Towards a General Composition Semantics for
Rule-Based Model Transformation

Dennis Wagelaar'*, Massimo Tisi?, Jordi Cabot?, and Frédéric Jouault?

! Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
dennis.wagelaar@vub.ac.be
2 Ticole des Mines de Nantes, 4, rue Alfred Kastler, 44307 Nantes, France
{massimo.tisi, jordi.cabot,frederic.jouault}@inria.fr

Abstract. As model transformations have become an integral part of
the automated software engineering lifecycle, reuse, modularisation, and
composition of model transformations becomes important. One way to
compose model transformations is to compose modules of transformation
rules, and execute the composition as one transformation (internal com-
position). This kind of composition can provide fine-grained semantics,
as it is part of the transformation language. This paper aims to gener-
alise two internal composition mechanisms for rule-based transformation
languages, module import and rule inheritance, by providing executable
semantics for the composition mechanisms within a virtual machine. The
generality of the virtual machine is demonstrated for different rule-based
transformation languages by compiling those languages to, and execut-
ing them on this virtual machine. We will discuss how ATL and graph
transformations can be mapped to modules and rules inside the virtual
machine.

Keywords: Model transformation, Model transformation composition,
ATL, Graph transformation

1 Introduction

Model transformations play a central role in MDE, and have become an inte-
gral part of the automated software engineering lifecycle, just like build script
interpreters and compilers. In order to keep this automated lifecycle maintain-
able, model transformations will have to be reusable, modular, and composable.
We can distinguish between two kinds of composition for model transformation:
external composition and internal composition [1]. External composition refers
to a chain of several model transformation executions, where models are passed
from one transformation to another. Internal composition refers to the compo-
sition of multiple transformation rules and/or modules into one transformation
module, which can then be executed as a whole.

* The author’s work is funded by a postdoctoral research grant provided by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders)

The advantage of external composition is its independence of the transfor-
mation language, while internal composition relies on specific transformation
language semantics and/or constructs (e.g. modules, rules, operations, etc.). It
therefore often applies to one transformation language only, as language seman-
tics generally apply to one language only. The advantage of internal composition
is the richer, more fine-grained composition semantics it can provide. It is pos-
sible to refine or redefine existing rules, add new rules, etc., as long as there is a
common notion of what a rule is.

Different transformation languages have different strengths, which has been
demonstrated by the Transformation Tool Contest workshop series®. The ability
to perform fine-grained composition of transformation rules expressed in different
languages is a powerful tool for tackling complex transformation problems, as
each language can be used for their strong points.

This paper aims to mitigate the problem of internal composition being spe-
cific to one transformation language by defining the composition mechanism
within the context of a transformation virtual machine (VM). The VM provides
a common, executable semantics for (composition of) transformation modules
and rules. Two internal composition mechanisms for rule-based transformation
languages are generalised in this way: module import and rule inheritance. The
VM, called EMF Transformation Virtual Machine (EMFTVM), is based on the
Eclipse Modeling Framework (EMF) [2], which represents a de facto standard for
modelling today. As a result, the proposed composition mechanisms are specific
to EMF.

The generality of EMFTVM — within the scope of EMF — is demonstrated by
compiling more than one rule-based model transformation language to the VM,
and by extension provide executable semantics for those languages. As a proof of
concept, we discuss how ATL [3] and graph transformations [4] can be mapped
to modules and rules in our VM. For this purpose, we’ve developed SimpleGT, a
minimal graph transformation language on top of EMF, based on double push-
out (DPO) semantics. The combination of ATL and SimpleGT already provides
a non-trivial spectrum of rule-based languages, as ATL is a model mapping
language, and SimpleGT is a recursive model rewriting language. This difference
is discussed in detail in the paper.

The generality of EMFTVM also applies to the composition mechanisms
implemented in EMFTVM: ATL’s and SimpleGT’s notion of module import
and rule inheritance are mapped to the same implementation, and therefore
have common executable semantics. In the long term, EMFTVM may evolve
towards a general interoperability solution for model transformation languages
that leverages commonalities between languages.

The rest of this paper is organised as follows: in section 2, we discuss related
work. In section 3, we briefly explain the EMFTVM language. Then, we discuss
how the VM implements rule inheritance in section 4, and module import in
section 5. Section 6 discusses how ATL and SimpleGT are mapped to modules
and rules in our VM. Section 7 concludes this paper.

