
Faculteit Wetenschappen en Bio-ingenieurswetenschappen
Vakgroep Computerwetenschappen
Software Languages Lab

Ambient-Oriented Dataflow Programming for
Mobile RFID-Enabled Applications

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Andoni Lombide Carreton

Promotor: Prof. Dr. Wolfgang De Meuter
Copromotor: Prof. Dr. Theo D’Hondt

Oktober 2011

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Print: Silhouet, Maldegem

© 2011 Andoni Lombide Carreton

2011 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5487 972 5
NUR 980 / 986 / 989
Legal deposit D/2011/11.161/143

All rights reserved. No parts of this book may be reproduced or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the author.

“Simple molecules combine to make powerful chemicals. Simple cells
combine to make powerful life-forms. Simple electronics combine to make
powerful computers. Logically, all things are created by a combination of
simpler, less capable components. Therefore, a supreme being must be our
future, not our origin!”

– Scott Adams (1957 -), Dilbert comic, February 11, 1996

ii

Abstract

In ubiquitous computing research it is generally accepted that software has to be loosely-
coupled and event-driven. Applications have to be decoupled in space, time and arity in
order to cope with dynamically reconfiguring wireless networks and intermittent net-
work connections. They have to be event-driven in order to react to fluctuating wireless
connections, users, other computers, sensors, etc. This has led to a number of program-
ming models tailored towards such distributed event-driven applications. The one on
which this work is based is the ambient-oriented programming paradigm [DVCM+05],
which is a programming language paradigm specifically tailored towards applications
running on mobile devices, such as smartphones.

RFID is an emerging wireless technology that allows to enrich everyday objects
with a digital representation. Current RFID-enabled applications merely use RFID tags
as barcodes, associating physical objects with a digital representation in a centralized
backend database. However, RFID technology is increasingly integrated in mobile
devices, giving rise to mobile RFID-enabled applications. We begin this dissertation by
extending ambient-oriented programming to be able to conceive mobile RFID-enabled
applications as ambient-oriented programs running on mobile devices where remote
software objects can designate tagged real-world things.

Like any event-driven architecture, ambient-oriented programming requires the
programmer to coordinate an application by means of callbacks, which causes the well-
documented problem of inversion of control [HO06]. This problem becomes much
more prominent in mobile RFID-enabled applications because of the massive number
of events that such applications need to react to. This dissertation proposes dataflow
programming in order to tackle this problem. Dataflow programming allows reacting
to events without inversion of control [MRO10]. Unfortunately, current incarnations of
dataflow programming do not offer the aforementioned decoupling in space, time and
arity. To achieve this decoupling, we integrate dataflow programming with ambient-
oriented programming into ambient-oriented dataflow programming.

We analyze ambient-oriented dataflow programming on two levels, namely the
node level and the network level. With node-centric ambient-oriented dataflow pro-
gramming, nodes specify their distributed dataflow dependencies declaratively by sub-
scribing to and publishing events, and let the language runtime take care of coordinat-
ing dependent event-driven code instead of relying on callbacks. However, since de-
pendent code is evaluated implicitly in response to remotely signaled events, the global
control flow of a large distributed applications becomes implicit and hard to predict.
This leads us to design a network-centric visual ambient-oriented dataflow language in
which an explicit network-level data flow is used for coordinating an application. In or-
der to cope with the dynamic nature of mobile RFID-enabled applications, it allows to
visually specify the arity and binding semantics of distributed dataflow dependencies.

iii

iv

Samenvatting

In onderzoek naar ubiquitous computing is het algemeen aanvaard dat software los-
gekoppeld en event-gedreven moet zijn. Toepassingen moeten ontkoppeld zijn in tijd,
ruimte en ariteit zodat ze kunnen omgaan met dynamisch herconfigurerende draadloze
netwerken en frequent wegvallende netwerkverbindingen. Ze moeten event-gedreven
zijn om te reageren op fluctuerende draadloze verbindingen, gebruikers, andere com-
puters, sensors, enz. Dit heeft geleid tot een aantal programmeermodellen toegespitst
op dergelijke gedistribueerde event-gedreven toepassingen. Dit werk is gebaseerd
op het ambient-georiënteerd programmeerparadigma [Ded06], wat een programmeer-
taalparadigma is dat specifiek gericht is naar toepassingen die draaien op mobiele
toestellen, zoals smartphones.

RFID is een opkomende draadloze technologie die toelaat alledaagse objecten te
verrijken met een digitale representatie. Huidige RFID-verrijkte toepassingen gebruiken
RFID slechts als een barcode, waarbij fysieke objecten geassocieerd worden met hun
digitale representatie in een gecentraliseerde backend database. Echter, RFID-tech-
nologie wordt meer en meer geı̈ntegreerd in mobiele toestellen zoals smartphones, wat
aanleiding geeft tot mobile RFID-enabled applications. We beginnen dit proefschrift
met het ambient-georiënteerd programmeren uit te breiden zodat mobile RFID-enabled
applications kunnen geschreven worden als ambient-georiënteerde programma’s die
draaien op mobiele toestellen en waarin gedistribueerde software-objecten getagde ob-
jecten uit de echte wereld (things) kunnen voorstellen.

Zoals bij alle event-gedreven architecturen, vereisen ambient-georiënteerde toepas-
singen dat de programmeur de toepassing coördineert door middel van callbacks, wat
het uitvoerig gedocumenteerde probleem van inversion of control met zich meebrengt
[HO06]. Dit probleem doet zich bij mobile RFID-enabled applications op een veel
grotere schaal voor door het massale aantal aan events waarop deze toepassingen moeten
reageren. Dit proefschrift stelt dataflow programming voor om dit probleem aan te
pakken. Dataflow programming laat toe op events te reageren zonder inversion of
control [MRO10]. Helaas bieden huidige incarnaties van dataflow-technologie niet de
bovennoemde losse koppeling in tijd, ruimte en ariteit aan. Om een dergelijke ont-
koppeling te bereiken, integreren we dataflow programming met ambient-georiënteerd
programmeren in ambient-georiënteerd dataflow programming.

In dit proefschrift analyseren we ambient-georiënteerd dataflow programming op
twee niveaus, namelijk het knoopniveau (node level) en het netwerkniveau (network
level). Met node-centric dataflow specifiëren knopen declaratief hun gedistribueerde
dataflow-afhankelijkheden door zich te abonneren op of door het publiceren van events,
en laten het coördineren van afhankelijke event-gedreven code over aan de runtime van
de taal in plaats van gebruik te maken van callbacks. Echter wordt hierdoor afhankeli-
jke code impliciet geëvalueerd als reactie op gedistribueerd gesignaleerde events, wat
de globale control flow van grotere gedistribueerde toepassingen impliciet en moei-

v

vi

lijk te voorspellen maakt. Dit leidt ons tot het ontwerp van een network-centric vi-
suele ambient-georiënteerde dataflow-taal, waarin om een toepassing te coördineren
de expliciete data flow op netwerkniveau wordt gebruikt. Om te kunnen omgaan met
het dynamische karakter van mobile RFID-enabled applications, laat deze taal toe de
ariteit en bindingssemantiek van gedistribueerde dataflow-afhankelijkeden visueel te
specifiëren.

Acknowledgements

First and foremost, I would like to thank my promotor Prof. Wolfgang De Meuter and
copromotor Prof. Theo D’Hondt for giving me this opportunity and promoting this
thesis. Not only over the past four years, but during my time as an undergraduate as
well, they have continuously challenged me, picked my interest, and given invaluable
advice. Especially Wolfgang’s relentless but infinitely useful proof-reading and dis-
cussions about my work and in the end my dissertation have transformed me from a
student to a researcher.

I sincerely thank the members of my jury for the time and effort they put in evaluat-
ing this work and in giving insightful comments: Prof. Patrick Eugster (Purdue Univer-
sity), Prof. Tom Holvoet (Katholieke Universiteit Leuven), Prof. Tom Lenaerts (Uni-
versité Libre de Bruxelles), Prof. Beat Signer (Vrije Universiteit Brussel) and Prof. Vi-
viane Jonckers (Vrije Universiteit Brussel). Having to reflect on and defend my work
on such a deep level was hard but fair and a satisfying experience. I can only repeat
how much I truly appreciate the effort that must have gone into this.

I would like to again thank Prof. Wolfgang De Meuter, Prof. Theo D’Hondt and
Prof. Viviane Jonckers for sparking my interest in programming languages, software
engineering, and Computer Science research in general. From where I am now, I appre-
ciate their outstanding teaching even more than when I was an undergraduate student.
It is also a joy to take part in such teaching ethics when assisting their courses.

The role of the other members of the Software Languages Lab should neither be
neglected. Together, they have made my work environment an intellectual playground
where a lot of good memories have been forged. Space constraints prevent me from
listing all of them here. but to some of them I would like to especially express my
gratitude. Dr. Tom Van Cutsem for his guidance and proof-reading my text, especially
in my first years. Kevin Pinte for contributing to a large part of this research, both
technically and intellectually, and for being an excellent office mate. Stijn Mostinckx
for the many fruitful discussions and for putting me on track. Engineer Bainomugisha
for proof-reading my dissertation.

Special thanks also goes to the Context & Ambient-oriented Programming Group
within the lab for the collaboration. Especially the legendary Friday-afternoon hacking
sessions with Christophe Scholliers, Elisa Gonzalez Boix and Dries Harnie were we
discussed, fought and laughed, but in the end realized quite a lot of the crazy ideas we
came up with. Special thanks also goes to Dr. Jorge Vallejos for helping me out with
setting everything up for my private and public PhD defense.

Other than colleagues, I have made a lot of friends at the lab. Without these friend-
ships, my incentive to perform would have been much lower. So thanks to my drinking
buddies (coffee at noon or beer on Friday evenings, take your pick): Prof. Wolfgang
De Meuter, Christophe Scholliers, Elisa Gonzalez Boix, Dr. Coen De Roover, Dr. Ellie
d’Hondt, Matthias Stevens, Stefan Marr, Dr. Andy Kellens, Dirk Van Deun, Dr. Car-

vii

viii

los Noguera, Nicolas Cardozo and Stijn Timbermont. I would like to thank Dr. Sofie
Goderis for showing me around as my first office mate.

Next to my colleagues, I would like to thank a number of people that in essence
had nothing to do with my work, but contributed in other kinds of ways to my success.
While my colleagues made me glad to go to work, these people made me look out
for relaxation after a hard day of work, hence contributing to my mental well-being.
Glenn Van Den Wijngaert, Thomas Tooten, Wouter Tooten and Jelle De Waegeneer for
the many not-so-sober nightly philosophical discussions in the Mechelen area. Cedric
Ghequiere and Hans Vanweyenberg for all our musical endeavors.

Finally, I would like to thank the people that have been the closest to me these
years. My parents for supporting me in too many ways to list here. Without their
support, nothing of this would have been possible. And last but not least, my girlfriend
Tine Lesire for her endless support and for being there for me, whatever happened. She
not only endured me in some of my most stressful moments, but dragged me through
them.

This work is funded by a PhD scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT).

Contents

1 Introduction 3
1.1 Research Context . 5
1.2 Problem Statement . 6
1.3 Research Goals . 7

1.3.1 Contributions . 8
1.3.2 Supporting Publications . 9

1.4 Approach to the Problem . 10
1.5 Dissertation Roadmap . 10
1.6 Summary . 12

2 Mobile RFID-Enabled Applications 15
2.1 Enabling Technologies . 15

2.1.1 Mobile Ad Hoc Networks 16
2.1.2 RFID Technology . 19

2.2 Ambient-Oriented Programming . 23
2.2.1 Ambient-Oriented Programming Criteria 23

2.3 Programming Model Requirements 29
2.3.1 Ambient-oriented Programming with RFID-tagged Objects . . 29
2.3.2 Loose Coupling . 30
2.3.3 Highly Event-driven Code 31
2.3.4 Conclusion . 32

3 Related Work 35
3.1 Survey of RFID Programming Technology 35

3.1.1 Backend-Based Middleware 36
3.1.2 Decentralized Middleware 37
3.1.3 Evaluation . 38

3.2 Survey of Publish/Subscribe Systems 39
3.2.1 Evaluation . 44

3.3 Survey of Dataflow Programming Technology 48
3.3.1 Functional Reactive Programming 49
3.3.2 Programming with Dataflow Graphs 55
3.3.3 Evaluation . 60

3.4 Survey of Programming Technology for Sensor Networks 63
3.4.1 Node-Centric Programming 64
3.4.2 Group-Centric Programming 66
3.4.3 Network-Centric Programming 68
3.4.4 Evaluation . 70

ix

x CONTENTS

3.5 Conclusion . 73
3.5.1 Revisiting the Problem Statement 73
3.5.2 Towards Ambient-Oriented Programming for Mobile RFID-

Enabled Applications . 73
3.5.3 Towards a Publish/Subscribe-Style Interaction for Dataflow Pro-

grams . 75
3.5.4 Towards a Network-Centric Ambient-Oriented Dataflow Lan-

guage . 75
3.5.5 Summary . 76

4 Ambient-Oriented Programming with AmbientTalk/2 79
4.1 AmbientTalk/2 . 79

4.1.1 Object-Oriented Programming in AmbientTalk 80
4.1.2 Metaprogramming and Reflection in AmbientTalk 84
4.1.3 Concurrent Programming in AmbientTalk 87
4.1.4 Distributed Programming in AmbientTalk 92
4.1.5 Designating Groups of Objects with Ambient References . . . 95
4.1.6 Linguistic Symbiosis with the JVM 97
4.1.7 Summary . 98

4.2 The Inversion of Control Problem 99
4.3 Conclusion . 102

5 Ambient-Oriented Programming for Mobile RFID-Enabled Applications 103
5.1 Motivation . 103

5.1.1 A Mobile RFID-enabled Application Scenario 104
5.1.2 Ambient-Oriented Programming with RFID Tags 105

5.2 Changes to AmbientTalk and Its Interpreter 106
5.2.1 Fine-Grained Connectivity Handling 106
5.2.2 Maintaining Thing Identity Using Multiway References . . . 106
5.2.3 Serializing Things . 109

5.3 Programming Mobile RFID-Enabled Applications in AmbientTalk . . 110
5.3.1 RFID-tagged Objects as Things 110
5.3.2 Storing Objects on RFID Tags 113
5.3.3 Reactivity To Appearing and Disappearing Things 113
5.3.4 Asynchronous Communication 114
5.3.5 Fault-tolerant Communication 114
5.3.6 Data Consistency . 115
5.3.7 Addressing Specific Groups of Things 116
5.3.8 Putting It All Together . 117

5.4 Implementation . 119
5.4.1 Implementation of Things 120
5.4.2 Generating and Maintaining Things 124
5.4.3 Performance Evaluation . 126
5.4.4 Limitations . 128

5.5 Conclusion . 129

CONTENTS xi

6 Node-Centric Ambient-Oriented Dataflow Programming 131
6.1 Motivation . 132

6.1.1 The Ticket Trader Application 132
6.1.2 The Book Recommender Application 133
6.1.3 Conclusion . 136

6.2 Dataflow Programming in AmbientTalk/R 136
6.2.1 Reactive Object Semantics 139

6.3 Ambient-Oriented Dataflow Programming in AmbientTalk/R 139
6.3.1 Ambient Behaviors . 141
6.3.2 Group-centric Ambient Behaviors 144
6.3.3 Reactive Queries . 146
6.3.4 Summary . 149
6.3.5 Implementing The Ticket Trader Application with Ambient Be-

haviors . 151
6.4 Case Study: The RFID-Enabled Library 154

6.4.1 Connecting a Reactive Value to a Sensor 154
6.4.2 Node-Centric Dataflow Primitives at Work 156
6.4.3 Evaluation . 159

6.5 Implementation . 162
6.5.1 Publishing Ambient Behaviors 162
6.5.2 Subscribing to Ambient Behaviors 163
6.5.3 Networking Technology Used by Ambient Behaviors 167
6.5.4 Performance Evaluation . 168

6.6 Limitations . 171
6.7 Conclusion . 172

7 Network-Centric Visual Dataflow Programming 173
7.1 Motivation . 173

7.1.1 Visual Dataflow as a Coordination Paradigm 174
7.2 Visual Dataflow Programming and AmbientTalk/RV 176

7.2.1 The Book Recommender Application in AmbientTalk/RV . . 178
7.2.2 Discovering Operator Nodes 178
7.2.3 Executing Mobile AmbientTalk/R Code 181
7.2.4 Propagating Events and Reacting to Events 184
7.2.5 Dependency Arities . 186
7.2.6 Stateful Reactions . 188
7.2.7 Evaluation . 189

7.3 A Variation: Producing Multiple Results 190
7.4 An AmbientTalk/RV Programming Environment 193

7.4.1 Basic Operations . 193
7.4.2 Persistence and Importing Partial Graphs 193

7.5 Implementation . 196
7.5.1 Representing Distributed Dataflow Graphs 196
7.5.2 The Default Host Interface 199

7.6 Limitations . 202
7.6.1 Subscription . 203
7.6.2 Deployment . 203
7.6.3 Visual Scalability . 203
7.6.4 Tooling . 203

7.7 Conclusion . 203

xii CONTENTS

8 Conclusion 205
8.1 Research Goals . 205
8.2 Restating the Contributions . 207

8.2.1 Fundamental Contributions 208
8.3 Limitations of Our Approach . 209

8.3.1 Security and Privacy of Mobile RFID-Enabled Applications . 209
8.3.2 Distributed Glitch Prevention 209
8.3.3 Overhead of Dataflow Programming 210
8.3.4 Event Processing Bottlenecks 210

8.4 Avenues for Future Research . 210
8.4.1 Active RFID Technology . 210
8.4.2 Content-based Publish/Subscribe 211
8.4.3 Distributed Glitch Prevention 211
8.4.4 Bidirectional Dataflow . 212
8.4.5 Object Capabilities as a Security Model 212
8.4.6 Complex Event Processing 213
8.4.7 Session Types . 213
8.4.8 Formalization . 213

8.5 Concluding Remarks . 214

Bibliography 215

List of Figures

1.1 Screenshot of a mobile RFID-enabled library application. 4

3.1 Typical architecture of EPC RFID middleware. 36
3.2 Distributed publish/subscribe architecture. 40
3.3 Publish/subscribe architecture for mobile ad hoc networks. 47

4.1 AmbientTalk actors as communicating event loops. 89

5.1 Screenshot of the mobile RFID-enabled library application. 104
5.2 Using multiway references to abstract over multiple connections. . . . 107
5.3 A multiway reference to a single physical book through multiple things. 108
5.4 A multiway reference is connected up until all of its composing remote

references are disconnected. 108
5.5 Overview of the RFID event loop. 111
5.6 RFID event loops and different applications interfacing with it. . . . 112
5.7 Implementation layers. 119
5.8 Layered architecture of the Book thing. 121
5.9 Simulation results of read and write operations. 127
5.10 Read rates and write rates (tags per second). 128

6.1 Two running instances of the ticket trader application. 132
6.2 Dataflow graph for centering the map in the ticket trader application. . 137
6.3 Example sequence diagram of an ambient behavior. 143
6.4 Example sequence diagram of a group-centric ambient behavior. . . . 145
6.5 Duality between ambient behaviors and reactive queries. 147
6.6 Example sequence diagram of a reactive query. 148
6.7 Schematic overview of an AmbientTalk/R dataflow program distributed

using ambient behaviors. 150
6.8 Number of messages processed per event loop with two communicat-

ing event loops (n = 2 and m is varied from 10 to 100). 169
6.9 Number of messages processed per event loop with four communicat-

ing event loops (n = 4 and m is varied from 10 to 100). 170
6.10 Number of messages processed per event loop with six communicating

event loops (n = 6 and m is varied from 10 to 100). 170

7.1 Represention of a dataflow operator in AmbientTalk/RV 176
7.2 AmbientTalk/RV implementation of the RFID-enabled Book Recom-

mender application. 179
7.3 Fixed dataflow edge from BookScanner to BookRecommender. 180

xiii

xiv LIST OF FIGURES

7.4 Rebinding dataflow edge from EBookReader to Shelf. 181
7.5 BookRecommender role using public code of its host. 182
7.6 Lifecycle of a dataflow operator host. 183
7.7 BookScanner role publishing events under topic books and BookRecommender

role subscribing books, recommended, and recommendedInStock dataflow
variables. 185

7.8 One-to-many dataflow dependecy between EBookReader node and Shelf

nodes. 186
7.9 One-to-one dataflow dependency between Shelf node and BookRecommender

node. 187
7.10 Many-to-one dataflow dependency between Shelf nodes and BookRecommender

node. 187
7.11 BookRecommender role that additionally displays the books that are put

back by the customer. 189
7.12 Visual dataflow implementation of the RFID-enabled Book Recom-

mender application where multiple outgoing events are used to display
books of the same author in the GUI as well. 191

7.13 The implementation of the RFID-enabled Book Recommender appli-
cation in the AmbientTalk/RV prototype programming environment. . 194

7.14 Basic operations supported by the AmbientTalk/RV prototype program-
ming environment. 195

7.15 Object diagram of the implementation of AmbientTalk/RV (a). 197
7.16 Object diagram of the implementation of AmbientTalk/RV (b). 199

List of Tables

2.1 Comparison of the class-based model with the protoype-based model. 25

3.1 Survey of RFID programming technology. 39
3.2 Survey of distributed publish/subscribe systems. 45
3.3 Survey of dataflow programming technology. 61
3.4 Survey of sensor network programming technology. 71
3.5 Breakdown of programming models in chapters. 76

4.1 Overview of AmbientTalk’s units of operation. 92
4.2 Different callbacks in an AmbientTalk application. 99

5.1 AmbientTalk’s extended object model for mobile RFID-enabled appli-
cations. 129

6.1 Traditional event handling in the Ticket Trader application. 133
6.2 Traditional event handling in the Book Recommender application: RFID

connection status events. 134
6.3 Traditional event handling in the Book Recommender application: application-

specific events. 134
6.4 Traditional event handling in the Book Recommender application: con-

nection status events. 135
6.5 AmbientTalk/R’s reactive objects semantics. 140
6.6 Supported operations by goup-centric ambient behaviors. 146

7.1 Dependency arity semantics. 188

1

2 LIST OF TABLES

Chapter 1

Introduction

Ubiquitous computing is a futuristic vision on computing first proposed by Mark Weiser
[Wei91, Wei93] that is slowly becoming reality. In ubiquitous computing, computers
are not the user’s central point of attention anymore. Instead, the use of computers
is integrated in the everyday tools that users interact with. At the time of writing this
text, we are already observing a paradigm shift into the direction of ubiquitous comput-
ing, similar to the one that has been observed when mainframe computing transitioned
into personal computing. Everyday and everywhere, people are carrying a multitude
of mobile devices that interact with the user, other mobile devices, computing systems
connected through the internet, or even the physical world. These mobile devices can
be devices that require the user’s attention, such as smartphones, portable media play-
ers, laptops, game consoles, etc. In many other cases computers are integrated in our
physical environment and aid us in our everyday tasks without us even knowing. Exam-
ples are driving assistance systems in cars, home theater systems, product scanners in
supermarkets, digital picture frames that change the displayed picture when they detect
the presence of a certain person, etc. Just like the mainframe in the past, the Personal
Computer is no longer the only gateway to digital information and digital interaction.
Everyday objects are enriched with microprocessors and are taking over that role.

Together with the integration of computing devices in everyday objects and tasks,
an increase in the proliferation of sensor devices is observed. Indeed, computing de-
vices can only assist in their users’ everyday tasks unobtrusively if they are able to
autonomously infer information about the physical world in which their users reside.
A modern mobile phone is equipped with motion sensors and/or gyroscopes, light sen-
sors, a microphone, a touch screen, one or more cameras, a GPS module, an RFID
reader, etc. and other kinds of sensors will undoubtedly follow. The recent explosion
of sensor integration in these devices can be aligned with computing applications that
interact with the physical world: GPS modules determine the location of objects, ob-
jects are identified while being filmed, the movement of objects is tracked etc., slowly
causing the digital world and physical world to converge. In the context of web appli-
cations, Serrano terms this convergence diffuse computing [Ser09].

However, for this to happen, sensors alone are not enough. In all but the sim-
plest applications, sensor information must be reacted upon, processed and delivered
to the interested parties, which can be software components, devices or people. Hence,
wireless communication is essential to allow sensor-equipped mobile devices to inter-
act with each other and thus contributing to a meaningful application [TP05]. Such
an application in a ubiquitous computing environment is not a classic monolithic pro-

3

4 CHAPTER 1. INTRODUCTION

gram that accepts user-supplied input and processes it into some user-targeted output.
Instead, ubiquitous computing applications execute fluidly and spontaneously when
heterogenous mobile devices interact. To remain causally connected to each other and
their environment, such applications continuously have to respond to stimuli from their
environment, whether they be sensor input, user input, or communication with other
software components. Hence, these applications are highly event-driven.

Additionally, in many cases ubiquitous computing applications need to be aware
of which physical objects are in their proximity. The most widely used sensor tech-
nology for this purpose is Radio Frequency Identification or RFID [WFGH99]. RFID
is considered a key enabler for ubiquitous computing [WJ09, Ble06]. RFID-enabled
applications consist of RFID tags that can be used to “tag” physical objects and RFID
readers that wirelessly communicate with these tags using radio frequencies. RFID is
already used in many application domains such as public transport identification cards,
stock management, product tracking etc. At the same time, RFID tags are becoming
so cheap and tiny that it will soon be possible to tag one’s entire environment, thereby
wirelessly dispersing information to interested parties and providing digital represen-
tatives of physical objects in the digital world. This vision is coined the Internet of
Things by the International Telecommunication Union [Uni05].

Just like other types of sensors, RFID technology is increasingly integrated in
smartphones, rendering RFID-enabled applications one of the prime examples of mo-
bile highly event-driven applications that wirelessly communicate sensor data. In this
dissertation, we will name such applications running on mobile devices and using RFID
technology as a bridge between the physical and the digital world mobile RFID-enabled
applications.

The screenshot shown in figure 1.1 below is from an example mobile RFID-enabled
application that was developed in the context of our research. This example application

Figure 1.1: Screenshot of a mobile RFID-enabled library application.

lists RFID-tagged (physical) books that are in RFID communication range of a user’s
smartphone. The greyed out books are books of which the RFID connection is cur-
rently broken. The important part is that the list adapts itself as soon as new books are

1.1. RESEARCH CONTEXT 5

discovered or the connection with other books is broken while the user moves about.
This means that this simple application is steered by external events which are contin-
uously generated by the RFID hardware, such as new RFID tags that are detected or
RFID tags with which the connection is broken.

Although computing and sensor hardware is rapidly developing and scenarios with
mobile event-driven applications are abundant, programming such applications is still
done using very rudimentary tools. These programming tools are traditional tools that
focus on applications running on a personal computer and not on ubiquitous comput-
ers. Although many advancements have been made in programming abstractions tar-
geted towards applications that consist of spontaneously interacting wireless devices,
the reactive aspect of mobile event-driven applications has not received equal attention.
The aim of this dissertation is to advance the state of the art of software engineering
in the field of mobile RFID-enabled applications. Concretely, we will apply results
from preceding research in mobile and wireless computing applications to present a
programming model for mobile RFID-enabled applications. Unfortunately, applying
this preceding research as is for implementing such highly event-driven applications
that must react to continuous streams of events causes the implementations to exhibit
an unpredictable control flow. Therefore, our second goal is to investigate how this
unpredictable control flow driven by events can be made predictable again.

1.1 Research Context
As discussed above, our research lies in the application domain of mobile event-driven
and mobile RFID-enabled applications. This application domain can be seen as the
crossroads of a number of research domains:

Mobile Ad Hoc Networks are key to the deployment of ubiquitous computing ap-
plications. Mobile ad hoc networks spontaneously emerge by the colocation of de-
vices with wireless networking capabilities, without needing extensive configuration
or additional infrastructure. This allows ubiquitous computing software to interact un-
obtrusively and spontaneously. The different ranges of wireless network technologies
lead to computer networks composed of mobile devices of which the topology dynam-
ically changes as devices move about, causing network connections to form, break and
restore frequently and unpredictably. Mobile RFID-enabled applications operate in a
mobile ad hoc network. Furthermore, RFID-technology can be regarded as an extreme
case of mobile ad hoc networking technology: the mere presence of an RFID tag can
initiate wireless communication with devices equipped with an RFID antenna. This
wireless communication is prone to failures because of the mobility of the devices and
the unreliable nature of RFID communication. Therefore, our research in the soft-
ware engineering aspect of mobile RFID-enabled applications should also cope with
programming issues caused by the highly dynamic nature of these networks.

RFID Technology is an enabling technology for connecting software to physical ob-
jects and is therefore one of the key technologies in ubiquitous computing. As men-
tioned in the preceding discussion about mobile ad hoc networks, the spontaneous and
unreliable nature of RFID tags broadcasting data to all devices in range that are able
to receive that data, induce highly dynamic applications. Combining the vision of
unobtrusive mobile computing with RFID technology leads to a type of applications
that we coined mobile RFID-enabled applications earlier in this chapter. Our research

6 CHAPTER 1. INTRODUCTION

tries to answer the software engineering problems caused by representing RFID-tagged
physical objects using software proxies a in highly dynamic environment where com-
munication happens by unreliable wireless network connections.

Distributed Event-Driven Programming naturally arises when networked software
systems are deployed in an ad hoc fashion in a dynamic environment. Software has to
react to incoming requests from other software applications or users and to the ap-
pearance and disappearance of other parties in the network. This is already true for
internet-scale and client/server applications, as can be seen from the widespread usage
of event-driven web technologies such as Ajax [MGB+09]. For mobile ad hoc net-
working applications, several event-driven programming models have been conceived
as well. One of them is the ambient-oriented programming paradigm, which we use
as the starting point for our research. In a ubiquitous computing setting, the portion of
software that is driven by external events is much higher because mobile ad hoc net-
works are highly dynamic and the software is embedded in the physical world. Mobile
RFID-enabled applications are an extreme case of distributed event-driven software,
because of a greater number of and greater variety in events combined with the fact
that these applications operate in unreliable mobile ad hoc networks.

In the crossroads of these three domains, one can find a number of problems that
render the development of mobile RFID-enabled applications with current program-
ming technology a tedious task. These problems are summarized in the next section.

1.2 Problem Statement
The problems we address in this dissertation are twofold:

Lack of programming abstractions to develop mobile RFID-enabled applications
Mobile RFID-enabled applications use RFID technology in a radically different way
than current RFID systems. Current systems basically use RFID tags as mere digital
barcodes and almost never exploit the writable memory on these tags [PS11, DMS07,
MTCS07]. For this, today’s systems assume infrastructure in the form of a centralized
backend database that associates the digital barcode with its semantics, which restricts
RFID to traditional applications such as stock management or item tracking. Mobile
RFID-enabled applications require more functionality from passive computing devices
such as RFID tags. It should be possible to enrich everyday RFID-tagged objects with
application-specific contextual information without relying on a backend database or
other infrastructure by storing the data on the tags themselves.

To make use of this functionality, developers of mobile RFID-enabled applications
are forced to rely on lower-level abstractions to interact with RFID hardware, in most
cases even directly on the hardware driver level. Furthermore, when implementing
mobile RFID-enabled applications with traditional programming abstractions, the pro-
grammer must deal with the fact that communication with RFID tags is prone to many
failures. Tags close to each other can cause interference and can move out of the range
of the reader while communicating with it. These failures may be permanent, but it
may be that at a later moment in time the same operation succeeds because of mini-
mal changes in the physical environment. For example, a tag moves back in range or
suddenly suffers less from interference. As a consequence, dealing with these inter-
mittent failures and interacting with the low-level abstraction layers offered by RFID

1.3. RESEARCH GOALS 7

vendors from within a general purpose programming language results in complex and
brittle code. In short, today we lack the programming abstractions to develop mobile
RFID-enabled applications.

Inversion of Control In event-driven architectures, of which mobile RFID-enabled
applications are an extreme case, it is no longer the programmer who steers the applica-
tion’s control flow. Rather, control is handed over to the application logic by means of
callbacks whenever an event is detected. In other words, by adopting an event-driven
architecture, the application logic becomes scattered over different event handlers or
callbacks which may be triggered independently [CM06]. This is the phenomenon
known as inversion of control [HO06, PE02]. Control flow among event handlers has
to be expressed implicitly through manipulation of shared state. Unlike subsequent
function calls, code triggered by different event handlers cannot use the runtime stack
to make local variables visible to other event handlers (called stack ripping by Adya
et al. [AHT+02]). Because handing over state from one event handler to another no
longer relies on parameter passing, these variables have to be made instance variables,
global variables, etc. This is why in complex systems such an event-driven architecture
can become hard to develop, understand and maintain [LC02, KR05, MRO10].

Even though, as we will discuss in chapter 3 section 3.3, there exist event-driven
programming technologies that allow writing event-driven code without suffering from
inversion of control, these technologies are not suitable for decentralized applications
running in mobile ad hoc networks. They assume an entirely local application or a
traditional client-server setup.

1.3 Research Goals
The initial goal that sparked our research is implementing mobile RFID-enabled ap-
plications using modern distributed programming techniques. The different research
goals outlined below follow naturally from this initial vision.

• Programming abstractions for mobile RFID-enabled applications should allow
programmers to implement these applications without having to deal with ir-
relevant technological and/or hardware issues and expose important events re-
garding RFID hardware interacting with these applications. Our approach is to
come up with a number of criteria that capture the essence of programming mo-
bile RFID-enabled applications using object-oriented techniques. These criteria
together must allow us to program mobile RFID-enabled applications as dis-
tributed object-oriented applications where the notion of a software object in an
object-oriented programming language is unified with a real RFID-tagged phys-
ical object or “thing”.

• Combining, as envisioned above, mobile RFID-enabled applications with dis-
tributed object-oriented programming requires the integration of the imperative
nature of object-oriented programming in a distributed event-driven architec-
ture. As mentioned in the previous section, this integration leads to a com-
plex callback-based programming style causing inversion of control. Our goal is
to provide programming support for the distributed event-driven nature of mo-
bile RFID-enabled applications that integrates better with the imperative, object-
oriented programming style. Concretely, we try to eliminate the need for call-

8 CHAPTER 1. INTRODUCTION

backs as much as possible, while still keeping the distributed application com-
ponents loosely-coupled from each other and resilient to the frequent failures
inherent to wireless communication.

• Even though, as we will show further in this dissertation, we will make it possi-
ble to implement mobile RFID-enabled without resorting to callbacks, the con-
trol flow of such an event-driven program no longer corresponds to the program
text as imperative computations are triggered by external events. Our final goal
is to provide a tool to give the application programmer – in addition to the clas-
sical node-centric view – a network-centric view on the control flow of a mobile
RFID-enabled application.

1.3.1 Contributions
We achieve these goals by constructing a distributed object-oriented programming
framework for mobile RFID-enabled applications. Additionally, we embed this frame-
work into a dataflow programming language that provides a number of language con-
structs to construct mobile RFID-enabled applications without resorting to callbacks.
Finally, we build a network-centric, visual coordination language on top of this archi-
tecture to expose the control flow of the event-driven application visually. Together,
they form the main contributions of this dissertation:

Ambient-Oriented Programming for Mobile RFID-Enabled Applications In chap-
ter 4 we describe the event-driven, object-oriented programming language AmbientTalk/2,
that – as a scion of the ambient-oriented programming paradigm – specifically targets
mobile applications. In chapter 5 we discuss the criteria that we have identified for
supporting ambient-oriented programming with RFID technology. In the same chapter
we build on the ideas of AmbientTalk/2 targeting applications running in mobile ad
hoc networks, but extend the language to target mobile RFID-enabled applications that
satisfy the criteria identified earlier. The features of the language already targeting dis-
tributed object-oriented mobile applications combined with our extensions to support
RFID technology provide an event-driven, object-oriented framework for developing
mobile RFID-enabled applications.

Ambient-Oriented Node-Centric Dataflow Programming In chapter 6 we discuss
a version of AmbientTalk/2 targeted towards mobile event-driven applications called
AmbientTalk/R. AmbientTalk/R employs a variant of the dataflow paradigm called re-
active programming to construct event-driven applications without resorting to call-
backs. Subsequently in this chapter, we discuss a number of language constructs
that reconcile the dataflow programming style with techniques from distributed event-
driven architectures to allow loosely-coupled distributed dataflow programming in mo-
bile ad hoc networks.

Ambient-Oriented Network-Centric Dataflow Programming with AmbientTalk/RV

In chapter 7 we build on the abstractions discussed in chapter 6 to implement
AmbientTalk/RV : a visual coordination language based on the dataflow paradigm that
allows the programmer of mobile event-driven applications to visually inspect and edit
the coarse-grained application control flow. By unifying the control flow of the appli-
cation with the data flow that drives its execution, the control flow can be represented

1.3. RESEARCH GOALS 9

visually and becomes explicit again as the driving force of the visual program, allowing
it to be separated from the fine-grained application logic and easily adapted. Further-
more, the visual representation of the dataflow program offers a network-centric view
on the application while still offering the expressiveness of a full-blown object oriented
language.

1.3.2 Supporting Publications
The following (co-)authored publications support the key ideas in this dissertation:

• Distributed Object-Oriented Programming with RFID Technology [LPD10]
Andoni Lombide Carreton, Kevin Pinte and Wolfgang De Meuter
10th IFIP International Conference on Distributed Applications and Interoper-
able Systems (DAIS 2010)
This paper proposes extending the ambient-oriented programming paradigm (de-
tailed in chapter 4) to program mobile RFID-enabled applications, by consider-
ing RFID tags as intermittently connected mutable software objects hosted on
mobile distributed computing devices. This work corresponds to chapter 5 of
this dissertation.

• Software Abstractions for Mobile RFID-Enabled Applications [LPD11]
Andoni Lombide Carreton, Kevin Pinte and Wolfgang De Meuter
Software: Practice and Experience, 2011
This paper extends the aforementioned paper with a mechanism to obtain data
consistency in mobile RFID-enabled applications, details the implementation
and benchmarks it.

• Loosely-Coupled Distributed Reactive Programming in Mobile Ad Hoc Net-
works [LMVD10]
Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem and Wolfgang De
Meuter
48th International Conference on Objects, Models, Components, Patterns (TOOLS
2010)
This paper proposes a number of language constructs that reconcile the elegant
processing of events of a dataflow programming system with the loose coupling
of a publish/subscribe system that is required to cope with the dynamic nature of
mobile ad hoc networks. It corresponds to chapter 6 of this dissertation.

• A Hybrid Visual Dataflow Language for Coordination in Mobile Ad Hoc
Networks [LD10]
Andoni Lombide Carreton and Theo D’Hondt
12th International Conference on Coordination Models and Languages (COOR-
DINATION 2010)
This paper presents an early version of AmbientTalk/RV : a visual dataflow lan-
guage tailored towards mobile event-driven applications to express the interac-
tion between mobile components that operate on dependent time-varying values
driven by remote events. By using a visual dataflow language as a separate coor-
dination language, the coarse grained control flow of a mobile application can be
specified visually and separately from the fine grained control flow. In its turn,
this allows a very explicit and network-centric view on the control flow of the
entire mobile application. It corresponds to chapter 7 of this dissertation.

10 CHAPTER 1. INTRODUCTION

1.4 Approach to the Problem
The work presented in this dissertation fits in the context of ambient-oriented program-
ming (discussed in chapter 2), a programming paradigm focussing on mobile ad hoc
networking applications, which are essential for ubiquitous computing to become re-
alizable. As mentioned above, we consider RFID a restricted form of mobile ad hoc
technology. Hence, we start by applying ambient-oriented programming to mobile
RFID-enabled applications. In chapter 5, we extend the existing ambient-oriented pro-
gramming programming language AmbientTalk/2 to be able to implement a mobile
RFID-enabled application. The application implemented in this language from then on
serves as an artifact that we will gradually adapt to make use of dataflow programming
abstractions introduced throughout this dissertation.

Ambient-oriented programming deliberately structures mobile applications as event-
driven architectures, but where reactivity is merely considered as a side effect of inter-
acting throughout open and dynamically changing mobile ad hoc networks. This leads
us to investigate a range of technologies that deal with reactivity as a main concern
in chapter 3. We conclude that both publish/subscribe technology and dataflow pro-
gramming technology offer solutions to different facets of the problem we are tackling.
Hence, one of our objectives is to integrate publish/subscribe with distributed dataflow
programming to obtain ambient-oriented dataflow programming.

Ambient-oriented dataflow is introduced in chapter 6. Subsequently, the effects
of applying ambient-oriented dataflow programming techniques on our mobile RFID-
enabled application are showcased. We observe that ambient-oriented and mobile
RFID-enabled applications can be implemented without callbacks, but that the com-
bination of a very loosely-coupled interaction style with a dataflow evaluation model
introduces new issues, such as a very implicit global control flow.

For our final step, we recall from the surveyed technologies in chapter 3 that
network-centric programming technology alleviates some of these issues. Hence, the
final step is to bring the loosely-coupled dataflow programming model on a network-
centric level by means of a visual coordination language that makes the global control
flow very explicit by visualizing it. This is discussed in chapter 7, where it is again
applied to the mobile RFID-enabled application used throughout this dissertation.

Finally, in the concluding chapter 8, we identify which issues remain to be solved,
of which the most notable is the lack of distributed glitch prevention for ambient-
oriented dataflow programs.

1.5 Dissertation Roadmap
The main contributions of this work are a decentralized mobile RFID programming
model unifying software objects with physical objects, a node-centric dataflow pro-
gramming model specifically geared towards mobile event-driven applications, and
a network-centric visual dataflow coordination language for coordinating the control
flow of such applications on a network-centric level. To point out why certain design
choices were made and to explain the relation of our approach with various research
fields, we survey a number of related technologies out of which we extract the proper-
ties that we consider useful for implementing mobile RFID-enabled applications. Af-
terwards, to ground the technical discussion, we also need to introduce AmbientTalk,
the programming language in which our artifacts have been incorporated and imple-
mented. Below, we summarize each subsequent chapter in the dissertation.

1.5. DISSERTATION ROADMAP 11

Chapter 2: Mobile RFID-Enabled Applications gives an informal description of
what we call in this dissertation mobile RFID-enabled applications by discussing
how the convergence of a number of emerging technologies leads to such appli-
cations. We discuss how certain hardware properties of these technologies have
strong repercussions on software development, and extract a number of program-
ming model requirements for concisely implementing such applications. Part of
these requirements are taken into account by the ambient-oriented programming
model, which we choose to extend to better support mobile RFID-enabled appli-
cations.

Chapter 3: Related Work Given the requirements identified in chapter 2, in chapter 3
we survey a number of technologies that offer interesting solutions for dealing
with either event-driven applications, distributed applications or RFID-enabled
applications, or a combination, and discuss how they fail to meet all our require-
ments. We extract a number of concrete solutions that will become the objectives
of this work throughout the rest of this dissertation.

Chapter 4: Ambient-Oriented Programming with AmbientTalk/2 discusses the con-
crete programming language that we extended with constructs tailored towards
mobile RFID-enabled applications. Our work is based on the ambient-oriented
programming paradigm and AmbientTalk/2 is a concrete ambient-oriented pro-
gramming language. It discusses which features of the language already offer us
part of the solution. On the flip side, we discuss how AmbientTalk suffers from
the problems arising in similar event-driven systems when the same event-driven
techniques are applied to mobile event-driven applications.

Chapter 5: Ambient-Oriented Programming for Mobile RFID-Enabled Applica-
tions opens up the ambient-oriented programming paradigm to mobile RFID-
enabled applications. This chapter describes one of the three contributions of
our work: the unification of RFID-tagged physical objects with software ob-
jects acting as digital representations that are embedded in AmbientTalk’s dis-
tributed, fault-tolerant, decentralized and event-driven programming model. Our
approach is illustrated by a running example that will be used throughout this
dissertation and a brief overview of the implementation in AmbientTalk is given.
We observe that the problems with event-driven code are amplified when the
same event-driven programming model is applied to such a mobile RFID-enabled
application.

Chapter 6: Node-Centric Distributed Dataflow Programming discusses the second
contribution of this work: a programming library offering a number of distributed
dataflow language constructs on top of AmbientTalk/R: a variant of AmbientTalk
with support for dataflow programming. We apply these constructs to our run-
ning example and observe that although many issues with event-driven code are
alleviated, the control flow of the application becomes very implicit due to the
dataflow evaluation model. In this chapter, we also go over the implementation
of these constructs in AmbientTalk/R.

Chapter 7: Network-Centric Visual Dataflow Programming introduces
AmbientTalk/RV : a visual network-centric language that uses the dataflow para-
digm to coordinate mobile event-driven applications from a network-centric point
of view to alleviate the coordination issues mentioned in the foregoing chapter.
This language forms the third and last contribution of our work. The visual

12 CHAPTER 1. INTRODUCTION

language is again applied to our mobile RFID-enabled application and its imple-
mentation is discussed.

Chapter 8: Conclusion summarizes the contributions made in this dissertation. At
that point we are able to evaluate the contributions of the dissertation with hind-
sight, naturally leading to a discussion on the limitations of this work and on
possible directions for future research.

1.6 Summary
This dissertation is about applications that are distributed in mobile ad hoc networks
and that are highly event-driven. Mobile RFID-enabled applications in particular rely
on RFID technology to not only interact with nearby computers, but with nearby RFID-
tagged everyday objects as well. Such applications are the pinnacle of mobile event-
driven applications as RFID hardware acts both as a sensor generating events and as a
network interface towards networked objects generating network events.

We will describe how a problem with event-driven applications called inversion of
control that is solved in local event-driven applications is not solved for mobile RFID-
enabled applications, which are event-driven applications distributed in a mobile ad
hoc network.

For tackling the distributed nature of these applications, we rely on ambient-oriented
programming: a programming paradigm specifically designed for mobile ad hoc net-
working applications. We extend a concrete ambient-oriented programming language
to consider mobile RFID-enabled applications as distributed applications where physi-
cal objects are represented as and unified with remote software objects. This allows the
programmer to treat passive computing devices such as RFID tags as any computing
device hosting a software object and to treat RFID failures just as any network failure.
Due to the massive scale in which RFID tags can be present and due to high rate of
failures when interacting with them, to remain causally connected to the physical envi-
ronment, these mobile RFID-enabled applications are highly event-driven or reactive,
aggravating the inversion of control problem.

For tackling the reactive nature of these applications, we resort to a paradigm
specifically targeting highly event-driven applications called dataflow programming.
We describe an integration of both paradigms which we shall name ambient-oriented
dataflow programming and use the resulting language constructs for implementing a
mobile RFID-enabled application. We propose two levels of ambient-oriented dataflow
programming: node-level dataflow for finer-grained reactive code and network-level
dataflow for specifying the global control flow and higher-level distributed dependen-
cies of mobile event-driven applications.

In the next chapter, we go into the properties of mobile RFID-enabled applica-
tions in more detail and relate them to previous research on mobile ad hoc networks
on which this work is based, namely ambient-oriented programming. This new ap-
plication of ambient-oriented programming leads us to refine its programming model
requirements to support mobile RFID-enabled applications as well. We continue in
chapter 3 by surveying technologies that deal with reactivity of applications distributed
in mobile ad hoc networks and investigating to which extent they satisfy our program-
ming model requirements for mobile RFID-enabled applications. We take inspiration
from these surveyed systems to lay out an approach to satisfy the requirements for
mobile RFID-enabled applications that were not satisfied by the ambient-oriented pro-

1.6. SUMMARY 13

gramming paradigm. Subsequently, in chapter 4, we detail AmbientTalk, a concrete
ambient-oriented programming language that we choose to extend for mobile RFID-
enabled applications. In chapter 5, we extend AmbientTalk to support mobile RFID-
enabled applications, increasing the scale in which AmbientTalk applications have to
be made event-driven. In the subsequent two chapters, we introduce ambient-oriented
dataflow programming: in chapter 6, we introduce our node-level ambient-oriented
dataflow abstractions and in chapter 7 AmbientTalk/RV : our network-centric ambient-
oriented dataflow language.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Mobile RFID-Enabled
Applications

This dissertation targets a specific class of software applications that we dub mobile
RFID-enabled applications. Mobile RFID-enabled applications emerge due to an in-
creasing embedding of RFID hardware in both everyday objects and mobile computing
devices such as smartphones.

The combination of mobility and event-driven execution introduces a mismatch
with existing programming technology that renders these applications hard to imple-
ment. The mobile aspect of these applications lies in the fact that spontaneously inter-
acting devices need some form of wireless communication that does not restrict their
movement. The event-driven aspect lies in the fact that these applications have to be
responsive to the events (coming from example from RFID equipment) occurring in
their surroundings. The combination of both aspects emerges as different applications
notify each other of their internal application-level events or of events that they have
detected using their (RFID) sensors by means of mobile ad hoc networking technology.

In this chapter, we start in section 2.1 by giving an overview of technologies avail-
able today that give rise to mobile RFID-enabled applications. First, mobile ad hoc
networks are discussed in section 2.1.1. Subsequently, the combination of RFID tech-
nology with mobile devices into mobile RFID-enabled applications is discussed in sec-
tion 2.1.2. The approach that we took in our work is to extend an existing programming
paradigm targeting mobile ad hoc networks to support mobile RFID-enabled applica-
tions as well. This paradigm is called the ambient-oriented paradigm and is discussed
in section 2.2. Finally, section 2.3 concludes this chapter by discussing the program-
ming requirements that we put forward to be able to concisely implement mobile RFID-
enabled applications. These requirements naturally follow from extending the ambient-
oriented programming paradigm to better support highly event-driven software such as
mobile RFID-enabled applications.

2.1 Enabling Technologies
Event-driven software is not a new concept. Any computer program that has to react
to external stimuli is event-driven. This includes desktop applications with a graphical
user interface, web servers, driving assistance systems in cars, etc. Why then investi-
gate a subset of this type of software called mobile RFID-enabled applications? Mobile

15

16 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

devices are equipped with different wireless networking interfaces (WiFi, Bluetooth,
3G...) and a wide range of sensors (GPS, accelerometers, gyroscopes, RFID read-
ers...). Because of their small size, their ubiquity and their strongly varying sensing
technology, these devices make possible applications that are so strongly embedded in
the physical world that they bring event-driven software to a whole new level. In these
applications, the portion of an application’s logic that deals with responding to external
events and with communicating events to other devices or applications is larger and
more important and because of the open nature of these applications the heterogeneity
of the events is much higher.

Investigating all sensor and wireless communication technologies is clearly unfea-
sible and prone to becoming obsolete very soon. Instead, we focus on the software
engineering issues that are induced by mobile RFID-enabled applications. In this sec-
tion, we investigate what their implications are on software.

2.1.1 Mobile Ad Hoc Networks
Mobile ad hoc networks are computer networks that are formed when mobile devices
dynamically establish a network connection when they are in each other’s range by
using their wireless communication facilities. They were also termed device networks
by Bonnet et al. [BGS00]:

“The widespread deployment of sensors, actuators and mobile devices
is transforming the physical world into a computing platform. We will
soon find computing power, memory and communication capabilities on
temperature sensors and motion detectors, on door locks, light bulbs and
alarms, on every cellular phone, in every vehicle, and soon in every per-
son’s wallet or key ring. Emerging networking techniques ensure that
devices are interconnected and accessible from local- or wide-area net-
works.”

The ad hoc-ness stems from the fact that these devices do not necessarily know each
other beforehand, but simply establish a network connection by physical colocation.
Similarly, disconnections between mobile devices in the mobile ad hoc network can
occur at any point in time when two devices move out of each other’s communication
range. Hence, a mobile ad hoc network is a continuously changing graph of mobile
nodes. Mobile ad hoc networks do not assume any infrastructure to assist the mobile
nodes in maintaining a more stable network, such as naming servers, routers, access
points etc. As a result, interaction among mobile nodes in the mobile ad hoc network
must happen over unstable peer-to-peer connections.

One may argue that in times of internet connectivity over cellular networks and
other (almost) pervasive uplinks to the internet, mobile ad hoc networks are overly
restrictive. However, it should be noted that in the context of ubiquitous computing,
mobile ad hoc networks are formed by a much broader range of devices than laptops,
smartphones, etc. With current day hardware, we already see plenty of mobile ad
hoc network applications. Some can be rather heavy-weight, such as media centers
that automatically play content from dynamically discovered storage devices (i.e. MP3
players) or mobile computing devices that trigger interaction with a car’s onboard com-
puting infrastructure. However, our definition also applies to much more light-weight
setups, such as tiny sensor nodes or RFID tags. The latter are the topic of section 2.1.2
below. Hence, we do not restrict our discourse to classic IP-networks.

2.1. ENABLING TECHNOLOGIES 17

Hardware Characteristics

As mentioned earlier, mobile ad hoc networks consist of mobile devices that are con-
nected via wireless communication links which are established when these devices
move in each other’s communication range. Mobile ad hoc networks composed of mo-
bile devices and wireless communication links exhibit a number of phenomena which
are rare in their traditional, fixed counterparts. In his original work, Dedecker identi-
fied four discriminating “hardware phenomena” that are inherent to mobile networks
[DVM+06]. These four phenomena were later reduced and generalized into only the
two following fundamental ones by Van Cutsem in his thesis [Van08]:

Volatile Connections. Mobile devices equipped with wireless communication media
only have a limited communication range. This implies that communicating devices
may move out of earshot at any time because of the happenstance of node mobility. The
resulting disconnections are not always permanent: the two devices may meet again,
requiring their connection to be re-established. Such network connections are also
said to be intermittent [MCE02]. Quite often, transient network partitions should not
terminate a distributed interaction. Rather, communicating parties in an ad hoc network
are more interested in continuing their collaboration when the connection is restored.
They expect communication to work in the presence of volatile connections. Dealing
with partial failures is not a new ingredient of distributed systems, but mobile ad hoc
networks expose applications to a much higher rate of partial failure than traditional
distributed systems. In mobile networks, disconnections become so omnipresent that
they should be considered the rule, rather than an exceptional case.

Zero Infrastructure. Mobile ad hoc networks have no or very little fixed infrastruc-
ture [MCE02]. Networks are formed by the mere colocation of mobile nodes. In such
networks, the services available to an application thus depend on the host devices loca-
tion. As devices move, services may spontaneously appear and disappear as their hosts
join with and disjoin from the ad hoc network. Moreover, a mobile ad hoc network
is often not globally administered by a central authority. In stationary networks, ap-
plications usually expect services to be available and accessible via an a-priori known
URL or similar designator. In a mobile ad hoc network, applications have to find their
required services dynamically in the environment. Services have to be discovered on
proximate devices, possibly without the help of shared infrastructure.

The two other characteristics identified by Dedecker are [DVM+06]:

Autonomy. Most distributed applications today are developed using the client-server
approach. The server often plays the role of a “higher authority” which coordinates
interactions between the clients. In mobile networks a connection to such a “higher
authority” is not always available. Every device should be able to act as an autonomous
computing unit.

Natural concurrency. In theory, distribution and concurrency are two different phe-
nomena. For instance in a client-server setup, a client device might explicitly wait for
the results of a request to a serving device.

18 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

Van Cutsem argues that autonomy is a corollary of the lack of shared infrastructure
[Van08]. Without a shared infrastructure, devices (or more accurately their applica-
tions) necessarily need to be autonomous. The fact that they should be autonomous fol-
lows from the fact that they cannot depend on infrastructure, because there is (mostly)
none available. Ad hoc applications have to be structured such that they can cope with
necessary resources or services being unavailable for an extended period of time.

Natural concurrency already follows from the fact that applications are deployed
on a distributed computer network. Entirely sequential distributed applications require
every distributed part of the application to wait until every other distributed part com-
pleted a single task, which blocks parts of the application that could perfectly make
progress and hinders scalability of the application. Hence, any ad hoc networking ap-
plication is essentially distributed and concurrent.

Implications on Software Engineering

The aforementioned hardware characteristics of mobile ad hoc networks have effects
that pervade any distributed application that has to be deployed on these networks.
They have effects on the structure of applications, on how distributed application com-
ponents interact and on how application data can be represented. Because these effects
are so profound, they cannot be hidden [WWWK96] from mundane application pro-
grammers. As a result, software technologies for mobile ad hoc networks will have to
support them intrinsically.

Resilience to Volatile Connections Because of the volatile connections that inter-
connect application components, interactions between these components must be re-
silient to the frequent disconnection of communication partners. Moreover, because
network connections are established by the physical colocation of mobile devices, the
fact whether there is a connection or not can be semantically relevant to the applica-
tion logic (e.g. the fact whether an RFID tag is “present” at a certain location or not).
Hence, although applications have to be resilient to disconnections, in many cases they
also have to be notified of changes in the status of the connections with their peers.
Unfortunately, these requirements all have to be implemented “by hand” when using
existent general-purpose programming technology.

Loose Coupling of Concurrent Application Components The lack of infrastruc-
ture and the presence of volatile connections in mobile ad hoc networks imply that
applications cannot designate specific tasks to or assume certain services from a fixed
number of a-priori known peers. Instead, mobile ad hoc network applications should
be structured in a loosely-coupled way, both from an architectural point of view as
from an execution-level point of view. On the architectural level, applications should
be composed in such a way that allows discovering services at runtime without relying
on infrastructure. Additionally, it should be possible to discard unavailable services or
replace them with equivalent ones present in the network. On the execution level, to
guarantee responsiveness, applications that lose the connection with some service that
they require should not remain blocked if they have other useful work to do, even if no
replacement service is immediately found. This means that all application components
distributed in the mobile ad hoc network should run concurrently and only communi-
cate using non-blocking communication primitives. Blocking on the reappearance of
an unavailable service would halt the entire application.

2.1. ENABLING TECHNOLOGIES 19

Service Announcement Broadcasting and Notification In the above paragraph we
pointed out that applications distributed in a mobile ad hoc network should be struc-
tured as concurrent components that can discover each other at runtime. Since there is
no infrastructure assumed, these components are responsible themselves to announce
which service they offer to a continuously varying set of clients that is not known
beforehand. Similarly, clients that require one or more services are responsible them-
selves to detect these announcements and in response trigger the appropriate actions.
In such an infrastructureless network setup, the availability of a service has to be an-
nounced to interesting parties by broadcasting advertisements.

Conclusion

In this section, we have given an overview of the hardware characteristics of mobile
ad hoc networks and their implications on software engineering, without committing
to any specific implementation technique or programming model. The key insights are
that a suitable programming model should be:

• Resilient to volatile connections,

• Loosely-coupled and concurrent by employing non-blocking communication,

• Dynamically reconfigurable by broadcasting and reacting to service announce-
ments.

This means that important parts of the application logic are driven by external events,
e.g. network (dis)connections, services being discovered or discarded, or incoming
communications that have to be handled, etc.

2.1.2 RFID Technology
An RFID system typically consists of one or more RFID readers and a set of RFID
tags. The RFID reader is a device that broadcasts a radio wave on a specific frequency.
RFID tags that are in communication range respond by powering up their circuits using
the energy of the radio wave, and replying by sending back a radio signal themselves.
These types of RFID tags are called passive tags [CH07]. In most cases, passive RFID
tags have some form of on-chip memory, to which arbitrary data can be written. Usu-
ally, the response of an RFID tag simply consists of a read-out of its memory together
with its unique serial number. An RFID reader willing to write on a tag has to broad-
cast the data it is willing to write together with the serial number of the tag it is willing
to store the data on.

The most prominent characteristic that sets apart different types of RFID hardware
is the communication range. The failure rate of reading and writing data from and to
tags depends for the most part on the communication range, which in itself depends
on different factors. First of all, there is the frequency of the radio signal. Higher fre-
quencies allow longer communication ranges, but also require bigger, higher-powered
RFID readers. Additionally, they require RFID tags that respond to these high frequen-
cies over longer ranges, which implies that they have to respond to a strongly degraded
signal. Because of this reason, tags that work over the highest frequencies (and longest
communication ranges) offer a very limited amount of memory that requires less power
to be read. A second point of variation is the power level on which radio signals are
broadcasted. Without changing the signal frequency, it shows roughly the same effect:

20 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

higher power levels allow longer communication ranges but increase the size, power
usage, and price of the RFID reader. It should come as no surprise now that more on-
tag memory requires more power to be successfully read and/or written and requires
closer communication ranges.

An alternative consists of powering up RFID tags with their own power source,
such as a battery, but other technologies are close to being taken in production [PS05,
KK07, BA08, Arn07, BTT+07, KKPG98]. These types of tags are called active tags.
Their power source allows them to power up more memory, operate over longer ranges
and to offer more reliable communication [Wei05]. They are of course more expensive.
The most expensive ones can even have limited processing power, initiate communi-
cation autonomously, communicate with other active tags or have integrated sensors,
blurring the distinction between RFID networks and sensor networks [SYP+08].

Although these advanced forms of RFID technology have interesting applications,
we will focus in this text on cheap, passive, writable tags. First, because these tags are
cheap, tagging large amounts of everyday objects is realistic. Second, it is easier to
gradually extend a light-weight programming model targeting constrained hardware to
hardware with more possibilities than to adapt a heavy-weight model to more restricted
hardware.

Regardless of the issues that arise in classic RFID applications, RFID technology
is generally considered as a key technology in developing ubiquitous, context-aware
applications [WJ09, Ble06]. The reason is that RFID technology is a form of com-
puting technology that is one of the cheapest and easiest to integrate in everyday ob-
jects [RGDMC09]. On the one hand, RFID tags are becoming so cheap that it will
soon be possible to tag one’s entire environment, thereby wirelessly dispersing infor-
mation to nearby context-aware applications. On the other hand, RFID readers are
also becoming increasingly power-efficient while costs and form factors drop, to the
extent that RFID readers are being integrated in the latest generation of smartphones
[PPS+05, TP05]. Furthermore, tag memory is increasing [Mat05]. At the time of writ-
ing this text, the largest passive tags offer about 32Kb of memory [PS11]. Hence, more
and more application-specific data coming from mobile devices can be written on these
ubiquitously available tags. Although RFID technology was originally developed and
used as an electronic bar code, the communication between mobile devices and tags
that are interconnected by mobile ad hoc networks gives rise to mobile RFID-enabled
applications. These applications use RFID technology in a radically different way
than RFID systems deployed today, which only use RFID tags as digital barcodes and
almost never exploit the writable memory on these tags [PS11, DMS07, MTCS07].

Usually, RFID technology provides some low-level protocols to deal with issues
such as acknowledgements, security [PKH05], collision detection [SSYH06], etc. Al-
though there are many important issues still to be resolved, they are not in the scope of
this dissertation. We focus on the higher level software engineering issues instead. It
should come as no surprise that in mobile applications where no assumptions are made
with respect to communication ranges and available infrastructure, these peculiarities
of the underlying hardware or low-level communication protocols can never be hidden
from the software level.

Hardware Characteristics

Interactions with RFID hardware exhibit a number of phenomena that cannot be hidden
from the application level. Just like with mobile ad hoc networks, they stem from the
fact that mobile devices are interacting over unstable wireless connections. Below,

2.1. ENABLING TECHNOLOGIES 21

we argue that RFID technology gives rise to highly volatile types of networks which
exhibit similar phenomena as mobile ad hoc networks, but with an increase in scale of
the fluidity and dynamicity of the network topology.

Volatile Connections Although in some cases mobile devices might have the possi-
bility to connect to a reasonably stable network (e.g. the internet through an internet
access point), we take as the base case a much more light-weight type of communica-
tion links to cater to much more spontaneously formed connections, such as maintain-
ing a communication link with an RFID tag by periodically broadcasting a radio signal
and listening for its response. Abstractly spoken, we consider wireless communication
among mobile devices to have a limited range, in which case communication links can
break at any point in time because of the roaming of devices. This can range from bad
3G coverage on a mobile phone to an RFID-tagged object which is moved away from
an RFID reader.

These disconnections are not always permanent and, especially in more light-weight
types of communication links such as RFID, network connections can exhibit very
intermittent behavior. A metal object passing through the line of sight between an
RFID tag and RFID reader is enough to temporarily disrupt communication. Network
connections in both mobile ad hoc networks and RFID systems are hence said to be
volatile. Of course, the intermittent failure of volatile connections should not halt or
break a distributed application communicating over these connections with other (pos-
sibly mobile) devices. In classical distributed computing systems this is often the case
because failures are rare, and if they occur, they are permanent or long-lasting. Both in
mobile ad hoc networks and RFID systems, where volatile connections exhibit inter-
mittent behavior, software should be resilient to these failures by considering them the
rule instead of the exception.

Little or No Infrastructure Just like mobile ad hoc networks, RFID networks are
formed spontaneously by the mere colocation of mobile nodes. This means that these
networks are not globally administered by a central authority because this would hinder
the spontaneous emergence of these networks. Hence, RFID-tagged objects present in
the network cannot be looked up by means of such a central authority, for example
a backend database which stores the properties associated with RFID-tagged objects.
Just like in mobile ad hoc networks, RFID-enabled applications must instead discover
RFID-tagged objects at runtime by scanning the physical environment. Furthermore,
objects can in their turn roam, causing them in their turn to move in and out of range at
any point in time. This means that the set of nearby RFID-tagged objects is in constant
flux.

Implications on Software Engineering

In this section, we will discuss the implications that the hardware characteristics of
RFID have on programming technology.

Mobile RFID-Enabled Applications are Mobile Ad Hoc Network Applications
Communication with RFID tags is prone to many failures. Tags close to each other
can cause interference and can move out of the range of the reader while communi-
cating with it. These failures may be permanent, but it may be that at a later moment

22 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

in time the same operation succeeds because of minimal changes in the physical en-
vironment. For example, a tag moves back in range or suddenly suffers less from
interference. These failures in combination with the fact that maintaining a connection
to a tag must happen by broadcasting a signal and listening for the tag’s reply cause
connections to RFID devices to exhibit very intermittent behavior. Just like in mobile
ad hoc networks, communication primitives used to communicate with RFID tags have
to be resilient to volatile connections.

Before being able to communicate, RFID-tagged objects announce their presence
by simply broadcasting to all reachable devices equipped with an RFID antenna. Hence,
RFID-tagged objects could be considered as a simple remote services that have to be
dynamically discovered in a mobile ad hoc network.

These two observations lead us to the conclusion that RFID technology is a re-
stricted form of mobile ad hoc networking technology and that programming technol-
ogy for mobile RFID-enabled applications should offer the same support as program-
ming technology for mobile ad hoc networking applications for dealing with the issues
described above.

Mobile RFID-Enabled Applications are Highly Event-Driven Applications Be-
cause the set of RFID tags in the range of an RFID reader is continuously fluctuating,
it becomes impractical to use polling on the application level as the mechanism to de-
tect the current set of tags in range. As a result, mobile RFID-enabled applications
have to be conceived as event-driven applications from the ground up. Phenomena that
cannot be abstracted away – such as the appearance and disappearance of tags and the
reception of acknowledgments from these tags – become the driving forces of the ap-
plication, contributing to the highly event-driven nature of RFID-enabled applications.

This, however, is where mobile RFID-enabled applications are set apart from clas-
sic mobile ad hoc networking applications. Mobile RFID-enabled applications can
interact at any point in time with a number of RFID tags that is orders of magnitude
larger than the number of mobile devices in classic mobile ad hoc networking ap-
plications. Moreover, because RFID connections exhibit a higher volatility than more
heavy-weight wireless connections, the number of connection and disconnection events
per remote connection is much higher as well.

Conclusion

RFID technology exhibits two properties that mobile ad hoc networks exhibit as well:
connections between RFID-tagged objects and an RFID-enabled device are volatile
and RFID-tagged objects are detected spontaneously be devices without relying on
additional infrastructure. What sets apart mobile RFID-enabled applications is that,
due to the possible ubiquity of RFID-tagged physical objects, the scale in which objects
are detected, connections are formed, broken and restored again is much greater. Even
to such an extent that the set of nearby RFID-tagged objects cannot be treated as an
enumerable structure, but as a pool of objects that is in constant flux and of which the
changes drive the application’s execution.

