
A Revised Semantics for Rule Inheritance and
Module Superimposition in ATL

Dennis Wagelaar?

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

dennis.wagelaar@vub.ac.be, http://soft.vub.ac.be

Abstract. There are two composition mechanisms in ATL that have
evolved separately, and therefore are not well-aligned. These are rule in-
heritance and module superimposition. Both of these composition mech-
anisms had different goals in mind: rule inheritance aims to increase
reuse at the rule level, as well as optimise the performance of the match-
ing process, while module superimposition aims to increase reuse at the
module level, and allows for incremental compilation whenever a single
module changes. To achieve these goals, rule inheritance was in-lined at
compile-time, while superimposed modules were composed at load-time.
As a result, rule inheritance is limited to single modules, while module
superimposition rule overriding does not work well on rule inheritance hi-
erarchies. This paper aims to reconcile the two composition mechanisms
by defining both at load-time/run-time, while respecting the original
goals. In addition, rule inheritance is extended from single to multiple
inheritance.

Keywords: Model transformation, ATL, rule inheritance, module su-
perimposition

1 Introduction

Over time, a number of composition mechanisms have been developed for ATL:
implicit tracing between matched rules [7], invocation of called/lazy rules, rule
inheritance [2], and module superimposition [5]. While most of these work well
together, and are well-defined in combination, two composition mechanisms are
in conflict with each other. These are rule inheritance and module superim-
position. Both have evolved separately, and with different goals in mind. Rule
inheritance aims to facilitate reuse of (parts of) transformation rules, as well
as optimise the performance of the matching process. Module superimposition
aims to facilitate reuse of (parts of) transformation modules, as well as improv-
ing scalability of ATL development by enabling incremental module compilation
whenever one of the modules in a composition changes.

? The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

http://soft.vub.ac.be


ATL’s rule inheritance works by in-lining rule inheritance hierarchies at
compile-time. An optimised matcher operation first matches the super-rules, and
then matches the sub-rules on the input that was matched by the super-rule.
Module superimposition enables incremental module compilation by performing
the module composition on the bytecode at load-time, i.e. after the modules have
been compiled. As a result, rule inheritance cannot work outside the boundaries
of a single module, while module superimposition does not work well on rule in-
heritance hierarchies, due to multiple rules being represented in a single matcher
operation.

One situation in which it is useful to combine module superimposition with
rule inheritance, is to organise rule inheritance hierarchies over multiple mod-
ules, allowing the reuse of super-rules across modules. Another situation is the
combination of superimposition’s rule redefinition with rule inheritance: by re-
defining a super-rule, the behaviour of all sub-rules can be modified centrally; it
is normally not possible to “inject” new behaviour in existing rule hierarchies,
but one can only extend/refine existing rules.

This paper aims to reconcile the two composition mechanisms by defining
both at the same stage, i.e. load-time/run-time, and on the same artefact: byte-
code. At the same time, the original goals of rule inheritance and module super-
imposition are respected and upheld. For this purpose, a new virtual machine
and bytecode format have been developed: the EMF Transformation Virtual Ma-
chine (EMFTVM). Finally, the semantics of ATL’s rule inheritance are extended
to support multiple inheritance.

The rest of this paper is structured as follows: section 2 discusses related
work. Section 3 discusses the architecture and bytecode format of the EMFTVM.
Section 4 explains the new semantics for rule inheritance, while section 5 explains
the new semantics for module superimposition. Finally, section 7 concludes this
paper.

2 Related work

This paper discusses a revised semantics for rule inheritance and module super-
imposition – which is a form of module composition – in ATL. These semantics
are defined in a new transformation virtual machine. In this section, we first
discuss related work in the domains of rule inheritance and module composition.
Then, we discuss other transformation virtual machines.

2.1 Rule inheritance

According to [6], there are currently three known model transformation lan-
guages that support rule inheritance: ATL, the Epsilon Transformation Lan-
guage (ETL) [1], and Triple Graph Grammars (TGG) [4]. In the comparison
done by Wimmer at al. in [6], several shortcomings as well as advantages of
ATL’s rule inheritance mechanism were brought forward. We will focus on the
issues that we tackle in this paper:

64 MtATL 2011



No multiple inheritance ATL rules do not support multiple inheritance. Both
ETL and TGG support multiple inheritance. As EMF metamodels allow for
multiple inheritance, it seems appropriate that any transformation language
operating on EMF models follows this decision.