3 http://planet-research20.org/ttc2011/

http://planet-research20.org/ttc2011/

2 Related Work

2.1 Common Semantics and Virtual Machines

In the domain of model transformation, there have been two efforts to provide
common executable semantics for multiple transformation languages. One of
these concerns the alignment of ATL and QVT Operational [5]. The executable
semantics are provided by the ATL VM in this case. Another such effort is the
ATC VM?*, which aims to provide a common execution framework for languages
such as QVT or RubyTL. In both cases, composition possibilities are limited,
because rules are compiled away into low-level primitives. The necessary meta-
data to perform rule composition, such as what code belongs to what rule, what
are the rule’s input/output elements, and what are a rule’s super-rules, are no
longer available.

2.2 Rule Inheritance

Rule inheritance allows a transformation rule to specify one or more super-rules,
where structure and behaviour of super-rules is inherited cf. object-oriented in-
heritance. According to [6], there are currently three model transformation lan-
guages that include an explicit notion of rule inheritance: ATL [3], the Epsilon
Transformation Language (ETL) [7], and Triple Graph Grammars (TGG) [8].
Each of these languages assumes slightly different semantics for rule inheritance,
and conflict with each other at specific points. For example, ETL triggers a
super-rule whenever its sub-rule triggers , whereas ATL will only trigger a sub-
rule if its super-rule triggers first. TGG in turn requires you to include the
entire super-rule as part of each sub-rule, which allows both ETL’s and ATL’s
rule inheritance strategy to be used.

QVT Operational and Relations [9] include “when” and “where” clauses,
which allow for triggering other mappings/relations from the context of a map-
ping/relation. A “when” clause requires the referenced mapping/relation to
match first, before the current mapping/relation is applied. This corresponds
to the rule inheritance strategy for ATL. A “where” clause enforces the refer-
enced mapping/relation to be applied before the current mapping/relation is
applied. This corresponds to the rule inheritance strategy for ETL.

The VIATRA2 language [10] uses reusable patterns to specify rule trigger
conditions. Rules can refer to patterns, and patterns may include other patterns.
This results in a kind of “inheritance hierarchy” of patterns, where each pattern
requires all its included patterns to match first. VIATRA?2 also uses the pattern
hierarchy to perform optimised matching [11].

2.3 Module Import

Module import allows model transformation languages to separate transforma-
tion rules into multiple modules, and allow a module to include the contents

4 http://sourceforge.net/projects/atc/

http://sourceforge.net/projects/atc/

of one or more other modules. ATL provides a feature called module superim-
position [12], which allows for combining multiple transformation modules by
loading them on top of each other, redefining rules and helpers with the same
signature. ETL supports a built-in module import construct, which loads other
modules during the loading of the current module. Elements with the same sig-
nature are also redefined in ETL. QVT Operational uses “access” and “extends”
to compose modules. “Access” loads another module in its own namespace, and
all its mappings must be explicitly triggered. “Extends” loads another module
into the current namespace, where the current module redefines any mappings
with the same signature in the extended module. VIATRA2 supports a mod-
ule import construct as well, which enables fine-grained reuse of patterns. It is
unclear whether VIATRA2’s module import also supports redefinition.

3 Transformation Virtual Machine Language

The EMFTVM is a stack-based VM (i.e. instructions communicate values via
a stack), and uses a low-level bytecode language to describe model transforma-
tions. The main feature of this bytecode language is that it includes an explicit
representation of transformation modules and rules. This decision allows per-
forming module and rule composition on the bytecode itself, as all necessary
meta-data is available as a first-class entity in the bytecode. This section dis-
cusses the two main EMFTVM bytecode language features that are relevant for
module import and rule inheritance: modules and rules.

3.1 Modules

EMFTVM bytecode is organised into modules, which represent self-contained
units of execution. Each module consists of a number of fields, operations, and
rules. Fields and operations can be static or dynamic, similar to Java fields and
methods. Modules may import other modules, as is further explained in section 5.

Instructions are organised into code blocks. Fig. 1 shows the structure of code
blocks. Code blocks are executable lists of instructions, and have a number of
local variables and a local stack space. Code blocks are used to represent opera-
tion bodies and field initialisers. Code blocks may also have nested code blocks,
which effectively represent closures. Closures are nameless functions that can be
invoked or passed as parameters to other functions. Closures are helpful for the
implementation of OCL’s higher-order operations, such as select and collect.
Closures are also helpful to simplify compilation of source transformation lan-
guages, as each source language AST node can be locally compiled into its own
code block, and may be nested into the correct place. Such closures may be
inlined after compilation.