Still, much work has been carried out in coming up with suitable programming
models for mobile ad hoc networks. In this work, we investigate how such an existing
programming model can be adapted to mobile RFID-enabled applications. Our work is
based on the ambient-oriented programming paradigm, which is discussed in the next
section.

2.2. AMBIENT-ORIENTED PROGRAMMING 23

2.2 Ambient-Oriented Programming
Any application that is to be deployed on a mobile ad hoc network has to deal with its
hardware phenomena. What is important to note is that the phenomena are universal,
in the sense that they do not depend on the particularities of a specific application.
Exactly because of this universality, it is worth investing in a computational model
that facilitates distributed programming for mobile ad hoc networks by taking these
phenomena into account from the ground up. Such a computational model could be
implemented as a new language, library or middleware platform. However, because the
effects engendered by partial failures and the absence of remote services tend to affect
and pervade the entire application, the above phenomena are not easily hidden behind
traditional library abstractions. Therefore, distribution is often dealt with in dedicated
middleware or programming languages. This formed the motivation to define ambient-
oriented programming as a new programming paradigm tailored towards mobile ad hoc
networks and the design of new languages fitting this paradigm.

Ambient-oriented programming is a novel programming paradigm proposed by
Dedecker et al. [DVCM+05, DVM+06]. Prior research on ambient-oriented pro-
gramming led amongst others [BVT+09, VGC+10, VCVCDM09] to AmbientTalk
[VMG+07], a programming language that adheres to the original ideas of the paradigm.
The work described in this dissertation builds upon both the concepts of ambient-
oriented programming and the technical foundation laid by the AmbientTalk language.
Therefore, before presenting our work in the later chapters of this dissertation, we
first give an overview in this chapter of the ambient-oriented programming paradigm.
In chapter 4 we discuss the second incarnation of the AmbientTalk language: Ambi-
entTalk/2.

As discussed in the introduction, mobile ad hoc networks constitute the network
technology of ubiquitous computing. In a nutshell, the most difficult problems are that
network connections between devices are unstable due to the limited wireless com-
munication range of participating devices, that the network is open – (new) devices
frequently join and leave the network – and has little or no infrastructure (e.g. to sup-
port globally accessible servers).

Contemporary distributed programming languages, middleware and libraries offer
abstractions that are built with different assumptions of the properties of the under-
lying communications network. For example, in a conventional distributed system,
a network partition is regarded as a failure, i.e. an exceptional event. In a mobile
network, disconnections between devices become the norm, rather than the exception.
This change in the physical nature of the network percolates all the way up to the appli-
cation layer [MCE02]. Current abstractions cannot optimally cope with these changes.
For example, handling failing communication using the classic programming language
abstractions of exception handling results in application code that is literally polluted
with failure handling. An ambient-oriented language foregoes such issues by offering
abstractions in order to fit the hardware phenomena of the underlying network itself
[DVM+06].

2.2.1 Ambient-Oriented Programming Criteria
As our work builds on the ambient-oriented programming paradigm, we revisit the cri-
teria put forward by the ambient-oriented programming paradigm aimed at tackling the
aforementioned phenomena. In his dissertation, Dedecker extensively motivates why
previously developed programming languages and middleware are not readily suitable

24 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

for mobile ad hoc networks, because they do not directly address the hardware phe-
nomena described above [DVM+06]. In reaction, he defines the ambient-oriented pro-
gramming paradigm. A language is ambient-oriented if it exhibits a specific set of char-
acteristics, which are extensively discussed elsewhere [DVCM+05, DVM+06, Ded06].
Additional to these basic criteria, Van Cutsem introduced in his thesis additional criteria
for coordination in mobile ad hoc networks [Van08]. Similarly, the motivation behind
criteria for coordination is that, in mobile ad hoc networks, the state of the network
is in constant flux because devices move about in unpredictable ways. Abstractions
for mobile ad hoc networks should allow applications to abstract from this underlying
physical state when communicating because it can make communication more resilient
in the face of temporary disconnections.

We summarize these criteria below and discuss how they prove useful for mobile
RFID-enabled applications.

Classless Object Models

An ambient-oriented language disallows the use of classes as they are employed in
traditional class-based languages like Java and Smalltalk. In such languages, when ob-
jects are copied between devices (to share information, e.g. using parameter-passing),
the class has to be copied as well. Hence, a single class can become duplicated across
several devices in the network. In a volatile network like a mobile ad hoc network,
it becomes impossible to implicitly ensure that all of these duplicate classes are kept
in synchronization. However, this impossibility breaks the invariant that all instances
of the same class should behave the same way: two instances of the same class may
behave differently on different machines.

An ambient-oriented language avoids these problems by requiring objects to be
entirely self-sufficient (containing their own code and data). When objects are copied
between hosts, they are self-descriptive and need no shared external entity (the class)
to be duplicated. Of course, this solution is not a “silver bullet” either: if a class-like
sharing relationship between objects is required, it must now be explicitly encoded by
the programmer, who is himself responsible for the consistency of this relationship in
the face of volatile connections.

Classless object models usually fall under the prototype-based category. Other
than the reasons dictated by the ambient-oriented programming paradigm to select a
classless object model, table 2.1 compares the class-based and prototype-based model
by means of their other advantages and disadvantages.

In this work, we take no stance towards a particular approach, but follow the
ambient-oriented programming paradigm in its requirement for a classless object model.
Some situations work better with one approach and other ones with the other, as men-
tioned by Stein, Lieberman and Ungar in their “Treaty of Orlando: A Shared View of
Sharing” [SLU89]:

“[...] that no definitive answer as to what set of these choices is best
can be reached. Rather, that different programming situations call for dif-
ferent combinations of these features: for more exploratory, experimental
programming environments, it may be desirable to allow the flexibility
of dynamic, explicit, per object sharing; while for large, relatively rou-
tine software production, restricting to the complimentary set of choices –
strictly static, implicit, and group-oriented – may be more appropriate.”

2.2. AMBIENT-ORIENTED PROGRAMMING 25

Class-based Prototype-based
Classes can denote types in strongly-
typed and statically-typed languages.

No strong or static typing.

State easier to encapsulate and protect,
classes specify and enforce scoping.

State harder to encapsulate and pro-
tect, the uniformity of the object model
makes it harder to find a consistent place
to specify and enforce scoping (e.g. re-
lying on lexical scoping of ”construc-
tor” procedures).

Inheritance chain cannot be changed at
runtime: less flexible with respect to
sharing (only anticipated sharing is sup-
ported), but safer.

Inheritance chain can be changed at run-
time: more flexible with respect to shar-
ing (unanticipated sharing is supported
as well), but less safe.

Objects are not self-contained, but
copying objects does not require copy-
ing their behavior.

Objects are self-contained, but copying
objects requires copying their behavior.

More structural guarantees, not flexible
with respect to structure, changing the
class changes all instances.

Fewer structural guarantees, more flex-
ible with respect to structure, allows to
change the structure of a particular ob-
ject “on-the-fly”.

Unique objects (such as booleans) need
a class.

Unique objects (such as booleans) can
be constructed without building a class.

Table 2.1: Comparison of the class-based model with the protoype-based model.

Relation with mobile RFID-enabled applications For mobile RFID-enabled appli-
cations, it makes sense to represent an RFID-tagged physical object as a software ob-
ject. Spontaneously detecting and interacting with such a software object representing
an RFID-tagged object should be possible without first installing the required class hi-
erarchy. Hence, a classless object model is useful to deal with the open nature of mobile
RFID-enabled applications by making RFID-tagged physical objects self-contained.

Non-Blocking Communication Primitives

All distributed object-oriented programming languages have primitives for sending and
receiving messages across the network. An ambient-oriented language requires these
primitives to be “non-blocking”: a process or thread of control should not be suspended
if the operation cannot be completed immediately. This requirement is based on the fact
that in a wireless ad hoc network, communicating parties can often be unavailable, and
making a communication operation block until the communicating party is available
may lead to unacceptable delays. Furthermore, blocking primitives increase the risk
of distributed deadlocks which are hard to detect in an ad hoc network, because the
network lacks a global coordinator to detect or break the cycle.

Non-blocking message sending is better known under the term asynchronous mes-
sage sending. More specifically, it is the form of asynchronous message sending where
the sender does not even have to wait for the message to be transmitted to the receiver.
Non-blocking message reception is better known as event-driven computation. A non-
blocking receive operation enables a process to register its interest in a certain type of

26 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

message without blocking the control flow. In an event-driven application, the focus
of control lies outside of the application; the control flow is determined by external
events, rather than being encoded within the application itself.

Relation with mobile RFID-enabled applications Similarly, for mobile RFID-enabled
applications, communication with an intermittently connected RIFD-tagged physical
object should not block the application when the RFID-tagged object is temporarily
out of communication range.

Reified Communication Traces

The above requirement of making all communication between processes non-blocking
implies that devices are no longer implicitly synchronized while communicating. If
communication primitives no longer synchronize processes implicitly, other means
must be provided to do so for some distributed computations to make sense. The
ambient-oriented programming paradigm re-introduces synchronization by requiring
information about the communication traces of processes to be reified (i.e. made ex-
plicit). By communication traces, we mean for example the messages that a process
successfully received in the past or the messages that are still pending to be sent, etc.

Decentralized Service Discovery

As mentioned earlier in this section, mobile ad hoc networks have no infrastructure,
which requires devices to detect services dynamically as they are roaming. In addi-
tion, services may be “anonymous”: they have no a priori known address or URL by
which they can be addressed. An ambient-oriented language should therefore include
language features to communicate with anonymous services.

Decentralized service discovery also entails a mechanism that allows a program to
keep track of which services become available and unavailable as devices roam. An
ambient-oriented language requires this mechanism to be peer-to-peer because of the
lack of infrastructure: devices must be able to advertise their own services directly,
without reference to third party servers. Note that this does not imply that an ambient-
oriented program must be peer-to-peer as a whole: it is always possible to structure
applications according to a client-server pattern. Ambient-oriented programming only
states that applications should not be forced to use a client-server setup in order to
interact.

Relation with mobile RFID-enabled applications Mobile RFID-enabled applica-
tions naturally accommodate decentralized service discovery. When in range of an
RFID-enabled device, the RFID tag of an RFID-tagged physical object will be pow-
ered up and spontaneously initiate interaction. A mobile RFID-enabled application
must be able to keep track of which RFID-tagged objects are currently in and out of
range.

Decoupling in Time

The volatile connections in mobile ad hoc networks require communication models
that can abstract from the network connectivity between communicating processes. It
should be possible for two processes to express communication independently of their
connectivity. This significantly reduces the case-analysis for the programmer, which

2.2. AMBIENT-ORIENTED PROGRAMMING 27

can reason in terms of a fully connected network by default, and can deal with border
cases in an orthogonal way. Hence, communicating processes do not necessarily
need to be online at the same time.

Decoupling in time is achieved either by synchronizing processes until a connection
is available (which, as is argued below, is not a very scalable solution in a mobile ad hoc
network) or by storing sent messages in an intermediary data-structure. This makes it
possible for communicating parties to interact across volatile connections, because the
logical act of information sending is decoupled from the physical act of information
transmission, allowing for the information to be saved and transmitted at a later point
in time when the connection between both parties is restored.

Relation with mobile RFID-enabled applications Exchanging data with an inter-
mittently connected RFID-tagged physical object is prone to many failures. In many
cases, multiple attempts at reading to or writing to an RFID tag’s memory are needed
before an operation succeeds. This should happen without immediately signaling an
error for every single fault to the programmer. Instead, the implementation should retry
these operations without blocking the application of signaling an error. Due to physical
phenomena, a small change in the physical environment may cause these operations to
succeed after a short timespan.

Decoupling in Space

Decoupling in space implies that communicating processes do not necessarily need
to know one another’s exact address or location in order to collaborate. It is directly
motivated by the scarcity of infrastructure in a mobile ad hoc network, making the
reliance on servers to mediate collaborations impractical. A second motivation for
space-decoupled communication is that it enables applications to adapt more gracefully
to changes in their physical environment. In mobile networks, equivalent services may
be hosted by different devices. As a device roams, it may use different instances of
conceptually the same service. For example, in a city tour application, the handheld
device of a tourist may connect to the same tourist information service via different
access points physically dispersed throughout the city. A communication model that
is decoupled in space supports such transitory relationships, because it allows one to
make abstraction from specific service instances. Hence, communicating processes
do not necessarily need to know each other beforehand.

Decoupling in space implies a form of anonymous communication, often imple-
mented by a form of communication where senders and receivers of data are matched
on the content of the data itself, such as in content-based publish/subscribe. A proto-
typical example of this is communication via tuples in tuple spaces. Gelernter refers to
space decoupling in the context of tuple spaces as “distributed naming” [Gel85].

Finally, decoupling in space is closely related to decentralized discovery, in the
sense that decentralized discovery is usually implemented in terms of communication
which is decoupled in space. However, decoupling in space does not imply a decen-
tralized form of discovery. For example, in the Linda coordination language [Gel85],
processes are decoupled in space but there is no form of discovery to connect decen-
tralized distributed processes.

Relation with mobile RFID-enabled applications RFID-tagged objects are sponta-
neously discovered by RFID-enabled devices. It is up to the application to decide based

28 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

on the data on the RFID tag whether to interact with the object. To not rely on addi-
tional infrastructure, this should be possible without contacting a backend database.

Synchronization Decoupling

In a mobile ad hoc network, an application may find itself deprived of access to a
certain service or resource for extensive periods of time. For example, in a collaborative
meeting application, the application only has access to the calendars of other people
when they are physically nearby. Such extensive periods of time between potential
periods of interaction suggest that synchronization between different parties should be
performed without blocking their control flow (i.e. without suspending their thread of
control). Blocking synchronization can lead to applications which remain unresponsive
for extensive periods of time. A reactive synchronization style is more appropriate
in a mobile ad hoc network, as it leaves processes responsive to other events while
waiting for (information provided by) another process. Therefore, the control flow of
communicating processes must not be blocked upon sending or receiving.

Synchronization decoupling implies that a sender can employ a form of asyn-
chronous message passing, such that the act of message sending becomes decoupled
from the act of message transmission. Likewise, allowing recipients to process mes-
sages asynchronously decouples the act of message reception from the act of message
processing. Message transmission and reception require a connection between sender
and receiver, but message sending and processing can be decoupled, allowing commu-
nicating processes to abstract from the fact that the other process is online or not.

Relation with mobile RFID-enabled applications Exchanging data with an inter-
mittently connected RFID-tagged physical object is prone to many failures. In many
cases, multiple attempts at reading to or writing to an RFID tag’s memory are needed
before an operation succeeds. This should happen without immediately signaling an
error for every single fault to the programmer. Instead, the implementation should retry
these operations without blocking the application of signaling an error. Due to physical
phenomena, a small change in the physical environment may cause these operations to
succeed after a short timespan.

Arity Decoupling

In mobile networks, groups of devices are often not statically determined, but are rather
formed ad hoc as devices roam. One is often interested in communicating with only
the proximate devices. The number of such proximate devices is not a priori known to
the application. It is therefore important that interactions can be expressed without ex-
plicit reference to the number of participants. A good coordination mechanism should
enable the programmer to express interactions with a varying number of participants,
e.g. one-to-one, one-to-many or many-to-many interactions. In short, Processes do not
necessarily need to know the total number of processes communicated with.

Van Cutsem uses the term arity decoupling [Van08] to attribute forms of commu-
nication that can target more than one recipient, without explicitly specifying the total
number of recipients. Arity decoupling is a special case of space decoupling. Space de-
coupling can be regarded as abstracting from both the identity of receivers and the total
number of receivers [EFGK03]. These two aspects are treated separately because both
concepts are orthogonal in principle. A communication abstraction can be anonymous
yet specify a maximum number of receivers.

2.3. PROGRAMMING MODEL REQUIREMENTS 29

Finally, note that the arity of the interaction influences the synchronization of the
participating processes. In a point-to-point interaction, a process often needs to await a
reply from a previous request before being able to continue. However, in a one-to-many
interaction, different kinds of synchronization abstractions are called for.

Relation with mobile RFID-enabled applications In mobile RFID-enabled appli-
cations, the set of reachable RFID-tagged objects is in constant flux. To prevent the
programmer from having to enumerate all these tagged objects extensionally in col-
lections and having these collections to be constantly kept manually in sync with the
physical environment, it should be possible to designate RFID-tagged objects both in-
dividually and using intensional descriptions. In the latter case, the set of matching
objects must be automatically kept in sync without programmer intervention.

2.3 Programming Model Requirements
Given the properties of mobile ad hoc networks and mobile RFID-enabled applications
described earlier in this chapter, in this section we establish the programming model
requirements for mobile RFID-enabled applications. These requirements will be used
in the next chapter to evaluate how or to which extent the current state of the art in
different research areas manages to address them.

Our requirements can be classified into the three purposes listed below. First, we
look how the ambient-oriented programming paradigm can be used to abstract over the
bare RFID hardware, given the similarities that we identified between mobile ad hoc
networks. Subsequently, we take into account the decoupling requirements of mobile
ad hoc networks themselves. Finally, the highly event-driven nature of mobile RFID-
enabled applications presents a number of challenges which have to be addressed as
well.

2.3.1 Ambient-oriented Programming with RFID-tagged Objects
As we mentioned earlier in section 2.1.2, we consider mobile RFID-enabled applica-
tions as a special case of mobile ad hoc networking applications in which some soft-
ware objects are used to represent real-world physical objects tagged with a (passive)
RFID tag. In order to abstract over RFID hardware details, ambient-oriented program-
ming for mobile RFID-enabled applications should allow:

Addressing physical objects. RFID communication is based on broadcasting a sig-
nal. However, to be able to associate a software entity with one particular phys-
ical object, it is necessary to address a single designated physical object and
maintain a (conceptual) connection with the object.

Storing application-specific data on RFID tags. In the spirit of mobile ad hoc net-
work applications, we assume as little infrastructure as possible to implement
mobile RFID-enabled applications. Hence, mobile RFID-enabled applications
should be able to work without relying on a backend database and therefore it
should be possible to store the application data in the writable memory of the
RFID tags themselves [RK09, FL05, PS11, MTCS07].

Reactivity to appearing and disappearing objects. It is necessary to observe the con-
nection, reconnection and disconnection of RFID tags to keep the mobile RFID-
enabled application synchronized with its physical environment. Differentiating

30 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

between connection and reconnection is important to preserve the identity of
physical objects in the application. Furthermore, it should be possible to re-
act upon these events from within the application. Notification of these events
should be possible in a mobile ad hoc network (i.e. without assuming a fixed
infrastructure).

Asynchronous communication. To hide latency and keep applications responsive in
the face of intermittent connections, communication with RFID-tagged physical
objects should happen asynchronously. Blocking communication will freeze the
application as soon as one tag is unreachable.

Fault-tolerant communication. Treating communication failures as the rule instead
of the exception allows applications to deal with temporary unavailability of the
RFID-tagged physical objects and makes them resilient to failures. For example,
read/write operations frequently fail due to hardware phenomena. Handling all
these failures individually or each time they occur is not necessary and signifi-
cantly complicates the development of mobile RFID-enabled applications.

Data consistency and security. Different mobile applications might concurrently read
and – more importantly – write data to a number of tagged objects all within their
proximity. This can lead to data races that have to be prevented. Similarly, in
some scenarios data stored on RFID tags may not be read or modified by unau-
thorized users.

2.3.2 Loose Coupling
Since mobile RFID-enabled applications are distributed in a mobile ad hoc network, the
different distributed components of such applications can be disconnected from each
other at any point in time. To prevent the application from halting or even breaking,
it should be possible to dynamically discover a replacement component for a discon-
nected component. This is only possible if distributed application components are not
hard-wired in the application code by means of a fixed network address or location.
As mentioned earlier, this type of decoupling is called decoupling in space [EFGK03].
On the other hand, if replacing a disconnected component is impossible (e.g. because
of application-specific reasons, untransferable state...), the fact that communication
is (temporarily) impossible should not block the entire application. Progress should
still be possible where possible and communication among disconnected components
should not be lost for when these components are reconnected. This type of decoupling
is called decoupling in time.

Note that such loose coupling is advocated by the ambient-oriented programming
paradigm. Below, we summarize these decoupling requirements into the following
three properties.

Decoupling in Space

In a mobile ad hoc network, where no infrastructure is assumed, decoupling in space re-
quires a form of anonymous communication where application components or services
announce their presence to all reachable parties. It is then up to these parties to decide
if interaction should occur. This should happen without relying on a third party, such
as a naming server, event broker, etc. This boils down to broadcasting announcements
on the one end and subscribing and reacting to these broadcasted announcements on

2.3. PROGRAMMING MODEL REQUIREMENTS 31

the other end. Programming abstractions for both these activities are needed to shield
programmers from low-level implementation details.

Decoupling in Time

In a mobile ad hoc network, distributed application components or services should al-
ways run concurrently and not wait for each other to prevent one component or service
to block the other when the network connection between them is broken. Decoupling
in time means that the logical act of information sending is decoupled from the physical
act of information transmission, allowing for the information to be saved and transmit-
ted at a later point in time, when the connection between both parties is restored. This
style of communication is called asynchronous communication. In the face of volatile
connections, it makes sense to assume network disconnections are the rule rather than
the exception to reduce the exceptional cases a programmer needs to address by pro-
viding fault tolerant communication. Programming models incorporating fault tolerant
and asynchronous communication primitives are desirable in mobile RFID-enabled ap-
plications.

Arity Decoupling

As already mentioned above, broadcasting is a communication paradigm that should
be supported to allow decoupling in space. Additionally, some types of hardware only
support broadcasting, such as RFID technology. Hence, it should be available as a
communication abstraction. On the other hand, employing broadcasting as the only
communication abstraction can cause network congestion in some settings. Addition-
ally, in some situations broadcasting simply is not the most appropriate abstraction.
Hence, point-to-point communication is a communication paradigm that should coex-
ist with broadcasting and the appropriate programming abstractions should be avail-
able to integrate both paradigms into a single useful application. In short, the arity of
communication should be decoupled as well. Similarly to broadcasting, point-to-point
communication should be possible without relying on a third party, and hence should
be peer-to-peer.

2.3.3 Highly Event-driven Code
Although in classic software, applications have to be made responsive to external
events such as user input or interaction with hardware, these applications are largely
driven by a single control flow that is determined by the static structure of the program
text. In mobile RFID-enabled applications, the set of tags that are reachable and with
which the application is interacting is in constant flux. The result is that almost the
entire application logic is event-driven. Hence, different code is triggered in response
to different events by means of event handlers or callbacks, requiring careful manage-
ment of how the application responds to events to keep the application responsive and
correctly functioning. This introduces a number of software engineering issues.

Event Representation

First, events have to be represented as a data type such that they can be communi-
cated to (separately developed) interested application components. Many event com-
munication systems operate only on specific data types (e.g. event structs without

32 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

methods as opposed to full blown objects in an object-oriented language) which lack
some of the expressive power typically conveyed by high level programming languages
[VC03, Eug07]. Consequently, application data types that correspond to events must
adhere to additional criteria to allow mapping application data to events and vice versa.
To allow ambient-oriented programming with RFID-tagged objects, we require that
these RFID-tagged objects can be represented as full-blown software objects.

Inversion of Control

Second, by adopting such an event-driven architecture, the application logic becomes
scattered over different event handlers or callbacks which may be triggered indepen-
dently [CM06]. The control of the application is no longer driven by an explicit control
flow determined by the programmer, but by external events. This is a phenomenon
known as inversion of control [HO06, PE02]. Control flow among event handlers has
to be expressed implicitly through manipulation of shared state. E.g. unlike subsequent
function calls, code triggered by different event handlers cannot use the runtime stack
to make local variables visible to other executions (stack ripping [AHT+02]), such
that these variables have to be made instance variables, global variables, etc. Finally, in
more complex systems it is not always clear in which order different event handlers will
be triggered, which can be critical in programming languages that allow side effects.
Because the primary way of compositing separate event handlers is through side ef-
fects, interleavings and interactions become the developer’s responsibility [MGB+09].

In short, making code reactive to events in a traditional imperative computational
model is hard because of the lack of a seamless integration of the event paradigm with a
high level programming model [VC03], rendering complex event-driven architectures
hard to develop, understand and maintain [LC02, KR05, MRO10, Mye91].

Event-driven Control Flow Management

The unstructured execution of event-driven programs originates from the fact that the
control flow that is automatically managed by the computational model of the pro-
gramming language is largely abandoned in favor of one manually managed by the
programmer [LB07]. As such, the flow of control is dictated by how event handlers are
put in data structures, in which kind of data structures, how they are triggered, the level
of concurrency, etc. This leads to a clumsy programming style where program state is
explicitly encoded in globally visible variables to coordinate the unstructured execu-
tion of event handlers and can cause unexpected effects in imperative languages where
side effects are caused by event handlers. In a distributed setting, this is even more
complicated because the event handlers can be distributed over different distributed ap-
plication components that can interact in unexpected ways. Hence, there is a need for
coordination of reactive applications such that the coordination model [GC92] can take
care of automatically managing the control flow. Furthermore, the coordination model
should take the characteristics of applications distributed in a mobile ad hoc network
into account.

2.3.4 Conclusion
In addition to the necessary abstractions over the bare RFID hardware mentioned ear-
lier in section 2.3.1, suitable programming model for mobile RFID-enabled applica-
tions should provide:

2.3. PROGRAMMING MODEL REQUIREMENTS 33

• Decoupling in space and arity.

• Asynchronous (decoupling in time), fault-tolerant communication primitives.

• Rich representation of events.

• No inversion of control.

• Global and automatic control flow management.

Some of these properties should be combinable along different dimensions. For ex-
ample, some existing systems provide fault-tolerant peer-to-peer communication, but
no fault tolerance when one-to-many communication is employed. Other systems pro-
vide powerful event processing and communication capabilities, but require events to
be represented as severely restricted data types.

When taking some of these properties together, we see that distributed event-driven
architectures partially exhibit these properties. The traditional way of conceiving an
event-driven system in a setting where the interacting entities change at runtime and
communication must be time- and arity-decoupled is by adopting a publish/subscribe
architecture [MC02b, MC02a, BJdL+04], where event producers publish events and
event consumers subscribe and react to events, either using a topic-based or content-
based subscription [CRW00, CNF01, EFGK03]. Not surprisingly, the highly dynamic
nature of mobile ad hoc network applications caused preceding research to adopt sim-
ilar architectures [KB02, MC02a, MPR01, Gri04].

In classic fixed-network publish/subscribe architectures, event producers and con-
sumers have to register themselves to some centralized entity called an event broker
that routes events between the different registered parties. Clearly, this assumes infras-
tructure in the form of a reliable server or network of servers that can act as the event
broker. In the case of mobile ad hoc networks, registering event consumers to event
producers should happen without relying on infrastructure such as event broker nodes,
which means that either event advertisements or event subscriptions have to be broad-
casted to reachable nodes [CRW01]. Hence, we postulate that mobile RFID-enabled
applications should be structured as distributed event-driven architectures that do not
rely on infrastructure by broadcasting event advertisements and/or subscriptions.

Publish/subscribe systems usually provide decoupled communication primitives,
but do not provide programming tools for managing the control flow of an event-driven
application. Dataflow languages [JHM04], on the other hand, do provide global and
automatic control flow management. Other research areas, such as sensor networks,
have to deal with similar problems and exhibit some of these properties as well.

When we look at RFID systems deployed today, we see that due to the massive
deployment of RFID tags and the events they generate, traditional RFID middleware
offer advanced event processing constructs.

For these reasons, in the next chapter, we survey RFID programming middleware,
publish/subscribe systems, dataflow programming languages and sensor network pro-
gramming technology with respect to the requirements listed above. The point of sur-
veying these technologies is to extract how different programming technologies deal
with the requirements listed in this section. Our aim is an integration of matching
techniques such that all requirements are satisfied.

Concretely, we take as a starting point the ambient-oriented programming paradigm.
It already offers the decoupling properties to deal with the hardware phenomena of mo-
bile ad hoc networks. However, it does not take into account the inversion of control
problem and offers no global and automatic control flow management.

34 CHAPTER 2. MOBILE RFID-ENABLED APPLICATIONS

Chapter 3

Related Work

In the previous chapter, we have observed that mobile RFID-enabled applications are
highly event-driven applications running on top of mobile ad hoc networks. In section
2.3.4, we listed a number of programming model requirements to be able to concisely
implement such applications. In this chapter, we survey various programming tech-
nologies that address one or more of these requirements with respect to the full list of
requirements.

We start by looking at programming technology that specifically target applications
that have to deal with RFID technology in section 3.1. These systems however, only
target classic RFID-enabled applications instead of mobile RFID-enabled applications.
Therefore, we subsequently broaden our scope to programming technology that specif-
ically targets distributed event-driven software in section 3.2. However, these systems
do not take into account the inversion of control problem. For this reason, in the subse-
quent section (section 3.3) we look into dataflow programming technology that allows
to declaratively write event-driven code such that inversion of control does not occur.
Finally, as mobile RFID-enabled applications are a specific type of sensor-driven soft-
ware, in section 3.4 we look at how sensor network programming technology satisfies
the requirements that we put forward. Finally, section 3.5 concludes this chapter by
summarizing the techniques that are used in the surveyed work to satisfy our program-
ming requirements. In that section, we point out which of these techniques we selected
to integrate in the ambient-oriented programming paradigm to be able to concisely
implement mobile RFID-enabled applications.

3.1 Survey of RFID Programming Technology

In this section we survey work on raising the abstraction level at which programmers
interact with RFID hardware. We do not consider programming RFID hardware on the
driver level by implementing low level protocols. We identify two categories of RFID
programming technology. The first are backend-based RFID middleware implementing
the Electronic Product Code (EPC) standard [EPC10b] tailored towards applications
such as retail, product tracking, manufacturing, supply chain management, access con-
trol, etc. [LKKP10]. The second are decentralized programming abstractions targeting
general mobile RFID-enabled applications.

35

36 CHAPTER 3. RELATED WORK

3.1.1 Backend-Based Middleware
RFID middleware usually sits between the reader and software application which uses
the EPC data. The main objective of RFID middleware is to collect large amounts of
raw data coming from a heterogeneous RFID environment, filter them, compile them
into a useable format and dispatch them to the application [AJAM09], while abstracting
over concrete RFID hardware implementation details. It is most likely used in the cases
when the data needs to be shared at more than one location at a time, such as in supply
chain systems where many readers are distributed across factories, warehouses and
distribution centers. Such middleware usually focus on connecting RFID technology
to an enterprise backend and assume a stable network infrastructure, as is the case
for the Sun Java System RFID Software [Ora]. Some middleware focus more on the
filtering and aggregation of events produced by RFID readers and assume an underlying
implementation of low-level RFID operations, as is the case for MIT Auto-ID Center’s
Savant middleware [OM02].

Figure 3.1: Typical architecture of EPC RFID middleware.

A highly simplified schematic of typical EPC middleware is shown in figure 3.1.
Middleware implementing the full EPC standard and its protocols allows notifying
registered application components of appearing and disappearing tags by means of the
EPCGlobal Application Level Events interface (ALE) [EPC10a]. The ALE specifi-
cation defines a SOAP message transport binding for the subscription communication
channel and an XML and TCP/HTTP message transport binding for the notification
channel. For this subscriptions and notification infrastructure to work, a reliable net-
work is assumed, which is feasible in traditional RFID middleware applications where
RFID readers are connected with applications over reliable connections. However, for
mobile RFID-enabled applications we cannot rely on such infrastructure.

WinRFID [PSR+08] is an RFID middleware that is entirely based on the .NET
Framework and Windows services, which are specified in XML. Services can read
from and write data onto RFID tags through an object-oriented interface. The tag
data is also specified in XML and is converted back and forth to a simplified and
compressed format when written onto tag memory. Additionally, Windows services
are autonomously running components that can run on mobile devices and are very
loosely-coupled: they can interact using both synchronous and asynchronous messag-
ing and publish/subscribe. The downside is that an approach based on web services

3.1. SURVEY OF RFID PROGRAMMING TECHNOLOGY 37

is more heavy-weight and does not offer the same performance as more light-weight
approaches [RSMD04]. The main drawback of WinRFID however is that the devices
and/or services have to be explicitly registered into a registry component, such that the
services can contact this registry to interact with for example RFID readers that were
a-priori registered. This means that there is no decentralized service discovery which
makes WinRFID unsuitable for mobile RFID-enabled applications.

Fosstrak [FRL07] (formerly named Accada) is an open source RFID middleware
that employs a virtual tag memory service (VTMS) that facilitates writing to a tag by
shielding the application from the characteristics of RFID tag memory: limited mem-
ory size, different memory organizations, reduced write range. Hosts simply provide
key-value pairs that should be written to a set of tags. The service then checks with
the VTMS for the appropriate tag memory block and page to write to. If the write
succeeds, the reader module acknowledges this to the host and stores a backup copy
of the data in the virtual representation of the tag in the VTMS. If the host wants to
access the memory of the tag while the tag is outside the range of any reader, the data
can be made available via this virtual memory. If a write to the tag fails, the key-value
pair is be stored in the VTMS and flagged as “open”. The reader will retry the write
command at a later point in time. The host can also indicate that the virtual memory
of a tag can only be accessed once the tag is in the read range of the particular reader.
Hence, Fosstrak allows addressing individual tags and storing application-specific data
on these tags using asynchronous and fault-tolerant communication. For this however,
the application data has to be converted back and forth to simple key-value pairs of
which the values can only be of a restricted set of simple data types.

AspireRfid [KLS+08] partially caters to mobile RFID-enabled applications, by
offering support for mobile RFID-enabled devices (such as smartphones) and other
types of sensors (e.g. temperature). Mobile RFID-enabled devices communicate with
backend infrastructure that runs the AspireRfid middleware by means of wireless net-
working technologies. Applications running on mobile devices have to explicitly send
an intermediary representation of the scanned objects to this infrastructure which will
wrap it to comply with and be processed using EPC protocols. Because there the mid-
dleware needs a connection with the backend, it is impossible to run the middleware as
a stand alone application on the mobile device itself, which makes AspireRfid unsuit-
able for mobile RFID-enabled applications.

3.1.2 Decentralized Middleware
At the time of writing, the only decentralized RFID programming technology is one
based on tuple spaces [MQZ06]. The concept of tuple spaces was originally introduced
in the coordination language Linda [Gel85]. In the tuple space model, distributed pro-
cesses communicate by inserting and reading and/or removing tuples of primitive data
types to and from a shared tuple space, which acts as a globally shared memory. Be-
cause tuples are anonymous, they are extracted by means of pattern matching on their
content. Tuple space communication is decoupled in time because processes can insert
and retract tuples independently and without being connected at the same point in time.
It is decoupled in space because the publisher of a tuple does not necessarily specify,
or even know, which process will extract the tuple.

In [MQZ06] this concept is applied to RFID technology by dynamically construct-
ing a distributed tuple space of all tuples stored on the tags that are in reading range.
Applications running on mobile devices or robots equipped with an RFID reader can
control their own RFID reader to access the environmental memory via traditional tu-

38 CHAPTER 3. RELATED WORK

ple space operations. These operations provide applications the capability of storing
new tuples in the environment and of reading/extracting tuples in an associative way.
Blocking read/extract operations and asynchronous notification mechanisms (to notify
agents when a matching tuple is detected in one or more of the tags in range) enable ap-
plications on different devices to coordinate and synchronize their activities with each
other through the environmental memory.

From the viewpoint of the application, the perception of the environment is that of a
normal tuple space that contains all tuples stored on the RFID tags in rage at that point
in time. There is no such concept as a single global tuple space or as a multiplicity
of localized tuple spaces. Tuples are spread everywhere in the physical space, without
being at all pre-organized in logical containers and rather defining a sort of “contin-
uum” of tuples. The contents of the tuple space is subjective, depending on the current
position of the device hosting the application and on the range of its RFID reader. The
same application perceives different information in different physical positions, while
two applications in the same position may perceive different information depending on
the reading range.

The middleware offers no way to control on which specific tag the inserted tuples
will be stored, or even if the write operation will succeed when no tag is in range.
Hence, with this approach RFID tags cannot represent physical objects as there is no
way address one specific RFID tag and write operations are not fault tolerant.

3.1.3 Evaluation

We summarize our survey on RFID programming technology by means of the desired
features for implementing mobile RFID-enabled applications listed earlier in section
2.3.1. Table 3.1 gives an overview of the systems discussed above and indicates to
which extent they meet these requirements.

The main conclusion we draw from this overview is that existing RFID middleware
simply implementing EPC standards and protocols requires a central backend infras-
tructure to control the RFID readers. Therefore, these systems are not directly usable
for developing mobile RFID-enabled applications that are autonomous and use mobile
ad hoc network technology to communicate. Furthermore, traditional RFID middle-
ware is typically rather heavy-weight and not tailored to mobile devices [LKKP10].
AspireRfid does allow mobile RFID readers and offers support for other types of sen-
sor devices, but still uses a backend architecture to control these devices and to process
and communicate their events to the application level. These restrictions stem from
the very specific application domains of these systems: they specifically target classic
RFID applications where RFID tags are used for identifying and tracking objects. They
contact a centralized database storing the information associated with each RFID tag
[PS11, DMS07, MTCS07].

The only other approach (except from ad hoc implementations directly on top of the
hardware) at the time of writing is a tuple space-based approach. Although tuple spaces
are attractive for mobile ad hoc network applications [MPR01, MZ04], the concrete
RFID-enabled implementation discussed earlier does not allow designating a single
RFID-tagged object and only provides asynchronous and fault-tolerant communication
with RFID-tagged objects for read operations.

A final interesting insight is that all investigated systems lead to event-driven ar-
chitectures where client applications subscribe to events that represent changes in the
physical environment. Hence, they achieve a causal connection with the physical

3.2. SURVEY OF PUBLISH/SUBSCRIBE SYSTEMS 39

WinRFID Fosstrak AspireRfid Tuple
Spaces

Addressing physical ob-
jects

Yes Yes Yes No

Storing application data
on RFID tags

Yes Only key-
value pairs

Yes Only key-
value pairs

Reactivity to
(dis)appearing objects

Yes Yes Yes Yes

Asynchronous commu-
nication

Yes Yes No Only read
operations

Fault-tolerant communi-
cation

Yes Yes No Only read
operations

Data consistency and se-
curity

Yes No No No

Support for mobile ad
hoc networks

No No No Yes

Additional remarks Loosely-
coupled,
but heavy-
weight
web ser-
vices

Support
for mobile
readers
and other
sensors

Table 3.1: Survey of RFID programming technology.

world, but do not specifically fully cater to mobile RFID-enabled applications. Hence,
in the next section we survey distributed event driven architectures.

3.2 Survey of Publish/Subscribe Systems
In section 2.3.4, we already mentioned that because of the distributed and inherently
event-driven nature of mobile RFID-enabled applications, they accommodate distributed
event-driven architectures. Distributed event-driven architectures are typically imple-
mented by publish/subscribe technology. This survey does not aim to be an exhaustive
survey of all work done in this field, but tries to evaluate support for these levels in
the light of mobile RFID-enabled applications by taking into account the requirements
formulated earlier in section 2.3.4.

The publish/subscribe paradigm is attractive for mobile RFID-enabled applications
because it inherently provides support for loosely coupled interaction between event
producers and consumers [HGM04, BJdL+04]. Event subscriptions can happen with-
out having producers to need to know consumers (and how many of them there are)
a-priori and vice versa.

Different strategies for specifying event subscriptions are possible [EFGK03]. In
topic-based publish/subscribe, events are categorized in topics or event types (which
can be hierarchical) and subscribing happens by simply matching on the topic. In
content-based publish/subscribe, matching happens on the actual content of the event
data type. Of course, this places some restrictions on the structure of this data type

40 CHAPTER 3. RELATED WORK

such that subscribing can happen expressively and matching can be performed effi-
ciently. Hence, content-based publish/subscribe systems usually restrict events to tu-
ples or XML documents with a fixed structure [SFR05]. Sometimes event subscriptions
are extended with domain-specific information, such as geographical distance between
event producers and consumers [MC02a] in traffic control systems.

Different subscription strategies also have their impact on the routing of events,
i.e. delivering the events from producers to consumers [M0̈1]. A centralized solution
relying on a single event broker is neither scalable nor fault-tolerant. The alternative
is to use a set of distributed brokers in which each broker has a set of local clients and
is additionally communicating with some of the other brokers. In that case, events are
propagated from producers to consumers along a path of interconnected brokers. Such
an architecture is depicted in figure 3.2. Most approaches either flood events to the

Figure 3.2: Distributed publish/subscribe architecture.

broker network or, if filtering is performed at intermediate brokers, it is assumed that
each broker has global knowledge about all active subscriptions (e.g. by maintaining
routing tables which map event subscriptions to brokers to which events should be
forwarded). This knowledge is constructed by flooding subscriptions filters into the
broker network. It enables each broker to decide to which brokers it must forward
incoming notifications. Therefore, subscriptions are forwarded to ensure the delivery
of all matching notifications.

As an alternative to the naive solution to event routing mentioned above, SIENA
(Scalable Internet Event Notification Architectures) [CRW00, CRW01] reduces the
amount of knowledge needed by a broker to make event forwarding decisions by
applying selective filter forwarding (i.e. subscription and advertisement forwarding).
SIENA’s routing algorithms are based on covering relations among filters. For exam-
ple, a subscription does not need to be forwarded by a broker to another broker if it has
already forwarded a subscription that covers the former because in that case already all
matching events are delivered. IBM’s Gryphon [BCM+99] uses similar mechanisms.
These filter expressions are not only used for event subscriptions, but also for event
advertisements. The motivation for advertisements is to inform the event notification
service about which kind of events will be generated by which event producers, so
that it can best direct the propagation of subscriptions. The idea is, that while a sub-
scription defines the set of interesting events for an interested party, an advertisement
defines the set of events potentially generated by a producer. Therefore, the advertise-

3.2. SURVEY OF PUBLISH/SUBSCRIBE SYSTEMS 41

ment is relevant to the subscription only if these two sets of events have a nonempty
intersection. The use of advertisements is not necessary, but allows for the routing op-
timizations described above. Additionally, SIENA allows a combination of multiple
events to be matched using patterns, which are multiple filters applied in sequence on
event attributes of the corresponding events. For the ordering of these events, SIENA
provides best-effort semantics.

Although SIENA relaxes the requirement of a fixed, reliable network of event bro-
kers, it still assumes some form of centrally administered network infrastructure to
form a broker network, which cannot be assumed in spontaneously forming mobile ad
hoc networks [SGP04]. Instead, SIENA focuses on providing efficient and scalable
notification routing over a wide-area network.

JEDI (Java Event-based Distributed Infrastructure) [CNF01] is a publish/subscribe
system that supports mobile clients. For this, JEDI defines two functions – moveOut
and moveIn – that a client can use to explicitly detach from the event broker network,
and to reconnect to it, possibly at a different location (and hence to a different node of
the broker network). When a client is disconnected, the event broker network stores
all the events in which the client is interested. The client can then reconnect to the
same node of the broker network or to another node of the network on a different loca-
tion by calling moveIn. The effect of the moveIn operation is to retrieve all events
buffered by the broker network in which the client was interested. JEDI still relies on
a centrally administered infrastructure to host the broker network, since it must have a
global knowledge of all the events that are generated and of all the subscriptions that
are issued, but offers fault-tolerant event delivery to weakly connected mobile clients.
However, the programmer has to manually call the moveOut and moveIn operations
when relocation of the client is expected. In intermittently connected systems such as
mobile RFID-enabled applications, this leads to complicated exception handling code
as disconnections can be unpredictable and can be the rule rather than the exception. In
[CRW01] this process is automated by letting the middleware monitor the connection
status of the client and as soon as a disconnection is observed queue all messages sent
to that client in the broker network. When the client reconnects, the queued messages
are automatically delivered. This approach offers support for intermittently connected
clients.

JEDI’s computational model is based on the notion of active objects. An active
object is an autonomous computational unit performing an application-specific task.
Each active object has its own thread of control and interacts with other active objects
by explicitly producing and consuming events.

Location-based Publish/Subscribe (LPS) [EGH05] is a content-based publish/-
subscribe middleware designed for mobile computing applications. In order to scope
interactions between devices, event propagation and reception is bounded by physical
space: a producer defines a publication range and a consumer defines a subscription
range. Both are independent of the devices communication range. An event is only
propagated to the consumer if the publication range of the producer and the subscrip-
tion range of the consumer physically overlap.

Events are represented as tuples of primitive values and are offered for distribution
to all interested subscribers located or entering the publication space before the event
is unpublished. A persistent event can be unpublished either by the publisher or by the
service after a determined period known as its time-to-live. The publication space is
centered around the publisher, implying that the publication space moves along with the
publisher between the time the event is published and the time the event is unpublished.
Content-based subscription happens by pattern matching on the event tuple’s attributes.

42 CHAPTER 3. RELATED WORK

At the time of writing, the implementation of LPS relies on a web service accessed
via HTTP by clients. This web service plays the role of communication backbone
and performs the matching between published events and subscribers. This centralized
architecture where permanent connections are assumed makes the current implemen-
tation not suitable for mobile RFID-enabled applications.

STEAM (Scalable Timed Events And Mobility) [MC02a] is an event-based mid-
dleware service that has been designed for mobile ad hoc networks, more specifically
traffic management systems. In this context, STEAM has been used as the underlying
publish/subscribe middleware for the CORTEX project [BC04]. In STEAM it is as-
sumed that the closer event consumers are located to an event producer, the more likely
they are to be interested in the events propagated by that producer. This implies that
events are valid within a certain proximity of a producer. Propagating events within
a certain area surrounding producers limits forwarding of event messages, and there-
fore reduces the usage of communication and computation resources, but also renders
system-wide services virtually impossible to implement.

The notion of proximity involves both geographical and functional aspects, i.e. the
geographical area and the type of events that are communicated. An application com-
ponent must be located in the geographical area corresponding to the group and addi-
tionally be interested in the event type to be subscribed. Because of this mechanism
and by broadcasting event messages within the area, STEAM allows consumers to
subscribe to particular nearby event types without relying on fixed event brokers and
exploits the reliable delivery of messages among proximate application components to
provide end-to-end guarantees when delivering events. This is possible by wirelessly
broadcasting events to reachable nodes.

Additionally, STEAM event consumers can filter events based on their content. Fil-
ter expressions may contain equality, magnitude and range operators as well as ordering
relations. In contrast to the subscription matching on the event type and proximity with
the consumer, these filter expressions are applied on the consumer side.

EMMA (Epidemic Messaging Middleware for Ad hoc networks) [MMH05] is a
publish/subscribe middleware based on the Java Message Service and specifically tar-
geted towards mobile ad hoc networks. Because the middleware represents events as
full-blown Java objects, it does not implement a dedicated subscription language over
some restricted data type to allow content-based subscription and hence only allows
topic-based subscriptions.

EMMA’s communication model is based on the concept of message queues that
are used to enable asynchronous communication between the producer of an event
and possible different consumers. Message queues periodically advertise their topic
to reachable hosts by broadcasting advertisements. It is important to note that, at the
middleware level, it is logically irrelevant whether or not the network layer implements
some form of ad hoc routing (though considerably more efficient if it does); the middle-
ware only considers information about which nodes are actively reachable at any point
in time. The hosts that receive advertisement messages to which they are subscribed
store a reference to the advertised message queues. Each reference is characterized by
a lease. A lease represents the time of validity of a particular entry. If a lease is not
renewed, it expires. Consequently, the reference is deleted and a new one has to be
discovered. In other words, the host assumes that the queue will be unreachable from
that point of time.

Additionally, in order to deliver a message to a host that is not currently in reach,
EMMA uses an asynchronous epidemic routing protocol. A message that needs to be
sent is replicated on each host in reach. In this way, copies of the messages are quickly

3.2. SURVEY OF PUBLISH/SUBSCRIBE SYSTEMS 43

spread through connected networks, like an infection. If a host becomes connected
to another partition of interconnected mobile nodes during its movement, the message
spreads through this collection of hosts. Within epidemic routing, each host maintains
a buffer containing the messages that it has created and the replicas of the messages
generated by the other hosts.

GREEN [SBC05] is a publish/subscribe system featuring reconfiguration capabil-
ities on the architectural level by adopting a component architecture, where each com-
ponent is responsible for a specific functionality (subscription matching, event routing
or event broker network management), allowing dynamic plugging of components in-
side the architecture. This allows the system to adapt to various deployment contexts
(from fixed to mobile networks) simply by implementing and plugging new specific
components. Hence, the event subscription component can take many different forms,
depending on how much expressiveness is needed. One could implement a component
that simply uses topic-based subscriptions, content-based matching on tuples, XML-
documents or even full-blown objects in an object-oriented programming language.
Additionally, this flexible approach allows to plug in a component that can generate
composite events. Additionally, the notion of physical proximity can be taken into
account in event subscription, similar to the STEAM middleware discussed earlier.

Event propagation is also a component of which the behavior is entirely open. In
fixed networks, a component that sets up a stable event broker network can be used. In
mobile ad hoc networks on the other hand, components implementing different strate-
gies can be used depending on the mobility of nodes, such as event broadcasting to
nearby nodes.

one.world [Gri04, GDH+01] can be regarded more as an operating system for
pervasive computing rather than as middleware, providing a common execution plat-
form for pervasive computing applications. one.world application components interact
through asynchronous event notifications only. All data types which are exchanged
among distributed application components are represented as tuples. Services export
event handlers under symbolic descriptors, i.e. tuples, Clients send events by specify-
ing the symbolic receiver, acting as a both topic-based and content-based subscription
mechanism.

Event routing can happen by means of different mechanisms. The first way in
which such a mechanism can vary is the binding time. Early binding first binds a pro-
ducer and consumer and then uses point-to-point communications for delivering events.
It is useful when an application needs to repeatedly send events to the same consumer
or when services can be expected to remain in the same location. Late binding binds
producers to consumers while routing the event. While it introduces a performance
overhead for every sent event, late binding also is the most responsive and thus most
reliable form of communication in a highly dynamic environment. A second point
of variation is the arity of the communication: events can be either multicasted to all
matching subscribers or to only a single subscribed client. one.world uses leasing to
dynamically replace the binding with distributed components which become unreach-
able.

Event subscription relies on a centralized server to provide its functionality. This
server is automatically elected from all nodes running one.world on the local network,
with elections favoring nodes with ample resources and long uptimes, and periodically
announces its presence by broadcasting. Although this mechanism works for mobile
ad hoc networks, it assumes that all devices are capable enough to act as such a server.

A Distributed Asynchronous Collection (DAC) [EGS00] extends the notion of
a traditional object-oriented collection to a distributed context. A DAC is shared be-

44 CHAPTER 3. RELATED WORK

tween multiple distributed objects. Importantly, a DAC is not a centralized collection
accessible by distributed objects but rather an inherently distributed collection. Objects
can add other objects to the collection (which is equivalent to publishing an event) and
can register a callback to be invoked asynchronously whenever objects are added to the
collection (which is equivalent to subscribing to events). This happens by specifying
a topic or using content-based subscription techniques over full-blown event objects
without breaking encapsulation by relying on reflection [KR91].

While traditional object-oriented collections differ in terms of whether or not they
accept duplicates (e.g. bags versus sets) or the order in which they store their elements
(e.g. stacks versus queues), DACs differ in terms of delivery guarantees (e.g. at-least-
once versus at-most-once delivery) and delivery order (e.g. FIFO versus total order)
of events. However, DACs have not been designed specifically for mobile ad hoc net-
works: DACs do not support time decoupling: messages are considered volatile and
are dropped once delivered to all connected subscribers.

EventJava [EJ09] is strictly speaking not a publish/subscribe system, but an ex-
tension to Java for distributed event-based programming. It extends Java with asyn-
chronous event methods. The fact that events are directly signaled by invoking event
methods means that events are represented as argument lists of these method invoca-
tions, which can be lists of arbitrary Java objects (matching the signature of the event
method).

Event methods can define a predicate over the event that is passed that makes sure
that the event method body is only effectively executed if the event matches the criteria.
Complex events can be created by listing different event method signatures into a single
event method declaration. If all the event methods are invoked that are in the complex
event method declaration, the complex event method will be asynchronously invoked.
Just like with basic event methods, complex event methods can have a predicate that is
used to filter events. In this predicate, the individual events constituting the complex
event can be accessed by the corresponding individual event method names.

EventJava supports event correlation over event streams by annotating event meth-
ods with an “[n]” array-like syntax (denoting a window of the stream of n events long).
In the event predicate and method body, different individual events in the stream can
be accessed using the same array-like syntax.

EventJava supports full arity decoupling by allowing directed communication by
(asynchronously) invoking an event method on a specific instance, and by allowing
broadcasting by invoking an event method on a class. In the latter case, the event
methods of all instances of that class (and its subclasses) will be invoked. For achieving
this in a distributed context, it relies on the JGroups1 group communication framework.
It offers time- and space-decoupled communication since it uses asynchronous fault-
tolerant communication and allows broadcasting an event message to all instances of a
class, including late-joining instances.

Since event methods are asynchronously invoked methods that do not return a re-
sult, they are in essence callbacks that have to be manually coordinated by the pro-
grammer.

3.2.1 Evaluation
Let us now evaluate the surveyed systems with respect to the requirements put forward
in section 2.3.4 (namely arity and space-decoupled communication primitives, asyn-

1http://www.jgroups.org/

http://www.jgroups.org/

3.2. SURVEY OF PUBLISH/SUBSCRIBE SYSTEMS 45

chronous and fault-tolerant communication (time decoupling), a rich representation of
events and no inversion of control). The results of our evaluation are shown together
in table 3.2. Since all of these systems only deal with the subscription and publication
of events and rely on plain callbacks for processing events, we omit the no inversion
of control and global control flow management requirements. The properties that are
useful for mobile RFID-enabled applications are shown in italic font.

Space de-
coupling

Arity de-
coupling

Time de-
coupling

Event rep-
resentation

Infrastruc-
tureless

SIENA Yes Broadcast
only

No Key-value
pairs

No

JEDI Yes Broadcast
only

Yes String
tuples

No

LPS Yes Broadcast
only

Yes Tuples No

STEAM Yes Broadcast
only

Yes Tuples Yes

EMMA Yes Yes Yes Objects Yes
GREEN Pluggable Pluggable Pluggable Pluggable Pluggable
one.world Yes Yes Yes Tuples No
DACs Yes Yes No Objects Yes
EventJava Yes Yes Yes Objects Yes

Table 3.2: Survey of distributed publish/subscribe systems.

Space Decoupling Since space decoupling or anonymous communication is one of
the main motivations for publish/subscribe, all surveyed systems offer space-decoupled
communication.

Arity Decoupling All systems offer arity-decoupled communication in the sense that
event consumers do not have to be specified when signaling an event. However, not
all systems support directed communication, which means that the programmer must
rely on the event subscription mechanism to filter out unwanted events. Some systems
such as EMMA and one.world allow to set up a message queue or channel between two
communication partners for directed communication. These communication partners
discover each other using the classic publish/subscribe mechanism.

Time Decoupling In the systems discussed above, fault-tolerance is usually provided
by buffering event messages such that they are not lost in the face of failures. Since
these messages cannot be stored in an event broker network, the communicating parties
are responsible themselves for storing these messages and forwarding when connec-
tions are restored, or when new subscribers connect. An event broken network would
introduce the need for infrastructure which in itself is prone to failures.

Event Representation Most of the systems discussed above represent events as tu-
ples or key-value pair lists of primitive values, in most cases because content-based
event subscription languages or techniques require this. This phenomenon is called

46 CHAPTER 3. RELATED WORK

the object-event impedance mismatch by Pietzuch and Bacon [PB02] and by Van Cut-
sem in his PhD thesis [Van08], drawing a parallel with the object-relational impedance
mismatch [CD96]:

“The object-relational impedance mismatch is caused by the funda-
mental differences between modeling data as objects and modeling data
as tuples which are part of relations. For example, objects encapsulate
their state, enabling operations to be polymorphic. Tuples expose state,
enabling efficient and expressive filtering, querying and aggregation of
data. Objects refer to one another via references, while tuples are associ-
ated with one another via foreign keys. Identity is fundamental to objects,
while tuples lack any inherent form of identity [...].”

This notion of identity is important for our work on ambient-oriented programming for
mobile RFID-enabled applications, where software objects should always be causally
connected to their physical counterparts through their identity.

The work on Distributed Asynchronous Collections and type-based publish/sub-
scribe [Eug07] (as employed in EventJava) has shown that by relying on an object-
oriented programming language that supports reflection, content-based publish/sub-
scribe is also feasible when events are represented by arbitrary objects. Carzaniga et
al. [CRW01] motivate against representing events as arbitrary objects by arguing that
in that case events have an associated type (represented by their class), which requires
a global authority for managing and verifying the type space. However, as we will
show in chapter 4 in our discussion about the programming language AmbientTalk
[VMG+07] in section 4.1, there is a way out by using a prototype-based programming
language [Lie86] (such as AmbientTalk), where objects have no associated class, but
are self-contained and can be freely exchanged2.

One of the advantages of representing events as full-blown objects is that by ex-
ploiting the encapsulation and polymorphism they offer it is possible to reuse or change
different data representations for events without breaking dependent code. For exam-
ple, removing a field in a tuple-based or key-value-based event representation can cause
all application components working with these tuples to crash, if they are not adapted
accordingly. If these events are represented as objects, the deleted field could be com-
puted by a method implemented by the event object. This way, representing events as
objects further promotes the loose coupling between event producers and consumers,
but on the event representation level instead of on the architectural level, by program-
ming against an interface shielding the data from direct access. Furthermore, the notion
of unique references to other objects (whether they are hosted locally or remotely) al-
lows some patterns to be easily expressed, while without this notion of identity, the
programmer must manually generate unique identifiers and use them to refer to other
application data (such as a previously generated event).

Infrastructureless Operation The publish/subscribe systems discussed above can
be roughly classified as follows: systems having reliable access to local networks or
wide-area networks in which an event broker network can be deployed, and systems in
which event dissemination happens entirely ad hoc using wireless communication. The
second category employs some form of broadcasting: subscriptions (EMMA), events
(STEAM) or both must be broadcasted to all nearby parties to make them discover each

2Except their enclosing lexical scope, an issue that will be discussed as well in the next chapter of this
dissertation.

3.2. SURVEY OF PUBLISH/SUBSCRIBE SYSTEMS 47

other. This category is the one targeting mobile ad hoc networks and are interesting
for mobile RFID-enabled applications. This does not mean that broadcasting is the
only way of communicating, e.g. EMMA uses epidemic messaging to forward events,
which is an example of a decentralized communication strategy. Figure 3.3 shows
a publish/subscribe architecture for mobile ad hoc networks, contrasting our earlier
example of an architecture based on event brokers in figure 3.2.

Figure 3.3: Publish/subscribe architecture for mobile ad hoc networks.

Control Flow Management All of the surveyed systems require reacting to events
by means of explicit callbacks. This causes the problem of inversion of control. With
respect to the systems discussed above, it is observed by Grimm et al. and formulated
as follows in their experience report with one.world [GDH+01]:

“Several event handlers in our applications need to process many dif-
ferent types of events or perform different actions for the same type of
event depending on the event’s closure. Their implementation requires
large if-then-else blocks that use instanceof tests to dispatch on the type
of event or more general tests to dispatch on the value of the closure. The
result is that these event handlers are not very modular and are relatively
hard to understand, modify, or extend. This suggests the need for better
programming language support to structure event handlers. [...] While we
still believe that asynchronous events are an appropriate abstraction for
pervasive computing, our experience with event-based programming also
suggests that [...] asynchronous events are as hard to program as threads.
Just like threads, asynchronous events can result in complex interactions
between components.”

48 CHAPTER 3. RELATED WORK

3.3 Survey of Dataflow Programming Technology
Over the years, different styles of dataflow programming have been developed [JHM04].
The original motivation for research into dataflow programming was the exploitation
of massive parallelism. Therefore, much work was done to develop ways to program
parallel processors as an alternative to the Von Neumann architecture. Dataflow archi-
tectures avoided some of the bottlenecks in Von Neumann architectures by using only
local memory and by executing instructions as soon as their operands become avail-
able. This maps well onto event-driven architectures because the notion of an event can
be represented as an operand involved into an instruction becoming available, allowing
reacting to such an event by simply executing the instruction.

The name dataflow comes from the conceptual notion that a program in a dataflow
computer is a directed graph and that data flows between instructions, along its arcs.
However, it was found that parallelism used in dataflow architectures operated at too
fine a grain and that better performance could be obtained through some hybrid with
classic Von Neumann architectures. In such coarse-grained dataflow programming
systems dataflow is used at a higher level and the individual instructions are still de-
veloped using a conventional programming language and executed by a conventional
execution model, such as threads [Jag95]. In fact, over the years the motivation for the
dataflow paradigm shifted from performance reasons to software engineering. In this
section we will focus on the latter.

The dataflow programming model can be informally described as follows:

• Dataflow programs consist of dataflow operators that take a number of input
values and return some output values. These dataflow operators are represented
as nodes in a dataflow graph.

• Dataflow operators communicate with each other over dataflow edges (some-
times also called channels). These edges represent data dependencies and al-
ways flow from the outputs of dataflow operators to the inputs of other dataflow
operators.

• When a dataflow operator is fired depends on the concrete execution model used.
Some languages only fire dataflow operators once as soon as all their input values
have received a value. Other languages repeatedly fire dataflow operators as
soon as one of their input values received a new value. Upon firing, the operator
is applied to the latest values on its incoming edges (that can be seen as actual
parameters) and in response can possibly place new output values on (some of)
its output edges. These flow to other dependent dataflow operators.

This allows that different dataflow operators in the dataflow graph can execute in paral-
lel as long as their data dependencies are satisfied. For example a number of operators
in a pipeline execute in parallel when the first operator is fed a stream of data. In such a
pipeline the first operator is being applied to new data from the stream while operators
later in the sequence are being applied to data already processed by earlier dataflow
operators in the pipeline.

In this section, we survey dataflow programming technology. We classify dataflow
programming into two approaches. The first category constructs a dataflow graph im-
plicitly to coordinate the event driven execution of a reactive program. The second
category presents dataflow graphs as an explicit abstraction to the programmer.

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 49

3.3.1 Functional Reactive Programming
Functional reactive programming is a style of event-driven dataflow programming where
events are represented as time-varying values. Hence, instead of modeling events as
discrete notifications on which the programmer has to explicitly react, events are mod-
eled as state changes of some native data type of the concrete programming model.
Low-level events are handled implicitly and update such time-varying values. In many
cases, this allows conceiving event-driven applications without resorting to a complex
network of callbacks. Additionally, because time-varying values are native data types
of the programming model, there is usually explicit support to combine them and in-
tegrate them into applications. Dataflow graphs are created implicitly by the language
interpreter, compiler or virtual machine and are used to track dependencies between
reactive expressions. In most cases, this is used to decide when to recompute reactive
expressions in response to events.

Lucid [AW77] is a functional programming language originally designed for eas-
ing the reasoning about and verification of programs by eliminating procedural features
such as assignment and goto statements. Procedural features were eliminated by ex-
pressing iterative, statement-based procedural programs with declarative expressions.
For example a procedural counter in which the value of a variable is updated every it-
eration of a loop (i := i + 1) can be declaratively expressed with the following two
definitions:
first i = 1

next i = i + 1

Declarative iteration opened up the possibility that operators such as first and next

could be used to describe the dynamic nature of a program and the contextual values of
variables. The next operator refers to the value of an expression in the context of the
next unit of time and first refers to the value of an expression in its first ever instance.

Different variants of Lucid have been developed over the years [PMD08], on of
which is pLucid [FW87], the first dataflow variant of Lucid. In pLucid, all variables
and expressions denote streams (i.e. time-varying values), and functions denote filters
(stream-to-stream transformations). The values of a stream in pLucid are primitive
values and arbitrary lists of values (similar to LISP). pLucid is a first-order language:
the programmer cannot use or define higher order functions, that is, functions which
accept other functions as arguments and/or return functions as results. Without higher
order functions the lambda notation (for closures) is of limited use and is therefore not
supported by pLucid3. In addition to Lucid’s iteration primitives, pLucid also provides
a fby (followed by) primitive, which allows the creation of dataflow programs working
on streams. The example given above can be rewritten using fby as follows:
n = 1 fby (n + 1)

pLucid uses a global clock that is used to tag values in a stream according to time,
but it does not correspond to physical time, rather to the next batch of time-varying
values that are being processed. Furthermore, to achieve reasonable performance, a
special centralized datastructure called a “warehouse” to cache calculated values and
accelerate future computations is needed. For this reason, pLucid has no distribution
support.

Granular Lucid [JDA97] is a coordination language that specifies the parallel struc-
ture of the application and imperative functions - written in C - to perform the cal-
culations. This high-level approach was designed to take advantage of coarse-grain

3Although higher order functions can be integrated in a dataflow language, as demonstrated in [CGHP04].

50 CHAPTER 3. RELATED WORK

data parallelism present in many applications, for example, matrix multiplication, ray-
tracing, video encoding, CT-scan reconstruction, etc. The dataflow evaluation mecha-
nism was adapted to distribute these tasks across a shared-memory multiprocessor or a
network of distributed workstations, but a centralized architecture is still assumed.

Lucian [OM08] is a variant of Lucid that integrates Lucid and the dataflow paradigm
with object-oriented programming. Lucian embeds dataflow into object-orientation
via the concept of declarative intensional objects. These objects encapsulate state that
varies over time. For example, if one takes an intensional object and treats it as a stream
of object snapshots, the first value of the stream is the snapshot of the object just after
instantiation. The next value of the stream is the snapshot of the object in the next time
step, with possible transformations applied, and so on. Selecting a field of an object
again returns a stream corresponding to the varying value of the field over time. Set-
ting a field causes the field to refer to another stream. A limitation of Lucian is that
calling methods disrupts this semantics. They return a snapshot return value instead of
a stream that is generated by re-invoking the method over time. Another drawback is
that classes have to be defined in a classic object-oriented language. They can be de-
fined inline in Lucian code, but this intermingles both syntaxes. There is no distributed
implementation of Lucian.

Finally, there is a distributed, decentralized version of Lucid Synchrone [DGP08].
It allows to specify from the program text on which distributed nodes dataflow val-
ues are hosted and which dataflow variables can be communicated across nodes. The
compiler then takes care of actually distributing the dataflow program. However, this
language focuses on embedded systems of which the connections are reliable: the dis-
tributed program cannot reconfigure itself from its static structure determined at com-
pile time.

Lustre [HCRP91] is a functional reactive programming language designed for real
time applications where the notion of time is critical and originated as a simplified
version of Lucid. It is based on the assumption that a Lustre program can react to an
external event before any further event occurs, and that this property can be statically
verified (hence, reactions should happen fast enough to give the illusion that they hap-
pen instantaneously). This is called the synchrony hypothesis (therefore Lustre belongs
to the family of synchronous dataflow languages).

In Lustre, any variable and expression denotes a flow, which is similar to the event
stream concept, but differs by internally having a clock that represents the pace at which
the stream progresses and at which point in time it has a value. Clocks can be seen as
boolean functions that are applied on the stream at every time step and return whether
the stream has a value at that point in time or not. The basic clock is the clock that
sets the minimal “grain” of time within which a program cannot discriminate external
events, and which corresponds to its response time. It can be determined by a real
physical clock, and as such obtain statically verifiable real time guarantees.