No extension of input pattern ATL does not allow for adding input ele-
ments in sub-rules. TGG has no problems adding new input elements in
sub-rules. ETL rules always have exactly one input element.

No reduction of input pattern ATL does not allow for removing input ele-
ments in sub-rules. Also, neither TGG nor ETL support this. This is because
the super-rule cannot be applied safely, once expected input elements are
taken out.

No conflict detection between sibling sub-rules ATL normally detects when
model elements match against more than one rule, and gives an error mes-
sage when that happens. For sub-rules that inherit from the same super-rule,
conflicts are not detected, and only the first sub-rule matches.

2.2 Module composition

In [5], we’ve compared a number of alternative transformation module composi-
tion mechanisms. In this paper, we will also add a brief discussion of VIATRA2’s
composition mechanism. Table 1 provides an updated comparison.

The rule-based model transformation languages in Table 1 that have a mod-
ule concept – ETL, QVT, RubyTL, VIATRA2 – also have a form of module
composition. The remaining languages focus on rule composition. If module com-
position is supported, it is typically an “import” style composition mechanism,
where each module declares a number of imported modules. In the case of ETL
and QVT, rule redefinition is also supported.

ATL’s module superimposition differs in that respect: even though ATL
has a uses clause, where imported modules/libraries can be declared, the run-
time parameters (i.e. “launch configuration”) decide which modules are loaded,
and in which order. Even though it is considered good practice to declare any
superimposed-upon modules in the uses clause, this is not enforced. As a conse-
quence, inconsistencies may arise between the uses declaration and the run-time
parameters for a given transformation module. The ability to redefine the su-
perimposition order for a given set of modules is of limited value: modules are
typically designed to be superimposed on specific other modules. For these rea-
sons, it makes sense to re-align ATL’s module superimposition semantics with
the more common “import” style semantics found in other languages.

2.3 Transformation virtual machines

Apart from ATL, there are two more virtual machines for model transformation
(based on EMF): the Atomic Transformation Code (ATC) VM [3], and IDC1.
ATC aims to provide a low-level language for the implementation of QVT. It is

1 http://modelum.es/trac/eclectic/

CEUR Workshop Proceedings 65

http://modelum.es/trac/eclectic/


Language Composition mechanisms Key advantage/disadvantage

Graph Sequencing In-place transformation
transformation allows free rule interaction/

Rule interaction easily becomes
complex and can generate conflicts

ETL Strategies, module Reuse as well as replace
import, workflows existing rules/

Tight coupling and
possible overriding conflicts

QVT OM Inheritance, Reuse as well as replace
access, extends existing rules/

Tight coupling and
possible overriding conflicts

RubyTL Phasing, refinement rules Easy to obtain
strict refinement/

Overriding behaviour of phasing
can be difficult to understand

CT Logic sequencing In-place transformation
allows free rule interaction/

Rule interaction easily becomes
complex and can generate conflicts

VIATRA2 Module import, Pattern invocation allows
pattern invocation for fine-grained reuse/

Unclear whether import
has overriding semantics

Table 1. Comparison overview of composition mechanisms in transformation lan-
guages.

an abstract syntax based virtual machine, in which the instructions are organised
in an abstract syntax graph (i.e. an EMF model). Instructions communicate with
each other via named local variables.

IDC is a continuation-based virtual machine: lists of instructions are grouped
in continuations – executable blocks that can be interrupted and resumed –
that are entered into an execution queue. Instructions themselves appear to be
communicating via a stack. The continuation-based approach eliminates the need
for multiple phases in the model transformation algorithm, as each continuation
waits for any required data before resuming.

The current ATL virtual machines – regular VM and EMFVM – are stack-
based virtual machines, where instructions are organised in a flat list and com-
municate with each other via the stack. Local variables are supported by special
instructions: LOAD and STORE. Whereas both ATC and IDC formats are rep-
resented as EMF models, ATL bytecode is stored as a proprietary XML file.

66 MtATL 2011



3 EMF Transformation Virtual Machine

The EMF Transformation Virtual Machine (EMFTVM) is derived from the cur-
rent ATL VMs and bytecode format. However, instead of using a proprietary
XML format, it stores its bytecode as EMF models, such that they may be ma-
nipulated by model transformations. A special EMF resource implementation
allows EMFTVM models to be stored in binary format, which is faster to load
and save, and results in smaller files.