EMFTVM supports 47 different instructions®. Apart from the general-purpose
instructions for control flow, several EMF-specific instructions exist, such as

® http://soft.vub.ac.be/viewvc/*checkout*/EMFTVM/trunk/emftvm/EMFTVM. html

http://soft.vub.ac.be/viewvc/*checkout*/EMFTVM/trunk/emftvm/EMFTVM.html

SET, GET, ADD, REMOVE, and INSERT. While mapping style transformation
languages typically SET element properties, rewriting style languages typically
ADD and REMOVE element properties. As EMF properties are ordered lists,
an INSERT instruction allows one to insert a property value at a specific index.

Finally, modules specify a number of input, inout, and output models. This
distinction allows one to enforce read-only or write-only constraints at run-time:
input models are read-only, output models write-only, and inout models can be
read and written.

3.2 Rules

Fig. 1 shows the part of the EMFTVM metamodel that defines rules and code
blocks. Rules consist of input elements, output elements, a matcher code block,
applier code block, and post-apply code block. This distinction between matcher,
applier, and post-apply allows one to execute rules in stages: the matcher filters
potential input element matches, the applier assigns element properties and
deletes elements, and the post-apply block contains code that should be run
after a rule has been applied. EMFTVM provides a framework for automatic
matching and tracing, which invokes these three different code blocks at specific
stages.

H NamedElement nestedFor owningBlock
© name : EString nesoteii 0.1 1 0..* [code
[B CodeBlock [Instruction endlInstruction
binding [7 maxLocals : EInt 3 opcode : Opcode 0.1
B TypedElement £ maxStack : EInt , v
2 type : EString 0.1 startinstruction 0.1
< typeModel : EString matcher (0..1 postApply
applier |0..1 0.1 owningBlock

H RuleElement
&% models : EString

ZFbindingFor 0.1

applierFor losalVariables

0..1 § postApplyFer

H InputRuleElement H Rule H LocalVvariable |
7 mode : RuleMode 7 slot : EInt
&% superRules : EString

inputElements | 1..*

o1 ¢ abstract : EBoolean <<enumeration>>
- ¢ default : EBoolean « RuleMode
H OutputRuleElement . isti . =
‘ ‘ inputFor | § distinctElements : EBoolean = GEE
.
o 0.1 CoutF - automaticSingle
outputElements I B - outputror - automaticRecursive

Fig. 1. Structure of EMFTVM rules and code blocks

Input elements can have a binding code block. This allows EMFTVM to
apply a search plan strategy [10] in its automatic matcher. Each binding block
calculates the valid values for an input element, given the values of the input

elements that have already been bound (either by iteration or by another bind-
ing).

Furthermore, rules have a name that is unique within its module, and can
have a number of super-rules. These super-rules are stored as names only, and are
resolved at load-time, when rules are composed. This is done to facilitate inter-
action with the module import mechanism, and is further discussed in section 5.
Super-rules and rule inheritance are further explained in section 4.

Rules can be abstract, which means that they are only applied in combination
with a non-abstract sub-rule. A rule may create default traces, which allows
the transformation module to resolve target elements from a (list of) source
element(s). Default traces have as consequence that the same input pattern may
not be matched by another rule that creates default traces, as this would result in
ambiguous source-target value resolution. Rules may also match against distinct
elements, which means that no two elements in a single input pattern match can
be equal.

Finally, rules have an execution mode, which can be either manual, auto-
matic single, or automatic recursive. Manual rules have to be explicitly invoked.
Automatic single rules are matched once, then applied once by the automatic
matching framework. Automatic recursive rules are matched and applied by the
automatic matching framework until there are no more matches.

The next section proposes a common semantics for rule inheritance.

4 Rule Inheritance

Rule inheritance in EMFTVM allows rules to specify a list of super-rules, whereby
sub-rules can only match on input that has also matched against their super-
rules. As a result, rule inheritance serves as an optimisation strategy that only
tries to match sub-rules whenever their super-rules have already matched. This
effectively represents a RETE network, such as applied in VIATRA2 [11]. Rule
inheritance also serves as a reuse mechanism, whereby sub-rules can reuse and
extend the input pattern and output pattern with new elements. Reducing the
number of input elements — or output elements — is not possible, and any omit-
ted input/output elements are implicitly inherited from the super-rule. However,
super-rule input/output elements must be repeated in the sub-rule in case lexical
access to the elements is required (e.g. in the applier or post-apply block).

