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Abstract. Megamodels has been proposed as a mechanism to describe
large number of modelling and non-modelling artefacts (models, trans-
formations, source code, binary files, etc.) and their complex interre-
lations, typically required in any non-trivial development project. De-
spite its growing acceptance, there is a lack of adequate tool support to
search, inspect, manipulate, and combine, at a glance, the modelling arte-
facts represented by Megamodels. In this paper we introduce MoScript:
a generic and extensible infrastructure and domain-specific language
for Megamodelling. With MoScript users can express queries (based on
model content, structure, relationships, and behaviour derived through
on-the-fly simulation) to retrieve models from heterogeneous model repos-
itories, manipulate them (e.g., by running transformations on sets of
models), and store them back in the repository.
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1 Introduction

As Model-Driven Engineering (MDE) paradigms and tools are maturing and
becoming more popular, the number of modelling artefacts consumed and pro-
duced by software engineering processes (e.g., models, metamodels, and trans-
formations) has increased considerably.

MDE for complex systems [5] is a typical example of this situation. In the
model driven development of those systems, every artefact (e.g. requirements
specifications, analysis and design documents, implementation artefacts, etc.,)
is a model. Apart from being numerous, these artefacts are often large, hetero-
geneous, interrelated, with complex internal structure, and possibly stored in
distributed model repositories.

* The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)
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MDE is partly to blame for this complexity, as it introduces new artefacts to
deal with, such as models, metamodels, transformation models, and transforma-
tions engines. Whereas having special-purpose metamodels allows for reducing
model complexity, the interrelations between transformations, models, and meta-
models can become very complex. Global Model Management (GMM) aims to
address this complexity problem by providing an explicit representation of the
modelling artefacts and their interrelations, in a model called Megamodel [12].

Megamodels have been used in several domains such as performance engi-
neering [14], ontologies [4], architecture frameworks [24] among others, for under-
standing the complex arrangements and relations between entities and bridging
between their underlying technologies.

However, there is no generic approach for exploiting Megamodels, i.e query
Megamodels and manipulate, at a glance, the artefacts it represents (e.g. load-
ing/saving models, executing transformations, bridging between technical spaces,
etc.).

In this paper, we propose MoScript a Megamodel agnostic platform and a
textual DSL (domain-specific language) for accessing and manipulating mod-
elling artefacts represented in a Megamodel.

MoScript allows to write queries that retrieve models from a repository, in-
spect them, invoke services on them (e.g. transformations), and to register newly
produced models back to the repository. MoScript also facilitates the descrip-
tion and automation of complex modelling, involving several consecutive ma-
nipulations on a set of models. As such, the MoScript language can be used for
modelling task and/or workflow automation.

The MoScript architecture includes an extensible metadata engine for resolv-
ing and accessing modelling artefacts and invoke services from different trans-
formation tools.

The remainder of this paper is structured as follows. Section 2 describes the
supporting architecture for MoScript. Section 3 presents the MoScript language.
Section 5 describes how we implemented MoScript. Section 6 compares our work
with other, related approaches. Finally, section 7 presents our conclusions and
future work.

2 The MoScript Architecture

Fig. 1 shows an overview of the MoScript architecture, comprising both the basic
components and information flows.

2.1 Architecture Components

The MoScript architecture is composed of six components: the MoScript DSL,
a Megamodel, a metadata engine, model repositories, transformation tools, and
external DSLs, editors, and discoverers, as shown in Fig. 1 and described next.

MoScript: A DSL, which serves as an interface between the users and the
modelling artefacts repositories. Users write and run their MoScript scripts for
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Model Repositories

Fig. 1. The MoScript architecture.

retrieving modelling artefacts and perform modelling tasks (e.g. inspect, trans-
form, match, etc.) with them. MoScript uses the Megamodel as cartography to
navigate the modelling artefacts repositories and to know which kind of models
are stored in them. As result of the manipulations, new modelling artefacts may
be created in the repositories or existing modelling artefacts may be removed.

Megamodel: A model which describes modelling artefacts within reposi-
tories (e.g. their location, kind, format, etc.), and how they are interrelated.
The Megamodel is a regular model, thus it conforms to a metamodel, which is
shown in Fig. 2. Elements in the Megamodel represent modelling artefacts or
relationships. For instance the Entity element represents any MDE (i.e. arte-
facts that depend on well defined grammars) and non-MDE artefact (such as
non structured documents, tools, libraries, etc).

