function-based event
loops model. Next, we introduce Lambic’s event-driven programming style.

4.3 Generic Function-based Event Loops
Futurised generic functions support concurrency and distribution by featuring an exten-
sion to communicating event loops, the actor-based model originally proposed by E and
further refined for pervasive computing by AmbientTalk. In Lambic, software services
can discover, communicate and deal with network failures by means of events, which are
represented as asynchronous generic function invocations. Generic function-based event
loops in Lambic are built around three main components: actors, asynchronous generic
function invocations and non-blocking futures.

4.3.1 Actors
In Lambic, an actor consists of an event loop (a thread of execution), an event queue,
and an internal state represented by a collection of objects and generic functions. Events
correspond to asynchronous generic function invocations which are received in the actor’s
queue and sequentially processed by its event loop, dispatching to the appropriate generic
function. Figure 4.1 shows the communicating event loops model in Lambic.

Actors define boundaries of concurrent execution for objects and generic functions:
Each object and generic function are contained in exactly one actor and as such they can
be accessed exclusively by their containing actor’s event loop. This means that two or
more actors never share mutable state. Mutating another actor’s state has to be performed
indirectly, by means of asynchronous generic function invocations. These invocations are
processed in a strictly sequential order, one at a time, in what is known as an event loop
turn [Mil06]. Turns are Lambic’s unit of atomicity and interleaving. The handling of
a single invocation happens in mutual exclusion with respect to other invocations. All
communication between actors is non-blocking: An actor never suspends its event loop to
wait for the result of an asynchronous generic function invocation processed by another
actor.

Intra- and Inter-actor Object References. In Lambic, standard (local) references
to objects can be used only inside the objects’ actor. Object references spanning several
actors are called remote references. When a local reference to an object crosses the

80 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

event
loop

event
queue

actor actor

ƒ

objects

generic
function

methods
m1

m2

m3

remote reference local
reference

asynchronous
generic function

invocation

Figure 4.1: The communicating event loops model in Lambic

boundaries of the object’s actor, e.g. when passed as argument or return value of a generic
function invocation, it is automatically converted into a remote reference. Conversely, a
remote reference received in the actor that contains the corresponding referenced object,
is converted into a local reference.

4.3.2 Asynchronous Generic Function Invocations
In Lambic, inter-actor computations are possible exclusively by means of asynchronous
generic function invocations. A generic function is asynchronously invoked by designating
an actor as the responsible for its execution. In our model neither actors nor objects can be
addressed directly, i.e. sending messages to them. Instead, an actor is indirectly selected
by associating with the invocation a reference to an object contained in such actor. We
name this reference the actor designator. An asynchronous generic function invocation
consists of the specification of a standard generic function invocation (name of a generic
function and a set of arguments) and an actor designator. The standard generic function
invocation is processed in the actor of the object indicated as actor designator.

In existing actor models with single-dispatch message-passing semantics, the actor that
executes an invocation always corresponds to the actor of the receiver argument (which
can be the actor itself as in Salsa, or an object hosted in the actor, as in AmbientTalk).
In our model, however, no argument plays such a role in an invocation. Thus, the object
reference used as actor designator is independent of the references passed as arguments to
the generic function (although it will often coincide with one of them). This means that
developers can arbitrarily choose an actor to process any invocation.3 Also, the actor
designator of an asynchronous generic function invocation can correspond to a local or
remote reference. In either case the invocation is scheduled in the actor’s event queue of
the referenced object. This means that using a local reference as actor designator does

3As we illustrate in Chapter 7, this is beneficial for cases of several actors providing the same generic
function.

4.3. GENERIC FUNCTION-BASED EVENT LOOPS 81

not result in a synchronous execution of the invocation, but in scheduling the invocation
in the current actor’s event queue.

Implicit Actor’s Message-passing Semantics. Note that an asynchronous generic
function invocation corresponds to a “send” operation at the actor level which, in Sec-
tion 1.4.3, we claimed incompatible with multiple dispatch semantics of generic functions.
However, in our case this operation does not conflict with the generic function model as
methods are only specialised on objects, not on actors. The only role of actors is to prevent
concurrent invocations on the same set of objects. The message-passing actor communi-
cation is explicitly separated from the programming level which enables the developers to
write programs in a generic function style.

4.3.3 Asynchronous Return Values
Lambic handles the return values of asynchronous generic function invocations by means
of non-blocking futures, as in AmbientTalk. By default, an asynchronous generic function
invocation returns a future as immediate result. A future is an object created at the
actor doing the invocation, acting as a placeholder for its result. Once the return value is
computed, it is communicated to the future’s actor in the form of an event. The future
is then said to be resolved with the value. An actor in Lambic cannot suspend on an
unresolved future. Actions that depend on the result of an asynchronous generic function
invocation are defined by registering an observer for its corresponding future.

The observer of the future corresponds to a closure that will be applied to the future’s
resolved value. The registration of the observer is a non-blocking process itself. The
closure is executed immediately only if the future is already resolved. Otherwise, it
is processed asynchronously after the future’s resolution. A future and its observer are
always contained in the same actor, which is also the actor that initiated the asynchronous
generic function invocation that returned that future. As such, only the actor of the future
can notify its observer, preventing concurrent interactions with the internal state of the
actor. This also ensures that the bindings of the closures used as observers are available
when handling the future’s result. Yet, the possibility exists that the values of those
bindings might have changed as a result of other events processed by the actor, between
the asynchronous generic function invocation and the resolution of its future [VME+07].
This situation, that we name message interleaving, is an important issue of non-blocking
execution models, and as such, we analyse it in depth in Section 4.5.1.

Future-based Exception Handling. When an exception is raised during the execu-
tion of an asynchronously invoked generic function, the exception propagates back to the
actor performing the invocation. At this point, the only available continuations are the
observers registered to the future returned by the asynchronous invocation. Hence, the
exception is signalled by ruining such a future [VME+07]. This action also occurs in
the form of an event sent to the future’s actor. To deal with a ruined future, developers
can attach one or more exception handlers to the future’s observer. These handlers are
asynchronously called after the future is ruined.

82 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

4.3.4 Summary
In summary, Lambic’s futurised generic functions align the communicating event loops
model with the multiple dispatch semantics of generic functions, as follows:

• Actors define boundaries of concurrent execution of generic functions. Methods are
specialised on objects and their classes, not on actors. Hence, actors play no role in
the method dispatch semantics.

• Inter-actor computations are realised by means of asynchronous generic function in-
vocations. This kind of invocation differs from standard generic function invocations
in that it has to specify the actor that should evaluate the function.

• By default, the result of an asynchronous generic function invocation (if any) is
also asynchronously returned to the actor from which the function is invoked (the
future’s location).

4.4 Lambic’s Event-driven Programming Style
We now present Lambic’s programming language support for the AmOP paradigm. This
support is built on top of the generic function-based event loop model. We explain how
Lambic realises the three properties of AmOP: decentralised discovery, decoupled com-
munication and connection-independent failure handling. In this section, we show that
in our model all these features are cleanly aligned with the multiple-dispatch semantics
of generic functions. The message-based interaction of actors is explicitly separated from
the programming level, abstracted in a number of generic functions. Thus programs do
not send messages to objects but only invoke generic functions, indicating the actor that
should process them.

We gradually introduce the syntax and semantics of Lambic as necessary in this sec-
tion. For a complete definition of the Lambic language, we refer the reader to Appendix B.

4.4.1 Decentralised Discovery
Table 4.3 shows Lambic’s language support for service discovery. Our model deals with
the lack of fixed network infrastructure of mobile ad hoc networks (cf. Section 2.2) by
adopting the publish/subscribe service discovery protocol of AmbientTalk. This protocol
is fully decentralised, no servers or other infrastructure are required. Objects are published
by providing a description of the kind of service they represent. A subscription takes the
form of the registration of a discovery observer on a service description. This observer
is notified whenever an object exported under that description becomes available in the
network. As a result of the discovery, Lambic yields a remote reference to the exported
service. The discovery is supported by means of the functions export-service and import-
service, and the event handler whenever-discovered.

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 83

Export service ::=
(export-service object service-description) → nil

Import service ::=
(import-service service-description) → unbound-reference

Discovery event handler ::=
(whenever-discovered service-description lambda) → nil

Table 4.3: Lambic’s syntax for decentralised discovery

Exporting Remote Services

The export-service form receives as parameters the object to be exported and a descrip-
tion of the service it provides. By default, the service description corresponds to a text
tag denoting the class of the exported object. For the case of class tags, we assume that
all hosts agree on the meaning of the classes.

The following code snippets show how to publish a chat object on the wireless network:

(defvar chat-tag (make-class-tag ’chat))
(defvar local-chat (make-instance ’chat))
(export-service local-chat chat-tag)

Listing 4.4: Actor exporting service.

The actor executing the code above creates an instance of the chat class and exports
it using the class tag corresponding to the chat, stored in the chat-tag variable. For the
sake of simplicity, we have encapsulated this definition in the make-class-tag function.

Importing Remote Services

Objects are imported using the import-service construct. This form specifies a service
description and returns a possibly unbound remote reference as a result. This reference
acts as a proxy to the requested service which waits for an object providing the service to
become available. Once the remote object is discovered, it is “bound” to the remote refer-
ence. The behaviour of the remote object can be accessed only by means of asynchronous
generic function invocations using the remote reference as actor designator. The remote
reference can be used in asynchronous invocations even if the service object it represents is
not yet discovered. In such a case, the unbound remote reference buffers the invocations
until the object is discovered. After discovery, the remote reference flushes all the stored
invocations to the corresponding actor.

84 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

(defvar chat-tag (make-class-tag ’chat))
(defvar remote-chat (import-service chat-tag))

Listing 4.5: Actor importing service.

The actor executing this code imports a service providing the same chat-tag. This
actor binds the remote reference returned by the import-service form to the remote-chat
variable.

Discovery Event Handlers

In Lambic, the discovery of a service is also modelled as an event which can be handled
by means of a whenever-discovered form. This form installs an observer for discovery
events, allowing the programs to perform actions that are processed whenever an object
matching a service description is discovered. This observer receives as argument a remote
reference to the discovered remote object. As in the case of asynchronous generic function
invocations, discovery events are asynchronously received and processed by the actor that
installs the corresponding observers. Thus, discovery event handlers can never be executed
concurrently with other activities of the same actor. The following example illustrates
the use of the whenever-discovered form in the definition of a function that creates a chat
service:

(defun create-chat (username)
(let ((local-chat (make-instance ’chat :username username))

(chat-tag (make-class-tag ’chat)))
(export-service local-chat chat-tag)
(whenever-discovered chat-tag

(lambda (remote-chat)
(add-contact local-chat remote-chat)
(display-contact local-chat remote-chat)))

local-chat))

Listing 4.6: Creation of a chat service.

The function above creates a local instance of the chat class which is published using
the name of its class as a service description (chat-tag). Then, the function imports
other instances in the network that were published with the same tag, adding them to
the local instance’s address book and graphic user interface. Finally the function returns
a reference to the local chat as a result (local-chat).

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 85

Actor definition ::=
(spawn-actor name {object}) → actor

Remote generic function invocation ::=
(in-actor-of actor-designator function-invocation

[:with-future ⟨future | nil⟩]
[:due-in seconds]) → future | nil

Remote result handling ::=
(when-resolved future function

[:catch exception-handler]) → nil

Table 4.4: Lambic’s explicit syntax for communication.

4.4.2 Decoupled Communication
As in existing manifestations of the communicating event loops model, Lambic provides
a dedicated language syntax for remote inter-actor communication. However, in addition
to this explicit support, the execution process of our model can implicitly handle the
futures of asynchronous invocations. This means that remote computations can also be
defined using standard generic function invocations (as in local, intra-actor computations).
These invocations are internally converted into asynchronous invocations and processed
accordingly. Yet, Lambic’s aim is not to advocate the use of a particular kind of syntax
for object-oriented distributed programming —explicit or uniform. Providing both kinds
of syntax has enabled us to better understand their benefits and drawbacks for coping
with distribution issues. Furthermore, our experiences have shown that both syntaxes can
complement each other, which is especially beneficial for the introduction of distribution
to existing programs. In this section, we first explain the syntax proposed in both cases
—for the definition of actors, generic functions, and remote invocations, and for handling
remote results and exceptions. We then present the results of the integration of both
syntaxes.

Explicit Syntax for Communication

Table 4.4 shows Lambic’s explicit syntax for asynchronous remote communication. Lam-
bic provides language support for defining actors, asynchronously invoking remote generic
functions and handling results and exceptions (which in our case corresponds to handling
the resolution or ruining of non-blocking futures).

Actor Definition. An actor is defined using the spawn-actor construct which receives
as arguments the name of the actor and a set of objects representing its state. The classes
of such objects, as well as the generic functions with methods specialised on such classes,
also become part of the actor. Yet, because in Lambic’s event loop model actors cannot

86 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

share state, the classes and generic functions are copied to the new actor (so that there is
no sharing between the creating and created actors). The spawn-actor expression returns
a reference to the actor as a result.4

By default, Lambic provides an actor that represents the hosting device. Objects that
are not explicitly included in any user-defined actor (using the spawn-actor construct)
are owned by such a default actor.

The example below shows the definition of an actor for the chat service, named “chat-
actor”, with the local-chat object as its state:

(spawn-actor “chat-actor” local-chat)

Listing 4.7: Definition of an actor.

Explicit Remote Generic Function Invocations. Lambic provides a dedicated form
for asynchronously invoking remote generic functions, called in-actor-of. This form
receives as arguments a remote reference to an object, and a generic function invocation.
The remote reference is the actor designator of the remote invocation. It indicates the
actor that should process the generic function invocation passed as the second argument.
This generic function invocation follows the standard syntax of generic function calls
presented in Table 4.2. The actor designator is independent of the arguments of the
generic function invocation. Still, the same object reference can be used both as actor
designator and as argument. Such independence enables developers to freely choose the
actor that will process the invocation.

The following listing illustrates an asynchronous generic function invocation using the
in-actor-of form:

(in-actor-of remote-chat (get-username remote-chat))

Listing 4.8: Asynchronous invocation of a remote generic function.

This expression can be read as “process the invocation of the get-username generic
function in the actor of the remote-chat object”. In this invocation, remote-chat is a
reference to a remote instance of the chat class. By passing this remote reference as an
actor designator, we ensure that the invocation of the get-username generic function is
processed by the remote chat object’s actor.

By default, the in-actor-of form immediately returns a future. Alternatively, this
form enables a finer manipulation of the future by means of the optional argument :with-
future, explained below. Similarly, the in-actor-of form enables the specification of a

4The actor is itself an object also contained in the actor, and implicitly created by Lambic.

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 87

timeout for the reception of the result of the remote invocation (using the :due-in optional
argument).

Explicit Remote Result Handling. Actions that depend on the result of an asyn-
chronous generic function invocation are defined by registering an observer for the future
returned by the invocation. This is done by means of the when-resolved form. This form
receives as arguments a future and a function representing the observer. The lambda’s
body is evaluated after the resolution of the future. The result of the resolved future is
then bound to the parameter of the lambda. The return value of the when-resolved form
itself is nil.

The following listing illustrates the use of the when-resolved form:

(defvar name-future (in-actor-of remote-chat (get-username remote-chat)))
(when-resolved name-future

(lambda (contact-name)
(display “Contact’s name: ” contact-name)))

Listing 4.9: Defining an observer for a future.

In this example, the invocation of the display generic function is evaluated after the
resolution of the future returned by the asynchronous invocation of the get-username
generic function. The result of the resolved future (a string in this case) is then bound to
the contact-name parameter of the passed function.

Futures in Lambic are instances of a future class. As such they can be directly created,
passed as arguments to function invocations, resolved with a value and ruined with excep-
tions. As we explain in Section 4.3.3, this enables developers to use futures for a special
kind of synchronisation between processes, called conditional synchronisation [VME+07].
This also enables developers to indicate the future that an asynchronous generic function
invocation should resolve. This is done by passing a future object in the :with-future
optional argument of the in-actor-of form. Conversely, invocations that do not expect
any result, known as one-way invocations [VME+07], can be expressed by passing nil to
the :with-future argument. One-way invocations do not create any future, returning nil
as their result.

Explicit Remote Exception Handling. As explained in Section 4.3.3, an exception
that occurs during an asynchronous generic function invocation ruins the future that
corresponds to the invocation. In Lambic, a ruined future can be handled by defining one
or more exception handlers5 in an optional :catch argument of the when-resolved form.
For instance, the following code illustrates the handling of a division-by-zero exception
(adapted from [Van08]):

5Standard Common Lisp exception handlers [BDG+88].

88 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

(when-resolved (in-actor-of remote-calculator (/ x y))
(lambda (quotient) (display “result :” quotient))
:catch (division-by-zero ()

(display “Error: divided ” x “ by zero.”)))

Listing 4.10: Handling exceptions of remote generic function invocations.

Generic Function Definitions. None of the language abstractions above require
changes in the signatures of generic functions and methods. The semantics of Lam-
bic’s event loop model ensures that a generic function (and its methods) can be defined
as presented in Section 4.1.2, regardless of whether it is invoked synchronously or asyn-
chronously.

Uniform Syntax for Communication

As an alternative to the explicit language syntax described above, Lambic enables the
definition of remote calls to generic functions, and handling of their results, using the
same syntax as standard (local) invocations. To achieve this, we extend the execution
process of the event loop model to support implicit actor designation and implicit future
handling. This extension ensures that remote invocations are internally converted and
executed in an asynchronous manner. Yet, methods containing remote invocations have
to be explicitly annotated as interruptible. This way, developers can still be aware of the
methods that are executed asynchronously. Alternatively, Lambic enables the methods to
be annotated as uninterruptible to prevent its asynchronous execution to be interleaved
with the execution of further invocations. Table 4.5 shows Lambic’s uniform syntax for
communication.

Actor Definition. Lambic’s uniform syntax still requires new actors (other than the
default actor) to be defined by means of the spawn-actor form.

Uniform Generic Function Invocations. Using Lambic’s uniform syntax, a generic
function invocation is executed in the actor of its first argument, called the implicit
actor designator. Passing a local object reference as this argument leads to a standard
(synchronous) generic function execution, whereas passing a remote object reference leads
to an asynchronous invocation, executed at the object’s remote actor. This also means
that a standard invocation can now return a future as result. Invocations to remote generic
functions cannot control the future object they return (as in the case of the :with-future
argument of the in-actor-of form). Neither can they include timeouts for the resolution
of their future. Such a timeout should be indicated outside the invocation, using the
response-timeout dynamic variable. By default, this variable defines a timeout of 10
seconds.

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 89

Actor definition ::=
(spawn-actor name {object}) → actor

Method definition ::=
(defmethod method-name [execution-qualifier]

specialised-parameter-list body) → new-method

execution-qualifier ::= :interruptible | :uninterruptible
specialised-parameter-list ::= ({parameter | (parameter specialiser)})

Generic function invocation ::=
(function-name implicit-actor-designator {other-argument}) → result | future

Exception handler ::=
(try-catch expression {error-clause}) → result | future

error-clause ::= (exception-name ({argument}) body)

Table 4.5: Lambic’s uniform syntax for communication.

Using Lambic’s uniform syntax, the expression introduced in Listing 4.8:

(in-actor-of remote-chat (get-username remote-chat))

can also be expressed as:

(get-username remote-chat)

Lambic processes the invocation of the get-username generic function in the actor of
its first argument (and only argument in this case), remote-chat. Because this argu-
ment is a remote reference, the invocation gets internally converted into an asynchronous
invocation, similar to the in-actor-of form.

Uniform Result Handling. In Lambic, generic function invocations can receive fu-
tures as arguments and return futures as results. This allows remote computations to be
written sequentially, constructing a chain of futures which effectively encodes a data-flow
graph. No special callbacks are required to receive the results of remote method invoca-
tions. Thus, the example of the when-resolved form of Listing 4.9 can be replaced by the
nested expression of Listing 4.11.

90 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

resolved
argument
futures?

local
receiver?

(get-username k)

observer waits for argument
futures to be resolved

process
(in-actor-of kr (get-username kr))

process
(get-username kr)

no

yes

no

yes

return
result

future f

resolve f
with result

process
(get-username kr)

Local actor Remote actor

replace futures
with values

Argument
futures
resolution

Result
future
definition

Method
invocation
selection

Result
future
resolution

Method
body
execution

Figure 4.2: The Lambic futurised method execution process

(display “Contact’s name: ” (get-username remote-chat))

Listing 4.11: Nesting local and remote generic function invocations.

Lambic preserves the sequential programming style using the semantics depicted in
Figure 4.2. This process consists of the following five steps:

1. Result future definition. Lambic’s semantics create a future that will be returned
as the result of the generic function invocation. This future is implicitly generated;
the generic function and method definitions are oblivious to it.

2. Argument futures resolution. In a second step, Lambic checks if futures have been
passed as arguments to the invocation. In such a case, the execution is deferred
until the resolution of the futures. This way we preserve the execution semantics
of CLOS in which the arguments are evaluated before applying the generic func-
tion. We model this situation by defining an observer for the unresolved futures
(a function), which captures the continuation of the generic function execution.

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 91

(display “Contact’s name: ” (get-username remote-chat))))

Future's
lifetime

Asynchronous
return value

f1

f2

Figure 4.3: Implicit futures handling in Lambic.

Then the observer is asynchronously invoked after all the futures become resolved.
The futures are replaced with their result values (in the figure this is illustrated by
replacing the argument k with kr).

3. Method invocation selection. The third step consists of checking the location of
the actor designator of the generic function invocation, in order to determine its
adequate execution (synchronous or asynchronous).

4. Method body execution. The fourth step corresponds to the actual local or remote
execution of the generic function.

5. Result future resolution. The final step is the resolution of the future of the generic
function invocation. Such a resolution can occur synchronously or asynchronously
as the result of a local or remote execution respectively.

Figure 4.3 shows the data-flow graph that results from the implicit handling of futures
for the invocation of the display generic function of Listing 4.11. The second argument
of this function corresponds to the invocation of the get-username generic function which
has a remote object reference as actor designator (remote-chat). As such, it is internally
converted into an asynchronous invocation and immediately returns a future, f2. The
get-username generic function is then executed at the actor of the remote-chat object.
The display generic function also returns a future, f1, which is computed when f2 is
resolved (in the figure, the vertical lines represent the lifetime of the futures, from their
creation until their resolution, while the arrow represents the asynchronous return of the
future’s result). This means that the actor’s event loop that executes this code is not
blocked: It simply immediately returns a future itself. When the event loop later receives
result for f2, it resumes the computation on f1. No threads are blocked or created during
this process, execution is entirely event-driven, where “events” are either incoming remote
method invocations or replies to earlier invocations containing the results for unresolved
futures.

92 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

Uniform Exception Handling. Lambic enables the use of standard exception han-
dling forms for remote invocations, such as the try-catch construct. In this case, the
exception handlers defined inside the try-catch construct are internally included in the
:catch argument of the when-resolved structure that waits for the result of the invocation.
The following code shows an example of the use of the try-catch form for the remote
invocation presented in Listing 4.10:

(try-catch (display “result: ” (in-actor-of remote-calculator (/ x y)))
(division-by-zero ()

(display “Error: divided ” x “ by zero.”)))

Listing 4.12: Sequential exception handling for remote invocations.

The try-catch form receives as arguments the expression to be processed (e.g. the
invocation of the display function) and one or more exception handlers.6 Note that in this
example we still use the in-actor-of form as the actor designator (the remote-calculator
object) is not part of the argument list passed to the invocation to the division function.

A future that is ruined with an exception also ruins the futures that depend on it (with
the same exception), and this propagation continues until the exception is handled in a
try-catch form (condition known as promise contagion [Mil06]). Figure 4.4 illustrates this
propagation for the expression of Listing 4.12. Ruining the future of the in-actor-of form,
f3, with a division-by-zero exception, also ruins the future created by the invocation of
the display function, f2. However, f2 cannot ruin the future of the try-catch form, f1,
as this form appropriately handles the division-by-zero exception. Thus, f1 is finally
resolved with the result of the corresponding handler.

(try-catch (display “result: ” (in-actor-of remote-calculator (/ x y))) ...)

f1

f3

ruin outer future

f2

Figure 4.4: Propagation of the ruin of a future.

6In Lambic, we have adapted the try-catch form and other control structures so that they work with
non-blocking futures while still preserving their evaluation rules. See Section A.3 for further details about
this adaptation.

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 93

Interruptible and Uninterruptible Methods. Lambic’s uniform syntax preserves
the sequential execution of the forms that traditionally compose the body of a method.
This is even so if the forms are not part of each other’s data flow i.e. there is no data
dependency among them. This sequentiality is achieved by processing a form only after
the execution of the previous form in the method body has finished —and after the reso-
lution of its future, in case that the previous form is an asynchronous invocation. Lambic
adopts the approach of the Kilim [SM08] and TaskJava [FMM07] programming language
models (cf. Section 3.1.2), to require that methods containing implicit remote invocations
are explicitly annotated. For this, an :interruptible keyword should be added to the
signature of the methods. This annotation is also mandatory for all methods defined in
the same actor invoking the “interruptible” method. Therefore, developers acknowledge
the methods that are executed asynchronously. Such an annotation is checked at runtime.
Lambic throws a warning if a method that cannot be fully processed synchronously, is
not annotated as interruptible.

Consider as example the following method definition of the add-contact generic func-
tion, which has to be identified as :interruptible because it invokes the get-username
generic function of the (remote) actor of the remote-chat object:

(defmethod add-contact :interruptible ((local-chat chat) remote-chat)
(let ((username (get-username remote-chat))

(address-book (get-address-book local-chat)))
(sethash address-book username remote-chat)))

Listing 4.13: Interruptible method definition.

Alternatively, Lambic enables methods containing remote invocations to be annotated
with the :uninterruptible keyword. This way, the asynchronous execution of the method
is prevented from being interleaved with the execution of further invocations. Those invo-
cations remain in the actor’s queue until the completion of the “uninterruptible” method,
and are then processed in exactly the same order in which they are received. Thus, an
uninterruptible method has exclusive access to its enclosing actor’s state during the com-
plete asynchronous execution. Note that this feature reintroduces blocking semantics to
the communicating event loop model, which in Section 2.2 we claim unsuitable for re-
mote interactions in pervasive computing. Inside an uninterruptible method, the use of
the future created by a remote invocation blocks the actor’s event loop until the future is
resolved. This scheme resembles the wait-by-necessity semantics of ProActive [BBC+06]
(cf. Section 3.1.2). However, in our case the remote invocation is always implicitly asso-
ciated with a timeout. As we explain in the next section, this timeout will automatically
ruin the future of the invocation with an exception, which can be handled with a try-
catch form. Thus, Lambic ensures that the event loop will always resume the execution,
either with the result of the invocation or with an exception. Furthermore, in Lambic the
blocking execution semantics are optional, only applicable for uninterruptible methods.
The default execution semantics in our model are still non-blocking.

94 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

A special case should be mentioned, when within the body of an uninterruptible
method there is an invocation to another (local) method defined as interruptible. In such
a situation, Lambic preserves the blocking semantics (to handle futures) of the uninter-
ruptible method. The reason for this is that the “uninterruptible” qualifier indicates that
a method must be processed without interleavings of other method executions. Instead,
the “interruptible” qualifier only indicates that a method contains remote invocations
that may lead to interleavings. The execution semantics of the interruptible method will
not be affected if it is processed in an uninterruptible manner.

The same priority between the execution qualifiers is used in the opposite case, invo-
cations to uninterruptible methods within an interruptible method. The uninterruptible
methods always preserve their execution semantics. Finally, methods invoking an unin-
terruptible method do not need to be annotated themselves. This is because the blocking
semantics of the uninterruptible method prevent any possibility of interleaving for those
methods.

Section 4.5.4 further illustrates the benefits and limitations of interruptible and unin-
terruptible methods.

Complementarity of Explicit and Uniform Syntax for Communication

Action Explicit syntax Uniform syntax
Actor definition spawn-actor spawn-actor
Method definition — :interruptible,

:uninterruptible
Remote invocation in-actor-of —
Remote result handling when-resolved —
Remote exception when-resolved :catch try-catch
handling

Table 4.6: Lambic’s event-driven programming style for communication.

Table 4.6 summarises Lambic’s explicit and uniform syntax for communication. The
explicit syntax requires developers to distinguish remote from local interactions by means
of dedicated language abstractions, to invoke remote generic functions and to handle the
results and exceptions. The uniform syntax does not make this distinction; remote invo-
cations use the standard syntax for local invocations. However, it requires that methods
explicitly state that they are interruptible or uninterruptible.

There is little overlap between both syntaxes. Basically, it is limited to the correspon-
dence of expressing a remote generic function invocation using the in-actor-of form, and
using the standard syntax of local invocations. And this is true only if the actor des-
ignator corresponds to the first argument of the generic function invocation. The next
equation shows this correspondence:

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 95

(in-actor-of actor-designator (function-name actor-designator other-arguments))
↔
(function-name actor-designator other-arguments)

Lambic also enables these two syntaxes to be used in complement with each other.
This is particularly convenient for developing the pervasive computing services we target
in this dissertation (cf. Chapter 2). The behaviour of such services depend on local
and remote context conditions which are often hard to express in a single control flow
(requiring non-trivial conditional structures). Lambic allows developers to build such
programs using a uniform syntax, and then to gradually introduce explicit abstractions
to differentiate remote from local generic function invocations. We further elaborate on
this scenario in Chapter 7. When using both syntaxes in combination, the following
interaction rules between the communication abstractions are applied:

• The in-actor-of and when-resolved forms can be used inside methods annotated
as :interruptible or :uninterruptible. However, none of these annotations have
effects on such forms. A when-resolved form never blocks the actors’ event loop.

• An in-actor-of form can be replaced by a standard generic function invocation, and
vice versa, if the first argument of the invocation corresponds to the actor designator
(due to the correspondence described above).

• The return value of a when-resolved form does not depend on the result of the
execution of its function. The default return value of the when-resolved form is
nil.

4.4.3 Connection-independent Failure Handling
Table 4.7 shows Lambic’s language syntax for connection-independent failure handling.
As in AmbientTalk, Lambic provides support for handling network failures at two different
levels. Our model enables programs to be aware of the changes of connectivity of the
discovered services, and to handle the effects of network failures in asynchronous generic
function invocations.

Connectivity Event Handlers.

In Lambic, remote references report the changes of connectivity of the remote objects they
represent. When a network or machine failure occurs in the host of a remote object, the
remote references pointing to it are said to become disconnected. Analogously, the remote
references become reconnected when the object is available in the network again. Pro-
grams can be aware of these changes by registering observers for monitoring connectivity
events for remote references. This is possible by means of the connectivity event handlers,
when-disconnected and when-reconnected. Both forms consist of a remote reference and

96 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

Discovery event handler ::=
(whenever-disconnected remote-reference lambda) → nil

Discovery event handler ::=
(whenever-reconnected remote-reference lambda) → nil

Table 4.7: Lambic’s syntax for connection-independent failure handling

a body representing the actions to be performed upon the event’s occurrence. The body
of the when-disconnected form is executed whenever the remote reference passed as first
argument, becomes disconnected. Similarly, the body of the when-reconnected form is
executed after the remote reference becomes reconnected. As in the case of the whenever-
discovered form, connectivity event handlers are processed exclusively by the actor that
defines them. The following code shows an extension of the create-chat function pre-
sented in Listing 4.6, this time using the connectivity event handlers for monitoring the
availability of discovered remote chat instances:

; Inside the create-chat function
...
(whenever-discovered chat-tag

(lambda (remote-chat)
...
(when-disconnected remote-chat

(hide-contact local-chat remote-chat))
(when-reconnected remote-chat

(display-contact local-chat remote-chat))))

Listing 4.14: Connectivity event handlers.

The connectivity event handlers in this example are used to keep the graphic user
interface up to date according to the changes of availability of the remote contacts of a
chat service.

Handling Partial Network Failures

In Section 2.2, we explain that the main challenge of handling network failures in pervasive
computing is that it is impossible to distinguish upfront a permanent from a transient
failure [VME+07]. Therefore, it is not always desirable to disrupt the programs’ control
flow of a distributed interaction upon experiencing a network failure, as the failure might
be only transient. To deal with this issue, Lambic adopts AmbientTalk’s time-based
failure handling mechanism, which abstracts from the volatility of network connections by
enabling asynchronous generic function invocations to specify a timeout that delimits the

4.4. LAMBIC’S EVENT-DRIVEN PROGRAMMING STYLE 97

period of time to send the invocation to the remote actor and receive the corresponding
result. This time interval is respected even if network failures occur in between. A
network failure is considered permanent only after the timeout is reached, in which case an
exception is raised. As discussed in Section 4.3.3, raising an exception in an asynchronous
generic function invocation corresponds to ruining the future of such invocation.

To support the time-based failure handling mechanism, the in-actor-of form provides
an optional argument :due-in that specifies the deadline to be imposed to a remote
invocation. Additionally, our model defines a timeout-exception that can be handled
in the :catch block of a when-resolved form.7 We illustrate the use of this by adding
support to deal with partial failures to the example of Listing 4.9:

(when-resolved (in-actor-of remote-chat (get-username remote-chat) :due-in 10)
(lambda (contact-name)

(display “Contact’s name: ” contact-name))
:catch (timeout-exception () (display “Contact went offline”)))

Listing 4.15: Handling partial failures.

The expression :due-in 10 imposes a due limit of 10 seconds on the asynchronous
invocation of the get-username function invocation. If the future is not resolved within
10 seconds, the handler for the timeout-exception included in the catch expression is
executed.

Our model’s uniform syntax also allows developers to handle a timeout-exception
using a try-catch form, as shown in Listing 4.16.

(try-catch
(display “Contact’s name: ”

(in-actor-of remote-chat (get-username remote-chat) :due-in 10))
(timeout-exception () (display “Contact went offline”)))

Listing 4.16: Handling partial failures.

Using this time-based failure handling mechanism, there can be several scenarios of
disconnection to deal with. First, the possibility exists that an asynchronous generic
function invocation uses a disconnected remote reference as actor designator. In such a
case, the invocation is buffered until the remote reference is reconnected and the invo-
cation is eventually delivered, or the invocation’s timeout is reached and the invocation
is discarded. In Lambic, each disconnected remote reference buffers the asynchronous
invocations using this remote reference as actor designator. As such, the invocations are

7Similar to due blocks in AmbientTalk [VME+07].

98 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

guaranteed to be buffered, and eventually delivered, in the same order in which they
occur in the program’s control flow.8

Second, a remote reference may become disconnected while sending the asynchronous
invocation to the remote actor. Lambic handles this case in the same way as when using
a disconnected remote reference (buffering the invocation and eventually sending it if the
remote reference reconnects before the timeout).

Third, a remote reference may become disconnected after the asynchronous invocation
is delivered but before the result is returned. In this case, the actor making the invocation
can only wait for the result or the timeout. Thus far, Lambic does not provide any means
to notify the actor executing the asynchronous invocation in case the timeout is reached.

4.4.4 Summary
In summary, Lambic fulfils the properties of ambient-oriented programming (cf. Sec-
tion 2.2), as follows:

• Services are discovered using a decentralised publish/subscribe protocol. Objects
can be exported and discovered by means of class tags denoting the service they
provide. No address or location is required (space decoupling).

• Events for discovery, communication and failure handling are all represented as
generic function invocations. Event handlers can be defined for each of these events.

• Communication events correspond to asynchronous generic function invocations
(synchronisation decoupling).

• Asynchronous generic function invocations are resilient to partial failures. When
an actor that is supposed to process a remote invocation becomes disconnected, the
invocation is buffered until the connection is restored (time decoupling).

4.5 Lambic’s Support for Communication Revisited
In this section, we revisit Lambic’s programming support for communication. We discuss
the benefits and limitations of futurised generic functions in the light of the issues of event-
driven programming models for concurrency and distribution, described in Section 3.1.2.
We illustrate Lambic’s solution for managing mutable state, inversion of control, lost
continuations, ripple effects, and event interleaving. We finally discuss the interoperability
of futurised generic functions with existing libraries in CLOS.

8Note that remote references might also buffer asynchronous invocations that do not indicate any
timeout condition. In Chapter 7 we discuss the way in which Lambic avoids inconsistencies related to
long-lasting buffering of invocations.

4.5. LAMBIC’S SUPPORT FOR COMMUNICATION REVISITED 99

4.5.1 Managing Mutable State
As explained in this chapter, actors in Lambic define boundaries of concurrent execution
for objects and generic functions. A method can be executed exclusively by its containing
actor’s event loop, and an object’s state can be directly operated on only by the methods
that are co-located with the object (in the same actor). To illustrate this property,
consider the scenario of the Geuze collaborative drawing editor introduced in Section 2.1.
To preserve a consistent drawing, the collaborating editors can designate a leader that
controls the access to the different shapes of the drawing (peer editors ask the leader
for the access to the shapes). In Lambic, we can define each editor in a different actor,
ensuring that the requests to the leader are possible only via asynchronous generic function
invocations. These invocations are conveniently serialised in the message queue of the
leader’s actor and executed one at a time.

Listing 4.17 shows the method definition for the mouse-down generic function (using
Lambic’s uniform syntax). This method is used by the editors to handle the GUI event
of a user pressing the mouse’s main button. This method contains an invocation of the
allow-selection generic function, which the editors use to request the leader for the
access to a shape. After the leader grants the access, the requester editor invokes the
select-shape generic function to perform the selection (e.g. to display a graphic effect
on the shape).

(defmethod mouse-down :interruptible ((editor geuze) shape x y)
(let ((leader-editor (get-leader editor)))

(if (allow-selection leader-editor editor shape)
(select-shape editor shape))))

Listing 4.17: Leader-driven shape selection.

The sequence diagram of Figure 4.5 shows how Lambic’s event loop model handles con-
current invocations of the allow-selection generic function (for the same circle shape).
Our model ensures that the invocation coming from editor 2 is processed only after the
execution of the invocation coming from editor 1 (and thus the access to the shape is
granted only to editor 1).

4.5.2 Inversion of Control
To cope with the problem of inversion of control, i.e. to avoid fragmented control flows
and manual stack ripping (cf. Section 3.1.2), Lambic proposes a two-fold solution. Using
Lambic’s explicit syntax the inversion of control is solved by handling the asynchronous
results of remote generic function invocations, using in-line closures (as in AmbientTalk).
These closures can be defined in when-resolved forms in the same context where the
remote invocations are issued. In-line closures also capture their enclosing execution
environment. This way, no manual stack ripping is required.

100 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

editor 1 leader
editor

mouse-down circle

allow-selection circle

select-shape circle

resolve-future true

editor 2

mouse-down circle

resolve-future false

allow-selection circleexecution of the
mouse-down

generic function

Figure 4.5: Leader editor as synchronisation point.

Using Lambic’s uniform syntax, the asynchronous results of remote invocations are
implicitly handled by the event-driven execution process. Remote interactions can there-
fore be written in a direct style. No continuation forms are required in this case. This
solution is similar to the implicit asynchronous continuation management performed by
ProActive, Kilim, TaskJava, Lua and JaCoBox (cf. Section 3.1.2). The only condition for
such implicit handling is to properly annotate the methods containing remote interactions
(as interruptible or uninterruptible). This approach is based on Kilim’s and TaskJava’s
method qualifiers, @pausable and async respectively. In particular, those qualifiers have
the same semantics as Lambic’s :interruptible qualifier.

4.5.3 Lost Continuations

To cope with the problem of lost continuations, i.e. to cover all the possible ways in
which an asynchronous request may terminate, Lambic uses futures as the implicit return
address for remote generic function invocations. The result of a remote invocation is
always implicitly communicated to its corresponding future. Exceptions occurring during
the remote execution of the invocation are also communicated to the future. The future is
then said to be ruined by the exception. A ruined future can be handled with a dedicated
:catch argument in the when-resolved forms, in case of Lambic’s explicit syntax (as
in E and AmbientTalk), and with standard try-catch forms in the case of Lambic’s
uniform syntax (as in ProActive and JCoBox). The same future ruining mechanism is
used to notify timeout exceptions. Thus, the future produced by a remote invocation is
guaranteed to always be resolved with a result, or ruined with an exception.9

9Of course, there is always still a chance of lost continuations occurring if the developer forgets to
install an observer on the future.

4.5. LAMBIC’S SUPPORT FOR COMMUNICATION REVISITED 101

mouse-down circle

allow-selection circle

select-shape circle

resolve-future true

mouse-down nil

deselect-shapes

mouse-down circle

allow-selection circle

select-shape circle

resolve-future true

mouse-down nil

deselect-shapes

Situation 1 Situation 2

editor leader
editoreditor leader

editor

Figure 4.6: The invocation interleaving problem.

4.5.4 Event Interleaving
Lambic’s communicating event loops promote non-blocking execution semantics. Actors
can therefore interleave the asynchronous executions of different generic function invoca-
tions. However, this very possibility can also lead to inconsistencies in the actor’s state:
Processing another invocation that changes the actor’s state may affect the continuation
of the interrupted invocation. To illustrate this problem, consider the following extended
version of the mouse-down method of Listing 4.17:

(defmethod mouse-down :interruptible ((editor geuze) shape x y)
(if shape

(let ((leader-editor (get-leader editor)))
(if (allow-selection leader-editor editor shape)

(select-shape editor shape)))
(deselect-shapes shape)))

Listing 4.18: Two ways to handle the mouse-down event.

In this definition, the mouse-down event is handled differently depending on whether
it occurs on a shape or on the editor’s canvas. In the former case, a reference to a shape
is passed in the shape argument, causing the start of the selection process for the shape.
In the latter case, the shape argument is nil, causing the deselection of all the shapes
in the canvas (by invoking the deselect-shapes generic function). These two cases can
occur one after the other, i.e. when the user presses the mouse button first on a shape and
then on the canvas. The result of this sequence of events can vary according to whether
the second event is effectively executed after or between the execution of the first event
(as shown in Figure 4.6). Executing the second event after the first one ends with all the

102 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

shapes deselected, which is the result expected by the user (Situation 1 in the figure).
However, executing the second event during the execution of the first one may end with
the shape still selected (Situation 2 in the figure), as the deselect-shapes generic function
is processed before the leader allows (and communicates) the selection of the shape.

The interleaving of events may render the non-blocking execution of a generic func-
tion unpredictable. Developers should therefore pay special attention to this problem
when enabling methods to be interruptible. Using Lambic’s explicit syntax alleviates
this problem as it allows developers to distinguish the parts of the methods that are exe-
cuted asynchronously, by enclosing them in when-resolved forms. However, the problem
remains as there is no certainty about when these forms are executed.

(defmethod mouse-down :interruptible ((editor geuze) shape x y)
(if shape

(let ((leader-editor (get-leader editor))
(future (in-actor-of leader-editor

(allow-selection leader-editor editor shape))))
(when-resolved future

(lambda (allowed)
(if allowed

(select-shape editor shape)))))
(deselect-shapes shape)))

Listing 4.19: Explicit syntax for the mouse-down method.

Listing 4.19 shows the definition of the mouse-down method using explicit syntax. In
the example described in Figure 4.6, the second part of the execution of the mouse-down
method (when called for the first time) would now correspond to the execution of the
function inside the when-resolved form. Although explicit, the interleaving between this
function and the second call to mouse-down can still lead to the two situations described
in the figure.

Lambic’s uniform syntax provides a basic solution to the event interleaving problem.
It consists of enabling methods to be annotated as :uninterruptible. This annotation
constrains the actor’s event loop to execute the uninterruptible method until its comple-
tion. This restriction also causes the event loop to block in order to wait for the results
of remote interactions inside the method. No further invocations can be processed in
between. The event loop can be resumed only to receive the remote result or to signal a
timeout exception for the remote invocation.

Annotating the mouse-down method of Listing 4.19 with the :uninterruptible qual-
ifier will ensure the appropriate execution of this method. This execution is shown in
Figure 4.7. The two invocations to mouse-down will not be interleaved but executed one
after the other.

The blocking execution semantics of uninterruptible methods solve the event interleav-
ing problem in event-driven execution models. Similar approaches have been proposed by

4.5. LAMBIC’S SUPPORT FOR COMMUNICATION REVISITED 103

mouse-down circle

allow-selection circle

select-shape circle

resolve-future true

mouse-down nil

deselect-shapes

editor leader
editor

Figure 4.7: Uninterruptible methods in Lambic.

ProActive, JCoBox and TaskJava. Yet, these semantics can be too restrictive for some
situations. In particular, a finer-grained mechanism could be added to selectively prevent
only specific method invocations from being interleaved, as in Lua’s synchronisation con-
straints (cf. Section 3.1.2). This extension remains an important part of our future work
(cf. Chapter 8).

4.5.5 Asynchrony Contagion
As explained in Section 3.1.2, the asynchrony contagion is related to the degree of unifor-
mity in the language support for local and remote interactions. Lambic’s explicit syntax
enables developers to isolate the effects of asynchronous remote interactions in the pro-
grams (i.e. asynchronous generic function invocations and future-based result handling).
As in AmbientTalk, the problem of asynchrony contagion of this syntax is related to
the explicit distinction between local and remote generic function invocations and result
handling. This often entails more verbose code and less straightforward control flows.
Lambic’s uniform syntax, on the other hand, enables programs to be less verbose and to
keep the representation of control flows sequential (as in local object-oriented computa-
tions). Still, the asynchrony contagion problem can still be observed in this case when
annotating methods as interruptible or uninterruptible. Not only should the method con-
taining remote invocations provide such annotation, so should other methods invoking
the annotated method. This way developers can still be aware of the part of the pro-
grams affected by asynchronous executions. However, the support for dealing with remote
interactions is more restricted than when using explicit syntax.

Both syntaxes can be used in combination. This is beneficial for the incremental
introduction of distribution to the programs. Consider as example an extension to the
receive-text method of the chat service presented in Listing 4.2, in which this service
signals the reception of text messages according to its location (e.g. playing a tone for
“normal” locations and blinking lights for “discreet” locations). Listing 4.20 shows the
redefinition of this method, now containing the code for the location-dependent signal.

104 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

(defmethod receive-text :interruptible ((receiver chat) sender text)
(let ((message (make-text-message :from receiver to: sender :text text

:timestamp (get-system-time)))
(location (get-location receiver)))

(if (discreet-location? location)
(blink-lights receiver)
(play-tone receiver))

(display-text receiver sender message)
(store-text receiver sender message)))

(defmethod get-location :interruptible (service)
... make asynchronous request to GeoIP service ...)