Apart from the standard ATL bytecode primitives, such as modules, fields,
and operations, EMFTVM bytecode includes rules and code blocks. Fig. 1 shows
the structure of rules and code blocks. Code blocks are executable lists of instruc-
tions, and have a number of local variables and a local stack space. Operation
bodies and field initialisers are represented as code blocks in EMFTVM. Code
blocks may also have nested code blocks, which can be manipulated and in-
voked from its containing block. These nested code blocks therefore effectively
represent closures, which are nameless functions that can be passed as param-
eters to other functions. Closures are helpful for the implementation of OCL’s
higher-order operations, such as select and collect, which are parametrised
by nested OCL expressions.

<<enumeration>>

RuleMode

manual

automaticSingle

automaticRecursive

NamedElement

name : EString

TypedElement

type : EString

typeModel : EString

Instruction

opcode : Opcode

Rule

mode : RuleMode

superRules : EString

abstract : EBoolean

default : EBoolean

distinctElements : EBoolean

RuleElement

models : EString

OutputRuleElement

CodeBlock

maxLocals : EInt

maxStack : EInt

InputRuleElement LocalVariable

slot : EInt

owningBlock

1

outputElements 0..*

matcher 0..1

applier 0..1

postApply

0..1

outputFor0..1

code0..*

matcherFor0..1

applierFor0..1

postApplyFor0..1

nested
0..*

nestedFor

0..1

binding

0..1

inputFor

0..1

inputElements 1..*mapsTo
0..1

bindingFor 0..1

owningBlock

1
startInstruction 0..1

endInstruction

0..1

localVariables 0..*

Fig. 1. Structure of EMFTVM rules and code blocks.

Rules consist of input and output rule elements, a matcher code block, applier
code block, and post-apply code block. The matcher code block takes potential
input element candidates as parameters, and returns a boolean value, represent-
ing a match. The applier code block takes the input and (newly created) output

CEUR Workshop Proceedings 67



elements as parameters, and assigns the bindings of the output elements. The
post-apply code block also takes the input and output elements as parameters,
and performs any (imperative) post-processing specified in the rule. Execution
of rules is therefore done in three phases: (1) matching; only input elements
are guaranteed to be present, (2) applying; all output elements and traces are
guaranteed to exist, but no bindings may have been applied, (3) post-apply; all
input and output elements, traces, and bindings are guaranteed to be present.

Rules can be invoked manually, automatically, and recursively automatically.
Manual rules correspond to ATL lazy rules (and called rules). Automatic rules
correspond to ATL matched rules. Recursively automatic rules do not apply to
ATL, and may be ignored for the purpose of this paper. Rules can also be marked
as default, which causes that rule to create default traces. Default traces can be
looked up using ATL’s implicit tracing mechanism, and only one default trace
may exist for any given source pattern. Non-default traces are just stored in the
trace model, and are not used by the EMFTVM transformation engine.

Rules can have a number of super-rules, which are stored by name. This
decision allows EMFTVM to resolve and link the super-rules of each rule at load-
time, whereas storing a super-rule reference would have hardcoded the super-rule
in the bytecode. This is comparable to how the Java VM does super-class lookup.
Finally, rules can be marked as abstract, which means that they are only applied
as part of a non-abstract sub-rule, but never by themselves.

To summarise: by explicitly representing rules in the bytecode, rule inheri-
tance can be resolved at load-time. As a consequence, rules stored in imported
modules can be taken into account, and super-rules can be redefined by module
superimposition before the reference to the super-rule is resolved in the sub-rules.
This solves the historic mismatch between ATL’s rule inheritance and module
superimposition.The following sections will discuss in detail how rule inheritance
and module superimposition are implemented in the EMFTVM, while preserv-
ing the original goals of rule inheritance and module superimposition: optimised
matching of rule inheritance hierarchies and incremental compilation of modules.

4 Rule inheritance

ATL’s rule inheritance has been extended to support multiple inheritance, and
adding extra input elements in sub-rules. Reducing the number of input elements
– or output elements – is not possible, and any omitted input/output elements
are implicitly inherited from the super-rule. However, super-rule input/output
elements must be repeated in the sub-rule in case lexical access to the element
variables is required.