The basic MDE artefacts supported by the Megamodel are: MetaMeta-
Models (M3), which represent models conforming to themselves; Metamodels
(M2), which represent models conforming to metametamodels; and Termi-
nalModels (M1), which represents models conforming to metamodels but no
other model conforms to them. Examples of terminal models are Megamodels,
transformation models, and weaving models. As MDE artefacts may be trans-
lated into models (e.g. XMI files) from this point forward we are going to refer
us to MDE artefacts as models.

Relationships between artefacts (MDE and non-MDE) are represented by the
Relationship concept. For instance, a Transformation is a directed relation-
ship between a TransformationModel and one or more ReferenceModels
(metamodels or metametamodels). The TransformationModel is the representa-
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Fig. 2. Part of the core metamodel for Megamodels.

tion of the source code of the transformation while the reference models restrict
the type of input and output models the transformation may be applied on.

A TransformationRecord is another kind of directed relationship. A Trans-
formationRecord associates a Transformation with a set of input and output
models. As we will see later, it is useful for rerunning transformations without
giving any additional input.

Metadata Engine: Provides services to MoScript for retrieving models,
executing transformations and (un)register models (from) into the Megamodel.
The Metadata Engine exposes a homogeneous interface, which provides location
and technology transparency of models and transformation tools. It also protects
models from unauthorized access and modifications.

The metadata engine uses the Megamodel for run-time type checking. For
instance, the metadata engine can check if the transformations are being applied
to the right models. It can also check if the resulting model of a transformation
execution, may be used for transforming other models, like when executing a
High Order Transformations (HOT). In a previous work [20], we demonstrate
the viability of this type checking.

Model repositories: Contain models stored in different formats, e.g. XMI,
XML, RDBMS, etc. Model repositories may reside in different physical locations,
such as a local filesystem, a remote WebDAV server, the cloud, etc.

Transformation Tools: Model-to-model (M2M), model-to-text (M2T) or
text-to-model (T2M) transformation tools provide transformation services. They
implement a generic interface, thus all transformation tools services can be in-
voked the same way regardless the technology behind. Transformation tools may
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include QVT [1], ATL [16], EMF Compare?, JET?, Xpand®, etc.). In general,
any tool that produces a new view of a modelling artefact (e.g. documentation
generators, compilers, file comparison tools, etc.) is considered a transformation
tool. If any transformation tool does not fit the generic interface it may extend
it along with the metamodel of the Megamodel, for adding new services and
concepts.

DSLs, Editors and Discoverers: These tools create models outside the
MoScript context and need to contribute them to the Megamodel. They can
(un)register models (from) into the Megamodel through MoScript, and they can
query the Megamodel as well.

2.2 Architecture Information Flow

The information flow that takes place between the architecture components when
performing models manipulations with MoScript, is denoted by the numbers in
Fig. 1. (1) Users write and run a MoScript program. (2) MoScript queries the
Megamodel to retrieve the model elements (metadata) describing the models and
transformations involved in the process. Then, it (3) asks the Metadata Engine to
apply selected transformations on the selected models. (4) The metadata engine
retrieves’ from the repositories the models and transformation definitions (using
the information stored in the Megamodel elements, such as location, protocol,
access restrictions etc). (5) Then it executes the transformations with the models
and (6) registers the resulting models in the Megamodel if necessary. Finally,
the metadata engine returns the Megamodel model elements resulting from the
program execution to MoScript for further processing.

3 The MoScript Language

A Megamodel is a regular model, thus it can be navigated with OCL as any
other model. Examples of queries on Megamodels may include the selection of
all the transformations of the repository to list their physical location, or more
complex queries, such as selecting all the models that conform to a specific kind
of metamodel, as shown in the example below.