In Lustre, the following expression returns a new flow, of which the latest value is
0, until the latest value of the flow X becomes greater than 0, then a new latest value
becomes the latest value of the flow Y incremented with 1.

if X > 0 then Y + 1 else 0

To generate the new flow, expression have to be reevaluated when the clocks of the
flows on which they depend advance and a new value is generated. Flows can be
manipulated and combined using a number of primitive operators. For example, the
pre operator takes a flow as argument and returns a new flow that always contains the
previous value of the original flow (i.e. to remember old values).

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 51

Being a synchronous language, Lustre is based on the synchrony hypothesis that
states that the reaction time of a particular component, and the communication time
between components, are also zero. Synchronous languages are intended to be com-
piled into centralized sequential code. The parallel composition and the communica-
tion mechanism are introduced only for description purposes, at the level of the lan-
guage; they are compiled into something sequential, hence they do not imply explicit
parallelism and communication at execution time. Hence, Lustre does not support dis-
tributed programming.

FrTime [CK06] (pronounced “father time”) is an extension of the general-purpose
programming language Scheme [Dyb09] designed for writing interactive applications.
Inspired by functional reactive programming, the language embeds dataflow within
a call-by-value functional language. FrTime is a collection of syntactic abstractions
and value definitions implemented in Scheme. Executing a FrTime program means
running the Scheme evaluator in an environment containing the FrTime definitions.
These definitions make executing the program build a graph of its dataflow dependen-
cies, to which evaluated expressions that depend on time-varying values are registered
(as nodes). A dataflow engine subsequently reacts to events and propagates changes
through this graph of dataflow depedencies (i.e. the edges), triggering reevaluation of
dependent expressions in such a way that expressions re-execute in response to an event
in expected ways (i.e. in the order they were textually specified by the programmer) and
without triggering superfluous re-evaluation. Pure Scheme programs are also FrTime
programs with the same meaning they have in Scheme and may be incorporated into
FrTime programs without modification.

FrTime considers two types of time-varying values: behaviors and event sources.
Behaviors are values that vary continuously while event sources represent sequences
of discrete occurrences, similar to event streams. Unlike with behaviors, primitive
procedures cannot be applied to event sources. FrTime instead provides a collection of
event processing combinators that are analogous to common list-processing routines,
such as filter, map, etc. FrTime provides primitives for converting between behaviors
and event streams. One is hold, which consumes an event stream and an initial value
and returns a behavior that starts with the initial value and changes to the last event
value each time an event occurs. Conversely, changes consumes a behavior and returns
an event stream that emits the value of the behavior each time it changes.

Scheme functions that are called on behaviors are said to be implicitly lifted: the
expression is registered as a node in the dataflow graph and the result of the call is a
new behavior that contains the value of calling the function on the latest values of its
argument behaviors. These argument behaviors are the parent nodes of this expression
in the dataflow graph. The resulting behavior of the call is its child node.

Scala.React [MRO10] is a framework that allows integrating and composing reac-
tive programming abstractions into the statically typed programming language Scala
using native functional and object-oriented abstractions. Scala.React provides several
API layers allowing programmers to stepwise port callback-based code to a dataflow
programming model. For this, it supports event streams as first class values and offers a
number of operators to combine them, such as merge, map, filter, etc. They are imple-
mented in the host language Scala and programmers can easily extend the framework
with new operators following the conventions of the framework.

To circumvent the inversion of control problem, Scala.react provides reactors. Re-
actors are objects that are instantiated with a closure that can call two methods dedi-
cated to dataflow: next and delay. next simply suspends the reactor until a given event
stream emits a value. Once the stream raises an event, the call evaluates to the value

52 CHAPTER 3. RELATED WORK

of the event and the reactor’s execution continues. This can be done for example in a
loop to periodically execute part of the reactor and continuing with the rest and con-
tinue the loop once a new event occurs (effectively implementing state machine-like
behavior that would otherwise require complex and brittle orchestration of callbacks).
Reactors can depend on multiple event streams. delay suspends the current reactor and
continues after all pending messages have been propagated by the reactive framework.
Reactors can either be specified to execute only once or multiple times.

Additional to datatypes that represent discrete events, Scala.React also provides
datatypes that represent continuously time-varying values called signals. Signals are
represented as a special kind of Scala functions of which the apply method is overrid-
den. Hence, signals can be used as ordinary function calls, but they will be re-applied
by the framework as soon as their dataflow dependencies change. What sets apart
Scala.React from other reactive programming systems is its reliance on the strong typ-
ing of Scala and the fact that the dataflow dependencies of signals can be dynamically
switched to other signals, event streams or reactors.

Fran (Functional Reactive Animation) [EH97] is a reactive programming library
implemented on top of the functional language Haskell. It is mainly concerned with
providing a declarative and first-class representation of time-varying values, which can
either vary discretely or continuously, for graphics and animation. The former are
represented by events and the latter by behaviors. Behaviors are seamlessly integrated
into the Haskell base language: passing behaviors to function calls as arguments causes
these calls to be reevaluated every time the system detects a change to one of the be-
haviors, and returns a new behavior of which the value will vary over time with the
results from these calls. This way, event-driven code can be composed by means of or-
dinary functional composition. Other than for animation purposes, Fran has also been
used for visual tracking [PHRH01]. In this tracking system, low-level C++ tracking
components are scripted together using functional reactive programming.

Fran uses a discrete approximation of time using a fixed update interval (in the
vein of synchronous languages as discussed earlier) that is used to poll for event and
behavior changes and subsequently to update dependent expressions by an interpreter
loop (i.e. it pulls for updates). This has the advantage that this update interval can
be used as the slowest rate of update (depending on hardware and language runtime
performance), which is an important property for smooth animation. The downside
is that it does not work for distributed systems where events are not generated at a
predefined clock rate but arrive at arbitrary times from remote communication partners.

For performance reasons, the Fran library was later reimplemented to in addition
to pull-based evaluation also support push-based evaluation [Ell09]. Although some
time-varying values change continuously, others change only at discrete moments (say
in response to a button click or an object collision), while still others have periods of
continuous change alternating with constancy. In all but the purely continuous case,
pull-based implementations waste considerable resources, recomputing values even
when they do not change. In those situations, push-based implementations can operate
much more efficiently, focusing computation on updating values that actually change.
Another serious problem with the pull approach is that it imposes significant latency.
The delay between the occurrence of an event and the visible result of its reaction, can
be as much as the polling period (and is on average half that period).

The ideas from Fran were later used to implement a version of functional reactive
programming on top of Haskell’s arrow combinators and notation [NCP02]. The dif-
ference with Fran is that this system does not treat time-varying values as first class
citizens in the language to obtain additional operational features such as real-time

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 53

guarantees. This version led to the Yampa [HCNP03, CNP03] language, which is
a domain-specific language for programming mobile robots embedded in Haskell. To
meet real-time constraints, it relies on the Arrows framework [Hug00]. This means
that time-varying values are not allowed as first-class values. Instead, the programmer
has access only to signal functions. A signal function is just a function that maps time-
varying values to time-varying values. One cannot directly build signal functions or
apply them to time-varying values. Instead, Yampa provides a set of primitive signal
functions and a set of special composition operators (or “combinators”) with which
more complex signal functions can be defined. Additionally, it also provides a number
of stateful signal functions, i.e. functions that accumulate information over time, such
as integral. Stateful functions must either be pre-defined or be defined in terms of
other stateful signal functions because they depend intimately on the underlying time-
varying semantics.

Additional to classic combinators, Yampa also provides switching combinators,
which allow signal functions that are working on time-varying values to be dynamically
replaced by other signal functions when certain events are observed in these time-
varying values. For this, Yampa provides a number of primitives to generate such
events from time-varying values. Switching effectively causes the underlying dataflow
graph to be rearranged. However, Yampa is intended for local applications and has no
support for distributed programming.

Frappé [Cou01] is an implementation of functional reactive programming in Java
following the ideas from Fran. The primary contribution of Frappé is its integration
of the FRP event/behavior model with the Java Beans event/property model. At the
interface level, any Java Beans component may be used as a source or sink for the
event and behavior combinators. This provides a mechanism for extending Frappé
with new kinds of I/O connections and allows functional reactive programming to be
used as a high-level declarative model for composing applications from Java Beans
components. At the implementation level, the Java Beans event model based on classic
callbacks is used internally by Frappé to propagate events and changes to behaviors.
This allows Frappé applications to be packaged as Java Beans components for use in
other applications. For example, Java Beans notify registered listeners whenever a new
value is assigned to one of their properties by means of reflection.

To write programs in Frappé, the programmer simply instantiates a number of Java
Beans components and connects those components together using the Frappé classes
corresponding to functional reactive programming combinators. The program then
relinquishes control to the Java runtime library’s main event loop. Frappé assumes
that event processing is single-threaded and synchronous. That is, all primitive Java
Beans events used as event or behavior sources for Frappé must be fired from the sys-
tem’s event dispatching thread, and each event must completely propagate through the
dataflow graph before the next event is handled. This makes Frappé unsuitable for
mobile RFID-enabled applications where distributed event producers and consumers
interact asynchronously and in parallel.

Flapjax [MGB+09] is a reactive programming system targeting event-driven web-
based applications. It is built on top of JavaScript and runs on unmodified browsers
and readily interoperates with existing JavaScript code. It is usable as either a pro-
gramming language that is compiled to JavaScript or as a JavaScript library. In the
latter case, the programmer must explicitly lift invocations on reactive values. Flapjax
borrows the notions of behaviors and event streams of FrTime (discussed above) and
uses the same execution strategy of dataflow-dependent expressions. Additionally, it
provides abstractions tailored for web development, such as event streams wrapping

54 CHAPTER 3. RELATED WORK

asynchronous web server acknowledgements, web-form fields and buttons, etc. Flap-
jax is a reactive programming system targeting web-based distributed systems, and
cannot be used for mobile RFID-enabled applications where communication partners
might not implement web services or similar http-based interfaces.

Coherence [Edw09] is a programming language that embodies an object-oriented
variant of reactive programming called coherent reaction. Coherent reaction is a new
model of change-driven computation that coordinates effects automatically. State changes
trigger events called reactions that in turn change other states. A coherent execution
order is one in which each reaction executes before any others that are affected by its
changes. A coherent order is discovered iteratively by detecting incoherencies as they
occur and backtracking their effects. All the effects of a prematurely executed reaction
are rolled back, as in a database transaction, and are reexecuted later.

This mechanism is embedded in the prototype-based (i.e. classless) [Lie86] object-
oriented language Coherence by distinguishing two types of fields encapsulated by
objects: regular fields (as in classic object-oriented languages), and derived fields. The
expression that assigns a value to such a derived field is reexecuted every time the field
is accessed. This is called derivation. This means that the derived field will always be
up to date with respect to other fields from which it is derived, and which might have
changed after initializing the derived field. Such derivations are the fundamental con-
cept in Coherence and are guaranteed to have no side effects, i.e. derivations triggered
by recalculating the derived field are executed after the derivation.

Derivation is bidirectional: changes to derived variables can propagate back into
changes to the variables they were derived from. This process is called reaction, and is
used to handle external input. The Coherence runtime makes certain structures visible
to certain external interfaces. All input takes the form of changes to such visible fields,
which react by changing internal fields, which in turn can react and so on. Multiple
input changes can be submitted in a batch, and the entire cascade of reactions is pro-
cessed in a transaction that commits them atomically or not at all. Output consists of
reading visible fields, which are rederived if necessary from the latest changed state.
How a field reacts to a state change can be overridden by the programmer, to support
custom reactions. Such a custom reaction is specified as a set of Coherence statements
that execute when the field is changed. In these reactions, both the pre-state as the
post-state of the involved fields can be accessed: the post-state is represented by the
same field name but with a prime appended. Since Coherence relies on arbitrary ex-
pressions that are run in transactions to find a coherent execution order and that can be
(transitively) aborted in case of incoherencies, Coherence programs hard to distribute
in mobile ad hoc networks.

Approaches that do not rely on dataflow to circumvent inversion of control are
rare. Synchronous C++ extends C++ with concurrent active objects that synchronize
by means of the rendez-vous protocol. With Synchronous C++, one can use rendez-
vous together with a special select construct. This construct can have a number of
case branches and causes the active object to wait for another active object to call a
specific method (one method for each branch). Its thread of execution remains blocked
until one of these methods are invoked by other active objects. As soon as this happens,
the thread is woken up and executes the corresponding branch of the select construct
with the result of the method call. Applying this to event-driven programming is done
by representing events as method calls on which is blocked in a select statement in
an infinite loop. If an event is signaled by calling such a method, the corresponding
branch of the select statement is executed. These concepts were later applied to Java
as well [PE02]. The explicit blocking contradicts our time decoupling requirement.

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 55

Glitch Prevention in Functional Reactive Programming

For the languages discussed in this section, the interpreter, virtual machine or compiler
of the language implicitly constructs the dataflow graph representing the running pro-
gram behind the scenes. The nodes of this graph represent expressions to be evaluated,
which depend on values that vary over time (e.g. driven by external events), such as
event streams that discretely signal events, synchronous values that update themselves
at fixed rates (in synchronous languages), or continuously varying values. These val-
ues can be the results of other reactive expressions in the program, which act as parent
nodes in the dataflow graph.

The notion of parent nodes in the graph implies that the nodes of the graph must
be topologically sorted in some way. Indeed, if the execution order of reactive code
depending on time-varying values is not carefully coordinated, glitches will occur. For
example, consider the expression below, where seconds is a time-varying value that
contains the current number of seconds and is incremented every second, signaling a
new event.

seconds < (1 + seconds)

This should always evaluate to true, since n is always less than n + 1. In languages
that automatically reevaluate reactive expressions, each change in seconds triggers
recomputation of the overall expression and the inner 1 + seconds reactive expression,
and the order in which these values are recomputed affects the answer. If it updates
1 + seconds first, then the top-level < compares up-to-date versions of seconds and
1 + seconds, yielding true. On the other hand, if it updates the top-level reactive
expression first, it then compares the up-to-date seconds with the stale 1 + seconds –
which is equal to the new value of seconds – yielding false.

To prevent glitches, reactive programming runtimes must implement a traversal
strategy for evaluating dataflow code in the dataflow graph. The crucial property is
that no time-varying value should update until everything on which it depends is also
up-to-date. The concrete traversal strategy depends on the expressivity of the language:
languages that allow side effects, cyclic dependencies, higher order functions etc. re-
quire a more complex strategy, as is the case in for example FrTime. In FrTime, each
reactive expression in the dataflow graph is assigned a height, which exceeds that of
all its event producers. Expressions of the same height are evaluated (conceptually)
simultaneously, and only if their evaluation completes, the next batch of expressions of
the next height (that might depend on the previous batch) is evaluated. The dataflow
traversal is said to be stratified.

3.3.2 Programming with Dataflow Graphs
Explicit programming with dataflow graphs is currently used mostly in the form of
the coarse-grained dataflow model. In such models, the dataflow paradigm is used
to orchestrate the control flow between different modules (possibly running in parallel
and/or distributed) that can be of an arbitrary level of abstraction, usually implemented
in a conventional programming language.

When looking at the characteristics and requirements of mobile networks and the
applications running on top of them, we observe that the dataflow model may provide
a very suitable coordination model for this kind of applications. These applications
consist of different distributed components running in parallel that in many cases have
to be invoked whenever some external data is fed to them (event-driven architectures).

56 CHAPTER 3. RELATED WORK

Hence, the driving force for program execution in such applications is not the control
flow, which is explicitized by the order of statements in an imperative textual program,
but the data flow, which is implicit in an imperative textual program. Furthermore, in
many cases these data come in the form of streams, such as continuous sensor readings.
Explicitly specifying dataflow graphs has the advantage that the coarse-grained control
flow, which in conventional languages would become very implicit in a complex in-
terplay of different event handlers, is now represented in a very explicit (sometimes
visual) notation based on the dataflow coordination model.

Since dataflow programming is not a new concept, over the years many differ-
ent systems that allow manipulating dataflow graphs have been conceived. Industrial
examples are LabVIEW and Prograph. LabVIEW was the first software program to
include graphical, iconic programming techniques to make programming more trans-
parent and the sequence of processing visible to the user [Kal95]. LabVIEW is based
on the G visual dataflow language and the concrete implementation in the LabVIEW
environment is primarily used for data acquisition, processing and monitoring in a lab
setting. LabVIEW does not use dataflow for expressing distribution and/or parallelism,
but for the graphical composition of software components that interact with lab hard-
ware (inherently resulting in sensor-driven systems).

Another language that does use dataflow for expressing distribution and concur-
rency is Distributed Prograph [CGL96]. In Distributed Prograph, program code of
dataflow operators is dynamically sent to remote processing units. The scheduling of
the execution of these operators happens at runtime, but the processing units themselves
have to be known at compile time, which is unrealistic in mobile ad hoc networks.

A more recent domain where dataflow proved its use is web mashups [BP07]. Sim-
ilarly, workflow management systems sometimes provide an explicit view on data flow
of a workflow to further orchestrate web services. Current workflow engines however
require heavy-weight infrastructure and map poorly on an entirely event-driven execu-
tion [BPA06].

Below we discuss a selection that takes into account at least some of the mobile
RFID-enabled application requirements mentioned in section 2.3.4 more elaborately.

Hyperflow [Kim93] is a visual dataflow language for a pen-based multimedia com-
puter system designed for school children. Yet it is versatile enough to be used as a sys-
tem programming language. Dataflow (concurrent) processes are represented as boxes
that communicate over the links that interconnect them. Dataflow processes commu-
nicate over these links through the exchange of signals, either discrete or continuous.
Each process communicates with the user through its own interface box by displaying
on the box information about the process and by receiving information pen-scribed on
the box.

Hyperflow supports four different communication modes: synchronous discrete
signal communication (regular arrow), asynchronous discrete signal communication
(dotted arrow), channeling continuous signals (fat arrow), and broadcasting continuous
signals (dotted box around producer and consumer nodes). The latter are mainly used
for multimedia streaming. Asynchronous discrete signals are buffered in queues when
they arrive at the processing elements and are served sequentially to be processed by
the processing element in FIFO manner.

The body of and the commands supported by Hyperflow processing elements can
be encoded individually either in Hyperflow’s dedicated syntax or in any textual pro-
gramming language such as C, Pascal, or assembly language. Hyperflow does not
support distributed programming.

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 57

Aurora [ACc+03] is an event stream processor in which data is assumed to come
from a variety of data sources, such as computer programs that generate values at regu-
lar or irregular intervals or hardware sensors. A data stream is a potentially unbounded
collection of tuples generated by a data source. Unlike the tuples of the relational
database model, stream tuples are generated in real-time and are typically not available
in their entirety at any given point in time. Aurora processes tuples from incoming
streams according to a specification made by an application administrator. Aurora uses
a boxes and arrows paradigm found in most process flow and workflow systems to al-
low the application administrator to specify dataflow graphs that process event streams.
Nodes in the dataflow graph represent stream operators that accept one or more input
streams and output one or more processed streams. Aurora offers a number of prede-
fined stream operators, such as filter, union, windowed sort, map, intersection, join...
Aurora utilizes a centralized architecture that hosts a scheduler that determines which
stream operator to run. Aurora must constantly monitor the quality of service of out-
put tuples. This information is important since it drives the scheduler in its decision-
making.

Aurora was later extended to Aurora* [CBB+03]. Aurora* does not require a cen-
tralized architecture, such that the dataflow program can be distributed. Every network
node hosting an Aurora operator is now responsible itself for continuously monitoring
its local operation, its workload, and available resources (e.g. CPU, memory, band-
width, etc.). If a machine finds itself short of resources, it will consider offloading
operators to another appropriate Aurora node. All dynamic reconfiguration will take
place in such a decentralized fashion, involving only local, pair-wise interactions be-
tween Aurora nodes.

Medusa [CBB+03] is another variant of Aurora of which participants can represent
a collection of computing devices administered by a single entity. Hence, participants
range in scale from collections of stream processing nodes capable of running Aurora
and providing part of the global service, to PCs or PDAs that allow user access to the
system (e.g. to specify queries), to networks of sensors and their proxies that provide
input streams. Participants provide services to each other by establishing contracts
that determine the appropriate compensation for each service. Medusa uses a market
mechanism with an underlying currency that backs these contracts. Each contract exists
between two participants and covers a message stream that flows between them. One
of the contracting participants is the sending participant; the other is the receiving
participant. Medusa models each message stream as having positive value, with a well-
defined value per message; the model therefore is that the receiving participant always
pays the sender for a stream. In turn, the receiver performs query-processing services
on the message stream that presumably increases its value, at some cost. The receiver
can then sell the resulting stream for a higher price than it paid and make money. Some
Medusa participants are purely stream sources (e.g. sensor networks and their proxies),
and are paid for their data, while other participants (e.g. end-users) are strictly stream
sinks, and must pay for these streams. However, most Medusa participants are interior
nodes (acting both as sources and sinks). They are assumed to operate as profit-making
entities; i.e. their contracts have to make money or they will cease operation.

Both in Aurora* and Medusa, each node hosting an operator sends periodic heart-
beat messages to its upstream neighbors. If a server does not hear from its downstream
neighbor for some predetermined time period, it considers that its neighbor failed, and
it attempts to connect to another node hosting the same operator. Still, all Aurora nodes
have to be known and specified into a catalog before deploying the dataflow program
into the network, rendering Aurora* and Medusa unsuitable for mobile RFID-enabled

58 CHAPTER 3. RELATED WORK

applications.
Later, the features of Aurora* and Medusa were merged in a second generation

query processor called Borealis [ABC+05]. Borealis additionally supports the dy-
namic revision of query results (i.e. go back in time and change a tuple at a certain
point in time in an event stream) to apply corrections to old tuples and the dynamic
modification of running queries and incorporates several optimizations.

Solar [CLK04] is an object-oriented, distributed graph-based abstraction for col-
lecting, aggregating and disseminating context information in pervasive computing ap-
plications. Solar models context information as events, which are produced by sources,
flow through a directed acyclic graph of event processing operators, and are delivered
to subscribed applications. Each input port of an operator has a unique identifier to
distinguish it from other ports. Connected operators communicate events either in a
push-based or pull-based fashion. In the first case, the event source voluntarily passes
event data units to its subscribers, while in the latter case subscribers query the event
source at their own pace for new events.

Applications describe their desired event stream as a tree of operators that aggregate
low-level contextual information published by existing sources into the high-level con-
text information needed by the application. Event processing operators emit a single
event stream to an arbitrary number of subscribed applications, or other event process-
ing operators. Solar distributes these operator trees into the network and is designed
to minimize the traffic across the network edge and to allow the computation to be
distributed. While each application can build its own operator tree, to scale to a large
number of applications these operators are reused between applications’ operator trees.
Upon arrival of a new subscription tree, Solar attempts to identify subtrees that match
a subtree of an already present subscription tree. This matching is defined recursively:
two operators match if they are objects of the same class, have the same parameters
and have the same subscriptions. When a match is found, the subtree is clipped from
the new subscription tree, replacing it with a subscription to the output of the existing
subtree; thus the two subscriptions share the subtree.

Solar requires a centralized server (called a star) that maintains a representation
of the operator graph and service requests for new subscriptions. When the star re-
ceives a new subscription tree description, it parses the description, and matches the
subscription tree against its internal data structure representing the operator graph to
see whether there are some existing operators that can be shared and reused. When
it decides to deploy a new operator it instantiates the operator’s object on one of the
available hosts (called planets), which periodically register themselves with the star.
The star determines which planet should host the new operator by considering the
planet’s load and network traffic between planets, and moves the operator as mobile
code to that planet. In essence, it attempts to map the operator graph onto the planetary
network to distribute load and avoid congestion. When deploying new subscriptions,
the star tells the planets to arrange a subscription from one of its operators to another
operator, possibly in another planet. Thus the planet maintains all the subscriptions
for each of the operators it hosts. When an operator publishes an event, the hosting
planet delivers the event to all the subscribed operators (which may reside on different
planets) and applications. When a planet receives an event, it dispatches the event to
the appropriate operator it hosts.

Although this architecture allows the operator graph to reconfigure at runtime in
the face of network failures, network load changes, changing subscriptions etc., it still
relies on a centralized star to which all planets have to periodically connect to maintain
the dataflow graph. This makes Solar unsuitable for mobile RFID-enabled applications.

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 59

Planets maintain an outbound event queue for each event source they host, to buffer
event messages when the planet is disconnected from its subscribers and resend them
later when it is again connected. This way, Solar supports fault tolerant event commu-
nication. Each operator has a dedicated thread to process incoming event notifications
serially.

Solar represents events as arbitrary serializable Java objects. Operators are also
serializable Java objects that implement a simple publish/subscribe interface, such that
they can be serialized and moved to another planet if required. Subscription trees are
specified as XML-documents, in which operators are referred to by giving them unique
names. These names can be reused in different subscription trees. These names could
be regarded as topics and in publish/subscribe terminology we could say that Solar
offers topic-based subscriptions.

iQL [CLC+02, CPWY02] is a nonprocedural event processing language based on
entities called composer functions (or composers in short) and data sources. A com-
poser has a current value computed from input values, in a manner determined by a
composer specification. A composer’s input values come from data sources. Some
data sources are pervasive networked sources such as web services and sensors; some
are other composers. Data sources are advertised to the runtime system. A composer
specification includes requirements on data sources. The runtime system discovers ad-
vertised data sources satisfying these requirements, binds them, and executes protocols
that deliver their data to the composer. As quality-of-service and quality-of-information
properties of the data source change (e.g freshness of data, confidence in data, or pre-
cision of measurement...), these changes are advertised to the runtime system, which
may rebind to different data sources that better meet the requirements. Binding can
either happen to a single data source or to all data sources which match the composer’s
requirements. In the latter case, the values produced by the different data sources are
put in a list with for each entry the latest value produced by one of the data sources.

Composer functions work on streams of values. They are either autonomously gen-
erated by data sources or by polling the data sources. iQL provides language constructs
to explicitly wire a dataflow graph of composers and their data sources, which feed
each other’s input values. When one input value of a composer function changes, the
composer function is reevaluated, and subsequently all composer functions to which it
acted as an input value as well, propagating the change event throughout the dataflow
graph. Events are propagated by means of asynchronous message passing to cater for
temporarily disconnected data sources.

Due to its restricted nonprocedural nature, some patterns are hard to express in
iQL and makes iQL hard to integrate with general-purpose programming language.
E.g. since there is no notion of variables and scoping, only parameters representing
new values of data sources can be used in composer functions. Hence, programmers
have to rely on explicit caching language constructs to remember previous values of
streams in composer functions, for example to implement an average of previous val-
ues. Similarly, iQL provides dedicated operators to generate compound events over
events detected in the past. Custom operators, which have to be implemented in Java,
can be plugged in.

iQL’s runtime system is based on a centralized server that contains all data source
advertisements and subscriptions and acts as a broker among data sources and com-
posers. Therefore, iQL’s current runtime system cannot be used for mobile RFID-
enabled applications.

60 CHAPTER 3. RELATED WORK

3.3.3 Evaluation
In this section, we give an overview of the surveyed dataflow technologies and evaluate
their distinct properties with respect to the requirements for mobile RFID-enabled ap-
plications discussed in section 2.3.4. The results are summarized in table 3.3. Desirable
properties for mobile RFID-enabled applications are again shown in italic font.

Control Flow Management The programming systems discussed above can be cat-
egorized in dataflow systems that use a dataflow graph as an internal representation of
the dataflow program, and dataflow systems in which the dataflow graph is the program
which the programmer has to construct explicitly.

In the first category (comprising synchronous languages, functional reactive lan-
guages, and parallel languages that use dataflow to coordinate side effects), the in-
terpreter, virtual machine or compiler of the language constructs the dataflow graph
representing the running program behind the scenes. The nodes of this graph represent
expressions to be evaluated, which depend on values that vary over time (e.g. driven by
external events), such as event streams that discretely signal events, synchronous val-
ues that update themselves at fixed rates (in synchronous languages), or continuously
varying values. These values can be the results of other reactive expressions in the pro-
gram, which act as parent nodes in the dataflow graph. The dataflow graph is traversed
in response to events in such a way that glitches are prevented (see section 3.3.1).

The second category comprises languages that use programmer-defined dataflow
graphs as an idiom to express an event-driven (Hyperflow) or event processing (Bore-
alis, Solar, iQL) program. In these languages, dataflow is neither in the core of a dedi-
cated general-purpose language nor embedded in a host language, but used as a higher
level domain-specific language that steers the execution of modules implemented in
one or more lower-level general-purpose languages.

Event Representation Reaction is the core execution driver of dataflow programs
and hence does not require special programming techniques such as callbacks. In older
dataflow languages, which were more concerned about parallelism then reacting to ex-
ternal events, the programmer had to explicitly advance the state of the program by
calling a next primitive on a stream, that produces the next value in the stream by
executing all dependent code. In most functional reactive programming languages,
reaction happens by reevaluating function calls that depend on time-varying values.
This can also be applied to method calls in object-oriented languages, but care must
be taken when introducing side effects (since reactive code can be executed unexpect-
edly). Although not a typical dataflow language, the Coherence language discussed
above caters for this case by employing versioned objects that are updated in parallel
when dependent object fields are updated by other objects, and incoherent states are
automatically detected and rolled back. The downside is that it relies on transactions
over these objects that cannot be distributed in an unreliable network such as a mobile
ad hoc network.

Event processing languages react similarly, but event stream operators are usually
restricted in expressivity to be efficiently scheduled in the face of a large number of
events to be processed. They act on one or more input streams and produce an output
stream that can be used as an input stream to one or more subsequent stream operators.
These stream operators are usually implemented in a lower level general-purpose pro-
gramming language and can in many cases be connected in a dataflow graph using a
visual syntax.

3.3. SURVEY OF DATAFLOW PROGRAMMING TECHNOLOGY 61

Space
decou-
pling

Arity
decou-
pling

Time
decou-
pling

Event
repre-
sentation

Infrastruc-
tureless

Control
flow man-
agement

Lucid No No No streams No implicit
dataflow,
next opera-
tor

Lustre No No No streams No implicit
dataflow,
reevaluation

Scala.React No No No streams,
time-
varying
values

No implicit
dataflow,
reevaluation

Fran No No No streams,
time-
varying
values

No implicit
dataflow,
reevaluation

Yampa No No No signal
functions

No implicit
dataflow,
reevaluation

Frappé No No No signal
functions

No implicit
dataflow,
reevaluation

FrTime No No No streams,
time-
varying
values

No implicit
dataflow,
reevaluation

Flapjax No No Yes streams,
time-
varying
values

No implicit
dataflow,
reevaluation

Coherence No No No versioned
objects

No derivation,
reaction

Hyperflow No Yes Yes streams,
time-
varying
values

No explicit
dataflow

Borealis Yes No Yes tuple
streams

No explicit
dataflow

Solar Yes Yes Yes object
streams

No explicit
dataflow

iQL Yes Yes Yes object
streams

No explicit
dataflow

Table 3.3: Survey of dataflow programming technology.

62 CHAPTER 3. RELATED WORK

Space, Arity and Time Decoupling Functional reactive programming languages
where originally not intended for distributed computing. Only Flapjax uses Javascript
as a host language and supports time decoupling through asynchronous AJAX calls.
Dataflow languages that make the dataflow graph explicit do this in many cases for the
coordination of distributed event-driven software. It must come as no surprise that all
of these languages offer some decoupling features. An interesting feature of Solar and
iQL is that although they require the dataflow graph to be specified up front, they allow
events to be broadcasted to a number of late-bound event consumers. This is possible
because they rely on an underlying publish/subscribe architecture to subscribe to and
deliver events. Solar’s distribution model requires it to move mobile code representing
dataflow operators to different nodes in the network while executing. Hyperflow also
supports broadcasting events to a number of event consumers, but they have to be spec-
ified up front in the dataflow graph using a visual syntax to denote the set of interested
event consumers.

Infrastructureless Operation All surveyed systems require additional infrastructure
outside of the node running (part of) the dataflow program itself.

Distributed Reactive Programming

There are two main issues in distributing dataflow programs. The first is that glitches
cannot be avoided that easily in a distributed setting. The second is that maintaining the
dataflow dependencies in a distributed dataflow program tightly couples the dependent
distributed application components, and hence renders them less resilient to network
failures and reduces overall scalability.

Avoiding glitches in a distributed setting Glitches occur because of dependent code
that is executed in the wrong order. This can easily happen in a distributed setting
where events are communicated over the network and are hence delivered with a delay
of which the severity depends on different factors, such as the underlying network
technology, network congestion, network failures, etc. Hence, time-stamping of events
is necessary to allow them to be correctly ordered at the receiver side. The problem here
is that distributed clocks can diverge, which can be problematic for ordering events that
happen in close succession.

A possible solution could be to use a centralized entity to which all parties involved
in the distributed dataflow program connect and that is solely responsible for ordering
events. This centralized approach of course introduces a single point of failure and
possibly a considerable communication overhead as all parties involved in the system
have to communicate with a single host for every event they signal and to receive every
event propagated to them as well, potentially limiting scalability.

A decentralized solution could be to accept that events in close succession cannot
be ordered as a fact of life and take into account a minimum time interval in which
events are considered to occur simultaneously. This is similar to ideas found in real-
time synchronous languages where the system is assumed to react atomically to events
before any other events occur and a global clock with a minimal tick rate determines
the time interval. This minimal tick rate could be used as the maximal amount of
which distributed clocks may diverge in a distributed dataflow program. As long as it
can be guaranteed that all the clocks in the system do not diverge more than this time
interval, glitches can be prevented while keeping a decentralized architecture. The

3.4. PROGRAMMING TECHNOLOGY FOR SENSOR NETWORKS 63

applicability of this assumption depends on a number of factors such as the number
of parties involved in the distributed interaction, the amount of clock divergence, the
quality of the network, and, most importantly, the nature of the dataflow program.
For programs that have to quickly react on events occurring in very close succession
this approach might not be feasible, while for programs that work on human time-
scales (such as seconds, minutes...) this assumption might be acceptable. Decentralized
solutions to mitigate this problem exist, but they highly depend on the physical layer
of the mobile ad hoc network [EGE02].

Coupling Maintaining dataflow dependencies among dependent reactive application
components tightly couples these application components. Since in most cases this
coupling does not have to be explicitly managed by the programmer, this is a non-issue
for local applications. However, for distributed applications, a loose coupling of the
communicating parties is required to achieve scalability in very large systems [CRW00]
or to be applicable in mobile ad hoc networks [HGM04]. In these cases, network
failures prevent events to be propagated among distributed application components that
depend on each other, causing the application to halt or causing glitches.

In section 3.2 we have concluded that publish/subscribe can offer the necessary de-
coupling in space, time and arity. One of the pillars of this dissertation is the integration
of publish/subscribe with dataflow programming.

3.4 Survey of Programming Technology for Sensor Net-
works

In the world of sensor networks, reacting to sensor readings is everyday business. The
difference with mobile RFID-enabled applications is that there are only a handful of
applications: sensing structure rigidity, sensing environmental conditions such as tem-
perature and humidity, capturing object or creature location and movement, etc. These
applications require a closed system that is specially built for these types of applica-
tions. Hence, sensor network programing technology usually focuses on making sensor
nodes work together while saving power and reducing network usage as much as possi-
ble (node-centric) on the one hand, and querying sensor readings observed in the entire
sensor network from a user level (network-centric) on the other hand. Still, sensing
and reacting to changes to what is being sensed in a wireless network is at the heart of
sensor network programming technology and hence can offer interesting ideas that can
be applied to mobile RFID-enabled applications as well.

Sensor networks consist of a (usually large) number of sensor nodes. These are
tiny devices with enough processing power to gather sensor readings, process them,
and make decisions how to communicate and jointly process these readings with other
reachable sensor nodes to maximize data quality and minimize network usage and
power consumption. Communication happens via a wireless radio that allows sensor
nodes to spontaneously form a mobile ad hoc network. One or more edges of the
mobile ad hoc network communicate with a base station: a fixed infrastructure that
allows collecting processed sensor data from the sensor nodes, further processing it,
deploying queries in the sensor network, etc., allowing the user to interact remotely
with the sensor network. However, such a base station can only communicate with one
or a few sensor nodes: it cannot control the entire sensor network. Furthermore, if all
raw data is sent to base stations for further processing, the volume and burstiness of the

64 CHAPTER 3. RELATED WORK

traffic may cause many collisions and contribute to significant power loss. This means
that in-network processing is often necessary: to achieve energy-efficiency, the amount
of data transmission must be reduced by way of summarizing and compressing the data
inside the network.

In this section, we survey existing programming technology for sensor networks.
We will not cover issues such as power consumption and routing. Instead we will
evaluate the different technologies with respect to the requirements for mobile RFID-
enabled applications. The surveyed systems are classified as by Suighara and Gupta
[SG08]. Node-centric abstractions offer programming primitives to program a single
node and make it communicate with other sensor nodes. Group-centric abstractions
provide a set of programming primitives to handle a group of nodes as a single en-
tity. These define APIs for intragroup communications and thus make it easier for the
programmers to describe collaborative algorithms. Network-centric abstractions, or
equivalently macroprogramming, treat the whole network as a single abstract machine.

3.4.1 Node-Centric Programming
We will not cover all sensor network programming technology, but focus on event-
driven programming abstractions instead. Kasten and Römer observe the following
problems in complex event-driven programs for sensor networks [KR05]:

“Event handlers must not monopolize the CPU for any significant time,
thus operations need to be non-blocking. Therefore, at any point in the
control flow where an operation needs to wait for some event to occur,
the operation must be split into two parts: a non-blocking operation re-
quest and an asynchronous completion event. The completion event then
triggers an action that continues the operation. As a consequence, even
a seemingly simple operation can lead to event cascades - an action calls
a non-blocking operation, which causes an event to occur, which, in turn,
triggers another action. Breaking a single conceptual operation across sev-
eral actions also breaks the operation’s control flow and its state. This
has two implications for the programmer. Firstly, as breaking operations
into multiple functions effectively discards language scoping features, pro-
grammers need to manually manage the operation’s stack. This is called
manual stack management. Secondly, programmers must guarantee that
any order of events is handled appropriately in the corresponding actions.
This is called manual flow control.”

To tackle these problems they propose the Object State Model (OSM), which is repre-
sented in a textual programming language for sensor networks. OSM is based on finite
state machines. Finite state machines are based on the concepts of states, events, and
transitions. A FSM consists of a set of states and a set of transitions, each of which is
a directed edge between two states, originating form the source state and directed to-
wards the target state. Transitions specify how the machine can proceed form one state
to another. Each transition has an associated event. The transition is taken (it “fires”)
when the machine is in the transition’s source state and its associated event occurs.
FSMs can be thought of as directed, possibly cyclic graphs, with nodes denoting states
and edges denoting transitions. As in event-based programming, actions specify com-
putational (re)actions. Conceptually, actions are associated with transitions or states.
States can be hierarchically organized: a state can encompass a smaller partial FSM.
Through the explicit notion of states, the association of events to actions is no longer

3.4. PROGRAMMING TECHNOLOGY FOR SENSOR NETWORKS 65

static. Rather, the invocation of actions becomes a function of both the event and the
current program machine state.

OSM extends the notion of finite state machines with state variables, which hold
information that is local to a state or state hierarchy. Their scope is limited to a state
(and its substates), thus allowing to reclaim memory upon leaving the state. Addition-
ally OSM allows to guard transitions by a predicate over event parameters as well as
over the variables of the source state. The transition then only fires if the predicate
holds (i.e. evaluates to true) on the occurrence of the trigger event.

FSMs rely on a discrete representation of time, similar to the synchronous lan-
guages discussed earlier in section 3.3.1. Since the execution of actions consumes a
non-zero amount of real time, events may arrive in the system while some action is
currently being executed. Those events cannot be handled immediately. Therefore,
arriving events are always inserted into a FIFO queue. In the discrete time model,
events can occur concurrently. The event queue should preserve such sets of concur-
rent events, rather than imposing an artificial total ordering on concurrent events by
inserting them one after another into the queue. For this purpose, the event queue
operates on sets of concurrent events rather than on individual events. The enqueue
operation takes a set of concurrent events as a parameter and appends this set (as a
whole) to the end of the queue. The dequeue operation removes the set of concurrent
events from the queue that has been inserted earliest. Whenever the system is ready to
make a transition, it uses the dequeue operation to determine the one or more events to
trigger transitions. After each discrete time step, the earliest set of concurrent events
is dequeued unless the queue is empty. The set of dequeued concurrent events could
trigger different transitions in a single state machine. To resolve such ambiguous cases,
priorities can be assigned to transitions, such that the transition with the highest priority
is triggered in each state machine. The combination of concurrency and hierarchical
scoping of state variables in hierarchical FSMs can lead concurrent writes of these state
variables. It is up to the programmer to synchronize them manually.

TinyLIME [CGG+05] is an extension of LIME (Linda Meets Mobility) [MPR01],
a tuple space middleware for mobile ad hoc networks, targeting sensor networks and
implemented in nesC on top of TinyOS [GLvB+03]. Just like in Linda [Gel85] and
LIME, coordination among distributed processes occurs through the writing and read-
ing (and/or removing) of tuples into a conceptually shared memory called a tuple space.
Manipulating the contents of the tuple space happens through pattern matching on tu-
ples using template tuples. If multiple tuples match a template, the one returned is
selected non-deterministically. A process attempting to access a non-existent tuple
in the tuple space in Linda remains blocked until the tuple is added to the tuple space,
leading to synchronous access. LIME extends this model with asynchronous reactions:
other than being blocked, processes can also be notified asynchronously by triggering
a callback when a matching tuple arrives.

Communication in Linda is decoupled in time and space, i.e. senders and receivers
do not need to be available at the same time, and mutual knowledge of their identity or
location is not necessary for data exchange. This decoupling makes the model ideal for
the mobile ad hoc environment where the parties involved in communication change
dynamically due to their movement through space. To support mobility, the LIME
model breaks up the Linda tuple space into multiple tuple spaces each permanently
attached to a mobile component, and defines rules for the sharing of their content when
components are able to communicate. LIME’s transient sharing of tuple spaces pro-
vides a view where it is as if all tuples were in the same tuple space, and accessible
to all processes. This shared tuple space is called the federated tuple space. However,

66 CHAPTER 3. RELATED WORK

when one process disconnects, its tuples are no longer accessible to the others, but
remains accessible to itself.

3.4.2 Group-Centric Programming

The basic idea of group-centric abstraction is to provide a language construct that han-
dles multiple nodes collectively and a set of operations on it so that people can program
the behavior of a group. This way, application design can be simplified by abstracting
over the details of low-level communication, data sharing, and collective operations.

Smart Messages [KBX+04] is a modification to the Java virtual machine target-
ing mobile ad hoc networking applications (instead of pure sensor networks). Instead
of passing data end-to-end between nodes, a Smart Messages application migrates to
nodes of interest named by content and executes there. Each node hosts a virtual ma-
chine that executes smart messages in their own thread and a name-based memory,
called tag space. The smart messages use the tag space for content-based naming and
as a shared memory persistent across smart message executions.

Executing a smart message can lead to the execution of one or more other smart
messages and can be bounded in time by sending a timeout value with it. Although
once migrated the execution of a smart message happens asynchronously with respect
to the sender, the migration itself happen synchronously and must be invoked explicitly
by the programmer, who also must explicitly send along any data needed for the remote
execution. This means that the local part of the application blocks until a suitable node
is detected to migrate the smart message to.

Although smart messages are executed in their own thread, the default scheduler
will put them in a queue and execute them in sequence to prevent race conditions on
the data that is shared among them. For coordinating asynchronously arriving smart
messages, the platform offers a simple synchronization mechanism that allows a smart
message to block on a tag in the tag space until another smart message performs a
write on it. A blocked smart message is appended to the message queue, such that the
scheduler can proceed with the next message in the queue.

Smart messages carry their own application-specific routing code and route them-
selves to each node of interest, by hopping from reachable node to reachable node.
An example of a simple content-based routing strategy could be to only migrate to the
nodes that contain the tags in the tag space that are needed for the execution of the smart
message. More complex routing strategies based on these tags can be devised, e.g. by
communicating location information via these tags to obtain geographical routing.

Hood [WSBC04] is a grouping abstraction for sensor networks implemented on
top of TinyOS in nesC. Hood allows a node to identify a subset of nodes around it by
a variety of criteria and share state with those nodes. For example, Hood can define a
one-hop neighborhood over which light readings are shared and a two-hop neighbor-
hood over which both locations and temperature are shared. Once the neighborhoods
are defined, Hood provides an interface to read the names and shared values of each
neighbor (represented as key/value pairs). Beneath this interface, Hood is automatically
discovering neighbors and caching the values of their attributes while simultaneously
sharing the values of the nodes own attributes.

Key to the implementation of Hood is the broadcast/filter mechanism used for both
data sharing and neighborhood discovery. When attributes are shared they are always
broadcast. The receiving nodes “filter” the incoming attributes to determine which
nodes are adequate neighbors and which of their attributes should be cached. Hence,

3.4. PROGRAMMING TECHNOLOGY FOR SENSOR NETWORKS 67

updating cached values is achieved behind the scenes using a broadcast-based publish/-
subscribe architecture, where subscriptions are broadcasted and maintained locally by
each node and broadcasted events update cached values if necessary. This decouples
the owner of an attribute from the observers of the attribute. Hood promises only
the weak sharing semantics that unreliable, low-bandwidth networks can provide; the
neighbors in the neighbor list and the cached values of a neighbors attributes represent
only the best or most recently observed. Any stronger guarantees about consistency,
coherence or reliability are intentionally deferred to the application level.

Abstract Regions [WM04] are a family of spatial operators that capture local com-
munication within regions of the network and are implemented on top of TinyOS in
nesC. Abstract regions may be defined in terms of radio connectivity, geographic loca-
tion, or other properties of nodes. They provide interfaces for identifying neighboring
nodes, sharing data among neighbors, and performing efficient reductions on shared
variables. In addition, abstract regions expose the trade-off between the accuracy and
resource usage of communication operations.

Before performing other operations on an abstract region, each node initiates the
process of discovering neighboring nodes. Depending on the type of region, this may
require broadcasting periodic advertisements, collecting information on node locations,
or estimating radio link quality. This is a continuous process, and each node is informed
of changes in the region membership set, due to nodes joining, leaving, or moving
within the network. A node may terminate this process at any time to avoid additional
discovery messages. When terminated, the neighbor discovery operator returns a qual-
ity metric that measures the accuracy of the region formation, such as the percentage
of candidate nodes that responded to the discovery request. At all times, a snapshot
of the abstract region can be taken, returning a static enumeration of nodes. Hence,
abstract regions abstract over one type of events: the fluctuating membership of nodes
to abstract regions.

The data sharing operator allows variables, represented as key/value pairs, to be
shared among nodes in the region. Data sharing is achieved using a tuple space-like
programming model [Gel85]. The reduction operator takes a shared variable key and
an associative operator (such as sum, max, or min) and reduces the shared variable across
nodes in the region, storing the result in a shared variable. However, region member-
ship events do not cause the resulting shared variable to be updated. The programmer
must manually reapply the reduction to obtain up to date results.

SpatialViews [NKSI05] is not targeted at a pure resource-constrained sensor net-
work environment, but is rather a macroprogramming extension to Java designed for
programming mobile devices connected through a wireless ad hoc network. Under
the hood, it uses the Smart Messages platform discussed earlier. SpatialViews’ main
programming abstractions are spatial views. A spatial view allows to describe physical
spaces (such as circles, rectangles, etc.) and desired services within such spaces, hosted
on and shared by mobile or stationary devices. Spaces can be combined using operators
such as union, intersection, etc. Spatial views are instantiated by an iterator that discov-
ers nodes that provide the services and reside in the space. When iterating, this iterator
will send mobile code to the nodes in the space in which their services are invoked.
Recursive calls from within an iterator are not allowed, but iterators can be nested. The
iteration procedure may be limited by a time constraint which represents a time budget
that once expired will lead to the termination of the iteration procedure (there could be
spatial views where iteration is infinite when nodes keep joining the network or keep
moving around), but cannot force a rollback of the procedure on nodes that did not
respond within the time budget. The spatial view is thus the collection of nodes that

68 CHAPTER 3. RELATED WORK

provide the specific services and are confined to a space-time region defined by a spa-
tial view and an iterator. As time changes, the same node may be visited multiple times
by the same iterator. If a node occupies multiple locations due to its mobility, it may
also represent different nodes at the same time, depending on the modeling granularity
of both space and time.

The SpatialViews compiler can be configured to generate different iteration strate-
gies for the iterators in a SpatialViews program. The simplest strategy is simple it-
eration, where the currently reachable nodes are sequentially visited taking time and
space constraints into account. More complex strategies allow flooding the network
with the iteration procedures that are executed in parallel and of which the results are
afterwards propagated back to the node initiating the iteration. The drawback of both
approaches is that they may visit too many closely located nodes in close succession
that, because of this, produce identical sensor readings. This is a waste of resources.
Therefore, as a last strategy, SpatialViews can be configured to use geographic itera-
tion. With geographic iteration, the target space is divided in cells recursively into a
quadtree of smaller child spaces. The nodes are evenly distributed over the leaf cells of
the quadtree. The iterator can then iterate over these leaf cells.

SpatialViews offers best-effort semantics for executing iterator code and propagat-
ing back results. It offers no fault tolerance constructs and assumes that sensor nodes
are densely enough populated to be able to drop results. Therefore, iterating can only
happen within a time budget specified up front: the asynchronous reception of results
that are received with an arbitrary delay is not supported. Its synchronous program-
ming model integrates poorly with the asynchronous, event-driven nature of mobile ad
hoc networking applications.

3.4.3 Network-Centric Programming
In network-centric abstractions, a sensor network is treated as a whole and is regarded
as a single abstract machine. Most (but not all) network-centric abstractions fall into
the category of query processors [MFHH05, BGS01, YG02, LLS+04, SJS00]. Query
processors use a traditional database abstraction to represent sensed data in the sen-
sor network. The programmer queries these data using a declarative query language,
typically a variant of SQL. Query processors strive to process such queries as energy-
efficiently as possible. Typical strategies include minimizing expensive communica-
tion by applying aggregation and filtering operations inside the sensor network. This is
somewhat similar to some content-based publish/subscribe systems or event processing
systems that allow complex queries to be specified over observed events in a distributed
system. Since these systems’ expressiveness is limited to data gathering queries, we
will not discuss all of them here. We will limit our survey on query processors to
Fjords. Fjords (Framework in Java for Operators on Remote Data Streams) [MF02] is
an object-relational query processor based on the Telegraph [CCD+03] dataflow pro-
cessing system, implemented in Java. This underlying dataflow architecture allows
Fjords to treat sensor data as continuous, never ending streams. Because streams are
infinite, query operators (such as select, project, join, etc.) can never compute over
an entire streaming relation: i.e. they cannot be blocking. Fjords modifies traditional
operators into dataflow variants such that they deliver results incrementally, processing
streaming values one at a time or in small blocks. These operators can be both pull-
based and push-based. It is also possible to define aggregate operators, like count and
average, which output results periodically; whenever a value arrives from the stream,
the aggregate is automatically updated, and its revised value is forwarded to the user.

3.4. PROGRAMMING TECHNOLOGY FOR SENSOR NETWORKS 69

If traditional (i.e. blocking) aggregates, sorts, or joins must be used, Fjords allows,
similarly to other query processors discussed above, that these operators specify a sub-
set of the stream which they operate over. This subset is typically defined by upper and
lower time bounds or by a sample count. Defining such a subset effectively converts
an infinite stream into a regular relation which can be used in any database operator.
Operators buffer the values they still need to process or need to send to the next op-
erator in queues. This allows that the dataflow architecture is resilient to temporary
network failures. Each operator has a set of input queues, and a set of output queues.
Each operator reads values in any order it chooses from its input queues and outputs
any number of values to some or all of its output queues.

When a new query is deployed, a query plan is constructed consisting of the internal
representations of the operators that constitute the query. The code that implements
these operators is dynamically sent to the sensor nodes on which they must be executed,
which is there executed in a dedicated runtime. However, Fjords are currently non-
adaptive; that is, they do not modify the query plan and the deployed query in the face
of sensor delays or intermittent failures. To allow the efficient sharing of deployed
operators among different queries concurrently, Fjords disallows operators to work on
the history of a stream (i.e. its old tuples).

A second category of network-centric abstractions are macroprogramming lan-
guages. These languages are usually based on the functional programming paradigm
and offer distributed version of lazy operations such as map, filter and fold that can be
applied to sensor values.

Regiment [NMW07] is a macroprogramming language that compiles a network-
wide dataflow representation of the program into a node-level, event-driven program.
Regiment focuses on sensor network applications where spatiotemporal properties are
an important part of sensor information. These include nodes’ locations and their topo-
logical relationships, as well as time-varying sensor data and computational state.

In Regiment, the programmer views the network as a set of spatially-distributed,
time-varying signals, each representing either the state of an individual sensor node
(e.g., sensor readings or the results of local computation) or an aggregate taken across
regions of sensor nodes. These aggregate signals are created using built-in primitives,
such as map, filter and fold. This allows to sum all sensor values in a region as follows:

sumsignal = rfold((+), 0, inputregion)

Each time the contents of inputregion change, the call to rfold will be reevaluated,
resulting in a new value for sumsignal. The second argument passed to rfold is the
initial value for the resulting signal. It is important to note that it is unspecified how
many times rfold will be invoked, so one must take care with side-effects.

Regions may be defined in terms of geographic area, network topology, or func-
tional capability (e.g. all of the climate sensors within a given area). They are defined
using primitives similar to the previously discussed group-centric systems (see sec-
tion 3.4.2), such as Hoods and Abstract Regions. Regiment abstracts away the details
of sensor data acquisition, storage, and communication from the programmer, instead
permitting the compiler to map global operations on signals and regions onto local
structures within the network. It is important to note that membership in a region may
vary with time; for example, the region defined as “temperature readings from nodes
where temperature is above a threshold” will consist of values from a varying set of
nodes over time. The collection of signals that participate in a region can also vary due
to node or communication failures or the addition of nodes in the network.

Sensor nodes are represented as primitive data types that basically are a key-value-

70 CHAPTER 3. RELATED WORK

based associative data structures where the programmer can request any property or
sensor value of a node by passing it a key. The return value of such an operation is nat-
urally a time-varying signal. A severe restriction is that – to avoid high communication
overheads – Regiment enforces the rule that time-varying signals are only accessible on
the physical sensor node where they are hosted. To communicate time-varying values,
the programmer must first project the sensor readings of interest from the node before
attempting network communication.

Flask [MMW08] is a macroprogramming language embedded in Haskell that ap-
plies functional programming to collections of sensor nodes and additionally offers a
dataflow programming library to wire together node-level application fragments. It is
implemented on top of TinyOS and Flask programs are compiled into distributed nesC
programs. Flask has ties with the research on Regiment discussed above, but by having
two separate idioms for node-level and network-level code, removes the restriction that
time-varying sensor values can only be used locally in node-level code.

Node-level code can be written in a language called Red, which is syntactically
equivalent to Haskell but disallows closures and recursive functions and data types,
thereby eliminating arbitrary allocation. Red offers language interoperability with
nesC: nesC functions can be called from within the Red runtime and quasiquoting
allows nesC code to be used anywhere in Haskell source files. This is useful to ac-
cess low level sensor primitives. Flask provides abstractions for wrapping event-driven
sensor code written in nesC into time-varying signals.

Haskell serves as Flask’s meta language, and its full power is available for express-
ing how dataflow graphs can be constructed using Yampa-style combinators (discussed
earlier in section 3.3.1). The dataflow library differs from Yampa in that it provides
first-class signals rather than arrowized functional reactive programming’s signal func-
tions. Unlike behaviors in functional reactive programming and Regiment’s signals
(discussed above), Flasks signals are always discrete event streams and do not auto-
matically trigger reevaluation of dependent code.

Flask cannot make the assumption that all signals are synchronously driven by a
global and provides dedicated dataflow combinators to wire together stateful compu-
tations while preventing race conditions. Still, care must be taken when using stateful
nesC code into a dataflow program, as race conditions are not automatically detected
nor prevented by Flask.

Flask constructs a distributed dataflow graph of sensor processing nodes, but in this
case at compile-time instead of run-time using the Haskell meta-language. To cope
with a dynamically changing network topology in mobile ad hoc networks we require
the graph’s nodes to be deployed at runtime instead of at compile-time.

3.4.4 Evaluation
In this section, we give an overview of the surveyed sensor network programming
technologies with respect to the programming model requirements that we put forward
in section 2.3.4. These results are summarized in table 3.4. Desirable properties for
mobile RFID-enabled applications are again shown in italic font.

Time Decoupling Just like in mobile ad hoc network applications, sensor network
applications must deal with volatile connections. Therefore, almost all surveyed sys-
tems employ a time-decoupled communication style that is resilient to network failures
(exceptions are Smart Messages and SpatialViews that assume a densely populated

3.4. PROGRAMMING TECHNOLOGY FOR SENSOR NETWORKS 71

network where it is acceptable to only reach part of the nearby nodes within a cer-
tain time budget). Examples are asynchronous messaging, code migration, tuple space
abstractions, caching required data broadcasted by peers, etc.

Network-centric approaches have dedicated mechanisms to efficiently route infor-
mation from individual nodes to the base station and to orchestrate the communication
between individual nodes. The programmer is not exposed to their communication
infrastructure (except for time-varying values in Regiment, which must be manually
sampled and communicated).

Space
decou-
pling

Arity
decou-
pling

Time
decou-
pling

Event
repre-
sentation

Infrastruc-
tureless

Control
flow man-
agement

Object State
Model

Yes No Yes nesC val-
ues

Yes Finite state
machines
with con-
current
events

TinyLIME Yes No Yes Tuples Yes No
Smart Mes-
sages

Yes Yes No Tuples Yes Blocking

Hood Yes Yes Yes None Yes No
Abstract
Regions

Yes Yes Yes None Yes No

SpatialViews Yes Yes No None Yes Blocking
Fjords No Yes Yes Object

streams
No Dynamic

queries,
dataflow
operators

Regiment Yes Yes Yes Streams Yes Implicit
dataflow
reevalua-
tion (local
only)

Flask No No Yes Streams Yes Explicit
dataflow

Table 3.4: Survey of sensor network programming technology.

Space Decoupling Other than time-decoupled communication, space decoupling is
considered desirable as well [SG08]. From the node-centric approaches, TinyLIME
provides tuple spaces as a simple decoupling mechanism. The rest uses broadcasting
to dynamically discover nodes in the sensor network.

Group-based abstractions allow to declaratively specify which nodes belong to a
certain group. In some cases, this is purely used as a decoupling mechanism: unlike
statically binding to nodes, it allows to enumerate the available set of nodes when they
need to be accessed. For example, in Smart Messages, Hood and Abstract Regions
content-based filters on data hosted by these nodes determine if these nodes belong to
the group. Obviously, these data can contain physical properties of the node, such as its

72 CHAPTER 3. RELATED WORK

location. SpatialViews provides dedicated abstractions to compose groups that reflect
nodes in a specific region of the network.

Regiment reifies group-centric constructs on a network-centric level.

Arity Decoupling Node-centric approaches only support basic directed and broadcast-
based communication primitives (e.g. as offered by nesC).

Other than space decoupling, group-centric approaches allow to easily spawn re-
dundant operations (to deal with failing sensors or low quality of sensed values) and to
address a group of nodes (that is automatically updated behind the scenes) by their role.
This makes it for example possible to maintain a group of all temperature sensors and
broadcast them a request for the current temperature. Such group operations obviously
return a group of results, which in most cases, because of the asynchronous nature of
the communication layer, have to be processed asynchronously (i.e. they do not arrive
at the same time, maybe even with a large time-span between them). In most sys-
tems, the programmer must manually poll for more incoming results before applying
an aggregation operator on the results. Exceptions are the network-centric approaches
Regiment and Flask, which allow to represent the incoming results as an event stream
or time-varying value, and use dataflow techniques to process them.

Event Representation How events are represented is to a large extent determined
by the level of abstraction that is offered. Node-level approaches usually signal events
by sending asynchronous messages. The Object State Model uses normal nesC val-
ues in predicates to determine to which state to advance using finite state automata.
TinyLIME is based on tuple spaces and Smart Messages uses tuples as well to be able
to declaratively specify groups of nodes. Other group-centric approaches attempt to ab-
stract over events by making sure that the runtime keeps the specified groups causally
connected to the physical sensor nodes by caching sensor values belonging to a group.
Since they provide no application-level event handling framework, the programmer
must manually poll for changes to these cached values. Macroprogramming abstrac-
tions such as Fjords, Regiment and Flask use event streams because they offer limited
dataflow programming support.

Control Flow Management Because of the asynchrony that is prevalent in most sen-
sor network operating systems (TinyOS), sensor network software is inherently event-
driven. This leads to the same problems we have discussed before in chapter 2 section
2.3.3 and that are observed by Welsh and Mainland [WM04] as well:

“The TinyOS concurrency model requires each concurrent “execution
context” to be implemented manually by the programmer as a state ma-
chine, with execution driven by the sequence of commands and events
invoked on each software component. If an application is performing mul-
tiple concurrent tasks, these operations must be carefully interleaved. In
addition, each split-phase operation requires that the application code be
broken across multiple disjoint segments of code. The programmer must
manually maintain continuation state across each split-phase operation,
adding significant complexity to the code. While the logical program may
be quite simple, the lack of blocking operations in TinyOS requires that
the application be broken into multiple tasks and event handlers.”

3.5. CONCLUSION 73

This calls for dedicated event-driven abstractions that prevent structuring the entire
application around (possibly concurrent) callbacks. This is achieved by bringing the
global sensor network application to a higher level by means of macroprogramming
techniques. Regiment and Flask, for example, offer dataflow programming techniques
to alleviate these issues. Still, Regiment’s time-varying values have to be manually
sampled such that these sampled values can be sent to other nodes: there is no auto-
matic way to notify other nodes of a value change. Flask, on the other hand, does allow
events to be communicated using the dataflow framework, but the distributed dataflow
graph is statically constructed at compile time and cannot be rearranged to deal with
changes in the sensor network (such as node failures or the deployment of additional
nodes).

Infrastructureless Operation Most approaches only require sensor nodes and do
not rely on additional infrastructure. The only exceptions are the database abstractions,
which require a base station from which sensor database queries are disseminated and
to which query results are routed back.

3.5 Conclusion
In this section, we revisit our problem statement and integrate the different require-
ments for mobile RFID-enabled applications with interesting properties from the sur-
veyed state of the art to tackle the now technically grounded problems.

3.5.1 Revisiting the Problem Statement
Now that we presented a survey on related programming technologies, we revisit our
problem statement and technically ground it using the results of this survey. Techni-
cally, our problem statement is twofold:

• There are no suitable programming abstractions for mobile RFID-enabled
applications. These applications must be manually implemented directly on top
of the hardware level.

• Dealing with sensor technology such as RFID results in highly event-driven ap-
plications. Distributed event-driven systems focus on the decoupling require-
ments, but suffer from inversion of control. Dataflow programming technology
on the other hand allows reacting to events without suffering from inversion of
control, but does not take the decoupling required for mobile ad hoc networking
applications into account. In short, there exists no distributed event-driven
programming model that both satisfies the decoupling requirements and the
requirements that allow to declaratively deal with events without suffering
from inversion of control.

3.5.2 Towards Ambient-Oriented Programming for Mobile RFID-
Enabled Applications

For mobile RFID-enabled applications, the state of the art provides no programming
abstractions tailored towards general, decentralized mobile RFID-enabled applications,
but instead relies on application-specific middleware. We repeat our programming

74 CHAPTER 3. RELATED WORK

model requirements listed earlier in section 2.3.1. An instantiation of such a program-
ming model is the topic of chapter 5 in this dissertation.

Addressing physical objects. RFID communication is based on broadcasting a sig-
nal. However, to be able to associate a software entity with one particular phys-
ical object, it is necessary to address a single designated physical object and
maintain a (conceptual) connection with the object.

Storing application-specific data on RFID tags. In the spirit of mobile ad hoc net-
work applications, we assume as little infrastructure as possible to implement
mobile RFID-enabled applications. Hence, mobile RFID-enabled applications
should be able to work without relying on a backend database and therefore it
should be possible to store the application data in the writable memory of the
RFID tags themselves [RK09, FL05, PS11, MTCS07].

Reactivity to appearing and disappearing objects. It is necessary to observe the con-
nection, reconnection and disconnection of RFID tags to keep the mobile RFID-
enabled application synchronized with its physical environment. Differentiating
between connection and reconnection is important to preserve the identity of
physical objects in the application. Furthermore, it should be possible to re-
act upon these events from within the application. Notification of these events
should be possible in a mobile ad hoc network (i.e. without assuming a fixed
infrastructure).

Asynchronous communication. To hide latency and keep applications responsive in
the face of intermittent connections, communication with RFID-tagged physical
objects should happen asynchronously. Blocking communication will freeze the
application as soon as one tag is unreachable.

Fault-tolerant communication. Treating communication failures as the rule instead
of the exception allows applications to deal with temporary unavailability of the
RFID-tagged physical objects and makes them resilient to failures. For example,
read/write operations frequently fail due to hardware phenomena. Handling all
these failures individually or each time they occur is not necessary and signifi-
cantly complicates the development of mobile RFID-enabled applications.

Data consistency and security. Different mobile applications might concurrently read
and - more importantly - write data to a number of tagged objects all within their
proximity. This can lead to data races that have to be prevented. Similarly, in
some scenarios data stored on RFID tags may not be read or modified by unau-
thorized users.

Support for mobile ad hoc networks. For conceiving mobile RFID-enabled applica-
tions, it should be possible to embed RFID technology in mobile devices that
communicate via mobile ad hoc network technology. Hence, they should not
rely on centralized infrastructure for their operation.

Such a programming model is inherently event driven because communication must
happen asynchronously and the set of reachable RFID tags from the viewpoint of a
single device is in constant flux. To circumvent the software engineering issues with
a classic event-based system, we propose to devise a dataflow programming model for
mobile RFID-enabled applications, as discussed below.

3.5. CONCLUSION 75

3.5.3 Towards a Publish/Subscribe-Style Interaction for Dataflow
Programs

Dataflow programming technology allows functional composition of event-driven pro-
grams, while in programs structured around callbacks, control flow is inverted, evalu-
ation can happen in unexpected orders, and in many cases must be coordinated using
globally visible variables, making functional composition a lot harder. On the other
hand, maintaining a dataflow graph tightly couples dependent reactive code such that
it becomes impossible to guarantee progress in a mobile ad hoc network where volatile
connections can prevent events to be immediately delivered.

Mobile publish/subscribe technology however, offers a very loosely coupled way of
binding event producers to event consumers (by different kinds of subscription mecha-
nisms and asynchronous event propagation). Hence, we propose to distribute dataflow
programs by representing dataflow dependencies as event subscriptions in an under-
lying publish/subscribe infrastructure. This means that dataflow dependencies can be
dynamically filled in as new event producers appear in the mobile ad hoc network, or
replaced as event producers leave the network and other ones join. Using subscrip-
tions, the knowledge that event producers and consumers must have about each other
can be reduced and factored out to the bare minimum required to subscribe to inter-
esting events. This way, subscriptions may be dynamically bound to a multitude of
event producers. We propose to use group-centric techniques as found in sensor net-
works to asynchronously aggregate time-varying values published by such a group of
event producers into a single time-varying value, and additional dataflow operators to
perform other processing operators than aggregation (i.e. mapping over results). Since
remotely and asynchronously signaled events arrive in an unpredictable, fluid fashion,
the model must incorporate programming support to determine which events are used
as updates to the result group (similar to sensor network query processors) and which
(late-arriving) events are not interesting anymore and can be discarded. We call this
mechanism time sampling.

