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Abstract
Program queries can answer important software engineering ques-
tions that range from “which expressions are cast to this type?”
over “does my program attempt to read from a closed file?” to
“does my code follow the prescribed design?”. In this paper, we
present a comprehensive tool suite for querying Java programs. It
consists of the logic program query language SOUL, the CAVA li-
brary of predicates for quantifying over an Eclipse workspace and
the Eclipse plugin BARISTA for launching queries and inspecting
their results. BARISTA allows other Eclipse plugins to peruse pro-
gram query results which is facilitated by the symbiosis of SOUL
with Java – setting SOUL apart from other program query lan-
guages. This symbiosis enables the CAVA library to forego the pre-
dominant transcription to logic facts of the queried program. In-
stead, the library queries the actual AST nodes used by Eclipse it-
self, making it trivial for any Eclipse plugin to find the AST nodes
that correspond to a query result. Moreover, such plugins do not
have to worry about having queried stale program information. We
illustrate the extensibility of our suite by implementing a tool for
co-evolving source code and annotations using program queries.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Techniques]: Object-Oriented Programming; D.2.6 [Program-
ming Environments]: Eclipse; D.3.2 [Language Classifications]:
Constraint and logic languages

General Terms Languages

Keywords program queries, logic programming, program anal-
ysis, software engineering tools, integrated development environ-
ments

1. Introduction
Program queries identify program elements that exhibit character-
istics of interest. Logic formulas can be used as expressive and
descriptive specifications of these characteristics. This merely re-
quires reifying the program under investigation such that logic vari-
ables can range over its elements. Executing a proof procedure will
then establish whether program elements exhibit the characteris-
tics specified in a formula. This logic-based approach to program
querying is widespread in the literature (e.g., Prolog [13] and Dat-
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alog [4] have lent their proof procedure to [1, 7, 10, 15, 20, 26, 30]
and [6, 12, 17, 22] respectively). We will focus on querying Java
programs using the latest incarnation of SOUL [30], one of the ear-
liest logic program query languages under active development.

User-specified program queries are of special interest. They en-
able enforcing coding conventions a development team has agreed
upon, detecting violations against the protocol an in-house API ex-
pects to be adhered to, ensuring that an application’s design rules
are adhered to, or even checking whether there are similar in-
stances of suboptimal code upon its discovery. As such, they pro-
vide application-specific support for the development process. De-
spite their valuable applications, logic program query languages
have not yet become an integral part of every developer’s toolbox.
In our experience, this can be attributed to two adoption hurdles:

H1: Specifying program queries First of all, considerable exper-
tise is required to specify source code characteristics through
logic formulas that quantify over a reified program representa-
tion. Users have to be familiar with the representation of the
queried program (e.g., the abstract grammar of AST nodes) as
well as its reification (e.g., a transcription to logic terms). More-
over, such formulas tend to become convoluted and operational
in nature when users attempt to ensure that all implementation
variants of a characteristic are recalled. This is especially true
for control flow (i.e., those that concern the order in which in-
structions are executed) and data flow (i.e., those that concern
the values operated upon by instructions) characteristics.

H2: Exploiting solutions to program queries The second adop-
tion hurdle constitutes the practical challenges that tool builders
face in exploiting the results of a logic program query. Consider
implementing a plugin for a Java IDE that highlights repeated
string concatenations where a StringBuilder would be more
appropriate. Usually, this entails telling the IDE to mark some
of its AST nodes. We therefore have to find those AST nodes
that correspond to repeated string concatenations. Not wanting
to reinvent the wheel, we could resort either to invoking the
search API of the IDE or to launching a logic program query.
The latter is the only feasible option in case the sought af-
ter AST nodes are characterized behaviorally. Existing search
APIs do not support control flow and data flow characteristics.
Moreover, this option has the advantage of opening the tool up
to potential application-specific uses without exposing users to
its implementation details. We merely have to allow our users
to modify the logic program query. However, finding the AST
nodes that correspond to the solutions to this query can be more
cumbersome. Solutions to a logic program query comprise rei-
fied program elements that are bound to the variables in the
query. How cumbersome it is to find the AST node that cor-
responds to such a variable binding depends on the program
representation and its reification.
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Figure 1. Architectural overview of the SOUL tool suite for querying Java programs.

To address the first adoption hurdle, SOUL has pioneered sev-
eral features that facilitate querying Java programs. Among others,
its example-driven matching [8] of code templates [9] recalls im-
plementation variants of control flow and data flow characteristics
—of which the code template exemplifies their prototypical im-
plementation. To this end, SOUL consults the results of program
analyses in its domain-specific unification procedure [3].

SOUL has featured a linguistic symbiosis [16] with Smalltalk
since its inception. This symbiosis renders Smalltalk objects first-
class values in the program query language. In addition, it allows
evaluating arbitrary Smalltalk expressions in a program query. As a
result, SOUL queries can quantify over any object that is reachable
in a live Smalltalk image. More recently, we established a symbio-
sis between SOUL and Java through the Smalltalk-to-Java intercon-
nection facilities provided by the JAVACONNECT library [2]. As a
result, SOUL queries can quantify over any object that is part of a
live Eclipse instance.

In this paper, we demonstrate how this SOUL-Java symbio-
sis facilitates exploiting the solutions to a logic program query
in software engineering tools and Eclipse plugins in particular —
thus addressing the second hurdle to the adoption of logic pro-
gram querying. Among others, the symbiosis of SOUL and Java
enables an identity-based reification of AST nodes. The reified
version an AST node is the AST node itself (i.e., an instance
of org.eclipse.jdt.core.dom.ASTNode). It is therefore triv-
ial for any Eclipse plugin to find the AST nodes that correspond to
a query result. Moreover, such plugins do not have to worry about
having queried a stale program representation.

The contributions of this paper are as follows:

• An overview of the recent features of SOUL for querying Java
programs (i.e., its predicate library, the example-driven match-
ing of code templates and its domain-specific extensions to the
unification procedure) and a discussion of how they facilitate
specifying program queries (cf. adoption hurdle H1).

• We make the case for reifying AST nodes in logic program
querying through linguistic symbiosis rather than the predom-

inant transcription to logic facts. This facilitates exploiting the
solutions to program queries in other software engineering tools
(cf. adoption hurdle H2).