Model:: allInstances ()—>select(m | m.conformsTo.kind = ’Java’)

The result of the query above is a collection (Collection(Model)) of model
elements which describe the models of the repository. Although the result is
useful to precisely know which models are stored in the repository, it is merely
informative. This means that with standard model query languages like OCL, is
not possible to use the results of queries to Megamodels to directly manipulate

4 http://www.eclipse.org/modeling/emf/?project=compare#compare

® http://www.eclipse.org/emft/projects/jet/

S http://www.eclipse.org/modeling/m2t/?project=xpand

" Retrieving the model means that an interface is built and exposed for accessing the
model. It does not necessarily means that the whole model traverses the network


http://www.eclipse.org/modeling/emf/?project=compare#compare
http://www.eclipse.org/emft/projects/jet/
http://www.eclipse.org/modeling/m2t/?project=xpand

6 MoScript: A DSL for querying and manipulating model repositories

(e.g. check, transform, match etc.) the models they describe. This is due to the
fact that OCL does not handle models as a bootstrapped concept.

The MoScript language intends to fill this gap. MoScript is an OCL-based [2]
scripting language for model-based tasks and workflow automation that works on
top of a Megamodel. It proposes three main contributions: (1) Model deref-
erencing, to retrieve models represented by metadata in a Megamodel; (2)
Native library of operations to perform common model manipulation tasks
with the dereferenced models; (3) Combination of dereferenced artefacts
and operations with OCL to provide powerful expressiveness.

Model dereferencing is applicable to all the Megamodel elements that have a
separated physical representation in the system and may be accessed through a
locator (e.g., an URI). As a result of the dereferencing, an interface of the artefact
is loaded in memory and exposed for being used through an OCL ModelElement
type. As OCL is working on top of the Megamodel, this OCL ModelElement
type always corresponds to an element type of the Megamodel ( TerminalModel,
Metamodel, Transformation etc.).

Furthermore, a set of operations are associated to those model element types
for being invoked from OCL and which in turn may be composed to produce
more powerful operations.

Next, we will explain MoScript abstract and concrete syntax, as well as the
native library’s operations.

3.1 MoScript Abstract and Concrete Syntax

The MoScript DSL has a semantic model [13] and an abstract and concrete
syntax [23].

The MoScript’s semantic model is the Megamodel. It is the place where
the domain concepts are stored and is independent from the language constructs.
The core concepts of the Megamodel have been covered in section 1.

The abstract syntax as shown in figure 3, is divided in two packages. The
OCL package and the MoScript package. As MoScript is OCL-based, the com-
plete OCL abstract syntax (not showed) is included as part of the language.

The OperationCallExp from the OCL package has been extended with a set
of operations we call operations without side effects. These operations are used to
perform several modelling tasks that do not modify the model repository
or the Megamodel.

Operations without side effects are divided in four categories: query opera-
tions (QueryOp), operations for transformations between same technical spaces
(TransformOp), operations for transformations between different technical spaces
(ProjectOp) and operations for checking the models state (StateCheckOp). For
each category MoScript provide several concrete operations, which will be ex-
plained in the next subsection.

Furthermore, the MoScript package provides a set of operations with side ef-
fects (SaveOp, RemoveOp and RegisterOp). These operations allow the mod-
ification of the repository or the Megamodel. Side effects operations may em-
bed OCL expression and therefore side effects free operations. This is why the
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Fig. 3. MoScript abstract syntax main concepts

Expression0Op is related to the 0CLExpression. This relation allows to carry out
complex models manipulations before persisting them in the repository and the
Megamodel. However, the opposite (embed side effects operations within OCL
expression) is not permited. OCL expression do not know side effects operations,
thus respecting the OCL side effects free philosophy.

MoScript also provides a statement for variable binding and declaration
(BindingStat) and for (ForStat) and if (IfStat) statements for control flow.

MoScript has two kinds of modules: libraries and programs. A library con-
tains helpers, which are used to modularise complex OCL expressions. Libraries
may be in turn imported by programs or by other libraries.

The concrete syntax of MoScript is summarised in the following listing:

program program_name

uses libraryl
uses

[ using {
variablel : type = OclExpr;
variable2

}H

do {
variablel <— OclExpr;

modell.save (...);
model2.remove (OclExpr) ;

megamodel .register (...) ;

if ...
for ..

}

helper context O0clAny def: helper_name (params)

return_type;
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A program has two sections, the using and do sections. The using section is
optional, and is used for declaring variables and assigning their initial value. The
do section is mandatory and is the core of the program. In it, operations with
and without side effects are used in combination with the control flow statements
and OCL queries to perform modelling artefacts manipulations.

The complete definition of the concrete syntax is expressed in the TCS lan-
guage [17], and can be found at:
http://www.emn.fr/z-info/atlanmod/index.php/Moscript.