To be as general as possible with respect to the representation of events in the
programming model (e.g. for representing data structures in an RFID tag’s memory),
we aim for an object-oriented data type, offering classic benefits such as encapsulation,
extensibility, polymorphism, and an easy mapping to real-world concepts.

All this together is what we call ambient-oriented dataflow programming. An
ambient-oriented dataflow language with group-centric primitives is the topic of chap-
ter 6 of this dissertation.

3.5.4 Towards a Network-Centric Ambient-Oriented Dataflow Lan-
guage

An issue with all distributed event-based programming models is that reactive code
(whether its execution is driven by callbacks or less traditional mechanisms such as
dataflow) is triggered at arbitrary points in time by being notified of external events, that
arrive unpredictably. This obscures the control flow of an application, as the textual,
sequential representation of the program does not reflect the execution order anymore.
Network-centric programming systems in sensor networks provide an additional layer
of abstraction that allows specifying the global distributed program behavior explicitly
and on a higher level. Query processors compile queries into plans that consist of
node-level code that implement the global behavior. Flask allows the global program
behavior to be specified declaratively in Haskell, that is used as a meta-language to

76 CHAPTER 3. RELATED WORK

construct a dataflow program. Underneath, the global program is still driven by node-
level events, but the network-centric abstraction takes care of filtering, communicating
and aggregating events.

Similarly, for tackling the complex control flow of larger mobile RFID-enabled
applications, we propose a dataflow meta-language to construct the global dataflow be-
havior of distributed applications. Naturally, it should take the requirements for mobile
RFID-enabled applications into account. Therefore, it should be resilient to volatile
connections, impose a very loose coupling among nodes in the distributed dataflow
graph and work entirely decentralized (with as an exception the node launching the
program, but only during initialization). This requires making sure that events are not
lost in the face of intermittent connectivity, dynamically binding dataflow nodes to
physical nodes at runtime and allowing other physical nodes to replace non-responding
nodes in the graph.

Furthermore, it should be integrated with the programming model described in the
section above. This means it must have network-centric representations for the group-
centric communication primitives described in the section above.

Chapter 7 of this dissertation takes ambient-oriented dataflow to the network level
and discusses a visual, network-centric dataflow meta-language called AmbientTalk/RV .

3.5.5 Summary
Viewed from more abstract level, what we are exploring in this dissertation is how
the control flow can be made less explicit in favor of an explicit data flow and how the
macroscopic view of a distributed program can be shifted from a node-centric view to a
network-centric view. These shifts turn the resulting programming models increasingly
domain-specific towards mobile RFID-enabled applications. The table below gives an
overview.

Control flow Data flow View
Chapter 4 and 5
(ambient-oriented pro-
gramming)

explicit (call-
backs)

implicit node-centric

Chapter 6 (node-
centric ambient-oriented
dataflow programming)

implicit (reac-
tive)

implicit node-centric

Chapter 7 (network-
centric ambient-oriented
dataflow programming)

implicit explicit (dataflow
graph)

network-centric

Table 3.5: Breakdown of programming models in chapters.

In chapters 4 and 5 we start out with a programming model in which the control
flow has to be very explicitly coordinated through callbacks, but the data flow is very
implicit because of the event-driven execution model. We only consider a node-level
view on applications. Subsequently, in chapter 6, we turn the control flow implicit
by adopting a reactive programming style in which events are processed without re-
lying on callbacks, but are instead used by the interpreter to drive the execution of
reactive expressions. The data flow is managed by the interpreter as well and remains
implicit. After that, in chapter 7, we introduce the network-centric visual dataflow

3.5. CONCLUSION 77

language AmbientTalk/RV , that turns the data flow of the application very explicit by
using the dataflow graph itself as the program representation. This dataflow program
is a network-centric program that is distributed in loosely-coupled node-centric code
fragments that are executed by events that they communicate to one another.

78 CHAPTER 3. RELATED WORK

Chapter 4

Ambient-Oriented
Programming with
AmbientTalk/2

The work described in this dissertation builds upon both the concepts of ambient-
oriented programming (described in chapter 2) and the technical foundation laid by
the AmbientTalk language. Therefore, before presenting our work in the later chapters
of this dissertation, in this chapter we first give an overview of the second incarna-
tion of the AmbientTalk language: AmbientTalk/2. We start this chapter by discussing
the features of the language that are important for the implementation sections in the
remaining part of this dissertation. Subsequently, in section 4.2 we discuss how the
event-driven execution of AmbientTalk programs causes inversion of control. Finally,
section 4.3 concludes this chapter.

4.1 AmbientTalk/2
In chapter 2 section 2.2 , we gave an overview of the hardware characteristics of mo-
bile ad hoc networks and how they are tackled by the ambient-oriented programming
paradigm. In this section, we give an overview of the concrete ambient-oriented pro-
gramming language in which we carried out our work: AmbientTalk/2. Although Am-
bientTalk/2 has a predecessor (the original AmbientTalk introduced by Dedecker et
al. [DVM+06]) that spawned many of the original ideas, we will only review Ambi-
entTalk/2, which we will henceforth name AmbientTalk interchangeably.

This section gives an overview of work that is carried out in the past by other
researchers. This overview serves three purposes:

• Discuss the computational model of AmbientTalk in which we embedded the
different constructs and artifacts described in the remainder of this dissertation.

• Identify where AmbientTalk technically exemplifies the problems that we are
tackling in this dissertation.

• Explain the features of AmbientTalk that are used throughout this dissertation in
examples or transcripts of certain implementations.

79

80 CHAPTER 4. AMBIENTTALK/2

AmbientTalk offers an actor-based, event-driven model of computation that aligns
well with the event-driven nature of distributed computations. Next to explaining this
event-driven computation model, we focus on AmbientTalk’s features for orchestrating
service discovery and composition in mobile ad hoc networks. We also describe how
the language enables an ambient-oriented programming style in order to treat network
partitions as a default mode of operation. We describe AmbientTalk’s object model,
metaprogramming and reflection facilities, concurrency model and distributed commu-
nication model. We include an extension called ambient references [VDM+06, Van08]
that is used in the work presented in this dissertation. Since these matters were ex-
tensively discussed before in Van Cutsem’s PhD dissertation [Van08], the text in this
section is heavily based on that dissertation’s section on AmbientTalk/2.

4.1.1 Object-Oriented Programming in AmbientTalk
AmbientTalk remains, first and foremost, a language to compose objects (services)
across a mobile ad hoc network. Despite the domain-specific nature of its abstrac-
tions for distributed programming, AmbientTalk remains a full-fledged object-oriented
programming language.

AmbientTalk is a dynamically typed, object-based language. Computation is ex-
pressed in terms of objects sending messages to one another. Objects are not instanti-
ated from classes. Rather, they are either created ex-nihilo or by cloning and adapting
existing objects. The following code illustrates standard object-oriented programming
in AmbientTalk.

1 def Point := object: {
2 def x := 0;
3 def y := 0;
4
5 def init(newx, newy) {
6 x := newx;
7 y := newy;
8 };
9

10 def +(other) {
11 self.new(x+other.x, y+other.y)
12 };
13
14 def distanceToOrigin() {
15 (x*x + y*y).sqrt();
16 };
17 };
18
19 def origin := Point.new(0, 0);

In the above code snippet, a prototypical Point object is created ex-nihilo and
bound to the variable Point. AmbientTalk objects consist of fields and methods, al-
though methods can subsume fields because AmbientTalk unifies field access with
nullary method application1.

Instantiating an object is done by sending it the message new, which creates a shal-
low copy of that object and initializes the copy using its init method, which plays the
role attributed to “constructors” in class-based languages. Every AmbientTalk object
understands this new message. Any arguments passed to new are passed on to the copy’s

1This property allows clients of an object to abstract over the fact whether data is stored in a field or
calculated by means of a method. This is called the uniform access principle [Mey88].

4.1. AMBIENTTALK/2 81

init method such that the copy can be reinitialized with new values. AmbientTalk’s
object instantiation protocol closely corresponds to class instantiation in class-based
languages, except that the new object is a clone of an existing object, rather than an
empty object allocated from a class.

AmbientTalk supports both traditional canonical syntax (e.g. dict.put(key, value))
as well as keyworded syntax (e.g. dict.at: key put: value) for method definitions,
message sends and function invocations. As a convention, keyworded syntax is used for
control structures (e.g. while:do:) or language constructs (e.g. object:). The canoni-
cal syntax is used for expressing application-level behavior.

By convention, when an object receives a message which it does not understand, it
delegates the message to the object sitting in to its slot named super (which is implicitly
defined on every object, except the nil value object). The object stored in the super

slot is called the parent object of the object storing it. Creating an object with an
existing parent object happens as follows:

1 def SpatialPoint := extend: Point with: {
2 def z := 0;
3
4 def init(newx, newy, newz) {
5 super.init(newx, newy);
6 z := newz;
7 };
8 // ...
9 };

10
11 def sPoint := SpatialPoint.new(20, 10, 30);

The semantics for delegating messages between objects follows that of Self [UCCH91]
and Act1 [Lie86]: a delegated message is a message that is forwarded to another object,
but for which the self pseudo-variable remains bound to the delegating object. Hence,
AmbientTalk supports object-based (single) inheritance. The super slot is assignable,
such that the parent of an object may change. This enables dynamic inheritance which
is useful for implementing objects with state-dependent behavior [UCCH91].

The example given above defines a SpatialPoint object with a Point as parent
object (SpatialPoint is said to extend Point). In the above example, SpatialPoint
and Point remain separate objects in their own right. The relationship between a child
and a parent object defined by extend:with: implies that the child’s super field is
initialized to the parent object and that when a child is cloned, the clone’s super field
is bound to a clone of the parent object. Hence, when a SpatialPoint is cloned, the
clone has its own Point parent object with its own copies of the x and y fields. Thus,
extend:with: is the object-based equivalent of class-based inheritance.

Block Closures

AmbientTalk provides support for block closures reminiscent of those in Self and
Smalltalk [GR83]. A block closure is an anonymous function object that encapsulates
a piece of code and the bindings of lexically free variables and self. Block closures
are constructed by means of the syntax { |args| body }, where the arguments can be
omitted if the block takes no arguments. The code excerpt below illustrates a typical
use of blocks to map a function over a table of numbers2:

2Tables are arrays of which the elements are indexed starting from index 1, not 0. The terminology stems
from one of AmbientTalk’s influential languages, Pico [DDD05]

82 CHAPTER 4. AMBIENTTALK/2

[1,2,3].map: { |i| i + 1 }
// result: [2,3,4]

The following code excerpt shows another typical usage of blocks to remove all
elements from a collection that fail to satisfy a predicate:

1 def from: collection retain: predicate {
2 result := clone: collection; // shallow copy
3 collection.each: { |elt|
4 predicate(elt).ifFalse: {
5 result.remove(elt)
6 };
7 };
8 result;
9 };

10
11 from: [1,-2,3] retain: { |e| e > 0 }
12 // result: [1,3]

Note that block closures can be applied using a familiar canonical function call
syntax. Alternatively, they may be treated as objects: a block closure is an object with
an apply method. In the above example, the call predicate(elt) can be equivalently
expressed as predicate.apply([elt]). Block closures are frequently used in Ambi-
entTalk to represent delayed computations, e.g. for implementing control structures.

Scoping, Nesting and Encapsulation

This section describes AmbientTalk’s semantics for the resolution of names (scoping),
how nested objects behave, and how scoping can be used to encapsulate an object’s
state.

Lexical versus object scope AmbientTalk is a lexically scoped language, meaning
that free variables in a function or method are looked up in their environment of defini-
tion. However, AmbientTalk is also an object-based language with delegation, which
introduces a second scope in which to resolve names: the object scope. The object
scope of an object is the set of all names defined in the object plus the object scope of
its parent object (the object referenced by its super field). The rules for distinguishing
which scope to use when resolving a name are straightforward:

• An unqualified identifier (e.g. x) is resolved in the lexical scope.

• A qualified identifier (e.g. o.x), is resolved in the receiver’s object scope.

These rules have a large effect on programs: lexical variable access can be statically
determined, while qualified access is subject to late binding (enabling object-oriented
polymorphism). The interplay between object inheritance and lexical scoping is par-
ticularly subtle. Consider the following example:

1 def obj := object: {
2 def x := 0;
3 def staticAccess() { x };
4 def dynamicAccess() { self.x };
5 };

In the code above, obj defines two accessors for its x field. The first accessor performs
an unqualified access and hence looks up x in the lexical scope. The second accessor

4.1. AMBIENTTALK/2 83

performs a self-send, looking up x in obj’s object scope. Both will access the same
field. The difference between both only becomes apparent in the context of object-
based delegation. Consider the following code:

def child := extend: obj with: {
def x := 42;

};

Invoking child.dynamicAccess() yields 42, because self.x is late-bound and starts
the lookup in child. However, invoking child.staticAccess() returns 0: the x iden-
tifier referred to within the staticAccess method is the lexically visible one, and no
object can change its resolution. Hence, the resolution of x is not the same as that of
self.x.

Nesting and encapsulation In AmbientTalk, objects may be arbitrarily nested within
other objects, functions or methods. Because of lexical scoping rules, this enables
nested objects to access the lexically visible state and behavior of enclosing objects.
Nesting objects is crucial to achieve encapsulation because AmbientTalk has no notion
of visibility modifiers for fields or methods. All fields and methods of an object are
considered “public”. Nevertheless, a field or method can be made “private” to a scope
by means of lexical scoping. The following code shows the definition of an object
inside the definition of a function.

1 def makeBankAccount(balance) {
2 object: {
3 def deposit(amount) {
4 balance := balance + amount;
5 "ok";
6 };
7 };
8 };

Because the bank account object encapsulates the balance variable in its private, lexi-
cal scope, it cannot be selected from within its object scope, i.e.
makeBankAccount(100).balance would result in an exception indicating that the name
balance could not be resolved.

Type Tags

AmbientTalk is a dynamically typed, classless, prototype-based language. This intro-
duces the problem that objects cannot be easily classified. In statically typed languages,
the static type of the variable holding an object is often used for these purposes. In
class-based languages, the class naturally plays the role of classifier. Object classifica-
tion is useful for a diverse number of reasons. For example, in an exception handler, it
is often useful to specify the type of objects that the handler can catch. Section 4.1.4
discusses the use of classification for the purposes of service discovery.

To recover the ability of classification, AmbientTalk introduces type tags. A type
tag is identified by name (i.e. it is a nominal type) and it can be a subtype of zero or
more other type tags. Objects, in turn, can be tagged with zero or more type tags.
Type tags are not associated with a set of methods and are not used for static type
checking. They are perhaps best compared with empty Java interfaces, like the typ-
ical “marker” interfaces used in Java libraries to merely tag objects (prominent ex-
amples are java.io.Serializable and java.lang.Cloneable). The following code
illustrates the use of type tags:

84 CHAPTER 4. AMBIENTTALK/2

1 deftype IndexableT;
2 deftype EnumerableT;
3 deftype OrderedT;
4 deftype SortableT <: EnumerableT, OrderedT;
5
6 def Array := object: {
7 // ...
8 } taggedAs: [IndexableT, SortableT];

Objects can only be tagged with type tags when they are created (via object: taggedAs:),
and their set of type tags remains constant, to make sure objects distributed across mul-
tiple devices remain consistent in this regard.

A primitive function allows the programmer to perform a type test on objects,
e.g. is: Array taggedAs: Enumerable. The type test determines whether an object
or one of its parents is tagged with the given type tag or a subtype of the type tag. This
is very reminiscent of the behavior of the instanceof operator of Java.

Type tags are first-class objects. Thus, they can be parameter-passed as arguments,
bound to variables, etc. However, type tags do not follow standard object identity
semantics. Type tag equality is by their name rather than by their object identity.

4.1.2 Metaprogramming and Reflection in AmbientTalk
Apart from AmbientTalk’s role as an ambient-oriented programming language, it also
serves as a language laboratory to develop and explore novel language constructs.
Therefore, following a long-standing tradition [McA95, BGL98, CBM+02], Ambi-
entTalk is conceived as an extensible research artifact equipped with extensive met-
alevel and reflective programming abstractions. Since the work presented in this dis-
sertation relies heavily on these facilities, we discuss them here.

First-class Messages

Similar to e.g. Smalltalk, in AmbientTalk, object-oriented messages and methods can
be manipulated by the programmer as first-class citizens of the language. Consider the
following methods defined on tables (AmbientTalk’s arrays):

1 def eachSend: message {
2 self.each: { |rcvr| rcvr <+ message };
3 };
4 def mapSend: message {
5 self.map: { |rcvr| rcvr <+ message } ;
6 };

The expression rcvr <+ msg sends a first-class message msg to an object rcvr as if the
message was literally invoked on the receiver in the source text. Hence, this expression
provides the functionality of perform: in Smalltalk or apply in functional languages.
The above methods, together with a literal syntax for messages, can be employed to
express higher order messages [WD05] – messages taking other messages as their ar-
gument – as shown below.
observers.eachSend: <-statusUpdated(newStatus);
[4,5,6].mapSend: .+(2); // returns [6,7,8]

A literal message expression is denoted by a message send expression that lacks a
receiver. AmbientTalk distinguishes between three kinds of literal messages: asyn-
chronous ones (<-m()), synchronous ones (.m()) and delegated ones (ˆm()). The <+

4.1. AMBIENTTALK/2 85

operator is polymorphic and expresses either an asynchronous, a synchronous or a del-
egated message send based on the type of its message argument.

A first-class message can be queried for its selector (its name) and the actual argu-
ments it carries. The message object can also be classified according to all type tags
with which it was annotated using the @ syntax. Hence, for a message msg constructed
as .m()@Type, evaluating is: msg taggedAs: Type yields true.

Reflection

Computational reflection allows programs to reason about themselves [Smi84, Mae87].
AmbientTalk provides extensive support for reflection by means of a mirror-based ar-
chitecture [BU04]. AmbientTalks metalevel architecture combines mirror-based reflec-
tion with intercession – the ability of programs to change the semantics of the program-
ming language.

AmbientTalks mirror-based architecture has been inspired by that of Self [US87].
The following code excerpt shows how one may reflectively manipulate an instance of
the Point object defined earlier in section 4.1.13.

1 def p := Point.new(2,3);
2
3 // retrieve a mirror by invoking reflect:
4 def mirrorOnP := (reflect: p);
5
6 // read the contents of a field via its mirror
7 mirrorOnP.grabField(‘x).value; // 2
8
9 // reflectively invoke a field access

10 mirrorOnP.invokeField(p, ‘x); // 2
11
12 // retrieve a mirror on a method
13 mirrorOnP.grabMethod(‘init); // <mirror on method:init>
14
15 // reflectively invoke a method
16 mirrorOnP.invoke(p, ‘distanceToOrigin, []);
17
18 // print all method names
19 mirrorOnP.listMethods.each: { |method| system.println(method.name) };
20
21 // add a z coordinate
22 mirrorOnP.defineField(‘z, 0);

A mirror is a metaobject which is causally connected [Mae87] to the object it mir-
rors: if the object is changed by base-level code, the changes can be observed via the
mirror. Conversely, changes applied explicitly to the object via the mirror modify the
actual base level object. The above examples illustrate various forms of reflection.
Using the terminology of Kiczales et al. [KR91], AmbientTalk mirrors support:

Introspection: the retrieval of fields and methods (cf. grabField, grabMethod and
listMethods).

Invocation: the explicit invocation of methods (cf. invoke). The arguments passed to
invoke are a receiver (any object), a selector (a symbol) and actual arguments
(a table). The receiver parameter is the object to which self is bound during

3In AmbientTalk, a backquote character is used to quasi-quote an expression (cf. quasi-quoting in Scheme
[Dyb09]). A quasi-quoted expression evaluates to an object representing the expression’s abstract syntax tree.
Quasi-quoting an identifier evaluates to a symbol.

86 CHAPTER 4. AMBIENTTALK/2

method invocation. If this receiver is the same as the object being mirrored
(p in the example), the reflective call expresses a standard method invocation.
If the receiver object is a different object, the reflective call expresses explicit
delegation.

Self-modification: the addition of new fields and methods (cf. defineField).

Mirrors on objects are accessed by calling the reflect: function. The reflect:

function in turn creates a mirror by calling a factory method, which can be replaced by
metaprograms. Because a mirror on an object obj is retrieved via a separate mirror fac-
tory (via reflect: obj), rather than by querying the object itself (e.g. via obj.reflect),
the association between objects and their metaobjects can be separated from base level
concerns. Separating mirrors from their associated base level objects in this way is
what makes the mirror architecture stratified.

Mirages: Mirror-based Intercession

In this section, we describe how an AmbientTalk programmer can provide his own
definition for methods of AmbientTalk’s metaobject protocol, such as e.g. the invoke

operation used in the previously shown Point example. This form of reflections is
called intercession by Kiczales et al. [KR91]: the ability of metaprograms to modify
the behavior of objects. As a language laboratory, AmbientTalk relies heavily on in-
tercession to develop new language constructs. For example, the implementation of
“thing” objects denoting RFID-tagged objects discussed in the next section relies on
intercession.

A mirage is a base-level object that is causally connected to a mirror object with
a customized MOP. In order to clarify this, consider the archetypical example of in-
tercepting and logging all methods invoked on an object. First, we define a prototype
mirror object that encodes the logging behavior by overriding the default implementa-
tion of the invoke metalevel operation:

1 def LogMirror := extend: actor.defaultMirror with: {
2 def invoke(rcvr, selector, args) {
3 system.println("invoked "+selector+" on "+self.base);
4 superˆinvoke(rcvr, selector, args); // perform default behavior
5 };
6 };

To facilitate the development of mirror objects which require only small changes with
respect to the default language semantics, AmbientTalk actors implement a prototypi-
cal mirror object named the defaultMirror which encapsulates AmbientTalks default
metaobject protocol. The defaultMirror makes the native metaobject protocol im-
plementation explicitly accessible while keeping it encapsulated behind the protocol’s
interface. The LogMirror leaves all metalevel operations intact save invoke.

A mirror can refer to the object with which it is causally connected by invoking
self.base. The above mirror is but a prototype implementation: it is not yet causally
connected to any object. A mirror object can only modify the interpreter when a mirage
object is defined that is explicitly mirrored by that mirror object. The code excerpt
below redefines the Point prototype from the previous section as a mirage, of which
the meta-behavior is now defined by the LogMirror:

1 def Point := object: {
2 /* the original implementation */
3 } mirroredBy: LogMirror;

4.1. AMBIENTTALK/2 87

The object:mirroredBy: language construct associates a mirage base level object
with its corresponding mirror metaobject. When the mirage is constructed, it becomes
causally connected with its mirror. The latter then effectively becomes absorbed by
the interpreter. For example, evaluating Point.new(1,1).distanceToOrigin() now
triggers the custom invoke method defined by the LogMirror. The details on how
the causal connection between a mirage and its associated mirror is constructed and
maintained is described in more detail by Mostinckx et al. in [MVTT07].

First-class Abstract Syntax Trees and Environments

AmbientTalk treats syntax trees as first-class values. For example, the code of a method
body obtained using the mirror interface described before in section 4.1.2, returns such
a syntax tree. Alternatively, reading (i.e. parsing) source code is a reified operation that
can be used to construct syntax trees as well. In fact, AmbientTalk reifies the read,
eval and print operations of its interpreter, similar to the quoting and quasiquoting
mechanism of languages such as Scheme [Dyb09]. This means that one can read any
string and get the corresponding syntax tree for it, evaluate any syntax tree and get a
value for it, and print any value and get a string representation of the value. Consider
the example below:

read: "1+2"; // >> 1.+(2)

Syntax trees are regular AmbientTalk objects, represented as symbols (i.e. quoted ex-
pressions). Hence, the value ‘1.+(2) is an AmbientTalk symbol that can be further
used in metaprogramming operations.

Once a syntax tree object is obtained, it can be evaluated. AmbientTalk goes one
step further than Scheme by offering an eval:in: construct (as opposed to Scheme’s
eval primitive). This construct takes two arguments. The first argument is the syntax
tree object to evaluate and the second object is the environment or scope in which the
code represented by the syntax tree object will be evaluated. Hence, environments
are first-class values as well in AmbientTalk. In fact, environments are represented as
regular objects in AmbientTalk. Consider the code below:

1 def o := object: {
2 def x := 4
3 def sum(x, y) { x+y };
4 };
5
6 eval: ‘x in: o; // >> 4
7 eval: (read: "sum(5, x)") in: o; // >> 9

The object o defined above also represents an environment with two variables defined:
the field x and the function sum4. When evaluating expressions represented as syntax
tree objects, these variables are dynamically bound to free variables in these expres-
sions.

4.1.3 Concurrent Programming in AmbientTalk
In AmbientTalk, concurrency is spawned by creating actors: one AmbientTalk vir-
tual machine may host multiple actors which run concurrently. AmbientTalk’s con-
currency model is based on the communicating event loops model of the E language

4Naturally, it also contains the variables super and self.

88 CHAPTER 4. AMBIENTTALK/2

[MTS05a], which is itself an adaptation of the well-known actor model [Agh86]. The
model combines actors and objects into a unified concurrency model. Unlike previous
actor languages such as Act1 [Lie87], ABCL [YBS86] and Actalk [Bri88], actors are
not represented as “active objects”, but rather as vats (containers) of regular objects,
shielding them from harmful concurrent modifications. Within the confines of one sin-
gle vat, computation happens sequentially. Incoming messages from objects living in
other vats are processed in a serial manner in order to ensure that no race conditions
can occur on the internal state of the objects within the vat.

Each vat contais an event loop, which is a thread of execution that perpetually pro-
cesses events from its event queue by invoking a corresponding event handler. Hence
communication between two vats happens because their event loops exchange mes-
sages. In later chapters, we will use actor, vat and event loop interchangeably to denote
the same concept, i.e. AmbientTalk’s unit of concurrency. Communicating event loops
enforce three fundamental concurrency control properties:

Property 1: serial execution An event loop processes incoming events from its event
queue one by one, i.e. in a strictly serial order.

As a consequence, the handling of a single event happens in mutual exclusion with
respect to other events. Hence, race conditions on an event handler’s state caused by
concurrent processing of events cannot occur.

Property 2: non-blocking communication An event loop never suspends its execu-
tion to wait for another event loop to finish a computation. Rather, all communication
between event loops occurs strictly by means of asynchronous event notifications.

As a consequence of non-blocking communication, event loops can never deadlock
one another. However, in order to guarantee progress, an event handler should not
execute e.g. infinite while loops. Rather, long-lasting actions should be performed
piecemeal by scheduling events recursively, such that an event loop always gets the
chance to respond to other incoming events.

Property 3: Exclusive state access Event handlers and their associated state belong
to a single event loop. In other words, an event loop has exclusive access to its mutable
state.

As a consequence, two or more event loops never share synchronously accessible
mutable state. Because event handlers are not shared between event loops, they never
have to lock mutable state.

Event loop concurrency avoids deadlocks and certain race conditions by design. The
nondeterminism of the system is confined to the order in which events are processed. In
standard preemptive thread-based systems, the nondeterminism is more substantial be-
cause threads may be pre-empted upon each single instruction. In the following section,
we describe how the abstract event loop model is incorporated into the AmbientTalk
language.

AmbientTalk Actors

As mentioned earlier, AmbientTalk actors are event loops: the event queue is repre-
sented by an actor’s message queue, events are represented as messages, event noti-
fications as asynchronous message sends, and event handlers are represented as (the

4.1. AMBIENTTALK/2 89

methods of) regular objects. The actor’s event loop thread perpetually takes a message
from the message queue and invokes the corresponding method of the object denoted
as the receiver of the message. Messages are processed serially to avoid race conditions
on the state of regular objects.

Each AmbientTalk object is said to be owned by exactly one actor. This ownership
relation is established upon object creation and cannot change during the lifetime of the
object. Only an object’s owning actor may directly execute one of its methods. Objects
owned by the same actor may communicate using standard, sequential message passing
or using asynchronous message passing. AmbientTalk borrows from E the syntactic
distinction between sequential message sends (expressed as o.m()) and asynchronous
message sends (expressed as o<-m()). It is possible for objects owned by an actor
to refer to objects owned by other actors. Such references that span different actors
are named far references (the terminology stems from E [MTS05a]) and only allow
asynchronous access to the referenced object. Synchronous access to an object via a
far reference raises a runtime exception. Any messages sent via a far reference to an
object are enqueued in the message queue of the actor owning the object and processed
by the owner itself.

Figure 4.1 illustrates AmbientTalk actors as communicating event loops. The dashed
lines represent an actor’s event loop which perpetually takes messages from its mes-
sage queue and synchronously executes the corresponding methods on its owned ob-
jects. The control flow of an actor’s event loop never “escapes” its actor boundary.
When communication with an object in another actor is required, a message is sent
asynchronously via a far reference to the object. For example, when A sends a mes-
sage to B, the message is enqueued in the message queue of B’s actor which eventually
processes it.

Figure 4.1: AmbientTalk actors as communicating event loops.

A far reference encapsulates a copy of the set of type tags with which its target
object is tagged. This implies that a type test can be performed locally on a far reference
to an object, which explains why the set of type tags of an object must remain constant:
the far reference maintains a copy of that set on a potentially remote device.

Every AmbientTalk interpreter starts its execution with a single actor. An actor can
spawn new actors by invoking actor: { ... }. When a new, empty, actor is created it
evaluates the code passed to the actor: primitive in order to construct the first object it
will own. The return value of the actor: primitive is a far reference to this object, thus
allowing the creating actor to communicate with the new object owned by the created
actor.

90 CHAPTER 4. AMBIENTTALK/2

Message Passing Semantics

In AmbientTalk, asynchronous messages can be sent between objects owned by the
same or by different actors. In the case where both sender and receiver are owned by the
same actor, the message is simply added to the owner’s message queue and parameters
are passed by reference, exactly as is the case with synchronous message sending.
For inter-actor message sends, where an object sends an asynchronous message via
a far reference to an object owned by another actor, objects are parameter-passed by
far reference: the parameter of the invoked method is bound to a far reference to the
object. In either case, messages are guaranteed to be delivered to an object in
the same order as they were sent. Consider the following example, assuming that
the code on the left-hand and the right-hand side is executed in two different actors:
def arg := object: { ... };

obj<-m(arg);

def obj := object: {
def m(par) { ... };

};

In the method body of m, par will be bound to a far reference to arg.
In some cases, the remotely invoked method may want to access its argument syn-

chronously. To this end, AmbientTalk introduces the notion of an isolate object. Iso-
lates are objects that are passed by copy over a far reference. This allows the recipient
actor to operate on the copy synchronously, without additional inter-actor communica-
tion and without violating the exclusive state access property. When an isolate is copied
during parameter-passing, all objects it directly refers to are recursively parameter-
passed (according to their own semantics). The following code provides an example of
an isolate:

1 def ComplexNumber := isolate: {
2 def re := 0;
3 def im := 0;
4 def init(r,i) { re := r; im := i; };
5 // ...
6 };

Isolates are regular objects, with two notable differences. First, as already re-
marked, they are passed by copy across far references. Second, isolates cannot use
any free lexically visible names. Isolates are thus completely isolated pieces of code,
without any implicit dependencies on the surrounding scope – hence their name. Iso-
lates are best thought of as if they were lexically defined at the top-level. Isolates are
disallowed access to their lexical scope because they are copied during parameter pass-
ing. The restriction avoids having to implicitly copy any lexically visible variables
referred to by the isolate.

Futures

By default, an asynchronous message send does not return a meaningful value (i.e. it
returns nil). However, this can make the processing of return values quite cumber-
some, because objects owned by different actors must always explicitly signal their
return value as an asynchronous reply message to the sender of the original message.
Of course, this original sender must implement the corresponding method (i.e. a call-
back method) to process the return value.

In order to better reconcile return values with asynchronous message sends, Ambi-
entTalk employs the notion of a future (also known as a promise). This is a frequently
recurring language abstraction in concurrent programming languages [BGL98]. In

4.1. AMBIENTTALK/2 91

AmbientTalk, a future is a placeholder for the return value of an asynchronous mes-
sage send. Once the return value is known, it “replaces” the future object; the future is
said to be resolved with the value. The example shown below illustrates the creation of
a future through an asynchronous message send.

def sumFuture := calculator<-add(x,y);

This makes the handling of return values syntactically identical to that of the fa-
miliar synchronous message send. However, we have yet to explain how objects can
synchronize on the actual value represented by the future. In many programming lan-
guages, futures act as synchronization barriers while: if code tries to access the futures
value before the future is resolved, the thread of control is suspended until the value has
been computed. In a language with communicating event loops, however, such a se-
mantics would violate the non-blocking communication property. It would imply that
an event loop can suspend in a state other than when its event queue is empty. Hence,
the event loop would become unresponsive to other events, and the entire system be-
comes prone to deadlock once again.

AmbientTalk avoids the wait by necessity semantics and instead employs the se-
mantics first introduced by promises in E [MTS05a]. An actor can register its interest
in the resolved value of the future by registering an observer – a closure, to be precise
– that will be invoked later, when the future has become resolved. This observer serves
as a callback or event handler that will be invoked when the future is resolved. The
advantage over explicit asynchronous callback messages is that such a callback closure
resides in and captures the lexical scope of the expression in which it is registered, as
shown below:

1 def sumFuture := calculator<-add(x,y);
2
3 when: sumFuture becomes: { |sum|
4 system.println("result: " + sum);
5 };

The when:becomes: construct shown above takes a future and a block closure as its
arguments, and registers the closure as an observer on the future. If the future is re-
solved, the closure is applied to the resolved value. Multiple observer closures may
be registered on the same future. Note that the when:becomes: function itself returns
immediately. The code specified in the block closure is always delayed, i.e. it is exe-
cuted after the code following the call to when:becomes:, even if sumFuture is already
resolved at the time the observer is registered. It is also guaranteed to be executed by
the same actor that performed the asynchronous message send. Hence, the execution of
the observer is always serialized with respect to other activities within the same actor.

The block closure passed to when:becomes: acts as an in-line event handler. It ef-
fectively enables the sender of an asynchronous message to synchronize on and process
the result of that message in the scope where it was sent. Because block closures close
over their lexical scope, all variables in scope at the time the message was sent are still
available when handling the return value at a later point in time. The programmer does
have to be aware of the fact that the values of the variables in scope may have changed
since the time the message was sent, as other code may have run within the actor while
the code was delayed.

Asynchronous Exception Handling A final aspect of synchronizing on a future is
dealing with exceptions. AmbientTalk features a standard exception model that allows

92 CHAPTER 4. AMBIENTTALK/2

objects to be raised and caught as exceptions. When an exception is raised inside
an asynchronously invoked method, the exception propagates up to the level of the
asynchronous invocation. At this point, the only available continuation is the future
attached to the message. In order to signal the exception to the sender, the future is
ruined with the exception. When a future is ruined, regular observers on the future are
not triggered. However, a separate exception handler can be specified as follows:

1 def quotientFuture := calculator<-divide(x,y);
2
3 when: quotientFuture becomes: { |quotient|
4 system.println("result: " + quotient);
5 } catch: DivisionByZero using: { |e|
6 system.println("error: divided "+ x +" by zero");
7 };

In AmbientTalk, exception types are modeled using type tags. Hence, it is assumed
that DivisionByZero is a type tag. Should quotientFuture become ruined with (a
subtype of) DivisionByZero, the second block closure is applied to the exception.
This enables the handling of asynchronously raised exceptions much in the same way
as the well-known try-catch construct is used for regular exception handling.

The return value of a call to when:becomes:catch:using: is itself a future. The
future is resolved with the return value of an observer block closure, or ruined if an
exception occurs during the execution of that closure. In effect, the future that is re-
turned by when:becomes: is dependent on the future on which it operates: resolving or
ruining the latter eventually leads to resolving or ruining the former.

4.1.4 Distributed Programming in AmbientTalk
In this section, we proceed from concurrent to distributed programming in Ambi-
entTalk. Actors can be distributed across a network, each hosted by different Am-
bientTalk interpreters. The major difference between single-machine and distributed
programming is the possibility of partial failures, the phenomenon whereby remote
objects may not respond to messages, due to either a network or a machine failure.
The second important issue is service discovery, the goal of which is to acquire a first
reference to a remote object.

Object Unit of designation
Actor Unit of concurrency
Interpreter Unit of partial failure
Java Virtual Machine Unit of termination

Table 4.1: Overview of AmbientTalk’s units of operation.

Before continuing, a brief word on terminology. We have previously mentioned
that an actor is said to own one or more objects. Likewise, an AmbientTalk interpreter
is said to host one or more actors. Because AmbientTalk is currently implemented
in Java, a single Java Virtual Machine can be said to host one or more AmbientTalk
interpreters. Two objects are said to be local when they are owned by the same actor.
Objects are considered remote when they are owned by different actors, even if those
actors are hosted by the same interpreter. Within one interpreter there is no notion
of partial failure: connections between actors within a single interpreter never fail.

4.1. AMBIENTTALK/2 93

Hence, interpreters are the unit of partial failure. Within one JVM, there is no notion of
“crashes”: either all interpreters within a single JVM are terminated, or none of them
are. Hence, JVMs are the unit of termination. Table 4.1 summarizes AmbientTalk’s
units of operation.

Recall from section 4.1.3 that references between objects owned by different actors
are always far references which only permit asynchronous access to their target object.
Because objects residing on different devices (i.e. in distinct interpreters) are neces-
sarily owned by different actors, far references are the only kind of remote object
references in AmbientTalk. This ensures by design that all distributed communica-
tion is asynchronous, as required by the non-blocking communication characteristic of
the ambient-oriented programming paradigm.

Far References and Partial Failures

AmbientTalk’s far references are by default resilient to failures. When a failure occurs,
a far reference becomes disconnected. However, a disconnected far reference buffers
all messages sent to it. When the failure is restored at a later point in time (e.g. a
network partition is healed), the far reference flushes all accumulated messages to the
remote object in the same order as they were originally sent. Hence, messages sent to
far references are never lost. Making far references resilient to failures by default is
one of the key design decisions that make AmbientTalk’s distribution model suitable
for mobile ad hoc networks, because temporary network failures have no immediate
impact on the application’s control flow. This behavior is desirable in mobile networks
because it can be expected that many partial failures are the result of temporary network
partitions. However, perhaps a machine has crashed beyond recovery, or it has moved
out of the wireless communication range and does not return. Such persistent failures
also need to be dealt with. We postpone this discussion until the next section.

AmbientTalk allows to monitor connectivity with remote objects by means of two
event handlers that are both illustrated in the following example. In the example, the
GUI of an instant messenger application uses these event handlers to indicate whether
a buddy in the user’s buddy list is online or not.

1 // buddy is a far reference to an instant messaging peer
2 whenever: buddy disconnected: {
3 gui.markOffline(buddy);
4 };
5 whenever: buddy reconnected: {
6 gui.markOnline(buddy);
7 };

The event handlers are registered by applying primitive functions that both take a
far reference and a nullary closure as their arguments. The closure is applied when-
ever5 the interpreter detects the disconnection (respectively reconnection) of the object
referred to by the far reference.

The return value of both failure event handlers is a subscription object with a single
method, named cancel. When invoked, it cancels the registration of the event handler
with the interpreter, such that the closure will no longer be triggered.

Ruining futures in response to persistent failures Unfortunately, it is impossible to
distinguish network failures from device failures [WWWK96]] and even if it is a net-

5AmbientTalk also supports when:disconnected: and when:reconnected: event handlers that
are only triggered once.

94 CHAPTER 4. AMBIENTTALK/2

work failure, one cannot distinguish transient from permanent failures [Wal01]. The
best the programmer can do is to choose a timeout period that will treat the failure as
“permanent” as soon as it persists long enough. AmbientTalk allows the expression
of such timeouts either at the level of far references or at the level of individual asyn-
chronous messages. Timeouts at the level of eventual references are part of a leasing
strategy, which are not used in the rest of this dissertation and which we will not dis-
cuss for the sake of brevity. Here, we focus on timeouts associated with individual
asynchronous messages. If the future associated with a message annotated with a time-
out is not resolved within the timeout period, the future is automatically ruined by the
system with a TimeoutException. The following code shows how a timeout can be
specified and dealt with:

1 when: buddy<-chat(aTextMessage)@Due(minutes(1)) becomes: { |ack|
2 // message received successfully
3 } catch: TimeoutException using: { |e|
4 // message timed out
5 };

In the above example, if the chat message is not replied to within 1 minute, the excep-
tion handler is triggered (i.e. asynchronously applied). The @ syntax allows a message
to be annotated with one or more type tags. The Due type tag can be used to associate
a timeout period with a message.

When performing failure handling, one should always be aware of the fact that the
message may still have been received by the remote party. It may even be possible that
the receiver sends a reply after the timeout period has already expired. In this case,
the future will silently ignore the return value, as it has been previously ruined with a
TimeoutException.

Exporting Objects

Objects can acquire far references to objects or copies from isolates by means of
parameter-passing or return values from inter-actor message sends. It remains to be
explained how objects can acquire an initial far reference to an object by a remote ac-
tor. In order to make it possible for an object to be discovered by remote actors, the
object must be explicitly exported. The same is true for isolate objects, but instead of a
far reference, a copy is exported.

An object always has to be exported with a corresponding type tag. The type tag is
used to classify what kind of service the object provides. It plays a role similar to the
topic in traditional publish/subscribe architectures. The subtyping mechanism of type
tags allows objects to be published in a hierarchical classification. It is assumed that
all distributed peers attribute the same semantics to the names of type tags, and define
the same type hierarchy. The following example shows how to export an object as an
instant messenger chat peer:

1 deftype InstantMessenger;
2
3 def peer := object: {
4 def chat(textMessage) { ... };
5 };
6
7 export: peer as: InstantMessenger;

From the moment an object is exported, it is discoverable by objects owned by other
actors by means of its associated type tag. The export:as: primitive returns a publica-

4.1. AMBIENTTALK/2 95

tion object pub which can be used to “unexport” the object by invoking pub.cancel().
An unexported object can no longer be discovered by remote objects. However, far
references referring to the unexported object remain valid, so an unexported object can
still be remotely referred to.

Service Discovery

The AmbientTalk interpreter has a built-in service discovery mechanism that enables
the discovery of remote objects in a peer-to-peer manner. The mechanism is fully
decentralized, no servers or other infrastructure are required. Objects that want to
be notified by the interpreter of available remote objects do so via a discovery event
handler:

def subscription := whenever: InstantMessenger discovered: { |messenger|
buddyList.add(messenger);

};

A discovery event handler is registered by calling the whenever:discovered: prim-
itive (or the when:discovered: variant) which takes as arguments a type tag and a
unary closure. Whenever an actor is encountered in the network that exports a match-
ing object, the closure is triggered on (i.e. asynchronously applied to) a far reference to
the discovered object. Hence, the parameter of the block closure is the initial far ref-
erence to a remote object, from which other far references may be derived by message
passing.

An object matches a discovery request if its exported type tag is a subtype of the
type tag argument to the discovery event handler. This implies that service discovery
is polymorphic: a discovery request for a Printer may be satisfied by a ColorPrinter

object, provided that the ColorPrinter tag is a subtype of Printer. A discovery re-
quest only triggers on objects owned by other actors; an actor does not discover its
own exported objects. It is possible for whenever:discovered: to trigger on the same
remote object multiple times (e.g. when a temporary network partition is healed). The
programmer should thus take this possibility into account.

Analogous to the return value of the failure event handlers discussed in section 4.1.4,
the discovery event handler returns a subscription object of which the cancel() method
cancels the registration of the closure. There exists a variant event handler, accessible
as a primitive named when:discovered:, which only applies the closure to the first
matching discovered object, and afterwards automatically cancels its registration.

4.1.5 Designating Groups of Objects with Ambient References
When writing AmbientTalk code to query nearby services for data (e.g. all nearby tem-
perature sensors in a wireless sensor network), a form of multicast is needed. To ease
the writing of multicast queries in AmbientTalk, a dedicated data type was introduced
called ambient references [Van08]. Ambient references denote a collection of nearby
services of the same type. This collection is constantly kept up-to-date with the prox-
imate physical environment: newly discovered services are added to the collection,
while unresponsive services are removed from it.

Sending a message to an ambient reference can happen in different ways, depending
on how the message is annotated with dedicated type tags. A first example is given
below.

96 CHAPTER 4. AMBIENTTALK/2

1 def sensors := ambient: TemperatureSensor;
2
3 when: sensors<-getTemp()@Any resolved: { |temperature|
4 // process the sensed temperature
5 };

The keyword ambient: allows one to create an ambient reference given a type tag.
The variable sensors contains an ambient reference that constantly refers to all nearby
services exported as TemperatureSensor. In the above example, the message getTemp

sent via the ambient reference sensors is annotated with @Any. This will cause the
ambient reference to send the message to any discovered object exported as
TemperatureSensor.

Ambient references, however, allow to vary their message sending behavior by
annotating the messages sent via them differently. For example, consider a variation
on the example given above where the getTemp message should not only be sent to a
single temperature sensor, but to all sensors in range. This can happen in two ways.
Either the message is annotated with @All, which will cause the ambient reference to
perpetually discover new temperature sensors and sending them the getTemp message
during its life span6.

A message can also be annotated with an expiration period. If a message has an
expiration period, it will keep discovering new matching services and sending them the
tagged message until its expiration period has elapsed. This is shown in the example
below:

1 def sensors := ambient: TemperatureSensor;
2
3 whenAll: sensors<-getTemp()@Expires(5.seconds) resolved: { |temperatures|
4 // process the sensed temperature values
5 };

In the above example, the message getTemp() is asynchronously multicast to these
services with an expiration period of 5 seconds. This implies that the message may
be received by all proximate sensors at the time it is sent, as well as to all additional
sensors discovered within the next 5 seconds.

The whenAll:becomes: control structure allows the programmer to install an event
handler that can be used to gather the results of the query. Within this event handler,
temperatures refers to an array containing the readouts of the sensors that replied. The
event handler is triggered when the message’s expiration period has elapsed. Ambient
references support only weak delivery guarantees: some sensors may not have received
the getTemp() message, and some replies to the message may have gotten lost or may
arrive too late, in which case they are discarded.

Similarly, there is also a whenEach:resolved: event handler that is invoked each
time a new reply for the message sent over the ambient reference is received.

The above example shows how ambient references relieve the programmer from
having to deal explicitly with the events of discovery and loss of nearby services: am-
bient references transform these events into additions to or removals from the collection
they designate. However, the programmer must still deal with the replies to the query
by means of the whenAll:becomes: or whenEach:resolved: event handlers. For ex-
ample, to keep an average temperature up to date by means of the temperature readings
received from multiple sensors, one must resort to the following event-driven code:

6Additionally, the message can be annotated with @Once together with @All, which causes the ambient
reference to multicast the message only to the services in range at that specific point in time

4.1. AMBIENTTALK/2 97

1 def totalTemp = 0;
2 def counter := 0;
3 def averageTemp = 0;
4
5 def sensors := ambient: TemperatureSensor;
6
7 whenEach: sensors<-getTemp()@All resolved: { |newTemp|
8 totalTemp := totalTemp + newTemp;
9 counter := counter + 1;

10 averageTemp := totalTemp / counter;
11 };

4.1.6 Linguistic Symbiosis with the JVM
AmbientTalk objects can access objects in the underlying Java Virtual Machine (JVM)
by means of a technique known as a linguistic symbiosis [GWDD06]. This will be
used in the following chapter to connect an AmbientTalk program to a sensor (an RFID
reader) with which AmbientTalk programs interact using a Java API.

AmbientTalk’s symbiosis layer offers both a data mapping and a protocol mapping.
The former ensures that data in one language looks like data in the other language,
such that the symbiosis becomes syntactically transparent. For example, JVM objects
are represented as objects in AmbientTalk, such that messages can be sent to objects
regardless of their native language. AmbientTalk’s data mapping is similar to that of
other dynamic languages implemented on top of the JVM. In a nutshell, JVM values
are either mapped to primitive AmbientTalk objects where possible (for example, a
boolean is mapped onto the true or false prototype in AmbientTalk) or are otherwise
represented as regular AmbientTalk objects.

The latter allows that both AmbientTalk and JVM objects communicate by sending
messages, but AmbientTalk is dynamically typed while the JVM is statically typed and
exploits type overloading during method lookup. The symbiosis attempts to resolve
overloading automatically by inspecting the type and number of actual arguments. If
automatic overloading fails, the AmbientTalk programmer is forced to pass type infor-
mation in the call (how this is done is thoroughly explained in [VMD07]).

Primitive AmbientTalk objects are mapped to primitive JVM values when possible
(e.g. an AmbientTalk integer is mapped to an int). If such a conversion is not possible,
the AmbientTalk/JVM symbiosis can represent the AmbientTalk object as a regular
JVM object, but only if the static type of the variable which is to hold that JVM object
is an interface type. This means that for every AmbientTalk object used from within
Java code, the programmer must explicitly create a corresponding interface.

1 def Button := jlobby.java.awt.Button;
2 def button := Button.new("Click me");
3
4 button.addActionListener(object: {
5 def actionPerformed(actionEvent) {
6 system.println("The button was pressed");
7 };
8 });

To illustrate how AmbientTalk objects can be passed to JVM objects, consider the ex-
ample shown above. It shows the archetypical pattern of registering a listener object on
a button GUI widget to act upon event notifications (written in AmbientTalk, but using

98 CHAPTER 4. AMBIENTTALK/2

the actual Java AWT framework)7. The above code demonstrates that an instance of the
Java class java.awt.Button appears as an AmbientTalk object button. It also demon-
strates that AmbientTalk text ("Click me") is transparently converted by the symbiosis
into a java.lang.String. The addActionListener method defined on instances of the
Java Button class takes a parameter of type ActionListener as its argument, which is
an interface type. As a result, it is allowed to pass any AmbientTalk object to this
method; the object is not even required to implement all declared interface methods,
although the anonymous object passed in the above code does properly implement the
ActionListener interface. The symbiosis transparently wraps the AmbientTalk object
into a wrapper implementing the ActionListener interface. The AWT framework will
invoke the actionPerformed method on the wrapper whenever the button is pressed.

For a discussion how the concurrency issues are resolved when combining Ambi-
entTalk’s event loop model with the JVM’s concurrency model based on threads, we
refer to the article “Linguistic Symbiosis Between Event Loop Actors and Threads”
[VMD08].

4.1.7 Summary
AmbientTalk is especially suitable for mobile ad hoc network applications due to its
strictly asynchronous communication between objects owned by different actors. The
built-in message queues of actors and eventual references decouple communication in
time and synchronization, making the application resilient to transient network fail-
ures. The failure handling strategy of buffering messages while disconnected is a good
default if failures are mostly engendered by temporary network partitions.

A traditional RPC or RMI communication model is not able to provide a similar
decoupling. To abstract over temporary failures, objects would either remain blocked
waiting for an outstanding RPC to a disconnected object (making the application un-
responsive), or the RPC would fail, forcing the programmer to deal with every failure,
even if it is only temporary. On the other hand, purely undirected communication –
such as for example in some tuple space systems [MPR01] and publish/subscribe –
makes it harder to designate a single remote object. Asynchronous communication
over far references seems a good middle ground.

In mobile ad hoc networks, services have to be discovered in the proximate en-
vironment as devices are roaming. Since no shared infrastructure is available objects
should not be required to rely on a third party to discover one another. To enable decen-
tralized service discovery, each AmbientTalk interpreter is equipped with a topic-based
publish/subscribe engine. The topics are the type tags used to classify objects in a
meaningful way, independent of any particular device address, catering to anonymous
interactions among objects. Each actor can independently export objects and subscribe
to be notified of objects that become available. Hence, AmbientTalk applications are
conceived as decentralized event-driven architectures, where application components
(services) are discovered by means of some abstract description, such as a type tag act-
ing as a topic in AmbientTalk. Such architectures allow loose coupling between these
components such that they can be dynamically matched to each other in a mobile ad
hoc network and allows them to be resilient to the volatile connections that interconnect
them.

7The jlobby object is a special AmbientTalk object of which the fields correspond to packages and
classes available in the underlying JVM.

4.2. THE INVERSION OF CONTROL PROBLEM 99

Finally, AmbientTalk is conceived as an extensible language laboratory. It is ex-
tended with new language constructs through its reflection and metaprogramming fa-
cilities. Still, it can be used for realistic applications due to its full language symbiosis
with the underlying Java Virtual Machine.

For these reasons, we will rely in the rest of this dissertation on (a variant of)
AmbientTalk to implement ambient-oriented dataflow programs.

4.2 The Inversion of Control Problem
In the previous section, we have given an overview of the AmbientTalk ambient-
oriented programming language and concluded it offers a solid basis for mobile RFID-
enabled applications. Still, using such an ambient-oriented programming language
comes with a price. Ambient-oriented applications are entirely event-driven. They
consist of event handlers that are asynchronously invoked when new services move
into range, move out of range, move back in range, or signal requests to each other.
Table 4.2 lists the callbacks that must be manually coordinated by the programmer and
their role in AmbientTalk programs.

when:discovered: Reacting on the discovery of a new object.
when:disconnected: Reacting on the disconnection of an object.
when:reconnected: Reacting on the reconnection of an object.
when:becomes: Reacting on the reply (future) to an asynchronous

message.
when:becomes:catch: Reacting on a distributed exception (future)

caused by an asynchronous message.
whenEach:becomes: Reacting on the individual replies to asynchronous

messages sent to a group.
whenAll:becomes: Reacting on the replies to asynchronous messages

sent to a group as a whole.

Table 4.2: Different callbacks in an AmbientTalk application.

Although AmbienTalk’s concurrency model based on event loops and its support
for first-class block closures circumvents some inconveniences resulting from event-
driven code, from a software engineering perspective, such event-driven code still ex-
hibits a number of undesirable properties. These problems are described by a concept
known as inversion of control [HO06].

Consider an AmbientTalk application that must react on the appearance of a certain
service together with the reception of a reply to an asynchronous message (to a different
remote object), as shown below.

1 def NOTHING := ‘NOTHING;
2 def SERVICE := ‘SERVICE;
3 def REPLY := ‘REPLY;
4 def READY := ‘READY;
5
6 def state := NOTHING;
7
8 whenever: ServiceType discovered: { |service|
9 if: ((state == REPLY).or: { state == READY }) then: {

10 state := READY;

100 CHAPTER 4. AMBIENTTALK/2

11 executeReady(); // Execute actual reaction
12 } else: {
13 state := SERVICE;
14 };
15
16 when: service disconnected: {
17 if: (state == READY) then: {
18 state := REPLY;
19 } else: {
20 state := NOTHING;
21 };
22 };
23 };
24
25 when: obj<-message() becomes: { |reply|
26 if: ((state == SERVICE).or: { state == READY }) then: {
27 state := READY;
28 executeReady(); // Execute actual reaction
29 } else: {
30 state := REPLY;
31 };
32 };

Such code exhibits a number of software engineering issues that are formulated by
Maier et al. in their technical report [MRO10] on a dataflow programming library
for the Scala language in the context of a graphical user interface library. We repeat
them below, but shift the problem domain to distributed AmbientTalk applications and
slightly adapt them to the language features offered by AmbientTalk.

Side-effects or code nesting Event handlers or callbacks promote side-effects. Since
callbacks are stateless, we often need several of them to simulate a state machine.
Consider the AmbientTalk code given above. Either the different states in which
the application can be are encoded in global variables that both callbacks side
effect, or, thanks to AmbientTalk’s event handlers based on block closures, one
event handler is nested in the other. In the second case, the control flow of the
application is both driven by the events as well as by how the event handlers
are nested. If not carefully designed, one event handler could never be triggered
because the enclosing event handler is never triggered. For example, note the
subtle interplay between a whenever:discovered: event handler and its nested
when:disconnected: event handler. The outside callback is triggered multiple
times, and in response the inner callback is registered again. In many other cases,
side-effects and global variables are required to implement the correct behavior.

Encapsulation Since the global variables mentioned in the previous item escape the
scope of the event handlers, event handlers break encapsulation.

Composability Multiple event handlers form a loose collection of objects that deal
with a single concern (or multiple, see next point). Since multiple event han-
dlers are installed at different points at different times, we cannot, for instance,
easily dispose them altogether. For example, the programmer must manually
cancel the event handlers of the example given above, or they will keep as-
signing the global variable of the example. This can interfere with newly reg-
istered event handlers, causing subtle and hard to track bugs. Furthermore, if
a whenever:disconnected: inner callback would have been used, the callback
should have been cancelled when it has finished executing, or it will be fired each
time the service disconnects.

4.2. THE INVERSION OF CONTROL PROBLEM 101

Scalability Adding more event sources to the example increase the complexity of the
application quadratically because more states must be encoded and checked, and
their transitions must be carefully managed. Furthermore, the code will be dis-
persed over different event handlers, maybe even separately developed.

Uniformity Although AmbientTalk offers a generic event loop model, the constructs
it offers for actually reacting to and processing specific events are ad hoc con-
structs tied to the specific event they are supposed to be used with. New types
of events require again adding new ad hoc constructs. In short, AmbientTalk has
no uniform representation for events and no uniform way of reacting to them
and processing them. This stems from the initial vision on event-driven ambient-
oriented programming that primarily dealt with asynchronously received mes-
sages or remote parties appearing and disappearing dynamically. The most ap-
parent issue in this code example are that different methods to install different
observers are needed, which decreases code uniformity.

Abstraction In the example above, we cannot abstract over the precise event sources.
For instance, replacing one of the event types with for example a user interface
event requires rewriting the entire example.

Semantic distance Ultimately, the example is hard to understand because the control
flow is inverted which results in too much boilerplate code that increases the
semantic distance between the programmers intention and the actual code.

Because of AmbientTalk’s event loop concurrency model, the overhead of trigger-
ing event-driven code is a fact of life and cannot be circumvented. Hence, we drop the
resource management item mentioned by Maier et al. Also, in this particular example,
the separation of concerns item is not applicable and is dropped as well. The first item
is concerned with the aggressive cancellation of unneeded callbacks to prevent the run-
time to taking them into account and by doing so wasting resources. The second item
is concerned with different concerns that are treated in the same code location.

Besides the items listed above, we identify one additional issue not listed by Maier
et al.:

Registration management When callbacks have to be explicitly registered and can-
celled, as in the example shown above, the programmer is burdened with making
sure that every single callback is correctly registered or cancelled at every point
in time to not miss specific events or to not execute unintended code in response
to an event. The registration of callbacks has to be managed throughout the life-
time of a program. Additionally, the order in which callbacks are registered also
determines the order in which they are executed when they are trigged by the
same event. Hence, their execution order could also introduce subtle bugs if not
carefully managed.

In general, in event-driven applications control flow management is partly the re-
sponsibility of the programmer instead of the runtime of the language. The control flow
is said to be inverted as events cause the asynchronous execution of code as opposed
to procedure or method calls which are associated with a calling context to return to by
the language runtime. The effect grows as more event types are added.

102 CHAPTER 4. AMBIENTTALK/2

4.3 Conclusion
Ambient-oriented programming is a paradigm the feature set of which is developed
specifically to accommodate the idiosyncratic properties of mobile ad hoc networks.
Such networks, composed of mobile devices with wireless communication links ex-
hibit two discriminating characteristics: connections between devices are volatile and
infrastructure is scarce or non-nexistent. Networks may be formed ad hoc simply by
colocating devices.

This requires distributed applications to be structured as autonomously and con-
currently running components that are loosely coupled with respect to time, space and
synchronization. In such spontaneously formed networks, in many cases several dis-
tributed components are functionally equivalent, or must be semantically addressed as
a single group. In such cases, this requires ambient-oriented applications to abstract
over communication arity as well.

AmbientTalk/2 is an ambient-oriented programming language embodying the para-
digm. AmbientTalk’s classless object model, its concurrency model based on com-
municating event loops, its asynchronous and reliable communication primitives, and
its decentralized service discovery mechanism offer a strong foundation for mobile
RFID-enabled applications, the type of ambient-oriented applications targeted in this
dissertation. AmbientTalk’s metaprogramming and reflection facilities together with
its linguistic symbiosis with the underlying JVM render it an attractive language for
experimenting with new language constructs.

Still, AmbientTalk’s event-driven execution model stemming from its adherence to
the paradigm forms the culprit of many software engineering issues found in event-
driven systems, such as inversion of control. Although many of AmbientTalk’s event
handling constructs return futures which in their turn will synchronize asynchronously
received messages, this requires converting synchronous code to asynchronous future-
based code, and ultimately, the introduction of callbacks. The effect is that when
larger applications are modularized, the asynchronous interplay between the modu-
larized parts quickly turn into collections of unpredictably firing callbacks that must
carefully coordinated by the programmer, and consist of fragile code due to their lack
of functional composition and encapsulation. This is aggravated by the lack of unifor-
mity in the language’s event handling constructs.

In the next section, we apply the principles of the paradigm through an extension
of AmbientTalk to mobile RFID-enabled applications where physical objects have an
object-oriented representation in the language. Naturally, this increases the amount
of events in ambient-oriented applications interacting with these objects. This leads
us to pursue an alternative paradigm for dealing with event-driven applications in the
subsequent chapters of this dissertation.

Chapter 5

Ambient-Oriented
Programming for Mobile
RFID-Enabled Applications

In the previous chapter, we explained AmbientTalk, an existing language for program-
ming mobile ad hoc network applications. In this chapter, we extend the programming
model of this language to represent RFID-tagged physical objects as remotely hosted
software objects, barring the distinction between software and “real” tagged objects.
We believe that such a uniform representation of all objects interacting in a software
system eases the development of mobile RFID-enabled applications. By doing so, we
open up the ambient-oriented programming paradigm from a network of devices to a
network of “things”.

The fundamental contributions discussed in this chapter are a technical one and a
conceptual one. The technical one is the realization of an ambient-oriented program-
ming framework for mobile RFID-enabled applications in AmbientTalk. The concep-
tual one is the extension of ambient-oriented programming to a setting where remote
objects can be hosted on devices which have no autonomous processing power, such
as RFID tags. Both contributions do not change the fundamental criteria of ambient-
oriented programming, but instead allow these criteria to be applied to a novel type of
applications.

First, in section 5.1 we motivate our design choices by mapping the program-
ming model requirements for mobile RFID-enabled applications put forward in chap-
ter 2, section 2.3 to a real-world example. Thereafter, section 5.2 discusses a num-
ber of changes to the base AmbientTalk language to be able to implement mobile
RFID-enabled applications. Building upon these changes, section 5.3 discusses how
our requirements for mobile RFID-enabled applications are satisfied by AmbientTalk
constructs extended towards mobile RFID-enabled applications. Section 5.4 gives an
overview of the implementation. Finally, section 5.5 concludes this chapter.

5.1 Motivation
In this section, we motivate the main design choice of integrating the RFID program-
ming model with the ambient-oriented programming model and representing RFID-

103

104 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

tagged objects as true mutable software objects that are presented to client applications
as remote references to these objects. We call these software representatives for phys-
ical objects things. We first give a scenario – that we will use as a running example
throughout this chapter – and subsequently use this scenario to distill the requirements
we put forward for a programming model for mobile RFID-enabled applications ear-
lier in chapter 2 section 2.3.1. Additionally, we discuss how the AmbientTalk language
should be extended to support each requirement.

5.1.1 A Mobile RFID-enabled Application Scenario

The scenario consists of a library of books that are all tagged with writable passive
RFID tags. The user of the mobile RFID-enabled application carries a mobile com-
puting device – such as a smartphone or tablet PC – that is equipped with an RFID
reader. On this device, there is software running that allows the user to inspect the list
of books that are nearby (i.e. in the reading range of the RFID device) sorted on various
properties of the books (e.g. author, title, ...). This list is updated with the books that
enter and leave the range as the user moves about in the library. The user can select a
book from the list of nearby books, after which a dialog box opens. In this dialog box,
the user can write a small review about the book. This review is stored on the tagged
book itself. Other users can then select that same book from their list of nearby books
and browse the reviews on the book, or add their review. Figure 5.1 shows a screenshot
of the mobile RFID-enabled application.

Figure 5.1: Screenshot of the mobile RFID-enabled library application.

5.1. MOTIVATION 105

5.1.2 Ambient-Oriented Programming with RFID Tags

In the mobile RFID-enabled application introduced in the previous section, mobile de-
vices hosting the application move throughout an environment of tagged books. These
books dynamically enter and leave the communication range of the mobile devices and
interact spontaneously. As we pointed out earlier, these properties are very similar to
the ones exhibited by distributed applications in mobile ad hoc networks. Similar to
mobile devices in mobile ad hoc networks RFID tags and readers should be able to
interact spontaneously when their ranges overlap. Below, we put the requirements for
mobile RFID-enabled applications (discussed in chapter 2 section 2.3) next to parts
of the solutions provided by ambient-oriented programming (discussed in the previ-
ous chapter). A straight-forward adoption of the model still leaves some issues to be
solved, which are discussed below.

Addressing physical objects. In the ambient-oriented programming model, remote
objects can be addressed using directed communication primitives. We propose
to represent RFID-tagged physical objects as far references to distributed objects
called things. In the scenario, this makes it possible to send messages to and to
be notified of events coming from an individual book.

Storing application-specific data on RFID tags. In the ambient-oriented programming
model, objects are self-contained and classless such that they can be easily trans-
mitted across the network and can naturally encapsulate mutable state. We pro-
pose to represent RFID-tagged objects as true mutable software objects (things)
that encapsulate the state on the bare memory of the tag and make it accessible
through a well-defined interface. In the scenario, this means there is a proto-
type object representing books with a well-defined interface which can be used
to query or change its internal state.

Reactivity to appearing and disappearing things. In the ambient-oriented program-
ming model, disconnections are not considered as errors nor are they hidden from
the programmer. They reflect the physical connectivity state of remote objects.
We propose to encapsulate things in a dedicated RFID event loop that signals
connectivity changes to client applications (RFID event loops and client applica-
tions can be hosted on the same device). In our scenario, this means that books
of which is detected that they are out of range, can be removed from the user
interface.

Asynchronous communication. In the ambient-oriented programming model, com-
munication with remote objects can only happen asynchronously. The dedicated
RFID event loop must take care of buffering incoming messages, processing
them sequentially, and signaling back replies. This means in the scenario for
example that a user storing a new review on a book must not deal with a number
of error messages when the connection between his mobile device and the book
is temporarily broken. Instead, the system keeps attempting to transfer the mes-
sage, until some application-specific timeout is reached. Additionally, reading
from and writing to RFID tags are operations that are slow in comparison to gen-
eral computations. Asynchronous communications allows the latency caused by
these operations to be hidden by executing them in the background while other
computations are performed.

106 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

Fault-tolerant communication. In the ambient-oriented programming model, mes-
sages that are not acknowledged are not lost. They can be resent later. The dedi-
cated RFID event loop must take care of synchronizing the thing with its physical
counterpart (e.g. when methods perform side effects on its internal state) and do
this in a fault-tolerant way. In our scenario, reviews being stored on the book
should be stored completely, or not at all. In the latter case the client application
should be notified of such a failure.

Data consistency and security. The dedicated RFID event loop must take care of or-
chestrating access to the bare RFID memory such that no data races occur. In our
scenario, this means that different users could use their mobile devices to wire-
lessly manipulate the same set of books without experiencing conflicts. Simi-
larly, in some scenarios data stored on RFID tags may not be read or modified
by unauthorized users. In this work, we have not tackled security yet. Security
is an issue that to be solved requires securing the entire RFID technology stack,
down to the hardware level, to be completely covered [RK09], which is out of
the scope of this dissertation.

