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Abstract. Although model transformations presumably play a major
role in Model-Driven Engineering, reuse mechanisms such as inheritance
have received little attention so far. In this paper, we propose a com-
parison framework for rule inheritance in declarative model-to-model
transformation languages, and provide an in-depth evaluation of three
prominent representatives thereof, namely ATL, ETL (declarative sub-
sets thereof), and TGGs. The framework provides criteria for compari-
son along orthogonal dimensions, covering static aspects, which indicate
whether a set of inheriting transformation rules is well-formed at compile-
time, and dynamic aspects, which describe how inheriting rules behave
at run-time. The application of this framework to dedicated transforma-
tion languages shows that, while providing similar syntactical inheritance
concepts, they exhibit different dynamic inheritance semantics and offer
basic support for checking static inheritance constraints, only.
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1 Introduction

Model-Driven Engineering (MDE) defines models as first-class artifacts through-
out the software lifecycle, which leads to a shift from the “everything is an object”
paradigm to the “everything is a model” paradigm [5]. In this context, model
transformations are crucial for the success of MDE, being comparable in role and
importance of compilers for high-level programming languages. Support for large
transformation scenarios is still in its infancy, since reuse mechanisms in model
transformations such as inheritance have received little attention so far [10], al-
though the concept of inheritance plays a major role in metamodels (MMs) (as
revealed, e.g., by the evolution of the UML standard [13]). As inheritance is
∗ This work has been funded by the FWF under grant P21374-N13.
† The author’s work is funded by a postdoctoral research grant provided by the Insti-
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employed in MMs to reuse feature definitions from previously defined classes,
inheritance between transformation rules is indispensable in order to avoid code
duplication and consequently maintenance problems. Although this need has al-
ready been recognized by developers of several transformation languages, the
design rationales underlying individual realizations are unclear. This makes it
more difficult to understand and explain how these constructs are to be used.

Therefore, we propose a comparison framework for rule inheritance in declar-
ative model-to-model transformation languages that makes explicit the hidden
design rationales. The proposed framework categorizes the comparison criteria
along three different dimensions analogous to the three primary building blocks
of programming languages [2]. The first two dimensions comprise static criteria:
(i) the syntax a transformation language defines with respect to inheritance and
(ii) static semantics, which indicates whether a set of inheriting transformation
rules is well-formed at compile-time. The third dimension of the comparison
framework describes how inheriting rules interact at run-time, i.e, dynamic se-
mantics. On the basis of this framework, inheritance mechanisms in dedicated
transformation languages (ATL [9], ETL [11], TGGs (MOFLON) [10]) are com-
pared. The results show that the inheritance semantics of these languages differ,
which has profound consequences for the design of transformation rules.

Outline. Section 2 provides the rationale of this work, and Section 3 presents
the comparison framework with its three dimensions. In Section 4, we compare
the inheritance mechanisms of ATL, ETL and TGGs and present lessons learned.
Finally, Section 5 gives an overview of related work, and Section 6 concludes.

2 Motivation

When developing a framework for comparing rule inheritance in transformation
languages, it is natural to look at the well-known model transformation pattern
(cf. Fig. 1) and examine where the introduction of inheritance plays a role. Obvi-
ously, a transformation language must define syntactic concepts (cf. question 1 in
Fig. 1), which leads to the first dimension of our comparison framework, namely
the syntax. In this respect, the following questions are of interest:

– Which types of inheritance are supported? Does the transformation language
support only single or multiple inheritance?

– Are abstract rules supported? Is it possible to specify a transformation be-
havior, that is purely inherited?

In addition to the syntax, further well-formedness constraints on the transfor-
mation rules must hold (cf. question 2 in Fig. 1), which represents the second
dimension, namely static semantics. Thereby, the following questions may arise:

– In which way may a subrule modify a superrule? For instance, how may the
types of input and output elements be changed in subrules such that they
can be interpreted in a meaningful way?

– When is a set of inheriting rules defined unambiguously? Are there sets of
rule definitions that do not allow deciding for a single rule?
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A transformation specification is usually compiled into executable code, which
is interpreted by a transformation engine that takes a source model and tries to
select and execute rules in order to generate a target model. Again several ques-
tions concerning the interpretation of inheritance at run-time arise (cf. question 3
in Fig. 1), which leads to the third dimension, namely dynamic semantics:

– Which instances are matched by which rule? If a rule is defined for a super-
type, are the instances of the subtype also affected by this rule?