In the following subsections, we will discuss in detail the operations with and
without side effects provided by MoScript and summarised in table 1.

Operations without side effects
Model :: allContents : Collection(OclAny)
Model :: allContentsRoots() : Collection(OclAny)
Model :: allContentsInstancesOf(type-name : String) : Collection(OclAny)
Model :: allContentsInstancesOf(type : OclAny) : Collection(OclAny)
Transformation :: applyTo(inputModels : Sequence(Model)) : TransformationRecord
Transformation :: applyTo(inputModels : Map(String, Model)) : TransformationRecord
TransformationRecord :: run() : TransformationRecord
Model :: inject() : Model
Model :: extract() : Model
Model :: available() : Boolean
Model :: isDirty() : Boolean

Operations with side effects
Model :: save(mm : Megamodel, id : String, locator : String)
Model :: remove()
MegaModel :: register(id : String, locator : String) : Model
Table 1. MoScript operations summary.

3.2 Operations without side effects

This subsection describes in detail the operations without side effects provided
by MoScript. As mentioned before, operations without side effects are classified
in four categories, queries, transformations of models in a same technical space,
transformations of models between different technical spaces and model state
checkers.

Query operations: The query operations provided by MoScript are al1Contents,
allContentsRoots and allContentsInstances0f. These operations derefer-
ence and load the physical model represented by the Model element. Then, they
query the model and return a collection of OCL elements. The elements of the
resulting collection are used as entry points to the model, from where the rest
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of the elements may be reached. Subsequent queries to the model are made with
standard OCL operations. The following example illustrates how this operations
may be used in general:

Model:: allInstances ()
—>select(m | m.conformsTo.kind = ’Family’)
—>first ().allContents ()—>collect(c | c.name))

In the example, we first select all the models of the models repository that
conform to the Family metamodel. Then we take the first model and invoke on it
the allContents operation. The operation dereferences de model and returns an
OCL collection with all the elements contained in the model. Next, we iterate on
the results, collecting all the element names. Supposing the first model found is
a model of the Simpson family, the resulting collection could look like {’Bart’,
’Homer’, ’Lisa’, ’Maggie’, ’Marge’}.

Note that the allContents operation hides complexity from the user. There
is no need to specify the metamodels of the models as this information is retrieved
from the Megamodel.

The allContents facilitates the creation of powerful queries. For instance,
it is possible to search models by:

— Relations between models, such as models which participate in model weav-
ings [7] or models that were derived from other models (trace models).

— Internal characteristics, such as models including an element with a given
value, metamodels containing elements of certain types, etc.

— Computed characteristics, such as models containing a certain number of
model elements or the transformations containing more element mappings
than the others, etc.

When working with big models the operation allContents may be expensive
in terms of memory consumption and processing. So, MoScript includes other
operations like al1lContentsRoots and allContentsInstances0f for extracting
the models elements with more precision and therefore better performance.

Model to Model Transformations: The M2M transformations operations
provided by MoScript are the applyTo and the run operations.

The applyTo operations work in the context of the Transformation Meg-
amodel element. They input models may be provided as a Map or as a Sequence
and the output models are returned as part of a TransformationRecord. When
provided as a Map, models are differentiated by their key and when provided as
a Sequence, models are differentiated by their order in the Sequence.

The applyTo operations are especially useful if we consider transformations
that are somehow generic (e.g., a transformation which transforms a Java source
code model to a .Net source code model), i.e. there may exist lots of different
models that may be transformed with the same transformation. In this case it
is very convenient to have a way for varying the input models for each transfor-
mation execution. The following example illustrates how these operations may
be used:
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let j2dNet : Transformation =

Transformation::alllnstances ()—>select(t | t.identifier = ’>j2dNet’)
in
TerminalModel :: allInstances ()

—>select(m | m.conformsTo.kind = ’Java’))

—>collect (jModel | j2dNet.applyTo(jModel))

In the example we first retrieve the transformation “Java to .Net” from the
repository and store it as j2dNet. Then we apply j2dNet to all the Java models
found in the repository. Note that behind the scenes, the metadata engine makes
several checks before running the transformation. First, it checks if the model is
a transformation model, and thus may be executed. Then, it determines which is
the right transformation engine for running the transformation. Finally, it checks
if the input models conform to the metamodels the transformation supports. To
do this, the metadata engine queries the Megamodel.