5.2 Changes to AmbientTalk and Its Interpreter
In order to support the requirements listed in the previous section, we first had to adapt
the AmbientTalk language and its interpreter.

5.2.1 Fine-Grained Connectivity Handling
In the communicating event loops model, an event loop forms the unit of distribution.
Because of that, AmbientTalk only provides a primitive to take online and offline an
event loop as a whole, which entails that either all of the published objects hosted by
the event loop are made available or all or none of them are made unavailable. In the
setting of mobile RFID-enabled applications however, the RFID event loop hosting the
RFID-tagged objects has to be able to take online and offline the corresponding things
individually, since the connectivity of RFID tags varies individually. The alternative is
spawning an event loop per scanned tag, which is clearly not scalable. To allow this, we
extended the event loop model to enable a more fine-grained control over the connec-
tion status of objects. Event loops remain the unit of concurrency – and conceptually:
distribution – but in addition it is possible to programmatically disconnect or reconnect
a single exported object. To this end we introduced a new operation disconnect: that
logically disconnects the published object it receives as an argument.

1 thing.disconnection := disconnect: thing; // RFID tag leaves range
2
3 thing.disconnection.reconnect(); // RFID tag reenters range

The above code shows the use of a disconnection object returned by disconnecting
an exported object. Calling this object’s only method reconnect reestablishes the ex-
ported object’s connection.

5.2.2 Maintaining Thing Identity Using Multiway References
In section 5.1.2, we proposed to represent RFID-tagged objects as remote software
objects which can be accessed via an AmbientTalk far reference. The connectivity to a

5.2. CHANGES TO AMBIENTTALK AND ITS INTERPRETER 107

physical RFID tag is reflected by the connectivity state of the far reference. In the case
the mobile device (such as an RFID-enabled smartphone) has discovered a tag using
an internal reader, the thing representing the tagged physical is hosted locally on the
device. The RFID event loop of the device then offers this thing as a far reference to
applications locally hosted on the device, but also to any other application running on
another device that is interconnected with the device hosting the thing.

For (mobile) devices that rely on one or more external RFID readers (such as smart-
phones without an integrated RFID reader), the connectivity state of a far reference
reflects both the physical presence of the respective RFID-tagged physical object in
range of the reader as well as the connectivity to the device hosting the thing represent-
ing the physical object. Figure 5.2 illustrates a scenario where a mobile device acquires
far references to the same thing via a remote fixed reader and via its integrated reader.
Things that are referenced via different RFID event loops arise when these objects roam
through the physical space in which multiple RFID readers are present, which in their
turn are used by mobile devices to detect things.

Figure 5.2: Using multiway references to abstract over multiple connections.

Our approach installs an RFID event loop per RFID reader. This entails that per tag
discovered, per RFID reader, an AmbientTalk object (thing) for this tag is constructed.
Therefore, an application that discovers RFID tags from more than one reader might
end up with two disjoint references referencing the same thing, through different Am-
bientTalk objects. This is illustrated by figure 5.2. However, to be able to address
physical objects – one of the requirements listed above in section 5.1.2 – thing iden-
tity must be maintained. We addressed this issue by relying on an abstraction called
multiway references, first introduced by Pinte et al. [PHD11].

Multiway References

Multiway references are a generic abstraction that collapses far references considered
“equal” based on an equivalence relation associated with every single reference. For
things, far references are considered “equal” if they point to things with the same
unique serial number. To applications that acquire references a multiway reference
appears as a single far reference. However, the multiway reference incorporates the
different ways a physical object can be reached.

Figure 5.3 shows a multiway reference to a book object that can be reached in two
ways. The client application however discovers the book only once: when new copies

108 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

of things denoting the same physical book are discovered, the multiway reference is
extended with the references to these new copies.

Figure 5.3: A multiway reference to a single physical book through multiple things.

A multiway reference is thus able to reach a single RFID tag via multiple paths
and does the bookkeeping of the connection status of each of the paths. A multiway
reference is only disconnected if each single reference it incorporates is disconnected.
This is illustrated in figure 5.4. The picture shows a multiway reference referencing a

Figure 5.4: A multiway reference is connected up until all of its composing remote
references are disconnected.

thing via two RFID event loops. In the left-hand side the multiway reference is marked
as connected because the thing can be reached via one of the two RFID event loops. In
the right-hand side the multiway reference is marked as disconnected because the thing
is not reachable anymore via any RFID event loop.

As with far references, all messages sent to a disconnected multiway reference are
buffered in the reference. As soon as one of the encapsulated far references reconnects
or a new path is discovered, the stored messages are flushed over the connected path.
Each multiway reference keeps one of its references as the active path. When sending
messages to the multiway reference, the messages will flow over this active path to the
destination. Selecting the reference that becomes the active path happens by ranking
the encapsulated remote references based on the priority carried by each of them. This
priority can be anything from a simple number indicating e.g. the number of hops a
reference has to make to reach the device hosting the target AmbientTalk object, to a
full fledged object that can embody more detailed information such as the range of the
reader, the signal strength, etc.

5.2. CHANGES TO AMBIENTTALK AND ITS INTERPRETER 109

Property References

A multiway reference is a higher order reference that clusters references to different
objects that are equivalent. To implement this behavior, multiway references rely on a
small extension to the bare AmbientTalk far references. Property references extend far
references with two functions: an equivalence relation to check wether two references
are equivalent, and a priority function that is used within the multiway reference to
order the references and select the default path. Property references were previously
introduced by the same researchers that introduced multiway references [PHD11].

A property reference is a construct to extend a reference to an exported object with
additional information. Exporting an object in AmbientTalk is performed using the
export:as: operation which takes the object to export as a first argument and a type
tag as its second argument. Property references extend this construct such that a third
argument (property) can be specified that will be locally accessible on the device on
which a far reference to the object is obtained. In the example below, a book thing
is exported with a type tag Book together with a property that contains two functions
which implement the equivalence relation and the priority function (greater than) to
support multiway references:

1 deftype Book;
2 export: book as: Book with: {
3 def serialNr := book.serialNr;
4 def equivalent(otherRef) { serialNr == otherRef.serialNr };
5 def >(otherRef) { ... };
6 };

Multiway references use property references as follows. A multiway reference
internally holds a message queue that is used to buffer messages in case all of the in-
ternal property references it contains are disconnected. When a new property reference
is obtained that is deemed equivalent by the equivalence relation it encapsulates, the
property reference is added to that multiway reference. If the reference matches no
known equivalence relationships, a new multiway reference is constructed containing
the property reference as its only path. Upon acquiring a new property reference or
upon changes of the connection status of one of the property references that belong
to the multiway reference, the multiway reference will recompute the default path by
means of its priority function. This happens by simply ordering all encapsulated prop-
erty reference using the “>” (“greater than”) operator that they implement.

Except the semantics described above, multiway references behave exactly as or-
dinary far references do. For the remainder of the text we will employ the term “far
reference”, but note that they are actually multiway references.

5.2.3 Serializing Things
Things must be serialized into a self-contained representation that includes their method
definitions in order to store them on RFID tags. We extended AmbientTalk with the
asCode: primitive, that when it is passed an object, generates a string representation
of the object. It can be regarded as a self-contained version of the JavaScript object
serialization offered by JSON (JavaScript Object Notation) [Cro06] for AmbientTalk.
The difference with JSON is that it includes a textual representation of the serialized
object’s methods. Just like with JSON, it suffices to evaluate the generated string to
obtain a copy of the object, as shown below:

110 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

1 def iso := isolate: {
2 def x := 5;
3 def print() { system.println(x) };
4 };
5
6 def str := asCode: iso;
7
8 def copy := eval: str in: self;
9 copy.x; // Returns 5

10 copy.print(); // Prints 5

The primitive is recursively applied to objects referenced from within the object passed
to the primitive. Of course, it makes more sense to use this functionality on isolates
than on normal objects (which additionally to their object scope also have access to
their surrounding lexical scope). Serializing far references using is not supported by
this mechanism

5.3 Programming Mobile RFID-Enabled Applications
in AmbientTalk

In this section, we explain our RFID programming model in more detail using the
scenario presented in section 5.1.1. The model is conceived as a set of AmbientTalk
language constructs offered by the language or implemented on top of it that correspond
to the properties listed in section 5.1.2.

5.3.1 RFID-tagged Objects as Things
As already mentioned, we represent RFID-tagged objects from the client application’s
perspective as far references to things. Our basic model supports passive, writable
RFID tags without computing power whatsoever. For this case, the thing representing
the RFID-tagged physical object must be a proxy or stand-in object: the RFID tag itself
is not capable of executing method calls. This means that client applications interact
with the physical object through a far reference to such a thing.

An example of a book thing is given below. It contains slots for the ISBN, title and
reviews and provides two mutator methods to update the book’s title and add reviews:

1 deftype Book;
2 def aBook := object: {
3 def ISBN := 123;
4 def title := "My Book";
5 def reviews := Vector.new();
6
7 def setTitle(newTitle)@Mutator {
8 title := newTitle;
9 };

10
11 def addReview(review)@Mutator {
12 reviews.add(review);
13 };
14 } taggedAs: Book;

The limitations of RFID tags render it impossible to deploy a full fledged virtual ma-
chine hosting objects on the tags themselves. We thus store a serialized data represen-
tation of a thing on its corresponding tag, including its methods. Because of Ambi-

5.3. MOBILE RFID-ENABLED APPLICATIONS IN AMBIENTTALK 111

entTalk’s prototype-based object model, objects are self-contained: there is no separate
class that defines their behavior. Upon deserialization, the object’s behavior (its meth-
ods) is preserved and used to reconstruct the thing (see section 5.3.2). Since we cannot
rely on classes to categorize objects, we use AmbientTalk’s type tags: here they act as
a lightweight classification mechanism (comparable to empty “marker” interfaces in
Java such as for example Serializable) that are attached to an object to identify its
“type”. In the above example, we define a type Book on line 1 and attach that type to
the aBook object on line 14. In section 5.3.3 we use the type tag to discover objects
representing tagged books.

The book object thing given above is in standard AmbientTalk. Of course, the data
stored on the tags has to be synchronized with the state of these things. Methods that
change the state of the book things are annotated by the programmer with the special
Mutator annotation1 that will cause the RFID implementation to treat this methods
when invoked specially. These annotations are used by the RFID implementation to
detect when things change and have to be written to the corresponding tag. For exam-
ple, calling the addReview mutator method on a book thing first updates the reviews

field by adding the new review. Subsequently, the system entirely serializes the modi-
fied book thing and stores it on the correct RFID tag.

Figure 5.5: Overview of the RFID event loop.

Things are managed by a special kind of AmbientTalk actor that we called the RFID
event loop, as shown in Figure 5.5. It controls an RFID reader to detect appearing and
disappearing tags and it associates things with them. These things can then be used

1AmbientTalk’s symbiosis with Java makes it hard to determine from the source code if mutating opera-
tions are going to be invoked. Additionally, allowing the programmer to specify which methods are mutators
and which are not leaves room for optimizations or other reasons not to (immediately) write through the
changes to the thing.

112 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

by other AmbientTalk event loops – after acquiring far references to them – to interact
with the tags as if they were mutable software objects. Far references reflect the state
of the corresponding RFID tags. When a tag moves out of range of the reader the far
reference is signaled of this disconnection; conversely, when a tag moves back in range
the far reference is signaled of the reconnection.

Abstracting Over Specific RFID Hardware

Embedding RFID technology in the ambient-oriented programming model requires
abstracting away the hardware-specific protocols in our generic abstraction called the
RFID event loop (see section 5.4 for an overview of the architecture). This even allows
multiple RFID readers to be used in one or more mobile RFID-enabled applications
using the same abstractions. Figure 5.6 depicts a mobile device that hosts three differ-
ent applications that interface with RFID hardware by means of two RFID event loops
steering different types of RFID hardware.

RFID Event Loop 1

Library
Application

Stickies
Application

Business
Cards

Application

RFID tags

Persistent Data
Layer

RFID tags

RFID Event Loop 2
RFID Storage

Layer

Figure 5.6: RFID event loops and different applications interfacing with it.

This not only allows abstracting over hardware protocols, but also over where the
data associated with the RFID tag is physically stored. Although we are focusing on
pervasive applications that do not assume any infrastructure, our abstractions do not
limit programmers to this kind of application. In fact, when using the same program-
ming model it can be made transparent whether the data associated with an RFID tag
is stored onto the tag itself or is stored in a (potentially remote) external database (see
section 5.4). The key point is here that although the data itself may be permanently
accessible (using a stable internet connection to the database for example), the applica-
tion interacting with the physical world might still be interested in whether the physical
object denoted by the tag is in communication range (see requirement 5.3.3), and in
addition the same interface to program RFID applications is offered to the application
programmer.

Figure 5.6 depicts a mobile device that hosts three different applications that in-
teract with two differently configured RFID event loops that each interact with their
own RFID reader. The library application looks up information associated with tagged
books in a centralized database by means of the serial number on the tag, which is
scanned by a stationary reader to which the mobile device is connected (for exam-
ple using a local WiFi network). The other two applications directly use the RFID
reader built into the mobile device and do not assume any infrastructure by storing all
necessary data on the tags themselves. The first approach can utilize well-understood
database technology and the latter approach is the topic of the next section, in which we
will discuss a mobile ad hoc version of the library application. This architecture allows
different hardware abstraction layers and/or persistence layers to be encapsulated by the

5.3. MOBILE RFID-ENABLED APPLICATIONS IN AMBIENTTALK 113

same interface towards applications: the RFID event loop. All applications are encap-
sulated in their own event loop. The RFID event loop notifies client applications of the
appearance and disappearance of RFID tags and takes care of (sequentially) scheduling
messages sent to things hosted by the event loop and of writing the necessary data on
the concrete storage infrastructure associated with the thing.

5.3.2 Storing Objects on RFID Tags
When the RFID event loop detects a blank RFID tag, the tag is represented by a generic
object which responds to only one message: initialize. The code below shows how
a blank tag is initialized as a book thing:

when: tag<-initialize(aBook) becomes: { |book| book<-getTitle() };

The RFID event loop generates a data representation of the aBook thing by serializing
it and stores this data on the RFID tag that corresponds with the tag object. For storing
objects on RFID tags, we currently employ a custom representation that includes the
method implementations of things in their serialized representation (see section 5.2.3).
The serialization strategy is not interleaved with the rest of the implementation to allow
more standardized object representations to be used, e.g. encoded as an XML docu-
ment. Note that these representations have to be adapted to encode prototype-based
objects (by including method implementations into the serialized representation) to
obtain the same functionality that we are proposing here.

The reference tag to the generic tag object is obtained using the discovery con-
structs we explain in the next section. When storing the object on the tag succeeds,
the call to initialize returns with a new remote reference book that points to a newly
constructed thing (the when:becomes:-construct is explained in the previous chapter
section 4.1.3) representing the book. From this point on, the RFID tag is no longer
“blank” as it contains application-specific data. The RFID event loop keeps track of
the unique link between a thing and a tag by means of the serial number that each
tag carries. Note that the concrete behavior of performing side effects on such a thing
depends on the underlying hardware implementation. Using an entire ad hoc imple-
mentation where all the data is stored on the tag memory itself behaves differently than
when the data is stored in a relational database to which the mobile device has access.
However, the interface provided to the application programmer is the same.

5.3.3 Reactivity To Appearing and Disappearing Things
As explained in section 5.3.1, the RFID event loop notifies other event loops of the ap-
pearance and disappearance of the things they have far references to. In the code exam-
ple shown below, an event handler that will execute a block of code each time a thing of
type Book is discovered is installed using the standard AmbientTalk whenever:discovered:

construct. The registered code block is parametrized by the far reference to the book
thing (which is also used to send it asynchronous messages).

whenever: Book discovered: {|book|
whenever: book disconnected: { // react on disappearance };
whenever: book reconnected: { // react on reappearance };

};

Once a far reference to a book is obtained, within the whenever:discovered: call-
back, two more event handlers can be registered on the book far reference using the

114 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

whenever:disconnected: and whenever:reconnected: constructs. These allow one
to install a block of code which is executed as soon as the thing denoted by the book

far reference moves in or out of range of the reader. Notice that upon reconnection the
thing maintains its identity through the book reference.

5.3.4 Asynchronous Communication
Just like with normal AmbientTalk objects, applications that acquire a far reference
to a thing can communicate with it via asynchronous message sending. Messages
sent to things are handled sequentially by the thread encapsulated in the RFID event
loop. This ensures that all things hosted by the RFID event loop are protected against
race conditions (for preventing race conditions on an RFID tag’s memory when it is
accessed by two RFID event loops, we refer to section 5.3.6). When the far reference to
a thing is disconnected, all messages sent to it are locally buffered in the far reference.
When the connection is restored, the messages are flushed to the RFID event loop’s
message queue. This means that a message sent to a thing of which the RFID tag
temporarily suffers from interference or is temporarily unavailable will eventually be
processed.

Messages sent to things can either retrieve data (read operations) or trigger behav-
ior that causes side effects (write operations). Both kinds of operations aim to keep the
tag synchronized with the thing. The difference with messages to normal AmbientTalk
objects is that performing a read operation on a thing causes the thing to be updated
with the data on the corresponding tag. We delay the actual retrieval of data from the
tag’s memory to the point that such a message invoking a read operation is received
to obtain up-to-date data from the connected tagged object. This is important to main-
tain a consistent view when such a thing is being referenced via different RFID event
loops in a single application, as discussed earlier in section 5.2.2. Performing write
operations first causes a side effect on the thing, thereafter the corresponding RFID
tag is updated to contain the modified thing. Reading and writing tags is thus done by
sending messages to the thing.

The following example asks a book for its title and displays it:

when: book<-getTitle() becomes: { |title| system.println(title)};
system.println("here first!");

This example thus immediately prints "here first”! and only after the title future
signals the reply, it prints the title of the book. If the RFID tag corresponding to the
book thing has disappeared upon sending the message, the far reference buffers the
message until the tag reappears. This message will only be sent when the RFID tag
represented by the far reference is back in range.

5.3.5 Fault-tolerant Communication
Conform to AmbientTalk’s semantics, buffering an asynchronous message to a thing
ensures that the message will eventually be sent if the tag moves in range. This makes
the communication fault-tolerant as no exception is raised when the thing is unavailable
for a short period of time. However, failures may not be temporary, a tag may move
out of range and never return again. Reusing AmbientTalk’s abstractions, the Due an-
notation can be used to annotate the message send with a duration that controls how
long a message is buffered before timing out. For example, we can add short reviews
to a book:

5.3. MOBILE RFID-ENABLED APPLICATIONS IN AMBIENTTALK 115

def myReview := "not suitable for beginners";
when: book<-addReview(myReview)@Due(10.seconds) becomes: { |ack|

// message processed successfully
} catch: TimeoutException using: { |e|

// message timed out
};

Suppose the RFID tag corresponding with book would leave the reader’s range before
the addReview message is received by the book thing. Then the message is buffered
for at most 10 seconds. If the tag does not respond in time, a timeout exception is
raised. If the tag reappears in range within this time frame, the message to add the
review myReview is delivered to the RFID event loop and the corresponding book thing
is updated and stored on the RFID tag. Remember from section 5.3.1 that addReview
was annotated as a mutator method. This means that first the reviews field of the thing
is updated by adding the new review. If the method would have not been annotated, it
would have been treated as an accessor method and the change would not be written in
the RFID tag’s memory (this mechanism is specifically for things, other AmbientTalk
objects do not require the annotation of methods). Subsequently, the RFID event loop
serializes the changed book thing and attempts to store it entirely on the correct RFID
tag (which might involve multiple tries because of a bad connection). Only after both
of these operations complete successfully, the future object triggers all its registered
when-observers. If this did not happen within the 10 second timeframe, the exception is
signaled to client applications and their registered catch-blocks are invoked. This is a
stronger condition to resolve a future than the condition checked by these AmbientTalk
constructs for “normal” objects, which do not have to take into account the storage of
data on a passive memory such as a passive RFID tag.

5.3.6 Data Consistency
Passive tags like the ones we have used in our experiments offer no opportunity to pro-
grammatically coordinate read and write operations. They do offer low-level protocols
(e.g. different variants of the ALOHA protocol [FW06]) for preventing read and write
collisions, but these are automatically exploited by the RFID reader when reading the
data from or writing it on tag memory. For our implementation, this means that ob-
jects will always be consistently written by the hardware each time a mutator method
returns (i.e. data cannot be garbled because of concurrent writes). However, on a finer
granularity, successive read and write operations within a single method invocation,
such as incrementing a counter based on a previously read value, can lead to data loss
(as the thing containing the counter might have been concurrently updated by another
RFID-enabled device before the method returns).

Hence, ensuring data consistency with passive RFID tags requires coordination
among writers before physically writing the data on the tags. This is not a problem
in a setting where RFID-enabled applications can coordinate by means of a shared
centralized entity, e.g. by all connecting to an internet server that manages a certain
type of tagged objects. The location of such servers could be stored on the tags to
minimize configuration.

In the type of applications that we consider in this dissertation, where no additional
infrastructure such as a centralized server is assumed, the only way of coordinating
writes is by means of the tag itself. Our solution is to allow an RFID event loop to
function in two modes. In the first mode, the RFID event loop only signals the RFID

116 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

reader to power up nearby tags when they have to be detected, read or written. Since
requests from different readers might interleave, distributed race conditions can occur
in this mode. In the second mode, the RFID event loop instructs the RFID reader
to keep its RF field active, permanently powering all reachable tags, unless a client
application explicitly signals the RFID event loop to shortly power down its RF field.
The result is that RFID tags that are powered by the RF field of a single reader, grant
exclusive access to that reader and ignore commands from all other readers. When the
tag moves out of range of the reader or when the reader temporarily switches off its RF
field, it loses its exclusive access to the tag and, by doing so, grants exclusive access to
other nearby RFID devices willing to interact with the tagged object.

The following code snippet shows how losing exclusive access to a tagged book
in the time span between sending the getRating message and the resulting future be-
ing resolved raises a NoExclusiveAccessException (specific to mobile RFID-enabled
applications) in the client application such that defensive code can be triggered:

when: book<-getRating() becomes: { |rating|
book<-updateRating(rating + 1);

} catch: NoExclusiveAccesException using: {|e|
// handle lost exclusive access

};

Note that the updateRating message is immediately scheduled in the RFID event loop
after the resolution of the future. No other externally sent asynchronous messages sent
to the RFID event loop can be scheduled before it because the becomes: clause of the
callback registered on the future is executed synchronously.

We have found this approach satisfactory in small scale scenarios, such as the
tagged library used as a case study in this paper. In larger scale applications, keeping
a number of tags powered to obtain exclusive access to them may cause performance
issues, since potentially a large number of tags can cease responding and become in-
visible to other RFID readers.

When looking at more advanced hardware such as active RFID tags, there are
more possibilities. Their autonomous nature allows to for example assign time slots
(i.e. leases [GC89]) in which applications are allowed exclusive access to its memory
before either aborting all operations or committing them before giving another appli-
cation write access. In this dissertation, we only consider passive tags.

5.3.7 Addressing Specific Groups of Things
RFID tags are typically used in large quantities, e.g. in warehouse applications. In
mobile RFID-enabled applications it is often necessary to address a specific group
of things. E.g. we may want to update the price for all tags that represent a certain
product. However, such a collection of things has a highly dynamic nature due to the
volatile connections with the RFID tags and the mobility of the application. At any
point in time, tags move out of range and new tags move in range. Instead of forc-
ing the programmer to manually manage collections of nearby things, AmbientTalk
has a dedicated abstraction to discover and address a group of objects: ambient refer-
ences [VCDM+06] (discussed before in chapter 4 section 4.1.5). At any point in time,
an ambient reference designates the set of proximate objects of a certain type. This
abstraction is applicable because we represent physical objects as things, which are
special AmbientTalk objects. An ambient reference represents a variable collection of
things, e.g. the set of nearby books. This set is updated behind the scenes when books

5.3. MOBILE RFID-ENABLED APPLICATIONS IN AMBIENTTALK 117

move in and out of range. The example below shows an ambient reference to all books
in the proximity, denoted by the Book type:

def books := ambient: Book;

Ambient references allow to specify various predicates to refine the set of things des-
ignated. This is shown in the example below where books are selected based on their
category attribute:

def computerScienceBooks := ambient: Book where: {|b|
b.category == "Computer Science";

};

The example below shows how we can address a single thing out of the group of nearby
things encapsulated in the ambient reference. For example, if all books about computer
science are placed in the same shelf in the library, it is sufficient to query any book
about this topic in range for its shelf:

def shelfFuture := computerScienceBooks<-getShelf()@Any;
when: shelfFuture becomes: { |shelf|

system.println("The book should be on shelf: " + shelf);
};

This happens by annotating the getShelf message with @Any.
We can also reach all things in range using one-to-many communication. The

example below updates the shelf where computer science books should be located
(e.g. because they have to be moved). The Sustain annotation causes the setShelf

message to be perpetually sent to newly discovered computer science books.

computerScienceBooks<-setShelf("5D")@Sustain;

5.3.8 Putting It All Together
Finally, in this section we bring together the language constructs presented throughout
this chapter to implement the motivating mobile RFID-enabled application introduced
in section 5.1.1. First of all, while the user moves about in the library, the list of nearby
books has to be updated. The following code snippet shows this:

1 deftype Book;
2 def books := ambient: Book;
3
4 whenEach: books<-getBookInfo()@Sustain becomes: {|infoAndRef|
5 GUI.addBookInfoAndReferenceToList(infoAndRef);
6 };
7
8 whenever: Book discovered: {|book|
9 whenever: book disconnected: {

10 GUI.removeBookFromList(book)
11 };
12 };

The first line declares the Book type and the second line creates an ambient reference
that refers to all books in range. On line 4, the asynchronous message getBookInfo

to the books ambient reference is annotated with @Sustain, which causes the ambient
reference to perpetually send this message to newly appearing books. This returns a
multifuture (see chapter 4 section 4.1.5, i.e. a special future object that can trigger the
same callback block multiple times with a new value. This callback is registered on

118 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

the multifuture with a special when-construct (whenEach:becomes:). The code block
is triggered each time the multifuture is resolved with a new return value from the
message invocation on the ambient reference. The return value of this message is the
info about the book (i.e. ISBN number, title and authors) and a reference to the book
thing. These return values are bound to the infoAndRef parameter of the observer
block, which is added to the list in the user interface object. This causes the user
interface to show a new entry in the list of nearby books, and to associate a reference
to the book entry in this list.

On line 7, for every book discovered, a whenever:disconnected: observer is in-
stalled that, when triggered because a book went out of range, removes the book from
the list in the user interface by means of the book far reference. Notice that although the
far reference points to an unreachable book, it can still be used to look up the book in
the list and remove it. This is an example of the system being tailored towards scenarios
where disconnections are the default rather than the exception.

As mentioned earlier, the references to the books are being associated with the list
entries. This way, when a user double clicks on a list entry, a dialog box is shown
in which the user can type a small review or some comments about the book. When
accepting the input data of the dialog box, the application attempts to add the text the
user just entered to the list of reviews associated on the book itself. As we showed ear-
lier in section 5.3.5, invoking the addReview method on a book is a mutating operation
(i.e. the method is tagged as a Mutator) which causes the book thing to be synchro-
nized with its physical representation on the RFID tag. Notice that this write operation
might not happen instantaneously because the RFID tag might be out of range for some
time. The following code snippet shows the function that is called after the user wrote
a comment in the dialog box we described above:

1 def addReviewToBook(book, text) {
2 when: book<-addReview(text)@Due(5.seconds) becomes: { |ack|
3 showOkDialog("Review added succesfully!");
4 } catch: TimeoutException using: { |exc|
5 showWarningDialog("Failed to add review!");
6 };
7 };

The dialog object passes the reference to the book and the user’s text as arguments to
the function shown above. This addReviewToBook function asynchronously sends the
addReview message to the book via the far reference passed as an argument. The
message is annotated with @Due(5.seconds) to indicate that if the message is not
successfully processed after 5 seconds, a TimeoutException should be raised. The
when:becomes:catch: observer installed on the future returned by the message send
can trigger two blocks. The becomes: block is triggered when the message was suc-
cessfully processed by the thing and in addition the mutated data was successfully
written to the physical RFID tag (since the addReview method is a mutator). As men-
tioned earlier, within the 5 second timeout period, the RFID tag might have moved in
and out of range for several times, but the underlying implementation of the language
constructs keeps attempting to write the data until this timeout period has passed. If
the timeout period passed without the review being successfully written on the tag, the
catch: block of the observer is invoked. In response, the user can try again, maybe
after repositioning himself closer to the book.

5.4. IMPLEMENTATION 119

5.4 Implementation
In this section we detail the implementation of our ambient-oriented RFID framework
in AmbientTalk. For our experiments, we used FEIG2 ID ISC.PR101-USB 13.56 MHz
proximity readers, high frequency desktop readers connected via USB. We used a vari-
ety of high frequency passive RFID tags, such as Philips I-Code1 and I-Code SLI tags
(sticker-shaped), Philips MiFare Classic tags (contact cards) and Texas Instruments
ISO tags (durable tags for harsh environments). Read range, the number of simultane-
ously detected tags and storage size vary greatly among these types of tags

Figure 5.7: Implementation layers.

RFID Device Driver At the lowest layer shown in figure 5.7 we have a driver that
allows to communicate with the RFID reader over a USB port. The driver pro-
vides only minimal functionality and provides operations to search available
USB ports for the correct device, to open and close a given port and to read
and write data (bytes) via the USB port.

Java RFID Library We implemented a Java library that implements vendor specifi-
cations for communicating with the RFID reader. The library interfaces with the
driver using Java Native Interface (JNI). It provides classes such as Transponder
and Device which represent the RFID tags and reader device. The methods of
these classes implement classic RFID operations such as inventory all tags in
range, read data from a tag or write data to a tag, and powering on and off the RF
field of the reader. This is done by sending byte combinations via the driver to the
RFID reader device. Note that the library (and driver) can be substituted by any
custom built or vendor provided RFID library to support other RFID hardware,
as long as the interface towards the RFID event loop is kept the same.

RFID Event Loop The RFID event loop keeps track of which tags are in range of the
reader and keeps the data cached in the things it hosts up to date by continu-
ously polling the RFID reader for an inventory. The RFID event loop does so
by putting a request for an inventory in its own message queue by performing
a message send to itself. The effect is that polling requests are interleaved with
other operations the RFID reader needs to perform as messages from client ap-
plications enter the message queue. This way, race conditions in the execution
of the event loop are prevented. Per new inventory the RFID event loop clas-
sifies the RFID tags based on their current and previous connectivity state. For

2www.feig.de

120 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

tags that for the first time appear, a new thing is created using the data on the
tag (or from another data source as detailed in section 5.3.1). These new things
are exported to other connected event loops. All remote references to tags that
were previously connected (but are currently out of range) are disconnected, as
detailed earlier in section 5.2.1. For tags that reappear (tags that were seen before
and for which a thing already exists) the corresponding thing is updated and the
remote references are reconnected as described in section 5.2.1. Per connected
RFID reader one RFID event loop is needed.

The RFID event loop requires a minimal API from the Java library which is ac-
cessed using language symbiosis between AmbientTalk and Java. First, it relies
on a class representing the RFID reader which should implement a method to
perform an inventory of the tags in range. This class should also implement a
method that allows the RFID event loop to instruct the RFID reader to keep its
RF field permanently active (to obtain exclusive access to RFID tag memory
during interaction) or switch it off after each new request, as explained earlier
in section 5.3.6. Second, the presence of a class representing the RFID tags is
assumed which has a read and write method to retrieve and store data associated
with a tag. The implementation of this interface in the Java library layer deter-
mines how the data is actually stored, as described in 5.3.1. As mentioned earlier,
we have experimented both with serializing AmbientTalk objects on tag memory
itself and using an external database on which the read and write operation are
performed.

Thing/Application Level The top level consists of applications such as our motivating
library application. Their implementation is agnostic to the way various RFID
event loops are implemented. The logic of these applications is solely expressed
in terms of the appearance/disappearance of and messages to things.

5.4.1 Implementation of Things
In this section, we detail the implementation of things that read from and write to
all their data (with which we mean their methods as well) onto the memory of RFID
tags. Things reside only within the RFID event loop such that remote access can only
happen through asynchronous message sends. The implementation of things heav-
ily relies on the metaprogramming and reflection facilities of AmbientTalk, the which
were discussed in the previous chapter in section 4.1.2. Figure 5.8 sketches the layered
architecture of the example Book thing used throughout this chapter. The inner layer
consists of the concrete object deserialized from the physical RFID tag’s memory, in-
heriting from a tag object containing specific properties of the RFID tag (i.e. the serial
number, the type of tag, its memory layout, a handle to the reader object that scanned
it, the bare storage in bytes, and a number of other low-level properties).

It is wrapped by an object which has a custom mirror (i.e. a mirage). The main
purpose of this mirror is to trap side effects to fields of the object it wraps and to trap
methods invoked on the object it wraps tagged as mutator methods. These operations
not only cause the wrapped object to change, but also schedule updates to the serialized
object stored in the physical tag memory (which, of course, may fail).

The final wrapper is the thing itself to which far references from other event loops
point. This layered architecture allows that the inner layer (containing the deserialized
object) can be replaced with up-to-date versions when a new successful read of the
memory of the tag associated with the thing occurs, and that additionally a new mirage

5.4. IMPLEMENTATION 121

Figure 5.8: Layered architecture of the Book thing.

122 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

object with the custom mirror is created to wrap it (as mirrors on existing objects can-
not be changed). All this can happen while keeping the surrounding thing wrapping
the mirage the same. This is required to preserve the thing’s identity in the face of
subsequent reads and writes to the tag memory, that internally generate new objects.

Below, the implementation of the custom mirror used by the mirage object is
shown.

1 deftype Mutator;
2 def IGNORE_INVOCATIONS := [‘super, ‘==, ‘!=];
3
4 def ignore(invocation) {
5 IGNORE_INVOCATIONS.contains(invocation);
6 };
7
8 def mutatorsOf: someObject {
9 (reflect: someObject).listMethods.select: { |m|

10 is: m annotatedAs: Mutator;
11 };
12 };
13
14 def is: methodName mutatorOf: someObject {
15 try: {
16 (is: (reflect: someObject).grabMethod(methodName)
17 annotatedAs: Mutator).or: {
18 is: methodName mutatorOf: someObject.super; };
19 } catch: SelectorNotFound using: { |e|
20 try: {
21 is: methodName mutatorOf: someObject.super;
22 } catch: SelectorNotFound using: { |e|
23 false;
24 };
25 };
26 };
27
28 def makeMutatorInterceptor(interceptor) {
29 mirror: {
30 def invoke(slf, invocation) {
31 def returnValue := superˆinvoke(slf, invocation);
32 try: {
33 def methodName := invocation.selector;
34 if: (!ignore(invocation)) then: {
35 if: (is: methodName mutatorOf: slf) then: {
36 interceptor(self.base(), methodName);
37 } else: {
38 if: ((print: methodName) ˜= ".*:=$") then: {
39 interceptor(self.base(), methodName);
40 };
41 };
42 };
43 } catch: SelectorNotFound using: { |e|
44 // do nothing
45 };
46 returnValue; // return original return value
47 };
48
49 def invokeField(slf, invocation) {
50 def returnValue := superˆinvokeField(slf, invocation);
51 try: {
52 def methodName := invocation;
53 if: (!ignore(invocation)) then: {
54 if: (is: methodName mutatorOf: slf) then: {

5.4. IMPLEMENTATION 123

55 interceptor(self.base(), methodName);
56 };
57 };
58 } catch: SelectorNotFound using: { |e|
59 // do nothing
60 };
61 returnValue; // return original return value
62 };
63 };
64 };

First, it defines the Mutator type tag and a function that is used to filter out invocations
that do not need to be trapped, namely super, ==, and !=.

Subsequently, it defines two helper procedures to extract all methods tagged as
Mutator from a given object (mutatorsOf:) and to test whether or not a method is
a mutator for a certain object (is:mutatorOf:). This happens by using the metapro-
gramming interface of the mirror (obtained using the reflect: primitive) of the objects
passed to these procedures.

Finally, a procedure makeMutatorInterceptor is defined that creates the actual
mirror object. It takes a closure interceptor as argument, that is called whenever
a mutator method is invoked. Remember from section 4.1.1 of the previous chapter
that AmbientTalk unifies field accesses, side effects on fields and method invocations
following the uniform access principle. Depending on how fields are accessed or set,
or how zero-argument methods are called (e.g. the difference between obj.msg and
obj.msg()), two different procedures of the metaprogramming interface of mirror ob-
jects are called. Hence, our custom mirror overrides both procedures: invoke and
invokeField to trap field accesses, side effects on fields and method invocations. If
such operations need to be trapped on the metalevel, the interceptor closure is ap-
plied, passing along the base object of the mirror and the method name.

As mentioned earlier, the RFID event loop wraps the objects deserialized from the
tags’ memory in a mirage object that uses the custom mirror of which the implemen-
tation is shown above. It uses the following closure as interceptor closure that will be
applied when a side effect is performed on a field or when a mutator of the object is
called:

1 def tagMutatorInterceptor := { |base, method|
2 if: (method != ‘super:=) then: {
3 try: {
4 saveToTag(base);
5 } catch: { |e|
6 theRFIDEventLoop<-saveToTag(base);
7 };
8 };
9 };

10
11 def makeTagMutatorInterceptorMirror() {
12 makeMutatorInterceptor(tagMutatorInterceptor);
13 };

It simply calls the saveToTag procedure with as argument the base object of the mir-
ror wrapping the real object to be stored on the RFID tag. This procedure extracts
the wrapped object and uses the underlying Java API to serialize the wrapped object
and physically write it on the associated tag’s memory using the asCode: primitive
explained in section 5.2.3. The resulting string representation of the object is zipped
before writing it on the tag’s memory. In case this fails, the same method call is asyn-

124 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

chronously scheduled in the RFID event loop’s message queue where it will – after
having processed other pending requests – be re-executed. This procedure internally
keeps track of how long ago it was executed for the first time. If this exceeds the time-
out value used by the event loop, an asynchronous exception is raised such that client
code is asynchronously notified that the write operation failed.

Read operations on a thing do not have to be trapped, they can simply use the data
cached in the thing. The reason is that when an RFID-tagged object is in range of
a reader device, the reader device has exclusive access to this tag and no concurrent
writes can occur. This means that updating the cached data encapsulated by the thing
can happen when a disconnection followed by a reconnection of the tagged object
is observed. Only in this timespan where the tagged object was disconnected, other
devices might have updated the object stored on the tag. This process of generating
and maintaining things is discussed in the section below.

5.4.2 Generating and Maintaining Things
Now that we have explained the wrapped architecture of things, we discuss a final
important snippet of the implementation of the RFID event loop. The inventory pro-
cedure shown below is responsible for periodically scanning the environment for RFID
tags (performing an inventory) and synchronizing the state of the things encapsulated
in the RFID event loop in response.

1 def inventory() {
2 def tags := Vector.new(device.inventory(true));
3 def previouslyConnected := serialToTag.clone();
4
5 tags.each: { |tag|
6 def serial := tag.getSerial().toString();
7 previouslyConnected.remove(serial);
8 if: (serialToTag.contains(serial)) then: {
9 // Tag previously discovered.

10 try: {
11 // Tag is reconnected, update thing object.
12 if: (disconnectedTags.contains(serial)) then: {
13 def disconnectedTag := disconnectedTags.get(serial);
14 disconnectedTag.reconnect();
15 disconnectedTags.remove(serial);
16 };
17 def newObject := load(tag);
18 // Safety check if reading goes wrong.
19 if: (nil != newObject) then: {
20 updateThingObject(tag, newObject);
21 };
22 } catch: { |e|
23 // Failed: tag disconnected again.
24 if: (!(disconnectedTags.contains(serial))) then: {
25 def disconnectedTag := disconnect: tagToObject.get(serial);
26 disconnectedTags.put(serial, disconnectedTag);
27 };
28 };
29 } else: {
30 // Tag discovered for the first time.
31 try: {
32 // Generate new thing object.
33 def tagObject := load(tag);
34 def s := serial;
35 if: (nil == tagObject) then: {
36 // Blank tag, export as such.

5.4. IMPLEMENTATION 125

37 tagObject := GenericTag.new(tag);
38 def wrapper := wrapAndPlaceMutatorInterceptorMirror(tagObject);
39 createThingObject(tag, wrapper);
40 export: wrapper as: RFIDTag with: {
41 def serial := s;
42 def equivalent(otherRef) { self.serial == otherRef.serialNr };
43 };
44 } else: {
45 // Initialized tag.
46 def wrapper := wrapAndPlaceMutatorInterceptorMirror(tagObject);
47 createThingObject(tag, wrapper);
48 (reflect: wrapper).typetags.each: { |typetag|
49 export: wrapper as: typetag with: {
50 def serial := s;
51 def equivalent(otherRef) { self.serial == otherRef.serialNr };
52 };
53 };
54 };
55 } catch: { |e|
56 // Failed: tag disconnected again.
57 if: (!(disconnectedTags.contains(serial))) then: {
58 def disconnectedTag := disconnect: tagToObject.get(serial);
59 disconnectedTags.put(serial, disconnectedTag);
60 };
61 };
62 };
63 };
64
65 previouslyConnected.each: { |serial, tag|
66 if: (!(disconnectedTags.contains(serial))) then: {
67 def disconnectedTag := disconnect: tagToObject.get(serial);
68 disconnectedTags.put(serial, discoTag);
69 };
70 };
71
72 when: POLLING_INTERVAL elapsed: { self<-inventory() };
73 };

The inventory method first stores all scanned RFID tags in the tags vector. Because
true is passed to the inventory method of the Java object representing the physical
RFID device, tags are kept powered during the inventory process and grant exclusive
access to the device. The drawback is that more power is used to keep the RF field
active and the tags in range powered.

Given these tags in range, the procedure will recompute the tags that were previ-
ously in range and are now disconnected. They are stored in the previouslyConnected
hash map, which is a clone of the serialToTag hash map that maps serial numbers to
tag objects. Given the tags in range and the tags that became disconnected, it will
generate new thing objects for newly discovered tags, update the thing objects for the
tags that are still in range (using the mechanism described in the previous section), and
signal disconnections for things of which the associated tags are not in range anymore
after the previous inventory. This happens by iterating over all scanned tags in the in-
ventory (lines 5-73). If a tag is in the list of tags returned by the inventory operation,
it means it is currently in range and can be removed from the previouslyConnected

map (line 7).
If it is in the serialToTag map, it means it was previously discovered (line 8).

Disconnected tags are stored in the disconnectedTags hash map. In this case, the
tag is back in range and can be removed from disconnectedTags and be reconnected

126 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

(which will change all connected far references’ state to the connected state and signal
the appropriate events) (lines 13-14). Additionally, since the tag is in range, an attempt
is made to update the cached thing by loading the memory contents of the tag (line
17). If this raises an exception, the tag went out of range, it must be disconnected
(signaling the appropriate events to all connected far references) again and be added to
the disconnectedTags map again (lines 24-27).

If the the tag was not in the serialToTag map, it means it is discovered for the
first time (line 29). After loading the object stored on the tag, two things can happen.
Either the tag contained no data (line 35), or contained a previously stored serialized
object (line 44). In the first case, a blank tag object is created and is exported as
such. The export:as:with construct is part of the property references abstraction
that was discussed in section 5.2.2. In the other case, a thing is generated using the
object deserialized from the tag’s memory, and exported under each of its type tags
(which are obtained through the metalevel interface of the object) (line 47-53). All
these operations may fail because the tag moved out of range while performing them.
In that case, an exception is raised, which causes the thing to be disconnected again
and put in the disconnectedTags map again (ready for the next inventory round) (line
55-61).

Subsequently, now that the currently connected tags are known, their thing ob-
jects are updated and the tags that were previously connected but now disconnected
are known, we iterate over the latter and disconnect them all and put them in the
disconnectedTags map (just like in the exception handlers of the code explained
above) (line 65-70).

Finally, after a configurable polling time interval, the inventory procedure is sched-
uled again for execution by asynchronously sending the corresponding message to the
RFID event loop (line 72). This will cause the message to be scheduled in its message
queue and be re-executed when other pending requests are handled.

5.4.3 Performance Evaluation

In this section, we present the results of simulations that measure the computational
overhead that comes with using our constructs for developing RFID-enabled applica-
tions. These simulations were ran on an Apple Macbook Pro laptop with an Intel Core
i7 2.66 Ghz processor and 4 Gb of RAM running OSX version 10.6.7 and Java SE ver-
sion 1.6.0. The version of AmbientTalk that we used is build 2.19.1. Our simulation is
based on a simulated RFID reader device, i.e. a Java object able to generate “dummy”
transponder objects. These dummy transponder objects allow reading and writing their
single data field that represents the data stored on the simulated tag as a byte sequence.

We conducted two simulations: one for read operations and one for write oper-
ations, which we implemented by using both our constructs as by using a plain Java
implementation without taking into account the requirements for ambient-oriented pro-
gramming and mobile RFID-enabled applications.

For the read operations, we let the simulated RFID reader perform 100 inventory
operations, producing a collection of tag objects and we read the data of every single
tag object after each inventory operation. We vary the number of tags from 10 to 100
per inventory operation and measure how much time the complete simulation takes to
finish.

For the write operations, we again start from a collection of tag objects, but this time
we perform a write operation on every single tag and measure how long this simulation

5.4. IMPLEMENTATION 127

Figure 5.9: Simulation results of read and write operations.

takes. For both operations, we also varied the amount of data read from and written to
the tag objects, but this had very little effect on the results, so we omit these results.

The results comparing the Java version and the version using our constructs are
depicted by the two graphs shown in figure 5.9.

Without comparing both implementations, it is clear that both scale linearly when
increasing the number of tags. When comparing both implementations, we can see
that there is an overhead of a factor 10 to 20 depending on the operations performed.
Although this seems excessively high, one must take into account that the version rely-
ing on our AmbientTalk constructs is generating, garbage collecting and updating the
connectivity status of things, (de)serializing things, enqueueing and processing asyn-
chronous message sends (sequentially) to provide fault tolerance, etc. The basic Java
implementation assumes that not a single fault occurs in these simulation runs. We
measured where the biggest overhead in our implementation occurs and found that the
creation of things, their serialization and deserialization and the exporting and asyn-
chronously discovering of references to these things contribute the most to the observed
slowdowns.

It is more interesting to compare the the performance figures of our implementa-
tion with the read rates (in tags per second) that modern RFID hardware can provide.
Large industrial ultra-high frequency RFID readers offer in ideal conditions a read rate
of 200 tags per second if 100% reliable reads are necessary. If faulty reads are tol-
erable, about 450 tags per second can be read [LL10]. As can be be seen from the
two graphs shown in figure 5.10 (the left graph shows read rates while the right graph
shows write rates), read and write rates do not decrease while increasing the number
of tags. Additionally, our implementation is able to read (see left graph) slightly more
than 200 tags per second. This means that in practice, the performance gap between
the two implementations will be barely noticed due to the delay caused by real RFID
hardware.

We conclude from these benchmarks that our implementation can keep up with
such a high-performance RFID reader and hence be applied to realistic systems, al-
though we are targeting a different class of applications that consist of mobile, less
performant devices. Finally, both the implementation of the AmbientTalk language as
well as our RFID language constructs are unoptimized research artifacts that we expect
to be further optimizable (e.g. by optimizing the serialization mechanism).

128 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

Figure 5.10: Read rates and write rates (tags per second).

5.4.4 Limitations
An issue that is not specific to our support for RFID, but to AmbientTalk programs
in general, is that messages acknowledging the successful processing of asynchronous
messages may time out while the corresponding asynchronous message was success-
fully executed. This means that in our case, client event loops will signal an exception,
while the RFID event loop actually may have processed a request successfully. In case
of writing data to an RFID tag, this leaves the application in an inconsistent state, as the
client event loop incorrectly assumes that no changes were written onto the RFID tag’s
memory. However, it is important to note that this can of course only happen if the
RFID event loop is hosted on another device. In the typical case, where the RFID event
loop is used as an abstraction to interact with on-board RFID hardware, this problem
does not occur. Mitigating this problem can be done by rolling back side effects when
the RFID event loop is signaled an exception that the acknowledgement message timed
out. Still, this is no water proof solution since the affected RFID tag may be out of
range by that time or may have been read by other devices. Solving this issue requires
transactional semantics over decentralized, unreliable interactions, which is a problem
that is out of the scope of this dissertation.

Event loops consume their incoming messages sequentially. This means that no
objects are shared between different event loops and race conditions cannot occur. A
first limitation of this approach is that the fact that tags are processed sequentially
restricts our implementation to systems where RFID readers do not have to process a
massive amount of tags in real time. A second limitation is that, when we consider
RFID tags as an ambient environmental memory, it may very well be that a set of
RFID tags is in the range of multiple users at the same time. Currently, we offer a
way to guarantee RFID tags are made invisible to other RFID devices when interacting
with them (as discussed in section 5.3.6), but it requires making the set of tags that is
interacting with a single RFID reader invisible in its entirety to other RFID readers.
When this mechanism is switched off, tags are visible to different RFID devices during
interaction. In this case, when users concurrently update the same tag from different
devices, distributed race conditions on that tag may occur.

In this work, we have not considered security and privacy. Currently, RFID tech-
nology is considered problematic for applications where security and privacy is are
important concerns as no workable solutions exist to offer complete security [RK09].
Similarly, we have only considered failures that are caused by RFID tags becoming

5.5. CONCLUSION 129

unreachable or unresponsive altogether. Problems that cause RFID hardware to mal-
function in any other way were not considered.

A final limitation is the limited amount of writable memory on passive RFID tags.
We have tested our implementation using RFID tags with up to 8 kbits of writable
memory. This means that we can only store very small AmbientTalk objects on the
tags. On the other hand, the technology is progressing and we can expect the storage
on passive tags to steadily increase while the costs drop. One can now for example buy
passive RFID tags with 32 Kb of writable memory [PS11]. This opens the door to use
more standardized serialization formats as well, which we have not considered at the
moment to cater to our prototype-based object model.

5.5 Conclusion
The abstractions presented in this chapter integrate closely with the object-oriented
message passing paradigm and the ambient-oriented programming paradigm, thereby
aligning physical objects tagged with writable RFID tags with true mutable software
objects.

Object Isolate Thing
Scope Object and lexical Object only Object only
Distributed pa-
rameter passing

By far reference By copy By far reference

Remote messaging Asynchronous N/A Asynchronous
Default identity Reference-based None Tag-based
Side effects On referenced ob-

ject
On local copy On referenced thing

and RFID tag’s
memory (requires
Mutator method
annotation).

Table 5.1: AmbientTalk’s extended object model for mobile RFID-enabled applica-
tions.

By implementing an example mobile RFID-enabled application, we have observed
that the requirements that we set forward for programming mobile RFID-enabled ap-
plications are met in the following ways:

Addressing physical objects. The implementation of the application shows that mo-
bile RFID-enabled applications can be written in an object-oriented fashion,
where application-level “thing” objects uniquely represent physical objects in
one’s physical environment.

Storing application-specific data on RFID tags. The data needed to construct these
things is stored on the RFID tags themselves.

Reactivity to appearing and disappearing things. Application logic is expressed in
terms of reactions to changes in the physical environment by relying on a number
of abstractions that are integrated into a communicating event loops framework.

130 CHAPTER 5. AMOP FOR MOBILE RFID-ENABLED APPLICATIONS

Asynchronous communication. Interacting with physical objects is achieved by us-
ing the message passing metaphor on things, by means of asynchronous message
passing and asynchronous signaling of return values.

Fault-tolerant communication. Communication failures are considered the rule rather
than the exception. Failures that must be considered permanent are detected and
raise the appropriate exceptions.

Data consistency. By allowing the mobile device equipped with an RFID reader to
temporarily make its reachable tags invisible to other mobile devices (by keeping
them powered in the RF field), exclusive access for that mobile device can be
granted and data consistency guaranteed, in combination with the consistency
guarantees of the event loop model among local applications for the device. For
the moment, we have not considered security and this remains future work.

In short, in this chapter we have successfully mapped interactions with (passive)
RFID technology onto the object-oriented programming model and event loop con-
currency model of AmbientTalk. To support the requirements listed above, we have
extended AmbientTalk’s object model – consisting of normal objects and isolates –
with things. How these three types of objects are treated in the language is compared
in table 5.1.

Note that although multiple copies of the same thing may exist in an environment
with multiple RFID-enabled devices that scan the same tags, the implementation makes
it look like as if conceptually there is only one instance of the thing.

Still, by relying on the classic event handling constructs of AmbientTalk (see chap-
ter 4 section 4.2), mobile RFID-enabled applications are prime examples of event-
driven applications that without dedicated event handling constructs suffer from inver-
sion of control. In the next chapter, we take care of the inversion of control problem by
using dataflow programming techniques for dealing with the events that drive mobile
RFID-enabled applications.

Chapter 6

Node-Centric
Ambient-Oriented Dataflow
Programming

In this chapter, we introduce a dataflow variant of AmbientTalk, called AmbientTalk/R.
Recall from the conclusion of chapter 4 that AmbientTalk/2 applications must be struc-
tured as decentralized event-driven architectures, but suffer from the inversion of con-
trol problem inherent to classic event-driven programming because reacting to events
happens by means of explicit callbacks. AmbientTalk/R’s interpreter automatically
tracks dataflow dependencies to support reactive programming, a variant of dataflow
programming based on time-varying values discussed earlier in chapter 2 section 3.3.1.
However, reactive programming is restricted to local AmbientTalk/R programs, which
implies that the programmer must take care of distributing reactive code without dedi-
cated support.

It is on this dataflow version of AmbientTalk that we build primitives for node-
centric ambient-oriented dataflow programming. Additionally, we also introduce group-
centric variants of these primitives. By relying on an underlying broadcast-based pub-
lish/subscribe architecture, it only depends on the subscription whether events from a
single event producer or multiple event producers in the mobile ad hoc network are re-
ceived. These event producers can vary over time, which must be reflected on the event
consumer’s side. Events and connectivity changes are transformed to value changes
of AmbientTalk/R’s time-varying values of which the dataflow dependencies are auto-
matically tracked. This means that the programmer is now less concerned with coordi-
nating control flow among different callbacks or event handlers, because this is being
taken care of by the language runtime.

First, we start in section 6.1 by giving two motivating examples and point out their
differences. The first example is an ambient-oriented application that will subsequently
be used to explain AmbientTalk/R’s dataflow language constructs in section 6.2. The
second example is the mobile RFID-enabled application that we are using as a case
study throughout this dissertation. In section 6.3 we continue our first motivating ex-
ample in a distributed dataflow style thanks to a number of distributed dataflow and
group-centric primitives. Section 6.4 shows the node-centric ambient oriented dataflow
implementation of our mobile RFID-enabled application case study. Section 6.5 dis-
cusses the implementation of the distributed dataflow language constructs introduced

131

132 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

in this chapter and subsequently benchmarks it by comparing its performance to a
handcrafted solution in standard AmbientTalk. After that, section 6.6 discusses their
limitations. Finally, section 6.7 concludes this chapter.

6.1 Motivation
Before moving on to our mobile RFID-enabled application that we are using as a run-
ning example, in this section we first show that distributed dataflow programming is
useful for general ambient-oriented applications as well. We use a simple ambient-
oriented example application that is loosely inspired by the “ubiquitous flea market” ap-
plication [EGH05] as a motivating example for adopting an ambient-oriented dataflow
language. We identify the different types of events and how they must be handled in
a traditional event-driven style. Although we restrict our discourse to mobile RFID-
enabled applications, this shows that these constructs are useful for other sensor-driven
ambient-oriented applications as well.

Subsequently, we do the same for the mobile RFID-enabled library application used
as a case study. This allows us to compare both applications and, after implementing
both applications in a node-centric ambient-oriented dataflow style, compare to which
extent our programming model requirements listed in chapter 2 section 2.3.4 are met.

6.1.1 The Ticket Trader Application

Figure 6.1: Two running instances of the ticket trader application.

In the ticket trader application, users are able to offer tickets for specific events for
sale (e.g. close to the location of the venue). They can adjust the price at any time or

6.1. MOTIVATION 133

cancel the ticket for sale. Other users are able to search for tickets that they want to
buy, taking into account both price limits and distance limits. All users have a maps
application (based on OpenStreetMaps1 in the current version) that shows tickets that
are for sale that fit in their search criteria. When the users selling these tickets move
about, their location is automatically updated on all potential buyers’ maps. Figure 6.1
below shows two running instances of the Ticket Trader application.

Using the classic event-driven programming style of AmbientTalk, the notification
messages and the callbacks shown that are needed to signal and react on these events
are shown in table 6.1.

Event Event producer Event consumer
New ticket trader con-
nected

Automatic notification by
AmbientTalk.

whenever:discovered:

callback
Ticket trader discon-
nected

Automatic notification by
AmbientTalk.

when:disconnected:

callback
Ticket trader recon-
nected

Automatic notification by
AmbientTalk.

when:reconnected: call-
back

New ticket for sale notifyTicketForSale

asynchronous message
send

notifyTicketForSale

method invoked when
receiving corresponding
asynchronous message.

Price of ticket changed notifyTicketPrice-
Changed asynchronous
message send

notifyTicketPrice-
Changed method invoked
when receiving corre-
sponding asynchronous
message.

Location of ticket trader
selling interesting ticket
changed

notifyTicketTrader-
LocationChanged asyn-
chronous message send

notifyTicketTrader-
LocationChanged

method invoked when
receiving corresponding
asynchronous message.

Own location changed GPS abstraction invokes
listener callback with
new coordinates.

Callback registered on
GPS abstraction.

Table 6.1: Traditional event handling in the Ticket Trader application.

6.1.2 The Book Recommender Application
The Book Recommender is an application that users can launch on their smartphone
when they enter a library in order to help them find interesting books based on rec-
ommendations provided. This happens as follows. Books are tagged with RFID tags.
These RFID-tagged books can be taken to a book scanner equipped with an RFID
reader (for example integrated into an information desk). The reader will detect which
books are carried around by the user, and will contact the Book Recommender appli-
cation running on his smartphone to update the list of books that the user is carrying.

1http://www.openstreetmap.org/

http://www.openstreetmap.org/

134 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Event Event producer Event consumer
Book scanner scanned
new book thing

Automatic notification by
RFID event loop.

whenever:discovered:

callback.
Book thing out of book
scanner’s range

Automatic notification by
RFID event loop.

when:disconnected:

callback.
Book thing back into
book scanner’s range

Automatic notification by
RFID event loop.

when:reconnected: call-
back.

Shelf scanned new book
thing

Automatic notification by
RFID event loop.

whenever:discovered:

callback.
Book thing out of shelf’s
range

Automatic notification by
RFID event loop.

when:disconnected:

callback.
Book thing back into
shelf’s range

Automatic notification by
RFID event loop.

when:reconnected: call-
back.

Table 6.2: Traditional event handling in the Book Recommender application: RFID
connection status events.

Event Event producer Event consumer
New set of scanned
books to show in Book
Recommender GUI

Book scanner
sends asynchronous
notifyNewScannedbooks

message.

notifyNewScannedbooks

invoked on Book Rec-
ommender application
GUI when corresponding
message received.

New set of recom-
mended books to show
in Book Recommender
GUI

e-book reader
sends asynchronous
notifyNewRecommended-
Books message.

notifyNewRecommended-
Books invoked on
Book Recommender
application GUI when
corresponding message
received.

New set of recom-
mended books in stock
in the library to show
in Book Recommender
GUI

Library shelf/shelves
send(s) asynchronous
notifyNewRecommended-
InStock message.

notifyNewRecommended-
InStock invoked on
Book Recommender
application GUI when
corresponding message
received.

New set of scanned
books for e-book reader
to process

Book scanner
sends asynchronous
notifyNewScannedbooks

message.

notifyNewScannedbooks

invoked on e-book reader
when corresponding
message received.

New set of recom-
mended books to filter
by shelf

e-book reader
sends asynchronous
notifyNewRecommended-
Books message.

notifyNewRecommended-
Books invoked on shelf
when corresponding
message received.

Table 6.3: Traditional event handling in the Book Recommender application:
application-specific events.

6.1. MOTIVATION 135

Event Event producer Event consumer
Book Recommender
GUI in range of book
scanner

Automatic notification by
AmbientTalk.

whenever:discovered:

callback.

Book Recommender
GUI disconnected with
book scanner

Automatic notification by
AmbientTalk.

when:disconnected:

callback.

Book Recommender
GUI reconnected with
book scanner

Automatic notification by
AmbientTalk.

when:reconnected: call-
back.

Book Recommender
GUI in range of e-book
reader

Automatic notification by
AmbientTalk.

whenever:discovered:

callback.

Book Recommender
GUI disconnected with
e-book reader

Automatic notification by
AmbientTalk.

when:disconnected:

callback.

Book Recommender
GUI reconnected with
e-book reader

Automatic notification by
AmbientTalk.

when:reconnected: call-
back.

Book Recommender
GUI in range of shelf

Automatic notification by
AmbientTalk.

whenever:discovered:

callback.
Book Recommender
GUI disconnected with
shelf

Automatic notification by
AmbientTalk.

when:disconnected:

callback.

Book Recommender
GUI reconnected with
shelf

Automatic notification by
AmbientTalk.

when:reconnected: call-
back.

E-book reader in range
of book scanner

Automatic notification by
AmbientTalk.

whenever:discovered:

callback.
E-book reader discon-
nected with book scan-
ner

Automatic notification by
AmbientTalk.

when:disconnected:

callback.

E-book reader re-
connected with book
scanner

Automatic notification by
AmbientTalk.

when:reconnected: call-
back.

E-book reader in range
of shelf

Automatic notification by
AmbientTalk.

whenever:discovered:

callback.
E-book reader discon-
nected with shelf

Automatic notification by
AmbientTalk.

when:disconnected:

callback.
E-book reader recon-
nected with shelf

Automatic notification by
AmbientTalk.

when:reconnected: call-
back.

Table 6.4: Traditional event handling in the Book Recommender application: connec-
tion status events.

136 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Additionally, if the user is carrying a tablet PC, or e-book reader, or another similar
device, the reader will send it the same list of books. In response, the device will con-
tact the user’s digital book store (e.g. Amazon, iTunes...) of choice and look up a list
of similar books to the ones the user is carrying. Once this list is generated, it will
broadcast this list to all reachable shelves in the book store. These shelves also have an
internal RFID reader that by periodically scanning the entire shelf knows which books
are present in the shelf and which ones are not. Using this information, the shelves
filter out of the list of recommended books the ones that are present in the shelf, and
send these lists to the user’s Book Recommender application. In response, the appli-
cation shows a list of recommended books that are present in the library, together with
on which shelf they can be found.

At any time, users can take books out of the shelves and put books back in. Fur-
thermore, book recommendations should only be sent to the relevant users in the shop.

Just like we did in the previous section for the Ticket Trader application, we list the
events that must be handled in the application. We split them up into three tables: ta-
ble 6.2 lists the RFID connection status events, table 6.3 the application-specific events,
and finally table 6.4 the connection status events.

Note that for the RFID-tagged books represented as things we are employing a sim-
plified scenario: we assume that book things do not change. If this would have been the
case, they should be encapsulated in a separate RFID event loop, and instead of pass-
ing things around directly, far references to these things should be passed around. This
would further increase the event-driven nature of the application as communication
over far references can only happen asynchronously.

6.1.3 Conclusion
In this section, we have described two ambient-oriented application scenarios and iden-
tified the different events that have to be communicated and reacted on. In chapter 4
section 4.2, we concluded that such applications structured as traditional event-driven
architectures in which events must be explicitly handled by callbacks imply inversion
of control.

Comparing the two applications, the mobile RFID-enabled Book Recommender
application is clearly more complicated. In contrast to the Ticket Trader application’s
homogenous peers, it consists of various heterogeneous distributed application compo-
nents that each generate and react on distinct events.

Therefore, before moving on to the more complicated Book Recommender applica-
tion used as a case study in this dissertation, we first use the more basic Ticket Trader
application explained above to introduce our node-centric ambient-oriented dataflow
constructs. Afterwards, we turn our attention back to our mobile RFID-enabled appli-
cation and apply the same constructs to implement it in an ambient-oriented dataflow
programming style in section 6.4. This allows us to evaluate if the requirements listed
in chapter 2 section 2.3.4 are met.

6.2 Dataflow Programming in AmbientTalk/R
As a first introduction to dataflow programming in AmbientTalk/R, consider the fol-
lowing example: assume that the ticket trader application introduced in the previous
section sports a user interface which includes a map that shows the position of ticket
vendors. The user can use this map to seek out a vendor and purchase one of the tickets

6.2. DATAFLOW PROGRAMMING IN AMBIENTTALK/R 137

being offered. To facilitate navigation, the map must be centered on the user’s current
position. Hence, whenever the position of the user changes, the user interface should
be updated. The code excerpt below illustrates that using dataflow programming, such
behavior can be achieved without registering event handlers or suffering from inversion
of control.

1 gui.centerOn(GPS Location.latitude, GPS Location.longitude);

In the above code excerpt, it is assumed that GPS_Location is a reactive (or time-
varying) value (in the rest of this chapter we will underline variables containing non-
derived reactive values) that represents the user’s current location. Later in this section,
we will illustrate how to construct such a reactive value by means of a built-in GPS
location sensor. Given the GPS_Location, dependent reactive values are created im-
plicitly when accessing its latitude and longitude fields respectively. These reactive
values are recomputed (i.e. the respective fields will be read anew) automatically when-
ever the GPS_Location is updated. In turn, the reactive values representing the user’s
current latitude and longitude are used as arguments to the invocation of the centerOn

method. This method invocation is lifted by the interpreter, resulting in the construc-
tion of a reactive value which depends on both reactive arguments. Hence, when either
one of the arguments changes, the method will be invoked anew with the updated argu-
ments. The dataflow graph that corresponds to this code snippet is shown in figure 6.2.

GPS_Location

gui.centerOn(_, _)

behavior

operator dataflow dependency

_.longitude

longitude

_.latitude

latitude

H

H+1

H dataflow graph stratum

Figure 6.2: Dataflow graph for centering the map in the ticket trader application.

The graph shows the reactive value GPS_Location which acts as the progenitor for
two dependent reactive values which represent the latitude and longitude. In turn,
these reactive values are the progenitors for the reactive value that – as a side-effect
– centers the user interface on the user’s current location. Furthermore, figure 6.2
shows how the dataflow graph is partitioned into different layers or strata such that
a reactive value only depends on reactive values situated in a lower stratum. This

138 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

stratification (first proposed in [CK06]) is used when propagating the updates to ensure
that a reactive value is recomputed only when all of its progenitors have been updated.
For instance, when the user’s current position changes, the interpreter will first update
both the latitude and the longitude reactive values before the centerOn method will
be invoked anew.

Having explained how dependent reactive values are created implicitly by the in-
terpreter in a reactive program, we now describe how to create new reactive values ex
nihilo. For this, AmbientTalk/R introduces the makeReactive construct which creates
a reactive value based on the object it is passed. In the code example given below, we
define a Coordinate isolate object which represents a GPS location. In addition to its
fields, Coordinate objects also define two methods, to wit distanceTo and update.