Listing 4.20: Definition of the receive-text method using uniform syntax.

In this definition, we use the get-location generic function which sends an asynchro-
nous request to a GeoIP web service,10 to obtain the geographic location associated to the
IP address of the service’s hosting device. Because Lambic handles such asynchronous in-
vocations internally, this method can still be written in a sequential style. The test of the
if form is evaluated only when the future returned by the get-location function (bound
to the location variable) is resolved with the corresponding location. Also, as Lambic’s
uniform syntax ensures the sequential execution of method bodies, the invocation of the
display-text and store-text generic functions are executed only after the execution of
the if form. However, in this case there is no need for such sequentiality. In fact, the if
form is the only part of the method concerned about the resolution of the future bound to
the location variable, and we it would be better to express this situation by introducing
a when-resolved form as follows:

(defmethod receive-text :interruptible ((receiver chat) sender text)
(let ((message (make-text-message :from receiver to: sender :text text

:timestamp (get-system-time))))
(when-resolved (get-location receiver)

(lambda (location)
(if (discreet-location? location)

(blink-lights receiver)
(play-tone receiver))))

(display-text receiver sender message)
(store-text receiver sender message)))

Listing 4.21: Definition of the receive-text method using explicit syntax.

10In Lambic, we have developed a small layer for AJAX-based asynchronous communication with web
services which associates a future to each AJAX request and internally resolves the future with a Lambic
object that embodies the result returned by the request. See Section 8.4 for further details.

4.5. LAMBIC’S SUPPORT FOR COMMUNICATION REVISITED 105

In this new definition, the when-resolved form makes explicit the part of the method
that is asynchronously executed after the location is obtained. The use of explicit syntax
is not always as straightforward as in this case, though, especially when there are data
dependencies between the part of the method executed asynchronously and the rest of
the method. For instance, assume that to reduce the number of requests to the GeoIP
service, we provide means to memorise locations. Thus, the service is accessed only if the
there is no cached location that corresponds to the requested IP. Note that in this case the
location can be obtained either remotely (sending an asynchronous request to the GeoIP
service) or locally (using a standard synchronous access to the cache). Using Lambic’s
uniform syntax we can define the caching functionality in the following (standard CLOS)
around method for the get-location generic function:

(defmethod get-location :interruptible :around (service)
(let ((location (get-cached-location service (get-system-ip))))

(if (not location)
(begin

(setf location (try-catch (call-next-method)
(timeout-exception () nil)))

(if location
(cache-location service (get-system-ip) location))))

location))

Listing 4.22: Definition of the get-location method using uniform syntax.

The :around annotation in the definition above ensures that this method is executed
“around” all the other methods. This means that the code from the around method is run
before the original get-location method (the one containing the request to the GeoIP
service, outlined in Listing 4.20). The around method returns as result a location (bound
to the location variable) which is first looked up in the local cache, and if it is not found,
it is obtained by invoking the original get-location method (using the standard CLOS
function for “super calls,” call-next-method). Timeout exceptions for the request to the
GeoIP service are handled by binding the location variable to nil. Thus, the execution
of this method can end in the location variable bound to either: a cached location, a
future asynchronously resolved with a location returned by the GeoIP service, or a future
asynchronously resolved with nil as a result of handling the timeout exception. Still,
Lambic’s internal handling of futures enables this method to preserve its sequentiality
despite the result returned and the way it is achieved. Using explicit syntax, however,
these three cases would have to be manually handled in the method body, as shown in
the Listing 4.23.

106 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

(defmethod get-location :interruptible :around (service)
(let ((location (get-cached-location service (get-system-ip))))

(if (not location)
(let ((location-future (make-instance ’future)))

(when-resolved (call-next-method)
(lambda (location)

(if location
(cache-location service (get-system-ip) location))

(resolve-with-result location-future location))
:catch (timeout-exception ()

(resolve-with-result location-future nil)))
location-future)

location)))

Listing 4.23: Definition of the get-location method using explicit syntax.

In this definition, we introduce a when-resolved form to handle the future returned
by the the request to the GeoIP service (represented by the invocation of call-next-
method). In addition, this method can return as result a cached location (contained in
the location variable), or a future (contained in the location-future variable) which
is resolved by the when-resolved form, both inside of the lambda and the handler of
the timeout-exception (with a location and with nil respectively). Needless to say, this
method definition is clearer with regard to the kind of result it returns and how it is
obtained. Yet, its control flow is partitioned and requires the manual definition and
resolution of futures (e.g. the location-future). And these issues can become worse as
more distributed context conditions (as the location) are taken into account to influence
the programs behaviour, as shown in Chapter 7. For this reason, we opt for an incremental
introduction of distribution. For all the case studies developed in this dissertation, we
first present their implementation using Lambic’s uniform syntax and then discuss the
use of the explicit language abstractions for distribution.

4.5.6 Interoperability with Existing Libraries
A final concern when introducing support for distribution into a programming language,
is to ensure proper interoperability with existing non-distributed libraries. In our case,
this means to enable generic functions provided by those libraries to handle asynchronous
remote invocations and return values (futures). As explained in Section 4.4.2, Lambic
enables generic functions to be oblivious to the way they are invoked (locally or remotely).
Similarly, our model transparently resolves or ruins the futures returned by remote invoca-
tions, with the result of the execution of the generic functions. Thus, the only requirement
to remotely invoke a generic function of an existing library is to be able to identify the
actor that contains that generic function, i.e. to have a reference to an object residing in
the same actor which can be used as the actor designator argument of the remote invo-

4.5. LAMBIC’S SUPPORT FOR COMMUNICATION REVISITED 107

cation.11 This invocation can then be specified using both explicit and uniform syntax.
Listing 4.24 illustrates the remote invocation of the get-horizontal-scroll-parameters
generic function provided by the Common Lisp graphical library called CAPI (Common
Application Programmer’s Interface [Ric90]). This generic function queries the scroll pa-
rameters of the horizontal scroll bar of an instance of the simple-pane class (also defined
in the CAPI library).

(display “Remote editor’s position of horizontal scroll: ”
(get-horizontal-scroll-parameters remote-editor :slug-position))

Listing 4.24: Remotely invoking a generic function of the CAPI library.

This listing shows the invocation of the get-horizontal-scroll-parameters generic
function on a remote Geuze editor,12, represented by the remote-editor argument. The
second argument (:slug-position) indicates the parameter of the scroll bar to be re-
turned.

Lambic’s uniform syntax also requires that generic functions handle futures received
as arguments. For generic functions defined in our model, we achieve this by adapting the
standard (Common Lisp) semantics. However, it is often neither possible nor desirable to
change this process for existing libraries. For these cases, our model enables developers
to create a wrapper which implicitly handles the argument futures received by a generic
function —waiting for their resolution, invoking the wrapped generic function with the
futures’ resolved values, and returning a future as result. Wrappers are created by means
of the futurise-functions form which receives as arguments a list of symbols bound to
generic functions. The listing below shows the use of this form for the generic functions
of the CAPI library:

(futurise-functions ’(get-horizontal-scroll-parameters
get-vertical-scroll-parameters ...))

Listing 4.25: Futurising generic functions.

The futurise-functions form creates a wrapper for the functions bound to the sym-
bols included in the list argument. A wrapper corresponds to a futurised generic function
which shadows the original function.13 The futurised generic function has a method which
invokes the original function in its body.

11By default, in our model each actor contains a copy of the libraries inherited from the Common Lisp
system.

12A remote instance of the Geuze class which is a subclass of the simple-pane as shown later in Chapter 7.
13By shadowing we mean that the symbol is rebound to the futurised generic function. This operation

has effect only in the Lambic environment which is represented as the lambic-user package.

108 CHAPTER 4. AMBIENT-ORIENTED PROGRAMMING IN LAMBIC

4.6 Conclusion
In this chapter, we have introduced Lambic, our generic function-based object-oriented
programming language model for AmOP. We have presented the first and most funda-
mental feature of our model concerning to support distribution, called futurised generic
functions. Lambic successfully combines the actor-based event loops model with generic
functions. In our model, actors define boundaries of concurrent execution for the objects;
methods are specialised on objects (not on actors); inter-actor computations are realised
by means of asynchronous generic function invocations; and the results of functions eval-
uations are asynchronously returned to the actor from which the functions are invoked.
Therefore, the actor’s message-sending semantics are explicitly separated from the pro-
gramming level, which enables the programmers to invoke functions instead of sending
direct messages to objects, and to define methods without receiver arguments.

Lambic provides explicit syntax for distribution, i.e. for asynchronous generic function
invocations and for asynchronous result handling (futures). Additionally, our model pro-
vides an internal future-handling process that enables distributed computations to use
the same syntax as for local computations, while internally still executing them in an
asynchronous manner. In this chapter, we have illustrated the benefits and limitations of
either approach (explicit and uniform syntax). Explicit syntax helps developers to better
understand the effects of asynchronous remote interactions in the programs, but often
entails more verbose code and less straightforward control flows. Uniform syntax enables
the programs to be less verbose and to keep control flows sequential, but the support for
dealing with remote interactions is more restricted.

Chapter 5

Context Dependency in Lambic

To provide linguistic support for encoding context-dependent behaviour, Lambic proposes
a generic function-based multiple dispatching mechanism, called predicated generic func-
tions. This mechanism provides abstractions to influence the method dispatch semantics
based on the program’s execution context. In this chapter, we introduce the syntax
and semantics of predicated generic functions, and explain how this model complies with
the requirements for context-dependent behaviour (cf. Section 3.4). We then discuss
the integration of predicated generic functions into Lambic’s model for ambient-oriented
programming (cf. Chapter 4).

5.1 Predicated Generic Functions
Predicated generic functions are an extension of the generic function-based multiple-
dispatching mechanism of CLOS. As explained in Section 4.1, CLOS supports multiple
dispatch by detaching methods from classes, allowing developers to specialise methods on
the classes of all the received arguments, as opposed to only the first argument in singly
dispatched languages. We augment this mechanism by enabling methods to also spe-
cialise on predicates about the program’s execution context. Predicated generic functions
alleviate the restrictions to deal with method overriding ambiguities, of existing predi-
cate dispatching models [EKC98, MFRW09] (cf. Section 3.2.1). Instead of requiring a
logical implication order between predicates, this model fosters the definition of context-
specific priorities. Predicated generic functions enable users to establish a priority-based
order between logically unrelated predicates. These priorities are specified on a per-
generic-function basis, as in the Filtered Dispatch model [CHVD08]. Predicated generic
functions not only contain the methods with a common name and argument structure (as
in standard generic function approaches [BDG+88, CLCM00]), but also the predicates on
which the methods can be specialised. A method is selected for execution when its predi-
cate expression is satisfied, and the order of the predicates specified in a generic function
determines the order of applicability of its methods. In the next section, we explain the
syntax and informal semantics of predicated generic functions.

109

110 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

Generic function definition ::=
(defgeneric function-name parameter-list

[(:predicates {pred-name})]) → new-generic

parameter-list ::= ({parameter})

Method definition ::=
(defmethod method-name [execution-qualifier] [combination-qualifier]

specialised-parameter-list
[(:when {(pred-name arguments)})]
body) → new-method

execution-qualifier ::= :interruptible | :uninterruptible
combination-qualifier ::= :before | :around | :after
specialised-parameter-list ::= ({parameter | (parameter specialiser)})

Table 5.1: Predicate generic functions and methods in Lambic

5.1.1 Defining Predicated Generic Functions
Table 5.1 presents the syntax for predicated generic functions. It is an extension to the
syntax of futurised generic functions presented in Table 4.5. As we explain in Section 5.3,
the semantics of both models have been cleanly combined. In Table 5.1 we also include
another central feature of CLOS —the use of combination qualifiers for methods— to
illustrate the full integration of context predicates with the standard dispatching mecha-
nism of generic functions (cf. Section 5.1.2).

Generic Functions with Context Predicates

A generic function is defined using the defgeneric construct which receives as arguments
a name, a parameter list and an optional list of context predicate declarations. A context
predicate is a method whose body is a boolean-valued expression about any information
computationally accessible by the generic function. Standard (Common Lisp) functions
for relational and arithmetic operations can also be used as predicates. Declaring a
context predicate corresponds to including its name in the generic function’s predicate
list, denoted with the :predicates keyword. The predicates follow an arbitrary user-
defined precedence order represented by the order of the predicate declarations. The last
predicate of the list has precedence over the other predicates.

Predicated Methods

Methods are defined independently from their containing generic functions, using the
defmethod construct. A method is defined with a name, a specialised parameter list and
an optional predicate expression (specified with the :when keyword). This expression is

5.1. PREDICATED GENERIC FUNCTIONS 111

composed of one or more invocations of the context predicates declared in the method’s
generic function. In particular, a method whose predicate expression contains several
predicate invocations is said to depend on the conjunction of such invocations. Notice
that this conjunction is implicit; no and operator is required in the predicate expression.
The arguments passed to the context predicate invocations can refer to the parameters of
the method, and also to literals and references to variables in scope. Two methods cannot
use the same combination of context predicates.1 In such a case, the newest definition
replace the previous one.

Consider as an illustrative example of the use of predicated generic functions the
definition of the factorial function shown in Listing 5.1. In this function we want to
distinguish between negative and positive numbers, and the number zero. We therefore
define a factorial generic function using as predicates the relational operations <, =, and >.
Since these operations are already defined in Common Lisp, we just need to declare them
as predicates for the factorial generic function, indicating the corresponding symbols as
follows:

(defgeneric factorial (n)
(:predicates < = >))

(defmethod factorial (n)
(:when (> n 0))
(* n (factorial (- n 1))))

(defmethod factorial (n)
(:when (= n 0))
1)

(defmethod factorial (n)
(:when (< n 0))
(error “Factorial not defined for negative numbers.”))

Listing 5.1: Definition of factorial using predicated generic functions.

Each of these methods uses one of the predicates declared in the generic function using
the :when keyword. The first method is called if the argument n is a positive number and
computes the general case of the factorial function. The second method is called if n is 0
and returns 1. The third method will be called if n is a negative number and signals an
error.

Finally, as in CLOS, methods in Lambic can also be annotated with combination qual-
ifiers [BDG+88]. Methods without such a qualifier are known as primary methods and
are responsible for providing the primary implementation of a generic function. Methods
with a combination qualifier are referred to as auxiliary methods, and provide a imple-
mentation complementary to primary methods. An auxiliary method is executed before,

1We further comment on this decision in Section 5.2.

112 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

after or around primary methods, depending on the qualifier it includes (:before, :after
or :around respectively). In the next section, we explain the role of combination qualifiers
in the dispatching mechanism of generic functions.

5.1.2 Invoking Predicated Generic Functions
When a predicated generic function is called with particular arguments, it must determine
and apply the methods that are suitable to the context of the invocation. In CLOS, this
process is known as building the effective method [BDG+88] and is normally driven by
the class hierarchies in which the invocation’s arguments are involved. We extended these
semantics to build the effective method also taking into account the context predicates
associated to the generic function’s methods. Lambic follows CLOS’ three-step procedure
to determine the effective method [BDG+88]:

1. Select the methods that will handle the invocation (known as the applicable meth-
ods).

2. Sort the applicable methods according to their specificity.

3. Combine and apply the sorted list of applicable methods to the arguments received
by the generic function.

In the remainder of this section, we describe Lambic’s adaptation of these semantics for
predicated generic functions. In this description we refer to predicated generic functions
and generic functions interchangeably.

Context-dependent Selection of Applicable Methods

Given a generic function and a set of arguments, an applicable method is a method
contained in that generic function which fulfils the following conditions:

• The received arguments satisfy the method’s parameter specialisers. Let a{i=1..n} be
the received arguments and s{i=1..n} be the parameter specialisers of a method M .
The method M is applicable when ai is an instance of class C such that C = si, or
C is a subclass of si.

• The invocation’s execution context satisfies the method’s predicate expression. Let
ϕ{j=1..m}(r{i=1..n}) be the predicate expression associated with a method M , where
ϕj denotes a context predicate and r{i=1..n} the arguments passed to such a predi-
cate. Let E be the environment of M with all the bindings accessible by the invoked
generic function (including the generic function’s parameters bound to the invoca-
tion’s arguments). The method M is applicable if each ri ∈ E and each ϕj(r{i=1..n})
evaluates to true.

The two conditions are checked in this order. The applicability of a method is de-
termined first according to its parameter specialisers and then according to its predicate

5.1. PREDICATED GENERIC FUNCTIONS 113

expression. A method whose parameters do not have specialisers, and that does not
have any associated predicate expression, is referred to as the default method of the
generic function. A default method is always applicable but may be shadowed by a more
specific method. Finally, as in CLOS, if no methods apply for a given invocation, a
no-applicable-method exception is thrown.

Predicate-based Sorting of Applicable Methods

Determining the specificity order among the applicable methods for a predicated generic
function invocation is a two-step process. It implies comparing the methods first by their
parameter specialisers (as in CLOS) and then by their predicate expressions.

Precedence by parameter specialisers To compare the precedence of two methods
according to their parameter specialisers, the specialisers are examined one by one
from left to right.2 When a pair of parameter specialisers are equal, the next pair
is compared. The first pair that differs determines the precedence order between
the two methods. The more specific method is the one whose parameter specialiser
appears earlier in the class hierarchy of the corresponding argument. If all the
parameter specialisers of the two methods are equal, the methods are compared
according to their predicate expressions.

Precedence by predicate expression To compare the precedence of two methods ac-
cording to their predicate expressions, Lambic first sorts the context predicate in-
vocations included in each expression. This sorting is based on the precedence
order of the invoked predicates (declared in the generic function). The invocation
to the predicate with highest precedence is positioned first while the invocation to
the predicate with least precedence is last. Then, the invocations in the predicate
expression of each method are examined one by one, from left to right, just as in
the case of the evaluation of the parameter specialisers. When the compared pair
of invocations refer to the same context predicate, the next pair is compared. The
first pair of invocations that differ determines the precedence order between the
methods. The more specific method is the one invoking the predicate with higher
precedence. If all the context predicate invocations of the two methods are equal,
the methods must have different combination qualifiers. In this case, either method
can be selected to precede the other. This is because the eventual order will be
unambiguously determined by the method combination in a later step.

Note that because the way in which applicable methods are chosen, the parameter
specialisers are guaranteed to be present in the class hierarchy of the corresponding argu-
ments. Similarly, the context predicates are guaranteed to be present in the list of context
predicate declarations of the methods’ generic function. At the end of this sorting step,
the resulting list of applicable methods has the most specific method first and the least
specific method last.

2Mechanism known as lexicographic ordering [BDG+88].

114 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

primary
methods

after
methods

before
methods

around
methods

order of
execution

most specific
method

least specific
method

most specific
method

least specific
method

Figure 5.1: Standard method combination of applicable methods

Combining and Applying the Sorted Applicable Methods

Predicated generic functions preserve CLOS’ standard method combination of applicable
methods [BDG+88] (depicted in Figure 5.1). This mechanism combines the applicable
methods into a single effective method. In case that there are only primary applicable
methods (methods without combination qualifiers), the most specific method is executed
first. In CLOS, such a method can invoke the next most specific method by means of
the call-next-method function. This function is pretty much like a super call in singly
dispatched object-oriented languages. If the call-next-method function is invoked and
there is no next most specific method, a no-next-method exception is thrown.

In case of having auxiliary applicable methods, the following combination rules are
applied:

• First, the most specific :around method is invoked, if any. An :around method may
invoke call-next-method to execute the next most specific :around method.

• If there are no further :around methods, then all :before methods are executed,
if any, with the most specific :before method being executed first, followed by all
next most specific :before methods.3

3All :before and :after methods are executed implicitly. In such methods, invocations to call-next-
method are not allowed [BDG+88].

5.1. PREDICATED GENERIC FUNCTIONS 115

• Next, the most specific primary method is invoked. A primary method may invoke
call-next-method to execute the next most specific primary method.

• After returning from the primary methods, all :after methods are executed, if any,
with the least specific :after method being executed first, followed by all next least
specific :after methods in order.3

• Finally, execution returns to the remaining code to be executed in the :around
methods, following the respective invocations of call-next-method.

To illustrate Lambic’s semantics to determine the effective method, consider the defi-
nition of the predicated generic function display-number-property, shown in Listing 5.2.
It displays the properties of a number which can be prime and at the same time odd or
even. For this the generic function uses as predicates the built-in functions primep, oddp,
evenp (all of them receiving a number as argument and checking whether the number is
prime, odd or even respectively).

(defgeneric display-number-property (n)
(:predicates primep oddp evenp))

(defmethod display-number-property ((n number))
(display n “ is:”))

(defmethod display-number-property :after ((n number))
(:when (primep n))
(display “- a prime number”))

(defmethod display-number-property :after ((n number))
(:when (oddp n))
(display “- an odd number”))

(defmethod display-number-property :after ((n number))
(:when (evenp n))
(display “- an even number”))

Listing 5.2: Definition of display-number-property using predicated generic functions.

Note that there is no logical order between these properties, as required by other
predicate dispatching approaches. Yet, in Lambic developers can still define a precedence
order among them. It is denoted by the order in which they are declared in the generic
function. In the listing above, each of these properties is defined in an :after method
which are executed after the primary method. Thus, given the invocation (display-
number-property 2), the effective method is determined as follows:

• The invocation’s argument, 2, satisfies the parameter specialiser of all the methods
(number, which is used by all the methods). However, with regard to the second

116 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

condition of applicability, the oddp predicate fails and thus the method associated
with it is discarded. Only the other three methods remain applicable.

• In this example, the precedence order between the applicable methods cannot be
determined according to the parameter specialisers. It has to be determined ac-
cording to the precedence order between the context predicates. Because in the
display-number-property generic function primep is declared before evenp, the re-
sulting list of applicable methods has the method with the evenp predicate as the
most specific, and the method without predicate as the least specific.

• Finally, based on the standard method combination of applicable methods described
in this section, the list of applicable methods is re-organised as the method without
predicates is primary. As such, it must be executed before the two :after methods.

The execution of the effective method for the invocation (display-number-property
2) will display the number properties in the following, unambiguously defined order:

2 is:
- a prime number
- an even number

5.2 Requirements for Context Dependency Revisited
We now review Lambic’s predicated generic functions with respect to the requirements for
context-dependent behaviour and existing solutions (cf. Sections 2.3 and 3.2 respectively).

5.2.1 Modularity
In Lambic, context-dependent adaptations are expressed as predicated methods —our
model’s units of partial behaviour definition. These methods can be specialised using
programmer-defined context predicates, providing fine-grained control of method appli-
cability, in a similar way to the Predicate Dispatch programming model (cf. Section 3.2.1).
Additionally, method dispatch is driven by the context predicates’ precedence order which
is fully defined by the methods’ generic function. Thus, context predicates can be cleanly
associated with methods achieving modular behaviour selection. Lambic does not provide
explicit means to group predicated methods. Instead, methods can be implicitly grouped
by associating them with the same context predicate, as in Ambience [GMH07] and the
Filtered Dispatch and Predicate Dispatch models (implicit groups of partial definitions).

To illustrate Lambic’s modularity property, consider the development of a graphic
user interface (GUI), such as the one of the drawing editor introduced in Section 2.1. In
this scenario, the context of use plays a key role as it determines the operations of the
editor that should handle the GUI events (as discussed in Section 2.3). For instance, the

5.2. REQUIREMENTS FOR CONTEXT DEPENDENCY REVISITED 117

operation that should be executed upon encountering a mouse-down event depends on
context information such as the coordinates of the mouse pointer, the shape found at
those coordinates (if any), and the state of the editor’s brush (whether the brush button
is selected or not). Depending on this information, the operation corresponding to the
mouse-down gesture might be moving, drawing, selecting and so forth.

Modular Partial Definitions of Behaviour. Listing 5.3 shows the implementation
in Lambic of some of the actions that handle the mouse-down event in the drawing
editor.4 Using predicated generic functions, developers can cleanly separate such actions
in methods specialised on predicates representing the different editor’s operations. These
methods act as context-dependent handlers which can conveniently associate actions with
dynamically determined context conditions. For instance, the first method definition in
Listing 5.3 describes how to handle the mouse-down event when the editor is in the moving
context (indicated by means of the moving? predicate).

(defmethod mouse-down (editor shape x y)
(:when (moving? shape editor))
(set-drag-status editor x y))

(defmethod mouse-down (editor shape x y)
(:when (drawing? shape editor))
(set-line-status editor x y)
(draw-point editor x y))

(defmethod mouse-down (editor shape x y)
(:when (selecting? shape))
(select-shape editor shape)
(call-next-method))

Listing 5.3: Untangled GUI event handlers in Lambic. Application concerns are indicated
on the right side.

Modular Behaviour Selection. All the methods in Listing 5.3 are contained in the
mouse-down generic function which declares the predicates with the context conditions for
the operations. Listing 5.4 shows the definition of this generic function and the context
predicates, moving?, drawing? and selecting?, defined as methods. These predicates
evaluate conditions such as whether the shape parameter has been bound to a non-nil
value,5 or if the editor’s brush has been selected (brush-active).

4We fully develop this scenario in the validation chapter, Section 7.2.
5As in Common Lisp, Lambic’s boolean symbol for true is T. Additionally, any non-nil value is also

considered true. Thus, the condition on the shape parameter succeeds if it is bound to a non-nil value.

118 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

; The mouse-down generic function
(defgeneric mouse-down (editor shape x y)

(:predicates moving? drawing? selecting?))

; Context predicates
(defmethod moving? (shape editor)

(and shape (not (brush-active editor))))

(defmethod drawing? (shape editor)
(and (not shape) (brush-active editor)))

(defmethod selecting? (shape)
shape)

Listing 5.4: The mouse-down generic function.

Modular Groups of Partial Definitions. Lambic enables developers to modularise
context-dependent adaptations that span several generic functions. For instance, in the
drawing editor, the same operation can require a combination of GUI events. In Lambic,
developers can implement this case using a State-like pattern [GHJV95]. Each operation
represents a different editor’s state, and each state groups the behaviour required by
an operation to handle one or more GUI events. In our model, this corresponds to
describing a state as a number of methods using the same predicate expression. A simple
example is the state representing the operation for selecting shapes, which only requires
one method definition to handle the mouse-down event. Another example is the moving
state presented in Listing 5.5 which defines its behaviour in the methods mouse-down (to
set a drag status used during the move), mouse-move (to move the shape) and mouse-up
(to remove the drag status at the end of the move).

(defmethod mouse-down (editor shape x y)
(:when (moving? shape editor))
(set-drag-status editor x y))

(defmethod mouse-move (editor shape x y)
(:when (moving? shape editor))
(move-shape shape editor x y))

(defmethod mouse-up (editor shape x y)
(:when (moving? shape editor))
(delete-drag-status editor))

Listing 5.5: The moving state.

5.2. REQUIREMENTS FOR CONTEXT DEPENDENCY REVISITED 119

This way of specifying the behaviour of the drawing editor cleanly separates the defi-
nition of its several states (embodied by the predicates) from the behaviour corresponding
to those states. Additionally, this solution avoids the drawbacks exhibited by the original
state pattern, namely the identity issues introduced by representing the states as inde-
pendent objects (typically referred to as the object schizophrenia problem [CSJR02]), and
the fact that developers have to manually switch the state of the program. Because in
Lambic the methods are separated from the classes, a particular editor can always retain
its identity, no matter what state it is in. Also, since the state of the editor is auto-
matically derived from the current context conditions, one does not have to worry about
managing an explicit state with explicit state switches in the corresponding mouse-down,
mouse-move and mouse-up event handlers.

Note that the State-like idiom in the previous example is mostly a naming convention
for the predicate used to identify each operation of the drawing editor. It illustrates the
fine-grained control at the developer’s disposal to influence the applicability of methods
based on the context.

5.2.2 Dynamic Selection
In Lambic, context-dependent adaptations represented as predicated methods are dy-
namically selected as a result of the method dispatch mechanism. This mechanism is
driven by the predicates’ precedence order declared in generic functions which avoids the
problems caused by potential ambiguities when comparing arbitrary predicates that do
not designate instance subsets of each other. Lambic alleviates the limitation of existing
predicate dispatching models to include user-defined orderings of predicates for cases that
cannot be decided solely on the basis of the structure of the predicates. Furthermore,
automatic disambiguation of methods by means of logical implication (as originally pro-
posed in Predicate Dispatch) does not always yield the desired semantics. For instance,
in the drawing editor the conditions included in the moving? predicate are stronger than
(imply) the condition of the selecting? predicate (cf. Listing 5.4). Predicate Dispatch
will thus consider that the moving behaviour has precedence over the selection behaviour.
However, in the editor the selection behaviour must be performed before the moving be-
haviour.6

In Lambic, the proper selection and combination of applicable methods is internally
computed in accordance to the predicates and their order of declaration in the generic
function. Hence, in the drawing editor, such a case is transparently handled by the
mouse-down generic function, which selects the methods associated with the selecting?
and moving? predicates for execution. Because the selecting? predicate has precedence
over the moving? predicate (the latter predicate appears first in the list of predicates of
the mouse-down generic function), the method for selecting the shape is executed first.
Finally, as we explained in Section 5.1.2, by default only the most specific method is
executed. Therefore, we need to invoke call-next-method in the method specialised on

6This requirement has to do with the distributed part of the scenario of the drawing editor, explained
later in Section 7.2. The selection of a shape is used for control access. Selecting a shape means obtaining
a lock from the leader that coordinates the interaction between remote editors.

120 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

the selecting? predicate, so that the one specialised on moving? is invoked next.

Uniqueness and Completeness. Prior predicate dispatching models promote the
properties of uniqueness and completeness as the basis for their approaches. The for-
mer property ensures that for each invocation there is always a unique method which is
more specific than any other. The latter ensures that for each invocation there is always at
least one method which is applicable. Lambic ensures uniqueness but not completeness.
The reason for this is that completeness requires a static analysis that would limit the
expressivity of predicates. Ernst et al. [EKC98] allows predicates to include arbitrary ex-
pressions but they are treated as black boxes and the overriding relationship between two
syntactically different expressions is considered ambiguous. In Lambic, completeness has
to be manually ensured by defining a default unspecialised method without predicates.

5.2.3 Consistent Composition
Generic function-based priorities between predicates ensure a consistent composition of
methods, alleviating the issue of combinatorial explosion of context-dependent adapta-
tions described in Section 2.3. This scheme enables developers only to deal with the
context that is relevant to the task represented by the predicated generic function. Fur-
thermore, developers do not have to manually determine the combination of methods
most appropriate for the context of an invocation, as it is internally computed according
to the order of the predicates in the generic function.

5.2.4 Restricted Scope
Lambic delimits a context-dependent adaptation to the scope of a generic function invo-
cation, as do most models for context-oriented programming (cf. Section 3.2.1). Upon
every invocation the context predicates are evaluated ensuring that the selected methods
are always consistent with the current context conditions. This property is preserved
even in the presence of concurrency and distribution, as we explain in Section 5.3 when
discussing the combination between futurised and predicated generic functions.

5.2.5 Limitations
Although Lambic can help in tackling some of the challenges for modelling generic func-
tions with context-specific predicates, a number of challenging issues need to be further
explored as part of future work.

Efficiency. We have not considered efficiency issues in detail yet. However, efficient
implementation techniques for generalised Predicate Dispatch have been investigated in
detail in the past [EKC98] (e.g. to cache the results of predicate evaluations), and can
probably be adapted to the implementation of predicated generic functions as well.

5.2. REQUIREMENTS FOR CONTEXT DEPENDENCY REVISITED 121

Logic Implication as a Complementary Approach. In Lambic, we propose an
alternative to logical implication order used by existing predicate dispatching approaches
to disambiguate method overriding. However, there are situations in which logical impli-
cation order would still be desired, e.g. to disambiguate methods using the same predicate
expression. For instance, using predicated generic functions the method definitions would
lead to an ambiguous situation:

(defmethod foo (n)
(:when (> n 1))
(print “Number greater than 1”))

(defmethod foo (n)
(:when (> n 2))
(print “Number greater than 2”))

If foo is invoked with n greater than 2, as both methods would be selected for execution
but none of them is more specific than the other. While Lambic avoids this problem by
not allowing the definition of methods with the same predicate, this is clearly a case in
which the inclusion of logical implication in Lambic would increase its expressiveness.

Predicates as Filters. Predicated generic functions build on previous work on Filtered
Dispatch [CHVD08]. Similar to Lambic’s predicates, filters are associated with generic
functions. There are however significant differences in both approaches. Firstly, even
though many filters can be defined for a given generic function in Filtered Dispatch,
corresponding methods can use only one of those filters at a time. As a consequence,
each possible combination of the filters that could prove useful needs to be anticipated
and encoded as an additional filter in the generic function. Secondly, filtered expressions
are parameterised exclusively on the argument they filter; they cannot depend on the
value of other arguments of the method. This restriction renders Filtered Dispatch less
amenable to express context adaptations, because the conditions for applicability (the
predicates) cannot harness all available contextual information. On the other hand, the
example where an interpreter dispatches on unwrapped interpreter values [HCD08], seems
to be less straightforward to do in Lambic. In this interpreter, values of the interpreted
language are represented in the standard way, as wrapped values in the implementation.
However, the object-oriented implementation of the interpreter needs to dispatch on the
unwrapped values, not on the wrappers themselves. Using Filtered Dispatch, this can
easily be expressed by turning the unwrap function into a filter. Another typical use case
of Filtered Dispatch is to use a predicate as a filter and specialising the method on the
(boolean) return value of that predicate.

122 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

5.3 Predicated Generic Functions in AmOP
Now that we have presented predicated generic functions, we discuss its integration with
Lambic’s manifestation of the ambient-oriented programming paradigm, i.e. with fu-
turised generic functions (cf. Section 4.2). As discussed in Section 3.4, the combination of
these two concerns implies dealing with the propagation of asynchrony and network failure
handling, and the consistency of the scope of activation of context-dependent behaviour.
In Lambic, we can effectively cope with these issues by using the internal future-handling
semantics promoted by futurised generic functions. Because in these semantics distri-
buted computations use the same syntax of local computations, remote results can be
handled implicitly, and network failures can be tackled using standard exception han-
dling forms. We then enable Lambic’s predicate-based dispatch mechanism to support
futures as results of the evaluation of context predicates. In the remainder of this section,
we discuss the combined semantics for futurised and predicated generic functions, which
fulfil the above requirements.

5.3.1 Combining Futurised and Predicated Generic Functions
We analyse the combination of semantics according to the definition and invocation of
generic functions. This combination uses the syntax presented in Table 5.1 (Section 5.1.1).

Combined Definition of Futurised and Predicated Generic Functions

The syntax and semantics for defining futurised and predicated generic functions can be
straightforwardly combined. This is mainly due to the fact that only predicated generic
functions require a syntactic extension to the standard definition of generic functions,
for the list of context predicate declarations. This list does not have any impact on the
semantics of futurised generic functions.

Combined Definition of Futurised and Predicated Methods

When combining futurised and predicated methods, a number of interactions should be
taken into account:

Context predicates and execution qualifiers A method definition can include both
an execution qualifier (:interruptible or :uninterruptible) and a predicate ex-
pression. The qualifier does not affect the evaluation of the method’s predicate
expression. The interruptible and uninterruptible execution conditions only apply
to the evaluation of the methods’ body, not to the process of determining the ef-
fective method, which is where the evaluation of the context predicates occur. If
such execution conditions are required for evaluating the predicates, the methods
representing the predicates should be defined with an execution qualifier.

Controlled propagation of asynchrony through super calls Invocations to call-
next-method can return a future as a result. For instance, this can occur when
the method invoked through such a form contains an asynchronous invocation of

5.3. PREDICATED GENERIC FUNCTIONS IN AMOP 123

a remote generic function. However, because in Lambic futures can be implicitly
processed, the method invoking call-next-method needs no special language sup-
port to handle such a case. Computations that depend on the resulting future are
suspended until the future is resolved, as defined in the futurised method execution
semantics presented in Section 4.4.2.

Controlled propagation of asynchronous exceptions through super calls To al-
low the call-next-method form to return futures also implies that methods invoking
such a form may have to deal with eventual asynchronous exceptions ruining the
futures. This is the case of timeout exceptions affecting remote generic function
invocations (cf. Section 4.4.3). Lambic does not prevent the propagation of ex-
ceptions through super calls. As such, developers can arbitrarily choose the place
to handle the exceptions that best suits the application logic. Note that excep-
tions —including those affecting the futures— can be handled with our model’s
futurised try-catch form. No special callbacks are required for this case. This en-
ables method definitions to preserve their sequential and imperative programming
style, independently of the place where exceptions are handled.

Definition of Futurised Context Predicates

Context predicates can return a future as a result. Its resolution is implicitly awaited by
the method dispatch mechanism of our model, as discussed in the next section. Context
predicates must be defined in the same actor as the generic function that uses them.
Remote methods cannot be directly used as context predicates. If a remote method is
required, e.g. to evaluate a remote context condition, it has to be invoked within a locally-
defined predicate. This way we ensure that eventual network failures affecting the remote
invocation can be properly handled. A context predicate should not have any observable
effect. Thus, network failures and any other kind of exception cannot be handled inside
the predicate’s body (using a try-catch form). No propagation of exceptions from the
context predicates to the generic functions is allowed. In case that a future returned by a
predicate is ruined, Lambic’s dispatch mechanism will raise the corresponding exception.

Combined Execution of Futurised and Predicated Generic Functions

To support futures while building the effective method for a generic function invocation,
only the step for the selection of methods needs to be considered (cf. Section 5.1.2).
In this step, the context predicates are evaluated and in case that they return futures,
their final result is awaited. Waiting for the resolution of such futures will suspend the
method dispatch process for the current invocation. At this stage, the only way to avoid
that further invocations are interleaved with the current execution, is to annotate the
predicate definitions with the :uninterruptible qualifier.

124 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

5.3.2 Discussion
We evaluate Lambic’s solution with respect to the requirements for combining models
for event-driven communication of AmOP and for context-dependent behaviour (cf. Sec-
tion 3.2.3): controlled propagation of asynchrony and network failures, and consistent
activation scope of event-driven behaviour.

Controlled Propagation of Asynchrony and Network Failures

In Section 3.2.3, we concluded that the language support required to handle asynchro-
nous interactions and network failures should not hinder the semantics of dynamic method
dispatch and inheritance-based composition. Lambic complies with this requirements by
enabling the controlled propagation of asynchrony from both evaluation of context pred-
icates and super calls. This is possible thanks to our model’s implicit handling of futures
and its integration with the process to determine the effective method for invocations.
Our model also allows asynchronous exceptions to be propagated through super calls (in
the form of ruined futures). However, the exceptions raised during the evaluation of con-
text predicates cannot be propagated to the generic functions. Exceptions must be fully
handled in predicates. Our model does not require the use of explicit syntax to handle
asynchronous results and exceptions.

To illustrate the propagation of asynchrony and exceptions, consider the following
implementation of the messenger example in Lambic, introduced in Listing 3.1 of Sec-
tion 3.2.3.

; receive-call generic function
(defgeneric receive-call (caller callee)

(:predicates is-urgent-call?))

(defmethod receive-call ((caller messenger) callee)
; default behaviour...
)

(defmethod receive-call ((caller messenger) callee)
(:when (is-urgent-call? callee))
; urgent behaviour...
)

; Context predicate
(defmethod is-urgent-call? (callee)

(try-catch
(is-current-location? callee “hospital”)
(timeout-exception () nil)))

Listing 5.6: Lambic’s propagation of asynchrony and exceptions.

5.3. PREDICATED GENERIC FUNCTIONS IN AMOP 125

The communicator’s operation to handle incoming calls is defined by the receive-call
generic function. Apart from its default behaviour (represented by the first method defini-
tion), this generic function contains a method specialised on the is-urgent-call? context
predicate. This predicate invokes the remote generic function is-current-location?. De-
velopers are required to enclose such a remote invocation with a try-catch form to handle
any timeout-exception raised by Lambic’s network failure handling mechanism. As such,
the predicate returns as a result the future generated by the try-catch expression (and
not the one of the remote invocation). Note that in this case the future returned by
try-catch will not be ruined. It will be resolved either with the result of the remote
invocation, or with the return value of the handler of the timeout exception (nil in this
case). Note also that in the example above, no explicit support is required to handle the
asynchronous result of the remote invocation and the try-catch form.

Consistent Activation Scope of Event-driven Behaviour

A programming language model should provide a consistent scope for context-dependent
adaptations, even in the presence of concurrent and interleaved event-driven interactions
(cf. Section 3.4). In Lambic the scope of a context-dependent adaptation is delimited
by the execution of a generic function invocation, and that the adaptation corresponds
to determining the effective method for each invocation. Additionally, in Section 4.3 we
declare that generic function invocations are sequentially processed, exclusively by the
event loop of the actor containing the generic functions. This means that, at any moment
in time, within an actor, there can be only one context-dependent adaptation in use. This
condition aims at preventing adaptations required for different invocations to conflict with
each other. However, it may still be insufficient when the execution of the invocations are
allowed to be interleaved (as discussed in Section 3.1.2). Event interleavings have non-
evident effects on the selection of the effective method for the interleaved invocations, in
particular in the evaluation of the predicates associated with the generic functions.

To illustrate this issue, consider the case of a shared bank account (an account that
can be accessed by several users). Listing 5.7 shows a basic definition of the operation
for withdrawing money, represented by the withdraw generic function. The withdraw
generic function has two methods. The first method is specialised on the is-empty?
predicate, indicating that this method should be executed when the shared account is
empty. The second method is the default behaviour of the withdraw operation. This
method effectively accomplishes the withdraw (e.g. decrementing the money from the
account), only after the account’s pin code is confirmed at the ATM making the request.
In the example, this corresponds to replying to the confirm-pincode invocation. Note
that because this invocation is asynchronous, the execution of the withdraw method is
suspended until the invocation’s generated future receives the result. Thus, the execution
of the withdraw operation can get interleaved with other requests, as shown in Figure 5.2.
Assume that during the execution of an invocation to withdraw made by ATM1, there is
a second request to the same function, now coming from ATM2.

126 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

ATM1 shared bank
account ATM2

withdraw account atm-1 100

confirm-pincode atm-1
withdraw account atm-2 100

confirm-pincode atm-2

decrement account 100

decrement account 100

resolve-future true

resolve-future true
...

...

Figure 5.2: Predicate evaluation and invocation interleaving.

; Definition of withdraw generic function.
(defgeneric withdraw (account atm amount)

(:predicates is-empty?))

(defmethod withdraw ((account shared-account) atm amount)
(:when (is-empty? account))
(receive-message atm “The account is empty.”))

(defmethod withdraw ((account shared-account) atm amount)
(if (confirm-pincode atm)

(decrement account amount) ...))

; Definition of is-empty predicate.
(defmethod is-empty? ((account shared-account))

(<= (balance account) 0))

Listing 5.7: Partial definition of a shared bank account.

Lambic’s event loop model ensures that the shared bank account properly executes
only one invocation at a time.7 However, the problem occurs when the process to deter-
mine the effective method for the second invocation evaluates the is-empty? predicate.
Since at that moment the first invocation has not withdrawn the money yet (it only hap-
pens after the asynchronous confirmation of the pin code), the evaluation of the predicate
for the second invocation will consider the current balance of the account, and not the

7In this case, we also assume that the shared bank account and the ATMs are running in different
hosts, hence they are contained in different actors.

5.4. CONCLUSION 127

one after the execution of the first invocation has been completed.
In Lambic, we solve this problem by annotating the second withdraw method definition

in Listing 5.7 with the :uninterruptible qualifier. This ensures that the executions of
the two invocations are not interleaved. Thus, the right method definition can be adopted
for each case.

5.4 Conclusion
In this chapter, we have introduced predicated generic functions, a novel mechanism to
allow flexible behaviour selection based on dynamically determined context information.
This mechanism has been realised as an extension of the method dispatching mechanism
of Common Lisp Object System (CLOS). Lambic method definitions can be guarded by
predicates, which are used to decide on the applicability of the method for a list of actual
arguments. If more than one predicated method is applicable, the order in which the
predicates are declared in the corresponding generic function is used as a tiebreaker. These
are the main tools Lambic offers for fine-grained control of applicability and specificity of
methods.

Predicated generic functions have been successfully combined with Lambic’s support
for event-driven distribution, futurised generic functions. As such, method selection and
composition can handle asynchronous results and exceptions of remote generic function
invocations.

128 CHAPTER 5. CONTEXT DEPENDENCY IN LAMBIC

Chapter 6

Group Behaviour in Lambic

We now introduce the third and last component of Lambic. This is our approach to
model group behaviour in pervasive computing, called group generic functions. Group
generic functions propose a novel way to deal with service groups in AmOP. In this
chapter, we explain the rationale behind this approach by means of a behavioural pattern,
called empathic group behaviour. We then present the syntax and semantics for group
generic functions and explain how they comply with the requirements for group behaviour,
identified in Section 3.4. Finally, we describe the role of the other features of Lambic
(futurised and predicated generic functions) in the accomplishment of empathic object-
oriented group behaviour.

6.1 An Empathic Approach to Group Behaviour
The metaphor we use to explain our approach for group behaviour in ambient-oriented
programming is the social conduct, known as empathy. When a person talks to somebody
in a public space, all the co-located people found at such place can hear, and possibly
understand, what the speaker says. However, the context of the conversation makes
those people realise that the speaker is addressing only one of them, e.g. because of the
speaker’s body language or the content of the conversation. In other words, by sharing a
common nature (e.g. a common sensory and reasoning system) people are able to receive
the speaker’s message, contextualise it (reason about the context in which it occurs), and
react accordingly. And this occurs despite the speaker’s intention to address his message
to a specific person.

The previous scenario hints at a recent study made in the field of neuroscience about
a particular kind of neurons (called mirror neurons [RC04]), responsible for people’s
empathic behaviour. Such neurons can fire an event in response to a stimulus, e.g. a
person touching one’s hand, and also when one observes the stimulus being produced to
somebody else, e.g. a person touching somebody else’s hand. Thus, one can empathise
with the other person being touched. However, to prevent one from actually experiencing
the touch sensation merely by observing, receptors in the skin send a feedback signal to

129

130 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

the brain that vetoes the signal of the mirror neuron, informing that one has not been
touched.