The EMFTVM rule inheritance mechanism supports multiple inheritance,
which requires all super-rules to have matched on the same input before trying
to match the sub-rule. Before applying the sub-rule, all super-rules are applied in
the order they are specified in the sub-rule. Fig. 2 outlines the semantics for rule
matching in the context of rule inheritance. Each rule is represented by a box
with compartments. The left compartment contains the input elements, whereas
the right compartment contains the output elements. Each input/output element
is specified by a label and a type (i.e. label:Type).

Rule R3 in the figure only matches against input elements that have also been
matched by super-rules R1 and R2. Input/output elements correspond by label:

Rule R1 Rule R2

a:A x: X cilC vV
b:B y:Y b:D y:Z
R1 matches a:A, b:B R2 matches c:C, b:D

R3 only matches if all b's are
equal

- ifF, B or D are disjoint, R3 Rule R3 R3 can only lexically
never matches! acces b and e

- R3 matches a:A, b:F X:V
b:F=b:B=b:D, c:C, e:E e:E | y:Z

Fig. 2. Matching semantics for rule inheritance

input element b:B in rule R1, and b:D in rule R2 are the same as input element
b:F in rule R3 for any match of rule R3. Therefore, R3 only matches b’s that are
an instance of B, D, and F.

As the number of input/output elements cannot be reduced in sub-rules,
R3 is considered to inherit the input elements a:A and c:C from rules R1 and
R2, respectively, and output element v:V from rule R2. Rule R3 cannot lexically
access those elements, however, as the EMFTVM engine does not pass them as
parameters to R3’s matcher, applier, and post-apply code blocks.

It is only possible to define super-rule relations between rules of the same
kind: manual, automatic, or recursively automatic, and default or non-default.
This is because super- and sub-rules are executed together according to the same
execution semantics. Taking this into account, the matching semantics of each
rule remains sound, even if any of the rules is replaced by an arbitrary other rule
(of the same kind). If rules are truly incompatible, they will simply not produce
any combined match.

Fig. 3 outlines the semantics for rule application in the context of rule inher-
itance. Whereas the matching semantics are sound for any change in the rule hi-
erarchy, the application semantics comes with some type safety constraints. The
types of all input elements are already guaranteed by the matching algorithm
(matches only occur on the specified types). However, the types of the output
elements must be compatible between super- and sub-rule. The rule application
algorithm creates output elements that are instances of the types specified in the
sub-rule. Therefore, those types must be co-variant with the types specified for
the same elements in the super-rule. For example: an element x : V is created
for each match of R3, but is considered as x : X in the application of R1. There-
fore, V must be co-variant with X: each instance of V must also be an instance
of X. Similarly, for the creation of y : Z for R3, and y : Y in R1, Z must be
co-variant with Y. These type safety constraints may be checked at load-time by
the virtual machine.

The automatic rule matching framework performs optimised matching of rule
hierarchies, while being implemented reflectively, i.e. looking up super-rules and
input/output elements and their types at run-time. The algorithm is split up

Rule R1 Rule R2

a:A x: X c:C v:V
b:B y:Y b:D y:Z
R1 applies R2 applies
aA, bB - x:X,y:Y c:C,bD - vV, y:Z
R3 applies Rule R3 - V must be co-variant with X
aA, biF, c.C, eE - x:V, vV, y:.Z - Z must be co-variant with Y
b:F x:V
All elements x, y, v, are created e:E y:Z

Fig. 3. Application semantics for rule inheritance

into two phases: (1) matching the single automatic rules and (2) matching the
recursive automatic rules. The algorithm for single rules works as follows:

1.

All rules without super-rules are matched, and their matches (tuple of input

elements) are stored.

. All rules for which all of their super-rules have matched the same elements
are now matched on those elements, and their matches are stored. For all
matches, the super-rule matches are removed.

. The previous step is repeated until all applicable rules are processed.

. For all matches of non-abstract rules, output elements are created, and the
match tuple is converted to a trace tuple that includes the output elements.

. For all traces, the corresponding rule applier code block is invoked, super-
rules first, then the sub-rule.

. For all traces, the corresponding rule post-apply code block is invoked, super-

rules first, then the sub-rule.

Single automatic rules are expected to match on elements from a different

model (e.g. an input model) than the model in which the rules are applied
(e.g. an output model). This guarantees that previously found matches are not
invalidated by applying rules.