1 def Coordinate := isolate: {
2 def latitude := 0;
3 def longitude := 0;
4
5 def distanceTo(anotherCoordinate) {
6 /* Compute via the Haversine formula */
7 };
8
9 def update(newLatitude, newLongitude)@Mutator {

10 latitude := newLatitude;
11 longitude := newLongitude;
12 };
13 };
14
15 def GPS Location := makeReactive(Coordinate.new());
16 GPS.addLocationObserver: { |lat, lng| GPS Location.update(lat, lng) };

In the example above, on line 15 a reactive value denoting a time-varying Coordinate

object is created. When passing an object to the makeReactive construct, a clear dis-
tinction should be made between accessor methods which only read the state encap-
sulated by the object (e.g. distanceTo) and mutator methods which can change the
object’s internal state (e.g. update). All mutator methods must be explicitly tagged
with an @Mutator annotation. This requirement stems from the fact that the semantics
for invoking both kinds of methods on a reactive value differs significantly:

Accessor methods When invoking an accessor method (or reading a field) on a re-
active value, a dependent reactive value is created and returned which depends
both on the receiver and on any reactive values that were passed as arguments.
Hence, if the reactive value is updated, the accessor method will be performed
anew and the returned reactive value is updated when the new return value is dif-
ferent from the previous one. The same thing can happen in response to a change
to one of the arguments of the method invocation if this argument is a reactive
value. Reading fields of a reactive value behaves the same as invoking accessor
methods (following the uniform access principle of AmbientTalk, as explained
in chapter 4 section 4.1.1).

Mutator methods When invoking a mutator method (or writing a field), no depen-
dency on the receiver is recorded (to prevent ending up in an endless reaction).
In other words, if none of the arguments of the method invocation are reactive
values, the method is simply performed once. If at least one reactive value was
passed as an argument, a dependent reactive value is created which ensures that
the mutator method is invoked anew whenever the reactive arguments change.
However, changes to the receiver performed in the method body are disregarded,

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 139

again to prevent infinite reactions. Furthermore, the interpreter ensures that
whenever a mutator method has been invoked, all dependents of the receiver are
notified that their progenitor has been updated. Writing fields of a reactive value
behaves the same as invoking mutator methods (following the uniform access
principle of AmbientTalk, as explained in chapter 4 section 4.1.1).

This semantics is used in line 16 of the code example to register a location observer with
the GPS device, which is automatically invoked whenever the user’s position has to be
updated. At this point in time, the mutator method update is invoked on the reactive
object GPS_Location. This mutator method is invoked once (since its arguments are
ordinary numeric values), updating the coordinates to reflect the most recent sensor
values. Afterwards, all reactive values which implicitly depend on GPS_Location are
notified that the location has changed. This may result for instance in an update of the
user interface, such that the map is centered on the user’s updated position. Note that
mutator methods do not need to be atomic to guarantee correctness. The stratification
of the dataflow graph constructed by the interpreter (explained earlier in this section) in
combination with all updates that are scheduled in a single event loop according to this
stratification prevent local concurrency control problems and ensure that the ordering
of updates to reactive values mirrors the call graph of the program (which is critical
when reactive updates trigger side-effects).

6.2.1 Reactive Object Semantics
In table 6.5, we give an overview of turning AmbientTalk/R’s objects reactive. We
incorporate things denoting RFID-tagged object from the previous chapter.

As can be seen from this table, reactive values that are parameter-passed to an-
other event loop are turned into non-reactive values, more specifically: far references
(to the original reactive value) and snapshot copies of isolates. There is a reason for
this. Distributing dataflow graphs to track distributed dataflow dependencies among
parameter-passed reactive values causes a tight coupling among distributed applica-
tion components. However, by not tracking these dependencies across event loops, the
programmer must manually poll for changes to remote reactive values, leading to a
traditional event-driven style which suffers from inversion of control. Therefore, in the
next section we introduce a number of constructs that allow ambient-oriented dataflow
programming.

6.3 Ambient-Oriented Dataflow Programming in Am-
bientTalk/R

The dataflow programming system described in the previous section only deals with
events in a single, local event loop. In many cases, distributed application components
are interested in events coming from other devices (and thus event loops) in the mobile
ad hoc network. In this section, we introduce a language construct called ambient be-
haviors that allows the loosely-coupled propagation of events to reactive values hosted
on different event loops by means of publish/subscribe.

The transition from local reactive values to ambient behaviors needs some spe-
cial consideration in order to uphold the ambient-oriented programming characteristics
listed in chapter 2 section 2.3.4. Because of the dynamic nature of mobile ad hoc

140 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Object Isolate Thing
Scope Object and lexical Object only Object only
Distributed pa-
rameter passing

By far reference By copy By far reference

Remote messaging Asynchronous N/A Asynchronous
Default identity Reference-based None Tag-based
Side effects On referenced ob-

ject
On local copy On referenced thing

and RFID tag’s
memory (requires
Mutator method
annotation).

makeReactive Returns reac-
tive object that
changes when
methods an-
notated with
Mutator are
invoked.

Returns re-
active isolate
that changes
when meth-
ods annotated
with Mutator

are invoked.

Returns reactive
thing that changes
when methods anno-
tated with Mutator

are invoked, and
additionally the
changes are written
onto the RFID tag.

Distributed pa-
rameter passing of
reactive value

Far reference to
reactive value
(must be manually
polled).

Non-reactive
copy (snap-
shot).

Far reference to re-
active value (must be
manually polled).

Table 6.5: AmbientTalk/R’s reactive objects semantics.

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 141

networks, one cannot assume a stable dataflow graph as is constructed on the local in-
terpreter level, such as explained in the previous section. Instead, the dataflow depen-
dencies between different distributed computations should be established in a loosely
coupled way.

When we map behaviors onto event producers and dependent computations onto
event consumers, there should be a very loose coupling between event producers and
event consumers. In this section, we describe a publish/subscribe system where event
producers and consumers, denoting reactive application components, find each other in
the mobile ad hoc network by means of intensional descriptions that are broadcasted
using UDP to allow decentralized and spontaneous discovery. The difference with an
extensional approach (e.g. a list of registered subscribers) is that one merely states the
conditions that the properties of a producer or consumer must satisfy to establish a
loosely-coupled binding between the two.

6.3.1 Ambient Behaviors
Ambient behaviors are our main abstraction to allow ambient-oriented dataflow pro-
gramming. Ambient behaviors are like normal behaviors, i.e. reactive values that
change over time. Just like normal behaviors, when they are used in AmbientTalk/R
code, the dataflow dependencies of the expressions in which they are used are auto-
matically tracked. The difference with normal behaviors is that they do not use local
events to update themselves, but change in response to remote events on which they
are intensionally subscribed using publish/subscribe.

We will continue the ticket trading example introduced in section 6.1.1. Recall that
ticket vendors have a behavior that denotes their current location by means of GPS
coordinates. What we actually want to achieve is to discover ambient behaviors made
available by other devices that signal the events in which we are interested. In our
example a behavior that represents the GPS coordinates of the location of the ticket
vendor. Publishing such a behavior happens as follows, on the ticket vendor’s device:

1 deftype TicketVendorLocation;
2
3 exportBehavior: GPS Location as: TicketVendorLocation
4 to: { |buyer| buyer.interestedIn == "Rock Werchter" };

The exportBehavior:as:to construct is used on the publisher’s side to publish a reac-
tive value. Each time it changes, it will propagate an event to all reachable subscribers,
and buffer it for the temporarily unreachable ones. The first argument is the reactive
value, the second argument an AmbientTalk type tag (acting as a topic or event type).
The third argument is an optional content-based event matching closure that is exe-
cuted locally on the publisher’s side, by applying it on potential subscribers’ matching
descriptions. Once publishers discarded subscribers of which the descriptions do not
match with the closure, these subscribers can be safely disregarded and no communi-
cation resources are wasted on propagating events towards them (which would be the
case if they would perform the event filtering on their side). The return value of the
above construct is a “publication object” that implements a cancel method that when
invoked causes the language runtime to cease advertising the publication in the network
and to notify subscribers of change events.

Applications running on other devices can subscribe themselves on the events that
are signaled by this behavior. This happens as follows:

142 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

1 deftype TicketVendorLocation;
2
3 def vendorLocation := ambientBehavior: TicketVendorLocation
4 where: { def interestedIn := "Rock Werchter" } @Any;

The ambientBehavior: construct is used to create an ambient behavior, which is noth-
ing more than a local reactive value which is bound to one or more behaviors exported
by other (possibly remote) event loops. In the example given above, the @Any anno-
tation is used to indicate that vendorLocation should denote the location of a single
ticket vendor, rather than a collection of vendor locations (the group-centric case is
discussed in the next section). The first argument denotes the subscription type tag and
the second argument is an optional description object that will be passed by-copy to
potential event producers. Any definition in this description can be used by an event
producer to match on, as is done above with the event that a ticket buyer is interested
in.

Once an exported behavior can be found that matches the intensional descriptions
given by the programmer (which can be either topic-based using only the type tag or
content-based as above), the exported behavior will transparently start propagating up-
date events to vendorLocation. Note that multiple applications can be subscribed to
the TicketVendorLocation topic at the same time. The group communication required
to notify all these subscribers is internally handled by the M2MI framework [KB02].
A sequence diagram showing an ambient behavior interacting with two exported be-
haviors is depicted in figure 6.3. It shows a vendorLocation ambient behavior sub-
scribed to exported GPS_Location behaviors. It illustrates that when a disconnection
with the exported behavior to which the vendorLocation currently is subscribed is de-
tected, a replacement exported GPS_Location can be discovered and used to update the
vendorLocation ambient behavior.

These update events trigger an update in the reactive value which may result in
further reactive computation in its own event loop. For instance, the vendorLocation

could be used to update the location of the ticket vendor on the map in the graphical
user interface:

1 GUI.showLocationOnMap(vendorLocation);

The point here is that while the ticket vendor roams the environment and his GPS
device signals updates to all subscribed behaviors, the maps on the user interfaces of the
(reachable) interested parties are transparently updated with the new locations without
resorting to callbacks. Furthermore, if an ambient behavior is disconnected from the
exported behavior it was bound to, the ambient behavior will attempt to match with
any other matching exported behavior in the ad hoc network. Finally, since ambient
behaviors are treated as regular behaviors by the interpreter, they can be used in local
reactive code as if they were behaviors that depend solely on local changes. On the
other hand, applications that export the GPS_Location have no idea to which event
consumers they propagate events, nor do they keep an explicit list of event consumers.
This loose coupling between event producers and consumers is necessary to reflect the
dynamic nature of mobile ad hoc networks and to support transparent reconfiguration
when devices are roaming.

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 143

Figure 6.3: Example sequence diagram of an ambient behavior.

144 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

6.3.2 Group-centric Ambient Behaviors
In many cases, one is not only interested in receiving events from a single event pro-
ducer, but to receive events from all reachable event producers. To cater for this case,
an ambient behavior can be created that denotes a varying set of reactive values. Con-
sider the following code:

1 def vendorLocations := ambientBehavior: TicketVendorLocation
2 where: { def interestedIn := "Rock Werchter" } @All(3.seconds);

Here, vendorLocations denotes a time-varying set of the locations of all nearby ven-
dors of a ticket for Rock Werchter. Such group-centric ambient behaviors are created
by annotating the construct with @All.

Notice that there is a time period passed to the @All annotation. The reason for
this is that all update events are delivered asynchronously. This means that they can
arrive at any order, possibly with large time-spans in between. Although we model the
reactive vendorLocations as a continuous reactive value, in reality event processing
still happens in a discrete fashion. This means that we have to time-sample the arriving
events to determine to which update batch to the vendorLocations reactive set they
belong. This happens as follows:

1. The vendorLocations ambient behavior listens for update events for three sec-
onds and adds each value of the event coming from a different event producer
as a new element to a new slot in the set. From event producers that already
had published an event that was not invalidated yet by a new event, the event
value is also received. If an event producer propagated a new update event be-
fore the three second timeout, the value in its dedicated slot of the reactive set is
overwritten with the new value.

2. After three seconds, the vendorLocations reactive value itself signals a change.
Its new value is the set containing the accumulated values from all event produc-
ers that propagated an event in the three second time span. The local part of the
distributed dataflow graph is now signaled an update with the new value of the
vendorLocations set.

3. When new event producers appear, their latest propagated event value is added
to the next value of the vendorLocations set (to be signaled after three seconds).

4. Behind the scenes, the three seconds time span is not only used for time-sampling
incoming events, but also as a timeout to heartbeat messages sent to event pro-
ducers that they should acknowledge in the specified time span. If an event
producer that previously added an event value to the vendorLocations fails to
acknowledge a heartbeat message after three seconds, its propagated value is
removed from the set, and the next value of the set will be one without that prop-
agated value. If the event producer reappears in the network, it is rediscovered
and can add again its latest value to vendorLocations.

This process is depicted in a sequence diagram in figure 6.4. It shows the
vendorLocations group-centric ambient behavior (denoting a reactive set) subscribed
to all reachable exported GPS_Location behaviors. Update event messages cause the
reactive set to be updated with new locations. When a heartbeat message sent to a
GPS_Location times out, its value is taken out of the set. If a new GPS_Location is
discovered, its value is added to the set.

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 145

Figure 6.4: Example sequence diagram of a group-centric ambient behavior.

146 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Incoming events are again handled as regular AmbientTalk messages by the event
loop such that no race conditions can occur. Group-centric ambient behaviors abstract
both over the events of changing values and the events of appearing and disappear-
ing event producers. In response, the reactive set that is returned varies over time by
updating its contents, growing or shrinking.

Table 6.6 below gives the operations that are supported by group-centric ambient
behaviors.

+(otherSet) Concatenation with another set (which can be re-
active). Returns a new reactive set.

contains(aValue) Checks if the set contains aValue (can be reac-
tive). Returns a reactive boolean value.

each:(aClosure) Applies aClosure to every element of the set, and
will be reexecuted each time the reactive set on
which it is invoked changes. Returns nil.

filter:(aClosure) Returns a new set with only those elements that re-
turned true when aClosure was applied to them.
Returns a new reactive set.

find:(aClosure) Returns the index of the first element that returned
true when aClosure was applied to it (nil if no
such element was found). Returns a reactive set.

inject:into:

(initialValue, aClosure)

Collects all elements of the set by combining them
using the given closure. Returns a reactive set.

isEmpty() Checks if the set is empty. Returns a reactive
boolean value.

length() Returns the number of elements in the set. Returns
a reactive value.

map:(aClosure) Returns a new set by applying aClosure to each
element. Returns a new reactive set.

Table 6.6: Supported operations by goup-centric ambient behaviors.

These operators make it possible to for example update the locations of interesting
ticket vendors on the user’s screen as follows:

1 vendorLocations.each: { |newLocation|
2 GUI.showLocationOnMap(newLocation);
3 };

Note that almost all operations return reactive values in their turn that can be used in the
rest of the dataflow code. This degree of functional composition is not present when
programming with explicit callbacks.

6.3.3 Reactive Queries
Reactive queries can be regarded as the dual language construct of ambient behaviors,
offering pull-based instead of push-based communication. This duality is shown in
figure 6.5. Ambient behaviors as described above can only be used if there is a node
that publishes its service as an ambient behavior. Otherwise, the subscriber has to
obtain ambient behaviors by querying the network for relevant information itself. For

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 147

Figure 6.5: Duality between ambient behaviors and reactive queries.

this the programmer is provided with an abstraction that allows creating a behavior that
autonomously queries the network to update itself. This abstraction is an integration
of ambient references (which allow querying the network by sending messages) with
the reactive programming language facilities of AmbientTalk/R (which allow reacting
to and processing events without inversion of control). The example below shows the
creation of a behavior by querying the network using a reactive ambient reference. The
ambient reference is created on line 4 and the reactive query is launched on line 6,
returning a reactive value.

1 deftype TicketVendor;
2
3 def werchterVendors :=
4 ambient: TicketVendor where: { |tv| tv.event == "Rock Werchter" };
5
6 def locations := werchterVendors<-getLocation()@Refresh(5.seconds);

The getLocation() message is annotated with @Refresh, which implies that the results
of the message are accumulated in a reactive value. Hence, the locations variable
contains a reactive value which initially denotes an empty set. The @Refresh annotation
implies that the annotated getLocation message is sent every 5 seconds to all nearby
ticket vendors offering a ticket for Rock Werchter2. The resulting locations behavior
is updated every five seconds and contains a set of all responses from the ticket vendors
in range.

An example scenario is depicted in the sequence diagram in figure 6.6. It shows
the locations behavior that queries every 5 seconds all TicketVendors that match the
description of the ambient reference for their location through an ambient reference.
Disconnected TicketVendors are discarded by the ambient reference and newly dis-
covered TicketVendors are queried for their location as well. Replies to queries and
observed disconnections cause the locations reactive set to change.

Since locations is a reactive set, it can be passed on to other functions or methods
as any other value, as done below to update the map in the user interface of the user
with all locations:

1 locations.each: { |coordinates| GUI.showLocationOnMap(coordinates) };

2In addition to the @Refresh annotation, one can add annotations to the message that specify the mes-
sage sending semantics. By varying these annotations, one can decide to send the message to all objects in
range like in the example (@All), which will result in a changing array of results, or send the message to
just one of the objects in range, resulting in a behavior containing a single value (@Any).

148 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Figure 6.6: Example sequence diagram of a reactive query.

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 149

Note that by making use of a reactive query, the programmer no longer has to explicitly
poll the environment in a loop.

To conclude, integrating ambient references with reactive programming allows the
results of queries over the network to be collected into a behavior that is automatically
synchronized with the environment. Ambient references provide an abstraction over
the events of appearance and disappearance of services in the network, while the re-
active programming system provides an abstraction over the events generated by the
reception of results of asynchronous queries.

6.3.4 Summary
In this section, we summarize the language constructs introduced earlier in this chapter
that allow to implement ambient-oriented applications as node-centric dataflow pro-
grams.

@Mutator Methods of reactive objects annotated with this annotation trigger an event
when invoked.

makeReactive(anObject) Returns a reactive version of anObject3.

exportBehavior:as:(anObject, aTypetag) Publishes a reactive object
anObject under aTypetag (topic-based publication). Returns a publication ob-
ject p such that p.cancel() cancels the publication.

exportBehavior:as:to:(anObject, aTypetag, aClosure) Publishes
a reactive object anObject under aTypetag and uses the aClosure predicate to
filter out subscribers (content-based publication). The predicate closure is ap-
plied locally on description objects sent by potential subscribers. Returns a pub-
lication object p such that p.cancel() cancels the publication.

ambientBehavior:(aTypetag) Subscribes to all reactive objects published un-
der aTypetag (topic-based subscription). Returns two objects: the behavior itself
and a subscription object s such that s.cancel() cancels the subscription.

ambientBehavior:where:(aTypetag, aDescription) Subscribes to all
reactive objects published under aTypetag using the aDescription object to de-
scribe the content-based subscription. Returns two objects: the behavior itself
and a subscription object s such that s.cancel() cancels the subscription.

@Any An ambient behavior subscription annotated with this annotation returns a sin-
gle reactive object that reflects the latest value of a published object (using best
effort semantics with respect to network failure handling). If a disconnection
is observed, the subscription mechanism is restarted to find a replacement pub-
lished reactive object.

@All(aTimePeriod) An ambient behavior subscription annotated with this anno-
tation returns a reactive set of reactive objects that reflect the latest value of all
received published objects. Results from unresponsive publishers are removed
from the collection and results from newly appearing publishers are added to the
collection. aTimePeriod is used for both time-sampling incoming results as well
as for a timeout value to discard unresponsive publishers.

3More precisely, it establishes a dataflow dependency between a reactive variable and the original object
to which it refers.

150 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

@Refresh(aTimePeriod) A message broadcasted via an ambient reference an-
notated with this annotation returns a reactive set of results to the broadcasted
message. The message is broadcast every aTimePeriod and the reactive set sig-
nals every aTimePeriod a new event with its latest results (results from peers that
already replied are replaced with fresh results).

As can be seen from the last construct, reactive queries are implemented as an
extension of ambient references [Van08]. Although both rely on AmbientTalk/R’s re-
active interpreter, reactive queries and ambient behaviors do not depend on each other.

Figure 6.7: Schematic overview of an AmbientTalk/R dataflow program distributed
using ambient behaviors.

These language constructs allow to distribute dataflow programs over different
event loops using space, time and arity-decoupled publish/subscribe primitives. Fig-

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 151

ure 6.7 shows a schematic overview of an AmbientTalk/R dataflow program distributed
using ambient behaviors. It shows three AmbientTalk/R event loops hosting local
dataflow programs. These local dataflow programs constitute a larger distributed dataflow
program. The distributed dataflow dependencies behave as publishers and subscribers
in a publish/subscribe system. They take care of transforming dataflow events into
asynchronous AmbientTalk messages that can be sent across event loops and sched-
uled the in message queues of subscribed event loops. When processed, these event
messages update dependent ambient behaviors.

The loosely coupled interaction offered by the underlying publish/subscribe prim-
itives allows that event loops are dynamically matched at runtime to satisfy dataflow
dependencies. This means that the distributed dataflow graph can be reconfigured at
runtime because of changes in the network topology of the mobile had hoc network.
This also means that the set of exported behaviors that are aggregated into a single
group-centric ambient behavior is in constant flux as the network topology changes.

In the next section, we use the aforementioned ambient-oriented dataflow abstrac-
tions to complete the implementation of the Ticket Trader example application.

6.3.5 Implementing The Ticket Trader Application with Ambient
Behaviors

In previous sections, we have used the dynamic discovery of ticket vendors and their
location as a running example to explain the various features of AmbientTalk/R. This
section presents a slightly more elaborate version of the application, which matches
ticket vendors with prospective clients. In publish/subscribe terminology, ticket ven-
dors publish the offers for tickets they are willing to sell, while their prospective clients
subscribe to events concerning tickets being offered in their vicinity. Clients are able
to identify which ticket offers are relevant to them by specifying which events they
want to attend, the price they are willing to pay for the ticket and the maximal allowed
distance between themselves and the ticket vendor. The latter filter requires that both
vendors and clients have access to a GPS device, such that their GPS coordinates can
be used to compute the distance.

Note that different ticket vendors can offer tickets for the same event (possibly
for a different price) and that different clients can be interested in the same ticket.
Furthermore, both vendors and clients roam the environment, can cancel their offers,
change the price of their offers, and announce new offers. The different instances of
the application on the different devices should all be able to deal with these changes.

Before turning our attention to the implementation of both parties in the application,
we show the implementation of a simple isolate object representing a ticket offer:

1 def TicketOffer := isolate: {
2 def eventName := nil;
3 def price := 0;
4 def location := nil;
5
6 // Constructor
7 def init(anEventName, aPrice) {
8 eventName := anEventName;
9 price := aPrice;

10 };
11 };

The object contains three slots: the event the ticket provides access to, the price at
which it is currently being offered and the vendor’s current location. During the lifetime

152 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

of the application, the latter two values may change: the vendor may roam and decide
to adjust the price at which the ticket is being offered. Typically, the price can be
reduced if interest is low or if the event is about to start.

To determine the vendor’s current position, we reuse the GPS_location abstraction,
which was defined previously as follows:

1 def GPS Location := makeReactive(Coordinate.new());
2 GPS.addLocationObserver: { |lat, lng| GPS Location.update(lat, lng) };

The following code excerpt defines an AmbientTalk type tag that is used as the
topic under which ticket offers are published.

1 deftype TicketOfferT;

Having described the necessary abstractions, we can now describe how ticket offers
are published by the vendor:

1 def TicketVendor := object: {
2 def offeredTickets := HashMap.new();
3
4 // Offer a new ticket.
5 def offerTicket(eventName, price) {
6 def ticketOffer := makeReactive(TicketOffer.new(eventName, price));
7 ticketOffer.location := GPS Location;
8 offeredTickets.put(eventName, ticketOffer);
9 exportBehavior: ticketOffer as: TicketOfferT;

10 };
11
12 // Change the price of a ticket on offer.
13 def setTicketPrice(eventName, newPrice) {
14 (offeredTickets.get(eventName)).price := newPrice;
15 };
16 };

Tickets are offered to all nearby prospective clients by invoking the offerTicket

method. In it, a reactive TicketOffer object is created (line 6). Because the object
is reactive, the vendor is guaranteed that whenever the offer changes, these changes
are automatically propagated to all prospective clients. One way in which the offer
might change is if the location of the vendor changes. Note that in line 7, the loca-
tion associated with the offer is set to the vendor’s GPS_Location. Due to the fact that
GPS_Location is a reactive value and because of the semantics of mutating reactive val-
ues (see section 6.2), the location field of the ticketOffer will be set anew whenever
the GPS_Location is updated. In turn, this update will be propagated to reactive values
which depend on ticketOffer. In this particular case, this includes all prospective
clients that are currently in range. The fact that these prospective clients can detect the
offer, stems from the fact that it is published using the exportBehavior:as: construct
in line 9.

Additionally, vendors keep track of the various events for which they offer tickets
in the offeredTickets map, which associated the names of the events with the tickets
offered for these events. This map is used to update the price at which tickets are being
offered. The setTicketPrice method uses the mapping to find a particular reactive
ticket offer in order to update its price. Because of the semantics of mutating reactive
values, setting the price causes an update to be propagated to all prospective clients in
reach.

The following code excerpt shows the findOffers function, which permits prospec-
tive clients to detect ticket offers that have been exported by nearby vendors by means

6.3. AMBIENT-ORIENTED DATAFLOW PROGRAMMING 153

of the ambientBehavior: construct.

1 def findOffers(event, maximumPrice, maximumDistance) {
2 // Subscribe to TicketOffers
3 def allNearbyOffers := ambientBehavior: TicketOfferT @All(_timespan_);
4
5 // Filter out interesting TicketOffers
6 allNearbyOffers.filter: { |offer|
7 (offer.eventName == event).and: {
8 (offer.price <= maximumPrice).and: {
9 GPS Location.distanceTo(offer.location) <= maximumDistance }}};

10 };
11
12 def werchterTicketVendors := findOffers("Rock Werchter", 200, 500);
13 gui.updateWithOffers(werchterTicketVendors);

The ambient behavior allNearbyOffers will be bound to a collection that contains all
ticket offers made by nearby vendors. This is because the @All annotation is used,
rather than the @Any annotation used before. In other words, allNearbyOffers is a
reactive value denoting a time-varying set of exported ticket offers. The size of this set
evolves as ticket vendors move in and out of range.

The reactive set allNearbyOffers is subsequently filtered to produce a selection
of ticket offers that are relevant to the client (lines 6-9). An offer is deemed rele-
vant if it provides access to the correct event, its price does not exceed the maximum
set by the client and if the distance to the client’s current location does not exceed a
given maximum. Since allNearbyOffers is an ambient behavior, the invocation of its
filter: method (an accessor method) creates a dependent reactive value, which is the
return value of the function. This reactive value is updated when vendors go in and
out of range, but also if one of the previously detected offers change (i.e. the vendor
has moved or the price has been updated). Furthermore, it is important to note that the
condition to determine whether an offer is relevant also depends on the location of the
prospective client. In line 9, the vendor’s location is compared to the current location
of the client. This implies that an offer can suddenly become relevant as the client is
roaming.

In the code snippet, the findOffers function is called to find ticket offers to attend
Rock Werchter, which cost less than 200 euro and whose vendor is less than 500 meters
away. The resulting collection is passed as an argument to the updateWithOffers

method of the user interface. This method expects a set of ticket offers (which all
contain their last location) and draws them on the map. Since the
werchterTicketVendors collection is a reactive set, this method will be invoked anew
whenever the collection is updated.

Discussion

Notice that ticket vendors and their prospective clients are loosely coupled with regard
to one another. They discover one another by means of a topic-based publish/subscribe
architecture (which uses an ordinary AmbientTalk type tag to denote the type of events
that are exchanged). Parties that are disconnected from each other (e.g. by network
partitioning of the mobile ad hoc network) are automatically discarded while newly
connected parties dynamically discover each other and start exchanging events.

Furthermore, the publication of new events is integrated closely with the imper-
ative object-oriented programming style of the host language. Provided that mutator
methods are properly identified, any object can be used to create a reactive value. Once

154 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

such a reactive value has been published, it suffices to write one of the object’s fields
or invoke one of its mutator methods to implicitly emit events notifying all reachable
subscribers of the change. Recall from the previous chapter that our programming
model for mobile RFID-enabled applications relies on side-effects to trigger writes on
the memory on RFID-tagged things. An entirely functional reactive programming style
would not integrate well with this model.

Finally, the subscriber can trivially indicate which events it is interested in receiv-
ing (by means of a topic-based subscription) and can handle incoming events without
resorting to a complex network of event handlers. In the ticket trader example, two
sources of events are considered, to wit allNearbyOffers and GPS_Location. Changes
to the former are the result of the appearance and disappearance of vendors (which
result in the addition and removal of certain offers) as well as updates to the offers
themselves (i.e. price and/or location updates). Changes to the latter are the result of
roaming clients, and affect the number of offers reported to the user as they affect the
distance between the vendor and the prospective client. The interplay between these
different event sources are handled implicitly by the AmbientTalk/R interpreter.

6.4 Case Study: The RFID-Enabled Library
In this section, we continue the example mobile RFID-enabled Book Recommender
application introduced in section 6.1.2. Important to note here is that we are going to
integrate the programming model for mobile RFID-enabled applications introduced in
chapter 5 with ambient-oriented dataflow programming. This way, the explicit call-
backs necessary to react to different kinds of RFID events are replaced by reactive
values denoting changing sets of reachable RFID proxy objects. The same holds for
parts of AmbientTalk’s event-driven communication constructs. The consequence is
that part of the control flow of the application is not explicitly managed by the pro-
grammer by registering callbacks, but implicitly by the interpreter of the language that
tracks dependent reactive expressions.

6.4.1 Connecting a Reactive Value to a Sensor
In many cases, reactive values are driven by sensor devices and must be causally con-
nected to them in some way. Event sources are AmbientTalk/R time-varying values
that – in contrast to behaviors – do not trigger reevaluation of dataflow-dependent ex-
pressions. They require the programmer to manually query them for their latest value.
On the other hand, they allow the programmer to create a time-varying value without
resorting to the makeReactive construct in combination with Mutator methods. This is
useful when porting legacy objects to reactive applications. Typical examples are col-
lection objects such as lists, sets, etc., GUI elements.... Similarly, in almost all cases,
sensor device APIs, will not be conceived taking into account reactive programming
abstractions. This is the case as well for our RFID abstractions introduced in the previ-
ous chapter. Hence, we rely on an event source to causally connect a collection object
to an RFID reader.

Consider the code below that can be used to construct a reactive set of all scanned
RFID-tagged objects of a certain type.

6.4. CASE STUDY: THE RFID-ENABLED LIBRARY 155

1 // Initialize the RFID event loop
2 /.at.briges.RFID.RFIDServiceRunner();
3
4 // Scan for tags of a certain type
5 def scan(aTypetag) {
6 def theScannedThings := [];
7 def theEventSource := makeEventSource();
8
9 def theBehavior := hold: theEventSource with: (object: {

10 def updateWithValue(aValue) { aValue };
11 });
12
13 theEventSource<-updateWithValue(theScannedThings);
14
15 whenever: aTypetag discovered: { |obj|
16 theScannedThings := theScannedThings + [obj];
17 theEventSource<-updateWithValue(theScannedThings);
18 whenever: obj disconnected: {
19 theScannedThings.remove(obj);
20 theEventSource<-updateWithValue(theScannedThings);
21 };
22 whenever: obj reconnected: {
23 theScannedThings := theScannedThings + [obj];
24 theEventSource<-updateWithValue(theScannedThings);
25 };
26 };
27
28 theBehavior;
29 };

The scan procedure takes a type tag as argument and returns a reactive set of things
tagged with that same type tag. The reactive set grows and shrinks as objects leave the
reading range of the RFID reader used by the RFID event loop 4.

First, it encapsulates a private set theScannedThings storing the scanned things in
range. Subsequently, it also holds a private event source theEventSource. This event
source is used to initialize a reactive value using the hold:with: primitive. This prim-
itive takes an event source as first argument and an updater object as second argument.
When this updater object’s methods are invoked, the event source signals a new event
and the reactive value that was derived from it gets a new value. The value is the return
value of the method. In this case, we implement simply the identity function. The
updater object’s methods can be invoked by sending the event source that is associated
with it an asynchronous message, passing it the value used for updating.

The initial value of the event source (and hence the reactive value as well) is set
to an empty set. Subsequently, a number of event handlers are registered that are trig-
gered when things tagged with the passed type tag are discovered, disconnected or
reconnected again. In these event handlers, the event source is updated by sending it
the message corresponding to the associated updater object’s update method. In this
message, we simply pass the new set of RFID-tagged objects in range (with matching
type tag).

The result of calling the scan procedure is a reactive set that contains the last set of
scanned RFID-tagged objects tagged with the type tag passed to the procedure.

4For the sake of brevity, we represent RFID-tagged objects here as isolates that are stored on the tags’
memory and that are passed by copy. In a setting where the data on the tags may frequently change, it is
better to not just rely on the discovery primitives, but use the full infrastructure introduced in the previous
chapter where things are encapsulated in an RFID event loop and addressed by far reference.

156 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

6.4.2 Node-Centric Dataflow Primitives at Work
Once we have a reactive value denoting the currently scanned RFID-tagged books, we
can build the complete reactive distributed dataflow application on top. The distributed
application application consists of five objects:

• The book thing from the previous chapter (see section 5.3.1),

• The BookRecommender object that implements the part of the application running
on the user’s smartphone,

• The BookScanner object representing an RFID-enabled book scanning station in
the library,

• The EBookReader object implementing the book recommendation part of the ap-
plication running on the user’s e-book reader (which could possibly be hosted on
the user’s smartphone as well),

• The Shelf object representing an RFID-enabled shelf in the library.

The source code of the Book Recommender application is given below. Lines 2
to 11 show some private definitions and two methods to update the two lists that are
shown in the user interface: a list with current books the user is carrying around, and
based on that list another list with recommended books that can be found in the library,
together with the shelf on which they are located.

1 def BookRecommender := object: {
2 def user := //...
3 def gui := jlobby.at.demo.ShopAssistantGUI.new();
4
5 def showBooks(books) {
6 gui.updateBookList(books);
7 };
8
9 def showRecommendationsInStock(books, location) {

10 gui.updateRecommendedInStock(books, location);
11 };
12
13 deftype ScannedBooks;
14 deftype RecommendedInStock;
15
16 def scannedBooks := ambientBehavior: ScannedBooks
17 where: { def customer := user } @Any;
18
19 def recommendedBooks := ambientBehavior: RecommendedInStock
20 where: { def customer := user } @Any;
21
22 deftype Customer;
23 export: user as: Customer;
24
25 showBooks(scannedBooks);
26 showRecommendationsInStock(recommendedBooks[1], recommendedBooks[2]);
27 };

To update these lists, two ambient behaviors are subscribed. First, the scannedBooks
ambient behavior listens for events type-tagged as ScannedBooks (lines 16-17). Addi-
tionally, it attaches a description object to the subscription that stores a reference to the
user of the application, such that publishers of these events can direct events only to

6.4. CASE STUDY: THE RFID-ENABLED LIBRARY 157

the interested user. The ambient behavior is annotated with @Any because we assume
that the user is in range of a single RFID reader.

Similarly, there is also an ambient behavior subscribed to events denoting recom-
mended books that are in stock together with their location (lines 19-20). In this sce-
nario, these events are published by the shelves in the library that have an integrated
RFID reader. This ambient behavior is also annotated with @Any. It would also be pos-
sible to receive all recommendations from all shelves in communication range in the
library by annotating it with @All.

To allow remote parties interacting with the application to detect that there is a
customer nearby and obtain a reference to this customer, the application exports the
object representing the user as a Customer (lines 22-23).

To update the user interface, these two ambient behaviors are simply passed to the
two user interface methods updating the two lists (lines 25-26). The dataflow evaluation
model of the AmbientTalk/R interpreter automatically ensures that these methods are
reinvoked when these two behaviors change (e.g. because the user changed the books
that he is carrying or because he moved closer to another shelf).

As already mentioned, the RFID reader scanning books will notify book recom-
mender applications of the list of scanned books that the user is carrying around. Such
devices equipped with an RFID reader host the BookScanner object shown below.

1 def BookScanner := object: {
2 deftype Customer;
3 deftype ScannedBooks;
4 deftype Book;
5 def booksBehavior := /.bridges.rfid.ReactiveRFIDService.scan(Book);
6
7 whenever: Customer discovered: { |customer|
8 def publication := exportBehavior: booksBehavior as: ScannedBooks
9 to: { |desc| desc.customer == customer };

10 whenever: customer reconnected: {
11 publication := exportBehavior: booksBehavior as: ScannedBooks
12 to: { |desc| desc.customer == customer };
13 };
14 whenever: customer disconnected: {
15 publication.cancel();
16 };
17 };
18 };

It creates the necessary type tags and (line 5) creates a reactive set denoting all
currently scanned books by the RFID reader, using our abstraction introduced earlier
in section 6.4.1. Subsequently, it registers listeners to detect customers. This is needed
to use the detected customer in the listener in the subscription matching process to
send the recommendations to the correct customers. When a customer is detected or
reconnected, the booksBehavior is published to subscribers of which the customer
matches. When a customer disconnects, the publication of the booksBehavior for that
customer can be cancelled (line 14-16).

A second part of the distributed dataflow application that the user is carrying around,
is the part that runs on his e-book reader.

1 def EBookReader := object: {
2 def user := //...
3
4 deftype ScannedBooks;
5 deftype RecommendedBooks;
6

158 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

7 def books := ambientBehavior: ScannedBooks
8 where: { def customer := user } @Any;
9

10 def recommendedBooks :=
11 flatten(books.map: { |book| generateSimilarBooks(book) });
12
13 exportBehavior: [user, recommendedBooks] as: RecommendedBooks;
14 };

It subscribes an ambient behavior books that listens for the books scanned by the
RFID reader. The subscription uses a predicate to filter out books that were not in-
tended for the user. The resulting reactive set is subsequently used to map over a clo-
sure that for each book generates a collection of similar books based on the electronic
book store information on the device (such as Amazon or iTunes). After flattening this
set, this results in another reactive set with recommended books. This reactive value is
published as a two-tuple consisting of the user together with his recommended books.
The software running on the shelves in the store receiving this tuple can then use the
reference to the customer in it to publish the filtered recommended books to the correct
user.

The object hosted by the shelves in the store is shown below. Every shelf is associ-
ated with a location identifier corresponding to their location in the library (an idea for
a more advanced version of the application could be to highlight the shelf on a floor
plan of the library shown in the user interface of the application), such that user can
easily find the books that are being recommended.

1 def Shelf := object: {
2 def location := //...
3
4 deftype Book;
5 deftype ScannedBooks;
6 deftype RecommendedBooks;
7 deftype RecommendedInStock;
8
9 def booksInStockBehavior :=

10 /.bridges.rfid.ReactiveRFIDService.scan(Book);
11
12 def userPublicationMap := HashMap.new();
13
14 def recommendedForUser :=
15 ambientBehavior: RecommendedBooks @All(3.seconds);
16
17 recommendedForUser.each: { |userAndRecommendedBooks|
18 def [customer, recommendedBooks] := userAndRecommendedBooks;
19 def recommended := recommendedBooks.filter:
20 { |book| booksInStockBehavior.contains(book) };
21
22 def oldPublication := userPublicationMap.get(customer);
23 if: (nil != oldPublication) then: {
24 oldPublication.cancel();
25 };
26
27 def publication :=
28 exportBehavior: [recommended, location]
29 as: RecommendedInStock
30 to: { |desc| desc.customer == customer };
31
32 userPublicationMap.put(customer, publication);
33 };
34 };

6.4. CASE STUDY: THE RFID-ENABLED LIBRARY 159

Shelves are equipped with an RFID reader, which allows them to be aware of which
books they contain. Again, we use our reactive abstraction used earlier to generate a
reactive value of books in reading range. These denote the current books in the shelf.

On line 12, a map is created to associate the publication objects of book recommen-
dations published for a certain customer with the corresponding customer. We explain
later why.

The recommendedForUser ambient behavior registered next listens for all user -
books pairs broadcasted by EBookReaders using the @All annotation. Hence, it denotes
a reactive set of such pairs. It is used to iterate over (lines 17-33) all of these pairs. In
this iteration, a new reactive value recommended is created that depends on two other
reactive values: the list of recommended books of the current tuple in the iteration and
the booksInStockBehavior that denotes the current books in the shelf. The resulting
reactive set contains the filtered recommended books that are present in the shelf.

Subsequently, after the old publication for that customer out of the tuple is can-
celled, the new reactive list of recommended books that are in the shelf is published
together in a two-tuple with their location under the type tag RecommendedInStock and
by matching on the customer for which the recommendations are intended. The result-
ing publication object is put in the userPublicationMap.

6.4.3 Evaluation

Let us evaluate the implementation of the Book Recommender application given above
with respect to the programming model requirements for mobile RFID-enabled ap-
plications put forward in chapter 2 section 2.3.4. Here, we focus on the distribution
and event handling part of these requirements. The requirements for interacting with
RFID-tagged objects were covered in the previous chapter.

Space Decoupling

The various distributed application components in this application spontaneously in-
teract when they are in proximity by relying on the publish/subscribe interaction style
of ambient behaviors. For the BookRecommender mobile application, it suffices to sub-
scribe to the appropriate exported behaviors, as shown in the code snippet taken from
the BookRecommender object below:

1 // ...
2 deftype ScannedBooks;
3 deftype RecommendedInStock;
4
5 def scannedBooks := ambientBehavior: ScannedBooks
6 where: { def customer := user } @Any;
7
8 def recommendedBooks := ambientBehavior: RecommendedInStock
9 where: { def customer := user } @Any;

10 // ...

The only knowledge the BookRecommender needs for this are the type tags under which
ambient behaviors are exported. Because both subscriptions are annotated with @Any,
in case of a disconnection with an event producer, subscribing to a replacement (or the
same in case it reconnected) event producer is attempted automatically.

160 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Arity Decoupling

In the code snippet shown above, BookRecommender objects are subscribed to singular
ambient behaviors (because the subscriptions are annotated with @Any). This means the
Book Recommender application will receive recommended books present in the library
from a single nearby shelf. Adapting this behavior to receiving recommended books
from all nearby shelves happens by simply changing the @Any annotation to @All, as
shown in the code snippet below:

1 // ...
2 def recommendedBooks := ambientBehavior: RecommendedInStock
3 where: { def customer := user } @All;
4 // ...

It only depends on the subscription whether a group-centric or a singular ambient be-
havior is created: event producers do not have to take this into account.

Time Decoupling and Fault Tolerant Communication

Ambient behaviors rely on standard asynchronous AmbientTalk messages to commu-
nicate events. These messages buffered by the sender in case of a disconnected and
resent in case of a reconnection by default. To deal with permanent failures, the pro-
grammer can specify a timeout an ambient behavior subscriptions that determines how
long events intended for a specific subscriber are buffered. If the timeout expires, these
event messages are discarded.

Rich Representation of Events

To be able to rely on the thing abstraction introduced in the previous chapter for rep-
resenting RFID-tagged books, events must be represented as full-blown book things.
Ambient behaviors transform events to asynchronous AmbientTalk messages, which
can be passed any kind of AmbientTalk object (including things), keeping into account
AmbientTalk’s parameter passing semantics.

No Inversion of Control

It is clear from the behavior denoting the currently detected books that polling for books
should not happen manually anymore and calling and registering callbacks when books
are detected is eliminated. This allows to declaratively reason over the detected set of
books, as done in the implementation of the Shelf object. Consider the following code
snippet, taken from the implementation of Shelf:

1 recommendedForUser.each: { |userAndRecommendedBooks|
2 def [customer, recommendedBooks] := userAndRecommendedBooks;
3 def recommended := recommendedBooks.filter:
4 { |book| booksInStockBehavior.contains(book) };
5
6 // ...
7 };

It depends on two reactive values: booksInStockBehavior denoting the current set of
books in the shelf and recommendedForUser denoting a reactive set of tuples associ-
ating customers with their personalized book recommendations. This latter reactive
value is an ambient behavior to which the Shelf objects are subscribed. The expres-
sion shown above registers a dataflow dependency on this reactive value by calling the

6.4. CASE STUDY: THE RFID-ENABLED LIBRARY 161

each: method on it (which will apply the closure passed as an argument to each ele-
ment of the set). Within that closure, the list of recommended books for a particular
user is retrieved (second element of the pair), and a second dataflow dependency is reg-
istered by using the reactive value booksInStockBehavior in the closure passed to the
filter: method called on this particular set of recommended books. The result is that
when the set of books in the shelf changes, the dependent recommended reactive value
signals an event and causes the rest of the code in which it is used to be reevaluated.
Similarly, when a remote EBookReader object signals a new event for the ambient be-
havior published under the topic RecommendedBooks, the recommendedForUser set of
customer-books tuples will change and cause the surrounding call to the each: method
to be reinvoked. The AmbientTalk/R interpreter with its automatic stratification of
dataflow dependencies makes sure the reevaluation happens in the expected order and
hence no glitches occur.

Global and Automatic Control Flow Management

In this implementation, the control flow is automatically managed on the node level.
Thanks to the composability of (ambient) behaviors, the control flow of the application
is now clearer than in an implementation that is entirely based on callbacks. Still, be-
cause of the automatic reevaluation of dataflow-dependent expressions, it is not entirely
reflected in the textual representation of the program code.

On the network level, the programmer must keep a clear mental overview of what
application component is subscribing to what and how it affects its execution. This is-
sue is clearly more prominent in this application – where multiple heterogenous parties
interact – than in the ticket trader application introduced earlier where all parties are
homogenous and there is less variety of events to be handled.

Other Shortcomings

The astute reader will have noticed that the BookScanner object still registers a number
of event handlers to associate one by one the lists of books generated by the RFID event
loop with a single customer, as shown below:

1 whenever: Customer discovered: { |customer|
2 def publication := exportBehavior: booksBehavior as: ScannedBooks
3 to: { |desc| desc.customer == customer };
4 whenever: customer reconnected: {
5 publication := exportBehavior: booksBehavior as: ScannedBooks
6 to: { |desc| desc.customer == customer };
7 };
8 whenever: customer disconnected: {
9 publication.cancel();

10 };
11 };

This is needed to allow the other remote application components that are subscribed
to ScannedBooks to generate personalized recommendations. This check crosscuts the
entire distributed application and is clearly awkward. It stems from the fact that the
broadcast-based publish/subscribe event delivery is undirected by default and requires
subscribing application components to manually filter out events that were not intended
for them.

To deal with these open issues, in the next chapter we present a network-centric
ambient-oriented dataflow language that allows to visually wire distributed reactive

162 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

components together using dataflow dependencies, giving the programmer a network-
centric view on the entire dataflow program. Different instances of the visual dataflow
program can run in the same network without interfering with each other, unless ex-
plicitly specified by the programmer.

6.5 Implementation
In this section, we detail the implementation of the constructs that allow the publish-
ing of and subscribing to ambient behaviors. They are implemented entirely in Ambi-
entTalk/R by making use of the ambient references [Van08] extensions to the language.

6.5.1 Publishing Ambient Behaviors
Publishing reactive values as ambient behaviors happens using the exportBehavior:as:
or exportBehavior:as:to: constructs. For the sake of brevity, we only show the im-
plementation of exportBehavior:as:to:. The implementation of exportBehavior:as:
is identical except that it passes nil as the subscription closure that is normally passed.
The implementation is shown below.

1 def exportBehavior: aBehavior as: type to: contentCheckClosure @Lifted {
2 def behaviorMirror := reflect: aBehavior;
3 findAndUpdateListeningBehaviors(
4 aBehavior,
5 type,
6 contentCheckClosure,
7 behaviorMirror);
8 };

The procedure is annotated with @Lifted. This instructs the AmbientTalk/R interpreter
to interpret the aBehavior formal parameter as a non-changing value and hence not cre-
ate a dataflow dependency between this argument and the invocation of the procedure.
This also causes aBehavior to denote a first-class time-varying value in the body of the
procedure, such that the interpreter does create a dataflow dependency when used in
the procedure’s body.

By using AmbientTalk’s reflection API, the mirror of the behavior object is re-
trieved. Every reactive value has a unique mirror object, which allows to uniquely
identify the reactive value. This mirror, together with the formal parameters of the
procedure are passed to the findAndUpdateListeningBehaviors procedure, which is
shown below:

1 def findAndUpdateListeningBehaviors(
2 value,
3 type,
4 contentCheckClosure := { |x| true }, // by default: always match
5 behaviorMirror) {
6
7 def handleAndAr := behaviorMirrorsHandlesMap.get(behaviorMirror);
8 def ar := nil;
9 if: (nil != handleAndAr) then: {

10 ar := handleAndAr[2];
11 handleAndAr[1].cancel();
12 } else: {
13 ar := ambient: type where: contentCheckClosure;
14 };
15

6.5. IMPLEMENTATION 163

16 def newHandle := ar<-setValue(value, self)@All;
17 behaviorMirrorsHandlesMap.put(behaviorMirror, [newHandle, ar]);
18
19 object: {
20 def cancel() { newHandle.cancel(); };
21 };
22 };

The implementation of publish/subscribe interaction of ambient behaviors is entirely
based on ambient references [Van08]. Here, ambient references denote a time-varying
group of subscribers. Ambient references are used to broadcast event update messages
to all subscribed ambient behaviors: because of the push-driven evaluation strategy of
this implementation, it is the publisher that sends update messages to the subscribers.
When broadcasting a message over an ambient reference, a handle is returned. Such
a handle can be used to cancel the sustained message sends of the ambient reference.
In our case, we are first checking if a certain reactive value was already previously
published. This is the case if there is a value in the behaviorMirrorsHandlesMap hash
map for the mirror of the reactive value (which uniquely identifies it). If this is the
case, the existing ambient reference is retrieved again from the handleAndAr pair and
the handle of the old event message broadcasted over the ambient reference is can-
celled. In the other case, a new ambient reference is created whose job it will be
to refer to all reachable subscribed ambient behaviors. If no contentCheckClosure

is supplied, the ambient reference just listens for subscribers subscribed to the topic
denoted by the type tag type. If a contentCheckClosure is passed, the ambient refer-
ence only denotes those subscribers of which passing their subscription object to the
contentCheckClosure returns true.

Now that we are sure that we have an active ambient reference, we create a new
handle for the new event update message by sending the setValue message to all sub-
scribed ambient behaviors (by annotating the message send with @All). This message,
when executed by ambient behaviors, will cause these ambient behaviors to update
their internal value with the new value passed to the message, and signal an event
(causing an update of its dataflow dependents). This new handle is again put in the
behaviorMirrorsHandlesMap together with the ambient reference. This procedure will
be triggered each time the reactive value passed to it changes, but value denotes the
non-changing value itself.

The return value of this procedure is a publication object of which the only method
cancels the publication of the behavior by canceling the event message broadcasting
over the ambient reference using its handle.

6.5.2 Subscribing to Ambient Behaviors
The ambientBehavior: and ambientBehavior:with: constructs dispatch to two dif-
ferent concrete implementations depending on how they are annotated (i.e. with @Any

or @All). For the sake of brevity, we omit the dispatching process based on these anno-
tations because it requires explaining the deep internals of the AmbientTalk reflection
API. Instead, we immediately show the implementation of the functions to which they
dispatch.

Singular Ambient Behavior Subscriptions

In the case the ambient behaviors subscription construct is annotated with @Any, it
dispatches to ambientBehavior:with:, which is privately defined in the AmbientTalk

164 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Ambient Behaviors module. Its implementation is shown below:

1 def ambientBehavior: type with: subscriptionProperties {
2 def [theBehavior, subscriptionObject] :=
3 createBehaviorAndSubscriptionObject();
4
5 AmbientRefModule.export: subscriptionObject
6 as: type
7 with: subscriptionProperties;
8
9 [theBehavior, subscriptionObject];

10 };

First, the createBehaviorAndSubscriptionObject procedure is called which returns
two objects: the actual reactive value and a subscription object. Such a subscription
object implements a cancel method that can be used to cancel the subscription. Both
objects are assigned in one go to two variables on line 2. At the end of the procedure,
this resulting pair is returned5

Before returning from the method, the subscription object is exported using the
export: construct of the ambient references implementation6 along with the type tag
acting as the subscription topic and the subscriptionProperties object passed to the
construct. This object allows the programmer to define arbitrary properties about the
subscription, which will be sent over the network to potential matching publishers.
These publishers can apply a predicate on this object that decides wether the subscrip-
tion matches (the contentCheckClosure of the previous code snippet).

Subscriptions to which no such object is passed (using the plain ambientBehavior:

construct) always match if the publication topic matches the subscription topic. The
only difference is the following line:

1 AmbientRefModule.export: subscriptionObject as: type;

What remains to be explained is the createBehaviorAndSubscriptionObject pro-
cedure, shown below.

1 def createBehaviorAndSubscriptionObject() {
2 def theEventSource := makeEventSource();
3
4 def theBehavior := hold: theEventSource with: (object: {
5 def updateWithValue(aValue, sender) {
6 aValue;
7 };
8 });
9

10 def subscriptionObject := object: {
11 def subscription := nil;
12 def cancel() {
13 subscription.unexport();
14 };
15 def setValue(aValue, sender) {
16 theEventSource<-updateWithValue(aValue, sender);
17 };
18 };
19
20 [theBehavior, subscriptionObject]; };

5In code shown before we have assumed for simplicity’s sake that the construct simply returns the reactive
value instead of such a two-tuple.

6This export: construct works differently than the regular export: primitive of AmbientTalk to
allow the publish/subscribe interaction style of ambient references.

6.5. IMPLEMENTATION 165

This procedure creates a reactive value derived from an event source and makes sure
that it is updated using the same technique as shown before in section 6.4.1, where
events signaled by the RFID event loop update an event source and its derived reactive
value. In this case however, the event source and derived reactive value is updated by
remote publishers sending it update messages.

First, the event source is created. Subsequently, a behavior depending on that event
source is created (using the hold:with: AmbientTalk/R primitive explained in sec-
tion 6.4.1). The update method registered with the event source simply returns the new
value that the behavior should have.

Finally, the subscription object that can be used to cancel the subscription is cre-
ated. This subscription object serves a double purpose: apart from canceling the sub-
scription, publishers that match the subscription obtain a remote reference to this sub-
scription object (using an ambient reference as discussed above). Publishers can then
propagate an event update message to this subscription object, which will invoke the
setValue method, which in its turn will send an asynchronous update message to the
event source, causing the dependent reactive value to be updated as well. The update
message is sent asynchronously such that it is scheduled in the hosting event loop’s
message queue and will be executed as the event loop has finished other previously
scheduled tasks. Additionally, the message can be sent synchronously by the program-
mer to for example immediately set the initial value of the ambient behavior to some-
thing meaningful. If this initial value is not set, the initial value is nil by default and
requires dependent reactive code to allow such a nil value. Both the resulting reactive
value and the subscription object are returned in a two-tuple.

Group-Centric Ambient Behavior Subscriptions

In the case the ambient behaviors subscription construct is annotated with @All, the
implementation dispatches to ambientBehaviorCollection:with:timeout:, which is
privately defined in the AmbientTalk Ambient Behaviors module and shown below:

1 def ambientBehaviorCollection: type
2 with: subscriptionProperties
3 timeout: theTimeout {
4 def [theBehavior, subscriptionObject] :=
5 createCollectionBehaviorAndSubscriptionObject(theTimeout);
6
7 AmbientRefModule.export: subscriptionObject
8 as: type
9 with: subscriptionProperties;

10
11 [theBehavior, subscriptionObject];
12 };

It works exactly the same as the ambientBehavior:with: procedure discussed in the
previous section. The only difference is that it calls
createCollectionBehaviorAndSubscriptionObject instead of
createBehaviorAndSubscriptionObject. The implementation of that procedure is
shown below.

1 def createCollectionBehaviorAndExportedObject(refresh) {
2 def theEventSource := makeEventSource();
3 def senderAndValueMap := HashMap.new();
4 def senderAndPingMap := HashMap.new();
5
6 def timerSub := whenever: millisec(refresh) elapsed: {

166 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

7 senderAndPingMap.keySet().toArray().each: { |sender|
8 when: sender<-ping()@Due(millisec(refresh)) becomes: { |ack|
9 senderAndPingMap.put(sender, now());

10 } catch: TimeoutException using: { |e|
11 senderAndPingMap.remove(sender);
12 senderAndValueMap.remove(sender);
13 theEventSource<-updateWithValue(nil, ‘REMOVED);
14 };
15 };
16 };
17
18 def theBehavior := hold: theEventSource with: (object: {
19 def updateWithValue(aValue, sender) {
20 if: (sender != ‘REMOVED) then: {
21 senderAndPingMap.put(sender, now());
22 senderAndValueMap.put(sender, aValue);
23 };
24 senderAndValueMap.values().toArray();
25 };
26 def setInitialValue(aValue) {
27 aValue;
28 };
29 });
30
31 def subscriptionObject := object: {
32 def subscription := nil;
33 def cancel() {
34 timerSub.cancel();
35 subscription.unexport();
36 };
37 def setValue(aValue, sender) {
38 theEventSource<-updateWithValue(aValue, sender);
39 };
40 };
41
42 theEventSource.setInitialValue([]);
43 [theBehavior, subscriptionObject];
44 };

Similarly to the implementation of singular ambient behaviors explained in the previ-
ous section, it first creates an event source that is used to update a behavior derived
from it. However, this implementation is responsible for sequencing events that are
asynchronously received from a group of publishers. The event source will now signal
events that do not contain a single value, but a set of values received from a group of
publishers that all match the subscription. It also associates references to publishers
with their latest propagated value and their latest acknowledgment times in two hash
maps.

Next, it schedules a task in the event loop using the whenever:elapsed: construct,
which periodically schedules a parameterless closure passed as a second argument.
The periodicity is determined by the time interval passed as a first argument. This is
also the timeout period that is used to determine when publishers can be disregarded
because they are unresponsive, disconnected, or have experienced other faults.

The parameterless closure iterates over all discovered publishers and sends them
an acknowledgement message to which they must reply within the specified timeout
period by annotating the message with @Due. If no reply to the acknowledgement mes-
sage is received within the timeout period, an exception is raised and the reference to
the publisher is removed from both hash maps: it is assumed the publisher is unreach-
able or has disappeared. The event source is updated with a special REMOVED symbol

6.5. IMPLEMENTATION 167

that signals that a publisher was removed from the set of connected publishers. When a
reply to the acknowledgment message is received within the timeout period, the latest
acknowledgement time of that particular publisher is updated with the current time.

The next step consists of creating the behavior derived from the event source, just
like in the previous section. However, here the updateWithValue method used to up-
date the event source from which it is derived has a different implementation. If the
event contains the REMOVED symbol as the publisher, it assumes the publisher is dis-
connected and just returns the associated propagated values as a table (Java arrays
are automatically coerced to AmbientTalk tables) from all connected publishers (of
which the disconnected publishers are removed). If the publisher that is passed is a
valid remote reference to a publisher, the reception of the update message is consid-
ered as an acknowledgement and the latest acknowledgement time is updated in the
senderAndPingMap. Subsequently, the new value that the publisher propagated is as-
sociated with it in the senderAndValueMap. When the values in the map are returned,
they now contain the latest values. There is also a method provided to set the initial
value of the behavior to the empty table, which is the most reasonable default initial
value.

After that, the subscription object is created, almost identical to the one of the
previous section. However, this time the task that periodically pings publishers and
listens for their acknowledgments should be cancelled as well.

The final steps of the procedure consist of setting the behavior to the empty set as
initial value and a pair containing this reactive set and the corresponding subscription
object are returned. As soon as this has happened, the resulting ambient behavior will
start to match with discovered publishers, if they match update itself, and if they do not
respond remove their propagated latest values from its result set. If a new publisher
matches and signals an event, its value is added to the set. The set changes periodically
determined by the timeout value that is passed by the programmer (unless if there is no
change, then nothing is signaled).

6.5.3 Networking Technology Used by Ambient Behaviors
Our implementation relies on the built-in primitives of AmbientTalk/R and on the Am-
bient References library [Van08].

AmbientTalk/R borrows its communication primitives from its non-reactive coun-
terpart AmbientTalk. This means that in our implementation of ambient behaviors,
messages sent across different event loops to update distributed dataflow dependencies
are simple asynchronous messages that transport the new values of dependent ambient
behaviors. This can happen over a number of communication technologies, such as
Wifi, Bluetooth, etc. These messages are sent over ambient references to all subscribed
(and reachable) ambient behaviors.

This means that usually event updates are represented as AmbientTalk isolate ob-
jects (which have no surrounding lexical scope to prevent having to transitively copy
it over the network). However, regular AmbientTalk (and hence also Java) objects can
also be used as event updates. These will cause the dependent ambient behaviors to re-
ceive far references to these objects (i.e. they follow the default distributed parameter
passing semantics of AmbientTalk that does not allow synchronous access to remote
non-isolate objects). This could be useful in some scenarios, but one should keep in
mind that sending messages over far references can only happen asynchronously and
return values must be captured using a callback (registered on the future returned by
the message send).

168 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Ambient references are implemented as a library on top of AmbientTalk and their
implementation relies on the M2MI (Many-To-Many Invocations) [KB02] Java frame-
work. Ambient references are used by our implementation to create a time-varying
group of subscribers to which update messages can be sent using M2MI. M2MI broad-
casts messages to all objects implementing a certain interface, in this case represented
by AmbientTalk type tags. Broadcasting happens on the radio level and does not re-
quire more power than directed communication. This broadcast-based communication
maps well onto our desired broadcast-based publish/subscribe architecture.

Similarly, the subscribers broadcast their subscription to all reachable entities using
this framework. Matching subscribers filter out these subscriptions each time they are
notified of a newly joined subscriber or a subscriber that is disconnected or unrespon-
sive. The filtered out set of subscribers is the set encapsulated by the ambient reference
that is used to multicast event update messages. An alternative approach could be to
broadcast publication information to all subscribers. Both approaches may have their
benefits and disadvantages in different scenarios, but in general there is no particular
reason to prefer one above the other.

Following the formal terminology introduced by Baldoni et al. [BCPV03], our
implementation is minimal, i.e. the same event is signaled at most once to the same
subscriber, but not complete, i.e. there are no guarantees that an event will be eventually
delivered to a subscriber.

6.5.4 Performance Evaluation
In this section, we discuss the results of a performance comparison between standard
AmbientTalk that uses standard asynchronous messages and discovery primitives for
event communication, and AmbientTalk/R together with ambient behaviors used for
discovery and communication. We used the following synthetic test setup:

• A number n AmbientTalk event loops are spawned.

• Each event loop signals a number m events to each other event loop.

• The value that is being measured is the total number of messages k processed by
a single event loop (k is the same for every event loop). Multiplying this value by
n yields the total number of messages sent across event loops in the experiment
in order to communicate all events.

This gives us an idea of the overhead that our abstractions induce in terms of the amount
of extra AmbientTalk messages that have to be sent over the network to communicate
the same amount of events. It is measured by using a special AmbientTalk event loop
of which the procedure that is called when scheduling a message in its event queue
is overridden to increase a counter. At the end of each ran experiment, this counter
contains the value of k.

The standard AmbientTalk version consists of n event loops that each host a single
object that responds to a notify message, implementing a callback for an incoming
asynchronous message. Every event loop exports this object under the same type tag.
Additionally, these objects register a whenever:discovered: callback listening for that
type tag. The effect is that every object will obtain a far reference to every other object
hosted on the other event loops. Subsequently, every event loop sends m asynchronous
notify messages containing a single dummy event over every far reference obtained
in the previous step. This means that each remotely hosted object is notified of m

6.5. IMPLEMENTATION 169

events. Of course, we expect the number of messages k received per event loop to
be only slightly more than to the number of events generated by the other event loops
((n� 1).m).

The version implemented using ambient behaviors consists of n event loops that
each host a single reactive value, implementing a single mutator method. This reactive
value is exported by every event loop using the exportBehavior:as: construct. Simi-
larly, every event loop subscribes a single ambient behavior using the ambientBehavior:
construct using the same type tag. Finally, every event loop invokes m times the muta-
tor method of their reactive value, resulting in m events broadcasted to all other event
loops, which in response update their subscribed ambient behaviors.

Figure 6.8: Number of messages processed per event loop with two communicating
event loops (n = 2 and m is varied from 10 to 100).

In short, the AmbientTalk version invokes all remote listener objects’ callback
methods using asynchronous messages representing event notifications, while the ambient-
oriented dataflow version subscribes an ambient behavior that is used to handle the
same m events.

Given this setup, k is plotted on the following three graphs each time for increasing
m. Figure 6.8 shows the results for two event loops, figure 6.9 for four event loops,
and figure 6.10 for six event loops. The horizontal axis shows an increasing m (i.e. the
number of signaled events per event loop), while the vertical axis shows the resulting
values for k (i.e. the number of processed messages per event loop).

Note that in this experiment all event loops were hosted on a single JVM and no
disconnection can occur. Hence, no messages are lost and the lower k, the better (less
messages are sent).

We conducted all experiments both for singular ambient behaviors as for group-
centric ambient behaviors. The results differed a constant t from each other, where t
is the number of ping and acknowledge messages (of which an equal amount is gen-
erated since we are not emulating disconnections) the group-centric ambient behaviors
exchange while the experiment is running. Taking a very large timeout for these group-
centric behaviors resulted in the same k as for the experiment with singular ambient
behaviors. This is the expected result since even the singular ambient behaviors re-

170 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

Figure 6.9: Number of messages processed per event loop with four communicating
event loops (n = 4 and m is varied from 10 to 100).

Figure 6.10: Number of messages processed per event loop with six communicating
event loops (n = 6 and m is varied from 10 to 100).

6.6. LIMITATIONS 171

ceive events from all other event loops. For this reason, we have omitted the results for
group-centric ambient behaviors.

The other conclusions we can draw from these experiments are the following:

• Both the AmbientTalk experiment and the experiment using ambient behaviors
scale linearly with respect to both the number of signaled events per event loop
(m) and the number of event loops (n) broadcasting and reacting to events. Other
values for n yielded similar results as the ones shown here. This concretely
means that a higher number of interacting parties or a higher number of events
being signaled do not generate an excessive amount of messages in both ap-
proaches.

• The version using ambient behaviors needs about twice the amount of Ambi-
entTalk asynchronous messages to communicate the same amount of events to
the same amount of event loops. These extra messages are acknowledgement
messages generated by the ambient references library [Van08] (used by our im-
plementation) to check the availability of other peers.

6.6 Limitations
As a first issue, it is clear that the reactive programming system of AmbientTalk/R
comes with an overhead in terms of computational resources compared to the plain
AmbientTalk interpreter. More (dataflow) events are scheduled in the various event
loops of an application and more memory is being consumed to keep track of the dif-
ferent dataflow dependencies in a local application. We also observe that, with respect
to pure processing power, AmbientTalk and AmbientTalk/R are targeted towards highly
networked applications where the network forms the performance bottleneck instead of
the performance of the interpreter.

Some of the limitations stem directly from the inherent properties of distributed
systems. Because of both the unreliability of the connections between the devices and
the unpredictable delays on the arrival of messages at remote parties, our system can-
not provide real-time guarantees on the processing and reacting to events. Furthermore,
when a message is sent from one device before a different message is sent from another
device, the underlying AmbientTalk virtual machines do not guarantee that these mes-
sages will arrive at their destination in that same order. Providing such guarantees
would involve keeping a global clock over all the distributed virtual machines (an as-
sumption that is for example made in the GEM event monitoring language [MsS97])
to time-stamp events, which is impractical in this setting. The programmer has to take
this into consideration if causality between events has to be inferred (i.e. using ambient
behaviors, distributed glitches cannot be prevented by the runtime). However, our sys-
tem focuses on applications that work with human time scales (e.g. seconds, minutes),
so slightly drifting distributed clocks are tolerable.