Note that this case follows a pattern similar to the previous example of the human
conversation. When a person is touched, nearby people can also receive such a stimulus,
contextualise it (with the help of skin receptors), and react accordingly. Again this occurs
regardless of the fact that the stimulus is produced for only one person [RC04]. We call
this behavioural pattern empathic group behaviour.

This pattern conveniently fits the description of pervasive computing services pre-
sented in Section 2.1. As stated there, software entities found in the same environment
and sharing common attributes (similar functionality, and possibly, similar state), are
expected to work together as a single pervasive service. However, this grouping should
not affect the interactions between the entities and their clients. A client should still be
able to address its requests to an entity of the pervasive service, in the same way as when
the entity worked independently (e.g. using the same identity, interface and communi-
cation style). Then, to ensure the group behaviour of the pervasive service, it should be
possible that all its member entities can receive the requests, even when the requests are
not explicitly sent to each of them. That is, the entities can empathise with the one being
requested. Finally, each entity should decide how to respond to the requests based on
the context in which they occur. Because such context can change from one entity to
another, they should be able to react differently to the same request.

In summary, when a client sends a request to a member of a pervasive service, the other
members should implicitly also receive the request, contextualise it, and react accordingly.
The basic requirement to achieve such empathic behaviour is that software entities share a
common characteristic (location, behaviour, and possibly, state). In Chapter 7, we further
discuss the suitability of the empathic group behaviour pattern, when implementing the
scenarios of pervasive computing presented in Section 2.1. In what follows, we present the
group generic function model, the manifestation of empathic group behaviour in Lambic.

6.2 Group Generic Functions
In Lambic, we implement the empathic group behaviour pattern pattern in a program-
ming model, called group generic functions. This model combines the multiple dispatch
semantics of generic functions with two main linguistic abstractions, group classes and
group methods:

• A group class represents the common characteristic that enables objects to empathise
with each other. Besides allowing for structure and behaviour sharing (as standard
classes), a group class enables its instances to be aware of the requests each other
receives. Generic function invocations using such an instance as argument can
be implicitly propagated to the other instances of the group class. This way, the
instances can cooperate in the execution of the invocations, while the programs
making the invocations can be oblivious to such a cooperation.

• Additionally, the group behaviour required to handle the invocations is declaratively
specified in special methods of the group generic functions, called group methods.

6.2. GROUP GENERIC FUNCTIONS 131

Group methods enable the decoupling of the group behaviour from the base func-
tionality of group classes, which is still defined in standard (CLOS) methods.

To have a quick idea of how Lambic’s group generic functions work, consider the
following example of the scenario of the drawing editor (cf. Section 2.1). Assume that the
editor allows a multiple selection of shapes. Operations addressed to one of the selected
shapes (e.g. a user moving a shape) should implicitly also affect the others (e.g. moving
along with the addressed shape). In Lambic, we can express this feature by defining the
shapes as a group class and their operations as group generic functions. The listing below
sketches such definitions:

; Definition of the group-shape group class
(defgroupclass group-shape ()

((selected :reader is-selected? ...) ...))

; Definition of the move-shape group generic function
(defgroupgeneric move-shape (shape editor x y))

; Definition of the move-shape method
(defmethod move-shape ((shape group-shape) editor x y)

; standard move behaviour...
)

; Definition of the move-shape group method
(defgroupmethod move-shape ((shape group-shape) editor x y)

(:propagate ((is-selected? shape)))
... (call-next-method) ...)

Listing 6.1: Group generic functions in Lambic.

Listing 6.1 shows the definition of the group-shape group class and the move-shape
group generic function (representing the shape’s move operation). The base logic of the
group generic function is described in a standard method (using the defmethod form).
Its group behaviour is defined in a group method (using the defgroupmethod form). The
group method contains a propagation expression denoted with the :propagate keyword,
which declaratively specifies that invocations to move-shape should be propagated to all
the “selected” shapes. That is, to all the instances of the group-shape class which satisfy
an is-selected? predicate.1 The propagation occurs only when the group method invokes
the call-next-method form. Because group methods are always executed before standard
methods, the evaluation of such a form results in multiple invocations to the standard
method of move-shape, each time passing a different selected shape in the shape argument.

Note that since the group behaviour of the shapes is fully encapsulated in group generic
functions, clients need no special group abstractions to interact with them (e.g. group

1In this example, this corresponds to the accessor function defined for the selected field of the group-
shape class.

132 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Group class definition ::=
(defgroupclass class-name (parent-class)({field})) → new-groupclass

Group generic function definition ::=
(defgroupgeneric function-name parameter-list) → new-groupgeneric

parameter-list ::= ({parameter})

Group method definition ::=
(defgroupmethod method-name [combination-qualifier]

specialised-parameter-list
propagation-expression
body) → new-groupmethod

combination-qualifier ::= :before | :around | :after
specialised-parameter-list ::= ({parameter | (parameter specialiser)})
propagation-expression ::= (:propagate ({(pred-name arguments)})

[catch] [return])
catch ::= :catch {(exception-name ([argument])body)}
return ::= :return ⟨nil | user-defined-function⟩

Peer method definition ::=
(defmethod method-name [combination-qualifier]

specialised-parameter-list
body) → new-method

Table 6.1: Group generic functions in Lambic

identities, group interfaces or group invocations). A client can address its requests directly
at one shape, invoking a group generic function specialised on the group-shape group
class. Furthermore, the group behaviour is contained in group methods which ensures its
modularity and explicit separation from the base functionality of the shapes.

In the remainder of this section, we further explain the definition and execution se-
mantics of group generic functions. Table 6.1 presents the syntax of this model. Group
generic functions have been conveniently integrated with the other features of Lambic
(futurised and predicated generic functions). We now focus exclusively on the details
concerning group generic functions, and defer the discussion about the integration to Sec-
tion 6.4. This also means that we first describe group generic functions in a local setting,
and then discuss their application to a distributed setting (when combining group and
futurised generic functions in Section 6.4.1).

6.2. GROUP GENERIC FUNCTIONS 133

6.2.1 Defining Group Classes
As standard classes in CLOS, a group class determines the structure and behaviour of a
set of objects (cf. Section 4.1). It is defined in exactly the same way as a CLOS class
(with a name, a list of superclasses, and a list of attributes), but with the defgroupclass
form instead. The main difference is that a group class keeps explicit record of all its
instances. It stores each instance created using the make-instance form. Such an explicit
record is the basis for the definition of empathic behaviour, as we show in the next section.
Because of the capacity to perform actions together, we refer to the instances of a group
class as peers.

A group class can inherit structure and behaviour from both standard and group
classes. However, standard classes cannot inherit from group classes.2 The subclasses of a
group class are also group classes. For this reason, Lambic requires that they are defined
exclusively using the defgroupclass form. This way we ensure the explicit distinction
between classes and group classes in the programs. This scheme is similar in spirit to the
dissemination of execution qualifiers through method definitions (cf. Section 4.4.2).

Note that by enabling inheritance between group classes, we also allow objects to be
part of several (nested) groups. Thus, for a group class G1 with a super group class G0,
the peers of an object as instance of G1 are a subset of the peers of the object as instance
of G0.

6.2.2 Defining Group Generic Functions
Operations for group classes can be defined in standard generic functions. However,
the operations that require the group behaviour of the group classes have to be defined
exclusively by means of group generic functions. As with standard generic functions, a
group generic function is a container of methods with a common name and a parameter
list the methods can specialise. It is defined with the defgroupgeneric construct indicating
the name and the parameter list. Methods are defined separately using the same syntax
and semantics of CLOS methods. They describe the base functionality for the group
classes, i.e. the behaviour executed independently for a peer instance of a group class.
For this reason, we refer to such methods as peer methods. Peer methods represent the
peer level definition of the group generic function. Additionally, a group generic function
has a group level definition required to specify coordination schemes between the group
class instances. Such specification is contained in group methods.

6.2.3 Defining Group Methods
Group methods are defined with a dedicated defgroupmethod form. This form receives a
name, an optional combination qualifier, and a specialised parameter list. A group method
has one or more parameters specialised on group classes. For such group classes, the
group method provides a propagation expression to declaratively specify how to propagate
invocations through their instances. This expression is denoted with the :propagate

2This situation is signalled as an error during the definition of the class.

134 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

keyword, and consists of one or more predicates on the group classes. The invocations
are propagated to all the instances of the group classes that satisfy the predicates. We
further explain the propagation process in the next section, when discussing the execution
semantics of group generic functions.

Propagation predicates follow the same definition semantics as context predicates,
presented in Section 5.1.1. They can be modelled as methods. Exceptions raised during
their evaluation have to be handled within their body.

In addition to the predicates, a propagation expression can contain the following
optional specifications:

Handling exceptions during propagation The propagation expression can also spec-
ify how to handle exceptions raised during the propagation. That is, exceptions that
occur while executing each of the invocations resulting from the predicate evalua-
tion process. The handlers are specified using the :catch argument which works in
a similar way to the try-catch form (cf. Section 4.4.2). It receives one or more
handler definitions indicating a name of an exception, an optional parameter con-
taining the exception, and a body. The result of the execution of the body takes
the place of the return value of the failed invocation.

Handling propagation results The propagation expression also enables developers to
determine the return value of the propagation. This is done using the :return
argument. It receives a function that specifies how to handle the results of the
invocations originated by the propagation. The function is parameterised with the
list of results of the invocations. Our model provides the first and all functions
to indicate that the final result of the propagation should correspond to the first
obtained result, or to all of them, respectively. Additional functions can be defined.
Alternatively, the :return argument can be set to nil to indicate that no results
are expected from the invocations. In this case, the return value of the propagation
is nil. By default, the :return argument is set to first.

In a group method, the propagation expression determines the evaluation semantics
of the call-next-method function. This means that the propagation occurs only if the
group method invokes such a function in its body. The execution of call-next-method
potentially results in multiple invocations to the next most specific method of the group
generic function. The return value of this function corresponds to what is specified in the
:return argument of the propagation expression.

Finally, a group generic function can have more than one group method. This is possi-
ble by defining group methods with different parameter specialisers, or by using auxiliary
group methods (group methods annotated with the combination qualifiers :before, :after
and :around). In the case when two group methods are defined with the same param-
eter specialisers and combination qualifier, the newly created group method overrides
the other, even if they have different propagation expressions. Auxiliary group methods
cannot provide a propagation expression.

Listing 6.2 shows the use of Lambic’s group abstractions in another variation of the
multiple selection of shapes, presented at the beginning of this section. Assume an op-

6.2. GROUP GENERIC FUNCTIONS 135

eration that calculates the area of a shape. In case that several shapes are selected, the
operation returns the total area of all of them.

; GROUP CLASSES
; Definition of group class for rectangles
(defgroupclass group-rectangle (group-shape)

((width :accessor width)
(height :accessor height)))

; Definition of group class for circles
(defgroupclass group-circle (group-shape)

((radius :accessor radius)))

; GROUP GENERIC FUNCTION
; Definition of get-area group generic function
(defgroupgeneric get-area (shape editor))

; PEER LEVEL DEFINITION
; Definition of get-area peer method for rectangles
(defmethod get-area ((rectangle group-rectangle) editor)

(* (width rectangle) (height rectangle)))

; Definition of get-area peer method for circles
(defmethod get-area ((circle group-circle) editor)

(* pi (expt (radius circle) 2)))

; GROUP LEVEL DEFINITION
; Definition of get-area group method for shapes
(defgroupmethod get-area ((shape group-shape) editor)

(:propagate ((is-selected? shape)) :return #’total-area)
(call-next-method))

; Definition of reduction method calculating the total area
(defmethod total-area (areas)

(reduce #’+ areas))

Listing 6.2: get-area group generic function.

We implement such an operation as a get-area group generic function. It has two peer
methods computing the area of two different kinds of shapes, rectangles and circles. They
are represented by the group classes group-rectangle and group-circle, both subclasses of
group-shape. Such methods correspond to the peer level definition of the get-area group
generic function. Additionally, this group generic function has a group level definition
composed of a group method propagating the invocations to all the selected shapes, and
adding their results. This is expressed in the group method’s propagation expression

136 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

using the is-selected? predicate (as explained at the beginning of this section), and
the total-area method in the :return argument.3 In this case, the body of the group
method contains only the call-next-method form.4 Note that in the example the group
method specialises the shape parameter on the group-shape group class (and not on
group-rectangle or group-circle). As such, we ensure that the propagation comprises
both rectangles and circles.

6.2.4 Invoking Group Generic Functions
To process an invocation of a group generic function, our model first computes the generic
function’s group level. This involves exclusively the evaluation of the group methods. The
group level resolves in one or more invocations of the peer level behaviour of the group
generic function. This includes only the evaluation of the peer methods. Because these
methods correspond to standard CLOS methods, they are executed using the standard
semantics of generic functions. In this section, we focus on the evaluation of the group
methods.

To process the group level of a group generic function, we extended CLOS’ semantics
for building the effective method [BDG+88] with the following steps:

1. Selecting and sorting the applicable group methods.

2. Determining the effective propagation.

3. Combining and applying selected group methods.

In what follows, we review each of these steps in detail.

Selecting and Sorting Applicable Group Methods

Lambic determines the applicability of group methods using CLOS’ mechanism to select
methods [BDG+88]. Given a group generic function invocation, a group method is appli-
cable if its parameter specialisers correspond to the classes or superclasses of the received
arguments. In case that none of the group methods comply with this condition, the in-
vocation to the group generic function is handled using the standard execution semantics
of CLOS generic functions (cf. Section 5.1.2). The same selection process is applied to
the auxiliary group methods, if any.

The selected group methods are then sorted using CLOS’ lexicographic ordering al-
gorithm [BDG+88] (cf. Section 5.1.2). The precedence between two group methods is
determined by the precedence between their parameter specialisers, which are by default
compared from left to right. As a result of this step, the list of applicable group methods
is sorted from most to least specific.

3In Lambic, as in CLOS, The notation #’ is an abbreviation for the function operator. This operator
returns the functional value associated with a name in the current lexical environment [BDG+88].

4By default the propagation of an invocation returns all the results. This means that alternatively
the group method of this example can be defined without an explicit :return argument, and computing
the total area within its body. Still, we keep the other definition mainly to illustrate the use of the :return
argument.

6.2. GROUP GENERIC FUNCTIONS 137

Determining the Effective Propagation

Once a group method has been selected, the predicates of the propagation expression
are evaluated. This is a two-step process in which we first compute the most general
propagation of the group method, and then determine the effective propagation:

• Determining the most general propagation for an invocation corresponds to making
a list of all the possible invocations according to the group classes specialising the
group method. For a group method with a parameter specialised on a group class,
this means creating as many invocations as peers of the group class are available
in the execution environment. For each invocation, we replace the peer originally
passed as argument parameter with a different peer of the group class.

• To each invocation of the list resulting from the previous step, our model applies the
predicates defined in the propagation expression of the group method. The subset
of invocations whose arguments satisfy the predicates becomes what we call the
effective propagation of the group method. If no invocation satisfies the predicates,
our model signals a no-applicable-propagation error.

In the case when the group method does not specialise any parameter on a group
class, the propagation expression is evaluated only on the arguments received in the
invocations. Conversely, when the group method has several parameters specialised on
group classes, the most general propagation is obtained by creating an invocation for
every combination between the peers of the different group classes. Each invocation uses
a different combination of peers as arguments. Then, as before, the effective propagation
results from applying the predicates to all the invocations.

Combining and Applying Selected Group and Peer Methods

Finally, the group generic function combines all the applicable group methods into a single
effective method. In case that there are no auxiliary group methods, the effective method
corresponds to the most specific group method. The group method performs its effective
propagation by calling the call-next-method function. Each invocation included in the
effective propagation is handled with the next most specific group method. Only for the
least specific group method the invocations are handled with the peer level of the group
generic function. The results of the propagation are handled using the function passed as
the :return argument in the propagation expression of the group method.

In case of having auxiliary group methods, CLOS’ combination rules are applied
(cf. Section 5.1.2). That is, the around group methods are executed first. Invoking
call-next-method in its body will cause the sequential execution of before group methods,
primary group methods (including its effective propagation) and after group methods.

Figure 6.1 illustrates how to determine the effective method for an invocation of the
get-area group generic function (cf. Listing 6.2). Assume that at the moment of the
invocation, there exist four shapes: two instances of the group-square group class, square-
1 and square-2, and two instances of the group-circle group class, circle-1 and circle-2.

138 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

square-1
(selected)

square-2
(selected)

circle-1 circle-2
(selected)

(get-area square-1 my-editor)

effective propagation
of invocation

peer
level

group
level

get-area method
for group-square

get-area method
for group-circle

get-area group method
for group-shape

Figure 6.1: The effective method for an invocation to the get-area group generic function.

Assume also that square-1, square-2 and circle-2 are part of a multiple selection. Thus,
Lambic handles the invocation (get-area square-1 my-editor) as follows:

• First, our model determines the applicability of the get-area group method. In
this case, the group method is applicable as the argument list of the invocation
satisfies the only parameter specialiser of the group method: the group-shape group
class, specialiser of the shape parameter. This parameter is bound to the argument
of the invocation, square-1, which is an instance of group-square, a subclass of
group-shape.

• Second, the group method determines the effective propagation. For this, the group
method first builds the most general propagation which implies generating as many
invocations as instances of group-shape are available. Each invocation uses a differ-
ent instance as first argument. The resulting list looks as follows:

(get-area square-1 my-editor)
(get-area square-2 my-editor)
(get-area circle-1 my-editor)
(get-area circle-2 my-editor)

Listing 6.3: The most general propagation of get-area group method.

6.2. GROUP GENERIC FUNCTIONS 139

Then, the group method applies the is-selected? predicate to each of the above
invocations. From them, only the one using circle-1 does not satisfy the predicate
(circle-1 is not part of the current selection). Thus, the effective propagation of
the get-area group method is the following:

(get-area square-1 my-editor)
(get-area square-2 my-editor)
(get-area circle-2 my-editor)

Listing 6.4: The effective propagation of get-area group method.

• Third, the applicable peer methods are computed for the invocations of the effective
propagation. Only one method is applicable in each case: the one specialised on
group-square for the invocations using square-1 and square-2 as argument, and
that specialised on group-circle for the invocation using circle-2.

• Finally, the get-area group generic function combines and applies the group method
and the selected peer methods. The group method is executed first. As it invokes
call-next-method in its body, the effective propagation is performed. The peer
method selected for each invocation of the propagation computes the area of the
corresponding shape. The results are returned to the group method which handles
them using the total-area function. The result of this function, the total area of all
the selected shapes, is returned as result of the call-next-method form. This result
also corresponds to the return value of the group method and thus of the invocation
of the get-area group generic function.

In Figure 6.1, the effective method for the invocation of get-area forms a tree. The
nodes of this tree, the grey rectangles, correspond to the group and peer methods applied
to the selected shapes, whereas the arrows represent the execution flow. The white rect-
angles with dashed borders are cases discarded by the effective method (methods that are
not applicable for the selected shapes, or methods using as argument a shape that is not
selected). At the group level, the group method is applied only to the shape passed as
argument, square-1. This is because in this scenario we assume that this shape is chosen
by the user from the GUI of the drawing editor. Note, however, that using any other
selected shape leads to the same effective method.

Handling Multiple Group Methods

Applying more than one group method for an invocation could lead to multiple executions
of the same group or peer methods. Assume that we add the following group method
definition to the example of the get-area group generic function of Listing 6.2:

140 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

(defgroupmethod get-area ((square group-square) editor)
(:propagate ((is-selected? square)) :return #’total-area)
(call-next-method))

Listing 6.5: The get-area group method for group-square.

The new execution of the invocation (get-area square-1 my-editor) is depicted in
Figure 6.2. The group method specialised on group-square is more specific than the
one specialised on group-shape. As such, the former is executed first. The problem
occurs as both methods propagate the invocations to all the selected shapes (using the
is-selected? predicate in their propagation expression). The group method for group-
square invokes the group method for group-shape twice (one for square-1 and another
for square-2). These invocations result in the double execution of the peer methods for
square-1, square-2 and circle-2.

Our execution model does not feature any implicit means to avoid this situation.
Instead, a call-peer-method form is provided (as an alternative to call-next-method)
to enable a group method to propagate invocations directly to individual peer methods.
This form enables skipping the execution of any other less specific group method. Thus,
the following definition of the group method specialised on group-square will circumvent
the one specialised on group-shape:

(defgroupmethod get-area ((square group-square) editor)
(:propagate ((is-selected? square)) :return #’total-area)
(call-peer-method))

Listing 6.6: Using the call-peer-method form.

The call-peer-method form can be used only within the body of a group method.
Apart from directly invoking peer methods, the semantics of this form are similar to
those of call-next-method. Both forms implicitly trigger the propagation of the group
method, handling its results and exceptions.

Using call-peer-method makes the execution of group generic functions more pre-
dictable. On that account, it may seem a good idea to make the semantics of this form
the default behaviour of call-next-method (within group methods). However, in our
experiments we have observed that the original semantics of call-next-method are essen-
tial to build more advanced group coordination schemes (especially when allowing group
methods to have context predicates, as we explain later in Section 6.4.2).

Keeping the Original Arguments of Invocations of Group Generic Functions

Thus far, we have explained that a group method can propagate an invocation to the peers
of a group class sharing a similar state. Alternately, there are some cases in which the

6.2. GROUP GENERIC FUNCTIONS 141

square-1
(selected)

square-2
(selected)

circle-1 circle-2
(selected)

peer
level

group
level

get-area method
for group-square

get-area method
for group-circle

get-area group method
for group-shape

get-area group method
for group-square

(get-area square-1 my-editor)

Figure 6.2: Default execution of multiple group methods.

propagation should include the peers that share a common state with the peer originally
passed as argument in the invocation. For this, it should be possible that such peer
is available when determining the effective propagation for the invocation (i.e. when
evaluating the propagation predicates). This way, the peer’s context can be compared
with the context of the other peers.

Consider as an example a variation of the get-area group generic function. In this
variation, invocations are propagated exclusively to the shapes of the same colour as the
shape originally passed as argument. It should be possible that the shape is accessible
for the propagation predicates so that its colour can be compared with the colour of the
other shapes.

To deal with such a special case, Lambic enables referring to the original arguments
of an invocation of a group generic function. This is achieved by means of the original
function. This function can be used only in the propagation expression as an argument
passed to a propagation predicate. Listing 6.7 illustrates the use of the original function
in the implementation of the get-area group method. In the listing, the same-colour?
method is the propagation predicate of get-area. Using the original function ensures
that the method will always receive the shape passed originally in the invocation as second
argument.

142 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

(defgroupmethod get-area ((shape group-shape) editor)
(:propagate ((same-colour? shape (original shape))) :return #’total-area)
(call-next-method))

(defmethod same-colour? (shape-1 shape-2)
(equal (get-colour shape-1) (get-colour shape-2)))

Listing 6.7: Use of original function.

6.3 Lambic’s Support for Empathic Group Behaviour
In this chapter, we have described empathic group behaviour as the capacity of an entity
to implicitly receive invocations addressed to similar other entities, to contextualise such
invocations, and to respond to them accordingly. In the group generic functions model,
we introduce such empathic behaviour to object-oriented programming as follows:

• We define a group class abstraction which can explicitly keep track of all its in-
stances, and a group method abstraction to propagate invocations among such in-
stances. Such propagation occurs implicitly for client programs. It is declaratively
specified inside the group methods. The client programs can invoke the group
generic function using only one instance of the group class.

• The invocations resulting from the propagation are handled independently. For
each invocation, the group generic function applies an effective method which is
determined according to the context of the invocation. In this case, such context
corresponds to the classes of the arguments of the invocation.

In the remainder of this section, we evaluate group generic functions with respect to
the requirements for group behaviour presented in Section 2.4.

6.3.1 Plurality Encapsulation
The main purpose of plurality encapsulation is to access a remote service without regard
for the number of objects that provide the service. In Lambic, group generic functions
encapsulate the group behaviour for objects. As such, the group concern is abstracted
from the communication concern. This means that a client can interact uniformly with a
service represented by one object or a group of objects. In our model, the group does not
require a special group identity. It can be addressed by invoking a generic function on one
of its members. In addition, invocations can be implicitly handled by several members of
the group. The clients can be unaware of such collaborative executions. Thus, we achieve
arity decoupling as in the Mailer/Encapsulator model, Gaggles, AWED, DACs, Typed
Groups and Ambient References (cf. Section 3.3.1). Yet, our model does not require a
generic group interface (as in the case of DACs), or a special communication protocol

6.4. GROUP GENERIC FUNCTIONS IN AMOP 143

(as in Ambient References and Typed Groups). Group generic functions are invoked in
exactly the same way as standard generic functions.

6.3.2 Group Protocols

Thus far, we have presented group generic functions in a non-distributed setting. In
this setting, we cannot yet discuss the group protocols for discovery and communication
analysed in Section 3.3.2. In the next section we describe the integration of group generic
functions into the AmOP paradigm, which then provides such protocols.

6.3.3 Modularity

Lambic separates the group behaviour (contained in group methods) from the base func-
tionality of the group classes (contained in standard methods). When the group generic
function is invoked, the group and peer methods are dynamically selected, sorted and
combined according to the classes and group classes used as parameter specialisers. Ap-
plicable group and peer methods can uniformly access the next most specific by means of
the call-next-method form. Alternatively, a group method can directly access the peer
methods by using call-peer-method.

With group generic functions, we achieve similar results in terms of modularity as
the Mailer/Encapsulator model [GFGM98], AWED [NSV+06] and DACs [EGS00]. How-
ever, in our approach group and base behaviour are uniformly defined, in terms of classes
and methods. Most of the extra support required for group classes and group methods
is hidden in Lambic’s execution model (apart from the group method’s propagation ex-
pression). This is unlike those models where group behaviour is defined using aspects
(AWED) and reflective programming (Mailer/Encapsulator model and DACs).

6.4 Group Generic Functions in AmOP
We now discuss the integration of group generic functions with Lambic’s support for
distribution and context dependency. We first explain the combination between group
and futurised generic functions, and then between group and predicated generic functions.
At the end of this section we discuss the combination of the three features. Table 6.2
shows the syntax of this combination.

6.4.1 Combining Futurised and Group Generic Functions

We distinguish three aspects in the combination of futurised and group generic functions:
decentralised group class discovery, future-based group communication, and time-based
failure handling for group communication.

144 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Group class definition ::=
(defgroupclass class-name (parent-class)({field})) → new-class

Group generic function definition ::=
(defgroupgeneric function-name parameter-list

[(:group-predicates {pred-name})]
[(:predicates {pred-name})]) → new-groupgeneric

parameter-list ::= ({parameter})

Group method definition ::=
(defgroupmethod method-name [execution-qualifier] [combination-qualifier]

specialised-parameter-list
[predicate-expression]
propagation-expression
body) → new-groupmethod

execution-qualifier ::= :interruptible | :uninterruptible
combination-qualifier ::= :before | :around | :after
specialised-parameter-list ::= ({parameter | (parameter specialiser)})
predicate-expression ::= (:when {(pred-name arguments)})
propagation-expression ::= (:propagate ({(pred-name arguments)})

[in-actor-of] [due-in] [catch] [return])
in-actor-of ::= :in-actor-of actor-designator
due-in ::= :due-in ⟨nil | seconds⟩
catch ::= :catch {(exception-name ([argument])body)}
return ::= :return ⟨nil | user-defined-function⟩

Peer method definition ::=
(defmethod method-name [execution-qualifier] [combination-qualifier]

specialised-parameter-list
[predicate-expression]
body) → new-method

Table 6.2: Lambic’s integrated syntax for futurised, predicated and group generic func-
tions.

6.4. GROUP GENERIC FUNCTIONS IN AMOP 145

instance
of group
class G

actor

actor

actor

remote
references

Object group's
boundary

O1G

O3G

O2G

Figure 6.3: Distributed group class.

Decentralised Group Class Discovery

In a distributed environment, there can be instances of a group class residing at differ-
ent locations (devices). In Lambic, such locations are represented as actors. Each actor
can contain a copy of the group class definition and a set of its instances (the instances
created within the actor). To allow the empathic behaviour in such a setting, our model
enables the group class to implicitly discover and collect all the instances available in
its environment, even if they are contained in different actors. This occurs in a decen-
tralised publish/subscribe fashion, using the discovery mechanism of Lambic presented
in Section 4.4.1. Each actor publishes its instances of the group class, and discovers the
instances located in other actors. As any object in Lambic, when an instance of a group
class spans its actor boundaries, it is converted into a remote reference. Thus, the dis-
covery process results in a list of local and remote references to the instances stored at
each copy of the group class. Figure 6.3 illustrates the result of this process.

Peer Discovery Event Handler. Lambic enables group classes to react to the dis-
covery of their instances. Our model provides a peer-discovered generic function which
is invoked whenever an instance of a group class is discovered. This generic function has
two parameters representing two instances of the same group class: a local instance (the

146 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

one being notified about the discovery) and the discovered remote instance. Methods
specific for a group class can be defined by specialising the first argument on the group
class. The peer-discovered generic function is called as many times as local instances of
the group class exist in the actor discovering the remote instance.

User-defined methods for the peer-discovered generic function do not intervene with
the implicit gathering of instances effectuated by the group classes.

External Discovery. Outside the definition of the group class, programs can discover
its instances using the whenever-discovered form, described in Section 4.4.1. This form
notifies the discovery of every instance of the group class.

Futurised Group Communication

Group generic functions can be remotely accessed only via asynchronous invocations.
The return value of such invocations is a future which is resolved with the result of the
collaborative execution performed by the group generic function. A group generic function
abstracts the group concern from the communication. As such, no special abstractions
are required to remotely invoke them, other than those provided by futurised generic
functions (cf. Section 4.4.2). In what follows, we review the combined definition and
execution of futurised and group generic functions.

Combined Definition of Futurised and Group Generic Functions. The defini-
tion semantics of futurised do not interfere with those of group generic functions. Apart
from using the defgroupgeneric form, group generic functions are specified in exactly the
same way as futurised generic functions. Both definitions can thus be straightforwardly
combined.

Combined Definition of Futurised and Group Methods. Group methods can
contain asynchronous remote invocations in their body and propagation expressions. For
the propagation expression this means including remote invocations in the propagation
predicates, exception handlers and return function. To handle the futures returned by
such computations, we establish the following semantics:

Future handling The futures returned by the propagation expression are implicitly han-
dled by Lambic’s execution model. This does not include support for exceptions
ruining those futures. Our model requires that such exceptions are properly tackled
using the try-catch form (cf. Section 4.4.3).

Propagation expression and execution qualifiers Group methods can include an
execution qualifier (:interruptible or :uninterruptible). Such a qualifier concerns
only the execution of the body of the group methods, as explained in Section 4.4.2.
Regarding a group method’s propagation expression, it is affected by the execution
qualifier as follows:

6.4. GROUP GENERIC FUNCTIONS IN AMOP 147

• The execution qualifier does not affect the evaluation of the propagation pred-
icates. This is because such predicates are evaluated before the execution of
the group method’s body (while determining the effective group method for
an invocation).

• The execution qualifier does affect the exception handlers (included in the
:catch option of the propagation expression). The handlers are processed
during the propagation of an invocation which occurs as part of the execution
of the group method’s body (upon a call to the call-next-method form).

• The execution qualifier also affects the return function (included in the :return
option of the propagation expression), as it is evaluated during the propagation
of an invocation.

Definition of Futurised Propagation Predicates. Futurised propagation predicates
share the same definition semantics as futurised context predicates (cf. Section 5.3.1).
They must be defined in the same actor of the group method that uses them. A remote
method cannot be used as propagation predicate. Instead, a predicate has to be defined
invoking the remote function within its body. Thus, the predicate can handle network
failures possibly affecting the remote invocation (using Lambic’s try-catch form, cf. Sec-
tion 4.4.3).

Combined Execution of Futurised and Group Generic Functions. The propa-
gation of invocations to remote actors has two main effects on the execution semantics of
group generic functions. First, the process to determine and apply the effective method
has to implicitly deal with futures. As said before, these futures can result from the
execution of the body and propagation expression of the group methods. Second, the
effective method may not be fully processed in the same actor. Once an invocation has
been propagated to a remote actor, it is that actor which has to determine and apply the
rest of the effective method. These two effects require the following adaptations to the
execution semantics for group generic functions, introduced in Section 6.2.4:

Selecting and sorting applicable group methods This step does not require modi-
fications. The most specific applicable group method is consistently executed at the
actor receiving the invocation. As such, the group methods should still be selected
and sorted at this actor.

Determining the effective propagation For a group method specialised on a distri-
buted group class, the effective propagation is determined by applying the group
method’s predicates to the local and remote instances of the group class. In case of
predicates that need to be remotely evaluated, our execution model implicitly waits
for their asynchronous results (i.e. the resolution of the corresponding futures).
Similarly to the evaluation of futurised context predicates (cf. Section 5.3.1), at
this stage the only way to avoid interleaving executions is by annotating the prop-
agation predicates with the :uninterruptible execution qualifier.

148 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Combining and applying selected group methods Because the effective method
may not be completely processed in the actor receiving the invocation, the list of
applicable group methods should not be directly combined. The effective method
for a group generic function still corresponds to the most specific group method of
such list. However, the next most specific method is applied in the same actor only
if the previous method includes a local invocation in its the effective propagation.5
Remote invocations are processed by the remote actors. At those actors, the group
method that caused the current propagation is not executed again. The invocations
are then handled with the next most specific (group or peer) method.
Auxiliary (around, before or after) group methods are integrated into the effective
method using the combination rules described in Section 6.2.4. In particular, when
the effective method is processed in different actors, the auxiliary group methods
are executed by the same actor that handles their corresponding primary group
method6. If there is no corresponding primary group method, they are executed
together with the next most specific primary method.
Finally, the group method handles the results and exceptions produced by the prop-
agation, with the return function and exception handlers. For propagations to re-
mote actors, the group method implicitly awaits the resolution or ruin of the futures
returned by the propagation.

Group Generic Functions and Actor Designators. By default, an invocation to
a group generic function is executed in the actor of its first argument (the implicit actor
designator, cf. Section 4.3.2). This is also true for its propagation. The invocations
included in the effective propagation of a group method are processed in the actor of
their first argument. This default behaviour works properly for a group method defining
a propagation for a group class specialising its first parameter on a group class. Assuming
that the group method defines a propagation for this group class, each invocation will
have a different instance of the group class as first argument, ensuring its execution at
the actor of each instance. However, to enable all the parameters of a group method to
be used as actor designator, the propagation expression of the group method provides
an :in-actor-of argument. Similarly to the in-actor-of form (cf. Section 4.4.2), this
argument associates the invocations of the propagation with an explicit actor designator.
It can correspond to any parameter of the group method.

Connection-independent Failure Handling for Group Communication

In a distributed group class, network failures can affect the communication of an instance
with its clients and with its peers. Developers can cope with such failures by using
Lambic’s time-based failure handling mechanism (cf. Section 4.4.3). Invocations to group
generic functions are annotated with a timeout delimiting the period of time to receive
their result. The timeout is respected even in the presence of partial network failures.

5And only if such previous method invokes call-next-method in its body.
6I.e. the group method with the same signature as the auxiliary group methods but without combi-

nation qualifier.

6.4. GROUP GENERIC FUNCTIONS IN AMOP 149

During this period, invocations to disconnected actors are buffered until the connection
is restored. Similarly, the result of the invocation is awaited even when the remote actor
becomes temporarily unavailable. Only after the timeout is reached, our model ruins
the future of the remote invocation with a timeout-exception. It can then be handled
using Lambic’s futurised try-catch form. This mechanism applies uniformly to all the
interactions involved in the execution of an invocation of a group generic function. This
includes the remote invocations made by the client program, those required to propagate
the client requests to the remote instances of the group classes, and any other remote
invocation made in the body of the group methods. For the case of the propagation,
the timeout variable and handler for the timeout-exception are specified in the :due-in
and :catch arguments of the group method’s propagation expression. If no timeout is
specified, our model takes the default value stored in the *response-timeout* variable.
Alternately, if the :due-in option is set to nil, the result of the remote invocation will be
awaited indefinitely.

Peer Connectivity Event Handlers. Lambic allows group classes to react upon
changes in the connectivity of their instances. For this, we adapt the connectivity event
handlers of AmbientTalk’s event loop model. Lambic provides the generic functions peer-
disconnected and peer-reconnected which are invoked whenever a remote instance of the
group class becomes disconnected or reconnected. As in the case of peer-discovered
(cf. Section 6.4.1), these generic functions have two parameters representing a local in-
stance of a group class, and the disconnected (or reconnected) remote instance. Methods
specific for a group class can be defined by specialising the first argument in the group
class.

All the peer event handlers (for discovery and connectivity) can use execution qualifiers
to specify how to react to possible event interleaving.

Listing 6.8 illustrates the integration between futurised and group generic functions
in the context of the drawing editor scenario (cf. Section 2.1). Let us assume a case of
several editors running at different mobile devices. The editors can start a collaborative
session as soon as their devices get in the same network range. In this session, the editors
can share and modify each other’s shapes.

; Definition of the editor as a group class
(defgroupclass group-editor ()

((username :initarg :username :accessor username)
(shapes :initform nil :accessor shapes)))

; Peer discovered event handler for group-editor
(defmethod peer-discovered ((local-editor group-editor) new-editor)

(update-shapes local-editor new-editor)
(alert discovery new-editor))

150 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

; Peer disconnected event handler for group-editor
(defmethod peer-disconnected ((local-editor group-editor) disconnected-editor)

(remove-shapes local-editor disconnected-editor)
(alert disconnection disconnected-editor))

; Peer reconnected event handler for group-editor
(defmethod peer-reconnected ((local-editor group-editor) reconnected-editor)

(update-shapes local-editor new-editor)
(alert reconnection reconnected-editor))

Listing 6.8: Defining a distributed group class.

In Lambic, we can model the collaborative editors as a group class (group-editor).
This enables the editor objects to implicitly discover each other. The editors can set
up the collaborative session using a peer-discovered method. This includes exchanging
the information about the shapes between the local and the discovered editors (using
the update-shapes generic function), and notifying the discoveries to the users (using
the alert generic function). Modelling the editors as a group class also enables them to
be aware of each other’s changes of connectivity, via the peer-disconnected and peer-
reconnected methods. In the example, we use these methods to remove the shapes of
an editor each time it gets disconnected, and to update the shapes when it rejoins the
session.

; Definition of the paint-shape group generic function
(defgroupgeneric paint-shape (editor shape color))

; PEER LEVEL DEFINITION
; Definition of the paint-shape peer method
(defmethod paint-shape ((editor group-editor) shape color)

; standard paint behaviour...
)

; GROUP LEVEL DEFINITION
; Definition of the paint-shape group method
(defgroupmethod paint-shape :uninterruptible ((editor group-editor) shape color)

(:propagate ((each editor)) :catch (timeout-exception () nil)
:return nil)

(call-next-method))

Listing 6.9: Futurised group generic function.

Listing 6.9 presents the definition of a paint operation for the collaborative editors. It is
represented by the paint-shape group generic function. The peer method of this function

6.4. GROUP GENERIC FUNCTIONS IN AMOP 151

editor-1 editor-2

(paint-shape editor-1
 shape-1
 "gray")

peer
level

group
level

paint-shape method

paint-shape group method

editor-3

actor-1 actor-2 actor-3

Figure 6.4: Distributed propagation.

contains the standard behaviour for painting shapes. The group behaviour specifies in its
propagation expression that invocations should be communicated to all the editors of the
session (using the (each editor) predicate).

Figure 6.4 illustrates the execution of the paint-shape group generic function. The
remote invocations resulting from the propagation are indicated with dashed lines (to
actor-2 and actor-3). To deal with network failures possibly affecting such invocations,
we use Lambic’s time-based handling mechanism. In this simple implementation, we use
the standard timeout (*response-timeout* variable). Timeout exceptions are discarded
(returning nil as result). Similarly, no return value is expected from the execution of
paint-shape. We indicate this by passing nil to the :return argument of the propagation
expression. Finally, note that we can also avoid that the propagation is interleaved with
other invocations, by annotating the group method with the :uninterruptible qualifier.

6.4.2 Combining Predicated and Group Generic Functions

The combination of predicated and group generic functions allows for predicated group and
peer methods. Concerning the empathic group behaviour pattern (cf. Section 6.1), this
feature augments the capacity of group class instances to react to invocations according
to the context.

152 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Combined Definition of Predicated and Group Generic Functions

Lambic enables group generic functions to specialise both peer and group methods in
context predicates. Yet, because these two kinds of methods respond to different concerns,
we let the group generic functions keep two independent lists of predicates. One list is
denoted with the :predicates keyword and includes the predicates used by the peer
methods. The other is denoted with the :group-predicates keyword and contains the
predicates used by the group methods. Everything else operates as prescribed by the
predicated generic function model (cf. Section 5.1.1). The priority between context
predicates is established by the order in which they are declared in the group generic
functions. Peer and group methods indicate the context predicate they specialise on,
using a predicated expression headed with the :when keyword.

Both group and predicated generic functions have been combined with futurised
generic functions. As such, group generic functions with context predicates can cleanly
deal with asynchronous remote invocations.

Combined Execution of Predicated and Group Generic Functions

Allowing context predicates in group generic functions has one main effect on their exe-
cution semantics. The effective method is determined according to the context conditions
of their arguments. This means that when an invocation is propagated to the instances
of a group class, the set of applicable group and peer methods can vary from one instance
to another —each instance can be in a different execution context. Hence, the reevalua-
tion of the effective method is required not only at each actor involved in a propagation,
but also for every invocation resulting from the propagation. This insight requires the
following adaptations to the execution semantics for group generic functions, introduced
in Section 6.2.4 and extended in Section 6.4.1:

Selecting and sorting the applicable group methods The sorted list of applicable
group methods is obtained in the same way as for predicated methods (cf. Sec-
tion 5.1.2). This implies selecting and sorting the group methods according to their
parameter specialisers and context predicates. In case of predicates containing asyn-
chronous remote invocations, our model awaits the resolution of the corresponding
futures.

Determining the effective propagation Context predicates do not affect the seman-
tics for determining the effective propagation of a group method. Thus, this step
remains as described in Section 6.4.1.

Combining and applying selected group methods The effective method for an in-
vocation corresponds to the most specific applicable group method. For each new
invocation resulting from the propagation specified in this group method, the next
most specific method is recomputed again. This applies for every invocation with
an argument list different from the one of the original invocation. Unless the actor
designator is explicitly indicated in the group method, the invocations are processed
at the actor of their respective first arguments.

6.4. GROUP GENERIC FUNCTIONS IN AMOP 153

To illustrate the combined use of predicated and group generic functions, reconsider
the example of painting shapes in a collaborative drawing editor, presented in Listing 6.9.
In that implementation, a group method ensures that each time an editor paints a shape,
this operation is propagated to all the editors of the session. Yet, in such a case there is
still no control on the order in which each editor receives the updates. Listing 6.10 shows
an alternative implementation of this example. We designate a leader to ensure that the
updates arrive in the same order for all the editors. Instead of propagating a painting
operation to all the editors, an editor communicates the painting actions to the leader.
Then, it is the leader which eventually propagates the operation to the session.

; Definition of the paint-shape group generic function
(defgroupgeneric paint-shape (editor shape color)

(:group-predicates not-leader?))

; PEER LEVEL DEFINITION
; Definition of the paint-shape peer method
(defmethod paint-shape ((editor group-editor) shape color)

; standard paint behaviour...
)

; GROUP LEVEL DEFINITION
; Definition of the paint-shape group method
(defgroupmethod paint-shape :uninterruptible ((editor group-editor) shape color)

(:propagate ((each editor)) :catch (timeout-exception () nil)
:return nil)

(call-next-method))

; Definition of the paint-shape group method for non leaders.
(defgroupmethod paint-shape :uninterruptible ((editor group-editor) shape color)

(:when (not-leader? editor))
(:propagate ((leader? editor)) :catch (timeout-exception () nil)
:return nil)

(call-next-method))

Listing 6.10: Context-dependent group generic function.

To achieve leader-driven group behaviour, we define a second group method for all
the editors that do not lead the session (the last definition of Listing 6.10). This is
ensured by attaching the not-leader? context predicate to the group method. This
context predicate is also declared at the definition of the group generic function (using
the :group-predicates form). Then, the group method propagates the invocations to the
leader editor by including the leader? predicate in its propagation expression. As we
explained in Section 5.1.2, a method with a context predicate is considered more specific
than one without it. As such, the group method with the not-leader? context predicate
is executed before the one without predicates.

154 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Figure 6.5 shows the execution of two invocations to the paint-shape group generic
function. The invocation (paint-shape editor-1 shape-1 “gray”) is made at a non-
leader editor. The other invocation, (paint-shape editor-3 shape-1 “blue”), is made
at the leader editor. For the first invocation, the most specific applicable method is the
group method containing the not-leader context predicate. It propagates the invocation
to the actor of editor-3 (the only editor that satisfies the group method’s propagation
predicate). At this actor, the next most specific method corresponds to the group method
without context predicates. Its execution results in the invocation of the peer method of
the group generic function at each actor of the session.

The second invocation, instead, is directly handled by the group method without
context predicates (as editor-3 does not fulfil the context predicate of the other group
method). Then, its propagation continues in the same way as the propagation of the
other invocation.

Note that because the leader editor is contained in an actor, it can only process one
invocation at a time.7 The containing actor also ensures that invocations to the leader are
propagated to the other editors, in the same order in which they are received. Finally, the
:uninterruptible qualifier of the two group methods guarantees that the propagations of
different invocations are not interleaved.

6.4.3 Discussion
Combining futurised, predicated and group generic functions enhances the implementa-
tion of empathic group behaviour as follows:

• Our model enables the definition of empathic behaviour for a distributed group
of entities. Group classes implicitly collect their instances even if they reside in
different actors. Group methods can propagate invocations over such actors. The
propagation to remote actors is asynchronous and with explicit support to deal with
network failures.

• Our model enables a group of services to further contextualise the incoming invoca-
tions. Group and peer methods can be specialised on any context condition. This
condition is represented by a context predicate.

We now review Lambic in the light of the requirements for group behaviour in ambient-
oriented programming (Section 3.4.2).

Distributed Group Behaviour

Lambic’s integrated model for distributed and group behaviour complies with the follow-
ing requirements.