The same cannot be expected for recursive rules, which must be able to

match on their own output. Therefore, recursive rules can match on elements
from any model (e.g. inout models). The algorithm for recursive rules takes this
into account, by re-matching after each apply:

1

6

. Rules without super-rules are matched first. For rules with sub-rules, all
matches (tuple of input elements) are stored, while only the first match is
stored for rules without sub-rules. If a (non-abstract) rule without sub-rules
matches, it is applied®, the recorded matches are cleared, and the algorithm
restarts.

Rules for which all of their super-rules have matched the same elements are
now matched on those elements. Again, for rules with sub-rules, all matches

For recursive rules, applying involves converting a match to a trace, creating output

elements, and invoking the applier block and post-apply block.

are stored, while only the first match is stored for rules without sub-rules.
For all matches, the super-rule matches are removed. If a (non-abstract) rule
without sub-rules matches, it is applied, the recorded matches are cleared,
and the algorithm restarts.

3. When all rules have been processed, and (non-abstract) matches have been
recorded, the first of those matches is applied, the recorded matches are
cleared, and the algorithm restarts. Otherwise, the algorithm ends.

These algorithms ensure that sub-rules are only matched for the elements
that have already been matched by their super-rules, with no unnecessary match-
ing. They also ensure that sub-rules cannot widen the initial input element type
constraints and constraints encoded in the matcher code block of the super-rules.

When executing single and recursive automatic rules together, they may
operate on the same models in the following way: the single rules transform
from an input model to an inout model, and the recursive rules then further
transform the inout model.

Even though the different kinds of rules use different matching algorithms,
these algorithms share their implementation of rule inheritance. A unified se-
mantics for rule inheritance is enforced in this way.

The following section proposes a common semantics for module import.

5 Module Import

EMFTVM supports module import via the “imports” attribute of each module,
which lists a number of module names. These names are resolved at load-time by
the VM. Fig. 4 shows how EMFTVM module import works. Each module loads
its imported modules before loading itself, in the specified order. For example,
module M1 requires that first M2 is loaded, and then M3. The first step is then
to start loading M2 (1). Then, M2 requires that M4 and M3 are loaded before
itself. Therefore, M4 is loaded (2), and then M3 is loaded (3), which finds that
its imported M4 was already loaded (4). Now, M2 can be loaded, and M1 finds
that M3 was already loaded (5). Finally, M1 is loaded. Circular imports — and
self-imports — are ignored.

Module M1 N
imports M2 » Module M2 5
imports M3 __.5 imports M4 = Module M4
imports M3 >
3 Module M3

4
imports M4 ——&

Fig. 4. Module import semantics

Module import supports redefinition of fields, operations, and rules that were
already specified in an imported module. Whenever a module is imported, its

fields, operations, and rules are registered in the VM’s lookup table: rules are
registered by name, whereas fields and operations are also registered by their
context and parameter types’. Fields and operations are only redefined by an
importing module if the context and parameter types match. Fields and op-
erations with different context/parameter types are overloaded instead. Hence,
redefinition of fields and operations is always type-safe. Redefined elements are
completely removed, and cannot be accessed by the redefining element.

Because rules are only registered by name, any rule with the same name may
redefine an existing rule. That means additional constraint checking is required
for rule redefinition. Rules must be of the same kind — manual/automatic sin-
gle/automatic recursive, and default/non-default — to allow sound redefinition.
After all modules are imported, and all rule redefinition has been performed, the
super-rules for each rule are resolved. At this time, the type safety checks for
rule inheritance are performed (see section 4).

Finally, in case of conflicting specified importing orders, the depth-first load-
ing order, as shown in Fig. 4, is followed. For example, if M1 specified another
imports M4 statement after imports M3, the loading algorithm would still load
M3 after M4. This is considered correct, because by specifying imports M4, M3
states that it wants the opportunity to redefine elements of M4. M1 may still
redefine all elements, as it is the last module to be loaded.

Module import is considered transitive: if M1 imports M2, and M2 imports M4,
then M1 imports M4, and can redefine elements of M4.

6 Mapping of Rule-Based Model Transformation
Languages

To demonstrate the generality of the previously explained composition mecha-
nisms, a mapping from ATL and SimpleGT to the EMFTVM is presented. ATL
is an established, mapping-style model transformation language, and SimpleGT
is a proof-of-concept, rewriting-style model transformation language, based on
double push-out (DPO) graph transformation semantics. By mapping these two
different languages to the same VM, we effectively provide common executable
semantics for both languages, including a common semantics for the composition
mechanisms discussed before.