Currently, there is no way for an event consumer to tell its event producer to limit
the events that it wants to receive: an ambient behavior publication or subscription
can only be cancelled. Afterwards, the subscription can be re-established. We have to
investigate whether this can lead to network congestion or performance issues on the
device that acts as event consumer.

Finally, the naming and discovery of services currently happens via Java interfaces
represented as AmbientTalk type tags. We make the underlying assumption that the

172 CHAPTER 6. NODE-CENTRIC DATAFLOW PROGRAMMING

name of such Java interfaces represents a unique service and is known by all partici-
pating services. This discovery mechanism also does not take versioning into account
explicitly. For example, if the TicketVendor from the example in section 4.1 is up-
dated, older clients may discover the updated service, and clients that want to use only
the updated service may still discover older versions. Clients and services are thus
themselves responsible to check versioning constraints.

6.7 Conclusion
We have presented a number of language constructs that reconcile the loose coupling
of a distributed publish/subscribe architecture and the elegant event processing of a
reactive programming language, AmbientTalk/R. Concretely, the dataflow graphs con-
structed by the AmbientTalk/R interpreter to keep track of dataflow dependencies can
now be seamlessly distributed by means of ambient behaviors, which is a new lan-
guage construct added to the language. The distributed dataflow dependencies are
implemented on top of a decentralized publish/subscribe architecture to achieve a very
loose coupling between the dependents (event consumers) and their progenitors (event
producers). Hence, event producers can be dynamically replaced at run-time when they
become unreachable due to network partitions, or the events signaled by multiple event
producers can be aggregated into a single reactive value, that can subsequently be pro-
cessed using dedicated group-centric operators. By adopting the reactive programming
paradigm, the reception of events can be represented as (external) updates to a reactive
value. Such updates are propagated implicitly to all relevant parts of the application.
Hence, it is possible to react trivially to external events without the inversion of control
that would result from having to resort to the use of explicit callbacks.

Furthermore, we have demonstrated that our dataflow constructs can be seamlessly
combined with programming model for mobile RFID-enabled applications described in
chapter 5, such that these applications can be effectively programmed without suffering
from inversion of control.

In section 6.4.3, we observed that the purely broadcast-based communication prim-
itives that we proposed in this chapter often require subscribers to manually filter out
events that were not intended for them. Additionally, although the problem of inversion
control is for the most part eliminated, the control flow of a distributed reactive pro-
gram can still be hard to grasp due to the combination of asynchronous event delivery,
publisher-subscriber bindings that change at runtime, and reactive code that is trig-
gered because of events. To alleviate this problem, in the next chapter we introduce an
abstraction that offers a network-centric view on the networked application, by repre-
senting the global ambient-oriented dataflow program visually, and offering dedicated
primitives with a visual notation to specify how publishers and subscribers are bound
and how events are propagated over dataflow dependencies. This network-centric vi-
sual language is compiled into a dataflow network where the distributed dependencies
are represented as ambient behaviors.

Chapter 7

Network-Centric Visual
Dataflow Programming

In this chapter, we introduce AmbientTalk/RV : a network-centric visual ambient-
oriented dataflow language. It relies on the node-centric and group-centric ambient-
oriented dataflow abstractions introduced in the previous chapter. This way, a network-
centric graphical view on the mobile RFID-enabled application is reconciled with the
loosely-coupled nature of the underlying broadcast-based publish/subscribe architec-
ture.

We first motivate our work and give a brief overview of the concept of coordination
via coarse-grained dataflow in section 7.1. Subsequently, in section 7.2 we give an
overview of the different concepts in AmbientTalk/RV together with their visual repre-
sentation using the RFID-enabled Book Recommender application as an example. In
section 7.3, we discuss a slightly different flavor of AmbientTalk/RV that we imple-
mented with minimal changes to the original concepts to allow dataflow operators to
publish multiple events. After that, in section 7.4 we detail our prototype visual pro-
gramming environment which allows the graphical specification of AmbientTalk/RV

dataflow graphs. The implementation of both the language and the programming en-
vironment is discussed in section 7.5 after which the limitations of our approach are
discussed in section 7.6. Finally, section 7.7 concludes this chapter.

7.1 Motivation
In the previous chapter, we shifted the execution model of a mobile RFID-enabled
application from stack-based sequential programs communicating via asynchronous
messages, to a distributed dataflow program where distributed dataflow components
are dynamically bound using a broadcast-based publish/subscribe architecture. This
causes dataflow components to be loosely-coupled and prevents reactive code to be
structured around explicit callbacks.

Recall from section 6.4.3 from the previous chapter that our approach failed to
satisfy one of the programming model requirements for mobile RFID-enabled applica-
tions listed in chapter 2 section 2.3.4: global control flow management. We addition-
ally observed that the broadcast-based publish/subscribe mechanism that we employed
requires the various peers of a distributed application consisting of multiple heteroge-

173

174 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

nous peers (such as the Book Recommender application) to filter out event messages
that were not intended for them, but for other peers pertaining to a different instance
of a dataflow program. In short, the drawbacks of the approach discussed in the pre-
vious chapter are that there is no network-centric view on the global mobile reactive
application and that the structure of the program maps poorly on a sequential, textual
representation.

In this chapter we aim to alleviate these last two shortcomings while keeping the
other programming model requirements satisfied. For this, we draw inspiration from
the programming systems discussed in chapter 2 section 3.3.2 and 3.4.3 to represent
mobile RFID-enabled applications on a network-centric perspective by offering a vi-
sual language in which the programmer specifies the (distributed) dataflow graph rep-
resenting the application directly. This way, the distributed control flow of the appli-
cation is made explicit visually such that it can be changed without having to adapt
the fine-grained dataflow components. As we will show, the effect of a single change
in the visual network-centric dataflow program would require multiple changes in a
node-centric textual version of that same program.

The choice for a visual language is motivated by the fact that a unified data flow
and control flow lend themselves very well for a visual representation, as observed
amongst others in the business process modeling and workflow community [PA05,
MPMJPPS05]. Whitley conducted a study summarizing the at that time available re-
sults of comparisons between textually and visually represented programs [Whi97],
concluding the following:

“People in design and problem-solving situations perform better when
information is presented in a consistent and organized manner. Further-
more, the more efficient representations tend to be the ones that make in-
formation explicit. These two guidelines apply to all notations, including
textual ones. The studies [...] indicate that, compared to textual notations,
visual notations can provide better organization and can make information
explicit.”

Similarly, Baroth and Hartsough conducted a study [BH95] where the visual dataflow
language LabVIEW [Kal95] was compared to C in the context of a specific but real-
world problem domain (lab data acquisition). They found that visual dataflow pro-
gramming reduced development time and improved communication among developers
and from developers to consumers and vice versa.

7.1.1 Visual Dataflow as a Coordination Paradigm
Gelernter and Carriero [GC92] argue that a complete programming model consists of
both a computation model and a coordination model. The computation model allows
programmers to build a single computational activity (e.g. a process, a thread, an actor
in an actor language). The coordination model is the glue that binds separate activities
into a concurrent application.

An ordinary computation language embodies a computation model. Several con-
current languages in addition provide a coordination model that ranges over different
levels of abstraction, from manual thread creation and locking to event-based com-
munication abstractions. An example of the latter can be found in the AmbientTalk
programming language used throughout this dissertation.

A coordination language embodies a coordination model; it provides operations
to create computational activities and to support communication and synchronization

7.1. MOTIVATION 175

among them. In this dissertation, we require the coordination model to be applicable
in mobile ad hoc networks, meaning that the model should be resilient to network
partitioning and reactive to network topology changes. In short, it should support the
ambient-oriented programming paradigm.

The Dataflow Coordination Model

Before the Von Neumann architectures took over the parallel programming world (af-
ter becoming the de facto standard computing architecture in the sequential world),
dataflow languages were popular for programming massively parallel systems to be
built on top of a dataflow hardware architecture [JHM04]. By making data depen-
dencies explicit, these languages and hardware architectures allowed a high degree of
parallelization while preventing race conditions and other problems arising when par-
allelizing programs intended for Von Neumann architectures. Moreover, the resulting
dataflow graphs are easy to visualize, allowing a visual representation of both the data
dependencies as well as the coordination they imply on the different parallel compo-
nents of the application. The dataflow coordination model can be informally described
as follows:

• Dataflow programs consist of dataflow operators that take a number of input val-
ues and return a single output value. These dataflow operators are best compared
to functions or procedures in functional or imperative programming languages
that always run in parallel.

• Dataflow operators communicate with each other over dataflow edges. These
edges represent data dependencies and always flow from the output of a dataflow
operator (corresponding to its output value) to one of the inputs of a dataflow
operator (corresponding to one if its input values). Functional reactive program-
ming languages (such as the ones discussed in chapter 2 section 3.3.1) and Am-
bientTalk/R (discussed in the previous chapter) track data dependencies implic-
itly. In languages where dataflow is used for coordination, data dependencies are
made explicit by representing them as dataflow edges in the dataflow graph.

• When exactly a dataflow operator is fired depends on the concrete coordina-
tion model used. Some languages only fire dataflow operators once as soon as
all their input values have received a value. We call this model synchronous
dataflow. These languages are usually synchronous languages that assume a
global clock. Other languages repeatedly fire the dataflow operator as soon as
one of its input values received a new value. We call this model asynchronous
dataflow. Example languages are functional reactive programming languages.
Both categories are discussed in chapter 2 sections 3.3.1 and 3.3.2.

Such a coordination model allows various dataflow operators in the dataflow graph
to execute in parallel as long as their data dependencies are satisfied. For example
a number of operators in a pipeline execute in parallel when the first operator is fed a
stream of data. In such a pipeline the first operator is being applied to new data from the
stream while operators later in the sequence are being applied to data already processed
by earlier dataflow operators in the pipeline.

Currently, the dataflow paradigm is mostly used in the form of the coarse-grained
dataflow model, as can be seen from some of the systems discussed in chapter 2 sec-
tion 3.3.2. In this model, the dataflow paradigm is used to orchestrate the control flow

176 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

between different modules (possibly running in parallel) that can be of an arbitrary
level of abstraction, usually implemented in a conventional programming language.

When looking at the characteristics and requirements of mobile RFID-enabled ap-
plications, we have observed that the dataflow model may provide a very suitable co-
ordination model for this kind of applications. These applications consist of different
distributed components running in parallel that in many cases have to be invoked when-
ever some external data is fed to them (event-driven architectures). Hence, the driving
force for program execution in such applications is not the control flow, which is ex-
plicitized by the order of statements in an imperative textual program, but the data flow,
which is implicit in an imperative textual program.

Coordination based on dataflow allows to explicitly program the data flow of an
application, which is unified with an implicitly handled control flow. Therefore, this
chapter proposes ambient-oriented dataflow as a coordination paradigm to satisfy our
final requirement for programming mobile RFID-enabled applications: global and au-
tomatic control flow management.

7.2 Visual Dataflow Programming and AmbientTalk/RV

Figure 7.1 shows the general idea behind our visual dataflow language, which we
call AmbientTalk/RV . AmbientTalk/RV uses the boxes-and-arrows notation to de-
note dataflow operators and dataflow dependencies between them respectively. The

Figure 7.1: Represention of a dataflow operator in AmbientTalk/RV .

identifier before the -> symbol denotes the role of the operator (for now, it suffices to
think of a role as a procedure name). After the role name, its list of state variables
are declared between the << delimiters. The code after this list can be any sequence
of AmbientTalk expressions (hence our visual dataflow language could be considered
a hybrid language [JHM04]) and comprises the body of the dataflow operator, which
serves as its implementation. This code is automatically parametrized by “pseudo”-
variables that are bound to the dataflow input values (dependency1 to dependency4)
of the dataflow operator. We will name these variables dataflow parameters. This is

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 177

achieved by naming the edges, such that these names can be used as the names of
the dataflow parameters in the dataflow operator implementation. The dataflow oper-
ator firing rule in our visual languages is based on the asynchronous dataflow model:
any new value propagated along an incoming dataflow edge results in reapplying the
dataflow operator with the new value of the dataflow variable.

Optionally, one can declare a number of local state variables (par1 to parN) that
can be used in the body of the dataflow operator. They initially have the nil value,
but can be assigned in the body of the dataflow operator. In any subsequent execution
of the operator (i.e. when a new event is signaled over its incoming dataflow edges),
these parameters will have the values assigned to them in the previous execution of the
operator. This is used to allow state to be used across dataflow operator executions and
is further explained in section 7.2.6.

Executing a dataflow program happens by distributing the dataflow operator code
to devices that match the roles designated to the operators in the graph and installing
communication channels that represent the dependency edges between them. Depen-
dency edges can be either fixed (uninterrupted lines) or rebinding (dashed lines). The
service discovery needed for this is further explained in section 7.2.2. To take part
in such a network-centric AmbientTalk/RV application, these devices should have an
AmbientTalk/R virtual machine running on top of a Java virtual machine, and addition-
ally host the necessary library code to execute their role code. The code associated with
a role is mobile AmbientTalk/R code that can call any AmbientTalk/R or Java library
code that is made visible to it by the device on which the dataflow operator code is
executed.

This is depicted in figure 7.1. On the left-hand side, it shows a device hosting an
AmbientTalk/RV dataflow program. On the right-hand side, another device is shown
that hosts an AmientTalk/R interpreter (on top of a Java Virtual Machine). The inter-
preter in its turn hosts a special operator host object that exposes public code to be
used within the role code of the dataflow operator. At deployment time, the device
hosting the dataflow program will attempt to contact such a device that matches one
of the roles. If successful, the role code will be sent to this device and be executed on
that device by relying on the infrastructure offered by the operator host object. This is
further explained in section 7.2.3.

Recall that one of our programming model requirements for mobile RFID-enabled
applications was arity-decoupled communication. Finally, to represent different com-
munication styles, we extended the basic dataflow coordination model with dependency
arities that allow dataflow dependencies to be one-to-one, one-to-many, many-to-one,
many-to-many. This is indicated by the programmer by annotations at the start point
or end point of the graph edges and is further explained in section 7.2.5.

AmbientTalk/RV allows to visually specify a network-centric dataflow program of
which the dataflow nodes are parametrized by reactive values that denote dataflow pa-
rameters which are dependent on the output of remote dataflow nodes. This model
allows for a straight-forward compilation to distributed node-level code that consists
of distributed reactive code snippets acting as roles in the dataflow program and that
are driven by a number of ambient behaviors (explained in the previous chapter) which
represent dataflow parameters. These ambient behaviors can be correctly subscribed
to other distributed dataflow operators by relying on the information supplied by the
programmer in the AmbientTalk/RV dataflow program. The result is that the program-
ming model requirements that were met by ambient behaviors in the previous chapter
are still satisfied, but in addition AmbientTalk/RV offers a network-centric view with
global control flow.

178 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

7.2.1 The Book Recommender Application in AmbientTalk/RV

The AmbientTalk/RV program shown in figure 7.2 is the mobile RFID-enabled Book
Recommender scenario that we introduced earlier in section 6.1.2 of the previous chap-
ter implemented in AmbientTalk/RV . In this example, the Java package paths to the
methods that are invoked in the role code are omitted for the sake of brevity, but other
than that the program shown here is entirely functional. Dataflow operators are repre-
sented as boxes while the directed edges connecting these boxes represent data depen-
dencies.

Similarly to its node-centric textual counterpart, it is a distributed reactive appli-
cation in which various distributed components are subscribed to remotely signaled
events. The BookScanner dataflow node signals the set of scanned books over two
dataflow edges, which are named books and scannedBooks. These one-to-one fixed
edges propagate these sets of books to the BookRecommender and EBookReader nodes
respectively. In response to changes in the set of books, they reexecute their role. For
the BookRecommender node, this causes the set of scanned books to be updated in the
user interface. For the EBookReader node, this causes the set of recommended books
to be recomputed and to be propagated over its two outgoing edges: recommended and
similarBooks. The recommended fixed one-to-one edge causes the set of recommended
books to be propagated to always the same BookRecommender node, which in its turn
will show the new set of recommended books in its user interface. The similarBooks

rebinding one-to-many edge causes the set of recommended books to be broadcasted
to all Shelf nodes in range. In response, the Shelf nodes will filter out the set of books
they contain out of the set of recommended books and propagate this filtered set over
the recommendedInStock fixed one-to-one edge to always the same BookRecommender

node. The result is that the BookRecommender node will receive personalized recom-
mendations present in the library for its user from a single shelf. However, because
of the similarBooks rebinding one-to-many edge, this may be a different shelf of the
library depending on in which shelf’s range the BookRecommender node is roaming.

In the remainder of this chapter, we will use this application as a running example
to explain the concepts and their semantics in AmbientTalk/RV in more detail.

7.2.2 Discovering Operator Nodes

AmbientTalk/RV serves the purpose of coordinating event-driven application compo-
nents running in parallel and distributed over a mobile ad hoc network. Because the
devices hosting these application components can move out of range and back into
range of each other at any point in time, our dataflow engine has to discover these
application components at runtime without relying on naming servers or other fixed
infrastructure, as explained in chapter 2 section 2.1.1. In AmbientTalk/RV , mobile ap-
plication components that play a role in a dataflow program are discovered based on
their roles. These roles actually have the same use (and in fact are implemented this
way) as the type tags that are used by AmbientTalk/R to discover remote objects and
hence act as the topics that are being used by the ad hoc publish/subscribe architec-
ture. The system uses the built-in service discovery mechanisms of AmbientTalk/R to
both advertise dataflow nodes and as well devices willing to execute one or more of the
roles in the dataflow program. This is an entirely decentralized approach that does not
assume any other infrastructure but the mobile devices themselves.

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 179

Figure 7.2: AmbientTalk/RV implementation of the RFID-enabled Book Recom-
mender application.

180 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Figure 7.3: Fixed dataflow edge from BookScanner to BookRecommender.

Fixed Edges

Depending on the kind of dataflow dependency edge drawn between two operators, the
discovery mechanism works differently. In the case of fixed dataflow edges, such as be-
tween the BookScanner node and the BookRecommender node shown in figure 7.3, once
the BookRecommender node is discovered, the same instance of the dataflow program
expects always the same instance of a BookRecommender node. This means concretely
that when the connection is lost with the BookRecommender node, the BookScanner

node will wait until the connection is restored with the original BookRecommender and
not look for a replacement node. This makes sense if there is a stateful relationship
between both distributed nodes in the dataflow program, e.g. if users should receive
personalized recommendations and not recommended products from different users.
We observed such a stateful relation in the node-centric implementation of the ap-
plication in chapter 6 section 6.4. Our node-centric implementation required clumsy
event filtering and connection tracking, which are now circumvented by the automatic
management of dependencies on the network level by AmbientTalk/RV . To detect a
permanent disconnection the dataflow dependency edge can be annotated with a time-
out period. Event messages are buffered until the timeout is signaled1. In this case, a
TimeoutException is raised that can be caught from the role code in which the excep-
tion was raised.

Rebinding Edges

In some cases a different operator node encoding the same role can be used as a sub-
stitute. This is typically the case when there is no state associated with the operator’s
execution. This is catered for by rebinding dataflow edges, which are represented by
a dashed line, such as the one between the EBookReader node and the Shelf node as
shown in figure 7.4. In this scenario, the shop may consist of different shelves which
are all represented as Shelf nodes. Concretely, a rebinding dataflow edge allows re-
binding the dataflow dependency to another subscribed operator at runtime, because
the network topology has changed for example. Again, a timeout can be specified that
determines how long event messages are buffered. In this example, the user might have

1Buffer overflows can happen in theory for very large timeout periods and will raise a Java exception.

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 181

Figure 7.4: Rebinding dataflow edge from EBookReader to Shelf.

moved out of range of a shelf in the shop and moved into communication range of a
different shelf. How the group communication to the different shelves is handled is
discussed later in section 7.2.5.

Note that by differentiating between fixed edges and rebinding edges (represent-
ing two different kinds of dataflow dependencies), the awkward event filtering and
connection tracking mechanisms in the node-centric implementation of the Book Rec-
ommender application (shown in chapter 6 section 6.4) are now replaced by dedicated
constructs with clear semantics.

7.2.3 Executing Mobile AmbientTalk/R Code
Dataflow operators operate on event streams. In most cases, it makes sense to process
the stream on the device that hosts the operator through which the stream flows, to
reduce communication overhead and to avoid a performance bottleneck when all pro-
cessing happens on a single device. In such scenarios, it is thus cheaper to move the
processing code towards the data than the data stream itself towards where the process-
ing code is hosted. Furthermore, in the face of intermittent network connections, long-
lasting computations can continue while the network connections with other nodes is
temporarily broken, and flush buffered return values when the network connection is
restored. This is why when deploying a dataflow operator, its role code is sent as mo-
bile AmbientTalk/R code to the host executing the operator.

To be able to execute roles, hosts need to provide some existing infrastructure in
the form of some pre-implemented AmbientTalk/R or Java methods that are published
in a service object under a topic matching their role name. This means that services
playing a role in an AmbientTalk/RV program are usually implemented as objects that
provide an interface that can be called by the mobile code. This is shown in our ex-
ample (figure 7.2) where the public generateSimilarBook method is assumed to be
implemented by the EBookReader nodes, the BookScanner and Shelf nodes are as-
sumed to have public RFID libraries available, and the BookRecommender nodes are
assumed to have public GUI methods to display books, as shown in figure 7.52.

2One can designate a dedicated namespace that is visible to the mobile code and organize the library code

182 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Figure 7.5: BookRecommender role using public code of its host.

To create such service objects which contain public code to be called from an
AmbientTalk/RV role, we provide a basic OperatorHostInterface object. Custom
implementations specific to the device hosting the service can be built (e.g. to impose
restrictions on the received mobile code to enforce security policies) by overriding spe-
cific methods on the OperatorHostInterface. Usually, this object will be extended
with the definitions visible to AmbientTalk/RV roles it is intended to execute.

The code snippet below shows how a host can advertise itself as a BookRecommender
by simply exporting a service object implementing the BookRecommender role (hence,
this is local code present on the customer’s machine), matching the BookRecommender

role shown in figure 7.5.

1 def bookRecommender := extend: OperatorHostInterface with: {
2 // ... Fields ...
3
4 def showBooks(books) {
5 // Update GUI with the new books the customer is carrying.
6 };
7
8 def showSimilarBooks(books) {
9 // Update GUI with similar books to the ones being carried.

10 };
11
12 def showRecommendationsInStock(books) {
13 // Update GUI with recommended books present in the library.
14 };
15 };
16
17 deftype BookRecommender;
18 export: bookRecommender as: BookRecommender;

The bookRecommender object extends from the OperatorHostInterface discussed
above and implements the public methods to fulfill its role in the application. These
public methods are used in the BookRecommender role shown in figure 7.5. The last
two lines declare an AmbientTalk/R type tag that will be used as the publication’s topic
and publish the service, such that it can be discovered by the device deploying the
network-centric AmbientTalk/RV program. The type tag under which the service is
exported should match the role name of the AmbientTalk/RV role that is sent when
the device that invoked the AmbientTalk/RV program detects the service. Once the
dataflow operator is deployed on the host, the connection with the device that initiated
the AmbientTalk/RV program should only be made by other services (or possibly the
same service in case of a disconnection) to either fill in new roles in the graph or
contribute to a group of equivalent roles (see section 7.2.5 for groups of roles).

Note that the same device hosting a number of application components can play a
role in different dataflow programs. However, race conditions cannot occur because

to be called by the mobile code in Java packages.

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 183

Figure 7.6: Lifecycle of a dataflow operator host.

the communication between all dataflow operator nodes happens by means of asyn-
chronous AmbientTalk/R messages that are scheduled in the event loop of each host,
and are sequentially executed by a single thread (causing the sequential execution of
the operator code as well).

Lifecycle of a Dataflow Operator Host

In this section, we summarize the lifecycle of a dataflow operator host. It is presented
schematically in the state diagram depicted in figure 7.6.

First, (a child object of) the OperatorHostInterface object mentioned above must
be exported. It contains the necessary infrastructure to execute a role in the
AmbientTalk/RV dataflow program and has access to public code that is invoked by the
role. At any moment in time, the device hosting the OperatorHostInterface object
can unexport the object, which means that the device can no longer participate in the
dataflow program.

In case the OperatorHostInterface object is exported, it can be discovered by the
device hosting the implementation of the dataflow graph. If the OperatorHostInterface
object in question matches a role, this device will send it the role (isolate) object con-
taining the role code. In case of group-centric subscriptions, all matching
OperatorHostInterface objects are sent their role object. In case of a singular sub-

184 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

scription, this will only happen when the role is not (yet) assigned to any node.
When the OperatorHostInterface object receives the role object, it sets up its ex-

ecution environment and in this environment subscribes the necessary ambient behav-
iors that represent dataflow parameters in the role code. Additionally, it also publishes
the ambient behavior that signals events over the outgoing edges (in case of the varia-
tion on the language described in section 7.3, it will not be one ambient behavior, but
multiple ones).

As soon as an upstream event producing operator is discovered (i.e. because it
published matching ambient behaviors as well), it can signal events to the subscribed
ambient behaviors. When this happens, the dependent role code will be (re)executed.
If this caused a value change, the affected published ambient behaviors will signal an
event to their subscribed downstream operators.

In case a dataflow edge is unable to propagate events because of a disconnection,
events are buffered on the propagating node. They are buffered as long as the edge time-
out period does not elapse. When the timeout period elapses, a TimedOutException is
raised in the execution environment of the role3. How the exception is handled is de-
termined by a programmer-supplied exception handler. Therefore, this is not depicted
in the state diagram. If there is no timeout specified for the disconnected edge, the
dataflow operator simply goes back to the “subscribed” state and waits for new match-
ing dataflow operators to be discovered.

Before the timeout period elapsed, there are two possibilities. If the timed out
edge is a fixed dataflow edge, the dataflow operator will not try to discover matching
replacement operators and wait out the timeout period to reestablish a connection with
the same operator. If the timed out edge is a rebinding dataflow edge, the dataflow
operator will attempt to discover a matching replacement dataflow operator and – if
this successfully happens before the timeout period elapses – continue execution.

In the following sections, we explain how this semantics is represented in
AmbientTalk/RV in greater detail by means of our Book Recommender example pro-
gram.

7.2.4 Propagating Events and Reacting to Events
Until this point, we have not elaborated yet on how the actual AmbientTalk/RV pro-
gram is executed by our dataflow engine. This is based on the AmbientTalk/R inter-
preter and the node-centric and group-centric dataflow abstractions that we introduced
in the previous chapter. Concretely, the dataflow parameters (e.g. books, recommended
and recommendedInStock in the BookRecommender role) in the role code denote am-
bient behaviors (see chapter 6 section 6.3.1). These dataflow parameters are bound to
ambient behaviors that are subscribed to a topic with the same name as the dataflow
variable and the corresponding dataflow edge (representing a dataflow dependency).
Hence, dataflow parameters denote reactive values. These reactive values are updated
each time their respective input value changes (by new data objects flowing over the
dataflow edges corresponding to the input values).

Analogous to reactive programming and following the asynchronous dataflow model
described in section 7.1.1, a dataflow operator is re-executed as soon as one of the reac-
tive values it depends on changes. Dataflow updates are signaled simply by executing
a dataflow operator, which results in a new return value for the executed dataflow op-

3Timing out for group-centric subscriptions happens when the number of matching operators reaches
zero and does not increase for the timeout period.

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 185

Figure 7.7: BookScanner role publishing events under topic books and
BookRecommender role subscribing books, recommended, and recommendedInStock

dataflow variables.

erator This value is in its turn propagated over all the outgoing dataflow edges. For
example, in the BookScanner role shown in figure 7.7, the scanned books are period-
ically updated by the RFID reader by periodically scanning its surroundings for tags
and updating the corresponding reactive value. It is propagated along the books and
scannedBooks edges, causing the invocation of the rest of the dataflow graph.

In the other direction, the BookRecommender node will observe updates of its books,
recommended and recommendedInStock dataflow parameters, which will result in the
re-execution of the dataflow operator, leading to the necessary updates to the user in-
terface.

As we previously mentioned, the names identifying the dataflow dependency edges
are – on the nodes to which these edges point – mapped to ambient behaviors (see chap-
ter 6 section 6.3.1) subscribed to topics with the same name. This way, the reactive val-
ues used in the dataflow operator code are updated. Important to note is that the prop-
agation of dataflow events happens by means of the underlying reliable asynchronous
messages of AmbientTalk, on which the ambient behaviors abstraction is based. This
means that intermittent connections between dataflow operators do not cause errors.
Instead, the event messages are buffered and resent when the same dataflow operator
host comes back in range or a replacement host is found. Per dataflow dependency, a
timeout can be specified that determines how long these messages are buffered. In case
of a timeout, an exception is raised on both disconnected application components. It
should be caught by putting the role code in a standard AmbientTalk exception han-
dler, which can trigger cleanup actions in response. In the case both components are
connected via rebinding edges, a replacement node will (if available) be automatically
bound to one of the roles.

186 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Figure 7.8: One-to-many dataflow dependecy between EBookReader node and Shelf

nodes.

7.2.5 Dependency Arities

In many cases it is necessary to gather information from and/or propagate information
to a multitude of peers (which all can move out of range and back into range at any point
in time). For example, a mobile application may want to query other mobile applica-
tions about their GPS coordinates in order to show the location of those applications
on a map. On the other hand, an application may also want to periodically broadcast
the new GPS coordinates of its host device to nearby peers. To cater for this kind of
arity-decoupled remote communication with some prescribed of equivalent peers, we
have extended the original dataflow coordination model with dependency arities.

The mechanism is directly based on the distinction between ambient behaviors (see
chapter 6 section 6.3.1) that subscribe to be updated with a single value and group-
centric ambient behaviors (see chapter 6 section 6.3.2) that subscribe to be updated
with sets of values. These dependency arities can be one-to-one, one-to-many, many-
to-one or many-to-many. This is depicted graphically in our visual dataflow language
on the end points of edges (i.e. 1---1, 1---*, *---1 and *---*, respectively).

In the example given above and as highlighted in figure 7.8, there is a one-to-many
dataflow dependency between the EBookReader and Shelf nodes. This will cause the
dataflow engine not just to look for a single Shelf operator host (representing a shelf
in our shop scenario), but to all hosts able to fulfill this role in the dataflow program.

They will all receive the mobile operator code and will all receive the events propa-
gated along the similarBooks edge. Now it is up to the dataflow programmer to decide
what will happen with all the different return values from the replicated Shelf nodes
running in parallel.

One could either choose to receive the events propagated by a single Shelf (al-
though other ones can be running in parallel) by specifying a one-to-one dependency
between the Shelf and the BookRecommender node, as shown in figure 7.9. In this case,
the first shelf with which a successful connection can be established is selected. As
long as a connection can be maintained with the shelf, it keeps on propagating events.
But, since it is a rebinding edge, a new shelf can be selected in case of a disconnection

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 187

Figure 7.9: One-to-one dataflow dependency between Shelf node and
BookRecommender node.

Figure 7.10: Many-to-one dataflow dependency between Shelf nodes and
BookRecommender node.

188 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

to replace the disconnected shelf. In our scenario this means that the user only receives
recommended products from a single shelf, although multiple ones are filtering similar
book lists based on their contents.

The alternative would be to install a many-to-one dependency between these com-
ponents, as shown in figure 7.10. In that case, the BookRecommender node will receive
all the events of all the replicated Shelf nodes that are in communication range. The
result here is that the user receives recommended products from all shelves in com-
munication range, i.e. a reactive set of sets of books. The programmer can specify a
timeout to determine how long values received from non-responding nodes should be
kept in the reactive set. Hence, the reactive set changes not only when dataflow pa-
rameters change, but also when values are added (because new nodes were discovered)
or removed (when nodes time out). The processing code that operates on this reactive
set should of course take into account that the dataflow parameter represents such a
changing set.

Declaring a dataflow dependency one-to-many or many-to-many will automatically
convert the respective dataflow edge into a rebinding edge (see section 7.2.2). The
reason is that, when broadcasting events to all nodes playing the same role, a fixed
dataflow dependency simply makes no sense: events are propagated to a dynamically
changing collection of subscribers as the network topology changes and as devices
roam. This is not always desirable: the dataflow dependency between the Shelf node
and BookRecommender node should clearly be fixed: one instance of the dataflow pro-
gram should always send personalized recommendations to the same user.

Table 7.1 summarizes the semantics of the different combinations of dataflow nodes
and dependency arities connecting them.

Incoming 1 Incoming *
Outgoing 1 Signal one value to a single Signal one value to all

(rebound or fixed) node reachable nodes of same role
Outgoing * Signal set of values to a single Signal set of values to all

(rebound or fixed) node reachable nodes of same role

Table 7.1: Dependency arity semantics.

As mentioned above, incoming edges that are one-to-many or many-to-many are
mapped to a dataflow variable containing a reactive set of reactive values. The pace at
which this reactive set is updated (and signals events) and hence how long these values
remain in the set after their event source disconnected is determined by the timeout
period associated with these incoming edges (see section 7.2.2). These reactive sets
are nothing more than the group-centric ambient behaviors introduced in the previ-
ous chapter that need such a time period to apply time-sampling on asynchronously
received values that arrive at irregular time intervals.

7.2.6 Stateful Reactions
In many cases, it is not enough to be able to react to a number of events, but in addition
to generate, use and adapt state throughout different reactions as well (e.g. computing
an average over previously received values). Up until now, we have assumed that
dataflow operator code is re-executed in response to an event in a fresh scope. This
prevents state from being used throughout different executions of the operator.

7.2. VISUAL DATAFLOW PROGRAMMING AND AMBIENTTALK/RV 189

Figure 7.11: BookRecommender role that additionally displays the books that are put
back by the customer.

Consider a variant of the Book Recommender application where the books that the
customer just put back (e.g. because they turned out not to be interesting enough to
take home) are shown in the application GUI as well. This could be useful to dis-
play a history of consulted books. In figure 7.11 shown above, the BookRecommender

role is extended to implement this behavior. AmbientTalk/RV allows dedicated state
variables to be specified to preserve state over subsequent executions of the dataflow
operator. This list of variables is specified between the << delimiters. These variables,
previousBooks in this example, are kept in the scope of the dataflow operator, can be
assigned, and remember their value over multiple executions of the operator. In the
example, the previousBooks state variable is assigned at the end of the operator code,
such that in the next execution the books that are put away by the customer can be
computed by filtering out all books that the customer is currently carrying out of the
previousBooks the customer was carrying4.

Naturally, in the case of rebinding dataflow dependencies, that are represented by
rebinding edges that allow the role to be rebound to another host in case the device
hosting the dataflow operator times out, the state held by these state variables is not
transferred to the new host. Hence, in most cases, maintaining state only makes sense
in the case of fixed dataflow dependecies.

7.2.7 Evaluation
In this section, we have presented AmbientTalk/RV , a visual dataflow language that
reifies the coarse-grained control flow of a mobile event-driven application and unifies
it with the data flow that steers the application. It is specifically geared towards mobile
RFID-enabled applications in the following ways:

Dataflow coordination model based on AmbientTalk/R’s object-oriented reactive pro-
gramming model allowing to react to events without resorting to explicit call-

4The code added to the implementation of the BookRecommender role could in case of frequent usage
be abstracted away in the public interface of the host. The language leaves it up to the programmer on which
level such behavior should be implemented.

190 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

backs that invert the control flow of the application.

Fine-grained reactive node-centric code operating on time-varying dataflow param-
eters that is dynamically sent to remote services that host the necessary interfaces
to implement the desired behavior. Dataflow parameters can contain any Ambi-
entTalk/R reactive value. Hence, the language supports a rich representation of
events.

Coarse-grained network-centric dataflow view on the entire program where depen-
dencies between remote components are visualized and can be adapted without
changing the fine-grained node-level code (if semantically correct).

Dataflow dependency arities allowing to subscribe dataflow operators to either a sin-
gle event producer or a group of event producers publishing events under the
same topic, or to publish events to only a single consumer or a group of con-
sumers subscribed to a specific topic. Hence, the language supports arity de-
coupling.

Fixed edges and rebinding edges to discriminate in the visual node-centric program
between dataflow operators that are allowed to be dynamically bound to replace-
ment nodes, or that have to interact with always the same node within one in-
stance of the dataflow program.

Support for stateful dataflow operators to allow state to be used over different exe-
cutions of a dataflow operator (hosted on the same physical node).

Fault-tolerant, asynchronous event messaging by relying on the distributed event-
loop concurrency model of AmbientTalk/R. Hence, the language supports time
decoupling.

Decentralized, broadcast-based publish/subscribe of dataflow events by associat-
ing dataflow edge names with publications and subscriptions of the underlying
node-centric dataflow and publish/subscribe system based on ambient behaviors
(see previous chapter) and by associating dataflow role names with correspond-
ingly tagged AmbientTalk/R services. Hence, the language supports space de-
coupling.

Through its unified data flow and control flow that have to be explicitly and visually
specified for network-centric dataflow programs, it fulfills our remaining requirement:
global and automatic control flow management.

7.3 A Variation: Producing Multiple Results
The dataflow coordination model that we have employed so far assumes that dataflow
operators behave as regular reactive procedures and return a single value that is prop-
agated to all dependent dataflow operators. This model is very close to the reactive
programming model employed by the underlying reactive AmbientTalk/R interpreter.
In this section, we introduce a variation on our visual dataflow language that we imple-
mented. Its coordination model is moved more towards a publish/subscribe interaction
style by allowing dataflow operators to signal multiple output events instead of return-
ing a single reactive value.

7.3. A VARIATION: PRODUCING MULTIPLE RESULTS 191

Figure 7.12: Visual dataflow implementation of the RFID-enabled Book Recommender
application where multiple outgoing events are used to display books of the same au-
thor in the GUI as well.

192 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Consider the following adaptation to the Book Recommender example application
employed this far. The EBookReader role previously generating similar books from an
existing catalogue, could as well generate a list of books by the same author. However,
using the coordination model described up until now, the EBookReader role is only
able to return a single result after reacting to an incoming event. This requires the
programmer to either signal the list of similar books and the list of books by the same
author manually wrapped in a pair, or either to split up the role in two roles, cluttering
the dataflow graph with more roles that only marginally differ from one another.

A better solution would be to allow the EBookReader role to signal both generated
lists of books and have them propagate over their dedicated set of dataflow edges. This
requires two changes to the dataflow coordination model. First, dataflow operators
should be able to signal more than one event after executing. Second, it should be able
to associate multiple outgoing dataflow edges with the correct events that are signaled
by the operator.

In this variant of AmbientTalk/RV , we adopted the following strategy. Remem-
ber that dataflow operators are allowed to define new variables in their own dedicated
scope. Now however, outgoing edges with the same name as these variables are used to
propagate events when these variables change. This happens by, after each execution
of the dataflow operator, looking up in the scope of the operator all variables that have
the same name as outgoing edges and – if they have changed – propagate their new
values over the edges. The drawback is that the dataflow programmer must take care
of correctly defining these variables in the operator’s scope according to edge names.
The tricky part is that multiple edges with the same name are not allowed since they
are represented as publish/subscribe topics, which must be distinct if they represent
different events. The rest of the coordination model remains the same as previously
explained.

For an illustrative example, figure 7.12 shows the adapted implementation of the
Book Recommender dataflow application making use of different outgoing events and
dataflow edges.

The EBookReader role now generates, besides a set of similar books, a set of books
written by the same author. The BookRecommender role is made dependent to both
reactive sets by the recommended and ofSameAuthor dependency edges that map to
the variables with the same name defined in the EBookReader role. Subsequently
in the same role, to prevent name clashes in the underlying topic-based publish/sub-
scribe system, two variables holding the same values are defined: similarBooks and
sameAuthorBooks. When they change, their new value is broadcast to all Shelf nodes
via the edges with the same name. In response, the Shelf nodes filter out the set of
books out of these two collections that are present in the shelf and propagate the result-
ing filtered time-varying collections over the recommendedInStock and
sameAuthorInStock edges to the single BookRecommender node interacting with the
current instance of the dataflow program.

Although this adapted coordination model makes things slightly more complicated,
in many cases its additional flexibility allows to introduce more edges in the graph to
reduce the amount of nodes, as shown above. Of course, it relies on the looser coupling
of application components that interact using publish/subscribe instead of for instance
direct messaging.

7.4. AN AMBIENTTALK/RV PROGRAMMING ENVIRONMENT 193

7.4 An AmbientTalk/RV Programming Environment
The concrete implementation of AmbientTalk/RV presented in this chapter comes with
a visual programming environment that allows to specify and edit the dataflow graphs
– although the focus of the implementation was the language runtime and not the visual
tool. We give a brief overview of our prototype. It supports the basic operations re-
quired to specify, edit, save, load and run AmbientTalk/RV programs and it notifies the
user about errors in the dataflow program that can be easily statically verified. It does
not include any further debugging support. Similarly, it does not offer mechanisms for
reducing screen clutter such as grouping nodes or representing them as icons. This is
an interesting topic of future work. Other than for editing purposes, the programming
environment serves as a deployment tool for AmbientTalk/RV programs.

7.4.1 Basic Operations
Figure 7.13 shows the AmbientTalk/RV implementation of the original version of the
RFID-enabled Book Recommender application first shown in section 7.2.1. The colors
of the nodes are only for illustrative purposes and have no special meaning. Figure 7.14
gives an overview of the basic operations that can be found in the menu of the prototype
tool. The tool allows the user to draw the dataflow graph by adding nodes representing
roles, editing their source code in the tool itself, and wiring them together by means of
dependency edges. The names and arities of dependecy edges can be edited directly
in the tool as well. If error checking is enabled, the tool will notify the user about
duplicate dependency names or role names and of undefined dataflow parameters in
the role code (e.g. when a node has no corresponding incoming dataflow edge). Each
edge has an associated timeout value that indictates how long event messages remain
buffered before an exception is raised (0 means infinite).

Deploying the dataflow graph means that the AmbientTalk/RV deployment tool
will generate node-centric AmbientTalk/R code to look up nodes in the network match-
ing the roles in the dataflow program and attempt to deploy the program by contacting
them, sending them the role implementations and install the necessary node-level sub-
scriptions and publications on these nodes. It is only during this step that individual
nodes must be connected with the node that invokes the program (unless nodes are
hosted on the same device of course).

7.4.2 Persistence and Importing Partial Graphs
Up until now we have not elaborated on how AmbientTalk/RV interprets dataflow
graphs. The visual dataflow programming environment presented above saves dataflow
graphs edited in the tool as XML files containing a textual representation of the objects
constituting the complete graph. The object graph that represents the dataflow graph
can easily be reconstructed out of such an XML file to be subsequently used by the
tool. Subsequently, the programming environment can display it and allows it to be
edited by the user, or to deploy the dataflow graph (see section above). It can be seen
as the graphical equivalent of an abstract syntax tree of a textual program.

We have not focused on a suitable dedicated file representation that allows editing
dataflow graphs over different versions of AmbientTalk/RV : for now, the XML files
generated by our prototype tool must be manually updated if for example a new concept
is added to the language.

194 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Figure 7.13: The implementation of the RFID-enabled Book Recommender application
in the AmbientTalk/RV prototype programming environment.

7.4. AN AMBIENTTALK/RV PROGRAMMING ENVIRONMENT 195

Figure 7.14: Basic operations supported by the AmbientTalk/RV prototype program-
ming environment.

196 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Instead of saving the entire dataflow program, the programming environment also
allows to save only the selected nodes of the graph and the edges that interconnect them.
This partial graph can subsequently be imported in another dataflow program and wired
to the nodes in that graph. We envision the dataflow programmer to create a catalog of
frequently used partial graphs and import and customize them where necessary.

7.5 Implementation
In this section, we elaborate on the implementation of AmbientTalk/RV .

7.5.1 Representing Distributed Dataflow Graphs
Figure 7.15 gives an overview of the implementation using an informal object diagram5

of the AmbientTalk/R objects making up the implementation (except
VisualDataflowEditor, which is the Java class implementing the graphical program-
ming environment discussed above). We do not intend to explain the full implementa-
tion since a large part of the implementation consists of – from a scientific point of view
– uninteresting graph manipulation and user interface code. Instead, we will just high-
light the more interesting methods implemented by these objects. Similarly, we only
explain the key changes to implement the variant of the language discussed earlier in
section 7.3, since the rest of its implementation consists of some minor modifications
that crosscut the entire implementation.

First, we explain the startLookingForOperatorHost method implemented by
VisualDataflowNode, which is immediately called after deploying the dataflow pro-
gram that contains the VisualDataflowNode. It is hosted by the device deploying the
dataflow graph and is responsible for detecting dataflow operator hosts that match the
role represented by the node. Its implementation is shown below.

1 def startLookingForOperatorHost() {
2 if: (isBroadcastNode()) then: {
3 startLookingForMultipleOperatorHosts();
4 } else: {
5 startLookingForSingleOperatorHost();
6 };
7 };

It first checks if the when the dataflow operator is executed its return value should be
broadcast to all reachable dependent nodes, or propagated to a single dependent node.
In the second case, it delegates to startLookingForSingleOperatorHost, of which
the implementation is shown below.

1 def startLookingForSingleOperatorHost() {
2 subscription_ :=
3 when: operatorHostType_ discovered: { |host|
4 currentHosts_ := [host];
5 def fromOneEdges := incomingEdges_.filter: { |edge|
6 !(edge.isAccumulatorEdge())
7 };
8 def fromManyEdges := incomingEdges_.filter: { |edge|
9 edge.isAccumulatorEdge()

10 };
11

5AmbientTalk/R is a classless language. In this informal diagram, we represented prototypical objects as
UML classes.

7.5. IMPLEMENTATION 197

Figure 7.15: Object diagram of the implementation of AmbientTalk/RV (a).

198 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

12 host<-execute(
13 operatorString_,
14 fromOneEdges.map: { |edge|
15 [edge.getTypetag(), edge.incomingEventTimeout()] },
16 fromManyEdges.map: { |edge|
17 [edge.getTypetag(), edge.incomingEventTimeout()]
18 },
19 outgoingEdges_.map: { |edge| edge.getTypetag() },
20 localParameterBindings_);
21
22 if: (!isFixedNode()) then: {
23 when: host disconnected: {
24 if: (nil != subscription_) then: {
25 subscription_.cancel();
26 currentHosts_ := [];
27 };
28 startLookingForOperatorHost();
29 };
30 };
31 };
32 };

The method creates a subscription that listens one single time (cf. when:discovered:
on line 3) for remote objects (implementing OperatorHostInterface) in the network
that are tagged with a type tag matching the role type operatorHostType_. When a
reference to such an object representing a role host is obtained, the currentHosts list
is assigned a list that contains only this single host. Subsequently, the incoming edges
are classified into edges that have to listen for events from a single node on which
this node depends (fromOneEdges, incoming one-to-one and one-to-many edges in the
dataflow graph) or into edges that have to listen for all events from every node fulfilling
the same role that is discovered (fromManyEdges, incoming many-to-one and many-to-
many edges in the dataflow graph).

Next, the host is sent the asynchronous execute message that will, if the mes-
sage is successfully sent and processed, execute the role on that specific host. The
execute message takes the role source code as a string (which it can evaluate), both
types of incoming edges together with their typetag (representing their name in the
graph), all outgoing edges together with their typetag (idem), and the local parameter
bindings which are used to remember state variables over different executions of the
same role. Note that sending the execute message does not necessarily mean that the
host will fulfill a role in the dataflow program. Using the default implementation of
OperatorHostInterface, it will simply cause it to subscribe the necessary ambient
behaviors, which can potentially cause these behaviors to be bound to a number of
publications that represent edges in the graph.

Finally, it is checked if the node has one or more fixed dataflow edges (incoming or
outgoing). If this is the case, the host should always remain the same during the entire
lifetime of the dataflow program. If this is not the case, a new when:disconnected:

observer is installed that, when the host is disconnected from the node, cancels the
subscription and reinvokes the method to repeat the process with (potentially) a new
host.

The implementation of startLookingForMultipleOperatorHosts is very similar
and is shown below:

1 def startLookingForMultipleOperatorHosts() {
2 subscription_ :=
3 whenever: operatorHostType_ discovered: { |host|

7.5. IMPLEMENTATION 199

Figure 7.16: Object diagram of the implementation of AmbientTalk/RV (b).

4 currentHosts_ := currentHosts_ + [host];
5 def fromOneEdges := incomingEdges_.filter: { |edge|
6 !(edge.isAccumulatorEdge())
7 };
8 def fromManyEdges := incomingEdges_.filter: { |edge|
9 edge.isAccumulatorEdge()

10 };
11
12 host<-execute(
13 operatorString_,
14 fromOneEdges.map: { |edge|
15 [edge.getTypetag(), edge.incomingEventTimeout()]
16 },
17 fromManyEdges.map: { |edge|
18 [edge.getTypetag(), edge.incomingEventTimeout()]
19 },
20 outgoingEdges_.map: { |edge| edge.getTypetag() },
21 localParameterBindings_);
22
23 if: (!isFixedNode()) then: {
24 when: host disconnected: {
25 currentHosts_ :=
26 currentHosts_.filter: { |aHost| aHost != host };
27 };
28 };
29 };
30 };

The only difference is that in this case multiple hosts can be discovered because of
the whenever:discovered: AmbientTalk/R observer registered on line 3 instead of the
when:discovered: observer in startLookingForSingleOperatorHost. The rest of the
code is slightly adapted to this fact, but for the sake of brevity we omit these changes.

7.5.2 The Default Host Interface
The last important part that remains to be explained is the default
OperatorHostInterface object representing a node that will execute one or more roles
in the dataflow program. It implements the infrastructural layer that enables a mobile
node to execute AmbientTalk/RV roles and interact with other dataflow nodes. Such an
object is hosted on this physical node and has access to a package that the programmer
of the node designated to be public code that can be called from within the role code.
This is depicted in an informal object diagram in figure 7.16.

200 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

Not surprisingly, its main method is the execute method that is invoked by asyn-
chronous execute messages sent by VisualDataFlowNodes when deploying a dataflow
operator, as previously discussed. Its implementation is shown below.

1 def execute(
2 roleCode,
3 subscriptionTypetagsAndTimeouts,
4 accumulatorSubTypeTagsAndTimeouts,
5 publicationTypetags,
6 parameterBindings) {
7
8 // Subscribe node-centric ambient behaviors.
9 behaviorsAndSubscriptions_ :=

10 subscriptionTypetagsAndTimeouts.map: { |pair|
11 ambientBehavior: pair[1] @Any(pair[2]);
12 };
13
14 // Subscribe group-centric ambient behaviors.
15 behaviorsAndSubscriptions_ := behaviorsAndSubscriptions_ +
16 accumulatorSubTypeTagsAndTimeouts.map: { |pair|
17 ambientBehavior: pair[1] @All(pair[2]);
18 };
19
20 behaviors_ := behaviorsAndSubscriptions_.map: { |pair| pair[1]; };
21 localParameterBindings_ := parameterBindings;
22
23 // Lifted function taking ambient behaviors as argument.
24 def liftedFunction(@args) {
25 def env := isolate: { };
26 def envMirror := (reflect: env);
27 def index := 1;
28
29 // Define local parameters in role scope.
30 while: { index <= localParameterBindings_.length() } do: {
31 def fieldName :=
32 eval: (read: ("‘" + localParameterBindings_[index][1]))
33 in: env;
34 envMirror.defineField(
35 fieldName,
36 localParameterBindings_[index][2]);
37 index := index + 1;
38 };
39 index := 1;
40
41 // Define dataflow variables in role scope.
42 def allTypetags :=
43 (subscriptionTypetagsAndTimeouts +
44 accumulatorSubTypeTagsAndTimeouts).map: { |pair| pair[1] };
45 while: { index <= (allTypetags.length() } do: {
46 def fieldName := (allTypetags[index]).typeName();
47 envMirror.defineField(fieldName, args[index]);
48 index := index + 1;
49 };
50
51 // Evaluate role code in role scope and store returned behavior.
52 def returnBehavior := eval: (read: roleCode) in: env;
53
54 // Store new value of local parameters for next execution.
55 index := 1;
56 while: { index <= localParameterBindings_.length() } do: {
57 def value :=
58 envMirror.invokeField(

7.5. IMPLEMENTATION 201

59 env,
60 eval: (read: ("‘" + localParameterBindings_[index][1]))
61 in: env);
62 (localParameterBindings_[index])[2] := value;
63 index := index + 1;
64 };
65
66 // Return result behavior.
67 returnBehavior;
68 };
69
70 // Generate result behavior using lifted function.
71 def resultBehavior := liftedFunction(@behaviors_);
72 // Publish resulting behavior using outgoing edge type tags.
73 publicationTypetags.each: { |typetag|
74 exportBehavior: resultBehavior as: typetag;
75 };
76 };

It first subscribes the necessary node-centric and group-centric ambient behaviors
to support listening to events coming from incoming edges. The ambientBehavior:

construct returns a pair: the behavior itself and a subscription object that can be used to
cancel the subscription. All pairs are stored in a list, from which the ambient behaviors
are extracted into the behaviors_ field of the OperatorHostInterface object. It also
modifies the localParameterbindings_ field to denote the state variables encoded in
the current role being executed.

Subsequently, a special function liftedFunction is defined that takes an arbitrary
number of arguments by means of the @args AmbientTalk construct, which causes the
args formal parameter to be bound to the list of arguments that is passed. The idea is
to pass a list of subscribed ambient behaviors to this function and rely on the dataflow
evaluation strategy of the AmbientTalk/R interpreter to drive the reactive execution of
the role. liftedFunction first creates an empty object without lexical scope by means
of the isolate: AmbientTalk/R construct. This isolate’s object scope will be used as
an environment to evaluate the role code in. This means that the role code by default
has no access to any variable outside this object’s scope, unless the node programmer
assigns specific packages to contain public code.

The next step (line 30) is to iterate over the state variable bindings from the previous
execution of the role and – using AmbientTalk/R’s reflection and metaprogramming
facilities – redefine them into this fresh isolate object, such that they can be used in the
current execution of the role code. Similarly, on lines 42 to 49, all type tags denoting
incoming edges are used to define dataflow variables in that same scope. They are
bound to the ambient behaviors in the args list that were previously subscribed.

From this point on, the role’s scope contains the necessary definitions to execute
the role’s code. On line 52, a new behavior is generated by evaluating the role’s code
in the role’s scope. Since the dataflow variables that are defined in the role’s scope
are used in the role’s code, the resulting value of this evaluation is a new time-varying
value or behavior.

Now the only thing that remains to be done is fetch the new values of the (poten-
tially changed) state variables out of the role’s scope and store them in the
localParameterbindings_ field of the host object to have them ready for the next ex-
ecution of the role (lines 56 - 64). Subsequently, the behavior resulting from executing
our special lifted function is returned, which is the return value of executing the role
code.

202 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

On line 71, this behavior is generated by calling the lifted function on the ambient
behaviors that were subscribed earlier and that correspond to the incoming datadlow
edges. Finally, on line 73, this behavior is published using all type tags associated with
outgoing edges, such that other hosts fulfilling their own set of roles and subscribing
their own set of ambient behaviors can subscribe to them.

A Sketch of An Alternative Evaluation Strategy Implementation

To sketch how the evaluation strategy is changed for the second flavor of AmbientTalk/RV

that we implemented and that is discussed earlier in section 7.3, consider the following
piece of code taken out of the liftedFunction of this second implementation.

1 def generateTypetagsAndBehaviors(beh) {
2 publicationTypetags.map: { |typetag|
3 def typeName := typetag.typeName();
4 if: (envMirror.respondsTo(typeName)) then: {
5 [typetag, envMirror.grabField(typetag.typeName()).readField()];
6 } else: {
7 [typetag, nil];
8 };
9 };

10 };
11
12 generateTypetagsAndBehaviors(returnBehavior);

The above procedure takes the resulting returnBehavior of the previously discussed
version of liftedFunction, but instead of immediately returning it, it will return a list
of behaviors associated with their publication type tags (i.e. outgoing edges names) that
are all looked up in the scope of the role (hence, the dataflow programmer must have
defined them in the role code).

After executing the now adapted special lifted function, all these behaviors are
published with their associated type tag found on the corresponding outgoing edges, as
shown below.

1 def typetagsAndBehaviors := liftedFunction(@behaviors_);
2 typetagsAndBehaviors.each: { |pair|
3 exportBehavior: pair[2] as: pair[1];
4 };

We omit the changes to the rest of the implementation as they crosscut large parts
of the implementation of VisualDataflowNode and VisualDataflowEdge, but do not
significantly change the fundamental ideas.

7.6 Limitations

In this section, we discuss the limitations of AmbientTalk/RV and its variant presented
in this chapter. First of all, since the implementation of the language is directly based
on the ambient behaviors constructs introduced in the previous chapters, the limitations
(see chapter 6 section 6.6) that apply to our approach to node-centric ambient-oriented
dataflow programming also apply to the network-centric approach introduced in this
chapter. Additional limitations are categorized below.

7.7. CONCLUSION 203

7.6.1 Subscription
An obvious problem is that dataflow edge names and role names have to be globally
unique in a network-centric dataflow program. A solution to this problem could be
to automatically generate unique identifiers acting as topics. This way, they can be
automatically mapped by the the language to the programmer-supplied and non-unique
topics. The language must then maintain a mapping from unique topic-edge and role-
operator pairs to such generated unique identifiers.

Another way of alleviating this problem could be to rely on the content-based sub-
scriptions of the node-centric approach, which we did not incorporate in AmbientTalk/RV .
AmbientTalk/RV currently only supports topic-based publish/subscribe based on role
and edge names. We will investigate in future work how the language could be (syn-
tactically) extended to support content-based subscriptions.

7.6.2 Deployment
A limitation of the current implementation is that new devices – or replacement or
additional devices in the case of rebinding dataflow dependency edges – always first
have to be contacted by the device that invoked the dataflow program before fulfilling
their role in a concrete instance of the dataflow program. The reason is that the invoking
node hosts all the role scripts and must send these scripts to appearing remote nodes
that can execute one of the roles. Once this has happened though, the execution of the
dataflow program happens entirely decentralized by having the correct events published
and the correct ambient behaviors subscribed. An avenue for future work might be to
further decentralize this process by allowing nodes that are looking for other nodes
fulfilling a certain role in the dataflow program to dynamically send them the role code
once they are discovered.

7.6.3 Visual Scalability
Other limitations that we observe have to do with our visual dataflow programming en-
vironment that is an early prototype. Some features that we believe are missing to make
it truly usable for larger scale projects are collapsing of dataflow operators (maybe us-
ing an icon instead), nesting of dataflow operators (such that dataflow programs can
be built hierarchically) and debugging support. The second issue requires a revision of
dataflow edge semantics to have meaningful semantics while nesting.

7.6.4 Tooling
Finally, although our textual representation of AmbientTalk/RV is perfectly executable,
we feel that there is room for improvement in this regard, such that the textual repre-
sentations become smaller and more robust to changes in the tool (and maybe even
language). Instead of using an XML-represented object dump of the Java objects rep-
resenting the dataflow graph, we might consider using a more efficient and suitable
representation.

7.7 Conclusion
In this chapter we have introduced the network-centric visual ambient-oriented dataflow
language AmbientTalk/RV specifically geared towards coordinating mobile RFID-enabled

204 CHAPTER 7. NETWORK-CENTRIC DATAFLOW PROGRAMMING

applications. The motivation for using a dataflow language for coordination is that the
language offers a coordination model that is very well suited to the dynamic and in-
herently parallel nature of mobile RFID-enabled applications and allows separating the
coarse-grained coordination behavior from the fine-grained application logic. Thanks
to its coarse-grained control flow that is unified with its data flow and visually rep-
resentable, our final remaining requirement is satisfied: global and automatic control
flow.

AmbientTalk/RV represents data dependencies between distributed mobile appli-
cation components very explicitly and allows them to be visualized and edited graph-
ically, offering a network-centric view on the control flow of the entire application.
This network-centric view allows to change the control flow of an application without
invasive changes to the node-level code. Since its coordination model is purely based
on the satisfaction of these data dependencies, it maps very well on a mobile ad hoc
network environment where distributed application components are running in parallel,
react to events coming from the outside world, and are interconnected by peer-to-peer
connections over which data can only flow when the connection is not broken (which
may frequently happen due to the limited communication range and the mobility of the
devices).

To allow the different components in the dataflow program to be both decoupled
in space, time and arity, it makes use of an underlying broadcast-based publish/sub-
scribe architecture. Execution of dataflow programs happens entirely decentralized
by dynamically binding nodes to dataflow operators, which operate on time-varying
dataflow variables, which are updated by the underlying publish/subscribe system. This
dynamic binding leverages the group-centric event processing mechanisms of the un-
derlying publish/subscribe architecture and the language offers specific syntax and a
clear semantics for both fixed, rebinding and dataflow dependencies of different ari-
ties.

Both the loose coupling of dataflow nodes and the fault-tolerant delivery of events
based on AmbientTalk’s asynchronous messages render such dataflow programs re-
silient to the volatile connections inherent to many wireless communication infrastruc-
tures. Events can be any AmbientTalk data type or serializable Java object.

Chapter 8

Conclusion

In this concluding chapter, we revisit our research goals as stated in the introduction
with hindsight and we highlight the contributions of this dissertation once more. We
discuss problems that remain open and where our proposal could be improved. This
leads us to formulate a number of avenues for future research that we deem impor-
tant in the fields of mobile RFID-enabled applications, ambient-oriented and dataflow
programming.

8.1 Research Goals
In section 1.3, we listed a number of research goals that we intended to achieve with
our work. We repeat them here and discuss to what extent they have been achieved.

• It was our goal to unify RFID-tagged physical objects with software objects in
an object-oriented language while keeping into account the hardware properties
of RFID technology that have a strong impact on mobile RFID-enabled appli-
cations. Part of the goal was to come up with a number of criteria that specify
how this integration should happen such that the programmer can on one hand
abstract over the peculiarities of RFID hardware, but on the other hand react on
interesting events signaled by RFID devices.

• Given such mobile applications driven by external events, it was our goal to pro-
vide an alternative to reacting to these events via callbacks or event handlers, to
circumvent a number of software engineering issues such as inversion of con-
trol. To this end, a solution would be to integrate two paradigms in event-based
programming – dataflow programming and publish/subscribe – to eliminate call-
backs and to retain the loose coupling of distributed applications components
required for mobile RFID-enabled applications.

• It was our goal to unify the control flow and data flow of mobile RFID-enabled
applications and make them explicit on a network-centric level. Such an explicit
distributed control flow is expressed in a network-centric coordination language.
To integrate with our dataflow execution model, such a network-centric language
should rely on a dataflow execution model as well, but offer a network-centric
view on the entire application. This coordination language should be applicable
to mobile RFID-enabled and ambient-oriented applications and should incorpo-
rate the programming model requirements for these applications.

205

206 CHAPTER 8. CONCLUSION

We have adapted an ambient-oriented programming language to allow the imple-
mentation of mobile RFID-enabled applications by fine-tuning the built-in abstractions
of the language to support RFID technology. Additionally, we have extended the lan-
guage to allow the development of these applications without suffering from inversion
of control by integrating distributed reactive dataflow programming constructs with the
event-driven communication mechanisms based on asynchronous messages and pub-
lish/subscribe of the language. On top of these distributed dataflow constructs, we have
implemented a network-centric visual coordination language. We have shown the fea-
sibility of our approach by a proof by construction. Together, these resulting artifacts
form the main contributions of this dissertation:

AmbientTalk/2 was extended for mobile RFID-enabled applications because the
ambient-oriented programming paradigm on which it is based already offers
some support for open, networked applications interacting over volatile connec-
tions. We extended this language to represent RFID-tagged physical objects as
true mutable remote software objects called things. The event-driven nature of
the language based on communicating event loops allows the implementation to
be cleanly integrated in the language, but suffers from typical issues arising in
more complex event-driven programs structured around event handlers or call-
backs, such as inversion of control.

Node-centric ambient-oriented dataflow programming constructs were added to
AmbientTalk/R, a version of the language supporting a variant of dataflow pro-
gramming called reactive programming. These language constructs allow mo-
bile RFID-enabled applications to interact over volatile connections by means
of a loosely-coupled publish/subscribe mechanism while allowing these applica-
tions to react to external events using time-varying dataflow values. The explicit
control flow of the textual language is to a large extent traded for the automatic
tracking of dataflow dependencies between time-varying values by the runtime
of the language.

AmbientTalk/RV , a network-centric visual dataflow coordination language, was
developed to offer a network-centric, visual representation of the implementation
of mobile RFID-enabled applications to render the data flow explicit and eas-
ily adaptable again. The implementation is based on the node-centric dataflow
programming constructs mentioned above, keeping mobile RFID-enabled appli-
cations loosely coupled. It additionally offers dedicated syntax and semantics
for different dataflow dependency styles between distributed application compo-
nents, such as rebinding dependencies versus fixed dependencies and dependen-
cies of different arities.

Throughout this dissertation we have used a case study of a mobile RFID-enabled
application for which we have laid the infrastructure using our RFID programming
model in chapter 5. We have subsequently refined it by introducing our node-centric
dataflow constructs in chapter 6 which turn the control flow implicit, and have finally
made the data flow of the application explicit in chapter 7 using our network-centric
dataflow coordination language. We have observed that the issues we are trying to
tackle with implementing such applications using traditional approaches are alleviated.
Additionally, we have benchmarked the artifacts that we have developed. We have ob-
served that our abstractions induce a computational overhead, but not to such an extent
that it hinders scalability or undermines the insights presented in this dissertation.

8.2. RESTATING THE CONTRIBUTIONS 207

8.2 Restating the Contributions
We now summarize how each chapter contributes to this dissertation’s research goals:

• In chapter 2 we introduced the concept of mobile RFID-enabled applications –
which arise from combining mobile technology with RFID technology – and
we discussed the software engineering problems inherent to such applications.
These problems stem from the fact that these applications have to deal with dy-
namically changing and unreliable networks. After observing the similarities be-
tween RFID technology and mobile ad hoc networking technology, we chose to
extend the ambient-oriented programming paradigm with novel event handling
constructs to tackle the highly event-driven nature of mobile RFID-enabled ap-
plications. This leads us to, based on the ambient-oriented programming criteria,
define a list of programming model requirements for mobile RFID-enabled ap-
plications.

• In chapter 3, we surveyed a number of technologies that, to various extents, sat-
isfy some of these programming model requirements. These technologies form
the related work of this dissertation. We concluded that mobile RFID-enabled
applications should be implemented as decentralized event-driven architectures
to achieve a loose coupling on the architectural and execution level. Unfortu-
nately, structuring applications this way causes inversion of control. Dataflow
programming techniques on the other hand, can be used for reacting on events
without suffering from the problems caused by event handlers or callbacks that
are uncoordinatedly executed in response.

• In chapter 4, we selected the ambient-oriented programming paradigm embod-
ied by the programming language AmbientTalk as a starting point for imple-
menting mobile RFID-enabled applications. Due to its decentralized and event-
driven programming model, it already satisfies some of our requirements. We
discussed where the paradigm offers partial support for implementing mobile
RFID-enabled applications using modern distributed programming techniques.

• In the same chapter, we discussed where AmbientTalk falls short to deal with
all programming issues in mobile RFID-enabled applications. Concretely, the
event-driven programming model based on event handlers or callbacks to react
to events causes a number of software engineering issues – such as inversion of
control – which are discussed at the end of the chapter.

• In chapter 5, we mapped the object-oriented programming model and event loop
concurrency model of AmbientTalk to mobile RFID-enabled applications. We
provided an overview of a prototype implementation. We successfully applied
the discerning principles of the ambient-oriented programming model to mobile
RFID-enabled applications. We observed that mobile RFID-enabled applications
suffer from the same problems as other event-driven applications of which the
implementation is based on callbacks, but to a larger extent.