• The BARISTA plugin for Eclipse which provides extension
points that other plugins can hook into for launching a SOUL
query and exploiting its solutions. By means of a compari-
son of two re-implementations of our SMART ANNOTATIONS
tool [19], we validate the advantages that logic program query-
ing brings to tool builders. The first one relies on SOUL and
BARISTA for identifying code, while the second one relies on
the Eclipse search API instead.

2. Architecture of the Tool Suite
We begin our exposition with an overview of the architecture of
the SOUL tool suite for querying Java programs in symbiosis with
Eclipse. As depicted in the top-left corner of Figure 1, the tool
suite consists of SOUL evaluator, the CAVA library of predicates
for quantifying over Eclipse JDT projects and the Eclipse plugin
BARISTA which provides extension points that other plugins can
hook into for interacting with the SOUL evaluator. We will detail
SOUL, the CAVA library and the BARISTA plugin in Section 3,
Section 4 and Section 5 respectively. The bottom-left corner of
Figure 1 depicts a physical view on the architecture. As the SOUL
evaluator is implemented in Smalltalk, it runs on the Smalltalk VM.
The Eclipse platform, on the other hand, runs on a Java VM that is
started from within the Smalltalk VM. Terminating the Smalltalk
VM also terminates the Java VM. Our BARISTA plugin runs on the
Eclipse platform alongside the Eclipse JDT plugin that provides
the IDE’s facilities for editing Java programs. Plugins BARISTAUI
and SMART ANNOTATIONS interact with the SOUL evaluator by
hooking into the extension points of the BARISTA plugin. Both of
these plugins will be discussed in sections 5.3 and 6.

Overview of JAVACONNECT Central to the architecture of our
tool suite are the Smalltalk-to-Java interconnection facilities pro-
vided by the JAVACONNECT [2] library. These enable invoking
methods on Java objects (e.g., those that make up the Eclipse IDE)
from within a Smalltalk image. This is illustrated by the following



snippet. It prints to the Smalltalk “Transcript” (i.e., a globally
accessible log) the individual fragments of the class path that a par-
ticular Eclipse project p should be launched with:

1 a := JavaWorld.org.eclipse.jdt.launching.JavaRuntime
2 computeDefaultRuntimeClassPath_IJavaProject: p.
3 c := a asSmalltalkValue.
4 c do: [:s | Transcript write: s asSmalltalkValue]

Lines 1-2 invoke the static method
JavaRuntime.computeDefaultRuntimeClassPath(IJavaProject)

which returns a Java array of Strings that correspond to the frag-
ments of the class path. The method is invoked through a Smalltalk
selector computeDefaultRuntimeClassPath IJavaProject:.
JAVACONNECT automatically generates such Smalltalk selectors
for Java method signatures. The Smalltalk selector consists of
keywords of which the first is the concatenation of the Java
method name and the short name of the type of the first argument.
The remaining keywords are the short names of the types of the
remaining arguments of the Java method.1 Such selectors are un-
derstood by the Smalltalk proxies that JAVACONNECT creates for
Java objects. The above snippet assumes that variable p is already
bound to a Smalltalk proxy that JAVACONNECT created for a Java
IProject. When line 2 passes this proxy as the argument to mes-
sage computeDefaultRuntimeClassPath IJavaProject:,
JAVACONNECT invokes the corresponding Java method with the
unwrapped IProject. It then creates a new Smalltalk proxy for
the Java array that is returned by this method, which gets assigned
to variable a.

One of those proxies is depicted as “S proxy for J object” on the
right-hand side of Figure 1. It delegates messages that correspond
to a Java method signature to the actual Java object the proxy
was created for. To this end, JAVACONNECT calls one of the C
procedures in the Java Native Interface (JNI) of the Java VM
through the foreign function interface (FFI) of the Smalltalk VM.
JAVACONNECT supports callbacks by dynamically generating a
Java proxy for any Smalltalk object that is passed as an argument
to a Java method. Methods invoked on such a Java proxy (e.g., “J
proxy for S object” on the right-hand side of Figure 1) are delegated
to the original Smalltalk object. To this end, the invocation handler
of the generated Java proxy calls back into the Smalltalk VM
through a Java Native Method.

JAVACONNECT supports decorating Smalltalk proxies for Java
objects with plain Smalltalk methods. A number of conve-
nience methods is predefined on proxies for commonly used
Java objects. For instance, all Smalltalk proxies for instances of
java.lang.String are decorated with an asSmalltalkValue
method that returns a corresponding instance of Smalltalk’s
ByteString class. Likewise, all Smalltalk proxies for Java ar-
rays answer message asSmalltalkValue with an equivalent in-
stance of Smalltalk’s Array class. The elements within the array
are left unchanged. Line 3 of the above snippet therefore assigns
variable c to a Smalltalk array that contains Smalltalk proxies for
Java Strings. Line 4 iterates over them using the Smalltalk itera-
tion message do:. This message is given a closure as its argument,
which gets applied to each of the Strings s in the array. Through
another invocation of asSmalltalkValue, each Java String is
converted to an equivalent Smalltalk ByteString that is written to
the Transcript.

Note that the users of our tool suite do not have to implement
such Smalltalk snippets themselves. Eclipse users that want to iden-
tify source code of interest in a JDT project can do so declaratively
through SOUL queries (cf. Section 3). Eclipse plugin builders that

1 Fully qualified type names are used instead to disambiguate the Smalltalk
selectors for a method that is overloaded on types that share the same short
name.

want to exploit the solutions to a SOUL query can do so by hooking
into the Java extension points provided by the BARISTA plugin (cf.
Section 5). Only the most basic predicates from our CAVA library
are implemented in this manner (cf. Section 4).

3. The SOUL Program Query Language
SOUL is a logic-based program query language. Users express the
characteristics of the program elements that SOUL has to identify
(e.g., all abstract methods) through logic conditions that quantify
over a reified program representation. We briefly introduce the core
syntax and semantics of SOUL in an informal manner. We restrict
our discourse to the features that have changed since the earliest
publications on SOUL, those that facilitate exploiting the solutions
to a program query in software engineering tools and those that
facilitate specifying a program query.

3.1 Syntax and Semantics in a Nutshell
The first two program queries depicted in Figure 2 illustrate the
core syntax and semantics of SOUL. The query on line 1 identifies,
among the AST nodes of an Eclipse JDT project, all pairs of Java
statements ?inner and ?outer such that the former resides at
an arbitrary depth within the latter. Such a pair of bindings for
variables ?outer and ?inner constitutes a single solution to the
query. The query consists of two conditions. The first condition
uses unary predicate isStatement/1 to bind ?outer to one of the
statements in the JDT project. The second condition of the query
uses binary predicate isStatementIn:/2 to bind ?inner to one
of the statements within the binding for ?outer.