6.1 ATL

ATL transformation definitions consist of modules, which can contain different
kinds of rules, helper attributes, and helper methods. The mapping of ATL to
EMFTVM is straightforward for the most part: Table 1 provides an overview of
how ATL constructs are mapped to EMFTVM constructs.

As ATL includes OCL to do its model navigation, OCL support also has to
be included in the mapping. EMFTVM forms a symbiosis with the underlying

7 static fields/operations have a separate lookup table.

ATL construct - EMFTVM construct

module — module

uses — imports

input model — input model

output model — output model

metamodel — metamodel
matched rule — automatic single default rule
nodefault matched rule — automatic single rule
lazy rule — manual rule
unique lazy rule — manual default rule
rule input element — input element
rule output element — output element

input pattern filter expression — code in rule matcher block
output pattern bindings — code in rule applier block
code in “do” block — code in rule post-apply block
matched rule variables — rule fields
called rule — static operation
called rule variables — local variables in operation code block
entrypoint rule — static operation, called from main
endpoint rule — static operation, called from main
helper attribute without context — static field
helper attribute with context — field
helper method without context — static operation
helper method with context — operation
Table 1. Mapping of ATL constructs to EMFTVM constructs

Java run-time environment, and allows the lookup of Java types and invocation
of Java methods. OCL support is provided in the form of a natively implemented
EMFTVM module of operations, and a set of natively implemented collection
types (Sequence, Set, Bag, OrderedSet). Higher-order collection operations, such
as select and collect, take an EMFTVM code block as an argument. The
complete mapping of ATL to EMFTVM is described in the ATL-to-EMFTVM
compiler®. This compiler is written in ATL, and compiled by itself to EMFTVM.

6.2 Graph Transformations

Most existing graph transformation languages have already evolved into a fairly
complex language (e.g. using implicit NAC expressions [13] and control flow
constructs [14]). However, none of them support rule inheritance yet?, and the
transformation language has to be altered to support it. Therefore, we introduce

8 http://tinyurl.com/ATLtoEMFTVM-atl
9 Triple Graph Grammars (TGG) do support rule inheritance, but form a different
class of graph transformation.

http://tinyurl.com/ATLtoEMFTVM-atl

a basic, proof-of-concept graph transformation language with built-in rule in-
heritance and module import support: SimpleGT. SimpleGT is a textual graph
rewriting language, based on double push-out semantics (DPO): rules include an
input graph, correspondence graph, and output graph, where the input graph
is deleted, the correspondence graph is left unchanged, and the output graph is
created. The correspondence graph is implicit, and is represented by the intersec-
tion of the input and output graph. SimpleGT uses explicit negative application
condition graphs (NACs), which specify input patterns that prevent the rule
from matching.

Listing 1.1 shows an excerpt of a SimpleGT transformation module, named
“InlineCodeblocks”. This transformation rewrites INVOKE_CB instructions by
inlining the invoked code block into the calling code block. SimpleGT uses from
to specify the input pattern, and to to specify the output pattern. The common
elements in the input and output pattern form the correspondence graph, and
is not altered by EMFTVM. Nodes map to EMF EObjects and edges map to
EMF EReferences. A node is specified using a label and type. An edge is specified
using the ‘="’ matching operator: this operator specifies the existence of an edge
(or EReference value). In addition, the ‘="" operator can be used to match node
attribute values (EAttributes).

The rules RetargetInvoke_cbLocalVariableStart and RetargetInvoke_cb-
LocalVariableEnd re-map the start and end instruction of local variables that
refer to INVOKE_CB instructions. Only the latter rule is listed here, as it in-
cludes a special feature: EMF models have ordered edges; the ‘="|" operator
allows one to match the last edge going out from a node (the regular ‘=" oper-
ator always matches the first edge). In this case, the endInstruction of local
variable 1v should be re-mapped to the last instruction in the nested code block.

The Invoke_cb rule is an example of an abstract rule that is inherited by In-
voke_cb_inline_locals and Invoke_cb_inline. An abstract rule is only applied
when a non-abstract sub-rule is applied. Conversely, the sub-rules only match
when all super-rules have matched. Invoke_cb_inline_locals moves one local
variable at a time into the calling code block, while re-setting the assigned local
variable slot (the EMFTVM metamodel implementation automatically sets this
again on read access). Invoke_cb_inline performs the actual inlining, and moves
the code (i.e. instructions), nested code blocks, and line number mappings from
each invoked code block into its calling code block. The before keyword is used
to enforce insert semantics instead of append semantics (the default): the code
of the nested code block should be inserted before the subject INVOKE_CB
instruction.