Fig. 2 outlines the semantics for rule matching in the context of rule in-
heritance. Each rule is represented by a box with compartments. The upper left
compartment contains the input elements, whereas the upper right compartment
contains the output elements. Furthermore, three more compartments exist to
indicate that each rule has a matcher, applier, and post-apply code block asso-
ciated with it.

68 MtATL 2011



Rule R3 in the figure only matches against input elements that have also been
matched by super-rules R1 and R2. Input/output elements correspond by name:
input element b : B in rule R1, and b : D in rule R2 are the same as input
element b : F in rule R3 for any match of rule R3. Therefore, R3 only matches
b’s that are an instance of B, D, and F.

As the number of input/output elements cannot be reduced in sub-rules,
R3 is considered to inherit the input elements a : A and c : C from rules R1

and R2, respectively, and output element v : V from rule R2. Rule R3 cannot
lexically access those elements, however, as the EMFTVM engine does not pass
them as parameters to R3’s matcher, applier, and post-apply code blocks. This
guarantees the safety of the load-time rule inheritance mechanism: the super-rule
may be replaced with any other super-rule, while the integrity of the sub-rule
remains intact. If a super- and sub-rule match on completely different elements,
they will simply not produce any combined match, and the sub-rule is never
applied.

Rule R1 Rule R2

a : A
b : B

x : X
y : Y

c : C
b : D

v : V
y : Z

condition condition

applier

post-apply

applier

post-apply

Rule R3

b : F
e : E

x : V
y : Z

condition

applier

post-apply

R1 matches a:A, b:B R2 matches c:C, b:D

R3 only matches if all b's are 
equal
→ if F, B or D are disjoint, R3 
never matches!
→ R3 matches a:A, 
b:F=b:B=b:D, c:C, e:E

R3 can only lexically 
acces b and e

Fig. 2. Matching semantics for rule inheritance.

Fig. 3 outlines the semantics for rule application in the context of rule in-
heritance. The arrows between output elements and input elements in the figure
represent mapsTo annotations. For the purpose of ATL’s implicit tracing mech-
anism, such annotated output elements will be returned by the tracing resolver,
whenever the corresponding input element is being resolved. Such mapsTo an-
notations can be overridden in sub-rules. In R3, x maps to b, which overrides the
x maps to a annotation in R1. Similarly, y maps to b in R2 is overridden by y

maps to e in R3. The annotation v maps to c in R2 is inherited as is by R3.
Whereas the matching semantics are sound for any change in the rule hier-

archy, the application semantics comes with some type safety constraints. The
types of all input elements is already guaranteed by the matching algorithm
(matches only occur on the specified types). However, the types of the output
elements must be compatible between super- and sub-rule. The rule application

CEUR Workshop Proceedings 69



algorithm creates output elements that are instances of the type specified in the
most specific rule that matched, i.e. the sub-rule. Therefore, that type must be
co-variant with the type specified for the same element in the super-rule. For
example: an element x : V is created for each match of R3, but is considered as
x : X in the application of R1. Therefore, V must be co-variant with X: each in-
stance of V must also be an instance of X. Similarly, for the creation of y : Z for
R3, and y : Y in R1, Z must be co-variant with Y. These type safety constraints
may be checked at load-time by the virtual machine.

Finally, it is only possible to define super-rule relations between rules of the
same kind: manual, automatic, or recursively automatic, and default or non-
default. This is because super- and sub-rules are executed together according to
the same execution semantics, i.e. manual, automatic, or recursively automatic,
and creating the same kind of trace, i.e. default or non-default.

Rule R1 Rule R2

a : A
b : B

x : X
y : Y

c : C
b : D

v : V
y : Z

condition condition

applier

post-apply

applier

post-apply

Rule R3

b : F
e : E

x : V
y : Z

condition

applier

post-apply

R1 applies a:A → x:X, 
b:B → y:Y

R2 applies c:C → v:V, 
b:D → y:Z

R3 applies a:A → ø, b:F → x:V, 
c:C → v:V, e:E → y:Z

All elements x, y, v, are created

→ V must be co-variant with X
→ Z must be co-variant with Y

“mapsTo” (←) information is 
overridden!

Fig. 3. Application semantics for rule inheritance.

The (automatic) rule matching algorithm performs optimised matching2 of
rule hierarchies, while being implemented reflectively, i.e. looking up super-rules
and input/output elements and their types at run-time. The algorithm works as
follows:

1. All rules without super-rules are matched, and their matches (tuple of input
elements) are stored.

2. All rules for which the super-rule has matched any elements are now matched,
and their matches are stored. For all matches, the super-rule match is re-
moved.