Note that SOUL queries start with the keyword if and that
logic variables are preceded by a question mark. The syntax for
a predicate in SOUL closely resembles the one of Smalltalk for a
message that is sent to the first argument of the predicate. In Prolog,
the second condition of the query would therefore be written as
isStatementIn(Inner,Outer).

Like Prolog, SOUL finds solutions to a logic query using SLD-
resolution [13]. In case a condition can be proven in multiple ways
(e.g., each resulting in different bindings for its variables), this
procedure selects one proof but remembers those that have not
yet been explored. When a subsequent condition fails, the proof
procedure will backtrack to the last choice point and explore one
of the remembered alternatives. For instance, the second condition
of the query fails whenever ?outer is bound to a statement in
which no other statements reside. The first condition will then be
backtracked to such that an alternative binding can be considered.
This also happens when the SOUL evaluator is asked for the next or
all solutions to a query.

The second query in Figure 2 is similar to the first one. Its
solutions consist of an AST root node ?cu and an AST node
?node such that the latter is one of the children of the former.
Using predicate isCompilationUnit/1, the first condition binds
?cu to the root node of one of the ASTs for a JDT project (i.e.,
a compilation unit is the root node of the AST for a .java file).
When this condition is backtracked over, ?cu will be bound to a
different compilation unit of the project. The second condition uses
predicate isChildOf:/2 to bind ?node to a child of ?cu. When
this condition is backtracked over, ?node will be bound to one
of the other children until ?cu has been traversed completely. As
a result, the query quantifies over all compilation units and their
children. All of the aforementioned predicates stem from the CAVA
library which is discussed in Section 4.

3.2 Features that Facilitate Exploiting Query Solutions
In addition to the logic and its proof procedure, the program repre-
sentation and its reification comprise two important dimensions in



1 if ?outer isStatement, ?inner isStatementIn: ?outer

2 if ?cu isCompilationUnit, ?node isChildOf: ?cu

3 if ?m isMethodDeclaration,

4 [?m getParent] equals: ?t,

5 ?t typeDeclarationHasBodyDeclarations: ?l,

6 ?i equals: [?l lastIndexOf_Object: ?m]

7 if ?return isStatement,

8 ?return returnStatementHasExpression: ?exp,

9 ?exp equals: castExpression(?type, ?casted)

10 if jtStatement(?return){ return (?type) ?casted; }

11 if jtClassDeclaration(?classDeclaration) {

12 class ?className {

13 private ?fieldDeclarationType ?fieldName;

14 ?modifierList ?returnType ?methodName(?parameterList) {

15 return ?fieldName;

16 }

17 }

18 }

19 if jtMethodDeclaration(?m){

20 public static void main(String[] args) {

21 ?scanner := new java.util.Scanner(?argList);

22 ?scanner.close();

23 ?scanner.next();

24 }

25 }

Figure 2: Logic program queries illustrating some unique features of Soul.
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Figure 2. SOUL queries illustrating the use of logic predicates (first and second query), object-oriented expressions (third query), code
templates (the fourth and fifth queries) and the example-driven matching of code templates (the last two queries on the right-hand side).

strategies that vary in leniency —all of which are considered suc-
cessively when the term is backtracked over4.

The most stringent matching strategy requires the AST node
to unify with the AST of the code excerpt. It corresponds to the
one used by most query languages that incorporate code excerpts.
However, consider the template term on lines 20–25 of Figure 2.
In real life, no method declaration would match the term under
this strategy. Under the most lenient strategy, in contrast, match-
ing methods have to exhibit the control flow characteristics exem-
plified by the template term. There should be a path through the
control flow graph of the method (i.e., existentially qualified) on
which all exemplified instructions are executed. Non-specified in-
structions are allowed on the execution path. The path also crosses
method boundaries (i.e., it is inter-procedural). As a result, matches

4 A matching strategy can also be specified as an additional argument to the
template term.

for an instruction in the template term need not reside in the
method declaration that matches the term.5 While ?m will always
be bound to main(String[]), the close() and next() instruc-
tions can reside in methods called directly or transitively from
main(String[]).

Specifying data flow characteristics Note that in template terms,
multiple occurrences of the same variable express a data flow
characteristic. In the query on lines 19–25, the occurrences of
?scanner require the receiver of close() and next() to be the
same Scanner instance. To support these characteristics, SOUL
features a domain-specific unification procedure [3, 7] that treats
reified AST nodes differently from other terms. For instance, it con-
sults whole-program analyses when reified AST nodes are unified.
In the example, the bindings for each occurrence of ?scanner must

5 However, actual statements such as return-statements are matched intra-
procedurally.
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Figure 2. SOUL queries illustrating the use of logic predicates (first and second query), object-oriented expressions (third query), code
templates (the fourth and fifth queries) and the example-driven matching of code templates (the last two queries on the right-hand side).

the design of a logic-based program query language. In our experi-
ence, representation and reification determine how cumbersome it
is for a tool builder to exploit the solutions to a program query in a
software engineering tool.

To illustrate the impact of representation and reification in the
use of a logic program query language, consider an abstract syntax
tree with root a. Root node a has two children b and c, while node
c has a child d. Now suppose a logic variable is bound to the reifi-
cation of d and that we have to find d itself. This entails traversing
the reification of a and a itself simultaneously until we reach
the reification of d and d itself respectively. This is already less
straightforward for a reification that flattens the AST into multiple
logic terms (e.g., child(a,b), child(a,c) and child(c,d))
than for a reification that maps the AST to a single compound
term (e.g., node(a,<node(b,<>),node(c,<node(d,<>)>))).
However, the logic program query language and the software
engineering tool need not use the same program representation.
The abstract grammars of their ASTs might differ or the tool
might have canonicalized the source code before constructing
its ASTs. Worse, the tool might not be using ASTs at all in its
representation. This is true for most tools that are specialized in
control flow and data flow characteristics. They often use control
flow graphs or the results of data flow analyses. Finding the AST
node that corresponds to a node in a control flow graph is hard.
Entire sub-graphs may correspond to a single AST node (e.g., a
for-statement). The nodes of the control flow graph might even
stem from an intermediate representation (e.g., a three-address
based one).