– How are inheriting rules executed? From the top down or from the bottom
up of a rule inheritance hierarchy?

3 Comparison Framework

This section presents our framework for comparing inheritance support in declar-
ative transformation languages which are used to describe transformations be-
tween object-oriented MMs, conforming to, e.g., Ecore or MOF2. Please note,
that although metamodeling languages such as MOF2 support refinements be-
tween associations (e.g., subsets, redefines), these are out of scope of this paper.
As shown in Fig. 2, the criteria can be divided into the three dimensions of (i)
syntax, (ii) static semantics, and (iii) dynamic semantics. These dimensions and
the corresponding criteria are described in the following.

3.1 Syntax

This subsection provides criteria for comparing transformation languages in
terms of syntactic concepts that they support. We consider both, general criteria
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(e.g., the numbers of input and output elements of a rule) and inheritance-related
criteria (e.g., whether single or multiple inheritance is supported).

To identify the criteria for comparison, we analyzed (i) the features of trans-
formation languages and (ii) the classification of model transformation approaches
presented in [7]. The identified features are expressed in a MM (shown in Fig. 3)
illustrating the core concepts of transformation languages. A Transformation
typically consists of several TransformationRules, including an InPattern,
referring to InputElements of the source MM, and an OutPattern, referring
to OutputElements of the target MM. Please note that programmed graph
transformations and TGGs distinguish between (i) rule parameters and (ii) in-
put/output elements, whereby we consider only the latter. A first general distin-
guishing criterion is the allowed number of input and output elements. Further-
more, transformation languages typically support the definition of a Condition,
which may be interpreted in different ways (cf. Section 3.3). Finally, they provide
the possibility of setting the values for target features by means of Assignments.

In the context of inheritance-related aspects, three criteria are relevant. First,
a TransformationRule may inherit from 1 or 1..n other transformation rules,
depending on whether single or multiple inheritance is supported. Second, the
concept of abstract rules may be supported in order to specify that a certain
rule is not executable per se but provides core behavior that can be reused in sub-
rules. Finally, one can distinguish between different refinement modes by which
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inherited parts are incorporated into inheriting rules (modeled by the enumer-
ation RefinementMode in Fig. 3). First, override implies that when a subrule
refines an assignment of a superrule, the assignment of the subrule is executed
together with those assignments in the superrule which are not overridden. In the
refinement mode inherit first the overridden assignments are executed, and then
the overriding assignment can alter the resulting intermediate result (such as by
initializing some state by a supercall and then altering this intermediate result
accordingly). Third, merge means that again both assignments are executed,
but first the assignment of the subrule and then the overridden assignments are
executed. Finally, the refinement mode extension induces that inherited assign-
ments may not be changed at all. For consistency reasons, all assignments in a
rule should follow the same refinement mode (cf. class Refinement).

3.2 Static Semantics

In the previous subsection, we identified criteria targeting the comparison of
syntactic concepts. Here we elaborate on criteria relevant for checking the static
semantics of inheritance. These criteria reflect the following semantic constraints:
(i) incompatibility of input and output elements of subrules and superrules in
terms of type and number, (ii) non-instantiability of abstract classes, (iii) ambi-
guities in rule definitions, and (iv) conflicts in multiple inheritance.

Incompatibility of Input and Output Elements. In the context of trans-
formation rules, both feature assignments and conditions should be inheritable
by subrules. Thus, it has to be ensured that the types of the input and output
elements of subrules have at least the features of the types of the elements of the
superrule. Thus, types of the input and output elements of a subrule might be-
come more specific than those of the overridden rule. The inheritance hierarchy
of the transformation rules must therefore have the same structure as the inher-
itance hierarchy of the MMs. This means that co-variance for input and output
elements is demanded, conforming to the principles of specialization inheritance
in object-oriented programming. Please note that this is in contrast to popular
design rules for object-oriented programming languages, where a contra-variant
refinement of input parameters and a co-variant refinement of output parameters
of methods is required, i.e., specification inheritance [12]. Additionally, the num-
ber of input and output elements should be extensible. Therefore, four cases of
potential variations of input elements in type and number can be distinguished:

– Same number, different types (a). As an example, Fig. 4(a) shows two
rules, A2X and B2Y, that are bound to the source base classes A and B and to
the target base classes X and Y, where both rules simply copy the contained
features. Since class C inherits from both classes A and B, the rule C2Z inherits
from the rules A2X and B2Y. Thus, the feature assignments of the superrules
are reused (cf. grey assignments in Fig. 4(a)).