The remainder of the transformation module'? is omitted, as it does not in-
troduce new SimpleGT constructs. An overview of the mapping of SimpleGT
to EMFTVM is provided in Table 2. The complete mapping of SimpleGT to
EMFTVM is described in the SimpleGT-to-EMFTVM compiler!!, which is writ-
ten in ATL, and compiled to/executed in EMFTVM.

10 http://tinyurl.com/InlineCodeblocks-simplegt
" http://tinyurl.com/SimpleGTtoEMFTVM-atl

http://tinyurl.com/InlineCodeblocks-simplegt
http://tinyurl.com/SimpleGTtoEMFTVM-atl

module InlineCodeblocks;
transform v : EMFTVM;

rule RetargetInvoke_cbLocalVariableStart { ... }
rule RetargetInvoke_cbLocalVariableEnd {
from 1v : EMFTVM!LocalVariable (endInstruction =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb),
nestedCb : EMFTVM!CodeBlock (code =~| 1last),
last : EMFTVM!Instruction
to 1v : EMFTVM!LocalVariable (endInstruction =~ last),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb),
nestedCb : EMFTVM!CodeBlock (code =~ last),

last : EMFTVM!Instruction }
abstract rule Invoke_cb {

from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb
to cb : EMFTVM!CodeBlock (code =~ invoke_cb),

invoke_cb : EMFTVM!Invoke_cb }
rule Invoke_cb_inline_locals extends Invoke_cb {
from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb),
nestedCb : EMFTVM!CodeBlock (localVariables =~ 1lv),
lv : EMFTVM!LocalVariable (slot =" 1lv.slot)
to cb : EMFTVM!CodeBlock (code =~ invoke_cb,
localVariables =~ 1v),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb),
nestedCb : EMFTVM!CodeBlock,
lv : EMFTVM!LocalVariable }
rule Invoke_cb_inline extends Invoke_cb {
from cb : EMFTVM!CodeBlock (code =~ invoke_cb),
invoke_cb : EMFTVM!Invoke_cb (codeBlock =~ nestedCb),
nestedCb : EMFTVM!CodeBlock
Nnot nestedCb : EMFTVM!CodeBlock (localVariables =~ 1v),
lv : EMFTVM!LocalVariable
to cb : EMFTVM!CodeBlock (code =~ invoke_cb,
code =" nestedCb.code before invoke_cb,
lineNumbers =" nestedCb.lineNumbers,
nested =" nestedCb.nested before nestedCb),
invoke_cb : EMFTVM!Invoke_cb }

Listing 1.1. Excerpt of InlineCodeblocks SimpleGT module

SimpleGT rules map to automatic, recursive, non-default rules in EMFTVM.
Input nodes map to input elements, output nodes map to output elements only if
they did not occur in the input pattern. NAC nodes are not explicitly represented
by rule elements in EMFTVM: the goal is to not match them. Instead, they are
represented in the rule matcher code block, to make sure they do not occur as
part of the input graph. The binding code block of EMFTVM rule input elements
is used to implement a search plan strategy, where input node values are derived
from other input node values. The search plan code for NAC nodes is embedded
in the rule matcher code block.

7 Conclusion and Future Work

This paper has presented an approach to achieve a general semantics for two
internal composition mechanisms for rule-based model transformation languages:
module import and rule inheritance. These general semantics are achieved in
three steps: (1) module import and rule inheritance are defined within a virtual

ISimpleGT construct - EMFTVM construct

module — module

imports — imports

model — inout model

metamodel — metamodel

rule — automatic recursive distinct rule
input nodes — input element

nac nodes — code in rule matcher block

output nodes — output element if new element

unchanged edges — code in rule matcher block

deleted edges — code in rule matcher block and applier block
new edges — code in rule applier block

deleted nodes — code in rule matcher block and applier block

Table 2. Mapping of SimpleGT constructs to EMFTVM constructs

machine (VM) for model transformation, named EMFTVM, (2) the generality
of the VM is demonstrated by translating two distinct transformation languages,
ATL and graph transformations, to the VM, and (3) by translating ATL and
graph transformations to the same VM, a common semantics for module import
and rule inheritance applies to those languages.