Our approach to overcoming this adoption hurdle is two-fold:

• First of all, the predicates of the CAVA library (cf. Section 4)
only reify AST nodes. While some predicates consult program
analyses that are computed by the SOOT framework [27] for its
JIMPLE intermediate representation, JIMPLE elements cannot
show up in the solutions to a query. This way, tool builders
are shielded from its intricate details and are not tasked with
mapping intermediate code to source code themselves.

• Secondly, the hybrid language characteristic (or more pre-
cisely, its symbiosis [16] with Smalltalk) of SOUL en-
ables the CAVA library to forego reifying AST nodes as
compound terms. Instead, the reified version of an Eclipse
AST node is the AST node itself (i.e., an instance of
org.eclipse.jdt.core.dom.ASTNode).

The latter is illustrated by the query on lines 3–6 of Figure 2. Its
solutions consist of bindings for variables ?m, ?i and ?t such that
?m is a method declaration (line 3) as well as the ?i-th member

declaration of the type declaration ?t (lines 4–6). The condition
on line 4 uses predicate equals:/2 to unify2 variable ?t with a
so-called Smalltalk term. Smalltalk terms are delimited by square
brackets and can contain logic variables wherever Smalltalk vari-
ables are allowed. They can quantify over any object that is reach-
able in the Smalltalk image at run-time —including the Smalltalk
proxies created by JAVACONNECT for Java objects (cf. Section 2).

A Smalltalk term (e.g., [?m getParent]) unifies with another
term (e.g., ?t) if and only if its expression evaluates to a value that
unifies with the term. After logic variables have been substituted by
the values they are bound to, the expression within a Smalltalk term
is evaluated as regular Smalltalk code. In the case of the Smalltalk
term on line 4, ?t will be bound to the parent node of the method
declaration AST node bound to ?m. This is a type declaration (e.g.,
an interface or class) of which the list of declarations in its body
is bound to ?l by the condition on line 5. Note that this is not a
logic list, but an instance of ASTNode$NodeList. As illustrated by
line 6, it is therefore possible to ask this list ?l for the index of ?m
within the body of the type declaration. Were AST nodes reified as
compound terms, it would not have been possible to query them for
their context within the program through method invocations.

Note that Smalltalk terms are rarely used directly in queries
over Java programs. Indeed, they expose SOUL users to the way
JAVACONNECT maps Smalltalk to Java (cf. Section 2) and to the
internals of the Eclipse JDT. Instead, such terms are hidden in the
implementation of the CAVA predicates (cf. Section 4) that reify the
AST nodes of a JDT project. Relying on linguistic symbiosis for
the reification renders reconstituting AST nodes from their reified
counterparts trivial —thus facilitating the manipulation of query
results in software engineering tools.

3.3 Features that Facilitate Specifying Program Queries
In this section, we discuss features pioneered by SOUL that facili-
tate specifying program queries: domain-specific extensions [8] to
an open unification procedure [3], and an example-driven match-
ing [8] of code templates [9]. Together, they enable exemplifying
source code characteristics through familiar code templates rather
than specifying them through convoluted logic conditions. For in-
stance, the query on lines 7–9 of Figure 2 and the one on line 10 are
equivalent. Both identify statements ?return that return the result
of ?casted being cast to ?type.

A template term consists of a functor (e.g., jtStatement on
line 10) followed by an argument (e.g., ?return on line 10) and
a code excerpt that is demarcated by braces. The functor of the

2 The equals:/2 predicate is implemented by the fact ?x equals: ?x. It
is equivalent to the =/2 operator in Prolog.



template term identifies the grammar rule adhered to by the code
excerpt. This grammar describes the concrete syntax of Java, ex-
tended with logic variables and a minimum of non-native syntax.
Within a code excerpt, logic variables stand for productions that
originate from a non-terminal in the Java grammar.

Example-driven matching of template terms Used as a condi-
tion, a template term succeeds if there is an AST node that matches
the code excerpt. Backtracking over the term successively unifies
each matching node with the argument of the term. We match such
excerpts against the program’s ASTs according to multiple match-
ing strategies that vary in leniency —all of which are considered
successively when the term is backtracked over3.

The most stringent matching strategy requires the AST node
to unify with the AST of the code excerpt. It corresponds to the
one used by most query languages that incorporate code excerpts.
This strategy suffices to find real-life matches for the template term
on line 10, but not for those on the right-hand side of Figure 2.
The first and second template term on the right exemplify the
prototypical implementation of a getter method (i.e., a best practice
pattern) and a Scanner that is read from after it has been closed
(i.e., a bug pattern) respectively. More lenient matching strategies
are needed to find real-life variants of these implementations in a
program’s source code. We refer to these strategies as example-
driven matching strategies [8].

To illustrate the most lenient matching strategy, consider the
second template term. On line 21, it uses one of the aforementioned
non-native syntax extensions. The := operator unifies the logic
variable on its left-hand side (i.e., ?scanner) with the AST node
that matches the code template on its right-hand side (i.e., an
instance creation expression). On the next lines, the occurrences
of ?scanner ensure that close() and next() are invoked on the
same receiver. The actual matching strategy only requires matching
methods to exhibit the control flow characteristics exemplified by
this template term. In other words, there should be a path through
the control flow graph of the method (i.e., existentially qualified) on
which all exemplified instructions are executed in the exemplified
order (i.e., close() before next()). Non-specified instructions
are allowed on the execution path. The path is also allowed to
cross method boundaries (i.e., it is inter-procedural). As a result,
matches for an instruction in the template term need not reside
in the method declaration that matches the term.4 While ?m will
always be bound to main(String[]), the close() and next()
instructions can reside in methods called directly or transitively
from main(String[]).

Domain-specific unification SOUL has also pioneered exten-
sions [8] to its open-ended unification procedure [3] that are spe-
cific to querying Java programs. These unification extensions treat
reified AST nodes different from other logic terms:

• Reified AST nodes unify with structurally equivalent com-
pound terms, even if they have not been reified as such. This
is the case for our reification through linguistic symbiosis (cf.
Section 3.2). While this reification facilitates exploiting query
results, it precludes the natural use of unification to quantify
selectively over AST nodes.

• Implicit implementation variants (i.e., those implied by the se-
mantics of the programming language) of the same source code
characteristic unify. This relieves users from having to enumer-
ate these variants in a specification. To this end, these unifica-
tion extensions consult the results of analyses computed by the

3 A matching strategy can also be specified as an additional argument to the
template term.
4 However, actual statements such as return-statements are matched intra-
procedurally.