7This also includes invocations coming from its GUI, which are also asynchronously processed. We
show this in Section 7.2.

6.4. GROUP GENERIC FUNCTIONS IN AMOP 155

editor-1 editor-2

(paint-shape editor-1
 shape-1
 "gray")

peer
level

group
level

paint-shape method

paint-shape group method

paint-shape group method
when not-leader

editor-3
(leader)

(paint-shape editor-3
 shape-1
 "blue")

actor-1 actor-2 actor-3

Figure 6.5: Context-dependent distributed propagation.

Decentralised Group Behaviour Management. In Lambic, group classes can im-
plicitly discover their instances located in remote actors. This occurs in a decentralised
fashion, using Lambic’s publish/subscribe discovery mechanism. Additionally, our model
enables each instance of a group class to be aware of the discovery, disconnection and
reconnection of its peers. This is achieved by means of event handlers in the form of
methods specialised on the group class.

Decoupled Group Communication. Lambic ensures a decoupled communication
model for both interactions with the group and interactions between the group members:

Space decoupling Group generic functions can be invoked without mentioning the phys-
ical addresses or locations of the instances of the group class. Similarly, no address
or location is required to propagate the invocations to the different instances of the
group class. The propagation is declaratively specified (by means of propagation
predicates), and implicitly executed (by invoking the call-next-method form).

Synchronisation decoupling Remote group generic functions can be only invoked asyn-
chronously. The result of the invocations can be handled also exclusively asyn-
chronously. Likewise, the propagation of an invocation to remote actors is also
strictly asynchronous.

156 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Time decoupling A group generic function can be remotely invoked even if the actor
containing it becomes temporarily unavailable. For such a case, our model buffers
the invocation until the connection with the remote actor is re-established. The
same support is provided for the propagation to an instance of the group class that
becomes temporarily unavailable.

Arity decoupling Invocations to group generic functions can be propagated and pro-
cessed by all or a subset of the peer objects of a group class. However, no explicit
enumeration is required. The peers are implicitly selected through the execution of
the intensional propagation predicates.

Connection-independent Failure Handling. In addition to the event handlers for
disconnection and reconnection, Lambic provides a time-based failure handling mecha-
nism. An invocation of a remote group generic function, as well as its propagation to
different actors, can be annotated with a timeout. The result of the invocation is awaited
for the period indicated in the timeout, even if temporary disconnections affect the in-
voked actor.

Context-dependent Group Behaviour

Lambic’s integrated model for context dependency and group behaviour, complies with
the following requirements.

Context-dependent Selection of Group Behaviour. Group methods with context
predicates enable group generic functions to provide multiple ways to propagate invoca-
tions. A group generic function can have several group methods specialised on different
context conditions. As such, they can be dynamically selected and composed according to
the context of each invocation. This allows the definition of more advanced collaboration
schemes among the peer objects of a group class, as the example of leader-driven group
behaviour presented in Listing 6.10 (further developed in Section 7.2).

Activation Scope of Group Behaviour. A group generic function can define the
behaviour for a group class whose peer objects are located in different actors. The effective
method for an invocation to such a group generic function has to be reevaluated after
every propagation performed by one of its group methods. This is because each peer can
be in a different context (e.g. located on a different actor), which may require different
combinations of group and peer methods.

When processing invocations to group generic functions, the applicable methods have
to be recomputed after the execution of every group method. This is because the propa-
gation specified in a group method may lead to invocations to remote actors (the different
locations of the instances of a group class).

Preserving Modularity and Composability. Finally, Lambic preserves the modu-
larity and composability of the programs even when combining futurised, predicated and

6.5. CONCLUSION 157

group generic functions. The group and peer level of a group generic function are still
separated. Each level can have context-dependent variations, but they are also separated
in different group or peer method definitions. There is no explicit reference between the
methods. They can only anonymously access each other by means of the call-next-
method form, and for the group level, also by means of the call-peer-method form. Both
forms call the next most specific method to be processed, which is dynamically selected
and sorted (based on their parameter specialisers and context predicates).

6.5 Conclusion
In this chapter, we have introduced a novel approach to model collaborations between
similar services, called the empathic group behaviour pattern. In this pattern, services can
implicitly receive invocations addressed to their peers, and respond to them according
to their execution context. The key property for achieving this is to make the group
behaviour part of the shared definition of the services.

In Lambic, we introduce empathic group behaviour to ambient-oriented programming
in a model called group generic functions. This model provides two main abstractions:
group classes and group methods. Group classes enable peer objects to be aware of
each other. Group methods declaratively define the propagation of invocations among
the instances of the group classes. The group generic function model allows for full
encapsulation of the group concern (clients can be unaware of the group behaviour),
modularity (the group behaviour is explicitly separated from the base or peer behaviour)
and dynamic composability (group and peer methods are dynamically selected and sorted
for every invocation).

We have successfully integrated group generic functions with the other features of
Lambic, futurised and predicated generic functions. As such, group generic functions can
be propagated to a group class with instances located in different actors. In addition,
the group and base level behaviour of group generic functions can have several definitions
specialised on different contextual conditions. Finally, group generic functions can be
remotely invoked in an asynchronous fashion. Our model enables group generic functions
to implicitly deal with asynchronous results (i.e. futures).

Lambic’s integrated solution enables developers to gracefully deal with event-driven
distribution, context dependency and group behaviour. In what follows, we illustrate
the benefits of this integration through the development of the scenarios introduced in
Chapter 2.

158 CHAPTER 6. GROUP BEHAVIOUR IN LAMBIC

Chapter 7

Lambic at Work

This chapter presents the validation of the Lambic programming language model. We
focus on the expressiveness of Lambic to modularise context dependency and group be-
haviour in the AmOP paradigm. We evaluate this expressiveness with respect to the
requirements for modularity identified in Chapter 3. These requirements are derived
from our study of the programming language research literature on event-driven distri-
bution, context dependency and group behaviour. As explained in Chapter 3, the main
claim of our work is that these concerns cannot always be handled in isolation. Thus, it
should be possible to integrate the support provided for the three concerns.

The following list summarises the requirements for such an interdependent support
(further details can be found in Section 3.4):

Context dependency in AmOP The language support required for event-driven dis-
tribution should not hinder the semantics of inheritance-based composition and
dynamic method dispatch. There should be a controlled propagation of asynchrony
(RI.1) and network failures (RI.2) in programs. Additionally, a programming lan-
guage model should provide a consistent scope for context-dependent adaptations
of event-driven programs (RI.3).

Group behaviour in AmOP Protocols for group membership should work in a peer-
to-peer fashion (RI.4). In addition, intra- and inter-group computations should use
a decoupled communication model (RI.5). Finally, the support to handle network
failures affecting group interactions should be resilient to transient disconnections
(RI.6).

Context dependency in Group Behaviour Programming languages should enable
the definition and dynamic selection of group protocols according to context (RI.7).
The model should also provide a consistent scope for context-dependent variations
of group behaviour (RI.8). Finally, the modularity required for context-dependent
behaviour should not hamper the modularity required for group behaviour (RI.9).

159

160 CHAPTER 7. LAMBIC AT WORK

In this chapter, we show two expressiveness experiments we have carried out in Lambic.
These experiments correspond to the implementations of the two pervasive computing
services introduced in Chapter 2. In that chapter, we have argued that in pervasive
computing, software entities providing similar functionality should abstract from specific
locations and identities, and run in the environment as a single pervasive service. We
have called such a property the pervasive identities of the services. We now illustrate how
Lambic helps developers to model pervasive identities in software services.

We assess the resulting services’ programs with respect to the above requirements.
Finally, we discuss our solution in relation to the research literature presented in Chap-
ter 3.

7.1 Kriek: A Pervasive Communication Service
Kriek is a communication service for pervasive computing. It is an extension of the
scenario of the chat application presented in the AmbientTalk literature [VME+11]. Kriek
features two main properties:

Step #1 First, this pervasive computing service allows nearby people to talk with each
other. For this, users must be able to discover all proximate chat instances without
any preliminary configuration [Van08].

Step #2 Additionally, Kriek enables its user to maximise the devices at his disposal. The
different functionalities required for chatting can be dynamically distributed across
such devices. This distribution can be adapted according to the dynamic changes
in the environment. The user can have a single account that he can simultaneously
use on all devices.

Figure 7.1 illustrates these properties. Step #1 considers the case of several users co-
located in the same environment. We assume that each user has a device with an instance
of the Kriek chat. In Step #2, we assume additionally that some users have more than
one device, also with an instance of Kriek. In what follows, we show how Lambic provides
the appropriate programming support to build this service. We highlight the main details
of the implementation of Kriek and refer the reader to Appendix C for further details.

7.1.1 Step #1: Basic Behaviour for Communication
Listing 7.1 shows the implementation of the Kriek communication service as the kriek-
chat group class. This group class contains the standard state of a chat such as the user’s
name (the username field), the address book with his contacts (the address-book field),
and the record of the user’s conversations (the history field). Additionally, kriek-chat
includes a gui field bound to the chat’s user interface.

The fields of the kriek-chat group class are defined with different (standard CLOS)
options. The username field provides an :initarg option with a keyword that is used when
instantiating kriek-chat, to indicate an initial value for this field. The address-book and
history fields provide an :initform option to set their default values (a hash table and

7.1. KRIEK: A PERVASIVE COMMUNICATION SERVICE 161

Mobile ad hoc
network

Alice

Bob

Dave

Bob's
devices

Mobile ad hoc
network

Alice
Bob

Dave
Kriek

instances

Case #2Case #1

Figure 7.1: The Kriek chat service.

an empty list respectively). Finally, the four fields define an accessor function (denoted
with the :accessor option) to get and set values from and to the fields.

; Definition of Kriek chat service as a group class
(defgroupclass kriek-chat ()

((username :initarg :username
:accessor chat-username)

(address-book :initform (make-hash-table :test ’equal)
:accessor chat-address-book)

(history :initform ’()
:accessor chat-history)

(gui :accessor chat-gui)))

; Sample driver code
(defvar *alice-chat* (make-instance ’kriek-chat :username “Alice”))

Listing 7.1: The Kriek chat service as a group class.

162 CHAPTER 7. LAMBIC AT WORK

Managing Contacts.

Listing 7.2 illustrates the method definitions for handling discovery and connectivity
events of the Kriek service. The kriek-chat group class implicitly gathers its instances
available in the environment. This group class notifies the discovery of the instances by
invoking the peer-discovered generic function. We can then define a peer-discovered
method specialised on the kriek-chat group class to add the chat’s contacts to its address
book. In this method, we first request the contact’s name by invoking chat-username on
the remote chat. The invocation is specified within a try-catch form so that we can
handle timeout exceptions (returning nil in such a case). Only if the contact’s name is
received, the contact is added to the local chat’s address book and notified to the user.
Finally, because this method contains an asynchronous remote invocation, it is annotated
with the :interruptible execution qualifier.

The connectivity of a chat’s contacts can be notified to its user by defining methods for
the peer-disconnected and peer-reconnected generic functions. We use these methods
to reflect the contacts’ changes of status in the chat’s GUI.

; Handling discovery of contacts
(defmethod peer-discovered :interruptible ((chat kriek-chat) remote-chat)

(let ((remote-username (try-catch (chat-username remote-chat)
(timeout-exception () nil))))

(if remote-username
(begin

(add-contact chat remote-username remote-chat)
(display-contact chat remote-chat)))))

; Handling disconnection of contacts
(defmethod peer-disconnected ((chat kriek-chat) remote-chat))

(hide-contact chat remote-chat))

; Handling reconnection of contacts
(defmethod peer-reconnected ((chat kriek-chat) remote-chat))

(display-contact chat remote-chat))

Listing 7.2: Handling discovery and connectivity of contacts.

Sending and Receiving Text Messages.

Figure 7.2 presents a sequence diagram of the communication between two kriek-chat
instances. The local chat receives an invocation to send a text to a remote chat. This text
is wrapped in a text message and transmitted to the corresponding chat. Subsequently,
both local and remote chats have to display the text message and to store it in their
history field. In Lambic, rather than replicating these invocations in the methods for

7.1. KRIEK: A PERVASIVE COMMUNICATION SERVICE 163

send-text

local chat remote chat

put-text-message

display-text-message

store-text-message

display-text-message

store-text-message

group method's
propagation

Figure 7.2: Sending and receiving chat messages.

sending and putting text messages, we include them in a put-text-message group generic
function which, when invoked, is propagated to the two chat instances.

Listing 7.3 shows the definition of this behaviour. To model text messages we define a
message struct. A struct is a typed data structure of Common Lisp which, unlike Lambic
classes, is serialised using by-copy semantics [BDG+88]. As such, we can ensure that the
remote chat receives a copy of the message, and not a remote reference to it.

We then define a send-text generic function with a method specialising its first ar-
gument on the kriek-chat group class. This method creates an instance of the message
struct and passes it as argument to the invocation of the put-text-message group generic
function.

The put-text-message group generic function contains a group method and a peer
method. To propagate invocations to the local and remote chats, the group method
uses an in-text-message? predicate in its propagation expression. This predicate checks
whether an instance of the kriek-chat group class is either the sender or receiver of the
message. In the propagation expression, we set the :due-in option to nil to allow that
messages are transmitted to the remote chat, despite any disconnection. We also set the
:return option to nil as no result is expected from this group generic function. Finally,
the peer method of the put-text-message group generic function invokes the display-
text-message and store-text-message group generic functions. We explain these group
generic functions in the following section.

; Text message
(defstruct message sender receiver text)

; Send text to contact
(defmethod send-text ((chat kriek-chat) remote-chat text)

(let ((message (make-text-message :sender chat :receiver remote-chat :text text)))
(put-text-message chat message)))

164 CHAPTER 7. LAMBIC AT WORK

; Put text message in contact’s and sender’s chat
; GROUP LEVEL
(defgroupmethod put-text-message ((chat kriek-chat) text-message)

(:propagate ((in-text-message? chat text-message)) :due-in nil
:return nil)

(call-next-method))

; PEER LEVEL
(defmethod put-text-message ((chat kriek-chat) text-message)

(display-text-message chat text-message)
(store-text-message chat text-message))

; Propagation predicates
; Check if chat is the message’s sender or receiver
(defmethod in-text-message? ((chat kriek-chat) text-message)

(or (equal chat (text-message-sender text-message))
(equal chat (text-message-receiver text-message))))

Listing 7.3: Sending text messages.

7.1.2 Step #2: Adding Support for Pervasive Identities
In the second part of the scenario of Kriek, we assume that a user can have several chat
instances running on different devices. This setting enables the definition of coordination
schemes for the Kriek instances. In this example, we focus on the execution of the group
generic function to receive text messages, put-text-message. As shown in Listing 7.3,
this group generic function contains a method that displays and stores the messages.
Instead of plainly performing both operations on every device, we assume the following
distribution of tasks:

1. Displaying a message is a two-step process. First, we notify the message on every
device. For this, we use a global notification system [Wik11b] which allows showing
the message in a short-lived pop-up window.1 Second, we add the message to the
window displaying the conversation between the user and the contact sending or
receiving the message. This window is open on only one device at a time (on the
device that the user is actively using).

2. Messages are always stored on the same device. This means that messages sent
or received on other devices should be eventually transmitted to this device. If
the device is offline the transmission of the messages is postponed until it becomes
available again.

1In our implementation we use the Growl notification system [Tea11]

7.1. KRIEK: A PERVASIVE COMMUNICATION SERVICE 165

chat at cellphone chat at tablet
(text-chat peer)

chat at laptop
(storage peer)

(display-text-message chat message)

peer
level

group
level

display-text-message method
when text-chat-peer?

display-text-message method

display-text-message group method

Figure 7.3: Execution of display-text-message group generic function.

To accomplish these requirements we establish a number of roles for the chat instances.
We refer to the chat instance responsible to display the text-based conversations as the
text-chat peer. Similarly, we call the instance in charge of storing the messages the storage
peer. With these roles we can easily define the distributed behaviour required to display
and store messages. We represent these operations by the display-text-message and
store-text-message group generic functions, respectively.

Displaying Text Messages

Listing 7.4 shows the implementation of the display-text-message group generic function.
Its execution is illustrated by Figure 7.3. This group generic function provides a group
method that propagates the invocations to all the chat instances that belongs to the same
user. We check this context condition using the same-user? propagation predicate. It
compares the user of each chat instance available in the environment, with the user of the
instance originally passed as argument in the invocation. The propagation returns nil as
result. In this case, this result also corresponds to the return value of the group method.

At the peer level, the display-text-message group generic function has two methods.
The first one is specialised on the text-chat peer role. We represent this role dependency by
associating the method with a text-chat-peer? context predicate. This method displays
the message in a chat window (invoking the display-text-message-in-window generic
function), and calls the next method. The second method has no context predicate and
as such it is executed by all the chat instances of the user. In this method we include the
invocation to the notification system (using the notify-text-message generic function).

166 CHAPTER 7. LAMBIC AT WORK

; Display text message
(defgroupgeneric display-text-message (chat text-message)

(:predicates text-chat-peer?))

; GROUP LEVEL
(defgroupmethod display-text-message ((chat kriek-chat) text-message)

(:propagate ((same-user? chat (original chat)))
:return nil)

(call-next-method))

; PEER LEVEL
; When chat plays the text-chat-peer role
(defmethod display-text-message ((chat kriek-chat) text-message)

(:when (text-chat-peer? chat))
(display-text-message-in-window chat text-message)
(call-next-method))

; Default peer behaviour
(defmethod display-text-message ((chat kriek-chat) text-message)

(notify-text-message chat text-message))

; Propagation predicate
; Check if chat’s username equals the username of the chat
; passed originally as argument to the group generic function
(defmethod same-user? ((chat kriek-chat) original-chat)

(let* ((address-book (chat-address-book original-chat))
(contact (get-contact address-book chat))
(original-username (chat-username original-chat)))

(equal (contact-username contact) original-username)))

Listing 7.4: Displaying text messages.

Storing Text Messages

Listing 7.5 shows the implementation of the store-text-message group generic function.
Its execution is illustrated by Figure 7.4. Unlike the case of display-text-message, this
group method of store-text-message propagates the invocation only to the chat desig-
nated as the storage peer (using the storage-peer? predicate). Also, the propagation’s
timeout is set to nil to ensure that messages are eventually transmitted to the storage
peer, despite temporary disconnections. Finally, at the peer level, the store-text-message
group generic function has a method that save the messages in the chat’s history.

Note that in the body of the method implementing the storage-peer? propagation
predicate, we define the invocation of the chat-role accessor function within a try-catch
form. The reason for this is that storage-peer? is tested for local and remote chats.
Thus, we have to handle timeout exceptions for invocations of chat-role on remote chats.

7.1. KRIEK: A PERVASIVE COMMUNICATION SERVICE 167

chat at cellphone chat at tablet
(text-chat peer)

chat at laptop
(storage peer)

(store-text-message chat message)

peer
level

group
level

store-text-message method

store-text-message group method

Figure 7.4: Execution of store-text-message group generic function.

For the same reason, the storage-peer? method is annotated with the :interruptible
execution qualifier.

Note also that the storage-peer? propagation predicate will be re-evaluated for all
the peer chats, at every invocation of the store-text-message group generic function.
This may lead to important execution and network traffic overheads (due to the local and
remote invocations made by this predicate). In Section 7.2.7, we further discuss these
issues.

; Store text message
(defgroupgeneric store-text-message (chat text-message))

; GROUP LEVEL
; Propagate to chat playing storage-peer role
(defgroupmethod store-text-message ((chat kriek-chat) text-message)

(:propagate ((storage-peer? chat)) :due-in nil
:return nil)

(call-next-method))

; PEER LEVEL
; Record text message in chat’s history
(defmethod store-text-message ((chat kriek-chat) text-message)

(push text-message (chat-history chat)))

; PREDICATE
(defmethod storage-peer? :interruptible (chat)

(let ((role (try-catch (chat-role chat)
(timeout-exception () nil))))

(equal role “storage-peer”)))

168 CHAPTER 7. LAMBIC AT WORK

; Definition of Kriek chat service as a group class
(defgroupclass kriek-chat ()

(...
(role :initform nil :accessor chat-role)))

Listing 7.5: Storing text messages.

7.1.3 Evaluation
Using Lambic, we ensure the following properties in the implementation of the Kriek
service:

Context Dependency in AmOP. Lambic’s implicit handling of asynchronous results
(using futures) avoids that the semantics of method selection and composition are affected
by asynchronous remote invocations. In the implementation of Kriek, we can notice this in
the direct programming style used to define the group generic functions. For instance, the
storage-peer? propagation predicate invokes the chat-role accessor function on remote
chat instances. This invocation is internally converted and executed asynchronously. As
such, its result can be directly used in the rest of the predicate’s body. Furthermore,
the result of the predicate is also directly used by the store-text-message group generic
function.

Lambic enables dealing with network failures in a direct style as well. Remote invo-
cations are implicitly associated with a timeout. Timeout exceptions are handled with a
try-catch form. In the Kriek service, we use this form for the remote invocation made
by the storage-peer? propagation predicate. This way we avoid that timeout excep-
tions interfere with the execution semantics of the group method that use such predicate
(store-text-message).

In Lambic, the activation scope of context-dependent adaptations is restricted to the
execution of an invocation of a generic function. This scope is respected even in case of
interleaved executions of several invocations. In Kriek, we can observe this property in
the execution of the peer level of the display-text-message group generic function. The
selection and composition of peer methods is determined by the context and is preserved
until the invocation is completely processed. Note, however, that these methods are
executed synchronously. As such there are no possibilities of interleaving.

Group Behaviour in AmOP. In Lambic, the group management occurs in a fully
decentralised fashion. Group peers can be informed about each other’s discovery and
changes in connectivity (by means of the peer-discovered, peer-disconnected and peer-
reconnected generic functions). We define methods for such generic functions specialised
on the kriek-chat group class. We use these methods to keep each chat’s contact up to
date.

Lambic features a decoupled model for group communication (as described in Sec-
tion 4.4.2). In the group behaviour of Kriek, there is no mention of concrete addresses

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 169

or locations of the chats (space decoupling). Communication between chats is only asyn-
chronous (synchronisation decoupling). Messages to disconnected chats can be implicitly
stored until they become available again (time decoupling). Finally, a user can have
several chat instances. Still, he can be reached at one instance which will propagate the
message. This propagation is transparent for the sender of the message (arity decoupling).

Lambic enables communication to abstract from network failures. As said before,
this is achieved by means of a time-based network failure handling mechanism. In the
implementation of Kriek, this mechanism is used in the definition of its group behaviour
(inside the propagation predicates).

Context Dependency in Group Behaviour. Lambic enables group behaviour to
have context-dependent variations. However, this property is not relevant for this sce-
nario. We better illustrate this in the next scenario (Section 7.2.4).

As in the case of context-dependent behaviour, in Lambic the activation scope of group
behaviour is also restricted to the execution of an invocation of a generic function. This
scope is preserved even in case of interleaved executions of invocations. This feature is
also better illustrated by the next scenario (Section 7.2.4).

Lambic successfully modularises the definition of Kriek. None of the functionalities
required by this service are intermingled. There is a strict separation between base and
group behaviour, as in the cases of the put-text-message, display-text-message and
store-text-message group generic functions, and between base and context-dependent
behaviour, as in the peer level definition of the display-text-message group generic func-
tion. Furthermore, the programs invoking the group generic functions can be unaware
to such group and context-dependent behaviour. Our model enables the Kriek service to
dynamically select and compose its behaviour according to the execution context. For
instance, invocations of the display-text-message group generic function are executed
and propagated differently according to the roles of the chat peers received as arguments.

Open Issue

Finally, the implementation of Kriek also reveals an important issue in our model. The
propagation and context predicates are evaluated for every invocation of the generic func-
tion that uses them. This may have negative consequences for the efficiency and network
traffic. We further discuss this issue and propose an elementary solution, in the context
of a larger and more complex scenario presented in the next section.

7.2 Geuze: A Collaborative Drawing Editor
The second scenario in this validation chapter is a drawing editor for pervasive computing,
called Geuze. Geuze features a set of graphical operations for creating, selecting, drawing,
moving and painting shapes. Additionally, this editor enables nearby devices to create
collaborative editing sessions on a common canvas. These features entail a number of
non-trivial issues for distribution, context dependency and group behaviour. Yet, Lambic

170 CHAPTER 7. LAMBIC AT WORK

enables dealing with such issues in an incremental way. For this scenario we propose the
following development steps:

Step #1 We first define the base functionality of Geuze (Section 7.2.2). This includes
the behaviour and state required for the editor’s graphical operations.

Step #2 We add context-dependent variations to the base functionality (Section 7.2.3).
In this implementation, such variations are related mainly to the handlers of GUI
events.

Step #3 We define the group behaviour of Geuze, i.e. the coordination protocol required
to ensure a consistent replica of the drawing at each editor (Section 7.2.4).

Step #4 We add context-dependent variations to the group behaviour (Section 7.2.5).
In this case, the variations correspond to different propagation strategies for the
graphical operations.

Step #5 Finally, we complete the support for distribution (Section 7.2.6). This com-
prises handling the editors’ discovery and disconnections, adding timeouts and ex-
ception handlers to remote interactions, and annotating methods with the appro-
priate execution qualifiers.

In this section, we present the implementation of Geuze following the above steps
sequentially.2 For the sake of conciseness, we focus our discussion on a particular use
case:

A user moves a shape in his editor. For this, the user has to select the shape
first and then perform the move. Both the selection and move operations have
a visual effect. The former is manifested by drawing a halo around the shape.
The latter causes a shift in the shape’s position.

In the remainder of this section, we focus on the development of the operations for
selecting and moving shapes. Further details about the implementation of this service
can be found in Appendix D.

7.2.1 A Quick Overview of the Implementation of Geuze
Figure 7.5 gives a quick overview of the implementation of Geuze. In particular, this figure
shows the select-shape graphical operation. All the other graphical operations require a
similar support. We have developed this operation incrementally following the five steps
presented above:

• Definition of the basic behaviour of the select-shape operation (Step #1). For in-
stance, the behaviour to draw a halo around the selected shape.

2Nevertheless, some program listings can still contain implementation details explained only in further
steps.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 171

(s
el

ec
t-

sh
ap

e
ed

it
or

-1

sh

ap
e-

2

ed
it

or
-1

)

w
he

n
sh

ap
e-

ow
ne

r?

w
he

n
sh

ap
e-

cl
ie

nt
?

mo
us

e-
do

wn
mo

us
e-

mo
ve

mo
us

e-
up

(m
ou

se
-d

ow
n

ed
it

or
-1

sh

ap
e-

2

10

 2
0)

w
he

n
pa

in
tin

g?

w
he

n
m

ov
in

g?

w
he

n
dr

aw
in

g?

w
he

n
dr

aw
in

g-
se

le
ct

io
n?

w
he

n
se

le
ct

in
g?

w
he

n
de

se
le

ct
in

g?

pe
er

le

ve
l

gr
ou

p
le

ve
l

(c
al

l-
ne

xt
-m

et
ho

d)

sh
ap

e-
1

sh
ap

e-
2

sh
ap

e-
3

sh
ap

e-
1

sh
ap

e-
2

sh
ap

e-
3

sh
ap

e-
1

sh
ap

e-
2

sh
ap

e-
3

ed
ito

r 1
ed

ito
r 2

ed
ito

r 3

St
ep

 #
2

St
ep

 #
1

St
ep

 #
3

St
ep

 #
4

St
ep

 #
5

Ba
se

 b
eh

av
io

ur
 fo

r
gr

ap
hi

ca
l o

pe
ra

tio
n

M
od

ul
ar

is
at

io
n

an
d

dy
na

m
ic

 c
om

po
si

tio
n

of

gr
ap

hi
ca

l o
pe

ra
tio

ns

M
od

ul
ar

is
at

io
n

an
d

dy
na

m
ic

 c
om

po
si

tio
n

of

gr
ou

p
be

ha
vi

ou
r

C
on

te
xt

-d
ep

en
de

nt

pr
op

ag
at

io
n

of

gr
ap

hi
ca

l o
pe

ra
tio

n

H
an

dl
in

g
di

st
rib

ut
io

n
is

su
es

G
U

I e
ve

nt
 h

an
dl

er
s

as
 p

re
di

ca
te

d
ge

ne
ric

 fu
nc

tio
ns

se
le
ct
-s
ha
pe

 g
ra

ph
ic

al
 o

pe
ra

tio
n

as
 a

 g
ro

up
 g

en
er

ic
 fu

nc
tio

n

Fi
gu

re
7.

5:
O

ve
rv

ie
w

of
th

e
se

lec
t-s

ha
pe

gr
ap

hi
ca

lo
pe

ra
tio

n
in

G
eu

ze
.

172 CHAPTER 7. LAMBIC AT WORK

• Definition of the event handler that triggers the select-shape operation (Step #2).
Because several operations can use the same event, it should be possible to define
different event handlers (one for each operation), and to dynamically select them
according to the context of use.

• Definition of the group behaviour for select-shape (Step #3). It corresponds to a
leader-based coordination scheme required to ensure that only one editor can select
a shape at a time.

• Definition of context-dependent propagation of invocations of the select-shape op-
eration, e.g. according to the roles of the editors (Step #4).

• Definition of support for disconnections affecting group behaviour of select-shape
(Step #5).

In what follows, we review each of these steps in detail.

7.2.2 Step #1: Basic Behaviour for Graphical Operations

The basic functionality of Geuze is structured around two main entities: editors and
shapes. These entities are represented by the group classes, geuze-editor and geuze-
shape (we justify this decision in Section 7.2.4). The geuze-editor group class contains
the state required for the graphical operations of the editor, e.g. a list of shapes, a canvas,
drawing tools such as a brush, etc. The geuze-shape group class contains the standard
properties of shapes, e.g. position, size, colour, etc. Listing 7.6 outlines the definition of
these group classes.

; Definition of geuze-editor group class
(defgroupclass geuze-editor (pinboard-layout)

((username :initarg :username :accessor editor-username)
(shapes :initform nil :accessor editor-shapes)
(canvas :accessor editor-canvas)
(brush-active :initform nil :accessor brush-active) ...)

; Definition of geuze-shape group class
(defgroupclass geuze-shape (pinboard-object)

((name :initarg :name :accessor shape-name)
(user-editor :initform nil :accessor shape-user) ...))

; Definition of geuze-rectangle group class
(defgroupclass geuze-rectangle (geuze-shape) ())

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 173

; Definition of geuze-circle group class
(defgroupclass geuze-circle (geuze-shape) ())

; Definition of geuze-drawn-shape group class
(defgroupclass geuze-drawn-shape (geuze-shape) ())

Listing 7.6: Geuze’s group class definitions.

Part of the state and behaviour of the Geuze group classes is inherited from a Common
Lisp library for graphical interfaces, called the CAPI library [Ric90]. In the listing, we
mark the references to the library in grey.3 The geuze-editor group class extends the
pinboard-layout class which defines the functionality for a pane of graphical objects.
The geuze-shape group class extends the pinboard-object class which defines the drawing
capabilities for objects contained in a pinboard-layout object. In the listing above, we also
include three concrete kinds of shapes —circles, rectangles and drawn shapes (i.e. shapes
drawn by the user)— which we represent as the geuze-circle, geuze-rectangle and geuze-
drawn-shape group classes respectively. The three of them are subclasses of geuze-shape.

Listing 7.7 shows the definition of the graphical operations for moving and selecting
shapes. In short, the move-shape method sets a new position for the shape by changing
its pinboard-pane-position property. The select-shape method sets a new user for the
shape and invokes the invalidate-rectangle generic function. Both actions cause the
shape to be redrawn by implicitly invoking the draw-pinboard-object generic function.

; Set and display new position for shape
(defmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y)

(apply-in-pane-process editor
(lambda (shape x y)

(with-geometry shape
(setf (pinboard-pane-position shape)

(values (+ %x% x) (+ %y% y)))))
shape x y))

; Set editor as shape’s user and display selection effect
(defmethod select-shape ((editor geuze-editor) (shape geuze-shape) user-editor)

(setf (shape-user shape) user-editor)
(apply-in-pane-process editor

(lambda (shape)
(invalidate-rectangle (pinboard-object-pinboard shape)))

shape))

3In this section, we give only an intuitive idea of the CAPI operations. Further details about their
syntax and semantics are not necessary to understand our model. We include the operations in the
listings mostly to show Lambic’s compatibility with existing libraries.

174 CHAPTER 7. LAMBIC AT WORK

; Draw pinboard object
(defmethod draw-pinboard-object ((editor geuze-editor) (shape geuze-shape))

(if (shape-user shape)
(draw-selection-effect editor shape))

(draw-shape editor shape))

Listing 7.7: Geuze’s base behaviour.

7.2.3 Step #2: Modularisation and Dynamic Composition of
Graphical Operations

Each graphical operation of the Geuze editor requires an interaction pattern. A pattern is
expressed in handlers for one or more GUI events. Additionally, the same GUI event can
be used in several patterns. Table 7.1 shows the patterns for the operations that depend
on mouse events. We refer to such patterns as the editor’s modes of operation. Pressing
the mouse button will trigger a different set of actions depending on the mode used. For
instance, a same mouse-move event provokes a displacement of the shape when the editor
is in moving mode, whereas a line is drawn —a completely different behaviour— when
the mode is drawing.

The decision which operation mode should handle an event depends on the context of
use. This context comprises the editor’s state and any data passed to the event. Table 7.2
identifies the context conditions for each operation mode. For instance, the moving mode
will handle a mouse-move event whenever this event occurs on a shape and the brush
of the editor is not active. Conversely, if no shape is found and the brush is active, the
drawing mode will be used instead.

There are cases in which two operations correspond to the same mouse-down event.
If a deselected shape is moved, the shape is first selected, and then moved. This order of
operations, although not apparent in tables 7.2 and 7.1, is an integral part of the normal
behaviour of the editor and needs to be properly encoded.

Figure 7.6 illustrates Lambic’s solution for modularising and dynamically composing
graphical operations based on the context. As previously discussed in Section 5.2, in
Lambic we model GUI event handlers as predicated generic functions. As such:

• We can cleanly handle the mouse events in separate methods. Each method is
specialised on a context predicate representing a different operation mode. The
predicate contains the context conditions specified for the mode.

• Methods defined for different generic functions can use the same predicate. This
way we model operation modes that span several mouse event handlers.

• The priority order among the predicates defined at each generic function allows the
consistent composition of the operation modes.

Figure 7.6 also shows the context-dependent execution of an invocation of the mouse-
down generic function. This invocation occurs on a shape that is not in use, and when

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 175

Mode Actions
Mouse down Mouse move Mouse up

Painting paint shape — —
Moving set drag status move shape, update delete drag status

drag status
Drawing set line status draw line, update create drawn shape,

line status delete line status
Drawing — draw selection remove selection
selection square, select found

shape
Selecting select shape — —
Deselecting deselect shape — —

Table 7.1: Actions for Geuze operations

Mode Context Conditions
Painting shape found, brush active
Moving shape found, brush not active
Drawing shape not found, brush active
Drawing selection shape not found, brush not active
Selecting shape found, shape not in use
Deselecting shape not found

Table 7.2: Context conditions for Geuze operations

the brush of the editor is not active. As such, the invocation should be handled with the
mouse-down methods specialised on the selecting? and moving? context predicates.

Listing 7.8 shows the definition of the mouse-down event handler as a predicated
generic function. It declares the editor’s different operation modes as context predi-
cates (moving?, selecting?, etc.). These predicates correspond to methods containing
the mode’s context conditions. At the end of the listing we show the methods imple-
menting the moving? and selecting? predicates. The listing also presents the methods
specialised on such predicates. Remember from Section 5.1.1 that the order in which the
predicates are declared in the generic function determines the precedence order among
them.4 Thus, the method specialised on the selecting? predicate is more specific than
the method specialised on the moving? predicate. This means that if both predicates
evaluate to true only the former method is executed. Still, because that method includes
the call-next-method form in its body, the method with the moving? predicate can be
eventually also processed. Note, however, that in this implementation the invocation to
call-next-method is based on the result of the selection operation (the invocation to the
select-shape generic function).

4The last predicate of the list has precedence over the others, cf. Section 5.1.1.

176 CHAPTER 7. LAMBIC AT WORK

mouse-down mouse-move mouse-up

(mouse-down editor-1
 shape-2
 10 20)

when painting?

when moving?

when drawing?

when drawing-selection?

when selecting?

when deselecting?

generic functions

context
predicate

context-dependent execution
of generic function

operation
mode

predicated
methods

priority
order

Figure 7.6: Modularisation and dynamic composition of graphical operations.

; The mouse-down generic function
(defgeneric mouse-down (editor shape x y)

(:predicates painting? moving? drawing? drawing-selection?
selecting? deselecting?))

; mouse-down when moving shape
(defmethod mouse-down ((editor geuze-editor) shape x y)

(:when (moving? shape editor))
(setf (drag-status editor) (make-drag-status :x x :y y)))

; mouse-down when selecting shape
(defmethod mouse-down ((editor geuze-editor) shape x y)

(:when (selecting? shape editor))
(if (select-shape editor shape editor)

(call-next-method)
(display-message “Shape already in use.”)))

...

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 177

; GUI predicates
; Enters into moving mode if a shape is passed as argument
; and the editor’s brush is not selected
(defmethod moving? ((editor geuze-editor) shape)

(and shape (not (brush-active editor))))

; Enters into selecting mode if a shape is passed as argument
; and it is not in use already
(defmethod selecting? ((editor geuze-editor))

(and shape (not (shape-user shape))))

Listing 7.8: The mouse-down generic function.

The mouse-down method specialised on the moving? predicate only sets a temporary
variable drag-status. The actual move of the shape occurs in a method defined for the
mouse-move generic function. Listing 7.9 shows the rest of the implementation of the
moving operation mode. The mouse-move method invokes the move-shape generic function
and updates the drag-status variable. Finally, a method defined for mouse-up generic
functions delete the drag status by setting this variable to nil.

Note that the drag-status variable is relevant only for the moving operation mode, i.e.
for the methods specialised on the moving? predicate. Yet, in Lambic we cannot associate
state to the predicates (unlike layers in ContextL [CH05]). Therefore, we have to define
the drag-status variable as part of the state of the geuze-editor class.

; The mouse-move generic function
(defgeneric mouse-move (editor shape x y)

(:predicates moving? drawing? drawing-selection?))

; mouse-move when moving
(defmethod mouse-move ((editor geuze-editor) shape x y)

(:when (moving? shape editor))
(move-shape editor shape x y)
(let ((status (drag-status editor)))

(setf (drag-status-x status) x (drag-status-y status) y)))

; The mouse-up generic function
(defgeneric mouse-up (editor shape x y)

(:predicates moving? drawing? drawing-selection?))

; mouse-up when moving
(defmethod mouse-up ((editor geuze-editor) shape x y)

(:when (moving? shape editor))
(setf (drag-status editor) nil))

178 CHAPTER 7. LAMBIC AT WORK

; Definition of drag status struct
(defstruct drag-status x y)

; Definition of geuze-editor group class
(defgroupclass geuze-editor (pinboard-layout)

(...
; GUI temporary state
(drag-status :initform nil :accessor drag-status)
...)

Listing 7.9: The moving operation mode.

7.2.4 Step #3: Modularisation and Dynamic Composition of
Group Behaviour

We now present Geuze’s group behaviour for collaborative drawing sessions. In this
implementation, we achieve a consistent propagation of the graphical operations among
the editors. For this, we assume that co-located editors can spontaneously start a session.
In this session, they can share and modify each other’s shapes. To allow such modifications
to be consistent we adopt the following leader-based coordination protocol:5

1. We assume that each shape has an owner (the shape’s leader). This owner corre-
sponds to the editor that created the shape.

2. A shape can be modified by only one editor at a time. This requirement is ensured
by the shape’s owner. To modify a shape, an editor has to request the access from
its owner. The owner grants the access if the shape is not already in use, and
communicates this decision to all the editors of the session.

3. The editor that modifies the shape has to propagate the changes to all the editors
of the session.

4. An editor can modify more than one shape at a time. In such a case, the editor has
to request the access for each shape, as described in the second step. Modifications
uniformly affect all the shapes being used by the editor, even if it actually operates
on one of them only.

5. After the editor finishes the modification, it releases the shape (or shapes). For
this, it contacts the shape’s owner which eventually communicates the release to
the session.

In the implementation of Geuze, we associate this coordination protocol with the
editor’s graphical operations. We relate the behaviour for requesting the access to a
shape, with the graphical operation for selecting shapes. This means that selecting a

5We discuss this protocol’s support for network failures in a different section (cf. Section 7.2.6).

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 179

shape in an editor is internally handled by making a request for access from the shape’s
owner. The shape can be selected only if its owner grants access. Additionally, we
enable each graphical operation that modifies the shape (e.g. moving) to define its own
propagation strategy (e.g. to propagate the move to some or all the editors, and to all
the selected shapes). Finally, releasing the shape is represented as deselecting the shape.

We model the graphical operations as group generic functions. This way, we avoid
that the coordination protocol becomes entangled with the operations’ base functionality.
The coordination protocol can be cleanly encapsulated in group methods, while the base
behaviour is contained in peer methods (i.e. in standard methods, as previously presented
in Listing 7.7).

To enable the propagation of graphical operations among the editors, we represent
them as a group class (geuze-editor). Similarly, to allow the propagation of operations
among shapes in case of multiple selection, we also model them as a group class (geuze-
shape).

The select-shape Group Generic Function

Listing 7.10 shows the group-level definition of the select-shape group generic function.
In this definition, we distinguish the group behaviour required for the editor selecting the
shape (i.e. the shape’s client), from the one required for the shape’s owner. We model
these two cases in different group methods. The first group method of the listing above
defines the group behaviour for the owner editor. This condition is checked by the shape-
owner? context predicate (we review the implementation of the predicates used in the
group behaviour of Geuze later in Listings 7.12 and 7.13). The group method checks in
its body whether the shape is available. If this is the case, the group method propagates
the invocation to all the editors using the same-shape-name? propagation predicate. This
leads to the execution of the peer method of the select-shape group generic function at
each editor.

; Definition of select-shape group generic function
(defgroupgeneric select-shape (editor shape user-editor)

(:group-predicates in-session? shape-owner? shape-client?))

; Group method for shape’s owner
; Propagate selection to all editors
(defgroupmethod select-shape ((editor geuze-editor) (shape geuze-shape)

user-editor)
(:when (in-session? editor)

(shape-owner? shape editor))
(:propagate ((same-shape-name? editor shape (original shape)))
:return nil)

(if (not (shape-user shape))
(begin

(call-next-method)
shape)))

180 CHAPTER 7. LAMBIC AT WORK

; Group method for shape’s client
; Propagate selection to shape’s owner
(defgroupmethod select-shape ((editor geuze-editor) (shape geuze-shape)

user-editor)
(:when (in-session? editor)

(shape-client? shape editor))
(:propagate ((shape-owner? shape editor)

(same-shape-name? editor shape (original shape)))
:catch (timeout-exception () nil))

(call-next-method))

Listing 7.10: Group-level definition of the select-shape group generic function.

The second group method of Listing 7.10 defines the group behaviour for the client
editor (condition checked by the shape-client? context predicate). This group method’s
only purpose is to propagate the invocation of select-shape to the owner editor. This is
achieved by using the same-shape-name? and shape-owner? predicates in the propagation
expression.

Both group methods are also specialised on the in-session? context predicate. This
predicate ensures that the group methods are applied only if the editor invoking select-
shape is participating in a collaborative session. Otherwise, the editor will behave as
a stand-alone application (executing only the peer level definition of the select-shape
group generic function).6

Figure 7.7 illustrates the execution of an invocation of select-shape. In this example,
editor-1 selects shape-2 which is owned by editor-2. The invocation is handled at the
host of editor-1 using the group method with the shape-client? context predicate. This
group method propagates the invocation to the host of editor-2. At that location, the
invocation is processed with the group method specialised on the shape-owner? predicate.
Assuming that shape-2 is not already in use, this second group method propagates the
invocation to (the hosts of) all the editors of the session. The peer method is then executed
at each editor, displaying the selection effect for shape-2 and setting editor-1 as its user.

6In our current implementation, the in-session? predicate only checks that a session field of the
editor is not nil. We assume that this field is directly modified by users, based on whether they want to
work alone or in collaboration.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 181

editor-1

shape-1 shape-2 shape-3

editor-2
(shape-2's owner)

shape-1 shape-2 shape-3

editor-3

shape-1 shape-2 shape-3

(select-shape editor-1
 shape-2
 editor-1)

peer
level

group
level

peer method

group method
when shape-owner

group method
when shape-client

Figure 7.7: Propagation of select-shape group generic function.

; Definition of move-shape group generic function
(defgroupgeneric move-shape (editor shape x y)

(:group-predicates in-session?))

; Propagate the move to all the shapes selected by the editor
; performing the move
(defgroupmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y)

(:propagate ((same-selection? shape (original shape)))
:return nil)

(call-next-method))

; Propagate the move to all editors
(defgroupmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y)

(:when (in-session? editor))
(:propagate ((same-shape-name? editor shape (original shape)))
:return nil)

(call-next-method))

Listing 7.11: Definition of move-shape operation.

The move-shape Group Generic Function

Listing 7.11 shows the group level definition of the move-shape group generic function. In
this definition, we propagate the move to all the editors of the session. This propagation is
made directly by the editor moving the shape (without intervention of the shape’s owner,
as in the case of select-shape). Additionally, if the editor has several shapes selected on

182 CHAPTER 7. LAMBIC AT WORK

editor-1 editor-2 editor-3

shape-1 shape-2
(used by

editor-1)

shape-3
(used by

editor-1)

(move-shape editor-1
 shape-2
 10 20)

peer
level

group
level

peer method

group method
(when true)

group method
when in-session?

shape-1 shape-2
(used by

editor-1)

shape-3
(used by

editor-1)

shape-1 shape-2
(used by

editor-1)

shape-3
(used by

editor-1)

Figure 7.8: Local propagation of move-shape group generic function.

the canvas, we propagate the move to each of them. We model these two propagations in
two independent group methods.

The first group method propagates the move to all the shapes selected by the editor.
This is ensured by means of the same-selection? predicate. The second group method
propagates the move to all the editors (using the same-shape-name? predicate). It is
specialised on the in-session? predicate (as the group methods of select-shape). This
predicate makes this group method more specific than the other without any predicate.
As such, it is executed first. This means that invocations of the move-shape group generic
function are first propagated to each editor, and then to each selected shape.