– Same number, equal types (b). This case (cf. Fig. 4(b)) may be counter-
intuitive, since inheritance is usually used to specialize some core behavior
for subsets of instances, and subtypes are typically used to build subsets. In
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this case – at first sight – no subsets (according to specialization inheritance)
are built, and it is unclear which rule should be executed for a combination
of instances. Therefore, in such a configuration the subsets needed must be
built by applying corresponding disjoint conditions to the subrules.

– Different number, different types (c). Here, the subsets needed are built
through the specialization of at least one input element (cf. Fig. 4(c)).

– Different number, equal types (d). In this case, the same problem as in
case (b) arises, where the subsets must be realized by means of conditions
which may require certain relationships between the matched input elements
(cf. Fig. 4(d)).

One interesting question in the context of cases (b) and (d) is whether the
instances that do not fulfill any of the conditions of the subrules are matched
by the superrule (provided that the superrule is concrete). Since this question is
closely related to dynamic semantics, we discuss this further in Section 3.3.

Non-Instantiability of Abstract Classes. Since abstract classes cannot
be instantiated, it must be ensured statically that no concrete rule tries to create
instances of an abstract target class as output. Only abstract rules are allowed
in this case, since they are not themselves executed but must be refined by
a subrule. The situation is different for abstract source classes: although an
abstract source class cannot have any direct instances, indirect instances may
be affected by the transformation rule.

Ambiguities in Rule Definitions. An ambiguity between inheriting trans-
formation rules may arise if a rule requires multiple input elements, and if there
is no single rule for which the match in run-time types is closer than all the
other rules. This is analogous to the problem that arises in multiple dispatch-
ing as needed for multi-methods (cf. [1, 6]), since choosing a method requires
the run-time type not of a single input element, but of a set of input elements.
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Thus, the method whose run-time types most closely match the statically speci-
fied types should be dispatched at run-time. A simple example of such a problem
is depicted in Fig. 5(a). Three transformation rules are specified all of them take
two input elements of different MM types. Now, suppose that a pair of objects
(b,y) of type B and Y is transformed, and let us assume that the rules might
also match indirect instances. The transformation engine should now look for a
rule whose arguments most closely match the pair (b,y). In this case, no single
rule can be determined, since Rule2 and Rule3 are equally good matches. Thus,
the set of defined transformation rules is ambiguous.

Conflicts in Multiple Inheritance. The diamond problem [16], also re-
ferred to as fork-join inheritance [15], arises, when contradicting assignments are
inherited from different inheritance paths. Consider, for instance the common
superrule A2W in Fig. 5(b), which contains an assignment for copying a feature
value. This assignment is overridden within the transformation rules B2X and
C2Y. Thus, it cannot be decided in the rule D2Z which assignment should be
applied, unless assistance is given by the transformation designer.

3.3 Dynamic Semantics

Now we shift our focus from static to dynamic semantics, i.e., how transformation
specifications may be interpreted at run-time. In this context, two main aspects
are investigated: (i) which rules apply to which instances, i.e., dispatch semantics
and (ii) how a set of inheriting rules is executed, i.e., execution semantics.

Dispatch Semantics. In order to execute transformation specifications, it
must be determined which rules apply to which instances, i.e., transformation
rules must be dispatched for source model instances. In [7], potential strategies
and scheduling variations of rules were discussed, but without any focus on in-
heritance. Thus, the literature does not indicate, whether type substitutability
should be considered. This principle is well-known in object-oriented program-
ming and states that, if S is a subtype of T, objects of type T may be safely
replaced by objects of type S [12]. Type substitutability for transformation rules
would, thus, mean that if a rule can be applied to all instances of class T, then



this rule can also be applied to all instances of all subclasses of T. Consequently,
if no specific subrule is defined for instances of a subclass, then these instances
of the subclass may be transformed by the rule defined for the superclass.