SOOT framework [27]. For instance, a semantic analysis deter-
mines whether an unqualified and fully qualified type should
unify. An alias analysis [18] determines whether two expres-
sions should unify. The names of a method invocation and a
method declaration unify if the invocation may invoke the dec-
laration. We refer to [8] for a comprehensive account of these
extensions.

To illustrate the first extension, consider the condition on line 9
of Figure 2. It requires AST node ?exp to unify with a structurally
equivalent compound term (i.e., the functor of the compound has to
unify with the name of the node’s class, while each of its arguments
has to unify with the corresponding child of the node). This would
fail under the regular unification procedure of Prolog as ?exp is
bound to a reified AST node (i.e., an object).

To illustrate the second kind of extensions, consider the query
on lines 11–18 of Figure 2. Its occurrences of ?fieldName link
the value returned by the getter method to the field it is protect-
ing. Under the domain-specific unification procedure, the bindings
for these variable occurrences can deviate syntactically as long
as they are in an alias relation. This ensures that getter methods
with a deviating return-statement (e.g., “return this.age” or
even “return (Integer) self().age”) are included in the so-
lutions to the query. In the query on lines 19–25, the occurrences
of ?scanner require the receiver of close() and next() to alias
(i.e., point to the same Scanner instance).

4. CAVA: a Predicate Library for SOUL
The CAVA library contains SOUL clauses that implement pred-
icates for reasoning about Java programs. For each subclass of
org.eclipse.jdt.core.dom.ASTNode, the CAVA library pro-
vides a unary predicate that quantifies over all AST nodes of this
kind. For instance, predicate isMethodDeclaration/1 can be
used to bind its argument to a method declaration, but also to check
whether its argument is already bound to a method declaration.

Binary predicates quantify over the relations be-
tween an AST node and its children. For instance,
the condition on line 5 of Figure 2 uses predicate
typeDeclarationHasBodyDeclaration:/2 to bind (or
verify the binding of) variable ?l to the list of body declarations
in a type declaration ?t. In addition, CAVA provides higher-level
predicates that quantify over relations between AST nodes that
are not explicit in the AST representation. Examples include
predicate isStatementIn:/2 which quantifies over all state-
ments that reside at an arbitrary depth within another statement
(cf. line 1 of Figure 2), predicate inheritsFrom:/2 which
quantifies over the inheritance relation between types, or predicate
isChildOf:/2 which quantifies over the relation between a node
and its descendants (cf. line 2 of of Figure 2).

A more comprehensive account of the CAVA predicates and
their implementation can be found in [8].

5. BARISTA: Exploiting Query Solutions in
Eclipse Plugins

BARISTA is an Eclipse plugin that serves as communication bridge
between the IDE and SOUL. Its goal is to offer, by means of the
Eclipse plugin extension mechanism, services to other plugins that
require code querying facilities.

BARISTA offers two main services: on-demand code querying,
and query scheduling. On-demand querying allows plugins depend-
ing on BARISTA to query any given Java project in the Eclipse
workspace, the results of the query immediately returned back to
the client plugin. Plugins depending on BARISTA can also sched-
ule queries to be run whenever a given project is built by the Eclipse



1 public interface IBarista {
2 public IEvaluator query(String query ,
3 IJavaProject project ,
4 String evaluator ,
5 String repository );
6 public List <String > getEvaluators ();
7 public List <String > getRepositories ();
8 ... }

10 public interface IEvaluator {
11 public IResults getAllResults ();
12 public IResults getNextResult ();
13 public IResults getNextResults(int amnt);
14 public boolean hasMoreResults (); }

16 public interface IResults {
17 public int getSize ();
18 public Map <String ,List <Object >> toMap ();
19 public boolean isSuccess ();
20 public long getElapsedTime (); }
21

Figure 3. Interfaces provided by BARISTA for code querying and
query scheduling.

JDT framework. This allows plugins to maintain up-to-date infor-
mation on a project.

5.1 On-demand code querying
BARISTA offers the service of on-demand code querying to depend-
ing plugins via the IBarista, IEvaluator and IResults inter-
faces (figure 3), with IBarista being the main access point to the
functionality offered by the plugin. Access to this interface is pro-
vided by a static method on the main class of the BARISTA plugin.

The main service offered by the IBarista interface is the
IBarista.query(...) method. The method takes as parameters
the query to run, on which project to run it, and what evaluator
and clause repository to use. The query method prepares a query,
returning an IEvaluator object that allows the client to get all
results at once, or one at the time. Each result is encapsulated
in an IResult object — a map between logic variables in the
query and their bindings. In reality, the instances implementing
the aforementioned interfaces are not Java objects but Smalltalk
objects. The way in which this is achieved is explained in section 7.

5.2 Query Scheduling
BARISTA allows client plugins to schedule queries to be run at
each build of the system through the exposure of an Eclipse plugin
extension point. This is useful for clients performing queries that
give feedback to the developer (e.g., identifying errors, design
violations, calculating metrics, etc.) Client plugins that implement
this extension point can then register queries, and will be notified
with the results of the queries every time they are executed.

Whenever a client plugin requires a set of queries to be
run when a project changes it must provide, by means of the
barista.scheduleQueries extension point, a callback class that
implements the IQueryManager interface. The getQueries()
method is called by the BARISTA runtime at the beginning of a
project build to gather the queries from all client plugins. Once
the build is finished, the BARISTA runtime will run all schedule
queries, and pass the results back to each query manager by means
of the resultsDone(...) method.

5.3 BARISTAUI: Editors for Queries and Inspectors for their
Solutions

Query Editor In order to ease the development of BARISTA-
dependent plugins, we provide an Eclipse plugin (Barista-UI) that
serves as an IDE for writing SOUL queries and inspecting their
results. The Barista-UI plugin extends the BARISTA plugin through
the mechanisms explained in the previous section to provide a

query editor and a query results view. Through Barista-UI, plugin
developers can test queries on projects within their same project.
Each of the components of the Barista-UI maps to the interfaces
provided by BARISTA (§ 5.1), thus easing the use of the UI in the
development of plugins that extend BARISTA. The Barista-UI also
serves as a general-purpose code querying facility, complementing
that of the Eclipse JDT.

The Barista-UI plugin provides an advanced query editor (fig-
ure 4 on the left), complete with syntax-highlighting, auto-
completion, syntax-error checking and contextual help. Using the
query configuration pane the developer can select the project,
evaluator and clause repository to execute the query. Notice
that the query editor maps directly to the arguments of the
IBarista.query(...) (figure 3) method explained in the pre-
vious section.