Figure 7.8 illustrates the execution of an invocation to the move-shape group generic
function. In this example, we assume that editor-1 has selected shape-2 and shape-3.
When this editor moves shape-2, this operation is propagated first to the three editors of
the session, and then to shape-2 and shape-3.

Predicates for the Group Behaviour of Geuze

Listing 7.12 shows the implementation of the context predicates specialising the select-
shape and move-shape group methods. The shape-owner? predicate checks if the editor
received as second argument is the owner of the shape received as first argument. This
information is contained in the owner field of the geuze-shape group class. Conversely,
the shape-client? predicate verifies that the editor is not the owner. The in-session?
predicate corresponds to the accessor of the in-session field of the geuze-editor group
class. Note that in this implementation the information about the shape’s owner and the
editor’s session is relevant only for the group behaviour of Geuze. However, Lambic does
not provide any means to separate group-level from peer-level state. As such, we have to
model this information using standard fields in the group classes.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 183

; Check whether editor owns shape
(defmethod shape-owner? (shape editor)

(equal (shape-owner shape) editor)))

; Check whether editor does not own shape
(defmethod shape-client? (shape editor)

(not (shape-owner? shape editor)))

; Definition of geuze-shape group class
(defgroupclass geuze-shape (pinboard-object)

(...
; Group management
(owner :initarg :owner :accessor shape-owner)
...)

; Definition of geuze-editor group class
(defgroupclass geuze-editor (pinboard-layout)

(...
; Group management
(in-session :initform nil :accessor in-session?)
...)

Listing 7.12: Context predicates of Geuze’s group behaviour.

Listing 7.13 presents the implementation of the propagation predicates of the group
behaviour of Geuze. The same-shape-name? generic function is used as a propagation
predicate for the group methods of the select-shape group generic function. This pred-
icate ensures that invocations to select-shape are propagated to the “same shape” at
each editor. In this implementation, there is a replica of each shape per editor of the
session. All the replicas correspond to instances of the geuze-shape group class. To dis-
tinguish the replicas of the different shapes, we assume that each shape has a unique
name. Thus, same-shape-name? ensures that invocations to select-shape are propagated
to the instances of geuze-shape with the same name as the one originally received as
argument.

The fact that the select-shape and move-shape group methods have two parameters
specialised on group classes (geuze-editor and geuze-shape) implies an extra complexity
for the specification of propagation predicates. On the one hand, this design decision
facilitates the propagation of the graphical operations to the different editors and shapes,
as we have explained so far. On the other hand, it also implies that the propagation
can potentially include an invocation for every combination between the instances of the
two group classes (where each invocation uses a different combination as arguments, as
discussed in Section 6.2.4). Hence, the propagation predicates are required to filter the
invocations that are not pertinent to the program logic. For instance, the same-shape-
name? predicate should ensure not only that an invocation to select-shape is propagated
to the replicas of the same shape. It should also ensure that in every invocation resulting

184 CHAPTER 7. LAMBIC AT WORK

from the propagation, the editor and the replica of the shape used as arguments are co-
located in the same host (i.e. the same actor). We check this condition by using Lambic’s
co-located? built-in predicate in the same-shape-name? method.

Finally, Listing 7.13 also shows the same-selection? generic function used as the
propagation predicate in the move-shape group generic function. This predicate ensures
that invocations to move-shape are propagated to all the selected shapes. For this, the user
of each shape is compared with the user of the shape originally received as argument.7 As
previously explained in this section, this propagation occurs inside each editor. Therefore,
only local shapes (i.e. local instances of the geuze-shape group class) should be compared.
Remote shapes (i.e. remote references to geuze-shape instances) will be immediately
discarded. In our implementation, we achieve this by defining two different methods.
The first one specialises its two parameters on the geuze-shape group class. This method
effectively compares the shapes. The second method does not specialise the parameters.
It is applied when same-selection? is invoked with at least one argument which is not a
local instance of geuze-shape (returning nil as result).

; Check whether shape has the same name as the shape originally
; passed as argument to the group generic function
(defmethod same-shape-name? (editor shape original-shape)

(and (equal (shape-name shape) (shape-name original-shape))
(co-located? editor shape)))

; Check whether shape has the same user as the shape originally
; passed as argument to the group generic function
(defmethod same-selection? ((shape geuze-shape) (original-shape geuze-shape))

(equal (shape-user shape) (shape-user original-shape)))

; Return nil for arguments that are not local instances of
; geuze-shape
(defmethod same-selection? (shape original-shape)

nil)

Listing 7.13: Propagation predicates of Geuze’s group behaviour.

7.2.5 Step #4: Context-dependent Propagation of Graphical Op-
erations.

We now introduce context-dependent variations to the group behaviour of the Geuze
editor. To control the network traffic that the collaborative edition entails, we define
several propagation strategies for the graphical operations. By default, when moving a

7The shape’s user should not be confused with the shape’s owner. The former is the editor that has
requested the access to modify the shape. The latter is the creator of the shape.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 185

Figure 7.9: Context-dependent propagation of graphical operation.

shape we propagate each intermediate position of the shape (strategy called high traffic).
Alternatively, we can propagate only few intermediate positions, and to a limited number
of editors, according to some well-chosen criteria (strategy called medium traffic). For
instance, the intermediate positions can be propagated only to the editors currently dis-
playing the shape.8 Eventually, we can propagate only the final position to all the editors
(strategy called low traffic). Figure 7.9 illustrates these three strategies.

Listing 7.14 shows the redefinition of the move-shape group method that propagates the
move to all the editors of the session (introduced in Listing 7.11). We include a relevant-
position? propagation predicate that determines whether an intermediate position should
be propagated. Because this predicate corresponds to a standard Lambic generic function,
there can be several methods defining the predicate. Each method can be associated with a
different context condition, also represented as a predicate. In the example, the relevant-
position? generic function has a method without any context predicate representing the
normal traffic strategy (propagating each position). Additionally, this generic function
provides two more methods specialised on the medium-traffic? and low-traffic? context
predicates respectively.

; Propagate the move to all the shapes selected by the editor
; performing the move
(defgroupmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y

final-position)
(:propagate ((relevant-position? editor shape final-position)

(same-shape-name? editor shape (original shape)))
:return nil)

(call-next-method))

8A similar approach has been proposed in the Beernet self-managing system [MV10].

186 CHAPTER 7. LAMBIC AT WORK

; Check whether new shape’s position should be
; propagated to the session.
(defgeneric relevant-position? (editor shape final-position)

(:predicates medium-traffic? low-traffic?))

; Always propagate the new positions (normal traffic)
(defmethod relevant-position? (editor shape final-position)

t)

; Propagate the new positions only to the editors
; that are currently displaying the shape. Additionally, propagate
; the final position to everyone.
(defmethod relevant-position? (editor shape final-position)

(:when (medium-traffic? local-editor))
(or final-position

(on-focus? editor shape))

; Propagate only the final position.
(defmethod relevant-position? (editor shape final-position)

(:when (low-traffic? local-editor))
final-position)

; Check whether shape is being displayed by editor
(defmethod on-focus? :uninterruptible (editor shape)

(let ((shapes (try-catch (shapes-on-focus editor)
(timeout-exception () nil))))

(and (co-located editor shape)
(find shape shapes))))

Listing 7.14: Context-dependent propagation of move-shape group generic function.

The method specialised on medium-traffic? accepts the propagation of a new position
only to the editors displaying the shape, or to every editor if the new position is the final
one. In this case, we assume that there is a zoom functionality so that the canvas can
have a different size at each editor’s window. Thus, we use an on-focus? generic function
which checks whether an editor is currently displaying the part of the drawing where the
shape appears.

Finally, the method specialised on low-traffic? accepts the propagation of a new
position only if it is the final one.

7.2.6 Step #5: Handling Distribution Issues
In the final part of the definition of the group behaviour of Geuze, we add the support
for distribution required by this service. This includes handling discovery and connectiv-
ity of the editors, handling disconnections affecting remote interactions, and adding the
execution qualifiers to methods and group methods.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 187

Handling Discovery and Connectivity Events.

We first review how to handle the discovery and connectivity of the editors. The main
challenge in this example is to preserve a consistent collaboration among the editors de-
spite their dynamic changes of availability. To cope with this issue we adopt the following
policy:

• Editors that disconnect from each other should no longer be able to see and edit
each other’s shapes.

• Editors should automatically share their shapes when they discover each other, and
whenever they reconnect to each other.

We implement this policy by means of Lambic’s generic functions for peer discovery
and connectivity events. Listing 7.15 shows the methods for such generic functions and
which are specialised on the geuze-editor group class. In the peer-discovered and peer-
reconnected methods, an editor sends its shapes to the discovered or reconnected peer
by calling the send-owned-shapes generic function. In the peer-disconnected method,
the editor hides the shapes of the disconnected peer using the hide-disconnected-shapes
generic function. Additionally, the possibility exists that some of the editor’s shapes was
in use by the disconnected peer. In such a case the editor deselects the shapes using
the deselect-shapes generic function. Thus, they can become available for the session.
Figure 7.10 shows the execution of the three methods.

(defmethod peer-discovered ((local-editor geuze-editor) remote-editor)
(send-owned-shapes local-editor remote-editor))

(defmethod peer-disconnected ((local-editor geuze-editor) remote-editor)
(hide-disconnected-shapes local-editor remote-editor)
(deselect-shapes local-editor remote-editor))

(defmethod peer-reconnected ((local-editor geuze-editor) remote-editor)
(send-owned-shapes local-editor remote-editor))

Listing 7.15: Peer discovery and connectivity event handlers.

Handling Disconnections Affecting Remote Interactions.

Listing 7.16 shows the redefinition of the shape-owner? and same-shape-name? propaga-
tion predicates. Both predicates invoke an accessor function for a field of the geuze-shape
group class (shape-owner and shape-name respectively). Because they are tested on all
the instances of geuze-shape, we need to add special support for the tests on the remote
instances. This implies using try-catch forms to handle timeout disconnections possibly
affecting remote invocations of shape-owner and shape-name.

188 CHAPTER 7. LAMBIC AT WORK

local
editor

peer-discovered,
peer-reconnected

peer-disconnected

hide-disconnected-shapes

deselect-shapes

remote
editor

send-owned-shapes
update-shapes

Figure 7.10: Handling discovery and connectivity events.

; Check whether editor owns shape
(defmethod shape-owner? (shape editor)

(let ((owner (try-catch (shape-owner shape)
(timeout-exception () nil))))

(equal owner editor)))

; Check whether shape has the same name as the shape originally
; passed as argument to the group generic function
(defmethod same-shape-name? (editor shape original-shape)

(let ((shape-name (try-catch (shape-name shape)
(timeout-exception () nil))))

(and (equal shape-name (shape-name original-shape))
(co-located? editor shape))))

Listing 7.16: Handling disconnections affecting propagation predicates.

Note that the group-level definition of the select-shape group generic function also
needs to handle timeout disconnections. As previously explained, the two group methods
of select-shape specialised on the shape-client predicate propagates the invocations to
the shape’s owner (Listing 7.10). For the case in which the shape’s client and owner are
located on different hosts, this propagation corresponds to a remote invocation to the
shape’s owner. Lambic implicitly associates a timeout with this invocation. Timeout
exceptions are handled by the group method’s propagation expression, using the :catch
argument.

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 189

Adding Execution Qualifiers.

Finally, we add the necessary execution qualifiers to the methods and group methods of
Geuze. As explained in Section 4.4.2, Lambic throws a warning if a method that cannot
be fully processed synchronously, is not annotated with an execution qualifier. This way,
developers become aware that the execution of such a method can be interleaved with
the execution of further invocations. Table 7.3 shows the list of all the methods and
group methods discussed in this chapter which throw such a warning. For each method,
we explain why they cannot be synchronously processed. We have made this analysis
manually, tracing the execution flows of all the methods. Providing tool support for this
task remains an important part of our future work, as discussed later in Section 8.5.5.

In Lambic, asynchronous executions are related to remote invocations. However, in
Table 7.3 we can observe that only few of the methods throwing a warning make remote
invocations. We highlight such cases in red. For instance, the mouse-down method spe-
cialised on the selecting? predicate is asynchronously processed only because it depends
on the result of the select-shape group generic function. The most specific group method
of this function (the one specialised on the shape-client? and in-session? predicates) is
executed on the same actor where mouse-down is invoked. However, this group method’s
result depends on the remote execution of the second group method of select-shape
(specialised on the shape-owner? and in-session? predicates). Furthermore, determin-
ing the propagation of the first group method implies testing the shape-owner? and
same-shape-name? propagation predicates on remote shapes. Although both predicates
are evaluated locally, they have to remotely invoke accessor functions for the fields of the
shapes (shape-owner and shape-name respectively).

In the scenario of Geuze, allowing the interleaving of executions of different invocations
may have undesirable consequences with regard to the consistency of the collaborative
drawing. For instance, this is the case when interleaving two requests of selection for
the same shape (two invocations of the select-shape group generic function made from
different editors). We have discussed this case in detail in Section 4.5.4. To avoid the in-
terleavings, we annotate each method making a remote invocation with the :uninterrupt-
ible qualifier. As explained in Section 4.4.2, methods invoking such an uninterruptible
method do not have to be annotated.

7.2.7 Evaluation
Using Lambic, we ensure the following properties in the implementation of the Geuze
service:

Context Dependency in AmOP. Several parts of the implementation of Geuze show
the clean alignment between Lambic’s implicit handling of asynchronous remote invoca-
tions, and the semantics of dynamic method dispatch and composition. An example of
this is the execution of the graphical operations for selecting and moving shapes. This
includes processing the GUI events that trigger the graphical operations (mouse-down,
mouse-move and mouse-up), and the group generic functions representing such operations
(select-shape and move-shape). Lambic enables these cases to be written in a direct style

190 CHAPTER 7. LAMBIC AT WORK

Method or group method Reason for asynchronous
to be annotated execution

1 mouse-down method depends on local execution of
specialised on selecting? method #2

2 select-shape group method depends on local execution of
specialised on shape-client? and methods #4 and #5, and on
in-session? remote execution of group

method #3
3 select-shape group method depends on local execution of

specialised on shape-owner? and method #5
in-session?

4 shape-owner? method depends on remote execution of
shape-owner accessor

5 same-shape-name? method depends on remote execution of
shape-name accessor

6 move-shape group method depends on local execution of
specialised on in-session? methods #5 and #7

7 relevant-position? method depends on local execution of
method #8

8 on-focus? method depends on remote execution of
shapes-on-focus generic function

Table 7.3: Methods and group methods processed asynchronously.

while internally still executing the remote invocations in an asynchronous fashion. For
instance, the mouse-down event handler can implicitly wait for the result of the invocation
of the select-shape group generic function. This group generic function makes several
remote invocations (to contact the shape’s owner, to propagate the selection to the ses-
sion, and to evaluate propagation and context predicates). Yet, these invocations do not
obstruct the dynamic selection and composition of group and peer methods.

Geuze avoids that network failures interfere with the execution semantics of group
methods. For this, we handle possible timeout exceptions raised by remote invocations.
As in the case of Kriek, we find this support in the body of propagation predicates
(the try-catch form used in the shape-owner? and same-shape-name? methods). We also
handle timeout exceptions raised on the group methods of the select-shape group generic
function (more specifically, in the group method specialised on the shape’s client).

The handling of GUI events is a clear example of Lambic’s consistent scope for context-
dependent adaptations of behaviour. The invocation of the mouse-down generic function
results in the selection of one or more of its methods (according to the context predicates
associated with the methods). Each selected method invokes (the group generic function
of) a different graphical operation. These operations perform several remote invocations
causing the evaluation of mouse-down to be suspended. However, when the results of such
invocations are obtained, the mouse-down generic function resumes its execution using the

7.2. GEUZE: A COLLABORATIVE DRAWING EDITOR 191

same list of methods initially selected. Also, the execution is resumed at the same point
where the group generic function of the graphical operation was invoked.

The fact that the execution of mouse-down can be suspended also implies that it can
be interleaved with other executions. In the present implementation we disallow this pos-
sibility by annotating the methods making remote invocations with the :uninterruptible
qualifier.

Group Behaviour in AmOP. Lambic’s decentralised group behaviour management
enables the Geuze service to properly react to dynamic changes of availability of the peer
editors. We use the peer-discovered, peer-disconnected and peer-reconnected generic
functions to keep a consistent list of the shapes available and in-use at each editor of the
session.

Lambic’s decoupled model for group communication can also be observed in the Geuze
service. In the definition of its group behaviour there are no references to the locations
of the editors (space decoupling). The propagation of graphical operations is exclusively
asynchronous (synchronisation decoupling). The propagation of operations to discon-
nected editors is stored until they become available or the timeout is reached (time de-
coupling). Finally, the editor modifying a shape is unaware of the number of editors the
modification will be propagated to (arity decoupling, cf. Section 2.4.1).

Possible disconnections affecting the communication between peer editors are sup-
ported by Lambic’s time-based network failure handling. This mechanism is used in the
definition of the shape-owner? and same-shape-name? propagation predicates, and the
select-shape group method specialised on the shape-client predicate.

Context Dependency in Group Behaviour. In Lambic, context-dependent selec-
tion of group behaviour is achieved by allowing group methods to be specialised on context
predicates. In the development of Geuze, we use such context-dependent group methods
to provide different strategies to propagate graphical operations. For instance, in the
select-shape group generic function we define two group methods specialised on two dif-
ferent context predicates (shape-client? and shape-owner?). This way, we can propagate
the selection differently according to whether the editor is or is not the owner of the shape.
Furthermore, we associate both group methods with an additional in-session? predicate.
Thus, we ensure that they are evaluated only when the editor is in a collaborative setting.

In Lambic, the scope of group behaviour is restricted to the execution of an invocation
of a group generic function. This scope is preserved even in case of remote interactions
suspending the execution. For instance, for an invocation of the select-shape group
generic function this means that the editor selecting the shape will execute only the
select-shape group method specialised on the shape-client predicate. Similarly, the
owner editor will execute only the select-shape group method specialised on the shape-
owner predicate.

Lambic enables the modular definition of Geuze. There is a clear separation between
the code required for the editor as a stand-alone and a collaborative service. There is
also a clear distinction between the different context-dependent adaptations of behaviour,

192 CHAPTER 7. LAMBIC AT WORK

both at the group and peer levels. This modularity is especially beneficial to deal with
the complexity of this service in an incremental way.

Open Issues

In this scenario, we also encounter a number of issues:

• In Geuze, the re-evaluation of context and propagation predicates is even more prob-
lematic than in the case of Kriek. An editor propagates every single modification
to the shapes (e.g. every shift of position). Each modification corresponds to an
invocation of a group generic function (e.g. move-shape). The context-dependent
propagation strategies alleviate this problem to some extent (e.g. by adding the
position-relevant? predicate to restrict the propagation of move-shape). However,
the predicates are still re-evaluated for each invocation of the group generic function.
In our implementation, we have solved this issue by introducing a cache mechanism
(cf. Section A.7). Incorporating this mechanism to Lambic’s model remains an
important challenge for future research.

• Identifying which methods to annotate with execution qualifiers may be a non-trivial
task, especially because of the asynchrony contagion problem (the clients of methods
containing asynchronous remote invocations, are also executed asynchronously).
Lambic throws a warning for each method that is not properly annotated with
an execution qualifier. However, further support should also be provided to make
developers aware of the reasons for the warnings, e.g. based on the dependencies
between methods.

• In Lambic, group behaviour is specified on a per-generic-function basis. This has
enabled the Geuze service to define different group methods for the select-shape
and move-shape group generic functions. However, in our implementation we have
also found group generic functions requiring the same group level definition. For
instance, paint-shape and move-shape are propagated in exactly the same way. As
such, they have similar group method definitions.9 A way to solve this is to define
a generic operation that is used for both painting and moving the shape. A similar
approach can be found in [MR07]. Still, the question remains whether it is always
possible to combine the base behaviour of two operations requiring the same group
behaviour. A different approach to this issue is using an aspect-based solution, as
the one of AWED (cf. Section 3.3.1).

• Finally, the flexibility gained by specialising group methods on more than one pa-
rameter on a group class can also complicate the definition of propagation predi-
cates.

9The definition of paint-shape can be found Appendix D

7.3. DISCUSSION 193

Figure 7.11: Lambic’s support for context dependency and group behaviour in AmOP.

7.3 Discussion
We have illustrated Lambic’s support for modularity of context dependency and group
behaviour in the AmOP paradigm. We now review our model with respect to the re-
quirements listed at the beginning of this chapter. Then, we conclude this chapter by
comparing Lambic to the programming language approaches for event-driven distribution,
context dependency and group behaviour presented in Chapter 3.

7.3.1 Modularity of Context Dependency and Group Behaviour
in AmOP Revisited

Lambic fulfils the requirements for modularity in AmOP by means of three main features:
futurised generic functions (for event-driven distribution), predicated generic functions
(for context dependency), and group generic functions (for group behaviour). A common
underlying execution process ensures the effective integration of the three features. Fig-
ure 7.11 shows Lambic’s integrated support for these features. This figure is based on
Figure 3.2 of Section 3.4 which summarises the requirements for modularity of context
dependency group behaviour in AmOP.

194 CHAPTER 7. LAMBIC AT WORK

Context Dependency in AmOP

By integrating futurised generic functions and predicated generic functions Lambic en-
sures the modularity of context dependency in AmOP as follows:

RI.1 Controlled propagation of asynchrony By providing support for implicit fu-
ture handling, Lambic allows a controlled propagation of asynchronous executions
from both context predicates and super calls. The results of asynchronous remote
generic function invocations can be handled using the standard sequential and im-
perative object-oriented programming style. Still, to be aware of such asynchronous
invocations, our model requires that method definitions are properly annotated with
execution qualifiers (interruptible and uninterruptible).

RI.2 Controlled propagation of network failures Lambic also allows controlling the
effects of network failures affecting asynchronous generic function invocations. First,
our model provides a time-based failure handling mechanism (adopted from Ambi-
entTalk [VME+07]) which abstracts the programs’ control flows from the volatile
network connectivity of pervasive computing services. The effects of network fail-
ures on asynchronous remote invocations are manifested in the form of timeout
exceptions. These exceptions ruin the futures generated by the asynchronous re-
mote invocations. Second, Lambic’s implicit future handling allows dealing with
timeout exceptions in a sequential style. This means that such exceptions can be
implicitly propagated through super calls in the form of ruined futures. This also
means that the exceptions can be handled using standard try-catch forms (no spe-
cial asynchronous exception handler is required). However, the exceptions raised
during the evaluation of context predicates cannot be propagated to the generic
functions. They should be manually handled within the predicates.

RI.3 Restricted scope of event-driven behaviour Lambic ensures a consistent ac-
tivation scope for context-dependent adaptations. This scope is delimited by the
execution of a generic function invocation. The adaptation corresponds to the meth-
ods selected for the invocation. The activation scope is preserved even in the case of
concurrent invocations. In our model, concurrent generic function invocations are
processed sequentially, exclusively by the event loop of the actor that contains the
generic function. As such, within an actor there can be only one context-dependent
adaptation in use at a time. Finally, the asynchronous executions of generic func-
tion invocations can still be interleaved. To avoid that such execution interleaving
hinders the activation scope of an invocation, our model provides the uninterruptible
execution qualifier for methods.

Group Behaviour in AmOP

By integrating futurised generic functions and group generic functions Lambic ensures
the modularity of group behaviour in AmOP as follows:

RI.4 Decentralised group behaviour management In our model, the instances of
group classes discover each other in a decentralised fashion. Each instance can be

7.3. DISCUSSION 195

aware of the discovery, disconnection and reconnection of its peers by means of event
handlers in the form of method specialised on the group class.

RI.5 Decoupled group communication Lambic ensures a decoupled communication
model for interactions with the group and interactions between the group members.
Group generic functions can be invoked without mentioning the physical address of
the instances of the group class (space decoupling). Similarly, the propagation of
an invocation to the group class peers is declaratively specified in terms of propa-
gation predicates. Remote group generic functions can be invoked and propagated
only asynchronously (synchronisation decoupling). A group generic function can
be remotely invoked and propagated even if the group class peers are temporarily
unavailable (time decoupling). For such a case, our model buffers the invocation
until the connections with the peers are re-established. Finally, the propagation
of a group generic function invocation to the group class peers is transparent for
the program making the invocation (arity decoupling). No explicit enumeration is
required.

RI.6 Connection-independent failure handling Lambic’s mechanism for time-based
failure handling is also used for the propagations of group generic function invoca-
tions.

Context Dependency in Group Behaviour

Finally, by integrating predicated generic functions and group generic functions Lambic
ensures the following properties:

RI.7 Dynamic selection of group behaviour Our model enables associating group
methods with context predicates. As such, a group generic function can have several
group methods specialised on different context conditions. This allows the definition
of advanced coordination schemes among group class peers, as the one shown in the
scenario of Geuze (cf. Section 7.2.4).

RI.8 Restricted scope of group behaviour Lambic ensures a consistent activation
scope at each actor involved in the execution of a group generic function invo-
cation. The applicable methods for an invocation are evaluated independently by
each actor.

RI.9 Preserving modularity and composability Finally, Lambic preserves the mod-
ularity and composability of the peer- and group-level definition of group generic
functions. Both levels can have context-dependent variations which are cleanly sep-
arated in peer and group methods. These methods are dynamically selected and
composed according to the context of the invocations. The methods can also anony-
mously access each other by means of super calls (using the call-next-method or
call-peer-method forms).

196 CHAPTER 7. LAMBIC AT WORK

7.3.2 Related Work Revisited
We now evaluate the Lambic programming language model with respect to the existing
approaches for event-driven distribution, context dependency and group behaviour in-
cluded in Chapter 3. We apply to Lambic the same criteria we used for reviewing those
approaches. Tables 7.4, 7.5 and 7.6 shows the results of the evaluation of Lambic.

Event-driven Distributed Programming for AmOP

Lambic adheres to the AmOP paradigm by adopting the event-driven distribution exe-
cution model of AmbientTalk [VME+07], known as the event loop model. In this dis-
sertation, we have studied the language support required for this and other event-driven
execution models (Section 3.1). Concerning our focus on modularity, we have observed
that such a dedicated support often entails more verbose code and less straightforward
control flows. More concretely, in Section 3.1.2 we have identified four issues of the event-
driven programming style: inversion of control, lost continuations, asynchrony contagion
and the event interleaving hazard. We have analysed each of these issues and then reviewed
the solutions proposed by existing event-driven programming language approaches.

Lambic’s solution to these issues is two-fold. Our model provides explicit syntax
for distribution, i.e. for asynchronous generic function invocations and for asynchronous
result handling (futures). This syntax complies with the properties of AmbientTalk’s event
loop model. Additionally, our model provides an internal future-handling process that
enables distributed computations to also use the same syntax as for local computations,
while internally still executing them in an event-driven manner. In Section 4.5, we have
discussed the benefits and limitations of either approach (explicit and uniform syntax).
However, it is important to notice that the implicit future-handling mechanism is a key
feature for achieving modularity in the AmOP paradigm. This feature allows not only
the uniform syntax for local and remote computations. It also keeps the control flows
of programs sequential which has facilitated considerably the integration of models for
modularising context dependency and group behaviour.

It is also important to note that Lambic’s uniform syntax for local and remote com-
putations does not completely hide distribution from the programs. Developers have to
still acknowledge the parts of the programs that can be affected by distribution issues
(by means of execution qualifiers in methods, cf. Section 4.4.2). However, this explicit
support does not interfere with the programs’ modularity, as we have shown in the two
case studies of this chapter.

Lambic’s solution to the issues of event-driven programming style can be compared
to existing solutions as follows.

Inversion of Control. Lambic provides two solutions to the inversion of control prob-
lem, i.e. to avoid fragmented control flows and manual stack ripping due to the handling
of asynchronous events. Our model’s explicit syntax adopts AmbientTalk’s solution based
on in-line closures (via the when-resolved form). This solution is also found in E, Scala
actors and Lua rpc.async. In-line closures enable computations that depend on the re-

7.3. DISCUSSION 197

!
!

!
!

"
!

"
"

!
!

!
!

!
"

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

Ta
bl

e
7.

4:
La

m
bi

c’
s

pr
og

ra
m

m
in

g
st

yl
e

fo
r

ev
en

t-
dr

iv
en

di
st

rib
ut

ed
co

m
m

un
ic

at
io

n

!
!

!
!

"
!

"
"

!
!

!
!

!
"

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

Ta
bl

e
7.

5:
La

m
bi

c’
s

pr
og

ra
m

m
in

g
st

yl
e

fo
r

co
nt

ex
t-

de
pe

nd
en

t
be

ha
vi

ou
r

!
!

!
!

"
!

"
"

!
!

!
!

!
"

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

Ta
bl

e
7.

6:
La

m
bi

c’
s

pr
og

ra
m

m
in

g
st

yl
e

fo
r

gr
ou

p
be

ha
vi

ou
r

198 CHAPTER 7. LAMBIC AT WORK

sult of asynchronous invocations, to be defined in the same context where the remote
invocation is done. This way, no manual stack ripping is required.

Lambic’s uniform syntax provides an implicit asynchronous continuation management
mechanism similar to those of ProActive, Kilim, TaskJava, Lua rpc.sync and JCoBox.
In our case, this mechanism corresponds to the implicit handling of futures. No special
forms are required to handle the futures. As in the case of Kilim and TaskJava, in
Lambic this semantics are allowed only on methods annotated with an execution qualifier
(interruptible or uninterruptible).

Lost Continuations. Avoiding lost continuations implies covering all the possible ways
in which an asynchronous request may terminate. Our model tackles this problem by
using futures as implicit return address for remote calls (as in AmbientTalk, E, ProActive,
JCoBox and Lua). In Lambic, futures implicitly receive the results of asynchronous remote
generic function invocations. Futures also allow dealing with the exceptions occurring
during the execution of the asynchronous invocations (e.g. timeout exceptions). As in
E and AmbientTalk, such exceptions implicitly ruin the corresponding futures. A ruined
future can be handled with a dedicated :catch argument in the when-resolved forms, in
case of Lambic’s explicit syntax (as in E and AmbientTalk), and with standard try-catch
forms in the case of Lambic’s uniform syntax (as in ProActive and JCoBox). Thus, the
future produced by a remote invocation is guaranteed to always be resolved with a result,
or ruined with an exception. Of course, also as in those languages, the exceptions can
still be overlooked if the future is not used in further computations.

Asynchrony Contagion. The asynchrony contagion is related to the degree of uni-
formity in the language support for local and remote interactions (cf. Section 3.1.2).
Lambic’s explicit syntax exhibits the same issues as AmbientTalk. The problem of asyn-
chrony contagion of this syntax is related to the explicit support for asynchronous remote
invocations and result handling. As we extensively discussed in Section 3.2.3, it is the
explicit abstraction for handling asynchronous results the main problem for the programs’
modularity.

The asynchrony contagion can be observed also in Lambic’s uniform syntax. In this
case, the asynchrony is propagated through the execution qualifiers for methods (as in
Kilim and TaskJava). Not only the method containing remote invocations should provide
such annotation, but also other methods invoking the annotated method. This way devel-
opers can still be aware of the part of the programs affected by asynchronous executions.

The Event Interleaving Hazard. To cope with event interleaving hazards, Lambic
provides the uninterruptible execution qualifier for methods. This qualifier allows blocking
semantics for claiming futures as in ProActive, JCoBox, Scala and TaskJava. However, in
our case the blocking semantics are used only for methods annotated as uninterruptible.
This is similar to JCoBox and Scala which allow blocking semantics only through the
get and receive operations respectively. ProActive and TaskJava use blocking semantics
as the default behaviour. Our approach is less expressive than Lua’s synchronisation
constraints which allow for selective reception of events.

7.3. DISCUSSION 199

Context Dependency

In Section 3.2, we focused our study of context dependency on the solutions of context-
oriented programming (COP) language models, i.e. models with dedicated language sup-
port to express context-dependent behaviour. Lambic’s support for context dependency
can be compared to those approaches as follows.

Modularity. In COP approaches, we find three main concerns of context dependency
which need to be modularised: modular partial behaviour definitions, modular groups of
partial behaviour definitions, and modular behaviour selection (cf. Section 3.2.2). Lam-
bic’s units of partial behaviour definition correspond to the predicated methods. These
methods can be specialised using programmer-defined context predicates, providing fine-
grained control of method applicability, in a similar way to the Predicate Dispatch model.
Additionally, method dispatch is driven by the context predicates’ precedence order which
is fully defined by the methods’ generic function. Thus, context predicates can be cleanly
associated with methods without getting entanglement, i.e. achieving modular behaviour
selection. Finally, Lambic does not provide means to explicitly group partial behaviour
definitions. Instead, partial definitions can be implicitly grouped by associating them
with the same context predicate (as in the Ambience, Filtered Dispatch and Predicate
Dispatch models). However, as we discussed in Section 7.2.7, one of the drawbacks of im-
plicit groups of partial definitions is that it is less simple to model state that is shared by
several context-dependent adaptations. This is unlike approaches such as ContextL, Py-
Context, and JCop, where the state can be explicitly associated to layers (those models’
explicit groups of partial definitions).

Dynamic Selection. In Lambic, context-dependent adaptations are represented as
predicated methods which are dynamically selected as a result of the method dispatch
mechanism. This is similar to most of COP approaches. In particular, in Lambic the
selection and combination of methods is computed in accordance to the predicates and
their order of declaration in the generic functions. This solution is based on the Filtered
Dispatch model which alleviates the limitation of the Predicate Dispatch model to include
user-defined orderings of predicates.

Consistent Composition. Consistently composing context-dependent behaviour cor-
responds to ensuring an unambiguous combination between the different partial defini-
tions required to process a method execution. In Lambic, generic function-based pri-
orities between predicates ensure the consistent composition of methods, as in Filtered
Dispatch. These priorities alleviating the issue of combinatorial explosion of context-
dependent adaptations (cf. Section 2.3). Still, this mechanism is less expressive than
ContextL’s support for composition rules. Indeed, the priority order between predicates
can be modelled as one composition rule in ContextL. Finally, the composed methods
can access each other anonymously, by means of super calls (the call-next-method form),
as in ContextL, PyContext, CDR, Ambience, JCop and Filtered Dispatch.

200 CHAPTER 7. LAMBIC AT WORK

Restricted Scope. As in most models for context-oriented programming, Lambic de-
limits a context adaptation to the scope of a generic function invocation (similarly to
the PyContext, CDR, Filtered Dispatch and Predicated Dispatch models). Additionally,
as discussed in Section 7.3.1, this scope is unambiguous even in the presence of concur-
rency and event interleaving. To the best of our knowledge, Lambic is the only model for
context dependency that ensures this second property.

Note that our approach shares several properties with existing models for context-
oriented programming, especially with those based on CLOS (Filtered Dispatch and
ContextL). Still, instead of extending such approaches we decided to create our own
extension of CLOS. This extension gave us full control on the implementation which fa-
cilitated the integration between the support for context dependency and those required
for ambient-oriented programming and group behaviour.

Group Behaviour

Lambic’s support for group behaviour can be compared to existing approaches as follows.

Plurality Encapsulation. As explained in Section 3.3, the main purpose of plurality
encapsulation is to access a remote service without regard for the number of objects that
provide the service. In Lambic, group generic functions encapsulate the group behaviour
for objects as such the group concern is abstracted from the communication. A client can
interact uniformly with a service represented by one object or a group of objects. No spe-
cial group identity, interface or communication style are required. Such an encapsulation
is achieved only by the Gaggles, Mailer/Encapsulator and AWED models.

Group Protocols. In Lambic, group protocols for membership and communication
are aligned with the requirements of the AmOP paradigm, as in the Ambient References
model. As explained in Section 7.3.1, Lambic provides a decentralised group behaviour
management, decoupled group communication, and connection-independent failure han-
dling. Our model dos not provide special parameter passing semantics for group com-
munication as that of the AWED and Typed Groups models. In Lambic, groups are not
first class entities. Invocations are addressed always to one instance of a group class.

Modularity. Lambic separates the group behaviour from the base functionality of the
group classes. Group behaviour is contained in group methods whereas the base function-
ality can still be defined in terms of standard (peer) methods. Group and peer methods
are dynamically selected, sorted and combined according to the classes used as parameter
specialisers, and according to the context predicates associated to the methods. Applica-
ble group and peer methods can uniformly access the next most specific by means of the
call-next-method and call-peer-method forms. As explained in Section 3.3.2, most of
the approaches for group behaviour studied in this dissertation contain the group proto-
cols in dedicated entities (except from Gaggles and Typed Groups). Such entities can be
adapted without losing their modularity. A distinguishing characteristic of Lambic is that
the group and base behaviour of programs can be defined uniformly in terms of classes

7.3. DISCUSSION 201

and methods. Most of the support required for group classes and group methods is im-
plicitly provided by Lambic’s execution model. Only the propagation expression is added
to group methods which enables declaratively specifying propagations of invocations to
members of group classes. Still, this expression consists of a number of invocations to
standard generic functions. This is unlike AWED where group behaviour is defined us-
ing aspects and Mailer/Encapsulator model which defines the group behaviour in meta
classes.

202 CHAPTER 7. LAMBIC AT WORK

Chapter 8

Conclusion

This dissertation has presented the results of our study on modularisation techniques for
pervasive computing. In this chapter, we revisit the research goals as stated in the intro-
duction (cf. Chapter 1). We then restate the contributions of the Lambic programming
model. Finally, we discuss the limitations of our work and avenues for further research.

8.1 Research Goals Revisited
We briefly review the research goals stated in Section 1.3 and discuss the extent to which
they have been achieved.

• It was our goal to study the effects of pervasive computing in the identity and be-
haviour of software services. In Chapter 2, we stated that in pervasive computing
software entities providing similar functionality should abstract from specific loca-
tions and identities, and run in the environment as a single service. We called this
property the pervasive identity of services. We classified the issues entailed by per-
vasive identities in three major concerns: distribution, context-dependent behaviour,
and group behaviour. For each concern, we presented a list of requirements found
in existing programming language research literature. We finally argued that the
three concerns are tightly interconnected, and that the lack of integrated support
to cope with them may lead to programs that are hard to maintain and extend. We
referred to this problem as the need for modularity in pervasive computing.

• It was our goal to review the interactions between the requirements for event-driven
distribution, context dependency and group behaviour. In Chapter 3, we reviewed
the state of the art for each of the three concerns. We argued that the program-
ming style required to support event-driven execution is the main source of conflicts
for achieving modular programs. This claim was based on the analysis of four
issues of the event-driven programming style: inversion of control, lost continua-
tions, asynchrony contagion and event interleaving. We studied the implications

203

204 CHAPTER 8. CONCLUSION

of these issues for modularising the programs’ context-dependent adaptations and
group behaviour. We focused this study on the distribution model proposed by the
ambient-oriented programming paradigm (AmOP) —the starting point of our re-
search. We finally proposed a list of requirements for a unified programming model
for event-driven distribution and modularity.

• It was our goal to extend the object-oriented programming paradigm with integrated
support for distribution, context dependency and group behaviour. In Chapters 4, 5
and 6, we achieved this goal by means of our proof by construction, the Lambic
object-oriented programming model. We highlight the properties of this model in
the following section. Finally, in Chapter 7 we validated Lambic by means of two
case studies of pervasive computing services.

8.2 Lambic in a Nutshell
Lambic is an object-oriented programming model for modularity in pervasive comput-
ing. It extends the generic function-based object model of Common Lisp with support
for the concerns identified in Chapter 2. For concurrency and distribution, Lambic inte-
grates the properties of the AmOP paradigm, in what we call futurised generic functions
(cf. Chapter 4). For context dependency and group behaviour, Lambic provides two other
extensions, called predicated generic functions (cf. Chapter 5) and group generic func-
tions (cf. Chapter 6) respectively. Additionally, a underlying unified execution process
ensures that these three features can be effectively used in combination.

Futurised Generic Functions. Futurised generic functions are Lambic’s embodiment
of the actor-based model proposed by the AmOP paradigm, called communicating event
loops (cf. Section 3.1.1). In Lambic, actors define boundaries of concurrent execution for
the objects; methods are specialised exclusively on objects (not on actors). Inter-actor
computations are realised by means of asynchronous generic function invocations. And
the results of functions evaluations are asynchronously returned to the actor from which
the functions are invoked.

As in the original event loop model, Lambic provides explicit syntax for distribution.
This includes dedicated abstractions for asynchronous generic function invocations and
for asynchronous result handling (futures). Additionally, our model features an internal
future-handling process that enables distributed computations to use the same syntax as
for local computations, while internally still executing them in an asynchronous manner.
This implicit syntactical support is a key property to achieve modularity in programs.

Predicated Generic Functions. Predicated generic functions are an extension of the
multiple dispatching mechanism of CLOS. In Lambic, method definitions can be guarded
by predicates which are used to decide on the applicability of the method for a list of
actual arguments. If more than one predicated method is applicable, the order in which
the predicates are declared in the corresponding generic function is used as a tiebreaker.

8.3. CONTRIBUTIONS 205

This allows for fine-grained control of applicability and specificity of methods according
to the programs’ execution context.

Group Generic Functions. Group generic functions are a novel approach to object-
oriented group behaviour in pervasive computing. The key property of this model is to
make the group behaviour part of the shared definition of services. We name this property
empathic group behaviour. Group generic functions provide two main abstractions: group
classes and group methods. A group class allows its instances to be aware of each other.
Invocations addressed to one instance are implicitly propagated to the other instances of
the group class. This way, the instances can cooperate in the execution of invocations,
while the programs making the invocations can be oblivious to such a cooperation. Prop-
agation of invocations are declaratively defined in group methods. As such, the group
behaviour is decoupled from the base functionality of the group class which is still defined
in standard CLOS methods.

8.3 Contributions
Having explained our approach in detail all through this dissertation, we now restate the
high-level view of the contributions of our work introduced in Chapter 1.

Modularity in Ambient-oriented Programming. In the context of pervasive com-
puting, we augment the ambient-oriented programming paradigm with support for soft-
ware modularity. We identify a list of requirements for an integrated model for event-
driven distribution, context dependency and group behaviour. We claim that language
support required for asynchronous program execution and network failure handling should
not hinder the semantics of dynamic method dispatch and inheritance-based composition.
The scope for context-dependent adaptations of behaviour should be consistent even in
the presence of concurrent and interleaved event-driven interactions. The distribution
properties of the AmOP paradigm (decentralised discovery, decoupled communication,
connection-independent failure handling) should also be preserved at the group level defi-
nition of the programs. Finally, the modularity required for context-dependent behaviour
should not hamper the modularity required for group behaviour.

A Generic Function-based Model for Event-driven Distribution. Lambic’s fu-
turised generic functions gracefully align the multiple dispatch semantics of generic func-
tions with event-driven distribution. Our model accomplishes the properties of ambient-
oriented programming (cf. Section 2.2). Services are discovered using a decentralised
publish/subscribe protocol. No address or location is required. Events for discovery,
communication and failure handling are all represented as generic function invocations.
Communication events correspond to asynchronous generic function invocations. Asyn-
chronous generic function invocations are resilient to partial failures. When an actor
that is supposed to process a remote invocation becomes disconnected, the invocation is
buffered until the connection is restored.

206 CHAPTER 8. CONCLUSION

Explicit and Uniform Language Support for Event-driven Distribution. Fu-
turised generic functions provide explicit and uniform syntax for communication, while
guaranteeing the event-driven execution of remote interactions. Chapter 4 presents an
in-depth analysis of the benefits and limitations of either syntax with respect to the is-
sues of event-driven distribution (cf. Chapter 3). We conclude that explicit syntax helps
developers to better understand the effects of asynchronous remote interactions in the
programs. However, it often entails more verbose code and less straightforward control
flows. Uniform syntax, on the other hand, enables the programs to be less verbose and
to keep control flows sequential but the support for dealing with remote interactions is
more restricted, and in some cases more error-prone. Finally, although our aim is not to
advocate the use of a particular kind of syntax, we do rely on the implicit handling of
asynchronous results to modularise context-dependent adaptations and group behaviour,
as we explain in the following contributions.

Generic Functions with Context Predicate Dispatch. Predicated generic func-
tions allow for modular definition of context-dependent behaviour. Modularity is achieved
by enabling context-dependent adaptations to be expressed as predicated methods. These
methods can be specialised on programmer-defined context predicates, providing fine-
grained control of method applicability. Method dispatch is driven by the context pred-
icates’ precedence order which is fully defined by the methods’ generic function. These
methods selected for an invocation can anonymously access each other only by means of
“super calls” (using the call-next-method form). Lambic delimits a context-dependent
adaptation to the scope of a generic function invocation. This means that context pred-
icates are evaluated for every invocation, ensuring that the selected methods are always
consistent with the execution context.

To cope with event-driven distribution, we integrate Lambic’s internal future handling
mechanism with the semantics for determining the effective method for invocations. This
way, our model can implicitly handle possibly asynchronous results returned by context
predicates and super calls. With respect to the propagation of network failures, Lambic
allows timeout exceptions to be propagated through super calls (in the form of ruined
futures). However, these exceptions must be explicitly handled if they are raised by
the predicates. Finally, Lambic’s event loop model preserves the per-invocation scope of
context-dependent adaptations, even in case of concurrent interactions. This is because
actors handle only one invocation at a time.

Generic Functions for Group Behaviour. Lambic’s group generic functions allow
for modular definition of group behaviour. Our model explicitly separates group be-
haviour (contained in group methods) from base functionality of the programs (con-
tained in standard methods). When a group generic function is invoked, the group and
peer methods are dynamically selected, sorted and combined. Additionally, group generic
functions encapsulate group behaviour for objects. As such, the group concern is com-
pletely abstracted from the communication. Clients can interact uniformly with a service
represented by one or a group of objects. Our model needs no special group identity,
group interface, or group communication style.

8.4. WORK INFLUENCED BY OUR RESEARCH 207

Lambic preserves the properties of the AmOP paradigm also for the definition of
group behaviour. Distributed group classes discover each other in a decentralised fashion.
Both interactions with the group and interactions between group peers use a decoupled
communication model. As in the case of predicated generic functions, our model han-
dles the asynchronous remote results of the propagation implicitly. Yet, network failures
(i.e. timeout exceptions) should be manually handled in the group methods. Finally, the
group and base level behaviour of group generic functions can have context-dependent
variations. These variations are modelled as independent base and group method defini-
tions specialised on different context predicates.