Another interesting point in the context of dispatching is, how the evaluation
of the condition is incorporated. Thereby, two main strategies can be followed.
First, the condition is part of the matching process, i.e., if the condition fails, the
rule is not applicable, but a superrule might be applied. Second, the condition
is not part of the matching process, i.e., the matching takes only place on the
specified types of the input elements and thus, those elements, which do not
fulfill the condition, are filtered, but never matched by a superrule anymore.

Execution Semantics. After having determined which rules are applicable
to which source model instances, the question arises how a set of inheriting rules
is executed. A first distinguishing criterion is, whether the concept of inheritance
is directly supported by the execution engine or whether it is first flattened to
ordinary transformation code in a pre-processing step. Independent of whether
the inheritance hierarchy is flattened or not, various strategies may be applied
to evaluate conditions and to execute assignments. This raises questions such as
“Are conditions of a superrule also evaluated?” and “Are the assignments of a
superrule executed before the assignments of a subrule?”. Hence, we investigated
the main characteristics of executing methods in an inheritance hierarchy in
object-oriented programming [16]: (i) the completion of the message lookup, i.e.,
whether only the first matching method is executed (asymmetric) or all matching
methods along the inheritance hierarchy are executed (composing) and (ii) the
direction of the message lookup, i.e., whether a method lookup starts in the
subclass (descendant-driven) or in the superclass (parent-driven).

4 Comparison of Transformation Languages

In this section we use the criteria introduced in the previous sections to compare
inheritance support in model-to-model transformation languages. The results
are based on a carefully developed test set, which includes at least one test case
for each criterion. These documented test cases, including the example code, the
MMs, and source models, can be downloaded from our project homepage6.

Comparison Setup. For the comparison we considered common model-to-
model transformation languages which offer dedicated inheritance support and
allow relationships between source and target models to be specified in a declar-
ative way. We examined the declarative subsets of the hybrid transformation
languages ATL (version 3.1.0) and ETL (version 0.9.0). There are different im-
plementations of TGGs, whereby our comparison bases on the one of MOFLON.
Although MOFLON’s current implementation of the execution engine of TGGs
(MOFLON 1.5.1) does not yet support inheritance, TGGs were included, since
specific literature concerning inheritance support exists [10]. In order to compare
the bidirectional TGG-based model transformation approach with the unidirec-
tional languages ATL and ETL, we considered only the unidirectional forward
6 http://www.modeltransformation.net



translation. Although the QVT standard specifies the declarative transformation
language QVT Relations, it is not included in this survey, since QVT Relations
support only redefinition of whole rules (i.e., it does not allow reuse of orig-
inal rule definitions) and not inheritance between rules, as is the focus of our
framework. Actual mapping refinement is only mentioned in the QVT Core part,
which leaves the transfer to QVT Relations open. Fig. 6 shows an example of
the differences between the languages when transforming UML Statemachines
into Petri Nets. The rule State2Place transforms State instances that are not
of the kind initial into corresponding Place instances, while inheriting from
the rule ModelElem2Element, which specifies the name assignment.

4.1 Comparison of Syntax

When comparing the supported language features (cf. Table 1), differences in
the number of allowed input elements can be detected. Whereas ATL (multiple
elements in from pattern) and TGGs (source object graph) allow several input
elements to be bound to a rule, this is not possible in ETL (cf. single variable after
transform keyword in Fig. 6). However, all of the languages evaluated support
multiple output elements (multiple elements in to pattern in ATL and ETL,
target object graph in TGGs). Finally, all transformation languages allow for the
specification of conditions (OCL expressions in ATL and TGGs or a guard in
ETL). ETL and TGGs support multiple inheritance, whereas ATL is restricted
to single inheritance (keyword extends in ATL and ETL, inheritance arrow
in type level of TGGs). All languages provide means to define abstract rules
(keyword abstract in ATL, annotation @abstract in ETL, property abstract
in TGGs). Finally, concerning potential refinement modes of assignments, none
of the approaches evaluated provide specific keywords for explicitly choosing
the semantics to be applied. Instead, ATL and ETL implicitly assume override
semantics, and TGGs support the refinement mode extension since only new
assignments may be added, but existing ones must not be modified.