The run operation works in the context of the TransformationRecord Meg-
amodel element. The run operation executes a transformation based on the
information stored in the TransformationRecord. Since it stores the last trans-
formation execution parameters, it is useful to rerun transformations without
specifying the input models. The operation returns the newly produced models
within another TransformationRecord.

The following example shows how it is possible to rerun all the transforma-
tions of a model repository:

TransformationRecord :: allInstances ()—>collect (tr | tr.run())

Projectors: As we are working with heterogeneous model repositories, we
rely on technical projectors for non-modelling artefacts (e.g. grammar-based
text). There are two kinds of projectors: injectors and extractors. Injectors
translate from other technical spaces (e.g. grammarware[l9], xmlware, etc) to
the modelware technical space and extractors do exactly the opposite. MoScript
provides the inject peration for injecting models and the extract operation
for extracting models.

The inject operation represents the T2M transformations. It works in the
context of the Model Megamodel element. The Model element represents a non
XMI artefact that depends on a specific grammar. The inject operation applies
the transformation to the model and produces an XMI model. The following
example shows how is possible to inject the source code of Java programs into
Java XMI models:

Model :: allInstances ()
—>select(m | m.conformsTo.kind = ’JavaGrammar’))
—>collect (jCode | jCode.inject())

In the example, we select all the Java models which conform to the Java
grammar and inject them into models conforming to Java metamodels. The
result is a collection of Java XMI models. Behind the scenes, the Metadata
Engine retrieves from the Megamodel the corresponding parser of the grammar
and the tool that uses it, to produce the XMI model.
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The extract operation represents the M2T transformations and uses the
same mechanism as the inject operation, but in the opposite direction.

For both operations we follow an approach similar to the one described in
[27].

Models State Checkers: A set of consistency check utility operations have
been included in the language. The available operation, which verifies if the
modelling artefact is available in the repository (e.g., it could have been removed
by an external tool, or its physical location is unreachable), and the isDirty
operation, which checks if the model has been modified outside MoScript. This

is useful to know that is necessary to re-execute the transformations in which
the model participate.

3.3 Operations with side effects

This subsection describes in detail the operations with side effects provided by
MoScript. As said before, this operations allow the modification of the models
repository and the Megamodel. This operations are usually combined with the
operations without side-effects and OCL queries. The typical usage scenario is
to take the models resulting from transformations executions and persist them.

save. The save operation persists an in-memory model into the repository
and registers it in the Megamodel if it is not already registered. The latter step is
important for keeping integrity between the Megamodel and the repository. The
save operation takes as arguments the Megamodel, an identifier and a locator.
The Megamodel argument is the Megamodel where the model should be stored.
The identifier is self explanatory and the locator is the physical location path
where the model should be stored (e.g. a filesystem path or a URI).

Suppose we want to store the .Net models derived from Java models in a
previous example. The following example shows how the save operation can be
used for this purpose:

for (dNetModel in dNetModels) {
dNetModel .save (
megamodel ,

dNetModel.getIdentifier (),
dNetModel .location + ’.xmi’

)
}

helper context Model def: getIdentifier(): ...;

In the example, we iterate over the collection of .Net models and persist them
in the repository. We use a helper operation to produce the identifiers of the
models we are going to store.

register. The register operation allows the registration of models in the
Megamodel when the model is already stored in the repository. It takes as argu-
ments the model identifier and the physical location at which it currently exists
and returns the newly registered Model instance.

The register operation is the operation other tools (e.g. editors, discoverers,
DSLs, etc.) use to register the artefacts that are created outside the MoScript
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context. For instance, manually created models, discovered models, etc. Indeed,
in this case the Megamodel becomes incoherent with the repository content and
therefore an explicit registration is needed. The following example shows how it
is possible with MoScript to register a new metametamodel:
megamodel . register (

’Ecore’,
’http://www.eclipse.org/emf /2002/Ecore’)

The metadata of a model that has been already registered in the Megamodel
can be updated by re-invoking the register operation. For instance if an-
other tool changes the location of a model it can be updated by re-invoking
the register operation with the new location.

remove. The remove operation allows the removal of elements from the
Megamodel. However, the physical files are not removed from the repository,
thus they could be in use by other tools.