Pervasive Identities. We validate Lambic by implementing two concrete pervasive
computing services. These services have been conceived as pervasive identities as both
required the natural integration of nearby services to provide ubiquitous access to their
functionality. In the scenario of Kriek, we use a pervasive identity to enable a single-user
service to dynamically distribute its functionality among the user’s devices. In the scenario
of Geuze, the pervasive identity allows for realtime group collaboration. It integrates the
work of several users ensuring consistency between their concurrent interactions.

8.4 Work influenced by our Research
The direct results of our research have been presented in [VED+07, VCVD09, VGC+10].
Additionally, other research have been influenced by the work presented in this disserta-
tion.

Context-dependent Composition of Web Services. In her master thesis [Hua09],
Huang applies Lambic’s concepts for dynamic compositions of web services (known as
mashups). The main observation is that mashups rely on event-driven communication
models to increase responsiveness in programs and to deal with eventual failures affecting
remote requests. AJAX asynchronous requests [Gar05] are a prototypical example of
this. The problem with such an approach is that it suffers from inversion of control (the
control flow of the programs is broken up into several callbacks, cf. Section 3.1.2). Such
fragmented control flow is particularly awkward for mashups as it obscures the tasks they
accomplish.

Huang’s work demonstrates that Lambic’s implicit handling of event-driven distribu-
ted interactions enables the definition of mashups using the standard imperative and se-
quential object-oriented programming style. She develops a Lisp-based framework, called
DYMAC, in which web services are accessed using the same syntax as local function in-
vocations. Internally, the invocations are converted into asynchronous AJAX requests.
DYMAC also handles the results of the asynchronous requests implicitly. This way, the
mashups do not require to deal with continuation-passing schemes (e.g. AJAX callbacks).
This significantly simplifies the mashups’ control flows. The initial results of this research
have been presented in [VHC+10].

208 CHAPTER 8. CONCLUSION

Context-dependent Service Migration and Partitioning. The notion of pervasive
identities put forward in this dissertation has been explored in the context of dynamic
service partitioning in pervasive computing. In his master thesis [Bai08], Bainomugisha
observes that a way to maximise the use of resources found in the user’s surroundings, is by
decomposing services into parts which can be dynamically distributed to different devices.
He also observes that current service partitioning approaches are based mostly on low-level
and static operations, and have no support for network failures. To solve this problem
the Resilient Actor model has been proposed. In this model, applications are defined as
a hierarchy of actors that are interconnected thorough elastic bindings. Such bindings
are special kinds of remote references which can be stretched, i.e. enabling the actors to
be moved to new locations, and retracted, i.e. to move back the actors to their original
location. In case of disconnections, an automatic retraction mechanism is triggered which
regenerates the affected part of the application as it was before the partitioning. Finally,
this model proposes a set of resilient strategies with different implementations of the
stretching and retraction operations.

This research has been developed in the AmbientTalk programming language and
presented in [BCC+10].

Self-adaptability in Context-aware Systems. In [CMV+08], we integrate Lambic’s
ideas of context-dependent behaviour into a peer-to-peer adaptable topology for pervasive
computing, called PALTA. PALTA allows the incremental construction of distributed
networks according to the current network state. This model provides an algorithm that
takes advantage of the best features of a fully connected network when the number of
peers is small enough to allow the devices manage this kind of topology. When the
network becomes too large to maintain a fully connected topology, the algorithm will
automatically adapt the network configuration to become a Relaxed Ring [MR07]. This
configuration can handle a large number of peers by executing more complex algorithms
for self-managing the distributed network. At the moment, PALTA has been implemented
in the Mozart-Oz programming system [VH04] which contains the support for the relaxed
ring configuration. To provide this dynamic adaptability, PALTA borrows our model’s
ideas of having separate peer connectivity event handlers for different execution contexts
(sizes of the peer group).

8.5 Limitations and Future Work
The assessment of Lambic presented in Chapter 7 leads us to believe that our model is
well suited to the expression of context dependency and group behaviour in pervasive
computing. However, a number of issues need to be further explored. In this section, we
discuss the limitations and avenues for future work.

8.5.1 Allowing Efficient Predicate Evaluation
In Chapter 7, we explained that a major issue in our solution is that the intensive use
of context and propagation predicates can make the evaluation of programs less efficient.

8.5. LIMITATIONS AND FUTURE WORK 209

Moreover, by enabling predicates to include invocations of remote generic functions, we
also increase the communication overhead and make predicate evaluation more vulnerable
to network failures. In the past, efficient implementation techniques for predicate dispatch
have been thoroughly investigated [CC99, Mil04]. Those techniques use static information
about the programs to reduce the expected time for dynamic method dispatch. However,
as we discuss in Section 3.2.1, such approaches require that predicates use only compile-
time constant expressions. This contradicts Lambic’s principle of enabling predicates to
test runtime values of arbitrary expressions. Still, the possibility exists that programs
in Lambic do not rely completely on dynamic context conditions. We should therefore
carefully evaluate what part of that static analysis can be used in our setting.

Another solution is to use a caching mechanism that enables predicates to be re-
evaluated only when it is strictly needed.1 This solution implies deciding the extent for
which the cached values are available in the program execution. For instance, such an
extent could correspond to the execution of a generic function invocation. Thus, tests
included in predicates would be evaluated only once, even if they are used in more than
one predicate. Alternatively, the re-evaluation of tests could depend on specific changes
on context conditions (time, location, etc.). As such, the cached values could remain
available for several invocations. In Section 4.5.5, we explain this case when using a
GeoIP service (a program needs to request its current location only if its IP address
changes).

Dealing with cached values also implies deciding a protocol for updating them. This
is especially relevant for caching results of remote tests, as discussed in Section A.7. The
update of such a cached result can be triggered by the program invoking the remote test
(the client program), or by the program processing it (the service program). Examples
of the former case are the requests to the GeoIP service (the client program determines
when to update the location). Examples of the latter case are drawing editors which
proactively propagate the changes in their state to the session (so that predicates testing
such state do not need make remote invocations).

8.5.2 Managing Advanced Context Dependencies
By enabling context predicates to have a per-generic function precedence order, Lambic
gives developers fine control over the specificity of context-dependent adaptations. Still,
additional support is needed to express further relationships among the adaptations.
We have identified a number of those relationships in our work on requirement analy-
sis for context-aware systems [DVC+07, DVV+07]. Apart from priority order, context-
dependent adaptations can establish relationships such as inclusion (an adaptation re-
quires the behaviour of another one), exclusion (an adaptation precludes the applicability
of another one), and conditional dependency (the applicability of an adaptation depends
on the return value of another adaptation). In the future, we plan to extend Lambic with
language abstractions that support the definition of such relationships. In this endeavour,
we should ensure that the specification of more advanced relationships between context-

1CLOS already uses a similar technique for optimising the computation of the effective method for
an invocation of a generic function [BDG+88].

210 CHAPTER 8. CONCLUSION

dependent adaptations, does not undermine the understandability of programs promoted
in this dissertation. A similar effort has been made by Costanza and Hirschfeld in [CD08]
by extending ContextL with a high-level feature description language.

In Lambic, such relationships could correspond to dependencies between context pred-
icates. Such dependencies could be defined by developers in the same way they define the
predicates’ priority order. An important issue we need to study carefully, though, is that
the tests included in context predicates can also create implicit dependencies between the
predicates.

8.5.3 Increasing Behaviour Reusability
In Lambic, the programs’ base functionality, context-dependent adaptations and group
behaviour, are uniformly modelled as methods. Reusability is achieved by enabling the
dynamic composition of such methods for the execution of a generic function invocation.
Methods are ordered from most to least specific, and less specific methods are accessed
using the call-next-method form. The benefits of this uniform composition mechanism
have been largely illustrated in the validation of this dissertation (cf. Chapter 7).

In the future, we will continue exploring the possibilities of reusability in our model.
We are particularly interested on studying the reusability of behaviour spanning methods
of several generic functions. Examples of such a behaviour are the coordination protocols
for object groups, such as the one used by the Geuze drawing editor (cf. Section 7.2.4).
While in that example we had to manually encode this protocol, in the future we envision
that a library of object group protocols (as that of Mailer/Encapsulator and DAC models,
cf. Section 3.3.1) will be provided.

Another alternative for increasing reusability in Lambic is also discussed in the con-
text of the Geuze drawing editor. It consists of allowing two or more methods of possibly
different generic functions to share a context-dependent adaptation or a group behaviour
definition. In the drawing editor, such a shared definition is required for the move-shape
and paint-shape group generic functions which have exactly the same group-level defini-
tion. Today, such support is found in meta-level programming (e.g. CLOS’ metaobject
protocol [BDG+88]) and aspect-oriented programming models (e.g. the AWED model,
cf. Section 3.3.1).

8.5.4 Modularising State
Thus far, Lambic does not provide any means to associate state with specific context-
dependent adaptations or group behaviour definition. In the example of the Geuze draw-
ing editor, this limitation led us to model all state (even temporary values) as fields of the
classes of the system. Alternatively, the state could be contained in auxiliary variables or
classes. However, in this case developers would still have to remember the variables and
classes that concern each adaptation.

In the future, we plan to extend Lambic with support for context- and group-specific
state. A similar approach is provided by ContextL, PyContext and JCop (cf. Sec-
tion 3.2.1). This solution would not only support the modularity of both behaviour and

8.5. LIMITATIONS AND FUTURE WORK 211

state. This would also allow modelling variables that may have different values according
to the context (known as contextual values [CH05, Tan08]).

8.5.5 Detecting Event Interleaving Hazards
Finally, in Section 4.5.4 we observe that the effects of event interleaving in programs
are particularly difficult to detect. Lambic can avoid interleavings by providing blocking
semantics for methods annotated as uninterruptible (cf. Section 4.4.2). Finer control
can be found in other approaches which enable the use of blocking semantics for specific
method invocations, as in the cases of Lua’s synchronisation constraints [SRRB10] or
JCoBox’s blocking claims of futures [SPH10] (cf. Section 3.1.2). However, identifying
which computations require such blocking semantics remains an issue.

In future, we plan to research tool support for detecting event interleaving hazards in
programs. Among other information, such support would have to identify the points in the
program execution where interleavings can occur and the state that can be compromised
to each case. Additionally, to bear the asynchronous contagion problem (cf. Section 3.1.2),
the tool support will also have to be able to trace chains of invocations until finding the
one that is causing the asynchronous execution. In Section 7.2.6, we make this tracing
manually for the example of the Geuze drawing editor.

212 CHAPTER 8. CONCLUSION

Appendix A

Lambic in Common Lisp

This chapter presents the implementation of the Lambic model in the Common Lisp
programming language. For this, we assume that the reader is aware of the semantics
of CLOS, especially of its metaobject protocol. First, we provide a general overview of
Lambic. We then describe the implementation of our model’s main components: futurised
generic functions, predicated generic functions and group generic functions. We explain
generic function-based event loops independently from futurised functions, even though
conceptually they are only one model of distribution (cf. Chapter 4). We discuss the main
issues found when combining all these components. Finally, we introduce a prototypical
caching mechanism built on top of Lambic to improve performance and resilience to
network failures of predicate evaluation.

A.1 Overview of Lambic Programming Model
Figure A.1 shows an overview of Lambic. In this figure, the different components of our
model are represented as layers. Such layers are piled up according to their dependencies:

• At the bottom of this pile there is the Common Lisp layer which contains the
implementation of CLOS (LispWorks® [Ric90]) and the libraries used by Lambic.

• The next layer describes Lambic’s generic function-based event loop model. We
classify its constituents according to four main concerns: parameter passing, con-
currency, discovery, communication, connectivity and conditions.

• On top of event loops we implement futurised generic functions. This layer includes
the classes and operations that support Lambic’s explicit and uniform programming
style for event-driven distribution.

• Next, we present the layer denoting the implementation of predicated generic func-
tions.

• Finally, at the top of the pile there is the layer for group generic functions.

213

214 APPENDIX A. LAMBIC IN COMMON LISP

Figure A.1: Overview of implementation of Lambic.

A.2 Generic Function-based Event Loops
Lambic’s implementation for event-driven distribution is an adaptation of the event loop
model of the AmbientTalk programming language. It includes support for parameter
passing, concurrency, communication and discovery.

A.2.1 Parameter Passing
In Section 4.3.1, we explain that when an object is passed as an argument or return value of
a remote generic function invocation, it is automatically converted into a remote reference.
Conversely, when a remote reference is passed to the actor of the referenced object, it is
converted into a local reference to the object. To achieve this behaviour, Lambic provides
two evaluation strategies which are denoted by the value-object and distributable-

A.2. GENERIC FUNCTION-BASED EVENT LOOPS 215

object classes. The value-object class implements pass-by-value semantics and is used
to define the far-reference class. The distributable-object class, on the other hand,
implements pass-by-reference semantics. It is the root class in Lambic. When an instance
of distributable-object is passed as a parameter in a remote generic function invocation,
it is implicitly replaced by an instance of remote-reference.

Each actor has a list of the distributable objects it contains. This allows the actor
to check whether a received remote reference designates one of its contained objects. In
such a case, the instance of the remote-reference class is replaced by the instance of
distributable-object class. This behaviour is defined in the print-object method of
both classes. Such a method is implicitly called when objects are serialising over the
network.

A.2.2 Concurrency

Lambic’s event-driven concurrency model is implemented by two distributable classes:
actor and future. The behaviour of the actor class consists mainly of three generic
functions: send-actor-message, receive-actor-message and process-actor-message. The
send-actor-message generic function is invoked by the in-actor-of macro. This generic
function has two methods which handle local and remote asynchronous function invo-
cations. These methods specialise a receiver argument on the distributable-object
and far-reference classes respectively. In both cases, the asynchronous invocations are
converted into messages. Remote asynchronous invocations are handled by the com-
munication layer (to transmit the invocations over the network). Local asynchronous
invocations are handled by invoking the receive-actor-message function which puts the
message in the event queue of the actor. Both send-actor-message methods return a
future as immediate result. It corresponds to an instance of a future class.

The event loop of an actor in Lambic is represented by a process which is provided
by the Multi-Processing library of LispWorks. The actor’s event queue corresponds to
the mailbox of such a process. The spawn-actor macro creates an instance of the actor
class and initiates a process which continuously waits for a message in its mailbox. Upon
message reception, the process calls the process-actor-message function of the actor
which converts the message into a generic function invocation, invokes the function, and
sends the result to the actor that contains the future attached to the message (if any).

Asynchronous return values are achieved by means of the functions when-resolved
and resolve-with-result defined for the future class. when-resolved is directly used in
Lambic programs and receives a future and a function that is executed if the value field
of the future is bound, or stored in the continuations list otherwise. The resolve-with-
result function is asynchronously invoked when the actor that processes the asynchronous
invocation for which the future serves as the return value’s placeholder, produces the
result.

216 APPENDIX A. LAMBIC IN COMMON LISP

Figure A.2: Event-driven communication and discovery in Lambic.

A.2.3 Communication
Lambic’s implementations of service discovery, communication and connectivity are con-
tained in independent actors. Figure A.2 shows these actors. The support for communi-
cation is split into two actors. One actor is responsible for sending remote generic function
invocations over the network. The other is in charge to receive them. In the behaviour
of the actor sending remote invocations there are two classes: communication-broker and
channel. The communication-broker class is responsible for handling all asynchronous
invocations of remote generic functions made by any actor in its host. At each host there
is only one instance of the communication-broker class (bound to the *communication-
broker* variable). Each actor of the host has access to such a variable. The channel
class contains the behaviour to transmit messages over the network. For this, it uses a
TCP/IP socket provided by the Communication library of LispWorks. There is an in-
stance of channel per remote object. As we explain later in this section, this granularity
is important to handle connectivity events for each service.

The actor in charge of receiving remote invocations corresponds to a socket server
provided by the Communication library of LispWorks. It has its own event loop. Com-
munication with this actor is possible only by means of asynchronous generic function
invocations.

Figure A.3 shows the sequence diagrams of the operation of handling asynchronous

A.2. GENERIC FUNCTION-BASED EVENT LOOPS 217

Figure A.3: Sequence diagram for remote communication.

invocations of remote generic functions. It consists of the following steps:

• An actor (the default actor at Host 1 in the example) evaluates an in-actor-of
expression. It is converted into an invocation of the send-actor-message generic
function. Assuming that it corresponds to a remote invocation, the actor invokes the
send-remote-actor-message generic function in the communication broker’s actor.
This generic function receives as arguments the broker (the *communication-broker*
variable) and the message containing the remote invocation.

• The broker’s actor processes the invocation of send-remote-actor-message by finding
the channel to the remote object used as message receiver (and creating a new chan-
nel if it is not found). Then, the actor invokes the deliver-actor-message generic
function which is defined for the channel class, and which eventually streams the
message through the socket.

• The message is received by the socket server. It forwards the message by invoking
the receive-actor-message generic function on the actor containing the message
receiver (the default actor of Host 2).

• Finally, this actor handles the message (and thus the remote invocation) by calling
the process-actor-message generic function.

A.2.4 Connectivity
Service connectivity is handled in an actor that contains an instance of the monitor class.
This class’ main function is to periodically check the status of the connection of remote
services. This information is used to notify connectivity observers and to raise timeout
exceptions.

218 APPENDIX A. LAMBIC IN COMMON LISP

Figure A.4 shows the sequence diagram of an interaction with the connectivity actor.
This diagram includes the following steps:

• Observers for the connection status of a remote service are registered at the default
actor by means of the when-disconnected and when-reconnected generic functions.
These observers are managed by the communication broker’s actor. This is done
by invoking the add-disconnected-observer and add-reconnected-observer generic
functions respectively.

• The broker’s actor processes such invocations by associating the observers with the
channel denoting the remote service.

• At the connectivity actor, the monitor checks the connection status of the remote
references associated with each channel of the broker’s actor. Disconnected ref-
erences are notified by calling the service-disconnected generic function on the
broker’s actor.

• The broker’s actor reacts to a disconnected service by disconnecting the channel
that contains the reference, and notifying the disconnection to the corresponding
observers (calling the disconnect-channel and notify-disconnection generic func-
tions respectively).

• At this point, messages using the disconnected reference as receiver are queued in
the reference’s corresponding channel.

• Reconnected references are notified by the monitor, invoking the service-reconnected
generic function on the broker’s actor.

• The broker’s actor reconnects the channel of the reference and transmit the queued
messages. Finally, this actor notifies the reconnection to the observers.

A.2.5 Discovery
Lambic’s support for service discovery relies on a library called CL-ZEROCONF [Wis05].
This library is a bridge to Apple’s implementation of the ZEROCONF peer-to-peer pro-
tocol, called Bonjour [App11]. We use CL-ZEROCONF for publishing and subscribing
to services. This behaviour is defined as part of the discoverer class. Each host has an
instance of this class which is contained in the discovery actor. This instance is bound to
the variable *discoverer* which is accessible at every actor of the host.

Figure A.5 shows a sequence diagram containing the two operations of discovery avail-
able in Lambic: exporting objects as services (using the export-service form), and adding
discovery observers (using the whenever-discovered form). This diagram comprises the
following steps:

• At Host 1, whenever-discovered expressions are processed by invoking the add-
discovery-observer generic function on the discovery actor. This generic function
receives the *discoverer* variable and a service description as arguments.

A.2. GENERIC FUNCTION-BASED EVENT LOOPS 219

Host 1

in-actor-of

send-remote-actor-message

send-actor-message

deliver-actor-message

default
actor

communication
broker's actor

connectivity
actor

check connection status
service-disconnected

check connection status

queue-actor-message

service-reconnected

notify-disconnection

notify-reconnection
stream queued message

when-disconnected,
when-reconnected add-disconnected-observer,

add-reconnected-observer

disconnect-channel

reconnect-channel

check connection status

Figure A.4: Sequence diagram for connectivity management.

• The discovery actor handles such invocations by requesting CL-ZEROCONF to
browse for every service accomplishing with the service description.

• At Host 2, an object with such a service description is exported using the export-
service form. It invokes the publish generic function on the discovery actor, which
in its turn asks CL-ZEROCONF to publish the service on the network.

• When the remote object is discovered by Host 1, it is informed to the communication
actor (calling the service-connected generic functions) so that it adds a new channel
for the discovered remote reference. The discovery is also notified to the observers of
the service description provided by the remote object (calling the notify-discovery
generic function).

220 APPENDIX A. LAMBIC IN COMMON LISP

Host 1

add-channel

default
actor

communication
broker's actor

discovery
actor

notify-discovery

whenever-discovered
add-discovery-observer

browse service

resolved service

default
actor

discovery
actor

export-service
publish

publish service

Host 2

service-connected

Figure A.5: Sequence diagram for discovery.

In the previous diagram, we show a particular combination of discovery operations,
where a service description is requested before the object providing such description is
published. However, Lambic’s service discovery mechanism also covers the case where
the object is first published and then requested. Additionally, this mechanism also dis-
covers local services. Finally, our implementation will notify the discovery of every object
fulfilling the service description.

A.2.6 Conditions
Lambic uses CLOS’ standard exception handling mechanism based on conditions [Sei05].1
For the case of timeout exceptions, we represent them by the timeout-exception condition.
We create these conditions under two different circumstances:

• When the channel that sends a remote invocation is connected (to the corresponding
remote actor), we attach the timeout to the socket created for such a send. When
the timeout is reached, we capture the exception raised by the socket and create
a timeout-exception condition. This condition is asynchronously notified to the
future of the remote invocation by invoking a ruin-with-condition generic function.
This generic function is defined as part of the behaviour of the future class.

• If the channel is disconnected, we set a dedicated timer process which checks the
timeout of the invocation. When it is reached, the timer asynchronously invokes

1The differences between CLOS’ conditions and other languages’ exceptions are not relevant for the
implementation of our model.

A.3. FUTURISED GENERIC FUNCTIONS 221

the ruin-with-condition on the corresponding future.

A.3 Futurised Generic Functions
The implementation of futurised generic functions is an extension of the metaobject proto-
col of CLOS. This extension enables generic functions to implicitly handle futures received
as arguments, and to return a future as result. We define this behaviour for the futurised-
function and futurised-method classes and make all generic functions and methods to
be instances of such classes. We do this implicitly, by redefining the defgeneric and
defmethod macros. Finally, we also enable Common Lisp native functions and special
forms to work with futures. In this section, we review each of these extensions.

A.3.1 Futurised Function Class
The futurised-function class is a subclass of standard-generic-function. It uses the
funcallable-standard-class as its metaclass. This allows the instances of futurised-
function to be invoked as functions (i.e. known as funcallable instances). The listing
below shows the definition of this class.

; Definition of the class for futurised generic functions.
(defclass futurised-function (standard-generic-function) ()

(:metaclass funcallable-standard-class))

Listing A.1: Definition of futurised-function class.

In the CLOS metaobject protocol, invocations to base-level generic functions are han-
dled by the compute-discriminating-function meta-level generic function. It receives the
invoked generic function as an argument and returns a closure which is applied to the ar-
guments of the invocation. We then define a method for this function which is specialised
on futurised-function.

Listing A.2 presents part of the implementation of futurised generic functions. In par-
ticular, the listing shows the compute-discriminating-function method and the proceed
function. The compute-discriminating-function method performs the following tasks:

• It creates a future (result-future) which is returned as the result of the method.

• It computes and stores the discriminating function as defined in CLOS (invoking
call-next-method).

• It collects all the arguments corresponding to unresolved futures.

• If there are no unresolved futures, the method continues the execution by calling the
proceed function. If there are unresolved futures, the method resgisters an observer
for their resolution. This is done by using the when-all-resolved form which works

222 APPENDIX A. LAMBIC IN COMMON LISP

in a similar way as the when-resolved form (cf. Section 4.4.2). Once the futures
are resolved, the method calls the proceed function.

; Enable generic functions to handle futures.
(defmethod compute-discriminating-function ((function futurised-function))

(lambda (&rest args)
(let ((result-future (make-instance ’future))

(discriminating-function (call-next-method))
(unresolved-futures (find-unresolved-futures args)))

(if unresolved-futures
(proceed function args result-future discriminating-function)
(when-all-resolved unresolved-futures

(lambda (useless-result)
(proceed function args result-future discriminating-function))))

result-future)))

; Apply discriminating function.
(defun proceed (function args result-future discriminating-function)

(let* ((unfolded-args (unfold args))
(designator (first unfolded-args)))

(if (in-current-actor designator)
(setf result (apply discriminating-function unfolded-args))
(let* ((function-name (generic-function-name function))

(function-call (make-function-call :name function-name
:arguments unfolded-args)))

(setf result (send-actor-message *current-actor* designator
function-call
:due-in *response-timeout*))))

(resolve-with-result result-future result)))

Listing A.2: Enabling generic functions to handle futures.

The proceed function contains the continuation of the execution of the compute-
discrimating-function method. This function is synchronously executed only when the
invocation of the generic function does not receive unresolved futures as arguments. Oth-
erwise, it is executed asynchronously. We highlight the two cases in Listing A.2. The
proceed function performs the following tasks:

• It replaces the futures of the arguments by their results (using the unfold function).

• It checks whether the first argument —i.e. the implicit actor designator (cf. Sec-
tion 4.4.2)— is contained in the actor executing the invocation. If this is the case,
the discriminating function is applied to the arguments. Otherwise the invocation
is turned into an asynchronous invocation to the corresponding remote actor (using

A.3. FUTURISED GENERIC FUNCTIONS 223

the send-actor-message generic function explained in Section A.2.2). Listing A.2
also highlights these two cases.

• Finally, the result of either case is used to resolve the future of the invocation
(result-future).

A.3.2 Futurised Method Class

The futurised-method class is a subclass of standard-method. It has an extra field that
stores the execution qualifier of the method (cf. Section 4.4.2). The listing below shows
the definition of this method.

; Definition of the class for futurised methods.
(defclass futurised-method (standard-method) ()

((execution-qualifier :initarg :execution-qualifier :initform nil
:accessor execution-qualifier)))

Listing A.3: Definition of class for futurised methods.

The execution qualifier is checked when the method is evaluated. If the method body
returns an unresolved future and the qualifier has not been indicated, the execution throws
a warning. Also, when the execution of the method is suspended (because the handling
of an asynchronous generic function invocation), it is checked whether the qualifier is
:uninterruptible. In such a case, the actor blocks its event loop until the resolution of
the future returned by the asynchronous invocation. We include this support for execution
qualifiers in the body of the defmethod macro.

A.3.3 Futurised Library

The futurised generic function model also requires to enable Common Lisp native func-
tions and special forms to work with futures. Because these functions and forms are
not handled by compute-discriminating-function, we have to manually add the support
for futures. For native functions we provide a futurise-functions macro. It receives as
arguments a list of symbols bound to functions. For each of those functions, a Lambic
method is generated with an invocation of the function as body. With regards to special
forms (and also some native macros), because they have special rules to evaluate their
parameters, we have to manually redefine them as macros. As an example, Listing A.4
shows the redefinition of the if special operator as a macro.

224 APPENDIX A. LAMBIC IN COMMON LISP

; Futurised if form
(defmacro futurised-if (&rest args)

‘(let ((fut (make-instance ’future))
(condition ,(car args)))

(when-resolved condition
(lambda (condition-result)

(resolve-with-result fut (if condition-result ,@(cdr args)))))
fut))

Listing A.4: Redefinition of if special operator.

A.4 Predicated Generic Functions
The implementation of predicated functions is an extension of the metaobject protocol of
CLOS. This extension enables generic functions to specialise methods on context pred-
icates. We define this behaviour for the predicated-function and predicated-method
classes. As in the case of futurised generic functions, this extension also requires the
redefinition of the defgeneric and defmethod macros.2

To enable context predicate dispatch, we model the predicates as implicit arguments
of the generic function. Such a support enables Lambic to determine the applicability of
methods according to the evaluation of the context predicates, and to order the meth-
ods according to the priority order of the predicates declared in the generic function
definitions. We explain this extension in the following subsections.

A.4.1 Predicated Function Class
The predicated-function class is a subclass of standard-generic-function and uses the
funcallable-standard-class as its metaclass. The predicated-function class has a pred-
icates field which stores the list of predicates used by the generic function’s methods
(cf. Section 5.1.1). The listing below shows the definition of the predicated-function
class.

; Definition of the class for predicated generic functions.
(defclass predicated-function (standard-generic-function)

((predicates :initarg :predicates :initform nil :accessor function-predicates))
(:metaclass funcallable-standard-class))

Listing A.5: Definition of predicated-function class.

2In Section A.6, we review how these extensions are combined.

A.4. PREDICATED GENERIC FUNCTIONS 225

To enable context predicate dispatch, we extend the generic functions’ parameter
lists with a set of implicit predicate parameters. This is done in the redefinition of the
defgeneric macro. In the current implementation, we allow methods to use up to ten
predicates. Thus, by default we extend the parameter list of a generic function with ten
predicate parameters. As an example, consider the automatic extension of the following
generic function definition presented in the validation chapter (Section 7.2.3):

; Original definition
(defgeneric mouse-move (editor shape x y)

(:predicates moving? drawing? drawing-selection?))

; Implicitly extended version
(defgeneric mouse-move (editor shape x y predpar-1 predpar-2 predpar-3

predpar-4 predpar-5 predpar-6 predpar-7 predpar-8
predpar-9 predpar-10)

(:predicates moving? drawing? drawing-selection?))

Listing A.6: Implicit addition of predicate parameters.

Such predicate parameters are implicitly bound to values in a compute-discriminating-
function method specialised on the predicate-function class. We defer the explanation
of this method to Section A.4.3, when discussing the evaluation of context predicates.

A.4.2 Predicated Method Class
The predicated-method class is a subclass of standard-method. It has an extra field con-
taining a predicate expression (cf. Section 5.1.1). The listing below shows the definition
of the predicated-method class.

(defclass predicated-method (standard-method)
((predicates :initarg :predicates :initform nil :accessor method-predicates)))

Listing A.7: Definition of predicated-method class.

As in the case of predicated generic functions, we also extend the parameter list of
predicated methods with ten extra predicated parameters. This is implicitly done in
the redefinition of the defmethod macro. In this case such parameters are specialised on
classes representing the priorities of the predicates (called priority classes). These classes
determine the order of evaluation of the methods.

Priority classes are structured in an inheritance chain. The root class of this chain
represents the least priority. Determining which classes specialise the predicate param-
eters of a method, depends on the specificity of the predicates used by the method. As

226 APPENDIX A. LAMBIC IN COMMON LISP

Figure A.6: Mapping predicates to priority classes.

explained in Section 5.1.1, such a specificity is given by the order in which predicates
are declared in the method’s generic function. The more specific the predicates used
by a method, the more priority has the method. Thus, associating priority classes with
predicate parameters implies the following steps:

• The predicates used by a method are sorted from least to most specific.

• The sorted list of predicates is mapped to the predicate parameters of the method.
This mapping is done from left to right. The least specific predicate corresponds to
the first parameter.

• Each predicate parameter uses as a specialiser the priority class representing the
specificity order of the predicate. For a predicate which appears in the first position
in the predicate list of the generic function, the priority class is priority-1. For a
predicate appearing in the second position, the priority class is priority-2 (where
priority-1 is the parent class of priority-2), and so on.

Figure A.6 illustrates the mapping of priority classes to the predicates of the mouse-
move generic function presented in Listing A.6. The moving?, drawing? and drawing-
selection? predicates are associated with the priority-1, priority-2 and priority-3
classes respectively. As such the methods of this generic function are augmented with the
list of specialised predicate parameters shown in Listing A.8. The mouse-move method
using the moving? context predicate has the first predicate parameter specialised on the
priority-1 class. As such, it is the least specific method. The most specific method is the
that specialised on drawing-selection? and whose first predicate parameter is specialised
on priority-3.

A.4. PREDICATED GENERIC FUNCTIONS 227

; mouse-move when moving
(defmethod mouse-move ((editor geuze-editor) shape x y (predpar-1 priority-1)

predpar-2 predpar-3 predpar-4 predpar-5 predpar-6
predpar-7 predpar-8 predpar-9 predpar-10)

(:when (moving? shape editor))
...)

; mouse-move when drawing
(defmethod mouse-move ((editor geuze-editor) shape x y (predpar-1 priority-2)

predpar-2 predpar-3 predpar-4 predpar-5 predpar-6
predpar-7 predpar-8 predpar-9 predpar-10)

(:when (drawing? shape editor))
...)

; mouse-move when drawing selection
(defmethod mouse-move ((editor geuze-editor) shape x y (predpar-1 priority-3)

predpar-2 predpar-3 predpar-4 predpar-5 predpar-6
predpar-7 predpar-8 predpar-9 predpar-10)

(:when (drawing-selection? shape editor))
...)

Listing A.8: Implicit addition of specialised predicate parameters.

A.4.3 Context-dependent Predicate Dispatch
Listing A.9 shows the definition of the compute-discriminating-function method spe-
cialised on the predicated-function class.

; Enable generic functions to dispatch on context predicates.
(defmethod compute-discriminating-function ((function predicated-function))

(lambda (&rest args)
(let* ((extended-args (add-predicate-arguments function args))

(preselected-methods (compute-applicable-methods function
extended-args))

(selected-methods (loop for method in preselected-methods
if (eval-method-predicates method args)
collect method)))

(apply-methods selected-methods function extended-args))))

Listing A.9: Enabling context predicate method dispatch.

This method performs the following tasks:

228 APPENDIX A. LAMBIC IN COMMON LISP

• It extends the list of arguments received in the invocation with ten predicate ar-
guments. This way they match the extended lists of parameters of the predicated
generic function and methods. The predicate arguments correspond to objects of
the priority class mapping the most specific context predicate. For instance, in the
example of Listing A.8, the most specific predicate (drawing-selection?) is mapped
to the priority-3 class. Thus, an invocation to mouse-move can be implicitly con-
verted as follows:

; Original invocation
(mouse-move editor-1 circle-2 30 40)

; Implicitly extended version
(mouse-move editor-1 circle-2 30 40 object-p3 object-p3 object-p3

object-p3 object-p3 object-p3 object-p3 object-p3
object-p3 object-p3)

In the listing above, object-p3 is an instance of the priority-3 class. Note that
this instance is used only for computing the right order of the methods according
to their specialising context predicates. As such, we can use the same instance for
all the predicate arguments of the invocation.

• Then, the applicable methods are computed using the standard CLOS semantics
(method selection according to the types of the arguments).

• For each method resulting from the previous step, we evaluate its predicates. The
final list of applicable methods includes only the methods whose predicates are
satisfied.

• Finally, the selected methods are applied to the extended list of arguments.

A.5 Group Generic Functions
The implementation of group generic functions is an extension of the metaobject protocol
of CLOS. This extension enables the definition of group behaviour for objects. To model
such a group behaviour independent from the standard (peer) behaviour of objects, we use
two generic functions. These generic functions are instances of the group-function and
peer-function classes respectively. Group generic functions require the redefinition of the
defgeneric macro. In addition, group generic functions introduce the defgroupgeneric
and defgroupmethod macros. Group behaviour can de defined only for instances of a
group-class class. A defgroupclass macro enables a new class to implicitly become a
subclass of group-class.

A.5. GROUP GENERIC FUNCTIONS 229

A.5.1 Group Class

The group-class class is a subclass of standard-class. It has a peers field to store the
instances of a same group class. In addition, we define an after initialize-instance
method specialised on this class. This method registers the observers that allow group-
class instances to discover each other and be aware of their changes of connectivity.
Listing A.10 shows these two definitions.

; Definition of group-class class
(defclass group-class ()

((peers :initform nil :accessor peers))

; Enable objects of a group class to find each other.
(defmethod initialize-instance :after ((this-object group-class)

&key &allow-other-keys)
(let* ((classname (class-name (class-of this-object)))

(description (format nil “˜d” classname)))
(push this-object (peers this-object))
(export-service this-object description)
(whenever-discovered description

(lambda (peer-object)
(if (new-peer? this-object peer-object)

(push peer-object (peers this-object))
(peer-discovered this-object peer-object)
(when-disconnected peer-object

(lambda (peer-object)
(peer-disconnected this-object peer-object)))

(when-reconnected peer-object
(lambda (peer-object)

(peer-reconnected this-object peer-object))))))))

Listing A.10: Definition of group-class class.

In the initialize-instance method, a new instance adds itself to the list stored in its
peers field. Then the instance is published by means of the export-service form (high-
lighted in the listing above). To install the observers we use the whenever-discovered,
when-disconnected and when-reconnected forms for this purpose (also highlighted in the
listing). Discovered instances are added to the peer list only if they have not been
already registered. Then, the corresponding generic functions, peer-discovered, peer-
disconnected and peer-reconnected are invoked. Default methods are provided for these
generic functions which are specialised on group-class. These methods contain in their
body only an invocation to print a message in the console.

230 APPENDIX A. LAMBIC IN COMMON LISP

A.5.2 Group Function Class
The group-function class is a subclass of standard-generic-function and uses as meta-
class the funcallable-standard-class class. Instances of this class contain the group
methods of group generic functions. It has a peer-function field bound to the peer-level
definition of the group generic functions (an instance of the peer-function class). The
listing below shows the implementation of the group-function class.

; Definition of the class for group generic functions.
(defclass group-function (standard-generic-function)

((peer-function :accessor peer-function))
(:metaclass funcallable-standard-class))

Listing A.11: Definition of group-function class.

Instances of group-function class are defined by the defgeneric macro. The name
of these instances add group- a prefix to name given to the group generic function. For
instance, the definition of a move-shape group generic function will implicitly creates an
instance of group-function called group-move-shape. Then, all group methods of move-
shape will also be renamed group-move-shape.

A.5.3 Peer Function Class
Listing A.12 shows the implementation of the peer-function class. Its instances contain
the peer methods of group generic functions. It is also a subclass of standard-generic-
function and uses the funcallable-standard-class as its metaclass. This class has a
group-function field bound to the corresponding group-function instance.

; Definition of the class for peer generic functions.
(defclass peer-function (standard-generic-function)

((group-function :initarg :group-function :initform nil
:accessor group-function))

(:metaclass funcallable-standard-class))

Listing A.12: Definition of peer-function class.

Instances of peer-function (and thus their containing peer methods) preserve the
name given originally to the group generic functions.

A.5.4 Peer and Group Methods
In this implementation, we do not use any special metaclass for peer or group methods.
Both kinds of methods correspond to instances of standard-method. The implementation

A.5. GROUP GENERIC FUNCTIONS 231

Ta
bl

e
A

.1
:

Ex
pa

ns
io

n
of

de
fg

ro
up

me
th

od
m

ac
ro

.

232 APPENDIX A. LAMBIC IN COMMON LISP

of group methods is contained mostly in the defgroupmethod macro. In this macro, the
propagation expression is converted into a function which is bound to the call-next-
method form. This function includes the following tasks:

• To find the most general propagation for an invocation (cf. Section 6.2.4). It consists
of all the possible argument lists resulting from combining the instances of the group
classes used as parameters.

• To obtain the effective propagation for an invocation (cf. Section 6.2.4). This means
applying the list of propagation predicates (received in the :propagate argument of
the propagation expression) to the different argument lists obtained in the step
above.

• To propagate the invocations. This implies invoking the next applicable method
with each argument list included in the effective propagation. These invocations
are performed sequentially.

• To control exceptions raised by each invocation using the handlers passed in the
:catch argument of the propagation expression.

• To deal with the return values of the invocations using the result function passed
in the :return argument of the propagation expression.

As example, Figure A.1 shows the result of expanding the defgroupmethod macro for
the following definition:

(defgroupmethod paint-shape ((shape group-shape) color)
(:propagate ((selected? shape))
:return nil)

(call-next-method))

The body of the resulting group-paint-shape method corresponds to the code replacing
the invocation of call-next-method in the paint-shape group method.

Because the propagation can target different hosts, the invocations included in the
propagation contain an extra argument denoted with the :previous-method-specialisers
keyword. This argument indicates the list of specialisers of the method that has triggered
the propagation. As we explain later in the next section, this information is required
to ensure that the execution of the group generic function continues with the next most
specific peer or group method (thus, avoiding re-applying the same group method at
different hosts).

Finally, in Section 6.2.4 we also introduce the call-peer-method form. Using this form
in a group method will skip any other applicable group method, and execute the peer
methods of the group generic function. For this, we also use an additional :next-peer-
methodp argument. We further discuss this argument in the next section.

A.5. GROUP GENERIC FUNCTIONS 233

A.5.5 Applying Peer and Group Generic Functions
Invocations of group generic functions are received by a compute-discriminating-function
method specialised on the peer-function class, shown in Listing A.13. This method is also
called during the execution of an invocation, from the last applicable group methods of the
group generic function (via the call-next-method or call-peer-method forms). We refer
to the first case as a standard invocation, and the second case as invoking the peer-level
continuation. We distinguish these two cases by means of a *peer-level-continuationp*
variable. By default, this variable is nil. A standard invocation is handled by forwarding
it to the group level of the group generic function. This implies invoking the group-
function instance associated with the group generic function. This invocation is received
by a compute-discriminating-function method specialised on the group-function class.

; Handling group generic function invocations at the peer level.
(defmethod compute-discriminating-function ((function peer-function))

(lambda (&rest args)
(let ((group-function (group-function function)))

(if (or *peer-level-continuationp* (not group-function))
(apply (call-next-method) args)
(apply group-function args)))))

Listing A.13: Peer-level discriminating function.

An invocation of the peer-level continuation of a group generic function is handled by
applying the original discriminating function. It is obtained by invoking the call-next-
method form in the method specialised on peer-function.

Listing A.14 shows the definition of the compute-discriminating-function method
specialised on group-function. This method performs the following tasks:

• It extracts the internal arguments (denoted with the :previous-method-specialisers
and :next-peer-methodp keywords) from the argument list of the invocation. The
values of these arguments are stored in the previous-specialisers and next-peer-
methodp variables respectively.

• If next-peer-methodp is true then the proceed-with-peer-function method is called.
This method invokes the peer-level definition of the group generic function (by set-
ting the *peer-level-continuationp* variable to true and applying the correspond-
ing peer generic function). If next-peer-methodp is nil, the previous-specialisers
variable is checked.

• If previous-specialisers is nil, the original group-level discriminating function
is applied. Otherwise, the list of selected group methods is computed. The group
methods which have been already processed are removed from the list (i.e. the meth-
ods whose specialisers are more specific than those passed in previous-specialisers).

234 APPENDIX A. LAMBIC IN COMMON LISP

The remaining selected methods are applied. In case that there are no remaining
methods, the proceed-with-peer-function method is called.

; Handling group generic function invocations at the group level.
(defmethod compute-discriminating-function ((function group-function))

(lambda (&rest args)
(multiple-value-bind (original-args previous-specialisers next-peer-methodp)

(extract-internal-arguments args)
(if next-peer-methodp

(proceed-with-peer-function function original-args)
(if (not previous-specialisers)

(apply (call-next-method) original-args)
(let* ((selected-methods (compute-applicable-methods function

original-args))
(remaining-methods (remove-applied-methods selected-methods

previous-specialisers)))
(if remaining-methods

(apply-methods remaining-methods function original-args)
(proceed-with-peer-function function original-args))))))))

; Invoking peer-level continuation.
(defmethod proceed-with-peer-function (function args)

(let ((peer-function (peer-function function))
(*peer-level-continuationp* t))

(apply peer-function args)))

Listing A.14: Group-level discriminating function.

A.6 Integration
We now review Lambic’s support for composing futurised, predicate and group generic
functions. This support comprises two tasks: composing the behaviour provided by each
feature, and combining the features’ syntactic abstractions. In this section, we focus on
the composition of behaviour. The main challenge of this task is to keep the modularity
of the three features. In this section, we discuss the issues we encounter to ensure such a
modularity.

A.6.1 Composition of Behaviour
Lambic composes the behaviour of the features’ generic function classes. This behaviour
is defined in the compute-discriminating-function methods. We organise the generic

A.6. INTEGRATION 235

function classes in the hierarchy presented in Figure A.7. In this hierarchy, predicate-
function is the parent class of the peer-function and group-function classes, and peer-
function is the parent class of the futurised-function class. Therefore, we achieve the
following sequence of tasks:

• Generic function invocations are handled by the compute-discriminating-function
method specialised on the futurised-function class. As such, the futures passed
as arguments of the invocations are handled as a first step. This ensures that no
futures are passed to the other compute-discriminating-function methods (invoked
using the call-next-method form).

• The next method applied is the one specialised on the peer-function class. This
method forwards the invocations to the compute-discriminating-function method
specialised on group-function class. This method executes the group methods of
the generic functions. After this execution, the control is given back to compute-
discriminating-function method specialised on peer-function.

• Finally, the method specialised on predicate-function is processed.

Although the above precedence order between the methods works properly for most
cases, the three features require further interactions with each other. These extra inter-
actions are the following:

• The compute-discriminating-function method specialised on predicate-function
has to deal with futures resulting from the evaluation of context predicates. We
cope with this case by using Lambic’s explicit future handlers in that method (the
when-resolve form, cf. Section A.2.2). The same support is added to the compute-
discriminating-function method defined for the group-function class, which has
to deal with futures resulting from the evaluation of the propagation predicates.

• In Listing A.14, we show that the compute-discriminating-function method spe-
cialised on the group-function class invokes the compute-applicable-methods func-
tion of CLOS’ metaobject protocol. However, the possibility exists that the group
methods have context predicates. In such a case, the applicability of the methods
should be evaluated according to those predicates. Thus, we have to create a new
definition for compute-applicable-methods which includes such a predicate-based
method dispatch. However, in the implementation of Common Lisp we use in our
work (LispWorks), it is not possible to define methods for such a generic function
(compute-applicable-methods can be invoked but not redefined). This forces us to
create a compute-applicable-predicated-methods which is directly invoked within
the compute-discriminating-function method specialised on the group-function
class.

• Finally, the invocation of compute-applicable-predicated-methods can lead to a
future (resulting from the evaluation of the context predicates). As such, they also
have to be handled explicitly by means of when-resolve forms.

236 APPENDIX A. LAMBIC IN COMMON LISP

Figure A.7: Hierarchy of generic function metaclasses in Lambic.