• In chapter 6, we integrated a variant of dataflow programming (called reactive
programming) supported by a variant of the AmbientTalk language called Ambi-
entTalk/R with its underlying decentralized publish/subscribe architecture. This
allows structuring mobile ad hoc networking applications as loosely-coupled
event-driven distributed programs while supporting reactive programming as a

208 CHAPTER 8. CONCLUSION

means to react to events. The constructs strongly rely on AmbientTalk’s event
loop concurrency model. We have called this style of dataflow programming
ambient-oriented dataflow and provided a prototype implementation.

• In the same chapter, we applied these constructs first to a peer-to-peer ambient-
oriented application, and subsequently to our mobile RFID-enabled application
used as a case study. We observed that, by making the control flow of the ap-
plication implicit through reactive programming techniques, the typical issues
associated with event-driven programs structured around callbacks are solved.
In the case of our example mobile RFID-enabled application, we additionally
observed that, because of the node-centric view on subscriptions and publica-
tions among heterogenous peers, the data flow of the application remains very
implicit and leads to a number of issues that call for a network-centric view on
the application. In short: one of our requirements is not satisfied: global control
flow management.

• In chapter 7, we introduced AmbientTalk/RV : a visual network-centric coordina-
tion language that uses ambient-oriented dataflow as an explicit network-centric
coordination mechanism. The resulting node-centric code during execution of
such a dataflow program utilizes the node-centric dataflow primitives of the pre-
vious chapter, preserving a loosely-coupled and decentralized architecture. To
represent different decoupled communication patterns, we introduced two novel
concepts in this language: the distinction between fixed and rebinding dataflow
edges and different semantics for edge arities. We provided a prototype imple-
mentation.

• In the same chapter, we restructured the mobile RFID-enabled application used
before as a case study to obtain a network-centric view in AmbientTalk/RV . We
observed that the coarse-grained data flow can be easily modifed by manipu-
lating the explicitly represented dataflow graph of the application by means of
its dataflow dependencies represented as different types of dataflow edges. This
way, our final requirement – global control flow management – is satisfied.

8.2.1 Fundamental Contributions

In short, our two fundamental contributions are:

We extended the ambient-oriented programming paradigm to sup-
port mobile RFID-enabled applications running atop of mobile
RFID-enabled devices and using passive RFID tags. This way, the
paradigm becomes applicable to ambient systems of which part of
the participating entities have no computational power whatsoever.
This allows to program mobile RFID-enabled applications in which
RFID-tagged physical objects are effectively represented as remote
software objects.

8.3. LIMITATIONS OF OUR APPROACH 209

We integrated two event paradigms. The publish/subscribe
paradigm offers space, time and arity decoupling and is there-
fore well-suited for implementing distributed systems in general
and mobile ad hoc networking applications in particular. Unfor-
tunately, current publish/subscribe systems cause inversion of con-
trol. Dataflow programming on the other hand does not cause in-
version of control. Current dataflow programming technology how-
ever induces a tight coupling which renders it unsuitable for mobile
ad hoc networking applications. In this dissertation, we integrated
both event paradigms and showed that the result can be used to
program mobile RFID-enabled applications in an ambient-oriented
style without suffering from inversion of control.

8.3 Limitations of Our Approach
In the foregoing chapters we already discussed specific technical limitations of the
approaches that they describe. In this section, we repeat the most important ones and
position them in the broader context of this dissertation.

8.3.1 Security and Privacy of Mobile RFID-Enabled Applications
Mobile RFID-enabled applications in many cases have to broadcast information to all
reachable peers because it is the only way of communicating, or because previously
unknown peers have to be contacted or because it is simply the most appropriate com-
munication abstraction. The resulting uncontrolled dissemination of information could
pose a potential privacy risk. This is most apparent from current RFID hardware that
offers no adequate support to prevent malicious parties to sniff data broadcasted over
radio frequency waves. Similarly, AmbientTalk/RV matches peers able to fulfill a cer-
tain role in the dataflow program simply on their role name and in response they will
execute foreign code associated with the corresponding dataflow node in the dataflow
program. Currently, there is no protection from malicious dataflow programs that send
harmful code to other devices. In this dissertation we have ignored security and pri-
vacy and hence suggest that our approach should be complemented with additional
infrastructure to be used in scenarios where security and privacy are concerns.

8.3.2 Distributed Glitch Prevention
In dataflow programming, glitches occur because of dependent code that is executed
in the wrong order. This can easily happen in a distributed setting where events are
communicated over the network and are hence delivered with a delay of which the
magnitude depends on different factors, such as the underlying network technology,
network congestion, network failures, etc.

To cater to the requirements of mobile RFID-enabled applications that we put for-
ward in the beginning of this dissertation, we opted for an entirely decentralized ap-
proach, which precludes us from relying on a reliable, centralized node that is contacted
by every single participant in a distributed interaction to take care of event ordering.
Hence, in our prototype implementation, we have not taken into account event ordering
across dataflow dependencies over multiple nodes (between just two nodes, ordering is

210 CHAPTER 8. CONCLUSION

guaranteed). This means that our implementation is free of glitches on a single node,
but not free of distributed glitches across multiple nodes.

8.3.3 Overhead of Dataflow Programming
Naturally, tracking dataflow dependencies consumes time and memory resources. A
dataflow graph of dependent computations which may refer to arbitrary objects must
be maintained by the language runtime, making garbage collecting these objects not
always possible [PD10] and introducing a memory overhead. Similarly, there is a com-
putational overhead caused by checking whether values are reactive, if this is the case
lifting dependent procedure calls or method invocations, and traversing the dataflow
graph to update dependent expressions.

Our implementation is based on AmbientTalk/R, an AmbientTalk interpreter sup-
porting reactive programming in an object-oriented setting. In functional reactive pro-
gramming, extensive work has been done on optimizing reactive programs, but it is un-
clear if similar techniques are possible in a non-functional setting. For our implemen-
tation, we have not considered thorough optimizations and we have no exact figures on
the overhead of our implementation when used for reactive applications compared to
the same applications based on classic event-driven techniques.

In chapter 6, we did benchmark our implementation with respect to the amount of
messages that are sent over the network compared to a manual approach. It turned out
that our implementation requires about two times the number of messages to commu-
nicate the same number of events. Although this is not excessive, this can probably be
improved by tuning the underlying publish/subscribe system (which we did not adapt)
to our model.

8.3.4 Event Processing Bottlenecks
We rely on the event loop model of the AmbientTalk language to serialize asynchronously
received events into an event queue such that they can be processed sequentially by a
single thread. This makes our model free of low-level race conditions, but of course
prevents events to be concurrently processed within a single event loop and makes par-
allelizing event processing a non-trivial exercise, potentially causing bottlenecks. This
could form an issue in cases where a huge amount of events has to be processed within
strict time constraints. A way to circumvent this problem could be to allow event con-
sumers to specify how fast they can process certain events. The dataflow language
constructs presented in this dissertation, however, offer no way for an event consumer
to tell its event producer to limit the events that it wants to receive: a publication or
subscription can only be cancelled. Afterwards, the subscription can be re-established.

8.4 Avenues for Future Research
In this section, we discuss how our research can be extended in directions that would
address certain limitations or would allow this work to be used in different contexts.

8.4.1 Active RFID Technology
Active RFID tags differ from their passive counterparts by being equipped with an
integrated power source (which is in most cases a battery). Because they are less con-

8.4. AVENUES FOR FUTURE RESEARCH 211

strained with regard to power consumption, they can be equipped with more advanced
circuits, such as for example simple 8 bit processors that can run custom firmware.
Such active RFID tags allow the tags themselves to actively take part into mobile RFID-
enabled applications, sometimes by even allowing tag-to-tag communication without
intermediary infrastructure.

One concrete example could be that the tags themselves are responsible for coor-
dinating external access to their memory. This way, the tags could use for example
leasing [GC89] to temporarily grant a remote party exclusive access to their memory
while keeping it protected from writes from other parties.

Additionally, because of their integrated power source, active tags are able to power
up a larger amount of memory, which would allow us to store larger objects on the tags
themselves.

As RFID tags get more powerful, the distinction between RFID tags as pure iden-
tification devices and full-blown sensor nodes is blurred. Hence, we believe that the
work carried out in the field of sensor networks will become more and more important
outside of its own research field.

8.4.2 Content-based Publish/Subscribe
In this dissertation, we have presented node-centric ambient-oriented dataflow con-
structs that use an underlying publish/subscribe system. Matching subscriptions to
publications can happen both topic-based and content-based. However, we do not take
advantage of optimizations that can be performed when using content-based subscrip-
tions, such as routing, query optimization etc. One interesting avenue would be to
investigate how far known optimization strategies can be taken into an entirely decen-
tralized model, or to come up with novel decentralized optimizations.

For the visual network-centric dataflow language AmbientTalk/RV discussed in the
previous chapter, we have only provided syntax for topic-based subscriptions, although
technically content-based subscriptions are possible as well since the implementation
is directly based on the node-centric primitives. Another avenue could be to investigate
how a programmer could express content-based subscriptions on such a network-level
view, and how it can be integrated with the semantics of the network-centric language.

8.4.3 Distributed Glitch Prevention
As mentioned before in section 8.3.2, our implementation of dataflow constructs offers
no glitch prevention across different distributed nodes. The loosely-coupled nature of
a publish/subscribe system such as the one on which our constructs are built relaxes
many properties that a non-distributed dataflow programming system exploits to be
able to prevent glitches, such as for example turn-based synchronous execution based
on a single clock. The absence of this property makes it harder to prevent glitches in a
distributed reactive program.

A possible solution could be to use a centralized entity – or an elected leader –
to which all parties involved in the distributed dataflow program connect and that is
solely responsible for ordering events. This centralized approach of course introduces
a single point of failure and possibly a considerable communication overhead as all
parties involved in the system have to communicate with a single host for every event
they signal and to receive every event propagated to them as well, potentially limiting
scalability.

212 CHAPTER 8. CONCLUSION

A decentralized solution could be to accept that events in close succession cannot
be ordered as a fact of life and take into account a minimum time interval in which
events are considered to occur simultaneously. This is similar to ideas found in real-
time synchronous languages where the system is assumed to react atomically to events
before any other events occur and a global clock with a minimal tick rate determines
the time interval. This minimal tick rate could be used as the maximal amount of
which distributed clocks may diverge in a distributed dataflow program. As long as it
can be guaranteed that all the clocks in the system do not diverge more than this time
interval, glitches can be prevented while keeping a decentralized architecture. The
applicability of this assumption depends on a number of factors such as the number
of parties involved in the distributed interaction, the amount of clock divergence, the
quality of the network, and, most importantly, the nature of the dataflow program.
For programs that have to quickly react on events occurring in very close succession
this approach might not be feasible, while for programs that work on human time-
scales (such as seconds, minutes...) this assumption might be acceptable. Decentralized
solutions to mitigate this problem exist, but they highly depend on the physical layer
of the mobile ad hoc network [EGE02].

In short, we believe loose coupling and glitch freedom are two opposing forces
and one of our most obvious objectives for future work is exploring the possibilities in
which both properties can be combined and taxonomize the resulting trade-offs.

8.4.4 Bidirectional Dataflow
One of the dimensions of dataflow programming that we have not explored is bidi-
rectional dataflow, as in the Coherence language [Edw09]. This way, side effects per-
formed on reactive values derived from other reactive values are propagated back to
the original reactive values on which they depend in such a way that their state is
mutually consistent, as defined by a programmer-supplied function. This induces a
stronger causal connection between distributed reactive code and blurs the distinction
with constraint programming [SRP91]. It could in some situations reduce manual event
detection and handling even further .

It seems an interesting avenue to explore bidirectional dataflow in a distributed
setting, where the looser coupling between dependent reactive values and the fact that
clients may not always be allowed to just modify remote values will require us to recon-
sider the semantics of the model. Additionally, local concurrent implementations such
as Coherence will most likely have to be adapted to guarantee transactional semantics
in a loosely-coupled distributed system.

8.4.5 Object Capabilities as a Security Model
As mentioned in section 8.3.1, we did not consider security in this work. One possible
avenue to tackle this problem are object capabilities [MTS05b]. Object capabilities
enforce security by enforcing the principle of least authority using standard object-
oriented techniques such as encapsulation. This principle states that no process should
receive more authority than required to do what it is intended to do. Object capabilities
have been successfully implemented in the E language [MTS05a] and on a dialect of
JavaScript called Caja. Since AmbientTalk is inspired by the E language and shares
its computational model based on communicating event loops, it could be interesting
to add object capabilities to our implementation. Naturally, object capabilities pro-
vide security on a programmatic level and assume a secure environment to run secure

8.4. AVENUES FOR FUTURE RESEARCH 213

programs on. Unfortunately, the RFID technology on which mobile RFID-enabled
applications are built does not offer full security yet [RK09].

8.4.6 Complex Event Processing
With the approach presented in this dissertation, event processing happens using a
general-purpose programming language, albeit enriched with dataflow semantics for
reacting to events. Complex event processing [LF98] is a form of event processing
where a declarative query language is used to generate higher level events from logged
lower level events, which may be complex events themselves. It explicitly reifies time
through concepts such as sliding windows, i.e. time periods in which specific events
must occur to be successfully matched to a complex event. Other than having a ded-
icated query language, complex event processing allows event queries to be highly
optimized. This could be useful in a setting where a massive amount of events is sig-
naled, such as for example a network of long-range RFID readers in an environment
which is densely populated with RFID-tagged objects [JLKY08]. Integrating complex
event processing into a general-purpose programming language requires an event rep-
resentation that is both useful for standard imperative operations and for complex event
queries. Having an efficient mapping or symbiosis between both approaches remains
an interesting avenue for future research.

8.4.7 Session Types
Session types [Hon93] are used for statically describing the behavior of processes in
terms of sending and receiving messages. A session type describes with which other
participants and in what order a participant in a distributed interaction may interact,
specified as a list of incoming and outgoing typed messages (which can contain con-
ditional branches and loops). Recently, session types were extended with support for
interactions where the participants are not known upfront, but instead can join and
leave a session at any point in time and even play different roles in the same session
[DY11], which makes them applicable for mobile RFID-enabled applications. In these
dynamic multiparty session types, potential participants are denoted by abstract roles,
which is the same idea as we have used in our network-centric dataflow language to
denote classes of participants that share a common behavior.

This work could be used to introduce more type safety into network-centric pro-
grams such as the ones defined by our network-centric ambient-oriented dataflow lan-
guage. Additionally, they could be used as a framework to formally derive and prove
certain properties of a network-centric program. In the next section, we look at a con-
crete tool for formalizing our approach.

8.4.8 Formalization
The approach taken in this dissertation is to extract a number of properties for a compu-
tational model to be suitable for mobile RFID-enabled applications. Out of this model,
we extracted a number of programming model requirements that together formed the
basis for a prototype implementation, which served as a proof by construction. The
obtained artifacts and applications give us what we believe to be accurate ideas on
how our abstractions should behave and to which applications they can be applied.
However, in this dissertation we have not formally proven the properties that we have
extracted out of our informal analyses. To this end, it could be interesting to model

214 CHAPTER 8. CONCLUSION

our dataflow coordination model in for example Reo [Arb04], a formally backed coor-
dination model based on hierarchically organized channels that connect components,
which seems a close fit to our dataflow model. Such a formalization could serve as a
formal backing for the work introduced in this dissertation.

8.5 Concluding Remarks
The Internet of Things allows everyday objects to be enriched with computational in-
frastructure and to be digitally represented in software applications. As a future vision
on computing that is slowly becoming reality, it demands suitable software engineer-
ing tools and abstractions to manageably interact with a fluid network of heterogeneous
devices from a software level. The wealth of knowledge built up over the years on dif-
ferent distributed computing techniques hints at what techniques will be appropriate.
A phenomenon that we already observe today is that there is a departure from classic
procedure-oriented software to increasingly event-driven software to allow software to
be reactive to the plethora of events generated by an increasingly digitalized and in-
teractive physical environment. In this dissertation, we investigated a specific class of
such applications that arise when mobile ad hoc networks are combined with RFID
technology. We have called these applications mobile RFID-enabled applications.

The work presented in this dissertation attempts to bring this vision closer to re-
ality by mapping tried-and-tested object-oriented software engineering principles to
one of the cornerstones of the Internet of Things; RFID technology. By doing this
exercise, well-known problems – such as inversion of control – caused by combining
event-driven execution with imperative programming become clearly identifiable. In
hindsight, we observe that an increasingly event-driven nature of software renders the
control flow a less optimal concept to use as the primary execution and composition
tool for mobile RFID-enabled applications. Instead, the data flow of such software
manifests itself as a more practical conceptual tool by which programmers can struc-
ture their applications. This led us to integrate the dataflow programming paradigm
with distributed programming techniques.

Still, the loose coupling required by mobile RFID-enabled applications is a force
that opposes the structured execution of a dataflow program. In this work, we presented
an attempt at integrating dataflow programming with ambient-oriented programming
by relying on publish/subscribe, which is a distributed event-driven computing tech-
nique known to offer a very loose coupling between remote parties and to be highly
scalable. We proposed to alleviate the tension between both techniques by offering a
network-centric dataflow representation of such a distributed program, an idea sparked
by the growing convergence between sensor network applications and general-purpose
software. We extended the basic dataflow paradigm with constructs to deal with the dy-
namicity of loosely-coupled mobile RFID-enabled applications, namely different types
of dataflow dependencies. This allows the coordination behavior of such applications
to be easily grasped and adapted.

Just like the original work on dataflow programming in the functional program-
ming community spawned a large body of research, steadily improving the state of the
art over the years and spreading over to various other research domains, we envision
the same to happen in a distributed computing context. We believe distributed glitch
prevention is one of the main issues to investigate.

Bibliography

[ABC+05] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey,
Jeong-Hyon Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaem-
manouil, Alexander Rasin, Nesime Tatbul, Wenjuan Xing, Ying Xing,
and Stan Zdonik. Distributed operation in the borealis stream pro-
cessing engine. In SIGMOD ’05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of data, pages 882–
884, New York, NY, USA, 2005. ACM.

[ACc+03] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[AHT+02] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and
John R. Douceur. Cooperative task management without manual stack
management. In USENIX Annual Technical Conference, pages 289–
302, Berkeley, CA, USA, 2002. USENIX Association.

[AJAM09] Jameela Al-Jaroodi, Junaid Aziz, and Nader Mohamed. Middleware
for rfid systems: An overview. Computer Software and Applications
Conference, Annual International, 2:154–159, 2009.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for compo-
nent composition. Mathematical. Structures in Comp. Sci., 14(3):329–
366, 2004.

[Arn07] D. P. Arnold. Review of microscale magnetic power generation. IEEE
TRANSACTIONS ON MAGNETICS, 43(11):3940–3951, 2007.

[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language
with iteration. Commun. ACM, 20:519–526, July 1977.

[BA08] B. J. Bowers and D. P. Arnold. Spherical magnetic generators for bio-
motional energy harvesting. In Tech. Dig. 8th Int. Workshop on Micro
and Nanotechnology for Power Generation and Energy Conversion
Apps., pages 281–284, September 2008.

[BC04] Gregory Biegel and Vinny Cahill. A framework for developing mo-
bile, context-aware applications. In PERCOM ’04: Proceedings of

215

216 BIBLIOGRAPHY

the Second IEEE International Conference on Pervasive Computing
and Communications (PerCom’04), page 361, Washington, DC, USA,
2004. IEEE Computer Society.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagara-
jarao, Robert E. Strom, and Daniel C. Sturman. An efficient multi-
cast protocol for content-based publish-subscribe systems. In ICDCS
’99: Proceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems, page 262, Washington, DC, USA, 1999.
IEEE Computer Society.

[BCPV03] Roberto Baldoni, Mariangela Contenti, Sara Tucci Piergiovanni, and
Antonino Virgillito. Modelling publish/subscribe communication sys-
tems: Towards a formal approach. In 8th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Systems (WORDS
2003), 15-17 January 2003, Guadalajara, Mexico, pages 304–311.
IEEE Computer Society, 2003.

[BGL98] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concur-
rency and distribution in object-oriented programming. ACM Comput-
ing Surveys, 30(3):291–329, 1998.

[BGS00] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Querying
the physical world. IEEE Personal Communications, 7:10–15, 2000.

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards
sensor database systems. In Proceedings of the Second International
Conference on Mobile Data Management, MDM ’01, pages 3–14,
London, UK, 2001. Springer-Verlag.

[BH95] Ed Baroth and Chris Hartsough. Visual programming in the real world,
pages 21–42. Manning Publications Co., Greenwich, CT, USA, 1995.

[BJdL+04] Ioana Burcea, Hans-Arno Jacobsen, Eyal de Lara, Vinod Muthusamy,
and Milenko Petrovic. Disconnected operation in publish/subscribe
middleware. In 5th IEEE International Conference on Mobile Data
Management (MDM 2004), 19-22 January 2004, Berkeley, CA, USA,
pages 39–. IEEE Computer Societ, 2004.

[Ble06] Julian Bleecker. A manifesto for networked objects — cohabiting with
pigeons, arphids and aibos in the internet of things, 2006.

[BP07] Biörn Biörnstad and Cesare Pautasso. Let it flow: Building mashups
with data processing pipelines. In Service-Oriented Computing -
ICSOC 2007 Workshops, Revised Selected Paper, volume 4907 of
Lecture Notes in Computer Science, pages 15–28, Vienna, Austria,
September 2007. Springer.

[BPA06] Biorn Biornstad, Cesare Pautasso, and Gustavo Alonso. Control the
flow: How to safely compose streaming services into business pro-
cesses. In Proceedings of the IEEE International Conference on Ser-
vices Computing, SCC ’06, pages 206–213, Washington, DC, USA,
2006. IEEE Computer Society.

BIBLIOGRAPHY 217

[Bri88] J.-P. Briot. From objects to actors: study of a limited symbiosis in
smalltalk-80. In Proceedings of the 1988 ACM SIGPLAN workshop
on Object-based concurrent programming, pages 69–72, New York,
NY, USA, 1988. ACM Press.

[BTT+07] S. P. Beeby, R. N. Torah, M. J. Tudor, Glynne P. Jones, Donnell, C. R.
Saha, and S. Roy. A micro electromagnetic generator for vibration
energy harvesting. Journal of Micromechanics and Microengineering,
17(7):1257–1265, 2007.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In Proceed-
ings of the 19th annual Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 331–343, 2004.

[BVT+09] Engineer Bainomugisha, Jorge Vallejos, Éric Tanter, Elisa Gonzalez
Boix, Pascal Costanza, Wolfgang De Meuter, and Theo D’Hondt. Re-
silient actors: a runtime partitioning model for pervasive computing
services. In Proceedings of the 2009 international conference on Per-
vasive services, ICPS ’09, pages 31–40, New York, NY, USA, 2009.
ACM.

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don
Carney, Uğur Çetintemel, Ying Xing, and Stan Zdonik. Scalable dis-
tributed stream processing. In Conference on Innovative Data Systems
Research, 2003.

[CBM+02] Licia Capra, Gordon S. Blair, Cecilia Mascolo, Wolfgang Emmerich,
and Paul Grace. Exploiting reflection in mobile computing middle-
ware. SIGMOBILE Mob. Comput. Commun. Rev., 6:34–44, October
2002.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq:
continuous dataflow processing. In Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data, SIGMOD ’03,
pages 668–, New York, NY, USA, 2003. ACM.

[CD96] Michael J. Carey and David J. DeWitt. Of objects and databases: A
decade of turmoil. In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 3–14, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[CGG+05] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti,
Amy L. Murphy, and Gian Pietro Picco. Tinylime: Bridging mobile
and sensor networks through middleware. In Proceedings of the Third
IEEE International Conference on Pervasive Computing and Commu-
nications, pages 61–72, Washington, DC, USA, 2005. IEEE Computer
Society.

218 BIBLIOGRAPHY

[CGHP04] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet.
Towards a higher-order synchronous data-flow language. In Proceed-
ings of the 4th ACM international conference on Embedded software,
EMSOFT ’04, pages 230–239, New York, NY, USA, 2004. ACM.

[CGL96] Philip T. Cox, Hugh Glaser, and Benoı̂t Lanaspre. Distributed pro-
graph: Extended abstract. In International Workshop on Parallel Sym-
bolic Languages and Systems, pages 128–133, London, UK, 1996.
Springer-Verlag.

[CH07] V. Chawla and Dong Sam Ha. An overview of passive rfid. IEEE
Communications Magazine, 45(9):11 – 17, October 2007.

[CK06] Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Peter Sestoft, editor, 15th Eu-
ropean Symposium on Programming Languages and Systems, volume
3924 of Lecture Notes in Computer Science, pages 294–308. Springer,
2006.

[CLC+02] Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II, and Apra-
tim Purakayastha. Composing pervasive data using iql. In WMCSA
’02: Proceedings of the Fourth IEEE Workshop on Mobile Comput-
ing Systems and Applications, page 94, Washington, DC, USA, 2002.
IEEE Computer Society.

[CLK04] Guanling Chen, Ming Li, and David Kotz. Design and implementation
of a large-scale context fusion network. Annual International Confer-
ence on Mobile and Ubiquitous Systems, 0:246–255, 2004.

[CM06] Brian Chin and Todd D. Millstein. Responders: Language support
for interactive applications. In Dave Thomas, editor, ECOOP 2006
- Object-Oriented Programming, 20th European Conference, Nantes,
France, July 3-7, 2006, Proceedings, volume 4067 of Lecture Notes in
Computer Science, pages 255–278. Springer, 2006.

[CNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The
jedi event-based infrastructure and its application to the development
of the opss wfms. IEEE Trans. Softw. Eng., 27(9):827–850, 2001.

[CNP03] Antony Courtney, Henrik Nilsson, and John Peterson. The yampa
arcade. In Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell, Haskell ’03, pages 7–18, New York, NY, USA, 2003. ACM.

[Cou01] Antony Courtney. Frappé: Functional reactive programming in java.
In PADL ’01: Proceedings of the Third International Symposium on
Practical Aspects of Declarative Languages, pages 29–44, London,
UK, 2001. Springer-Verlag.

[CPWY02] Norman H. Cohen, Apratim Purakayastha, Luke Wong, and Danny L.
Yeh. iqueue: A pervasive data composition framework. In MDM ’02:
Proceedings of the Third International Conference on Mobile Data
Management, page 146, Washington, DC, USA, 2002. IEEE Com-
puter Society.

BIBLIOGRAPHY 219

[Cro06] Douglas Crockford. The application/json media type for JavaScript
object notation (JSON). RFC 4627 (Informational), July 2006.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Achieving scalability and expressiveness in an internet-scale event no-
tification service. In PODC ’00: Proceedings of the nineteenth annual
ACM symposium on Principles of distributed computing, pages 219–
227, New York, NY, USA, 2000. ACM Press.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. De-
sign and evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3):332–383, 2001.

[DDD05] Wolfgang De Meuter, Theo D’Hondt, and Jessie Dedecker. Pico:
Scheme for mere mortals. In Jacques Malenfant and Bjarte M.
Østvold, editors, Object-Oriented Technology: ECOOP 2004 Work-
shop Reader, ECOOP 2004 Workshops, Oslo, Norway, June 14-18,
2004, Final Reports, volume 3344 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

[Ded06] Jessie Dedecker. Ambient-Oriented Programming. PhD thesis, Vrije
Universiteit Brussel, Faculty of Sciences, Programming Technology
Lab, May 2006.

[DGP08] Gwenaël Delaval, Alain Girault, and Marc Pouzet. A type system
for the automatic distribution of higher-order synchronous dataflow
programs. In Proceedings of the 2008 ACM SIGPLAN-SIGBED con-
ference on Languages, compilers, and tools for embedded systems,
LCTES ’08, pages 101–110, New York, NY, USA, 2008. ACM.

[DMS07] Thomas Diekmann, Adam Melski, and Matthias Schumann. Data-on-
network vs. data-on-tag: Managing data in complex rfid environments.
In Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, HICSS ’07, pages 224a–, Washington, DC, USA,
2007. IEEE Computer Society.

[DVCM+05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt,
and Wolfgang De Meuter. Ambient-oriented programming. In Com-
panion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOP-
SLA ’05, pages 31–40, New York, NY, USA, 2005. ACM.

[DVM+06] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. Ambient-oriented Programming in Ambienttalk. In Dave
Thomas, editor, Proceedings of the 20th European Conference on
Object-oriented Programming (ECOOP), volume 4067 of Lecture
Notes in Computer Science, pages 230–254. Springer, 2006.

[DY11] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole ses-
sion types. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’11, pages 435–446, New York, NY, USA, 2011. ACM.

220 BIBLIOGRAPHY

[Dyb09] R. Kent Dybvig. The Scheme Programming Language. MIT Press,
fourth edition, 2009.

[Edw09] Jonathan Edwards. Coherent reaction. In Proceeding of the 24th
ACM SIGPLAN conference companion on Object oriented program-
ming systems languages and applications, OOPSLA ’09, pages 925–
932, New York, NY, USA, 2009. ACM.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The many faces of publish/subscribe. ACM Comput.
Surv., 35(2):114–131, 2003.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. SIGOPS Oper. Syst.
Rev., 36:147–163, December 2002.

[EGH05] Patrick Th. Eugster, Benoı̂t Garbinato, and Adrian Holzer. Location-
based publish/subscribe. In NCA ’05: Proceedings of the Fourth IEEE
International Symposium on Network Computing and Applications,
pages 279–282, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[EGS00] Patrick Th. Eugster, Rachid Guerraoui, and Joe Sventek. Distributed
asynchronous collections: Abstractions for publish/subscribe interac-
tion. In ECOOP ’00: Proceedings of the 14th European Conference on
Object-Oriented Programming, pages 252–276, London, UK, 2000.
Springer-Verlag.

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation. In ACM
SIGPLAN International Conference on Functional Programming, vol-
ume 32(8), pages 263–273, 1997.

[EJ09] Patrick Th. Eugster and K. R. Jayaram. Eventjava: An extension
of java for event correlation. In ECOOP 2009 - Proceedings of the
23rd European Conference on Object-Oriented Programming, Genoa,
pages 570–594, Berlin, Heidelberg, 2009. Springer-Verlag.

[Ell09] Conal M. Elliott. Push-pull functional reactive programming. In Pro-
ceedings of the 2nd ACM SIGPLAN symposium on Haskell, Haskell
’09, pages 25–36, New York, NY, USA, 2009. ACM.

[EPC10a] EPCGlobal. The application level events (ale) specification, version
1.0, September 2010.

[EPC10b] EPCGlobal Standards Overview. http://www.epcglobalinc.org/standards,
September 2010.

[Eug07] Patrick Eugster. Type-based publish/subscribe: Concepts and experi-
ences. ACM Trans. Program. Lang. Syst., 29, January 2007.

[FL05] Christian Floerkemeier and Matthias Lampe. Rfid middleware de-
sign: addressing application requirements and rfid constraints. In sOc-
EUSAI ’05: Proceedings of the 2005 joint conference on Smart objects
and ambient intelligence, pages 219–224, New York, NY, USA, 2005.
ACM.

BIBLIOGRAPHY 221

[FRL07] Christian Floerkemeier, Christof Roduner, and Matthias Lampe. Rfid
application development with the accada middleware platform. IEEE
Systems Journal, Special Issue on RFID Technology, 1(2):82–94, De-
cember 2007.

[FW87] A. A. Faustini and W. W. Wadge. An eductive interpreter for the lan-
guage lucid. SIGPLAN Not., 22(7):86–91, July 1987.

[FW06] Christian Floerkemeier and Matthias Wille. Comparison of transmis-
sion schemes for framed aloha based rfid protocols. In SAINT-W ’06:
Proceedings of the International Symposium on Applications on In-
ternet Workshops, pages 92–97, Washington, DC, USA, 2006. IEEE
Computer Society.

[GC89] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism
for distributed file cache consistency. In SOSP ’89: Proceedings of the
twelfth ACM symposium on Operating systems principles, pages 202–
210, New York, NY, USA, 1989. ACM Press.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Commun. ACM, 35(2):97–107, 1992.

[GDH+01] Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam
Macbeth, Steven Swanson, Tom Anderson, Brian Bershad, Gaetano
Borriello, Steven Gribble, and David Wetherall. Programming for per-
vasive computing environments. In Proceedings of the 18th ACM Sym-
posium on Operating Systems Principle, Chateau Lake Louise, Banff,
Canada., October 2001.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans.
Program. Lang. Syst., 7(1):80–112, 1985.

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to net-
worked embedded systems. In ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 1–11, New
York, NY, USA, 2003. ACM.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[Gri04] Robert Grimm. One.world: Experiences with a pervasive computing
architecture. IEEE Pervasive Computing, 3(3):22–30, 2004.

[GWDD06] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt.
Inter-language reflection: A conceptual model and its implementation.
Computer Languages, Systems & Structures, 32(2-3):109–124, 2006.

[HCNP03] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.
Arrows, robots, and functional reactive programming. In Summer
School on Advanced Functional Programming 2002, Oxford Univer-
sity, volume 2638 of Lecture Notes in Computer Science, pages 159–
187. Springer-Verlag, 2003.

222 BIBLIOGRAPHY

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[HGM04] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe in a
mobile environment. Wireless Networks, 10(6):643–652, 2004.

[HO06] Philipp Haller and Martin Odersky. Event-based programming with-
out inversion of control. In Proc. Joint Modular Languages Confer-
ence, volume 4228 of Lecture Notes in Computer Science, pages 4–22.
Springer, 2006.

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CON-
CUR’93, volume 715 of Lecture Notes in Computer Science, pages
509–523. Springer Berlin / Heidelberg, 1993.

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

[Jag95] R. Jagannathan. Coarse-grain dataflow programming of conventional
parallel computers. In Advanced Topics in Dataflow Computing and
Multithreading, pages 113–129. IEEE Computer Society Press, 1995.

[JDA97] R. Jagannathan, C. Dodd, and Iskender Agi. Glu: A high-level system
for granular data-parallel programming. Concurrency - Practice and
Experience, 9(1):63–83, 1997.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Ad-
vances in dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, 2004.

[JLKY08] Xingyi Jin, Xiaodong Lee, Ning Kong, and Baoping Yan. Efficient
complex event processing over rfid data stream. In 7th IEEE/ACIS In-
ternational Conference on Computer and Information Science, pages
75–81, Washington, DC, USA, 2008. IEEE Computer Society.

[Kal95] Cor Kalkman. Labview: A software system for data acquisition, data
analysis, and instrument control. Journal of Clinical Monitoring and
Computing, 11(1):51–58, 1995.

[KB02] Alan Kaminsky and Hans-Peter Bischof. Many-to-many invocation: a
new object oriented paradigm for ad hoc collaborative systems. In 17th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 72–73, New York, NY,
USA, 2002. ACM.

[KBX+04] Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich Kre-
mer, and Liviu Iftode. Smart messages: A distributed computing
platform for networks of embedded systems. The Computer Journal,
47(4):475–494, April 2004.

[Kim93] Takayuki Dan Kimura. Hyperflow: a uniform visual language for dif-
ferent levels of programming. In Proceedings of the 1993 ACM con-
ference on Computer science, CSC ’93, pages 209–214, New York,
NY, USA, 1993. ACM.

BIBLIOGRAPHY 223

[KK07] T. Kaya and H. Koser. A new batteryless active rfid system: Smart
rfid. RFID Eurasia, 2007 1st Annual, pages 1–4, 2007.

[KKPG98] John Kymissis, Clyde Kendall, Joseph Paradiso, and Neil Gershenfeld.
Parasitic power harvesting in shoes. In ISWC ’98: Proceedings of
the 2nd IEEE International Symposium on Wearable Computers, page
132, Washington, DC, USA, 1998. IEEE Computer Society.

[KLS+08] Nikos Kefalakis, Nektarios Leontiadis, John Soldatos, Kiev Gama,
and Didier Donsez. Supply chain management and NFC picking
demonstrations using the AspireRfid middleware platform. In ACM/I-
FIP/USENIX Middleware ’08, pages 66–69, New York, NY, USA,
2008. ACM.

[KR91] Gregor Kiczales and Jim Des Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.

[KR05] Oliver Kasten and Kay Römer. Beyond event handlers: programming
wireless sensors with attributed state machines. In 4th international
symposium on Information processing in sensor networks, page 7, Pis-
cataway, NJ, USA, 2005. IEEE Press.

[LB07] Chuan-kai Lin and Andrew Black. Directflow: A domain-specific lan-
guage for information-flow systems. In Erik Ernst, editor, ECOOP
2007, volume 4609 of Lecture Notes in Computer Science, pages 299–
322. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-73589-
215.

[LC02] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor
networks. SIGPLAN Not., 37:85–95, October 2002.

[LD10] Andoni Lombide Carreton and Theo D’Hondt. A hybrid visual
dataflow language for coordination in mobile ad hoc networks. In
Dave Clarke and Gul A. Agha, editors, Coordination Models and Lan-
guages, 12th International Conference, COORDINATION 2010, Ams-
terdam, The Netherlands, June 7-9, 2010. Proceedings, volume 6116
of Lecture Notes in Computer Science, pages 76–91. Springer, 2010.

[LF98] David C. Luckham and Brian Frasca. Complex event processing in
distributed systems. Technical report, Stanford University, 1998.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Conference proceedings on
Object-oriented Programming Systems, Languages and Applications,
pages 214–223. ACM Press, 1986.

[Lie87] Henry Lieberman. Concurrent object-oriented programming in ACT 1.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent
Programming, pages 9–36. MIT Press, 1987.

[LKKP10] Donggeon Lee, Seongyun Kim, Howon Kim, and Namje Park. Mobile
platform for networked rfid applications. Third International Confer-
ence on Information Technology: New Generations, 0:625–630, 2010.

224 BIBLIOGRAPHY

[LL10] Yuan-Ping Luh and Yin-Chang Liu. Reading rate improvement for uhf
rfid systems with massive tags by the q parameter. Wireless Personal
Communications, pages 1–11, 2010. 10.1007/s11277-010-0198-y.

[LLS+04] Shuoqi Li, Ying Lin, Sang H. Son, John A. Stankovic, and Yuan
Wei. Event detection services using data service middleware in dis-
tributed sensor networks. Telecommunication Systems, 26:351–368,
2004. 10.1023/B:TELS.0000029046.79337.8f.

[LMVD10] Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and
Wolfgang De Meuter. Loosely-coupled distributed reactive program-
ming in mobile ad hoc networks. In Jan Vitek, editor, Objects, Models,
Components, Patterns, 48th International Conference, TOOLS 2010,
Málaga, Spain, June 28 - July 2, 2010. Proceedings, volume 6141 of
Lecture Notes in Computer Science, pages 41–60. Springer, 2010.

[LPD10] Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter.
Distributed object-oriented programming with rfid technology. In
Frank Eliassen and Rüdiger Kapitza, editors, Distributed Applications
and Interoperable Systems, 10th IFIP WG 6.1 International Confer-
ence, DAIS 2010, Amsterdam, The Netherlands, June 7-9, 2010. Pro-
ceedings, volume 6115 of Lecture Notes in Computer Science, pages
56–69, 2010.

[LPD11] Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter.
Software abstractions for mobile rfid-enabled applications. Software:
Practice and Experience, pages n/a–n/a, 2011.

[M0̈1] Gero Mühl. Generic constraints for content-based publish/subscribe.
In CooplS ’01: Proceedings of the 9th International Conference on
Cooperative Information Systems, pages 211–225, London, UK, 2001.
Springer-Verlag.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection.
In OOPSLA ’87: Conference proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications, pages 147–155, New
York, NY, USA, 1987. ACM Press.

[Mat05] Friedemann Mattern. Ubiquitous Computing: Scenarios from an in-
formatised world, pages 145–163. Springer-Verlag, 2005.

[MC02a] René Meier and Vinny Cahill. Steam: Event-based middleware for
wireless ad hoc networks. In 22nd International Conference on Dis-
tributed Computing Systems, pages 639–644, Washington, DC, USA,
2002. IEEE Computer Society.

[MC02b] René Meier and Vinny Cahill. Taxonomy of distributed event-based
programming systems. In ICDCSW ’02: 22nd International Confer-
ence on Distributed Computing Systems, pages 585–588, Washington,
DC, USA, 2002. IEEE Computer Society.

[McA95] Jeff McAffer. Meta-level programming with coda. In Proceed-
ings of the 9th European Conference on Object-Oriented Program-
ming, ECOOP ’95, pages 190–214, London, UK, UK, 1995. Springer-
Verlag.

BIBLIOGRAPHY 225

[MCE02] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile com-
puting middleware. In Enrico Gregori, Giuseppe Anastasi, and Stefano
Basagni, editors, Advanced Lectures on Networking, volume 2497 of
Lecture Notes in Computer Science, pages 506–510. Springer Berlin /
Heidelberg, 2002.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

[MF02] Samuel Madden and Michael J Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Proceedings
of the 18th International Conference on Data Engineering, ICDE ’02,
pages 555–, Washington, DC, USA, 2002. IEEE Computer Society.

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. Tinydb: an acquisitional query processing system for sen-
sor networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

[MGB+09] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
Flapjax: a programming language for ajax applications. In OOPSLA
’09: Proceeding of the 24th ACM SIGPLAN conference on Object ori-
ented programming systems languages and applications, pages 1–20,
New York, NY, USA, 2009. ACM.

[MMH05] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. Emma: Epi-
demic messaging middleware for ad hoc networks. Personal Ubiqui-
tous Comput., 10(1):28–36, 2005.

[MMW08] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: staged
functional programming for sensor networks. In ICFP ’08: Proceed-
ing of the 13th ACM SIGPLAN international conference on Functional
programming, pages 335–346, New York, NY, USA, 2008. ACM.

[MPMJPPS05] Alberto Martinez, Marta Patino-Martinez, Ricardo Jimenez-Peris, and
Francisco Perez-Sorrosal. Zenflow: A visual web service composi-
tion tool for bpel4ws. In Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing, pages 181–188,
Washington, DC, USA, 2005. IEEE Computer Society.

[MPR01] A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware for
physical and logical mobility. In Proceedings of the The 21st Interna-
tional Conference on Distributed Computing Systems, pages 524–536.
IEEE Computer Society, 2001.

[MQZ06] Marco Mamei, Renzo Quaglieri, and Franco Zambonelli. Making tu-
ple spaces physical with rfid tags. In Symposium on Applied comput-
ing, pages 434–439, New York, NY, USA, 2006. ACM.

[MRO10] Ingo Maier, Tiark Rompf, and Martin Odersky. Deprecating the Ob-
server Pattern. Technical report, École Polytechnique Fédérale de Lau-
sanne, 2010.

226 BIBLIOGRAPHY

[MsS97] Masoud Mansouri-samani and Morris Sloman. Gem: A generalized
event monitoring language for distributed systems. IEE/IOP/BCS Dis-
tributed Systems Engineering Journal, 4:96–108, 1997.

[MTCS07] Adam Melski, Lars Thoroe, Thorsten Caus, and Matthias Schumann.
Beyond epc - insights from multiple rfid case studies on the storage of
additional data on tag. In Proceedings of the International Conference
on Wireless Algorithms, Systems and Applications, WASA ’07, pages
281–286, Washington, DC, USA, 2007. IEEE Computer Society.

[MTS05a] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among
strangers: Programming in E as plan coordination. In Symposium on
Trustworthy Global Computing, volume 3705 of LNCS, pages 195–
229. Springer, April 2005.

[MTS05b] Mark Miller, Bill Tulloh, and Jonathan Shapiro. The structure of au-
thority: Why security is not a separable concern. In Peter Van Roy,
editor, Multiparadigm Programming in Mozart/Oz, volume 3389 of
Lecture Notes in Computer Science, pages 2–20. Springer Berlin / Hei-
delberg, 2005. 10.1007/978-3-540-31845-32.

[MVTT07] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and Eric Tanter.
Mirages: Behavioral intercession in a mirror-based architecture. In
Proceedings of the Dynamic Languages Symposium - OOPSLA’07:
Companion of the 22st annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications., pages
222–248. ACM Press, 2007.

[Mye91] Brad A. Myers. Separating application code from toolkits: eliminating
the spaghetti of call-backs. In UIST ’91: Proceedings of the 4th annual
ACM symposium on User interface software and technology, pages
211–220, New York, NY, USA, 1991. ACM.

[MZ04] Marco Mamei and Franco Zambonelli. Programming pervasive and
mobile computing applications with the TOTA middleware. In IEEE
International Conference on Pervasive Computing and Communica-
tions, page 263, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[NCP02] Henrik Nilsson, Antony Courtney, and John Peterson. Functional re-
active programming, continued. In Haskell ’02: Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, pages 51–64, New York,
NY, USA, 2002. ACM.

[NKSI05] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming
ad-hoc networks of mobile and resource-constrained devices. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 249–260, New York,
NY, USA, 2005. ACM.

[NMW07] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macro-
programming system. In Proceedings of the 6th international confer-
ence on Information processing in sensor networks, IPSN ’07, pages
489–498, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 227

[OM02] Oat Systems and MIT Auto-ID Center. The savant version 0.1. Tech-
nical report, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, bldg 3-449, Cambridge, MA02139-4307, USA, 2002.

[OM08] Dominic Orchard and Steve Matthews. Integrating lucid’s declarative
dataflow paradigm into object-orientation. Mathematics in Computer
Science, 2:103–122, 2008. 10.1007/s11786-008-0046-6.

[Ora] Oracle (Sun Developer Network). Developing auto-id solutions using
sun java system rfid software.

[PA05] Cesare Pautasso and Gustavo Alonso. The jopera visual composition
language. J. Vis. Lang. Comput., 16:119–152, February 2005.

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based
middleware architecture. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, ICDCSW ’02, pages
611–618, Washington, DC, USA, 2002. IEEE Computer Society.

[PD10] Tomas Petricek and Sy Don. Collecting hollywood’s garbage: avoid-
ing space-leaks in composite events. In Proceedings of the 2010 in-
ternational symposium on Memory management, ISMM ’10, pages
53–62, New York, NY, USA, 2010. ACM.

[PE02] C. Petitpierre and A. Eliens. Active Objects Provide Robust Event-
Driven Applications. In The 2002 International Conference on Soft-
ware Engineering Research and Practice (SERP), 2002.

[PHD11] Kevin Pinte, Dries Harnie, and Theo D’Hondt. Enabling cross-
technology mobile applications with network-aware references. In
Wolfgang De Meuter and Gruia-Catalin Roman, editors, Coordina-
tion Models and Languages, volume 6721 of Lecture Notes in Com-
puter Science, pages 142–156. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-21464-6 10.

[PHRH01] John Peterson, Paul Hudak, Alastair Reid, and Gregory D. Hager. Fvi-
sion: A declarative language for visual tracking. In Proceedings of the
Third International Symposium on Practical Aspects of Declarative
Languages, PADL ’01, pages 304–321, London, UK, 2001. Springer-
Verlag.

[PKH05] Ted Phillips, Tom Karygiannis, and Rick Huhn. Security standards for
the rfid market. IEEE Security and Privacy, 3(6):85–89, 2005.

[PMD08] John Plaice, Blanca Mancilla, and Gabriel Ditu. From lucid to translu-
cid: Iteration, dataflow, intensional and cartesian programming. Math-
ematics in Computer Science, 2:37–61, 2008. 10.1007/s11786-008-
0043-9.

[PPS+05] K. Penttila, N. Pere, M. Sioni, L. Sydanheimo, and M Kivikoski. Use
and interface definition of mobile rfid reader integrated in a smart
phone. In Proceedings of the Ninth International Symposium on Con-
sumer Electronics 2005 (ISCE 2005), pages 353 – 358. IEEE Com-
puter Society, September 2005.

228 BIBLIOGRAPHY

[PS05] Joseph A. Paradiso and Thad Starner. Energy scavenging for mo-
bile and wireless electronics. IEEE Pervasive Computing, 4(1):18–27,
2005.

[PS11] Sarita Pais and Judith Symonds. Data storage on a rfid tag for a dis-
tributed system. International Journal Of UbiComp (IJU), 2(2):26–39,
April 2011.

[PSR+08] B. S. Prabhu, Xiaoyong Su, Harish Ramamurthy, Chi-Cheng Chu, and
Rajit Gadh. Winrfid – a middleware for the enablement of radio fre-
quency identification (rfid) based applications. white paper, UCLA –
Wireless Internet for the Mobile Internet Consortium, January 2008.

[RGDMC09] Andrea Ricci, Matteo Grisanti, Ilaria De Munari, and Paolo
Ciampolini. Improved pervasive sensing with rfid: an ultra-low power
baseband processor for uhf tags. IEEE Trans. Very Large Scale Integr.
Syst., 17(12):1719–1729, 2009.

[RK09] George Roussos and Vassilis Kostakos. RFID in pervasive computing:
State-of-the-art and outlook. Pervasive Mob. Comput., 5(1):110–131,
2009.

[RSMD04] Kay Romer, Thomas Schoch, Friedemann Mattern, and Thomas
Dubendorfer. Smart identification frameworks for ubiquitous com-
puting applications: Pervasive computing and communications (guest
editors: Mohan Kumar, Diane Cook and Anand Tripathi). Wireless
Networks, 10(6):689+, 2004.

[SBC05] Thirunavukkarasu Sivaharan, Gordon S. Blair, and Geoff Coulson.
Green: A configurable and re-configurable publish-subscribe middle-
ware for pervasive computing. In Distributed Objects, Middleware,
and Applications, volume 3760 of Lecture Notes in Computer Science,
pages 732–749. Springer, 2005.

[Ser09] Manuel Serrano. Hop, a fast server for the diffuse web. In Proceed-
ings of the 11th International Conference on Coordination Models and
Languages, COORDINATION ’09, pages 1–26, Berlin, Heidelberg,
2009. Springer-Verlag.

[SFR05] Roberto S. Silva Filho and David F. Redmiles. Striving for versatility
in publish/subscribe infrastructures. In SEM ’05: Proceedings of the
5th international workshop on Software engineering and middleware,
pages 17–24, New York, NY, USA, 2005. ACM.

[SG08] Ryo Sugihara and Rajesh K. Gupta. Programming models for sensor
networks: A survey. ACM Trans. Sen. Netw., 4(2):1–29, 2008.

[SGP04] Katrine Stemland Skjelsvik, Vera Goebel, and Thomas Plagemann.
Distributed event notification for mobile ad hoc networks. IEEE Dis-
tributed Systems Online, 5(8):2, 2004.

[SJS00] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen.
Sensor information networking architecture. In Proceedings of the
2000 International Workshop on Parallel Processing, ICPP ’00, pages
23–, Washington, DC, USA, 2000. IEEE Computer Society.

BIBLIOGRAPHY 229

[SLU89] Lynn Andrea Stein, Henry Lieberman, and David Ungar. A shared
view of sharing: the treaty of Orlando, pages 31–48. ACM, New
York, NY, USA, 1989.

[Smi84] Brian Cantwell Smith. Reflection and semantics in LISP. In POPL
’84: Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 23–35, New York, NY,
USA, 1984. ACM Press.

[SRP91] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The se-
mantic foundations of concurrent constraint programming. In Pro-
ceedings of the 18th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’91, pages 333–352, New
York, NY, USA, 1991. ACM.

[SSYH06] Dong-Her Shih, Po-Ling Sun, David C. Yen, and Shi-Ming Huang.
Taxonomy and survey of rfid anti-collision protocols. Computer Com-
munications, 29(11):2150 – 2166, 2006.

[SYP+08] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith. Design of an rfid-based battery-free programmable sensing
platform. IEEE Transactions on Instrumentation and Measurement,
57(11):2608–2615, November 2008.

[TP05] Dirk Trossen and Dana Pavel. Building a ubiquitous platform for re-
mote sensing using smartphones. Annual International Conference on
Mobile and Ubiquitous Systems, 0:485–489, 2005.

[UCCH91] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Hölzle. Or-
ganizing programs without classes. Lisp Symb. Comput., 4:223–242,
July 1991.

[Uni05] International Telecommunication Union. Itu internet report 2005: The
internet of things. 2005.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity.
In Conference proceedings on Object-oriented Programming Systems,
Languages and Applications, pages 227–242. ACM Press, 1987.

[Van08] Tom Van Cutsem. Ambient References: Object Designation in Mobile
Ad Hoc Networks. PhD thesis, Vrije Universiteit Brussel, Faculty of
Sciences, Programming Technology Lab, May 2008.

[VC03] P. Verissimo and A. Casimiro. Event-driven support of real-time sen-
tient objects. In 8th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, Guadalajara, Mexico, January 2003.

[VCDM+06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonzalez,
Theo D’Hondt, and Wolfgang De Meuter. Ambient references: ad-
dressing objects in mobile networks. In 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and appli-
cations, pages 986–997, New York, NY, USA, 2006. ACM.

230 BIBLIOGRAPHY

[VCVCDM09] Jorge Vallejos, Pascal Costanza, Tom Van Cutsem, and Wolfgang
De Meuter. Reconciling generic functions with actors. In ACM
SIGPLAN International Lisp Conference, Cambridge, Massachusetts,
2009.

[VDM+06] Tom Van Cutsem, Jessie Dedecker, Stijn Mostinckx, Elisa Gonzalez,
Theo D’Hondt, and Wolfgang De Meuter. Ambient references: ad-
dressing objects in mobile networks. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 986–997, New York, NY,
USA, 2006. ACM.

[VGC+10] Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang
De Meuter, Theo D’Hondt, and Kim Mens. Predicated generic func-
tions: enabling context-dependent method dispatch. In Proceedings
of the 9th international conference on Software composition, SC’10,
pages 66–81, Berlin, Heidelberg, 2010. Springer-Verlag.

[VMD07] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Linguis-
tic symbiosis between actors and threads. In ICDL ’07: Proceedings
of the 2007 international conference on Dynamic languages, pages
222–248, New York, NY, USA, 2007. ACM.

[VMD08] Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Lin-
guistic symbiosis between event loop actors and threads. Computer
Languages Systems & Structures, 35(1), 2008.

[VMG+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. Ambienttalk: object-oriented
event-driven programming in mobile ad hoc networks. In XXVI Inter-
national Conference of the Chilean Computer Science Society, pages
3–12. IEEE Computer Society, 2007.

[Wal01] Jim Waldo. Constructing ad hoc networks. In IEEE International Sym-
posium on Network Computing and Applications (NCA’01), page 9,
2001.

[WD05] Marcel Weiher and Stéphane Ducasse. Higher order messaging. In
DLS ’05: Proceedings of the 2005 conference on Dynamic languages
symposium, pages 23–34, New York, NY, USA, 2005. ACM Press.

[Wei91] M. Weiser. The computer for the twenty-first century. Scientific Amer-
ican, pages 94–100, september 1991.

[Wei93] Mark Weiser. Ubiquitous computing. IEEE Computer Hot Topics,
1993.

[Wei05] Ron Weinstein. Rfid: A technical overview and its application to the
enterprise. IT Professional, 7(3):27–33, 2005.

[WFGH99] Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison.
Bridging physical and virtual worlds with electronic tags. In CHI ’99:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 370–377, New York, NY, USA, 1999. ACM.

BIBLIOGRAPHY 231

[Whi97] K. N. Whitley. Visual Programming Languages and the Empirical Ev-
idence For and Against. Journal of Visual Languages and Computing,
8:109–142, 1997.

[WJ09] Vivienne Waller and Robert B. Johnston. Making ubiquitous comput-
ing available. Commun. ACM, 52(10):127–130, 2009.

[WM04] Matt Welsh and Geoff Mainland. Programming sensor networks using
abstract regions. In Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation - Volume 1, pages
3–3, Berkeley, CA, USA, 2004. USENIX Association.

[WSBC04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler.
Hood: a neighborhood abstraction for sensor networks. In Proceed-
ings of the 2nd international conference on Mobile systems, applica-
tions, and services, MobiSys ’04, pages 99–110, New York, NY, USA,
2004. ACM.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A
note on distributed computing. In MOS ’96: Selected Presentations
and Invited Papers Second International Workshop on Mobile Object
Systems - Towards the Programmable Internet, pages 49–64. Springer-
Verlag, 1996.

[YBS86] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in ABCL/1. In Conference proceed-
ings on Object-oriented programming systems, languages and appli-
cations, pages 258–268. ACM Press, 1986.

[YG02] Yong Yao and Johannes Gehrke. The cougar approach to in-network
query processing in sensor networks. SIGMOD Rec., 31:9–18,
September 2002.

Index

ABCL, 86
Abstract Regions, 65
Act1, 86
Actalk, 86
Actor, 85, 86
Ambient behavior, 139

Group-centric ambient behavior, 142
Ambient reference, 93, 166
Ambient-oriented programming, 6, 8, 21,

77
AmbientTalk, 77

AmbientTalk/2, 6, 77
AmbientTalk/R, 6, 129
AmbientTalk/RV , 6, 74, 174

Arity decoupling, 26, 29
AspireRfid, 35
Asynchronous communication, 23, 28, 29,

112
Asynchronous exception handling, 89
Asynchronous message, 82, 87, 88

Asynchronous message passing, 26
Aurora, 55
Aurora*, 55
Autonomy, 15

Behavior, 49, 50
Block closure, 79
Borealis, 56
Broadcasting, 17, 29, 31

Callback, 5, 29
Classless object model, 22
Coherence, 52
Coherent reaction, 52
Combinator, 51
Complex event processing, 211
Computation model, 172
Control flow, 5, 29, 30
Coordination, 30, 172

Visual coordination language, 6
Coordination model, 172

Data mapping, 95
Dataflow, 46, 173

Ambient-oriented dataflow, 6, 8, 73,
129, 137

Asynchronous dataflow, 173
Bidirectional dataflow, 210
Coarse-grained dataflow, 46, 53, 173
Dataflow dependency, 49, 174
Dataflow edge, 46, 173

Fixed dataflow edge, 175, 178
Rebinding dataflow edge, 175, 178

Dataflow graph, 53
Dataflow graph stratification, 53, 136
Dataflow operator, 46, 173, 174, 176
Dataflow programming, 46, 134
Network-centric dataflow programming,

6, 171
Node-centric dataflow programming,

6, 129, 171
Synchronous dataflow, 48, 173
Visual dataflow language, 7, 171, 174
Visual dataflow programming, 6, 53,

171, 174
Dataflow parameter, 174
Decoupled communication, 24
Delegation, 80
Dependency arity, 175, 184
Dependent, 170
Diffuse computing, 1
Digital barcode, 4
Distributed Asynchronous Collection, 41

E, 85
Electronic Product Code, 33
EMMA, 40
Event, 13, 29
Event advertisement, 38
Event broker, 31, 38
Event consumer, 31
Event handler, 5, 29
Event loop, 85, 86

232

INDEX 233

RFID event loop, 105, 109
Event producer, 31
Event routing, 38
Event source, 49, 152
Event-driven, 4, 5

Distributed event-driven architecture,
37

Distributed event-driven system, 4
Event-driven architecture, 5

Event-driven computation, 23
EventJava, 42

Far reference, 87, 88, 91
Fault-tolerant communication, 28, 112
First-class abstract syntax tree, 85
First-class environment, 85
First-class message, 82
Fjords, 66
Flapjax, 51
Flask, 68
Fosstrak, 35
Fran, 50
Frappé, 51
FrTime, 49
Functional reactive programming, 47

Distributed reactive programming, 60
Future, 88

Future resolution, 89
Future ruining, 90

Glitch, 53
Glitch prevention, 53

Distributed glitch prevention, 60,
209

Granular Lucid, 47
GREEN, 41
Group-centric, 62, 64

Group-centric abstraction, 64
Group-centric programming, 64

Hood, 64
Hybrid language, 174
Hyperflow, 54

Intercession, 83, 84
Intermittent connection, 15
Internet of Things, 2
Inversion of control, 5, 30, 45, 97
iQL, 57
Isolate, 88

JEDI, 39

LabVIEW, 54
Lifting, 49, 135
Linguistic symbiosis, 95
Location-based Publish/Subscribe, 39
Loose coupling, 16, 28
Lucian, 48
Lucid, 47

Lucid Synchrone, 48
Lustre, 48

Macroprogramming, 62
Macroprogramming language, 67

Many-to-many dependency, 184
Many-to-one dependency, 184
Medusa, 55
Metaprogramming, 82
Mirage, 84
Mirror, 83

Mirror-based reflection, 83
Mobile ad hoc network, 3, 14, 15, 19
Mobile code, 179
Mobile device, 14
Multiway reference, 105

Natural concurrency, 15
Network-centric, 61, 66

Network-centric abstraction, 66
Network-centric programming, 66

Node-centric, 61, 62
Node-centric dataflow programming,

129
Node-centric programming, 62

Non-blocking communication, 23, 86

Object capabilities, 210
Object State Model, 62
Object-event impedance mismatch, 44
One-to-many dependency, 184
One-to-one dependency, 184
one.world, 41

pLucid, 47
Principle of least authority, 210
Progenitor, 135
Prograph, 54
Property reference, 107
Protocol mapping, 95
Prototype, 78
Prototype-based, 44

234 INDEX

Publish/subscribe, 37
Broadcast-based publish/subscribe, 65
Content-based publish/subscribe, 37
Publish/subscribe architecture, 31, 37
Topic-based publish/subscribe, 37

Pull-based evaluation, 50
Push-based evaluation, 50

Quasiquoting, 85
Query processor, 66
Quoting, 85

Reactive, 3
Reactive set, 142, 145
Reactive value, 135

Reactive Programming, 6
Reactive query, 144
Reactor, 49
Red, 68
Reflection, 82, 83
Regiment, 67
Registration management, 99
Reified communication traces, 24
RFID, 17

Active RFID, 18, 208
Mobile RFID-enabled application, 2–

4, 7, 13, 17–19, 71, 101
Passive RFID, 17
Radio Frequency Identification, 2
RFID middleware, 33, 34
RFID reader, 2, 17, 19
RFID tag, 2, 17, 19

Active RFID tag, 18
Passive RFID tag, 17

RFID technology, 3, 17, 18
RFID-enabled application, 2

RFID tuple spaces, 35
Role, 70, 174, 176, 211

Scala.React, 49
Sensor, 1, 14, 61, 152

Sensor network, 61
Sensor-equipped mobile device, 1

Service discovery, 24, 93
Decentralized service discovery, 24

Session type, 211
SIENA, 38
Smart Messages, 64
Software object, 5, 101
Solar, 56

Space decoupling, 25, 28
SpatialViews, 65
Stack ripping, 5, 30
State variable, 175, 187
STEAM, 40
Stratum, 135
Stream, 47
Subscription, 38, 161
Synchronization decoupling, 26
Synchronous C++, 52
Synchronous programming language, 49,

173
Synchrony hypothesis, 48

Thing, 5, 101–103, 108
Time decoupling, 24, 28, 29
Time sampling, 73, 142, 186
Time-varying value, 47
TinyLIME, 63
Tuple space, 35, 63
Type tag, 81

Ubiquitous computing, 1, 14
Uniform access principle, 78

Vat, 86
Volatile connection, 15, 19

Resilience to volatile connections, 16,
20

Von Neumann, 173

WinRFID, 34

Yampa, 51

Zero infrastructure, 15

	Introduction
	Research Context
	Problem Statement
	Research Goals
	Contributions
	Supporting Publications

	Approach to the Problem
	Dissertation Roadmap
	Summary

	Mobile RFID-Enabled Applications
	Enabling Technologies
	Mobile Ad Hoc Networks
	RFID Technology

	Ambient-Oriented Programming
	Ambient-Oriented Programming Criteria

	Programming Model Requirements
	Ambient-oriented Programming with RFID-tagged Objects
	Loose Coupling
	Highly Event-driven Code
	Conclusion

	Related Work
	Survey of RFID Programming Technology
	Backend-Based Middleware
	Decentralized Middleware
	Evaluation

	Survey of Publish/Subscribe Systems
	Evaluation

	Survey of Dataflow Programming Technology
	Functional Reactive Programming
	Programming with Dataflow Graphs
	Evaluation

	Survey of Programming Technology for Sensor Networks
	Node-Centric Programming
	Group-Centric Programming
	Network-Centric Programming
	Evaluation

	Conclusion
	Revisiting the Problem Statement
	Towards Ambient-Oriented Programming for Mobile RFID-Enabled Applications
	Towards a Publish/Subscribe-Style Interaction for Dataflow Programs
	Towards a Network-Centric Ambient-Oriented Dataflow Language
	Summary

	Ambient-Oriented Programming with AmbientTalk/2
	AmbientTalk/2
	Object-Oriented Programming in AmbientTalk
	Metaprogramming and Reflection in AmbientTalk
	Concurrent Programming in AmbientTalk
	Distributed Programming in AmbientTalk
	Designating Groups of Objects with Ambient References
	Linguistic Symbiosis with the JVM
	Summary

	The Inversion of Control Problem
	Conclusion

	Ambient-Oriented Programming for Mobile RFID-Enabled Applications
	Motivation
	A Mobile RFID-enabled Application Scenario
	Ambient-Oriented Programming with RFID Tags

	Changes to AmbientTalk and Its Interpreter
	Fine-Grained Connectivity Handling
	Maintaining Thing Identity Using Multiway References
	Serializing Things

	Programming Mobile RFID-Enabled Applications in AmbientTalk
	RFID-tagged Objects as Things
	Storing Objects on RFID Tags
	Reactivity To Appearing and Disappearing Things
	Asynchronous Communication
	Fault-tolerant Communication
	Data Consistency
	Addressing Specific Groups of Things
	Putting It All Together

	Implementation
	Implementation of Things
	Generating and Maintaining Things
	Performance Evaluation
	Limitations

	Conclusion

	Node-Centric Ambient-Oriented Dataflow Programming
	Motivation
	The Ticket Trader Application
	The Book Recommender Application
	Conclusion

	Dataflow Programming in AmbientTalk/R
	Reactive Object Semantics

	Ambient-Oriented Dataflow Programming in AmbientTalk/R
	Ambient Behaviors
	Group-centric Ambient Behaviors
	Reactive Queries
	Summary
	Implementing The Ticket Trader Application with Ambient Behaviors

	Case Study: The RFID-Enabled Library
	Connecting a Reactive Value to a Sensor
	Node-Centric Dataflow Primitives at Work
	Evaluation

	Implementation
	Publishing Ambient Behaviors
	Subscribing to Ambient Behaviors
	Networking Technology Used by Ambient Behaviors
	Performance Evaluation

	Limitations
	Conclusion

	Network-Centric Visual Dataflow Programming
	Motivation
	Visual Dataflow as a Coordination Paradigm

	Visual Dataflow Programming and AmbientTalk/RV
	The Book Recommender Application in AmbientTalk/RV
	Discovering Operator Nodes
	Executing Mobile AmbientTalk/R Code
	Propagating Events and Reacting to Events
	Dependency Arities
	Stateful Reactions
	Evaluation

	A Variation: Producing Multiple Results
	An AmbientTalk/RV Programming Environment
	Basic Operations
	Persistence and Importing Partial Graphs

	Implementation
	Representing Distributed Dataflow Graphs
	The Default Host Interface

	Limitations
	Subscription
	Deployment
	Visual Scalability
	Tooling

	Conclusion

	Conclusion
	Research Goals
	Restating the Contributions
	Fundamental Contributions

	Limitations of Our Approach
	Security and Privacy of Mobile RFID-Enabled Applications
	Distributed Glitch Prevention
	Overhead of Dataflow Programming
	Event Processing Bottlenecks

	Avenues for Future Research
	Active RFID Technology
	Content-based Publish/Subscribe
	Distributed Glitch Prevention
	Bidirectional Dataflow
	Object Capabilities as a Security Model
	Complex Event Processing
	Session Types
	Formalization

	Concluding Remarks

	Bibliography