3. The previous step is repeated until no applicable rules exist, or they do not
match against any elements.

2 As opposed to naive, full model iteration for all (automatic) rules.

70 MtATL 2011



4. For all matches of non-abstract rules, output elements are created, and the
match tuple is converted to a trace tuple, that includes the output elements
and mapsTo information.

5. For all traces, the corresponding rule applier code block is invoked, super-
rules first, then the sub-rule.

6. For all traces, the corresponding rule post-apply code block is invoked, super-
rules first, then the sub-rule.

This algorithm ensures that sub-rules are only matched for the elements
that have already been matched by their super-rules, and does no unnecessary
matching against remaining model elements. It also ensures that sub-rules cannot
widen the initial input element type constraints and constraints encoded in the
matcher code block of the super-rules.

5 Module superimposition

If we apply the semantics of ATL’s current module superimposition mechanism,
this will already interact well with the rule inheritance semantics we have de-
fined in section 4: non-existent rules, fields and operations are added, while
existing rules, fields and operations are redefined. However, module superimpo-
sition stacks must be defined for each launch configuration, and any uses clause
in the original ATL file is no longer present in the ATL bytecode.

EMFTVM changes this: each EMFTVM module has a number of imported
modules. This enforces that (1) all dependencies are loaded, and that (2) they are
superimposed in the right order. Fig. 4 shows how this works. Each module loads
its imported modules before loading itself, in the specified order. For example,
module M1 requires that first M2 is loaded, and then M3. The first step is then
to start loading M2 (1). Then, M2 requires that M4 and M3 are loaded before
itself. Therefore, M4 is loaded (2), and then M3 is loaded (3), which finds that its
imported M4 was already loaded (4). Now, M2 can be loaded, and M1 finds that
M3 was already loaded (5). Finally, M1 is loaded. Note that circular imports –
and self-imports – are considered incorrect.

Module M1

imports M2
imports M3

Module M2

imports M4
imports M3

Module M4

Module M3

imports M4

1

2

3
4

5

Fig. 4. Module import semantics.

Whenever a module is imported, its field, operations, and rules are regis-
tered in the VM’s lookup table: rules are registered by name, whereas fields and

CEUR Workshop Proceedings 71



operations are also registered by their context and parameter types. Therefore,
overloading of fields and operations with different context/parameter types is
supported in EMFTVM. Fields and operations are only redefined by a superim-
posed module if the context and parameter types match.

Because rules are only registered by name, any rule with the same name may
redefine an existing rule when superimposed. That means additional constraint
checking is required for rule redefinition. Rules must be of the same kind to allow
sound redefinition. Also, any type safety checks done for rule inheritance must
be done again after redefinition.

Finally, in case of conflicting specified importing orders, the depth-first load-
ing order, as shown in Fig. 4, is followed. For example, if M1 specified another
imports M4 statement after imports M3, the loading algorithm would still load
M3 after M4. This is considered correct, because by specifying imports M4, M3
states that it wants the opportunity to redefine elements of M4. M1 may still
redefine all elements, as it is the last module to be loaded.

Module import is considered transitive: if M1 imports M2, and M2 imports M4,
M1 imports M4, and can redefine elements of M4.

6 Tool support

EMFTVM is implemented as an Eclipse feature3. It provides an implementation
of the EMFTVM bytecode metamodel, including its interpreter, and a compiler
for ATL. The compiler can be activated for specific ATL modules by specifying
“-- @atlcompiler emftvm” on the first line. An ATL builder extension picks
up this annotation, and invokes the EMFTVM compiler on the corresponding
ATL file.

The compiler for ATL is implemented in ATL, and consists of two stages:
an ATLtoEMFTVM.atl mapping transformation4 and an InlineCodeblocks.atl

transformation5 that in-lines unnecessary nested code blocks into its container
code block. This way, the mapping transformation can follow the exact same
nesting structure of the source .atl model in the target .emftvm model. That
makes ATLtoEMFTVM.atl a simple, one-to-one mapping transformation. The
InlineCodeblocks.atl transformation then improves performance by reduc-
ing any unnecessary code block nesting to monolithic, in-lined code blocks.