Inspecting Query Results Once the developer is satisfied with it,
the query can be executed. The Prepare Query button on the editor
will fire off a (new) Query Results view (figure 4 on the right). This
view allows the developer to control how to obtain the solutions to
the query: either all at once via the All Results button, or one at a
time via the Next Result button. These controls correspond to the
methods offered by the IEvaluator interface.

Barista-UI offers three visualization options for the results of
a query: as a table, tree or column view. These views mirror the
ones provided by SOUL in Smalltalk. Ordering of the variables can
be changed under the Query Variables configuration pane at the
top of the view. In addition to this, Barista-UI offers facilities to
inspect individual bindings and mark the results of the query.
Inspecting Individual Results A context menu is available for
each of the results on the query view. Through this menu, the
developer can navigate to the position in the source code that
corresponds to the binding, copy a string representation of the
binding to the clipboard, or open a Smalltalk inspector on the
binding. The context menu, as well as the inspector are depicted
in figure 5a. This is made possible by the preservation of object
identities when they pass from Java to Smalltalk and back (§ 7).
Mark Results By clicking on the Mark Results button on the
query results view, the Barista-UI will mark all the results of the
query which resolved to an Eclipse ASTNode. These marks will
be displayed on the left side margin of Java editors. Figure 5b.
shows one of these markers. Each marker contains information on
the bindings for the other variables. In the example, this will allow
the developer to from the marker of one variable, to navigate to the
other bindings. This functionality is made possible by the fact that
the results for every query are actual ASTNodes, which makes the
use of Eclipse functionality to navigate to them rather easy.

6. SMART ANNOTATIONS: Building tools with
BARISTA

In this section we present a reimplementation of SMART ANNO-
TATIONS [19]. SMART ANNOTATIONS allow developers to express
constraints over the use of Java annotation as SOUL queries. These
queries are used to assert the correctness of annotated program el-
ements with regards to their annotations. SMART ANNOTATIONS
illustrate the utility of SOUL, both as a specification language for
developers, and as a code querying facility for tool builders. To ex-
emplify the latter case we compare two possible implementations
of SMART ANNOTATIONS: one that relies on the Eclipse search
API, while the second one uses BARISTA and SOUL.

6.1 SMART ANNOTATIONS

Several programming languages include facilities to attach meta-
data to source code, such is the case with Java’s annotations. Used
for more than plain documentation, annotations are becoming an



Figure 4. Query editor and query result views provided by the Barista-UI plugin.

b. Marker and associated context menu

a. Context menu and Inspector for a result

Figure 5. Markers on the results of a query.

integral part of the system. Frameworks provide annotations as a
means of embedding configuration parameters in the source code.
An example of this practice is found in the Hibernate persistency
framework, where annotations are placed on the source code by the
developer to direct how the framework will persist entities. Hiber-
nate will then, at runtime or compilation time, read the annotated
source code in order to derive in which tables and columns will
particular classes and fields be persisted.

Developers must rely on documentation to assure that they are
respecting the assumptions of the framework when annotating their
code, or else risk errors at runtime when rules are broken. SMART
ANNOTATIONS alleviate this problem by offering a means to check
that annotated code respects the rules of use of annotations. SMART
ANNOTATIONS enriches Java annotation type definitions with con-
straints expressed using SOUL that govern the correct use of these
annotations. The tool allows these constraints to be verified with re-
spect to the source code, will report wrongly annotated source-code
entities or source-code entities where an annotation is missing, and
provide a number of quick fixes resolve the errors.

Constraints are embedded in annotation-type declarations as
string constants (public static final fields) that contain a SOUL
query codifying each constraint. SMART ANNOTATIONS define
two kinds of constraints: necessary constraints express the char-
acteristics that annotated source code elements must exhibit, while
sufficient constraints express the characteristics that source code el-
ements must exhibit in order to be annotated. Fields containing an-

notation constraints must then be annotated with @Necessary or
@Sufficient to specify the kind of constraint. Figure 6 shows the
Getter annotation-type definition, which is meant to mark meth-
ods that act as accessors. A single necessary constraint (NAMING
CONVENTION) is defined in order to check that methods annotated
as @Getter follow the naming convention.

1 public @interface Getter{
2 @Necessary
3 public static final String NAMING_CONVENTION =
4 "?method methodDeclarationHasName: {get*}";
5 }

Figure 6. Annotation-type with embedded SMART ANNOTA-
TIONS constraints

6.2 Implementation
Checking that a system’s source code respects the annotation’s con-
straints as defined in SMART ANNOTATIONS is a two step process.
First, the set of constraints, embedded in the annotation-type defini-
tions must be gathered. Once obtained, the SOUL queries defining
the constraints must be run, and their violations marked as errors.
In its current incarnation, SMART ANNOTATIONS is implemented
as an Eclipse plugin that leverages BARISTA for both these steps.

To check annotated source code, the new SMART ANNOTA-
TIONS implementation will schedule the set of SOUL queries that
identify violations the constraints defined over annotations in the



system. To extract these queries from the annotation-type defini-
tions, the SMART ANNOTATIONS plugin uses the IBarista inter-
face to launch a SOUL query that quantifies over the annotation
type definitions and retrieves the constraints governing these anno-
tations.

The gathered queries are then returned to BARISTA and
scheduled for execution. When the scheduled queries are ex-
ecuted, BARISTA invokes the resultsDone() method on a
SmartAnnotationQueryManager class. Once the scheduled
queries representing the annotation constraints are executed by
BARISTA, the SMART ANNOTATIONS plugin will retrieve the bind-
ings for violations (these are actual ASTNode objects), and will cre-
ate a warning marker for each of these violations.

6.3 Comparing Eclipse Search API and BARISTA

In order to illustrate the advantages that BARISTA and SOUL bring
to tool builders, we compare how the first step (i.e., the gathering
of annotation constraints) would be implemented using Eclipse’s
search API and using BARISTA and SOUL.

Gathering constraints with Eclipse Search API Eclipse, through
the Java Development Tooling (JDT), provides developers with a
search API for Java programs that offers other plugins search fa-
cilities to find source code element declarations and references.
The JDT search API centers around three main concepts: search
patterns specify the characteristics of the sought source code ele-
ments, search scopes restrict where the source code element will
be found, and search requestors accumulate results provided by the
API’s search engine.