In summary, all of the approaches evaluated support similar syntactic con-
cepts in terms of inheritance. The main differences lie in the type of inheritance
supported and the implicitly assumed refinement mode of assignments.

Table 1. Comparison of Syntax

Rule Part
Permitted Parameter 

Values
ATL ETL TGGs

Input Elements 1 | 1…n 1..n 1 1..n 

Output Elements 1 | 1…n 1..n 1..n 1..n 

Condition Yes | No Yes Yes Yes

Type of Rule 
Inheritance

Single | Multiple Single Multiple Multiple
Inheritance

Abstract Rules Yes | No Yes Yes Yes

Refinement Modes Override | Inherit | Override Override
E i

Refinement Modes
of Assignments

Override | Inherit |
Merge | Extension

Override 
(implicit)

Override 
(implicit)

Extension

* Not yet implemented in MOFLON
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Fig. 6. Transformation example in ATL, ETL and TGGs

4.2 Comparison of Static Semantics

This part of the comparison evaluates in how far the static semantics of inheri-
tance is checked in each transformation language (cf. Table 2). Concerning input
and output elements, in ATL a violation of co-variance is detected at run-time,
since missing features result in a “feature not found” exception. In ETL no error
is reported, which leaves the detection of the resulting erroneous instances to
the transformation designer or another model management operation executed
after the transformation. In TGGs this results in a compile-time error in the
upcoming implementation, since the main principle is that applying the subrule
should guarantee the existence of the subgraph created by the superrule. Con-
cerning the number of input elements, in ATL a run-time error also occurs, if the
number is changed in any way (including name changes). Thus, ATL requires
that the number of input elements is not increased. ATL does not raise any ex-
ception if the number of output elements is restricted, since they are produced
even if they are not respecified. In ETL, the restriction of the number of input



Table 2. Comparison of Static Semantics with respect to Inheritance

Verification 
Target

Fault
Permitted 

Parameter Values
ATL ETL TGGs

N i t [C il Ti | N E (

Input 
Elements

Non‐co‐variant
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (erroneous 
instances result)

Compile‐Time Error 

Restriction in 
N b

[Compile‐Time|
R Ti |N ] E

Run‐Time Error 
( l ith t i )

n.a. (cf. syntax) Compile‐Time Error 
Number Run‐Time|No] Error (also with extension)

( y ) p

Output

Non‐co‐variant 
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (erroneous 
instances result)

Compile‐Time Error 

Output 
Elements Restriction in 

Number
[Compile‐Time|

Run‐Time|No] Error

n.a. (output elements
are still produced even 
if not specified again)

Run‐Time Error 
Compile‐Time Error  
(except of output to 
input modification)

Abstract 
Target 
Classes

Concrete Rules 
for Abstract 
Target Classes

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error Run‐Time Error
Run‐Time Error 
(application fails)

Rule
Ambiguity

[Compile‐Time|
Run‐Time|No] Error

No Error (first matching 
rule in file wins)

n.a. (cf. syntax) Run‐Time Error

Diamond  [Compile‐Time|
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elements is not applicable, since ETL restricts the number of input elements to
exactly one anyway. In ETL a run-time error (“index out of bound” exception)
is raised if the number of output elements is restricted. In TGGs, to conform to
the main principle that applying the subrule should guarantee the existence of
the subgraph created by the superrule, only an extension of the number of input
and output elements is allowed, which is again ensured statically.

None of the languages evaluated detect concrete rules referencing abstract
classes at compile-time, but run-time errors are thrown. ATL does not throw
exceptions for ambiguous rule definitions – neither at compile-time nor at run-
time. Instead, the first matching rule defined in the file is executed. In ETL,
the problem of ambiguous rule definitions cannot arise, since multiple input el-
ements are not supported. In TGGs, a run-time error is thrown. It must be
noted that, in the area of multi-methods, there are approaches for explicit dis-
ambiguation (e.g., [3] proposes a minimal set of method redefinitions necessary
for disambiguation) which could be reused in transformation languages. The di-
amond problem in multiple inheritance does not apply to ATL, since multiple
inheritance is not supported. Although the diamond problem is detected in ETL
at compile-time, it is checked on a coarse-grained level, i.e., diamonds that do
not include ambiguous assignments also cause errors. In TGGs, this problem
is checked statically. Analogously to the explicit disambiguation of ambiguous
rule definitions, the transformation designer could be supported by proposals
which assignments must be overridden in rules in order to achieve unambiguous
assignment definitions.