4 Example: Composition of Model Transformations

One of the most useful features of MoScript is the possibility of using it to express
complex workflows, such as chains of model transformations and other typical
model manipulation procedures. The following example illustrates this aspect.

program TransformationChain

using {
inputModel: Model = Model.allInstances ()
—>select(m|m.name = ’start’)—>first();
}
do {
t1: Transformation <— Transformation.allInstances ()
—>select (t| t.name = ’first’ and
t.check(Sequence{inputModel.conformsTo}))
—>first();

ml: TransformationRecord <— t1.applyTo(Sequence{inputModel});

t2: Transformation <— Transformation.allInstances ()
—>select(t| t.name = ’second’ and
t.check(tl.targetReferenceModelBinding))
—>first ();

m2: TransformationRecord <— t2.applyTo(ml.targetModelBinding);
t3: Transformation <— Transformation.allInstances ()
—>select (t| t.name = ’third’ and
t.check(t2.targetReferenceModelBinding))
—>first();
m3: TransformationRecord <— t3.applyTo(m2.targetModelBinding);
for (key in m3.targetModelBinding.keySet()) {

m3.targetModelBinding.get (key).
save (this, key, thisModule.getDefaultLocator (key));

}

helper context Transformation def: check(metamodels
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Sequence (ReferenceModel)): Boolean =

let rm: Sequence(ReferenceModel) = self.sourceReferenceModelBinding in
metamodels —>includesAll (rm);

helper context String def: getDefaultLocator (key :String): String =
’platform:/resource/project/’ + key + ’.xmi’;

The example MoScript program applies three model transformations in se-
quence: t1, t2, and t3. Each model transformation is retrieved from the Meg-
amodel via its name, and its required input metamodels. In this way, there is
an implicit verification at run-time that the model transformation found actu-
ally matches the provided input models: t1 is applicable to inputModels, t2 is
applicable to the output models generated by t1, and t3 is applicable to the
output models generated by t2. This is encoded in the check helper operation.

After all model transformations have been executed, the output models of
the last transformation are saved. The locator string is derived from the model
identifier, in this example.

5 Implementation

In this section, we describe our implementation of MoScript. Figure 4 shows how
we made the instantiation of the architecture presented in section 2

GMMA4ATL
-~
GMMA4TCS
~

Model Repositories

Fig. 4. MoScript architecture implementation.

As concrete implementation, we use our previous implementation of the Meg-
amodel included in the AM3 tool[3]. AM3 follows the Megamodel definition as
shown in Fig. 2, plus two extensions that support M2M and M2T-T2M trans-
formation in ATL and TCS respectively. The Megamodel extension for ATL is
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called GMM4ATL and the extension for TCS is called GMM4TCS. As Metadata
Engine, we use the AM3 tool metadata layer. As transformation engines we use
ATL and TCS. TCS performs T2M transformations by generating an ANTLR®
grammar and performs M2T using Java-based extractors or ATL OCL queries.

MoScript has been implemented on top of the Eclipse Modeling Platform. We
use TCS as well, for defining its abstract and concrete syntax. TCS is in charge
of parsing and lexing MoScript to populate an abstract syntax tree (AST) model
for its compilation. We built the MoScript compiler with ACG®, which is the
ATL VM Code Generator. It translates the AST model (generated by TCS) into
ATL VM assembly code for its execution.

Note that ATL and the ATL VM are two different concepts. ATL is a DSL
for transformations which is compiled in ATL VM code. Other DSLs may run
on top of the ATL VM as is the case of MoScript.

The concrete architecture uses two instances of the ATL virtual machine. One
instance for MoScript and another one for ATL. This guarantees that MoScript
operates independently of ATL and other transformation tools.

As model repository we used the ATL Transformations Zoo'". It is a repos-
itory of ATL transformation projects developed by the Eclipse community. It
holds so far 205 metamodels, 275 models, 219 transformations, and more than
400 other artefacts including textual syntaxes, binary code, source code, libraries,
etc. We registered these artefacts in a Megamodel by means of an automated
model discovery. We have also tested MoScript with a WebML [10] repository,
where models are stored in XML.

In fig. 5 we show a screen shot of a running MoScript program in Eclipse.
The current implementation of MoScript can be downloaded from
http://www.emn.fr/z-info/atlanmod/index.php/Moscript_downloads.