Some exploratory observations, where we execute the ATL-to-EMFTVM
compiler both in ATL’s EMF VM as well as in the new EMFTVM, have shown
that performance of the current EMFTVM implementation and its compiled
code is about half that of the current EMF VM for ATL. It is therefore expected
that EMFTVM is faster than ATL’s regular VM, as ATL’s EMF VM is at least
5 times faster than the regular VM.

3 http://soft.vub.ac.be/soft/research/mdd/emftvm
4 http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/

transformations/ATLtoEMFTVM.atl?view=markup
5 http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/

transformations/InlineCodeblocks.atl?view=markup

72 MtATL 2011

http://soft.vub.ac.be/soft/research/mdd/emftvm
http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/transformations/ATLtoEMFTVM.atl?view=markup
http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/transformations/ATLtoEMFTVM.atl?view=markup
http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/transformations/InlineCodeblocks.atl?view=markup
http://soft.vub.ac.be/viewvc/EMFTVM/trunk/emftvm.compiler/transformations/InlineCodeblocks.atl?view=markup


7 Conclusion and future work

This paper has presented a revised semantics for ATL’s rule inheritance and mod-
ule superimposition composition mechanisms. These revised semantics tackle the
historic problem of not being able to combine rule inheritance and module su-
perimposition in ATL. This is achieved by defining both at the same level: in
the virtual machine.

For this purpose, a new virtual machine and corresponding bytecode for-
mat have been developed, called the EMF Transformation Virtual Machine
(EMFTVM). The EMFTVM explicitly represents transformation rules in its
bytecode format, including the inheritance hierarchy information. Therefore, the
EMFTVM can apply rule inheritance at load-time, at the same time that mod-
ule superimposition takes place. Rule inheritance can therefore make use of rules
that have been redefined as a consequence of module superimposition.

The implementation of the rule matching algorithm in the EMFTVM re-
spects the original goal of rule inheritance, which is to enable optimised match-
ing. It does this by first matching super-rules, and only matching sub-rules on
elements that were previously matched by its super-rules. This algorithm is an
extended version of the original algorithm, and supports multiple inheritance.

Several soundness and safety constraints have been given for rule inheritance
as well as module superimposition. These constraints are not yet checked by the
EMFTVM implementation. This will be added in the near future.

A constraint check that has not been discussed in this paper is the con-
flicting output element binding constraint. This conflict occurs where multiple
super-rules want to bind the same output element property. In its current im-
plementation, the EMFTVM will apply the bindings in the order that the rule
inheritance has been specified. In the future, the EMFTVM may be extended to
detect such conflict situations.

Preliminary performance observations have shown that EMFTVM does not
match the performance of the current ATL EMF VM. In time, performance of
EMFTVM may be improved through more aggressive inlining of code blocks,
and further optimisation of the matching algorithm. Furthermore, a detailed
performance analysis, including scaling properties, may be done in the future.

References

1. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transformation language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Proceedings of the First International
Conference on Theory and Practice of Model Transformations (ICMT 2008), Zürich,
Switzerland. Lecture Notes in Computer Science, vol. 5063, pp. 46–60. Springer-
Verlag (Jul 2008)

2. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modularization in model trans-
formation languages illustrated with atl. Science of Computer Programming 68(3),
111–127 (2007)

3. Sánchez-Barbudo, A., Sánchez, E.V., Roldán, V., Estévez, A., Roda, J.L.: Providing
an open virtual-machine-based QVT implementation. Actas de los Talleres de las
Jornadas de Ingeniera del Software y Bases de Datos 2(3), 42–51 (2008)

CEUR Workshop Proceedings 73



4. Schürr, A.: Specification of graph translators with triple graph grammars. In: Tin-
hofer, G. (ed.) Proceedings of the WG’94 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science. Lecture Notes in Computer Science, vol. 903, pp.
151–163. Springer-Verlag (1994)

5. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. Software and
Systems Modeling 9(3), 285–309 (Oct 2009)

6. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schürr, A., Wagelaar, D.: A comparison of
rule inheritance in model-to-model transformation languages. In: Accepted for the
4th International Conference on Model Transformation (ICMT 2011) (Jun 2011)

7. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: Proceedings of the 1st
International Workshop on Model Transformation with ATL (MtATL 2009), Nantes,
France. pp. 78–87 (Jul 2009)

74 MtATL 2011


	A Revised Semantics for Rule Inheritance and Module Superimposition in ATL