In summary, static inheritance checks are poorly supported by ATL and ETL.
In ATL, none of the static semantics are checked statically. The same is true for
ETL with the exception of the diamond problem. In contrast, the TGG-related
publication lists quite a number of static checks that will be considered in the
upcoming implementation of rule inheritance.



4.3 Comparison of Dynamic Semantics

In order to compare the dynamic semantics, the dispatch semantics and the exe-
cution semantics are investigated (cf. Table 3). Considering the dispatch seman-
tics, one can see that the output models produced by ATL and TGGs (Fig. 6(a)
and (c)) include only one Place instance, since only the State s2 fulfills the
specified condition in the subrule. As ATL and TGGs support type substitutabil-
ity and rule applicability semantics for conditions, instance s1 is matched by
the more general superrule ModelElem2Element, and therefore creates the tar-
get Element s1. Due to type substitutability, the indirect instance t1 is matched
by the superrule, and therefore the target Element t1 is created. In contrast,
ETL does not support type substitutability by default. Thus, although the spec-
ifications in ETL and ATL are syntactically very similar, the target models
produced differ. ETL’s target model contains only a Place s2 produced by the
rule State2Place. The dispatch semantics may be modified by annotating rules
with @greedy in ETL. This means that such rules also match indirect instances,
but the interpretation is different than in ATL and TGGs, since the super-
rule still regards all instances irrespective of whether the instances have already
been matched by subrules or not. Adding the @greedy annotation to the rule
ModelElem2Element in our example would therefore create four instances in to-
tal: three Elements s1, s2, t1 produced by the superrule ModelElem2Element,
and one Place s2 produced by the subrule State2Place. Even if type substi-
tutability is enabled in ETL, the result of the condition evaluation does not
influence the dispatch semantics because the superrule always matches all direct
and indirect instances, disregarding specialized subrules. Thus, the condition
semantics is evaluated as not applicable in ETL.

Regarding the inheritance support in the engine, in ATL inherited rules are
flattened during compilation and can thus use optimization strategies, i.e., the
ATL compiler inlines the assignments of a superrule. In contrast, ETL supports
inheritance in the execution engine, which reduces the amount of code generated.

Table 3. Comparison of Dynamic Semantics of Inheritance

Criterion Subcriterion
Permitted Parameter 
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In TGGs, this criterion is not applicable, since an inheriting TGG rule contains a
copy of the superrules, which causes code duplication. Concerning the evaluation
of the conditions, all transformation languages we compared exhibit a compos-
ing completion of the lookup, i.e., an instance processed by a subrule must fulfill
all the specified conditions up the inheritance hierarchy (i.e., and conjunction).
The actual evaluation is parent-driven in ATL and descendent-driven in ETL.
In TGGs, this criterion is not applicable, since a subrule lists all its inherited
conditions. All approaches execute all assignments along the inheritance hierar-
chy (i.e., composing completion of the lookup). Finally, the direction of lookup
in assignments occurs descendent-driven in ATL, whereas parent-driven in ETL.
Thus, in ATL (i) the assignments of the superrule, which are not overridden,
(ii) the overridden assignments, and (iii) new assignments specified in the sub-
rule are executed realizing the optimization strategy. In contrast, in ETL, (i)
the assignments of the superrule and (ii) the assignments of the subrule are ex-
ecuted. In TGGs this is again not applicable. More specifically, TGGs enforce
composition already in the syntax, which causes code duplication.

In summary, the main difference in terms of dynamic semantics lies in the
application of type substitutability, which is user-definable in ETL, but inter-
preted in a different way than in ATL and TGGs. ETL has the disadvantage that
several target instances for a single source instance are created when a superrule
is annotated with @greedy. Moreover, all of the transformation languages im-
plement a composing behavior for conditions and assignments. Thus, the lookup
direction does not influence the result of the transformation.