6 Related work

MoScript implements Global Model Management (GMM) by verifying MDE de-
velopment activities against the explicit metadata inside a Megamodel. Other
GMM approaches include Rondo [22], Maudeling'!, Model Bus [3] and Moose [20].
Rondo, Maudeling and Moose translate models to their own internal formats,
whereas Model Bus and MoScript work directly on the models via a metadata en-
gine. Rondo represents models as directed labeled graphs. Maudeling represents
models in the Maude language [11], which is based on rewriting logic. Moose
import models in CDIF or XMI exachange formats conforming to the FAMIX
metamodel using third party parsers. Rondo translates between different model
representations of the same information, and operates on a lower level than Mo-
Script: it directly manipulates the model artefacts, whereas MoScript relies on

8 http://www.antlr.org/
9 http://wiki.eclipse.org/ACG
10 http://www.eclipse.org/m2m/atl/at1Transformations/
' Maudeling: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling
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Fig. 5. Running MoScript program

the invocations of transformation engines. Maudeling provides advanced query-
ing services on modelling artefacts, and as such, could be an invokable service
for MoScript. Moose offers services for navigating and manipulating multiple
model versions and uses Pharo '? (Smaltalk) as scripting language. Model Bus
provides a modelling artefact broker service, where registered tools can be ap-
plied to registered models. Model Bus does not provide a Megamodel concept
to look up model and tool metadata. In a way, the AHEAD tool [6] can also be
seen as a GMM solution avant-la-lettre. AHEAD allows for the composition of
heterogeneous artefacts — called features — into a software product. Each feature
is represented as an algebraic function, where domain and range define when
and where the feature is applicable. MoScript uses a reflective approach, and
queries the Megamodel to check if specific modelling artefacts may be used in
combination.

Model search engines such as presented in [9] and [21], are also related to
GMM in that they can perform large-scale model queries, based on model con-
tents. They differ from our approach in that they do not work on top of a
Megamodel, thus the results obtained from a model search cannot be directly
used in further querying. The results are usually shown as a list of model names
or model fragments which at most can be downloaded.

MoScript is intended to implement MDE workflows, based on the rich con-
tents of a Megamodel. Other MDE workflow approaches are UniTI [25], TraCo [15],
the Modeling Workflow Engine (MWE)!®, and MDA Control Center [15]. UniTI
composes transformation processes via typed input and output parameters. Com-

12 http://www.pharo-project.org/home
13 http://www.eclipse.org/modeling/emft/?project=mwe
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positions are validated based on model type information and any additional
constraints that can be specified on the models. TraCo uses a component meta-
model, with components and ports, where each workflow component is wired to
other components via its input and output ports. Ports are typed in order to val-
idate the compositions. MWE is a model-driven version of Ant'*, with several
builtin tasks for model querying and transformation. MWE does not perform
any validation of the workflow composition. MoScript does not perform a static
type check on its workflow compositions either, but checks the validity of the
composition at run-time.

7 Conclusions and Future Work

In this paper, we presented MoScript: a solution for Global Model Management
(GMM), based on the notion of a Megamodel. MoScript consists of a language
and supporting architecture. The MoScript architecture provides uniform ac-
cess to modelling artefacts, such as models, metamodels, and transformations,
regardless of their storage format or their physical location. It also provides
bindings to several model manipulation tools, such as transformation engines
and querying tools, and allows invocation of those tools.

The MoScript language is an OCL-based scripting language for model-based
task and workflow automation, based on the metadata contained in a Meg-
amodel. It allows for querying a Megamodel for the required modelling artefacts
and tools. The results of such queries can be used in the MoScript language
to load and store modelling artefacts, and perform model manipulations, such
as the invocation of a model transformation engine. MoScript can use the rich
metadata in the Megamodel to validate model manipulations, e.g. to check if
a model transformation is applied to a model that conforms to the right meta-
model. MoScript is able to perform this validation at run-time, when the model
manipulation is invoked.

MoScript has been implemented on top of the Eclipse Modeling Platform,
using the AM3, ATL, ACG, and TCS tools. MoScript provides a textual, syntax-
highlighting editor, and uses the ATL virtual machine and debugger as its run-
time environment. MoScript implementation has been tested against models
from the ATL examples repository.

As further work we plan to extend the list of repositories and tools our
language can interact with, and increase the number of predefined operations in
the language. This may include a querying tool, such as Maudeling, that allows
us to validate modelling workflows written in MoScript.
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