In the first step in the checking of annotation constraints, the
SMART ANNOTATIONS plugin must find public static final fields of
type String which belong to annotation-type declarations, and that
are annotated with either @Necessary or @Sufficient. A search
pattern expressing this constraint is rather difficult to express using
the JDT’s search API, since the API is geared towards expressing
the characteristics of a single code entity (i.e., its type) and not re-
lationships between entities (i.e., the field belongs to an annotation-
type). Thus we opt for an over-approximating query that relies on
the fact that we are searching for annotated items.

Figure 7 presents the snippet, that out of a Java project,
finds the constraints, the field in which they are defined and the
annotation-type to which they are associated. Lines 1–5 and 7–
11 construct search patterns for @Necessay and @Sufficient-
annotated elements. These patterns are composed into an or pat-
tern allConditions in lines 13–14. The scope of the search is
restricted to the project jProject in lines 16–18, and a custom re-
questor SimpleRequestor that will accumulate the annotations is
constructed in line 20. Finally, the search is done in lines 24-27.
Results gathered by the requestor are navigated in lines 29–37, us-
ing the getAncestor() method to obtain the field containing the
constraint and the annotation-type associated with it.

Gathering constraints using BARISTA Figure 8 contains the list-
ing for gathering the SMART ANNOTATIONS constraints out of an-
notation types using BARISTA’s interfaces. The query is performed
in two steps. First, an evaluator (lines 1–11) is constructed. The
evaluator is obtained from an IBarista instance (cf. 5.1), a String
containing the query, and the project javaProject in which the
query is to be run. The query itself (lines 3–10) will provide bind-
ings for the annotation type (?type), the field that contains the con-
straint (?field) as well as the constraint itself (?rule). Results
for the query are obtained by invoking getAllResults() on the
evaluator, and extracting the map from variables to bindings (lines
13 and 15). A loop then iterates over the solutions, extracting the
bindings for the constraint, kind of rule and annotation type. (lines
17–22).

1 SearchPattern allNecesary = SearchPattern.createPattern(
2 "be.ac.vub.smart_annotations_library.Necessary",
3 IJavaSearchConstants.ANNOTATION_TYPE ,
4 IJavaSearchConstants.ANNOTATION_TYPE_REFERENCE ,
5 SearchPattern.R_EXACT_MATCH );

7 SearchPattern allSufficient = SearchPattern.createPattern(
8 "be.ac.vub.smart_annotations_library.Sufficient",
9 IJavaSearchConstants.ANNOTATION_TYPE ,

10 IJavaSearchConstants.ANNOTATION_TYPE_REFERENCE ,
11 SearchPattern.R_EXACT_MATCH );

13 SearchPattern allConditions = SearchPattern.
14 createOrPattern(allNecesary , allSufficient );

16 IJavaSearchScope projectScope = SearchEngine
17 .createJavaSearchScope(
18 new IJavaElement [] { jProject }, false );

20 SimpleSearchRequestor requestor = new SimpleSearchRequestor ();

22 SearchEngine engine = new SearchEngine ();

24 engine.search(allConditions ,
25 new SearchParticipant []
26 {SearchEngine.getDefaultSearchParticipant () },
27 projectScope ,requestor , null);

29 for (Object res : requestor.getResult ()) {
30 IAnnotation ann = (IAnnotation) res;
31 IField field = (IField) ann.
32 getAncestor(IJavaModel.FIELD );
33 IType annotation = (IType) ann.
34 getAncestor(IJavaModel.TYPE);
35 String rule = (String) field.getConstant ();
36 // handle constraint
37 }

Figure 7. Gathering constraints using Eclipse search API

1 IEvaluator eval = barista
2 .query(
3 "if ?type annotationTypeDeclarationHasName: ?annotation ,"
4 +"?type definesVariable: ?field , "
5 +"?field variableDeclarationFragmentHasInitializer: ?rule ,"
6 +"?field variableDeclarationFragmentHasName: ?rulename ,"
7 +"?field variableHasAnnotation: ? named: ?annotationType ,"
8 +"or(
9 equals (? annotationType ,{ Necessary}),

10 equals (? annotationType ,{ Sufficient }))",
11 javaProject , "Evaluator", "JavaEclipse");

13 IResults iresults = eval.getAllResults ();

15 Map <String , List <Object >> results = iresults.toMap ();

17 for (int i = 0; i < iresults.getSize (); i++) {
18 ASTNode annType = (ASTNode) results.get("?type").get(i);
19 String type = results.get("?annotationType").get(i). toString ();
20 String ruleString = results.get("?rule").get(i). toString ();
21 // Handle constraint
22 }

Figure 8. Gathering constraints using BARISTA
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7. Discussion
Comparing BARISTA and Eclipse JDT Search In the previous
section, we presented two possible ways of gathering information
about Java source code in the context of the SMART ANNOTATIONS
plugin: through the Eclipse JDT Search API and through our tool
suite. We believe that the latter is not only less operational in nature,
but also conceptually simpler. In the case of the Search API, the
developer must deal with search patterns, scopes and requestors.
She must decompose the query into a (number) of patterns, each
one characterizing individual nodes, and then specify the scope
of the query. Additionally, the developer has to implement a class
that extends SearchRequestor, which will be called back by the
Eclipse search engine for each matched element.

In contrast, the BARISTA interface to SOUL allows for a simpli-
fied interaction. Given a SOUL query and a Java project to evaluate
it against, the developer is provided a map that contains the solu-
tions to the query. Additionally, a single query can provide several
results in each solution: the query in Figure 8 results in bindings for
the annotation type, field name and constraint. The Eclipse search
API, on the other hand, will only return a list of single matches.
Reconstructing the relationships between the resulting source code
elements is left up to the developer. For example, by navigating the



program’s ASTs anew —the getAncestor() invocations in Fig-
ure 7).

When implementing an Eclipse plugin that searches through a
JDT project, tool builders typically resort to implementing visitors
over the ASTs of the project. Compared to our tool suite (and even
the Eclipse search API), visitors seem harder to implement and
maintain due to their imperative nature, proneness to code dupli-
cation, and the fact that the developer must keep track of the visited
nodes in order to construct relations between them. Compared to a
logic program query language, which enables developers to express
the characteristics of the code they are looking for in a declarative
manner, visitors require developers to implement the operational
search for these nodes themselves.