A.7 A Push-based Cache Algorithm

An important issue with Lambic is that the intensive use of context and propagation
predicates can make the evaluation less efficient and more prone to network failures. To
tackle this issue we include in our current implementation a preliminary cache algorithm.
We use this algorithm for the group behaviour of group classes. Such behaviour typically
requires recurrent accesses to the fields of the peer objects. We then enable the peers
to cache the values of each other’s fields. We do this in a push-based manner: the cache
of a field is updated whenever the field changes its value. The reason for this is that
fields are accessed more frequently than that they change their values. We then let each
group-class instance inform its changes of state to all its peers.

A.7.1 Example of Use

Figure A.8 illustrates such a push-based caching mechanism in the context of the sce-
nario of the collaborative drawing editor (cf. Section 7.2). In this figure, there is an actor
containing an editor object and another containing the cache for the editor’s zoom-level
field. Accessing this field for the first time results in an asynchronous remote invocation
of the zoom-level reader function. This invocation returns an unresolved future as im-
mediate return value (Case #1 in the figure). When the future receives the value of the
invocation, it is cached for new requests (Case #2). Then, if the zoom-level field changes
its value it is notified to the cache’s actor. As such, further accesses to the field get the
updated value (Case #3).

A.7. A PUSH-BASED CACHE ALGORITHM 237

1

f unresolved

0.5

f result = 1

(zoom-level remote-editor)
(setf (zoom-level local-editor) 1)

f result = 0.5

(zoom-level remote-editor)

(zoom-level remote-editor)

(in-actor-of remote-editor
 (zoom-level remote-editor))

Case #1

Case #2

Case #3
(setf (zoom-level local-editor) 0.5)

cache's actor editor's actor

Figure A.8: Push-based cache for group class fields.

A.7.2 Implementation of Push-based Cache Algorithm
Before showing the implementation of the cache algorithm we briefly discuss the implicit
definition of accessor functions for class fields. As in CLOS, when a field is defined using
the :accessor argument, our model implicitly creates two methods for reading and writing
the value from/to the field. Figure A.15 shows these automatically generated methods for
the zoom-level field of the geuze-editor class. The reader method uses the value received
in the :accessor argument as a name (e.g. zoom-level). The writer method’s name is a
two-element list composed of the setf symbol and the value of the :accessor argument
(e.g. (setf zoom-level)). The two methods use the slot-value low-level function to
access and modify the field respectively.

; Group class definition.
(defgroupclass geuze-editor ()

((zoom-level :accessor zoom-level)
...))

; Automatically generated reader method.
(defmethod zoom-level ((editor geuze-editor))

(slot-value editor ’zoom-level))

238 APPENDIX A. LAMBIC IN COMMON LISP

; Automatically generated writer method.
(defmethod (setf zoom-level) ((editor geuze-editor) value)

(setf (slot-value editor ’zoom-level) value))

Listing A.15: Automatically generated accessor functions.

Implementing push-based caching of group class fields involves the following tasks:

• Creating a list of cached values. We include this list in a *cached-items* variable.
Each item consists of three values: the peer object whose field is accessed, the name
of the reader function of that field, and the future that will cache the value of the
field.

• Defining an additional method for the reader function, which is specialised on the
remote-reference class. This implies that an invocation to a remote reader function
will now be locally handled by this method definition. This method first checks
whether there is a cached item containing the result of the invocation (i.e. for the
peer object of the group class passed as argument). If this is not the case, the
remote reader function is invoked and the resulting future is stored in a new cached
item.

• When a cached item is generated, it is stored not only in the actor invoking the
remote reader function. It is also communicated and stored in the actor containing
the requested peer object. This way this actor can notify the changes of value in
that object’s field. This is done in a new after method for the field’s writer function.
This method iterates over the list of cached items searching for those matching the
peer object and the field’s reader function. Then the method invokes the resolve-
with-result function on the future of each matched cached item.

Listing A.16 shows the definition of the new reader method specialised on remote
references, the after writer method, and the auxiliary functions these methods require.

; Current actor’s cached items.
(defvar *cached-items* nil)

; Reader method specialised on a remote reference.
(defmethod zoom-level ((remote-editor remote-reference))

(let ((future (get-cache-future remote-editor ’zoom-level)))
(if (is-resolved future)

(future-result future)
(in-actor-of remote-editor (zoom-level remote-editor)

:with-future future))))

A.7. A PUSH-BASED CACHE ALGORITHM 239

; After writer method.
(defmethod (setf zoom-level) :after ((local-editor geuze-editor) value)

(foreach (cached-item *cached-items*)
(if (match cached-item local-editor’ zoom-level)

(let ((future (third cached-item)))
(in-actor-of future (resolve-with-result future value))))))

; Get cache future.
(defun get-cache-future (remote-object function-name)

(let* ((cached-item (find-if #’(lambda (cached-item)
(match cached-item remote-object

function-name))
cached-items))

(future (third cached-item)))
(if (not future)

(begin
(setf future (make-instance ’future))
(add-cache-future remote-object function-name new-future)
(in-actor-of remote-object

(add-cache-future remote-object function-name new-future))))
future))

; Add a new cache future.
(defun add-cache-future (local-object function-name future)

(push (list remote-object function-name future) *cached-items*))

; Match cache item.
(defun match (cached-item object function-name)

(and (equal (first cached-item) remote-object)
(equal (second cached-item) function-name)))

Listing A.16: Implementing push-based caches.

In the listing above, we highlight the references to specific function names in the reader
and writer methods. In our implementation, we create a macro that receives the name
and creates the two methods implicitly. Yet, this only works for accessor functions. A
more general solution is part of our future work.

240 APPENDIX A. LAMBIC IN COMMON LISP

Appendix B

Lambic Syntax and Libraries

This chapter summarises the syntax of Lambic. Additionally, we present a library of
functions we develop to implement the scenarios presented in the validation chapter of
this thesis.

B.1 Syntax
To present the syntax of Lambic, we use an adaptation of the EBNF notation. Due to
the central role of parentheses in Lambic’s syntax, we have substituted this symbol in the
EBNF specification (used for grouping terms), with angle brackets. The expressions after
the arrows indicate the return values.

B.1.1 Classes

Class definition ::=
(defclass class-name (parent-class)({field})) → new-class

field ::= (field-name field-option)
field-option ::= [:initarg initarg-name]

[:initform form]
[:reader reader-function-name] ...

Group class definition ::=
(defgroupclass class-name (parent-class)({field})) → new-class

Class instantiation ::=
(make-instance class-name [init-values]) → new-object

241

242 APPENDIX B. LAMBIC SYNTAX AND LIBRARIES

B.1.2 Generic Functions

Generic function definition ::=
(defgeneric function-name parameter-list

[(:predicates {pred-name})]) → new-generic

parameter-list ::= ({parameter})

Group generic function definition ::=
(defgroupgeneric function-name parameter-list

[(:group-predicates {pred-name})]
[(:predicates {pred-name})]) → new-groupgeneric

parameter-list ::= ({parameter})

Generic function invocation ::=
(function-name {argument}) → result

B.1.3 Methods

(Peer) method definition ::=
(defmethod method-name [execution-qualifier] [combination-qualifier]

specialised-parameter-list
[predicate-expression]
body) → new-method

Group method definition ::=
(defgroupmethod method-name [execution-qualifier] [combination-qualifier]

specialised-parameter-list
[predicate-expression]
propagation-expression
body) → new-groupmethod

execution-qualifier ::= :interruptible | :uninterruptible
combination-qualifier ::= :before | :around | :after
specialised-parameter-list ::= ({parameter | (parameter specialiser)})
predicate-expression ::= (:when {(pred-name arguments)})

Continued on next page

B.1. SYNTAX 243

Continued from previous page
propagation-expression ::= (:propagate ({(pred-name arguments)})

[in-actor-of] [due-in] [catch] [return])

in-actor-of ::= :in-actor-of actor-designator
due-in ::= :due-in ⟨nil | seconds⟩
catch ::= :catch {(exception-name ([argument])body)}
return ::= :return ⟨nil | user-defined-function⟩

Next method call ::= (call-next-method) → result

Next peer method call ::= (call-peer-method) → result

B.1.4 Explicit Syntax for Event-driven Distribution

Export service ::=
(export-service object service-description) → nil

Import service ::=
(import-service service-description) → unbound-reference

Discovery event handler ::=
(whenever-discovered service-description lambda) → nil

Actor definition ::=
(spawn-actor name {object}) → actor

Remote generic function invocation ::=
(in-actor-of actor-designator function-invocation

[:with-future ⟨future | nil⟩]
[:due-in seconds]) → future | nil

Remote result handling ::=
(when-resolved future function

[:catch exception-handler]) → nil
Continued on next page

244 APPENDIX B. LAMBIC SYNTAX AND LIBRARIES

Continued from previous page

Discovery event handler ::=
(whenever-disconnected remote-reference lambda) → nil

Discovery event handler ::=
(whenever-reconnected remote-reference lambda) → nil

B.2 Lambic Library
This library comprises a number of additional generic functions and macros included in
the current implementation of the Lambic programming language model.

B.2.1 Library for Basic Functionality

(try-catch form {exception-handler})
Macro for handling exceptions (similar to Common Lisp handler-case form).

(begin forms)
Macro for evaluating forms in the order in which they are given (similar to Common Lisp
progn form).

(foreach (var list) body)
Macro for iterating over the elements of a list (similar to Common Lisp dolist form).

(display forms)
Generic function to print representations of objects in the standard output.

(sethash hash-table key value)
Generic function to set key-value pair to a hash table.

B.2.2 Library Supporting Furturised Generic Functions

(make-class-tag class-name)
Generic function to create a text-based description of a class.

(futurise-functions function-names)
Generic function that enables existing Common Lisp functions to implicitly handle futures.

Continued on next page

B.2. LAMBIC LIBRARY 245

Continued from previous page

response-timeout
Variable storing the default timeout for remote generic function invocations.

B.2.3 Library Supporting Group Generic Functions

(peer-discovered local-peer discovered-peer)
Generic function to handle peer discovery event.

(peer-disconnected local-peer disconnected-peer),
(peer-reconnected local-peer reconnected-peer)
Generic functions to handle peer connectivity events.

(each object), (original object), (co-located? object-1 object-2)
Generic functions representing propagation predicates for group methods.

(first results), (all results)
Generic functions representing multi-result handlers (returned by the propagation of a group
method).

no-applicable-propagation
Error thrown when the evaluation of the propagation expression of a group method results
in an empty list.

246 APPENDIX B. LAMBIC SYNTAX AND LIBRARIES

Appendix C

Lambic Kriek

Kriek is implemented using the lambic-user package. This package integrates the func-
tionalities of the cl-user, capi, color and gp LispWorks packages. We decompose the
Kriek program in four parts: classes, operations (generic functions), discovery and con-
nectivity events, and user interface. Figure C.1 shows the graphic user interface of Kriek.

C.1 Kriek Group Class and Structs

; Definition of Kriek chat service as a group class
(defgroupclass kriek-chat ()

((username :initarg :username
:accessor chat-username)

(address-book :initform (make-hash-table :test ’equal)
:accessor chat-address-book)

(history :initform ’()
:accessor chat-history)

(gui :initarg :gui :accessor chat-gui)
(role :initform nil :accessor chat-role)))

; Definition of contact struct
(defstruct contact username chat)

; Definition of text message struct
(defstruct text-message sender receiver text)

Listing C.1: Kriek class and structs.

247

248 APPENDIX C. LAMBIC KRIEK

(a) Kriek’s main GUI. (b) Kriek’s chat GUI.

Figure C.1: Kriek’s GUI

C.2. KRIEK OPERATIONS 249

C.2 Kriek Operations

C.2.1 Sending and Receiving Text Messages

; Send text to contact
(defmethod send-text ((chat kriek-chat) remote-chat text)

(let ((message (make-text-message :sender chat
:receiver remote-chat
:text text)))

(put-text-message chat message)))

; Put text message
(defgroupgeneric put-text-message chat text-message)

; GROUP LEVEL ;;

; Put text message in contact’s and sender’s chat
(defgroupmethod put-text-message ((chat kriek-chat) text-message)

(:propagate ((in-text-message? chat text-message)) :due-in nil
:return nil)

(call-next-method))

; PEER LEVEL ;;;

; Put text message in chat. Display and store it.
(defmethod put-text-message ((chat kriek-chat) text-message)

(display-text-message chat text-message)
(store-text-message chat text-message))

Listing C.2: Sending and receiving text messages.

C.2.2 Displaying Text Messages

; Display text message
(defgroupgeneric display-text-message (chat text-message)

(:predicates text-chat-peer?))

250 APPENDIX C. LAMBIC KRIEK

; GROUP LEVEL ;;

; Propagate to chats of same user
(defgroupmethod display-text-message ((chat kriek-chat) text-message)

(:propagate ((same-user? chat (original chat)))
:return nil)

(call-next-method))

; PEER LEVEL ;;;

; When chat plays the text-chat-peer role
(defmethod display-text-message ((chat kriek-chat) text-message)

(:when (text-chat-peer? chat))
(display-text-message-in-window chat text-message)
(call-next-method))

; Default behaviour for displaying text message
(defmethod display-text-message ((chat kriek-chat) text-message)

(notify-text-message chat text-message))

; Notify text message using Growl
(defmethod notify-text-message ((chat kriek-chat) text-message)

(growl-text-message text-message))

Listing C.3: Displaying text messages.

C.2.3 Storing and Retrieving Text Messages

; Store text message
(defgroupgeneric store-text-message (chat text-message))

; GROUP LEVEL ;;

; Propagate to chat playing storage-peer role
(defgroupmethod store-text-message ((chat kriek-chat) text-message)

(:propagate ((storage-peer? chat)) :due-in nil
:return nil)

(call-next-method))

; PEER LEVEL ;;;

; Record text message in chat’s history
(defmethod store-text-message ((chat kriek-chat) text-message)

(push text-message (chat-history chat)))

C.2. KRIEK OPERATIONS 251

; Get messages from history
(defmethod get-history ((chat kriek-chat) contact)

(loop for text-message in (chat-history chat)
when (or (equal (text-message-receiver message) (contact-username contact))

(equal (text-message-sender message) (contact-username contact)))
collect text-message))

Listing C.4: Storing and retrieving text messages in/from history.

C.2.4 Predicates for Kriek Operations

; Check if chat is the text message’s sender or receiver
(defmethod in-text-message? ((chat kriek-chat) text-message)

(or (equal chat (text-message-sender text-message))
(equal chat (text-message-receiver text-message))))

; Check if chat is the storage-peer
(defmethod storage-peer? :interruptible (chat)

(chat-role-equal chat “storage-peer”))

; Check if chat is the text-chat-peer
(defmethod text-chat-peer? :interruptible (chat)

(chat-role-equal chat “text-chat-peer”))

; Check if chat’s role is the role passed as argument
(defmethod chat-role-equal :interruptible (chat role)

(let ((chat-role (try-catch (chat-role chat)
(timeout-exception () nil))))

(equal chat-role role)))

; Check if chat’s username equals the username of the chat
; passed originally as argument to the group generic function
(defmethod same-user? ((chat kriek-chat) original-chat)

(let* ((address-book (chat-address-book original-chat))
(contact (get-contact address-book chat))
(original-username (chat-username original-chat)))

(equal (contact-username contact) original-username)))

252 APPENDIX C. LAMBIC KRIEK

; Get contact corresponding to chat
(defmethod get-contact (address-book chat)

(with-hash-table-iterator (next-contact address-book)
(loop (multiple-value-bind (more name contact) (next-contact)

(unless more (return nil))
(when (eql (contact-chat contact) chat)

(return contact))))))

Listing C.5: Context and propagation predicates for Kriek operations.

C.3 Handling Discovery and Connectivity Events

; Handling discovery of contacts
(defmethod peer-discovered :interruptible ((chat kriek-chat) remote-chat)

(let ((remote-username (try-catch (chat-username remote-chat)
(timeout-exception () nil))))

(if remote-username
(begin

(add-contact chat remote-username remote-chat)
(display-contact chat remote-chat)))))

; Handling disconnection of contacts
(defmethod peer-disconnected ((chat kriek-chat) remote-chat))

(hide-contact chat remote-chat))

; Handling reconnection of contacts
(defmethod peer-reconnected ((chat kriek-chat) remote-chat))

(display-contact chat remote-chat))

; Add contact to local chat’s address book
(defmethod add-contact ((chat kriek-chat) remote-username remote-chat)

(let ((new-contact (make-contact :username remote-username
:chat remote-chat)))

(sethash contact-username (chat-address-book chat) new-contact)))

Listing C.6: Handling discovery and connectivity of contacts.

C.4. GRAPHICAL USER INTERFACE 253

C.4 Graphical User Interface
C.4.1 GUI Classes

; Main pane of Kriek chat. Show list of contacts.
(defclass kriek-contacts-pane (pinboard-layout)

((draggingp :initform nil :accessor pane-draggingp)
(kriek-chat :accessor pane-kriek-chat)))

; Box displaying contact’s name
(defclass kriek-contact-box (pinboard-object)

((contact :initarg :contact :accessor box-contact)
(window :initform nil :accessor box-window)
(selectedp :initform nil :accessor box-selectedp)))

Listing C.7: GUI classes.

C.4.2 GUI Operations

; Complete initialisation of kriek-contact-window object
(defmethod initialize-instance :after ((contact-window kriek-contact-window))

(let ((title (format nil “Chat with d”
(contact-username (window-contact contact-window)))))

(setf (interface-title contact-window) title)
(load-history contact-window)))

; Display contact in chat’s contacts pane
(defmethod display-contact ((chat kriek-chat) remote-chat)

(let* ((pane (chat-gui chat))
(contact (get-contact chat remote-chat))
(contact-box (make-instance ’kriek-contact-box :contact contact

:width 200 :height 25))
(contact-windows (collect-interfaces ’kriek-contact-window))
(window (find-if (lambda (window)

(equal (contact-username contact)
(contact-username (window-contact window))))

contact-windows)))
(manipulate-pinboard pane contact-box :add-top)
(reorder-pane pane)
(when window

(setf (box-window contact-box) window)
(when (interface-visible-p window)

(notify-contact-status window “online”)))))

254 APPENDIX C. LAMBIC KRIEK

; Conceal contact from chat’s contacts pane
(defmethod hide-contact ((chat kriek-chat) remote-chat)

(let* ((pane (chat-gui chat))
(contact (get-contact chat remote-chat))
(contact-box (get-contact-box pane contact)))

(when contact-box
(setf (layout-description pane)

(remove contact-box (layout-description pane)))
(reorder-pane pane)
(let ((window (box-window contact-box)))

(when (and window (interface-visible-p window))
(notify-contact-status window “offline”))))))

; Display text in contact window
(defmethod display-text-message-in-window ((chat kriek-chat) text-message)

(let* ((pane (chat-gui chat))
(remote-chat (find-remote-chat text-message))
(contact (get-contact chat remote-chat))
(contact-username (text-message-sender text-message))
(contact-windows (collect-interfaces ’kriek-contact-window))
(window (find-if (lambda (window)

(equal contact-username
(contact-username (window-contact window))))

contact-windows))
(contact-box (get-contact-box pane contact)))

(unless window
(setf window (capi:display (make-instance ’kriek-contact-window

:contact contact
:kriek-chat (pane-kriek-chat pane))))

(setf (box-window contact-box) window))
(unless (interface-visible-p window)

(capi:display window)
(load-history window))

(set-in-window window text-message)))

; Return the remote chat used as receiver or sender of the text message
(defmethod find-remote-chat (text-message)

(if (in-current-actor (text-message-sender text-message))
(text-message-receiver text-message)
(text-message-sender text-message)))

; Load history in contact’s window
(defmethod load-history (contact-window)

(let* ((chat (kriek-chat contact-window))
(contact (contact contact-window))
(text-messages (reverse (get-history chat contact))))

(foreach (text-message text-messages)
(set-in-window contact-window text-message))))

C.4. GRAPHICAL USER INTERFACE 255

; Load text message in history window
(defmethod set-in-window (contact-window text-message)

(let* ((sender (text-message-sender text-message))
(header-text (format nil “˜%˜d says:” sender))
(text (format nil “˜%˜d” (text-message-text text-message)))
(format-face *contact-face*)
(history-pane (history-pane contact-window)))

(when (equal sender (contact-username (contact contact-window)))
(setf format-face *own-face*))

(add-text-to-history-pane history-pane header-text format-face)
(add-text-to-history-pane history-pane text)))

; Add text to history pane
(defun add-text-to-history-pane (history-pane text

&optional (face *text-face* face-supplied-p))
(let* ((buffer (editor-pane-buffer history-pane))

(end (editor:buffers-end buffer)))
(editor:insert-string end text)
(editor:with-point ((start end))

(editor:character-offset start (- (length text)))
(editor:put-text-property start end ’editor:face face))))

; Notify contact’s change of status
(defmethod notify-contact-status (contact-window status)

(let* ((name (contact-name (contact contact-window)))
(status-text (format nil “˜%˜d is ˜%˜d%” name status)))

(add-text-to-history-pane (history-pane contact-window)
status-text *contact-face*)))

; Draw contact box in pane
(defmethod draw-pinboard-object ((pane kriek-contacts-pane)

(contact-box kriek-contact-box)
&key &allow-other-keys)

(with-geometry contact-box
(let* ((color :white))

(if (box-selectedp contact-box)
(setf color :selection-color))

(draw-rectangle pane %x% %y% %width% %height%
:foreground :selection-color :filled t)

(draw-rectangle pane (1+ %x%) (1+ %y%) (- %width% 2) (- %height% 2)
:foreground color :filled t)

(draw-string pane (contact-username (box-contact contact-box))
(+ %x% 10) (+ %y% 15) :foreground :black))))

256 APPENDIX C. LAMBIC KRIEK

; Get contact box from contact
(defmethod get-contact-box ((pane kriek-contacts-pane) contact)

(find-if (lambda (contact-box)
(eql (box-contact contact-box) contact))

(layout-description pane)))

; Select contact box
(defmethod select-contact-box ((contact-box kriek-contact-box))

(let ((pane (pinboard-object-pinboard contact-box)))
(deselect-contact-boxes pane)
(setf (box-selectedp contact-box) t)
(invalidate-rectangle pane)))

; Deselect contact boxes
(defmethod deselect-contact-boxes ((pane kriek-contacts-pane))

(let ((contact-boxes (layout-description pane)))
(foreach (contact-box contact-boxes)

(deselect-contact-box contact-box))))

; Deselect contact box
(defmethod deselect-contact-box ((box kriek-contact-box))

(setf (box-selectedp box) nil)
(invalidate-rectangle (pinboard-object-pinboard box)))

; Reorder contacts pane
(defmethod reorder-pane ((pane kriek-contacts-pane))

(let* ((contact-boxes (layout-description pane))
(ordered-contact-boxes (sort-contacts contact-boxes))
(x 0)
(y 0))

(foreach (contact-box ordered-contact-boxes)
(setf (pinboard-pane-position contact-box)

(values x y))
(if (evenp (position contact-box ordered-contact-boxes))

(setf (getf (pinboard-object-graphics-args contact-box) :foreground)
:selection-color))

(setf y (+ y 24)))
(invalidate-rectangle pane)))

; Rearrange contacts (based on alphabetic order)
(defun sort-contacts (contact-boxes)

(sort contact-boxes (lambda (b1 b2)
(string< (contact-username (box-contact b1))

(contact-username (box-contact b2))))))

C.4. GRAPHICAL USER INTERFACE 257

; Basic support for Growl notifications
(defmethod growl-text-message (text-message)

(let* ((sender (text-message-sender text-message))
(text (text-message-text text-message))
(title (format nil “Message from ˜a:” sender)))

(growl “Message Received” title text “Lambic Kriek”)))

Listing C.8: GUI operations.

C.4.3 User Interface of Contact Window

; Contact window. It contains chat transcripts.
(define-interface kriek-contact-window ()

((contact :initarg :contact :accessor window-contact)
(kriek-chat :initarg :kriek-chat :accessor kriek-chat))

(:panes
(history-pane
editor-pane
:enabled nil :accessor history-pane :flag :output
:visible-min-width 200 :visible-min-height 400)

(editor-pane
editor-pane
:accessor editor-pane :flag :output
:after-input-callback ’text-composed
:vertical-scroll nil :visible-min-width 200
:visible-min-height 50)))

Listing C.9: Interface of contact window.

C.4.4 Contact Window’s Event handler

; Process text typed in contact window
(defun text-composed (editor-pane command)

(when (and (system:gesture-spec-p command)
(eql (system:gesture-spec-to-character command)

#\return))
(let* ((contact-window (top-level-interface editor-pane))

(contact (contact contact-window))
(remote-chat (contact-chat contact))
(local-chat (kriek-chat contact-window))

258 APPENDIX C. LAMBIC KRIEK

(text-message (make-text-message :sender local-chat
:receiver remote-chat
:text (editor-pane-text

editor-pane))))
(send-text local-chat remote-chat text-message)
(set-in-window contact-window text-message)
(apply-in-pane-process editor-pane

#’(setf editor-pane-text)
“” editor-pane))))

Listing C.10: Contact window’s event handler.

C.4.5 Main Window

; Main interface
(define-interface kriek-chat-interface ()

()
(:panes
(contacts-pane
kriek-contacts-pane
:accessor contacts-pane
:description nil
:input-model ‘(((:button-1 :press) mouse-clicked)

((:button-1 :second-press) mouse-doubly-clicked))
:title “Online contacts”
:background :white :vertical-scroll t
:scroll-width 150 :scroll-height 200))

(:layouts
(main-layout
row-layout
’(contacts-pane)))

(:default-initargs
:title “Lambic Kriek”
:max-width 215
:best-height 500))

Listing C.11: Contact window’s event handler.

C.4. GRAPHICAL USER INTERFACE 259

C.4.6 Main Window’s Event Handlers

; Handle mouse-clicked event.
(defun mouse-clicked (pane x y)

(let ((contact-box (pinboard-object-at-position pane x y)))
(if contact-box

(select-contact-box contact-box)
(unselect-contact-boxes pane))))

; Handle mouse-doubly-clicked event.
(defun mouse-doubly-clicked (pane x y)

(let ((contact-box (pinboard-object-at-position pane x y)))
(when contact-box

(let ((window (window contact-box)))
(unless window

(setf window
(capi:display (make-instance ’kriek-chat-contact-window

:contact (box-contact contact-box)
:kriek-chat (pane-kriek-chat pane))))

(setf (box-window contact-box) window))
(unless (interface-visible-p window)

(capi:display window)
(load-history window))))))

Listing C.12: Main window’s event handler.

C.4.7 Auxiliary Parameters

; Definition of selection color
(define-color-alias :selection-color

(make-rgb 0.15s0 0.51s0 0.93s0 0.3s0))

; Set graphic style for typed text
(defparameter *text-face* (editor:make-face :black :foreground :black :bold-p t

:italic-p t :if-exists t))

; Set graphic style for text from contact
(defparameter *contact-face* (editor:make-face :red :foreground :red :bold-p t

:italic-p t :if-exists t))

260 APPENDIX C. LAMBIC KRIEK

; Set graphic style for text from local chat
(defparameter *own-face* (editor:make-face :blue :foreground :blue :bold-p t

:italic-p t :if-exists t))

Listing C.13: Auxiliary parameters.

C.4.8 Main Function

; Kriek chat’s main function
(defun make-lambic-kriek (username)

(let* ((kriek-chat (make-instance ’kriek-chat :username username))
(kriek-chat-interface (make-instance ’kriek-chat-interface))
(contacts-pane (contacts-pane kriek-chat-interface)))

(setf (chat-gui kriek-chat) contacts-pane)
(setf (pane-kriek-chat contacts-pane) kriek-chat)
(capi:display kriek-chat-interface)))

Listing C.14: Function to create Kriek chat.

Appendix D

Lambic Geuze

Geuze is implemented using the lambic-user package. This package integrates the func-
tionalities of the cl-user, capi, color and gp LispWorks packages. We decompose the
Geuze program in four parts: definition of classes, graphical operations, GUI events and
main user interface. Figure D.1 shows the graphic user interface of Geuze.

D.1 Geuze Classes

D.1.1 Group Classes

; Definition of geuze-editor group class
(defgroupclass geuze-editor (pinboard-layout)

((username :initarg :username :accessor editor-username)
(shapes :initform nil :accessor editor-shapes)
(canvas :accessor editor-canvas)
(brush-active :initform nil :accessor brush-active)
(selected-color :initform :black :accessor selected-color)
(zoom-level :initform 1 :accessor zoom-level)
(window :accessor editor-window)
; GUI temporary state
(drag-status :initform nil :accessor drag-status)
(line-status :initform nil :accessor line-status)
(selection-rectangle :initform nil :accessor selection-rectangle)
; Group management
(in-session :initform nil :accessor in-session?)
(traffic :initform “normal” :accessor editor-traffic))

261

262 APPENDIX D. LAMBIC GEUZE

Figure D.1: Geuze’s GUI.

; Initialise an geuze-editor instance by adding the canvas.
(defmethod initialize-instance :after ((editor geuze-editor))

(let ((canvas (make-instance ’rectangle
:width 700
:height 500
:graphics-args ’(:foreground :white)
:filled t)))

(manipulate-pinboard editor canvas :add-top)
(setf (editor-canvas editor) canvas)
(setf (editor-window editor) (list 0 0 700 500))))

; Definition of geuze-shape group class
(defgroupclass geuze-shape (pinboard-object)

((name :initarg :name :accessor shape-name)
(user-editor :initform nil :accessor shape-user)
; Group management
(owner :initarg :owner :accessor shape-owner)))

; Definition of geuze-rectangle group class
(defgroupclass geuze-rectangle (geuze-shape) ())

; Definition of geuze-circle group class
(defgroupclass geuze-circle (geuze-shape) ())

D.2. GRAPHICAL OPERATIONS 263

; Definition of geuze-drawn-shape group class
(defgroupclass geuze-drawn-shape (geuze-shape)

((line :initform nil :initarg :line :accessor line)
(status :initform nil :accessor status)))

Listing D.1: Geuze’s group class definitions.

D.1.2 Auxiliary Structs

; Definition of drag-status struct
(defstruct drag-status x y)

; Definition of shape-record struct
(defstruct shape-record class name owner user x y w h color)

; Definition of drawn-shape-record struct
(defstruct (drawn-shape-record (:include shape-record)) line)

Listing D.2: Geuze’s struct definitions.

D.2 Graphical Operations
D.2.1 Adding a Shape

; Definition of add-shape group generic function
(defgroupgeneric add-shape (editor shape-record)

(:group-predicates in-session?))

; GROUP LEVEL ;;;

; Group method for shape’s owner
; Propagate addition to all editors
(defgroupmethod add-shape :uninterruptible ((editor geuze-editor) shape-record)

(:when (in-session? editor))
(:propagate ((each editor))
:return #’local-shape
:catch (timeout-exception () nil))

(call-next-method))

264 APPENDIX D. LAMBIC GEUZE

; PEER LEVEL ;;

; Add a shape to editor
(defmethod add-shape ((editor geuze-editor) shape-record)

(with-slots (class name owner x y w h color)
shape-record

(let* ((zoom-level (zoom-level editor))
(visible-w (* w zoom-level))
(visible-h (* h zoom-level))
(shape (make-instance class :owner owner :name name :x x :y y

:width visible-w :height visible-h
:graphics-args (list :background :transparent

:foreground color))))
(apply-in-pane-process editor

(lambda (editor shape)
(manipulate-pinboard editor shape :add-top))

editor shape)
(push shape (editor-shapes editor))
shape)))

; Add a drawn shape to editor
(defmethod add-shape ((editor geuze-editor) (shape-record drawn-shape-record))

(with-slots (owner name line color)
shape-record

(multiple-value-bind (tl-x tl-y br-x br-y)
(get-enclosing-rectangle line)

(let* ((x (- tl-x 5))
(y (- tl-y 5))
(width (+ 10 (- br-x tl-x)))
(height (+ 10 (- br-y tl-y)))
(shape (make-instance ’geuze-drawn-shape :owner owner :name name :x x

:y y :line line :width width :height height
:graphics-args (list :background :transparent

:foreground color))))
(push shape (editor-shapes editor))
(apply-in-pane-process editor

(lambda (editor shape)
(manipulate-pinboard editor shape :add-top))

editor shape)
shape))))

Listing D.3: The add-shape group generic function.

D.2. GRAPHICAL OPERATIONS 265

D.2.2 Deleting a Shape

; Definition of delete-shape group generic function
(defgroupgeneric delete-shape (editor shape)

(:group-predicates in-session? shape-owner? shape-client?))

; GROUP LEVEL ;;;

; Group method for shape’s owner
; Propagate deletion to all editors
(defgroupmethod delete-shape ((editor geuze-editor) (shape geuze-shape))

(:when (in-session? editor)
(shape-owner? shape editor))

(:propagate ((each editor) (co-located editor shape))
:return nil)

(call-next-method))

; Group method for shape’s client
; Propagate deletion to shape’s owner
(defgroupmethod delete-shape ((editor geuze-editor) (shape geuze-shape))

(:when (in-session? editor)
(shape-client? shape editor))

(:propagate ((shape-owner? shape editor)
(same-shape-name? editor shape (original shape)))

:return nil)
(call-next-method))

; PEER LEVEL ;;

; Delete shape from editor
(defmethod delete-shape ((editor geuze-editor) (shape geuze-shape))

(setf (editor-shapes editor) (remove shape (editor-shapes editor)))
(apply-in-pane-process editor

(lambda (editor shape)
(manipulate-pinboard editor shape :delete))

editor shape))

; Delete multiple shapes from editor
(defmethod delete-shapes (local-editor remote-editor)

(loop for shape in (editor-shapes local-editor)
if (eql (shape-user shape) remote-editor)
do (delete-shape local-editor shape)))

Listing D.4: The delete-shape group generic function.

266 APPENDIX D. LAMBIC GEUZE

D.2.3 Painting a Shape

; Definition of paint-shape group generic function
(defgroupgeneric paint-shape (editor shape color)

(:group-predicates in-session?))

; GROUP LEVEL ;;;

; Propagate the paint to all the shapes selected by the editor
; performing the paint
(defgroupmethod paint-shape ((editor geuze-editor) (shape geuze-shape) color)

(:propagate ((same-selection? shape (original shape)))
:return nil)

(call-next-method))

; Propagate the paint to all editors
(defgroupmethod paint-shape ((editor geuze-editor) (shape geuze-shape) color)

(:when (in-session? editor))
(:propagate ((same-shape-name? editor shape (original shape)))
:return nil)

(call-next-method))

; PEER LEVEL ;;

; Change shape’s color
(defmethod paint-shape ((editor geuze-editor) (shape geuze-shape) color)

(apply-in-pane-process editor
(lambda (shape color)

(setf (getf (pinboard-object-graphics-args shape) :foreground) color))
shape color))

Listing D.5: The paint-shape group generic function.

D.2. GRAPHICAL OPERATIONS 267

D.2.4 Moving a Shape

; Definition of move-shape group generic function
(defgroupgeneric move-shape (editor shape x y final-position)

(:group-predicates in-session?))

; GROUP LEVEL ;;;

; Propagate the move to all the shapes selected by the editor
; performing the move
(defgroupmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y

final-position)
(:propagate ((same-selection? shape (original shape)))
:return nil)

(call-next-method))

; Propagate the move to all editors
(defgroupmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y

final-position)
(:when (in-session? editor))
(:propagate ((relevant-position? editor shape final-position)

(same-shape-name? editor shape (original shape)))
:return nil)

(call-next-method))

; PEER LEVEL ;;

; Set and display new position for shape
(defmethod move-shape ((editor geuze-editor) (shape geuze-shape) x y

final-position)
(apply-in-pane-process editor

(lambda (shape x y)
(with-geometry shape

(setf (pinboard-pane-position shape)
(values (+ %x% x) (+ %y% y)))))

shape x y))

Listing D.6: The move-shape group generic function.

268 APPENDIX D. LAMBIC GEUZE

D.2.5 Drawing a Shape

; Draw circle
(defmethod draw-pinboard-object ((editor geuze-editor) (shape geuze-circle))

(with-geometry rectangle
(let* ((args (pinboard-object-graphics-args rectangle))

(level (zoom-level editor))
(position-offset (* 4 level))
(size-offset (* 8 level)))

(if (shape-user rectangle)
(draw-rectangle editor %x% %y% %width% %height%

:foreground (find-selection-color rectangle editor)
:filled t))

(draw-rectangle editor (+ %x% position-offset) (+ %y% position-offset)
(- %width% size-offset) (- %height% size-offset)
:foreground (getf args :foreground) :filled t))))

; Draw rectangle
(defmethod draw-pinboard-object ((editor geuze-editor) (shape geuze-rectangle))

(with-geometry ellipse
(let* ((args (pinboard-object-graphics-args ellipse))

(half-width (floor (1- %width%) 2))
(half-height (floor (1- %height%) 2))
(circle-x (+ %x% half-width))
(circle-y (+ %y% half-height))
(level (zoom-level editor))
(size-offset (* 4 level)))

(if (shape-user ellipse)
(draw-ellipse editor circle-x circle-y half-width half-height

:foreground (find-selection-color ellipse editor)
:filled t))

(draw-ellipse editor circle-x circle-y
(- half-width size-offset) (- half-height size-offset)
:foreground (getf args :foreground) :filled t))))

; Draw drawn shape
(defmethod draw-pinboard-object ((editor geuze-editor)

(shape geuze-drawn-shape)
&key &allow-other-keys)

(let* ((line (line shape))
(args (pinboard-object-graphics-args shape))
(level (zoom-level editor))
(shadow-thickness (* 10 level))
(line-thickness (* 4 level)))

(if (shape-user shape)
(draw-lines editor line

D.2. GRAPHICAL OPERATIONS 269

:foreground (find-selection-color shape editor)
:thickness shadow-thickness
:line-end-style :round :line-joint-style :round))

(draw-lines editor line :foreground (getf args :foreground)
:line-end-style :round :line-joint-style :round
:thickness line-thickness)))

; Draw temporary line
(defun draw-temporary-line (editor x y)

(let* ((line-status (line-status editor))
(old-x (car line-status))
(old-y (cdr line-status)))

(draw-line editor old-x old-y x y :foreground (selected-color editor)
:line-end-style :round :line-joint-style :round :thickness 4)))

; Create shape out of drawn line
(defun create-drawn-shape (editor)

(let* ((line-status (line-status editor))
(shape-record (make-instance ’drawn-shape-record

:name (generate-shape-name
’drawn-shape-record)

:owner editor :line line-status
:color (selected-color editor))))

(add-shape editor shape-record)))

Listing D.7: The draw-pinboard-object CAPI generic function.

270 APPENDIX D. LAMBIC GEUZE

D.2.6 Selecting a Shape

; Definition of select-shape group generic function
(defgroupgeneric select-shape (editor shape user-editor)

(:group-predicates in-session? shape-owner? shape-client?))

; GROUP LEVEL ;;;

; Group method for shape’s owner
; Propagate selection to all editors
(defgroupmethod select-shape ((editor geuze-editor) (shape geuze-shape)

user-editor)
(:when (in-session? editor)

(shape-owner? shape editor))
(:propagate ((same-shape-name? editor shape (original shape)))
:return nil)

(if (not (shape-user shape))
(begin

(call-next-method)
shape)))

; Group method for shape’s client
; Propagate selection to shape’s owner
(defgroupmethod select-shape ((editor geuze-editor) (shape geuze-shape)

user-editor)
(:when (in-session? editor)

(shape-client? shape editor))
(:propagate ((shape-owner? shape editor)

(same-shape-name? editor shape (original shape)))
:catch (timeout-exception () nil))

(call-next-method))

; PEER LEVEL ;;

; Set editor as shape’s user and display selection effect
(defmethod select-shape ((editor geuze-editor) (shape geuze-shape) user-editor)

(setf (shape-user shape) user-editor)
(apply-in-pane-process editor

(lambda (shape)
(invalidate-rectangle (pinboard-object-pinboard shape)))

shape))

Listing D.8: The select-shape group generic function.

D.2. GRAPHICAL OPERATIONS 271

D.2.7 Drawing Selection

; Draw selection rectangle. Select all deselected shapes,
; deselect all selected shapes.
(defun draw-selection-rectangle (editor x y)

(let ((selected-rectangle (selection-rectangle editor)))
(if selected-rectangle

(multiple-value-bind (ox oy)
(pinboard-pane-position selected-rectangle)

(setf (pinboard-pane-size selected-rectangle)
(values (- x ox) (- y oy)))

(foreach (shape (editor-shapes editor))
(let ((coords (get-coords selected-rectangle)))

(with-geometry shape
(if (or (inside-rectangle coords %x% %y%)

(inside-rectangle coords %x%
(+ %y% %height%)))

(if (not (shape-user shape))
(select-shape editor shape editor))

(if (shape-user shape)
(deselect-shape editor shape)))))))

(begin
(setf selected-rectangle

(make-instance ’rectangle
:x x :y y :external-min-width 0 :external-min-height 0
:visible-min-width 0 :visible-min-height 0
:internal-min-width 0 :internal-min-width 0
:graphics-args ’(:foreground :selection-color)
:filled nil))

(setf (selection-rectangle editor) selected-rectangle)
(manipulate-pinboard editor selected-rectangle :add-top)))))

Listing D.9: The draw-selection-shape group generic function.

272 APPENDIX D. LAMBIC GEUZE

D.2.8 Deselecting a Shape

; Definition of deselect-shape group generic function
(defgroupgeneric deselect-shape (editor shape)

(:group-predicates in-session? shape-owner? shape-client?))

; GROUP LEVEL ;;;

; Group method for shape’s owner
; Propagate deselection to all editors
(defgroupmethod deselect-shape ((editor geuze-editor) (shape geuze-shape))

(:when (in-session? editor)
(shape-owner? shape editor))

(:propagate ((same-shape-name? editor shape (original shape)))
:return nil)

(call-next-method))

; Group method for shape’s client
; Propagate deselection to shape’s owner
(defgroupmethod deselect-shape ((editor geuze-editor) (shape geuze-shape))

(:when (in-session? editor)
(shape-client? shape editor))

(:propagate ((shape-owner? shape editor)
(same-shape-name? editor shape (original shape)))

:return nil))
(call-next-method))

; PEER LEVEL ;;

; Set nil as shape’s user and remove selection effect
(defmethod deselect-shape ((editor geuze-editor) (shape geuze-shape))

(setf (shape-user shape) nil)
(apply-in-pane-process editor

(lambda (shape)
(invalidate-rectangle (pinboard-object-pinboard shape)))

shape))

; Deselect editor’s shapes used by editor given as parameter.
(defmethod deselect-shapes ((editor geuze-editor) user-editor)

(foreach (shape (editor-shapes editor))
(if (eql (shape-user shape) user-editor)

(deselect-shape editor shape))))

Listing D.10: The deselect-shape group generic function.

D.2. GRAPHICAL OPERATIONS 273

D.2.9 Updating a Shape

; Update shapes based on records
(defmethod update-shapes ((editor geuze-editor) shape-records)

(foreach (shape-record shape-records)
(update-shape editor shape-record)))

; Update shape
(defmethod update-shape ((editor geuze-editor) (shape-record drawn-shape-record))

(let ((shape (find-shape-with-record editor shape-record)))
(if shape

(apply-in-pane-process editor
(lambda (shape shape-record editor)

(with-slots (line version color)
shape-record

(setf (getf (pinboard-object-graphics-args shape) :foreground) color)
(setf (line shape) line)
(manipulate-pinboard editor shape :add-top)))

shape shape-record editor))))

; Update drawn shape
(defmethod update-shape ((editor geuze-editor) (shape-record shape-record))

(let ((shape (find-shape-with-record editor shape-record)))
(if shape

(apply-in-pane-process editor
(lambda (shape shape-record editor)

(with-slots (x y w h version color)
shape-record

(setf (getf (pinboard-object-graphics-args shape) :foreground) color)
(set-pinboard-object-geometry shape :x x :y y :width w :height h)
(manipulate-pinboard editor shape :add-top)))

shape shape-record editor))))

; Find hidden shape
(defun find-shape-with-record (editor shape-record)

(loop for shape in (editor-shapes editor)
when (equal (shape-name shape) (shape-record-name shape-record))
return shape))

Listing D.11: The update-shapes generic function.

274 APPENDIX D. LAMBIC GEUZE

D.2.10 Predicates and Return Functions for Graphical Opera-
tions

; Check whether new shape’s position should be
; propagated to the session.
(defgeneric relevant-position? (editor shape final-position)

(:predicates medium-traffic? low-traffic?))

; Always propagate the new positions (normal traffic)
(defmethod relevant-position? (editor shape final-position)

t)

; Propagate the new positions only to the editors
; that are currently displaying the shape. Additionally, propagate
; the final position to everyone.
(defmethod relevant-position? (editor shape final-position)

(:when (medium-traffic? local-editor))
(or final-position

(on-focus? editor shape))

; Propagate only the final position.
(defmethod relevant-position? (editor shape final-position)

(:when (low-traffic? local-editor))
final-position)

; Check whether editor’s traffic rate is set to medium
(defmethod low-traffic? (editor)

(equal (editor-traffic editor) “medium”))

; Check whether editor’s traffic rate is set to low
(defmethod low-traffic? (editor)

(equal (editor-traffic editor) “low”))

; Check whether shape is being displayed by editor
(defmethod on-focus? :uninterruptible (editor shape)

(let ((shapes (try-catch (shapes-on-focus editor)
(timeout-exception () nil))))

(and (co-located editor shape)
(find shape shapes))))

; Check whether editor owns shape
(defmethod shape-owner? :uninterruptible (shape editor)

(let ((owner (try-catch (shape-owner shape)
(timeout-exception () nil))))

(equal owner editor)))

D.3. HANDLING DISCOVERY AND CONNECTIVITY EVENTS 275

; Check whether editor does not own shape
(defmethod shape-client? (shape editor)

(not (shape-owner? shape editor)))

; Check whether shape has the same name as the shape originally
; passed as argument to the group generic function
(defmethod same-shape-name? :uninterruptible (editor shape original-shape)

(let ((shape-name (try-catch (shape-name shape)
(timeout-exception () nil))))

(and (equal shape-name (shape-name original-shape))
(co-located? editor shape))))

; Check whether shape has the same user as the shape originally
; passed as argument to the group generic function
(defmethod same-selection? ((shape geuze-shape) (original-shape geuze-shape))

(equal (shape-user shape) (shape-user original-shape)))

; Return nil for arguments that are not local instances of
; geuze-shape
(defmethod same-selection? (shape original-shape)

nil)

; Return local shape
(defmethod local-shape (shapes)

(find-if #’in-current-actor shapes))

Listing D.12: Context and propagation predicates for Geuze’s graphical operations.