4.4 Lessons Learned

This subsection presents lessons learned from our comparison.
Similar Syntax, Different Semantics. As the example in Fig. 6 reveals,

similar syntax (cf. ATL and ETL) does not necessarily lead to the same results,
which implies different dynamic semantics. This is undesirable, since the dy-
namic semantics is not made explicit by any syntactical elements to the trans-
formation designer. Thus, the transformation designer must know the design
decisions taken in each transformation language in order to obtain the desired
result. Therefore, the current situation concerning rule inheritance is comparable
to the situation in the early stages of object-oriented programming, where no
common agreements on the dynamic semantics of inheritance had been reached.

Limited Support for Static Semantics. Currently, support for checking
the static semantics is limited. This gives rise to run-time errors or – even worse
– to erroneous target instances with no error message. Thus, the tedious task of
checking the static semantics is left entirely to the transformation designer.

Fixed Dynamic Semantics. As introduced above, different kinds of re-
finement modes may be desirable. The evaluation of the languages has shown,
that each of them assumes a certain refinement mode, but none of them al-
low the transformation designer to choose between different options. Thus, the
languages support only fixed dynamic semantics for rule inheritance. Since dif-
ferent dynamic semantics are suitable for different transformation scenarios, the



transformation designer should be enabled to alter the dynamic semantics. The
introduction of a super reference as in object-oriented programming languages
would enable the transformation designer to express different refinement modes.

5 Related Work

This section considers two threads of related work. First, we focus on inheritance
support in transformation languages, and second, since inheritance is mainly a
reuse mechanism, we broaden the scope to other reuse facilities.

Inheritance Support in Transformation Languages. Although inher-
itance plays a vital role in object-oriented modeling, and thus also in model
transformations, no dedicated survey exists to the best of our knowledge. Only
a small number of publications mention inheritance explicitly. Inheritance sup-
port in ATL is briefly described in [9], and that in ETL in [11], but rather on a
syntactical level, while the actual execution semantics are left open. A detailed
discussion of semantic constraints that must be considered in TGG rule inheri-
tance can be found in [10]. For graph transformations in general, Bardohl et. al
[4] introduced type substitutability when executing graph transformation rules,
i.e., (abstract) supertypes may be used in patterns which are then applicable to
subtypes at run-time. Finally, in the QVT standard [14] detailed semantics with
respect to inheritance is defined only for QVT Operational.

Reuse Facilities in Model Transformations. General work has been
done in composing transformations. Wagelaar et. al. [18] proposed a superim-
position mechanism of transformations to build the union of all transformation
rules. Thereby rules can be added and redefined (i.e., replacing a rule by a new
one), whereby it is impossible to refer to the original rule. This is similar to the
mechanism in QVT Relations, in which a transformation can extend another
transformation and redefine existing rules [14].

Another reuse mechanism is to provide predefined transformations that can
be adapted to specific MMs. Varró et al. [17] introduced generic transformations
in VIATRA2 which in fact resembles the concept of templates in programming
languages. Another approach to generic transformations was proposed in [8],
where transformations are designed between generic “concepts models”. These
transformations can then be bound to concrete MMs, but only if they have the
same structure. Finally, Wimmer et. al. [19] presented mapping operators which
allow model transformations to be specified by means of reusable components,
which is similar to mappings known in data engineering.

In summary, only preliminary approaches for reuse are available, which con-
front the transformation designer with code duplication and consequently main-
tenance problems.

6 Conclusion and Future Work

In this paper, we have presented a systematic comparison of inheritance support
in the transformation languages ATL, ETL, and TGGs. We (i) identified syn-



tactic concepts required for inheritance, (ii) elaborated on semantic constraints
(i.e., static semantics) that should be checked between inheriting rules, and (iii)
investigated potential dynamic semantics of rule inheritance. Thus, the design
rationales behind the realizations have been made explicit. Since we considered
only declarative model-to-model transformations, we intend to investigate inher-
itance support in imperative transformation languages, too, including also the
imperative parts of hybrid transformation languages.
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