Limitations of SLD-resolution Like Prolog, SOUL uses SLD-
resolution [13] to find the solutions to a program query (cf. Sec-
tion 3.1). This proof procedure has two well-known limitations: it
does not terminate for certain kinds of recursive rules and it repeats
sub-proofs for identical goals in queries or rules. The former limita-
tion detracts from the declarative nature of logic programming (i.e.,
declaratively sound programs might not terminate operationally),
while the latter limitation poses a burden on efficiency. In practice,
most SOUL users will never be confronted with non-termination. It
only arises for user-defined logic predicates. For instance, when a
user implements a recursive graph traversal predicate without tak-
ing cycles into account.

SLG-resolution [5] overcomes both limitations of SLD-
resolution through a clever tabling and delaying of sub-proofs. Al-
though SOUL uses SLD-resolution by default, predicates that are
implemented by a tabled rule (i.e., one annotated with the tabled
keyword) will be resolved using SLG-resolution instead. To this
end, the SOUL preprocessor transforms a tabled rule to a set of plain
rules according to a transformation by Ramesh and Chen [25]. In
our implementation, the resulting rules rely on Smalltalk terms (cf.
Section 3.2) to access the SOUL evaluator and its tabling-related
data structures. In the interest of a possible performance gain, we
are currently in the process of annotating the implementation of
frequently used predicates form the CAVA library (cf. Section 4)
as tabled. The downside to the use of tabling is increased mem-
ory usage and the need to maintain tables as the queried program
changes.

Technical Limitations In terms of deployment, the SOUL tool
suite is currently limited by its architecture (cf. Section 2) that re-
quires launching a Java VM from within the Smalltalk VM that ex-
ecutes the SOUL evaluator. This limitation stems from the lack of a
C interface to the VisualWorks Smalltalk VM that allows launching
the Smalltalk VM programmatically —in essence a native interface
to the VM akin to the JNI. We are actively looking for a solution
that would allow us to launch, from within the BARISTA Eclipse
plugin, a Smalltalk VM that houses the SOUL engine. This way,
we would be able to distribute our tool suite as a self-contained
Eclipse plugin. As an intermediate solution, our distribution cur-
rently includes a headless Smalltalk image that starts a Java VM
and an instance of Eclipse upon its launch.

One might argue that we could have avoided this technical
limitation by developing in Java in the first place. This was not a
viable option given the effort that would be required to reach a level
of maturity and functionality that is equivalent to the existing code
base of SOUL.There are also practical advantages to our approach.
As JAVACONNECT supports decorating proxies for Java objects
with Smalltalk methods and instance variables (cf. Section 2), we
are able to extend the functionality of the Eclipse AST nodes
without altering them. Among others, we implemented the domain-
specific extensions to the unification procedure in this manner.

8. Related Work
In previous work [9], we already explored the idea of matching of
code templates in a non-strict manner. However, the single match-
ing strategy presented there aimed at recalling implementation vari-
ants of structural and data flow characteristics only. The example-
driven matching of code templates presented in Section 3.3 em-
ploys multiple matching strategies that recall implementation vari-
ants of structural, control flow and data flow characteristics. We
also explored the idea of an open-ended unification procedure for
logic program query languages in previous work [3]. Concretely,
we presented a procedure that unifies syntactically differing, but
aliasing expressions. The extensions to this procedure presented in
Section 3.3 unify additional implementation variants of source code
characteristics (e.g., the name of a method invocation unifies with
the name of the invoked declaration).

Completely new to this paper is the case for reifying AST nodes
through linguistic symbiosis, rather than the predominant transcrip-
tion to logic facts. The same goes for the BARISTA Eclipse plu-
gin and its validation through a re-implementation of the SMART
ANNOTATIONS plugin. As a result, this paper provides a compre-
hensive overview of the SOUL tool suite for querying Eclipse JDT
projects.

A wide range of specification languages for source code char-
acteristics has been proposed. Specification languages for struc-
tural characteristics include graph rewrite rules [24] or logic for-
mulas [1, 6, 7, 10, 17, 26, 30] that quantify or range over a pro-
gram’s AST nodes. Specification languages for behavioral charac-
teristics include reachability queries [11, 28, 29], temporal logic
formulas [21], state machines [14] and logic formulas [15, 22] that
quantify over control flow and data flow analysis results.

In contrast to these dedicated and highly specialized specifica-
tion languages, SOUL supports specifying structural as well as be-
havioral characteristics in a uniform language that is familiar to
developers. Support for code excerpts is not uncommon in spec-
ification languages (e.g., [1, 14, 22, 23, 26, 29]). However, it is
usually restricted to individual expressions, statements and dec-
larations. Larger excerpts would have to be matched in a one-to-
one manner. To the best of our knowledge, SOUL’s example-driven
matching semantics for code excerpts is therefore unique.

Of the logic-based query languages, ASTLOG [7] is closest to
SOUL with respect to the reification of AST nodes. Although it
foregoes a transcription to compound terms, this comes at the cost
of requiring predicates to be evaluated against the nodes that are
encountered during an AST traversal. This exposes developers to
the operational nature of these traversals.

JQUERY [10] is an interesting program navigation plug-in for
Eclipse that uses the logic programming language TYRUBA to
quantify over the workspace and to configure its graphical inter-
face. We consider this kind of configurability an interesting venue
for future work. The same goes for the incremental proof proce-
dure, based on tabled resolution (cf. Section 7), that Eichberg et
al. [12] have adopted for their logic program query language. It
avoids reconsidering the entire search space for a proof upon a
change to the program’s code. This way, queries can be launched
alongside the build process of the IDE without incurring a perfor-
mance overhead.

9. Summary
In this paper we have presented a comprehensive tool suite for
querying Eclipse JDT projects. Its main components are the logic
program query language SOUL and the BARISTA plugin for in-
teracting with the SOUL evaluator. We argued how the former’s
symbiosis with Java enables an identity-based reification of AST
nodes that facilitates exploiting the solutions to a SOUL query in



software engineering tools. The latter provides an extensible archi-
tecture through which tool builders can access this powerful query
language in which structural, control flow and data flow character-
istics of source code can be specified in an example-driven manner.

BARISTAUI and SMART ANNOTATIONS comprise two exam-
ples of query-based tools that leverage the features of our tool-suite.
The former serves both as an example of how to extend BARISTA
and as a tool that is useful in the development of SOUL queries,
while the latter illustrates how a code checking tool can be con-
structed easily by relying on the services exported by BARISTA and
the expressive power of SOUL.

Availability and Access
SOUL and its associated tools have been developed under the MIT
License. We refer to http://soft.vub.ac.be/SOUL for more
information and download instructions.
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