D.3 Handling Discovery and Connectivity Events

; Handle peer discovery
(defmethod peer-discovered ((local-editor geuze-editor) remote-editor)

(send-owned-shapes local-editor remote-editor))

; Handle peer disconnections
(defmethod peer-disconnected ((local-editor geuze-editor) remote-editor)

(hide-disconnected-shapes local-editor remote-editor)
(deselect-shapes local-editor remote-editor))

276 APPENDIX D. LAMBIC GEUZE

; Handling peer reconnection
(defmethod peer-reconnected ((local-editor geuze-editor) remote-editor)

(send-owned-shapes local-editor remote-editor))

(defmethod hide-disconnected-shapes (local-editor remote-editor)
(foreach (shape (editor-shapes local-editor))

(if (eql (shape-owner shape) remote-editor)
(apply-in-pane-process local-editor

(lambda (shape editor)
(manipulate-pinboard editor shape :delete))

shape local-editor))))

; Send local editor’s shapes to remote editor
(defmethod send-owned-shapes (local-editor remote-editor)

(let ((shape-records (generate-shape-records local-editor)))
(in-actor-of remote-editor

(update-shapes remote-editor shape-records)
:with-future nil)))

; Get a record with the information of each shape
(defun generate-shape-records (editor)

(loop for shape in (editor-shapes editor)
when (eql editor (shape-owner shape))
collect (generate-shape-record shape)))

; Generate a shape-record from a geuze-shape object
(defmethod generate-shape-record ((shape geuze-shape))

(with-geometry shape
(make-instance ’shape-record

:class (class-of shape) :name (shape-name shape)
:owner (shape-owner shape) :user (shape-user shape)
:x %x% :y %y% :w %width% :h %height%
:color (getf (pinboard-object-graphics-args

shape) :foreground))))

; Generate a drawn-shape-record from a geuze-drawn-shape object
(defmethod generate-shape-record ((shape geuze-drawn-shape))

(make-instance ’drawn-shape-record
:name (shape-name shape) :owner (shape-owner shape)
:user (shape-user shape) :line (line shape)
:color (getf (pinboard-object-graphics-args

shape) :foreground)))

Listing D.13: Handling peer discovery and connectivity events.

D.4. USER INTERFACE EVENTS 277

D.4 User Interface Events

D.4.1 Handling Mouse Events

Handling mouse-down Event

; The mouse-down generic function
(defgeneric mouse-down (editor shape x y)

(:predicates painting? moving? drawing? drawing-selection?
selecting? deselecting?))

; mouse-down when painting shape
(defmethod mouse-down (editor shape x y)

(:when (painting? shape editor))
(paint-shape editor shape (selected-color editor)))

; mouse-down when moving shape
(defmethod mouse-down ((editor geuze-editor) shape x y)

(:when (moving? shape editor))
(setf (drag-status editor) (make-drag-status :x x :y y)))

; mouse-down when drawing shape
(defmethod mouse-down (editor shape x y)

(:when (drawing? shape editor))
(setf (line-status editor) (cons x y)))

; mouse-down when selecting shape
(defmethod mouse-down ((editor geuze-editor) shape x y)

(:when (selecting? shape editor))
(if (select-shape editor shape editor)

(call-next-method)
(display-message “Shape already in use.”)))

; mouse-down when deselecting shape
(defmethod mouse-down (editor shape x y)

(:when (deselecting? shape editor))
(deselect-shapes editor editor))

; GUI predicates
; Enters into moving mode if a shape is passed as argument
; and the editor’s brush is not selected
(defmethod moving? ((editor geuze-editor) shape)

(and shape (not (brush-active editor))))

278 APPENDIX D. LAMBIC GEUZE

; Enters into selecting mode if a shape is passed as argument
; and it is not in use already
(defmethod selecting? ((editor geuze-editor))

(and shape (not (shape-user shape))))

Listing D.14: The mouse-down generic function.

Handling mouse-move Event

; The mouse-move generic function
(defgeneric mouse-move (editor shape x y)

(:predicates moving? drawing? drawing-selection?))

; mouse-move when moving
(defmethod mouse-move ((editor geuze-editor) shape x y)

(:when (moving? shape editor))
(move-shape editor shape x y nil)
(let ((status (drag-status editor)))

(setf (drag-status-x status) x (drag-status-y status) y)))

; mouse-move when drawing
(defmethod mouse-move (editor shape x y)

(:when (drawing? shape editor))
(draw-temporary-line editor x y)
(setf line-status ‘(,x ,y ,@line-status)))

; mouse-move when drawing selection
(defmethod mouse-move (editor shape x y)

(:when (drawing-selection? editor))
(draw-selection-rectangle editor x y))

Listing D.15: The mouse-move generic function.

Handling mouse-up Event

; The mouse-up generic function
(defgeneric mouse-up (editor shape x y)

(:predicates moving? drawing? drawing-selection?))

D.4. USER INTERFACE EVENTS 279

; mouse-up when moving
(defmethod mouse-up (editor shape x y)

(:when (moving? shape editor))
(move-shape editor shape x y t)
(setf (drag-status editor) nil)
(invalidate-rectangle editor))

; mouse-up when drawing
(defmethod mouse-up (editor shape x y)

(:when (drawing? shape editor))
(create-drawn-shape editor)
(setf (line-status editor) nil)

; mouse-up when drawing selection
(defmethod mouse-up (editor shape x y)

(:when (drawing-selection? editor))
(manipulate-pinboard editor (selection-rectangle editor) :delete)
(setf (selection-rectangle editor) nil))

Listing D.16: The mouse-up generic function.

Predicates for Mouse Events

; Check painting-shape mode
(defmethod painting? (editor shape)

(and shape (brush-active editor)))

; Check moving-shape mode
(defmethod moving? (editor shape)

(and shape (not (brush-active editor))))

; Check drawing-shape mode
(defmethod drawing? (editor shape)

(and (not shape) (brush-active editor)))

; Check drawing-selection mode
(defmethod drawing-selection? (editor shape)

(and (not shape) (not (brush-active editor))))

; Check selecting-shape mode
(defmethod selecting? (editor shape)

(and shape (not (shape-user shape))))

280 APPENDIX D. LAMBIC GEUZE

; Check deselecting-shape mode
(defmethod deselecting? (editor shape)

(not shape))

Listing D.17: The mouse-up generic function.

D.4.2 Other Event Handlers

; Window position changed
(defun scroll-editor-callback (editor-pane scroll-dimension scroll-operation

scroll-value &key interactive &allow-other-keys)
(let ((new-x (get-horizontal-scroll-parameters editor-pane :slug-position))

(new-y (get-vertical-scroll-parameters editor-pane :slug-position)))
(if (eq scroll-operation :move)

(setf (editor-window editor-pane) (list new-x new-y 700 500)))))

; Color button selected
(defun option-pane-set-color (pane x y)

(let ((object (pinboard-object-at-position pane x y)))
(if object

(let ((current-color (getf (pinboard-object-graphics-args object)
:foreground)))

(multiple-value-bind (new-color successp)
(prompt-for-color “Colors” :color current-color)

(when successp
(setf (getf (pinboard-object-graphics-args object) :foreground)

new-color)
(let ((editor (editor (top-level-interface pane))))

(setf (selected-color editor) new-color))))))))

; Finger button selected
(defun set-cursor-mode (interface)

(setf (simple-pane-cursor (editor interface)) *br-finger-cursor*)
(setf (brush-active (editor interface)) nil))

; Brush button selected
(defun set-painting-mode (interface)

(setf (simple-pane-cursor (editor interface)) *brush-cursor*)
(setf (brush-active (editor interface)) t))

D.4. USER INTERFACE EVENTS 281

; Zoom option button changed
(defun change-zoom (zoom-percentage interface)

(let* ((editor (editor interface))
(all-shapes (reverse (layout-description editor)))
(new-zoom-level (/ zoom-percentage 100))
(delta (/ new-zoom-level (zoom-level editor))))

(when (and all-shapes (not (eql delta 1)))
(foreach (shape all-shapes)

(with-geometry shape
(set-pinboard-object-geometry shape

:x (* %x% delta) :y (* %y% delta)
:width (* %width% delta)
:height (* %height% delta))

(when (eql shape (editor-canvas editor))
(set-horizontal-scroll-parameters editor :max-range %width%)
(set-vertical-scroll-parameters editor :max-range %height%))))

(setf (zoom-level editor) new-zoom-level))))

; Toolbar shape selected
(defun drag-from (pane x y)

(let ((object (pinboard-object-at-position pane x y)))
(if object

(let ((value (capi-object-name object)))
(drag-pane-object pane value)))))

; Toolbar shape dropped
(defun drop-shape-callback (editor drop-object stage)

(case stage
(:formats
(set-drop-object-supported-formats drop-object ’(:value)))

(:enter
(if (and (drop-object-provides-format drop-object :value)

(drop-object-allows-drop-effect-p drop-object :copy))
(setf (drop-object-drop-effect drop-object) :copy)))

(:drag
(if (and (drop-object-provides-format drop-object :value)

(drop-object-allows-drop-effect-p drop-object :copy))
(setf (drop-object-drop-effect drop-object) :copy)))

(:drop
(if (and (drop-object-provides-format drop-object :value)

(drop-object-allows-drop-effect-p drop-object :copy))
(set-pane-focus editor)
(deselect-shapes editor editor)
(let* ((value (drop-object-get-object drop-object editor :value))

(shape-record (make-instance ’geuze-shape-record :w 45 :h 45
:name (generate-shape-name value)
:class value :owner editor
:x (drop-object-pane-x drop-object)

282 APPENDIX D. LAMBIC GEUZE

:y (drop-object-pane-y drop-object)
:color (selected-color editor))))

(add-shape editor shape-record)
(setf (drop-object-drop-effect drop-object) :copy))))))

; Deletion key pressed
; Key: Delete
(defun deletion-key-pressed (editor x y key)

(delete-shapes editor editor))

; Zoom option in percentage
(defun option-in-percentage (option)

(format nil “˜a%” option))

; Get shape at a given position.
(defun get-shape-at-position (editor x y)

(let ((shape (pinboard-object-at-position editor x y)))
(unless (eql (editor-canvas editor) shape)

shape)))

; Generate a shape name
(defun generate-shape-name (name)

(read-from-string (format nil “˜d-fig-˜d” name (gensym))))

; Find selection color
(defmethod find-selection-color (shape editor)

(if (in-current-actor editor)
:selection-color
(let* ((user (shape-user shape))

(pos (position user (peers editor)))
(colors (get-chromatic-color-names)))

(nth pos colors))))

; Return list of shapes currently being displayed in
; editor’s window
(defmethod shapes-on-focus ((editor geuze-editor))

(loop for shape in (editor-shapes editor)
when (inside-window editor shape)
collect shape))

; Check whether shape is contained within window geometry
(defmethod inside-window (window shape)

(let ((window (editor-window editor))
(zoom (editor-zoom-level editor)))

(with-geometry shape
(let ((shape-x (* %x% zoom))

(shape-y (* %y% zoom))
(shape-xw (* (+ %x% %width%) zoom))

D.5. MAIN USER INTERFACE 283

(shape-yh (* (+ %y% %height%) zoom)))
(or (inside-rectangle window shape-x shape-y)

(inside-rectangle window shape-x shape-yh)
(inside-rectangle window shape-xw shape-y)
(inside-rectangle window shape-xw shape-yh))))))

Listing D.18: Other user interface events.

D.5 Main User Interface

; Definition of main interface
(define-interface editor-interface ()

()
(:panes
(drag-layout
pinboard-layout
:description *toolbar-shapes*
:background :transparent
:input-model ’(((:button-1 :press) drag-from))
:visible-min-width 280)

(color-pane
pinboard-layout
:description (list (make-instance ’rectangle

:filled t :x 0 :y 5 :width 60 :height 30
:graphics-args ’(:foreground :black)))

:input-model ’(((:button-1 :press) option-pane-set-color))
:background :transparent)

(buttons-pane
button-pinboard-pane
:description *toolbar-buttons*
:selected-button-position 0
:background :transparent :visible-min-width 280)

(zoom-pane
option-pane
:accessor color-chooser :items ’(25 50 100 150 200 400 800)
:selected-item 100 :print-function ’option-in-percentage
:selection-callback ’change-zoom :visible-max-width 70)

(editor
geuze-editor
:scroll-callback ’scroll-editor-callback
:drop-callback ’drop-shape-callback :accessor editor
:draw-pinboard-objects :local-buffer
:background :gray :cursor *br-finger-cursor* :horizontal-scroll t

284 APPENDIX D. LAMBIC GEUZE

:vertical-scroll t :scroll-width 700 :scroll-height 500
:fit-size-to-children nil :input-model *editor-input-model*))

(:layouts
(bottom-layout
row-layout
’(drag-layout color-pane buttons-pane zoom-pane)
:adjust :center :uniform-size-p nil :visible-max-height 40
:ratios ’(nil nil nil nil) :y-adjust :center)

(main-layout
column-layout
’(editor bottom-layout)))

(:default-initargs
:layout ’main-layout :title “Lambic Geuze”
:best-width 723 :best-height 582))

Listing D.19: Main user interface.

D.5.1 Auxiliary Parameters

; Cursor icon
(defparameter *brush-cursor*

(load-cursor
’((:cocoa

#.(current-pathname “images/brush-cursor.tif”)
:x-hot 2 :y-hot 40))))

; Finger icon
(defparameter *br-finger-cursor*

(load-cursor
’((:cocoa

#.(current-pathname “images/br-finger-cursor.tif”)
:x-hot 17 :y-hot 11))))

; Default local selection color
(define-color-alias :selection-color

(make-rgb 0.15s0 0.51s0 0.93s0 0.4s0))

; Shapes in the toolbar
(defparameter *toolbar-shapes*

(list (make-instance ’rectangle
:filled t :x 10 :y 5 :width 30 :height 30
:graphics-args ’(:foreground :black)
:name ’geuze-rectangle)

(make-instance ’ellipse

D.5. MAIN USER INTERFACE 285

:filled t :x 50 :y 5 :width 30 :height 30
:graphics-args ’(:foreground :black)
:name ’geuze-ellipse)))

; Buttons in the toolbar
(defparameter *toolbar-buttons*

(list (make-instance ’checkable-button
:x 0 :y 5
:checked-image-location
#.(current-pathname

“images/selected-brush.png”)
:unchecked-image-location
#.(current-pathname

“images/unselected-brush.png”)
:when-checked ’set-painting-mode)

(make-instance ’checkable-button
:x 32 :y 5
:checked-image-location
#.(current-pathname

“images/selected-finger.png”)
:unchecked-image-location
#.(current-pathname

“images/unselected-finger.png”)
:when-checked ’set-cursor-mode
:checkedp t)))

; Input model
(defparameter *editor-input-model*

‘(((:button-1 :press)
,(lambda (editor x y)

(let ((pressed-shape (get-shape-at-position editor x y)))
(mouse-down editor pressed-shape x y))))

((:button-1 :motion)
,(lambda (editor x y)

(let ((pressed-shape (get-shape-at-position editor x y)))
(mouse-move editor pressed-shape x y))))

((:button-1 :release)
,(lambda (editor x y)

(let ((pressed-shape (get-shape-at-position editor x y)))
(mouse-up editor pressed-shape x y))))

((#\del :press) deletion-key-pressed)))

Listing D.20: Auxiliary parameters for user interface.

286 APPENDIX D. LAMBIC GEUZE

D.5.2 Main Function

; Geuze editor’s main function
(defun make-lambic-geuze (username)

(let* ((interface (make-instance ’editor-interface))
(editor (editor interface)))

(setf (editor-username editor) username)
(capi:display interface)))

Listing D.21: Function to create Geuze editor.

Bibliography

[AFK+93] Gul Agha, Svend Frølund, WooYoung Kim, Rajendra Panwar, Anna Pat-
terson, and Daniel Sturman. Abstraction and Modularity Mechanisms for
Concurrent Computing. IEEE Parallel Distrib. Technol., 1(2):3–14, 1993.

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[AHH+09] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and
Michael Perscheid. A Comparison of Context-oriented Programming Lan-
guages. In COP ’09: International Workshop on Context-Oriented Program-
ming, pages 1–6, New York, NY, USA, 2009. ACM.

[AHM+10] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt,
and Kazunori Kawauchi. Event-specific Software Composition in Context-
oriented Programming. In Proceedings of the 9th international conference
on Software composition, SC’10, pages 50–65, Berlin, Heidelberg, 2010.
Springer-Verlag.

[AHT+02] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.
Douceur. Cooperative task management without manual stack management.
In ATEC ’02: Proceedings of the General Track of the annual conference on
USENIX Annual Technical Conference, pages 289–302, Berkeley, CA, USA,
2002. USENIX Association.

[Ame91] Pierre America. POOL: design and experience. ACM SIGPLAN OOPS
Messenger, 2:16–20, April 1991.

[App11] Apple Inc. Networking Bonjour Protocol, 2006-2011.

[Bai08] Engineer Bainomugisha. Resilient Service Partitioning for Pervasive Com-
puting Services. Master’s thesis, Vrije Universiteit Brussel, Brussels, Bel-
gium, September 2008.

[Bar05] Jakob Bardram. The Java Context Awareness Framework (JCAF) – A Ser-
vice Infrastructure and Programming Framework for Context-Aware Ap-
plications. In Hans Gellersen, Roy Want, and Albrecht Schmidt, editors,

287

288 BIBLIOGRAPHY

Pervasive Computing, volume 3468 of Lecture Notes in Computer Science,
pages 98–115. Springer Berlin / Heidelberg, 2005.

[BBC02] Laurent Baduel, Francoise Baude, and Denis Caromel. Efficient, Flexible,
and Typed Group Communications in Java. In Proceedings of the 2002 joint
ACM-ISCOPE conference on Java Grande, JGI ’02, pages 28–36, New York,
NY, USA, 2002. ACM.

[BBC+06] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice
Huet, Matthieu Morel, and Romain Quilici. Grid Computing: Software
Environments and Tools, chapter Programming, Deploying, Composing, for
the Grid. Springer-Verlag, January 2006.

[BC06] Paolo Bellavista and Antonio Corradi. The Handbook of Mobile Middleware.
Auerbach Publications, Boston, MA, USA, 2006.

[BCC+10] Engineer Bainomugisha, Alfredo Cádiz, Pascal Costanza, Wolfgang
De Meuter, Sebastián González, Kim Mens, Jorge Vallejos, and Tom
Van Cutsem. Language Engineering for Mobile Software, chapter Language
Engineering for Mobile Software. IGI Global, 2010.

[BCH+96] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford,
and P. Tucker Withington. A Monotonic Superclass Linearization for Dylan.
ACM SIGPLAN Notices, 31(10):69–82, 1996.

[BD96] Daniel Bardou and Christophe Dony. Split Objects: A Disciplined Use
of Delegation within Objects. In Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and appli-
cations, pages 122–137. ACM Press, 1996.

[BD07] Genevieve Bell and Paul Dourish. Back to the Shed: Gendered Visions of
Technology and Domesticity. Personal Ubiquitous Computing, 11:373–381,
June 2007.

[BDG+88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, and David A. Moon. Common Lisp Object System Speci-
fication X3J13 Document 88-002R. SIGPLAN Not., 23(SI):1–143, 1988.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency
and Distribution in Object-Oriented Programming. ACM Computing Sur-
veys, 30(3):291–329, 1998.

[BI93] Andrew P. Black and Mark P. Immel. Encapsulating Plurality. In ECOOP
’93: Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming, pages 57–79, London, UK, 1993. Springer-Verlag.

[BKZD04] Michael Beigl, Albert Krohn, Tobias Zimmer, and Christian Decker. Typical
Sensors needed in Ubiquitous and Pervasive Computing. Economic Affairs,
4(Figure 1):153–158, 2004.

BIBLIOGRAPHY 289

[CC99] Craig Chambers and Weimin Chen. Efficient Multiple and Predicated Dis-
patching. In Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’99,
pages 238–255, New York, NY, USA, 1999. ACM.

[CD08] Pascal Costanza and Theo D’Hondt. Feature Descriptions for Context-
oriented Programming. In 2nd International Workshop on Dynamic Software
Product Lines (DSPL’08), co-located with Software Product Line Conference
2008 (SPLC2008), pages 9–14, September 2008.

[CH05] Pascal Costanza and Robert Hirschfeld. Language Constructs for Context-
Oriented Programming - An overview of ContextL. In Proceedings of the
2005 symposium on Dynamic languages, DLS ’05, pages 1–10, New York,
NY, USA, 2005. ACM.

[Cha93] Craig Chambers. Predicate Classes. In ECOOP ’93: Proceedings of the
7th European Conference on Object-Oriented Programming, pages 268–296,
London, UK, 1993. Springer-Verlag.

[CHVD08] Pascal Costanza, Charlotte Herzeel, Jorge Vallejos, and Theo D’Hondt. Fil-
tered Dispatch. In DLS ’08: Proceedings of the 2008 symposium on Dynamic
languages, pages 1–10, New York, NY, USA, 2008. ACM.

[CK06] Gregory Cooper and Shriram Krishnamurthi. Embedding Dynamic
Dataflow in a Call-by-Value Language. In Peter Sestoft, editor, Program-
ming Languages and Systems, volume 3924 of Lecture Notes in Computer
Science, pages 294–308. Springer Berlin / Heidelberg, 2006.

[CLCM00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Mul-
tiJava: Modular Open Classes and Symmetric Multiple Dispatch for Java.
In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages
130–145, New York, NY, USA, 2000. ACM Press.

[CMV+08] Alfredo Cádiz, Boris Mejías, Jorge Vallejos, Kim Mens, Peter Van Roy,
and Wolfgang de Meuter. PALTA: Peer-to-peer AdaptabLe Topology for
Ambient intelligence. In Proceedings of the 2008 International Conference
of the Chilean Computer Science Society, pages 100–109, Washington, DC,
USA, 2008. IEEE Computer Society.

[CSJR02] K. Chandra Sekharaiah and D. Janaki Ram. Object Schizophrenia Problem
in Object Role System Design. In Zohra Bellahsène, Dilip Patel, and Colette
Rolland, editors, Object-Oriented Information Systems, volume 2425 of Lec-
ture Notes in Computer Science, pages 1–8. Springer Berlin / Heidelberg,
2002.

[Ded06] Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Vrije Univer-
siteit Brussel, 2006.

290 BIBLIOGRAPHY

[Der99] Michael L. Dertouzos. The Future of Computing. Scientific American, pages
52–55, august 1999.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM, 51:107–113, January
2008.

[Dij82] Edsger W. Dijkstra. Selected Writings on Computing: a Personal Perspec-
tive. Springer-Verlag New York, Inc., New York, NY, USA, 1982.

[DL05] Pierre-Charles David and Thomas Ledoux. WildCAT: A Generic Frame-
work for Context-aware Applications. In MPAC ’05: Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-hoc computing,
pages 1–7, New York, NY, USA, 2005. ACM Press.

[DVC+07] Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang De Meuter, and
Theo D’Hondt. Context-Oriented Domain Analysis. In 6th International and
Interdisciplinary Conference on Modeling and Using Context (CONTEXT
2007), Lecture Notes in Artificial Intelligence. Springer-Verlag, August 2007.

[DVCM+06] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and
Wolfgang De Meuter. Ambient-Oriented Programming in AmbientTalk. In
Dave Thomas, editor, ECOOP 2006 – Object-Oriented Programming, vol-
ume 4067 of Lecture Notes in Computer Science, pages 230–254. Springer
Berlin / Heidelberg, 2006.

[DVV+07] Brecht Desmet, Kristof Vanhaesebrouck, Jorge Vallejos, Pascal Costanza,
and Wolfgang De Meuter. The Puzzle Approach for Designing Context-
Enabled Applications. In Proceedings of the XXVI International Conference
of the Chilean Society of Computer Science, pages 23–29, Washington, DC,
USA, 2007. IEEE Computer Society.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The Many Faces of Publish/Subscribe. ACM Computing Sur-
veys, 35(2):114–131, 2003.

[EGS00] Patrick Th. Eugster, Rachid Guerraoui, and Joe Sventek. Distributed Asyn-
chronous Collections: Abstractions for Publish/Subscribe Interaction. In
ECOOP ’00: Proceedings of the 14th European Conference on Object-
Oriented Programming, pages 252–276, London, UK, 2000. Springer-Verlag.

[EKC98] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate Dispatching:
A Unified Theory of Dispatch. In Eric Jul, editor, ECOOP’98 — Object-
Oriented Programming, volume 1445 of Lecture Notes in Computer Science,
pages 186–211. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0054092.

[Eri11] Ericsson. The Erlang Programming Language. http://www.erlang.org,
1986-2011.

BIBLIOGRAPHY 291

[Eug07] Patrick Eugster. Type-based Publish/Subscribe: Concepts and Experiences.
ACM Transactions on Programming Languages and Systems, 29(1):6, 2007.

[FMM07] Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. Tasks: Language
Support for Event-driven Programming. In PEPM ’07: Proceedings of the
2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 134–143, New York, NY, USA, 2007. ACM.

[Fou11] Python Software Foundation. The Python Programming Language.
http://www.python.org, 1991-2011.

[Frø92] Svend Frølund. Inheritance of Synchronization Constraints in Concurrent
Object-Oriented Programming Languages. In Ole Madsen, editor, ECOOP
’92 European Conference on Object-Oriented Programming, volume 615 of
Lecture Notes in Computer Science, pages 185–196. Springer Berlin / Hei-
delberg, 1992. 10.1007/BFb0053037.

[Gar05] Jesse James Garrett. Ajax: A New Approach to Web Applica-
tions. http://adaptivepath.com/ideas/essays/archives/000385.php, Febru-
ary 2005.

[GBCV+09] Elisa Gonzalez Boix, Tom Cutsem, Jorge Vallejos, Wolfgang Meuter, and
Theo D’Hondt. A Leasing Model to Deal with Partial Failures in Mobile Ad
Hoc Networks. In Objects, Components, Models and Patterns, volume 33 of
Lecture Notes in Business Information Processing, pages 231–251. Springer
Berlin Heidelberg, 2009.

[GDL+04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-
son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble,
and David Wetherall. System Support for Pervasive Applications. ACM
Transactions on Computer Systems, 22:421–486, November 2004.

[Ger05] Dirk Gerrits. Erlisp, Common Lisp Library. http://common-
lisp.net/project/erlisp, 2005.

[GF99] Rachid Guerraoui and Mohamed E. Fayad. OO Distributed Program-
ming is Not Distributed OO Programming. Communications of the ACM,
42(4):101–104, 1999.

[GFGM98] Rachid Guerraoui, Pascal Felber, Benoît Garbinato, and Karim Mazouni.
System Support for Object Groups. SIGPLAN Not., 33(10):244–258, 1998.

[GG97] Benoît Garbinato and Rachid Guerraoui. Using the Strategy Design Pattern
to Compose Reliable Distributed Protocols. In COOTS’97: Proceedings of
the 3rd conference on USENIX Conference on Object-Oriented Technologies
(COOTS), pages 17–17, Berkeley, CA, USA, 1997. USENIX Association.

292 BIBLIOGRAPHY

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[GMH07] Sebastián González, Kim Mens, and Patrick Heymans. Highly Dynamic
Behaviour Adaptability Through Prototypes with Subjective Multimethods.
In DLS ’07: Proceedings of the 2007 symposium on Dynamic languages,
pages 77–88, New York, NY, USA, 2007. ACM.

[Goo09] Google Inc. Google Wave. http://wave.google.com, 2009.

[GR06] Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[GSW+02] Luke Gorrie, Vladimir Sekissov, David Wallin, Mats Cronqvist, and
Martin Björklund. Distel: Distributed Emacs Lisp (for Erlang).
http://fresh.homeunix.net/ luke/distel, 2002.

[Hal85] Robert H. Halstead, Jr. MULTILISP: a Language for Concurrent Symbolic
Computation. ACM Transactions on Programming Languages and Systems,
7(4):501–538, 1985.

[Har08] Klaus Harbo. CL-MUPROC: Erlang-inspired Multiprocessing in Common
Lisp. http://common-lisp.net/project/cl-muproc, 2008.

[HCD08] Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. Reflection for the
Masses. In Robert Hirschfeld and Kim Rose, editors, Self-Sustaining Sys-
tems, volume 5146 of Lecture Notes in Computer Science, pages 87–122.
Springer Berlin / Heidelberg, 2008.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-Oriented
Programming. Journal of Object Technology. http://www.jot.fm, 7(3),
March-April 2008.

[HO06] Philipp Haller and Martin Odersky. Event-Based Programming without
Inversion of Control. In Proc. Joint Modular Languages Conference, volume
4228 of Lecture Notes in Computer Science, pages 4–22. Springer, 2006.

[HO09] Philipp Haller and Martin Odersky. Scala Actors: Unifying Thread-based
and Event-based Programming. Theoretical Computer Science - Elsevier,
410(2-3):202–220, 2009.

[Hoh06] Gregor Hohpe. Programming Without a Call Stack – Event-driven Archi-
tectures. OBJEKTspektrum, 02:18–24, February 2006.

[HRB+91] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy,
and Eric Jul. The Emerald Programming Language. Technical report, Dept.
of Computer Science, University of British Columbia, Vancouver, Canada,
october 1991.

http://www.jot.fm

BIBLIOGRAPHY 293

[HT99] Lothar Hotz and Michael Trowe. NetCLOS - Parallel Programming in Com-
mon Lisp. In International Conference on Parallel and Distributed Process-
ing Techniques and Applications, pages 2034–2040, 1999.

[Hua09] Jianyi Huang. Language Support For Dynamic Mashups In the Internet
of Things. Master’s thesis, Vrije Universiteit Brussel, Brussels, Belgium,
September 2009.

[Kin05] Ken Kinder. Event-driven programming with twisted and python. Linux
Journal, 2005(131):6, 2005.

[KRB91] Gregor Kiczales, Jim Des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, USA, 1991.

[Lie86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behav-
ior in Object-oriented Systems. In Conference proceedings on Object-oriented
Programming Systems, Languages and Applications, pages 214–223. ACM
Press, 1986.

[Lie87] Henry Lieberman. Concurrent Object-Oriented Programming in ACT 1. In
A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent Program-
ming, pages 9–36. MIT Press, 1987.

[MDC96] Jacques Malenfant, Christophe Dony, and Pierre Cointe. A Semantics of
Introspection in a Reflective Prototype-Based Language. In LISP AND
SYMBOLIC COMPUTATION, pages 153–180, 1996.

[MES05] Mark S. Miller, Dean E. Tribble, and Jonathan Shapiro. Concurrency among
strangers: Programming in E as plan coordination. In Symposium on Trust-
worthy Global Computing, volume 3705 of LNCS, pages 195–229. Springer,
2005.

[MFRW09] Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro Warth.
Expressive and Modular Predicate Dispatch for Java. ACM Transactions
on Programming Languages and Systems, 31(2):1–54, 2009.

[MGB+09] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: A Pro-
gramming Language for Ajax Applications. In OOPSLA ’09: Proceeding of
the 24th ACM SIGPLAN conference on Object oriented programming sys-
tems languages and applications, pages 1–20, New York, NY, USA, 2009.
ACM.

[Mil04] Todd Millstein. Practical Predicate Dispatch. In OOPSLA ’04: Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 345–364, New York, NY,
USA, 2004. ACM Press.

294 BIBLIOGRAPHY

[Mil06] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006.

[MPR06] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME:
A Coordination Model and Middleware Supporting Mobility of Hosts and
Agents. ACM Transactions on Software Engineering and Methodology,
15:279–328, July 2006.

[MR07] Boris Mejías and Peter Van Roy. A Relaxed-Ring for Self-Organising and
Fault-Tolerant Peer-to-Peer Networks. In Proceedings of the XXVI Interna-
tional Conference of the Chilean Society of Computer Science, pages 13–22,
Washington, DC, USA, 2007. IEEE Computer Society.

[MS04] Giuseppe Milicia and Vladimiro Sassone. The Inheritance Anomaly: Ten
Years After. In Proceedings of the 2004 ACM symposium on Applied com-
puting, pages 1267–1274. ACM Press, 2004.

[MV10] Boris Mejías and Peter Van Roy. Beernet: Building Self-Managing Decen-
tralized Systems with Replicated Transactional Storage. IJARAS: Interna-
tional Journal of Adaptive, Resilient, and Autonomic Systems, 1(3):1–24,
July - September 2010.

[MY93] Satoshi Matsuoka and Akinori Yonezawa. Analysis of Inheritance Anomaly
in Object-oriented Concurrent Programming Languages. In Research direc-
tions in concurrent object-oriented programming, pages 107–150. MIT Press,
1993.

[NCT04] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote Pointcut:
A Language Construct for Distributed AOP. In AOSD ’04: Proceedings of
the 3rd international conference on Aspect-oriented software development,
pages 7–15, New York, NY, USA, 2004. ACM.

[NR08] Jim Newton and Christophe Rhodes. Custom Specializers in Object-
Oriented Lisp. Journal of Universal Computer Science, 14(20):3370–3388,
2008.

[NSV+06] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno
De Fraine, and Davy Suvée. Explicitly Distributed AOP using AWED.
In AOSD ’06: Proceedings of the 5th international conference on Aspect-
oriented software development, pages 51–62, New York, NY, USA, 2006.
ACM.

[Oli11] Oliver Widder. Geek and Poke. http://geekandpoke.typepad.com, 2011.

[Pro10] Programming Methods Laboratory of EPFL. The Scala Programming Lan-
guage. http://www.scala-lang.org, 2003-2010.

BIBLIOGRAPHY 295

[PSDF01] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard Florin.
JAC: A Flexible Solution for Aspect-Oriented Programming in Java. In
REFLECTION ’01: Proceedings of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns, pages
1–24, London, UK, 2001. Springer-Verlag.

[PVW+04] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges,
Peter Rigole, Tim Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonck-
ers, and Koen De Bosschere. Towards an Extensible Context Ontology for
Ambient Intelligence. In Ambient Intelligence, pages 148–159, 2004.

[RC04] Giacomo Rizzolatti and Laila Craighero. The Mirror-Neuron System. An-
nual Review of Neuroscience, 27:169–192, 2004.

[Ric90] C. Richardson. LispWorks: A Common Lisp Programming Environment for
Unix Workstations. pages 127–134, 1990.

[Rob10] Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo.
The Lua Programming Language. http://www.lua.org, 1993-2010.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:
Aiding the Development of Context-enabled Applications. In CHI ’99: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 434–441, New York, NY, USA, 1999. ACM Press.

[Sei05] Peter Seibel. Practical Common Lisp. Apress Series. Apress, 2005.

[SM08] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-Typed Actors for
Java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming,
volume 5142 of Lecture Notes in Computer Science, pages 104–128. Springer
Berlin / Heidelberg, 2008.

[SPH10] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing Active Ob-
jects to Concurrent Components. In Theo D’Hondt, editor, ECOOP 2010 –
Object-Oriented Programming, volume 6183 of Lecture Notes in Computer
Science, pages 275–299. Springer Berlin / Heidelberg, 2010.

[SRRB10] Bruno Silvestre, Silvana Rossetto, Noemi Rodriguez, and Jean-Pierre Briot.
Flexibility and Coordination in Event-based, Loosely coupled, Distribu-
ted Systems. Computer Languages, Systems and Structures - Elsevier,
36(2):142–157, 2010.

[Tai93] Antero Taivalsaari. Object-oriented Programming with Modes. Journal of
Object-Oriented Programming, 6(3):25–32, 1993.

[Tan08] Éric Tanter. Contextual Values. In DLS ’08: Proceedings of the 2008
symposium on Dynamic languages, pages 1–10, New York, NY, USA, 2008.
ACM.

296 BIBLIOGRAPHY

[Tea11] Growl Team. Growl: A Notification System for Mac OS X.
http://growl.info, 2004 - 2011.

[TGDB06] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel. Context-
Aware Aspects. In Welf Löwe and Mario Südholt, editors, 5th International
Symposium on Software Composition (SC 2006) Software Composition, vol-
ume 4089 of LNCS, Vienna Autriche, 2006. Springer.

[VA01] Carlos Varela and Gul Agha. Programming Dynamically Reconfigurable
Open Systems with SALSA. SIGPLAN Not., 36(12):20–34, 2001.

[Van08] Tom Van Cutsem. Ambient References: Object Designation in Mobile Ad
Hoc Networks. PhD thesis, Vrije Universiteit Brussel, Faculty of Sciences,
Programming Technology Lab, May 2008.

[VCDDM07] Tom Van Cutsem, Jessie Dedecker, and Wolfgang De Meuter. Object-
Oriented Coordination in Mobile Ad Hoc Networks. In Amy Murphy and Jan
Vitek, editors, Coordination Models and Languages, volume 4467 of Lecture
Notes in Computer Science, pages 231–248. Springer Berlin / Heidelberg,
2007.

[VCVD09] Jorge Vallejos, Pascal Costanza, Tom Van Cutsem, and Wolfgang De
Meuter. Reconciling Generic Functions with Actors. In ACM SIGPLAN
International Lisp Conference, Cambridge, Massachusetts, 2009.

[VDM07] Tom Van Cutsem, Jessie Dedecker, and Wolfgang De Meuter. Object-
Oriented Coordination in Mobile Ad Hoc Networks. In COORDINATION,
2007.

[VED+07] Jorge Vallejos, Peter Ebraert, Brecht Desmet, Tom Van Cutsem, Stijn
Mostinckx, and Pascal Costanza. The Context-Dependent Role Model. In
J. Indulska and K. Raymond, editors, 7th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS 2007), Paphos,
Cyprus, LNCS 4531. Springer, 2007.

[VGC+10] Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang De Meuter,
Theo D’Hondt, and Kim Mens. Predicated Generic Functions: Enabling
Context-dependent Method Dispatch. In Proceedings of the 9th international
conference on Software composition, SC’10, pages 66–81, Berlin, Heidelberg,
2010. Springer-Verlag.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Com-
puter Programming. MIT Press, 2004.

[VHC+10] Jorge Vallejos, Jianyi Huang, Pascal Costanza, Wolfgang De Meuter, and
Theo D’Hondt. A Programming Language Approach for Context-aware
Mashups. In Proceedings of the 3rd and 4th International Workshop on Web
APIs and Services Mashups, Mashups ’09/’10, pages 4:1–4:5, New York,
NY, USA, 2010. ACM.

BIBLIOGRAPHY 297

[vLDN07] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented
Programming: Beyond Layers. In ICDL ’07: Proceedings of the 2007 inter-
national conference on Dynamic languages, pages 143–156, New York, NY,
USA, 2007. ACM.

[VME+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker,
and Wolfgang De Meuter. AmbientTalk: Object-Oriented Event-driven Pro-
gramming in Mobile Ad hoc Networks. In XXVI International Conference
of the Chilean Computer Science Society (SCCC). IEEE Computer Society,
2007.

[VME+11] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jorge Valle-
jos, and Jessie Dedecker. Ambient-Oriented Programming website.
http://prog.vub.ac.be/amop, 2008-2011.

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing. Com-
mun. ACM, 42(7):76–82, 1999.

[Wei91] Mark Weiser. The Computer for the Twenty-first Century. Scientific Amer-
ican, pages 94–100, september 1991.

[Wik11a] Wikipedia. “Geolocation” — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/Geolocation, April 2011.

[Wik11b] Wikipedia. “Notification System” — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/notification_system, June 2011.

[Wis05] John Wiseman. The CL-ZEROCONF Library.
https://github.com/wiseman/cl-zeroconf, 2005.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A note
on distributed computing. In MOS ’96: Selected Presentations and Invited
Papers Second International Workshop on Mobile Object Systems - Towards
the Programmable Internet, pages 49–64. Springer-Verlag, 1996.

[YB05] Eiko Yoneki and Jean Bacon. Ubiquitous Computing: Challenges in Flexible
Data Aggregation. In EUC, pages 1189–1200, 2005.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented Concurrent Programming in ABCL/1. In Conference proceedings
on Object-oriented programming systems, languages and applications, pages
258–268. ACM Press, 1986.

	Introduction
	Research Context
	Problem Statement
	Case Study: Pervasive Identities

	Research Goals
	Programming Language Approach
	Ambient-oriented Programming
	Modularising Event-driven Distributed Programs
	Extending Generic Functions-based Object-oriented Programming

	Contributions
	Dissertation Roadmap

	Modularity in Ambient-oriented Programming
	Motivating Scenario: Pervasive Identities
	Kriek: a Pervasive Communication Service
	Geuze: a Collaborative Drawing Editor
	Pervasive Identities

	Ambient-oriented Programming
	Requirements for Distribution

	Context Dependency
	Requirements for Context Dependency

	Group Behaviour
	Requirements for Group Behaviour

	Entangled Concerns
	Summary

	Related Work
	Event-driven Distributed Programming
	Communicating Event Loops
	Event-driven Programming Styles
	Event-driven Distributed Programming: Synthesis and Discussion

	Modelling Context Dependency
	Evaluation of Context-oriented Programming Models
	Context Dependency: Synthesis and Discussion
	Context Dependency in Ambient-oriented Programming

	Modelling Group Behaviour
	Evaluation of Models for Group Behaviour
	Group Behaviour: Synthesis and Discussion
	Group Behaviour in Ambient-oriented Programming
	Context dependency and Group Behaviour

	Summary: Modularity in AmOP
	Modelling Context Dependency in AmOP
	Modelling Group Behaviour in AmOP

	Ambient-oriented Programming in Lambic
	Generic Function-based Object Orientation in Lambic
	Class Definition and Instantiation
	Generic Function and Method Definitions

	Futurised Generic Functions
	Generic Function-based Event Loops
	Actors
	Asynchronous Generic Function Invocations
	Asynchronous Return Values
	Summary

	Lambic's Event-driven Programming Style
	Decentralised Discovery
	Decoupled Communication
	Connection-independent Failure Handling
	Summary

	Lambic's Support for Communication Revisited
	Managing Mutable State
	Inversion of Control
	Lost Continuations
	Event Interleaving
	Asynchrony Contagion
	Interoperability with Existing Libraries

	Conclusion

	Context Dependency in Lambic
	Predicated Generic Functions
	Defining Predicated Generic Functions
	Invoking Predicated Generic Functions

	Requirements for Context Dependency Revisited
	Modularity
	Dynamic Selection
	Consistent Composition
	Restricted Scope
	Limitations

	Predicated Generic Functions in AmOP
	Combining Futurised and Predicated Generic Functions
	Discussion

	Conclusion

	Group Behaviour in Lambic
	An Empathic Approach to Group Behaviour
	Group Generic Functions
	Defining Group Classes
	Defining Group Generic Functions
	Defining Group Methods
	Invoking Group Generic Functions

	Lambic's Support for Empathic Group Behaviour
	Plurality Encapsulation
	Group Protocols
	Modularity

	Group Generic Functions in AmOP
	Combining Futurised and Group Generic Functions
	Combining Predicated and Group Generic Functions
	Discussion

	Conclusion

	Lambic at Work
	Kriek: A Pervasive Communication Service
	Step #1: Basic Behaviour for Communication
	Step #2: Adding Support for Pervasive Identities
	Evaluation

	Geuze: A Collaborative Drawing Editor
	A Quick Overview of the Implementation of Geuze
	Step #1: Basic Behaviour for Graphical Operations
	Step #2: Modularisation and Dynamic Composition of Graphical Operations
	Step #3: Modularisation and Dynamic Composition of Group Behaviour
	Step #4: Context-dependent Propagation of Graphical Operations.
	Step #5: Handling Distribution Issues
	Evaluation

	Discussion
	Modularity of Context Dependency and Group Behaviour in AmOP Revisited
	Related Work Revisited

	Conclusion
	Research Goals Revisited
	Lambic in a Nutshell
	Contributions
	Work influenced by our Research
	Limitations and Future Work
	Allowing Efficient Predicate Evaluation
	Managing Advanced Context Dependencies
	Increasing Behaviour Reusability
	Modularising State
	Detecting Event Interleaving Hazards

	Lambic in Common Lisp
	Overview of Lambic Programming Model
	Generic Function-based Event Loops
	Parameter Passing
	Concurrency
	Communication
	Connectivity
	Discovery
	Conditions

	Futurised Generic Functions
	Futurised Function Class
	Futurised Method Class
	Futurised Library

	Predicated Generic Functions
	Predicated Function Class
	Predicated Method Class
	Context-dependent Predicate Dispatch

	Group Generic Functions
	Group Class
	Group Function Class
	Peer Function Class
	Peer and Group Methods
	Applying Peer and Group Generic Functions

	Integration
	Composition of Behaviour

	A Push-based Cache Algorithm
	Example of Use
	Implementation of Push-based Cache Algorithm

	Lambic Syntax and Libraries
	Syntax
	Classes
	Generic Functions
	Methods
	Explicit Syntax for Event-driven Distribution

	Lambic Library
	Library for Basic Functionality
	Library Supporting Furturised Generic Functions
	Library Supporting Group Generic Functions

	Lambic Kriek
	Kriek Group Class and Structs
	Kriek Operations
	Sending and Receiving Text Messages
	Displaying Text Messages
	Storing and Retrieving Text Messages
	Predicates for Kriek Operations

	Handling Discovery and Connectivity Events
	Graphical User Interface
	GUI Classes
	GUI Operations
	User Interface of Contact Window
	Contact Window's Event handler
	Main Window
	Main Window's Event Handlers
	Auxiliary Parameters
	Main Function

	Lambic Geuze
	Geuze Classes
	Group Classes
	Auxiliary Structs

	Graphical Operations
	Adding a Shape
	Deleting a Shape
	Painting a Shape
	Moving a Shape
	Drawing a Shape
	Selecting a Shape
	Drawing Selection
	Deselecting a Shape
	Updating a Shape
	Predicates and Return Functions for Graphical Operations

	Handling Discovery and Connectivity Events
	User Interface Events
	Handling Mouse Events
	Other Event Handlers

	Main User Interface
	Auxiliary Parameters
	Main Function

	Bibliography