The generality of the presented semantics is limited by two factors: (1)
EMFTVM is specific to EMF models, and (2) only two rule-based languages
have been translated to EMFTVM. As EMF is a de facto standard for mod-
elling, and many transformation languages target EMF [3,7,9,10,14,15,16], the
scope of EMF is considered sufficiently relevant to the modelling community.
The fact that only ATL and SimpleGT, a proof-of-concept graph transforma-
tion language, have been translated to EMFTVM is mitigated by the nature
of both languages. ATL is a model mapping language, which uses a single rule
matching phase, after which all rules are applied. SimpleGT is a recursive model
rewriting language, which applies its rules recursively until no more matches can
be found. Both are very different in rule matching and application semantics, but
are still able to share the semantics for module import and rule inheritance. Any
languages with semantics similar to either ATL (i.e. the QVT-like languages)
or SimpleGT (i.e. graph transformation languages) can likely be mapped to
EMFTVM as well.

As EMFTVM implements the entire ATL and SimpleGT languages, it pro-
vides a complete interoperability solution for these languages (including ATL’s
rule invocation and implicit tracing mechanism). Over time, EMFTVM may
evolve as a general interoperability solution, as more languages are mapped to
it. It is currently not possible to map synchronisation-style languages, such as
QVT Relations [9] and Triple Graph Grammars (TGG) [8], to EMFTVM. These
languages try to first match output elements, and will create them if not found.
Current EMFTVM output elements are always created.

References

10.

11.

12.

13.

14.

15.

16.

. Kleppe, A.G.: First European Workshop on Composition of Model Transformations

- CMT 2006. Technical Report TR-CTIT-06-34, Enschede (2006)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional (2003)

Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.:
Satellite Events at the MoDELS 2005 Conference. Volume 3844 of LNCS., Springer-
Verlag (2005)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. 1st edn. Springer-Verlag (2006)

. Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In:

Proceedings SAC 2006. (2006)

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schénbéck, J., Schwinger,
W., Kolovos, D., Paige, R., Lauder, M., Schiirr, A., Wagelaar, D.: A Comparison
of Rule Inheritance in Model-to-Model Transformation Languages. In Cabot, J.,
Visser, E., eds.: Proceedings of the 4th International Conference on Model Trans-
formation (ICMT 2011). Volume 6707 of LNCS., Springer-Verlag (2011) 31-46
Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In Vallecillo, A., Gray, J., Pierantonio, A., eds.: Proceedings of ICMT 2008. Volume
5063 of LNCS., Springer-Verlag (2008) 46-60

Schiirr, A.: Specification of graph translators with triple graph grammars. In:
Proceedings of WG’94. Volume 903 of LNCS., Springer-Verlag (1995) 151-163
Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. (2005) Final Adopted Specification, ptc/05-11-01.
Varré, G., Friedl, K., Varré, D.: Adaptive Graph Pattern Matching for Model
Transformations using Model-sensitive Search Plans. Electr. Notes Theor. Comput.
Sci. 152 (2006) 191-205

Bergmann, G., Okrés, A., Réth, 1., Varré, D., Varré, G.: Incremental pattern
matching in the viatra model transformation system. In: Proceedings of GRaMoT
'08, ACM Press (2008) 25-32

Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a
composition technique for rule-based model transformation languages. Software
and Systems Modeling 9 (2009) 285-309

Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In Ehrig, H.,
Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Proceedings of TAGT’98. Selected
papers. Volume 1764 of LNCS., Springer-Verlag (2000) 157-167

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In Petriu, D.C.,
Rouquette, N.,; Haugen, O., eds.: Proceedings of MoDELS 2010. Volume 6394 of
LNCS., Springer-Verlag (2010) 121-135

Lawley, M.J., Steel, J.: Practical Declarative Model Transformation With Tefkat.
In: Satellite Events at the MoDELS 2005 Conference. Volume 3844 of LNCS.,
Springer-Verlag (2005) 139-150

Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
In ABmann, U., Aksit, M., Rensink, A.; eds.: MDAFA 2003 and MDAFA 2004.
Revised Selected Papers. Volume 3599 of LNCS., Springer-Verlag (2005) 62-76

	Towards a General Composition Semantics for Rule-Based Model Transformation
	1 Introduction
	2 Related Work
	2.1 Common Semantics and Virtual Machines
	2.2 Rule Inheritance
	2.3 Module Import

	3 Transformation Virtual Machine Language
	3.1 Modules
	3.2 Rules

	4 Rule Inheritance
	5 Module Import
	6 Mapping of Rule-Based Model Transformation Languages
	6.1 ATL
	6.2 Graph Transformations

	7 Conclusion and Future Work

