
Mendel: Source Code Recommendation
based on a Genetic Metaphor

Angela Lozano
Université catholique de Louvain

Email: angela.lozano@uclouvain.be

Andy Kellens
Vrije Universiteit Brussel
Email: akellens@vub.ac.be

Kim Mens
Université catholique de Louvain
Email: kim.mens@uclouvain.be

Abstract—When evolving software systems, developers spend
a considerable amount of time understanding existing source
code. To successfully implement new or alter existing behavior,
developers need to answer questions such as: “Which types and
methods can I use to solve this task?” or “Should my implemen-
tation follow particular naming or structural conventions?”. In
this paper we present Mendel, a source code recommendation
tool that aids developers in answering such questions. Based on
the entity the developer currently browses, the tool employs a
genetics-inspired metaphor to analyze source-code entities related
to the current working context and provides its user with a
number of recommended properties (naming conventions, used
types, invoked messages, etc.) that the source code entity currently
being worked on should exhibit. An initial validation of Mendel
seems to confirm the potential of our approach.

I. INTRODUCTION

Source-code regularities such as naming conventions and
programming idioms [1] [2], code templates and patterns [3],
play an important part in increasing a program’s comprehen-
sibility. Developers introduce such regularities in the source
code to make particular implementation and design concepts
explicit. For example, when implementing a class hierarchy
that represents various kinds of user interface actions, it is not
uncommon to suffix the names of all classes in this hierarchy
with ‘Action’. Similarly, methods related to the same task are
often not only related in name, but may also share other traits.
For example, they may have the same structural pattern, use
the same types, or invoke the same methods.

Developers who need to extend or maintain a piece of source
code often spend a considerable amount of time understanding
this source code. To successfully make their changes, they
need to be aware of the various regularities that govern
the piece of source code that is being changed. As these
regularities are often not explicitly documented, this can be
a non-trivial task.

In this paper we present a novel code assistant algorithm for
object-oriented systems named Mendel1, along with a proof-
of-concept implementation of this algorithm in Smalltalk.
Given as input a source code entity that is currently being
worked on by a developer, the algorithm provides the devel-
oper recommendations regarding which traits that entity may
lack. The algorithm is based on a genetic-inspired metaphor.
It assumes that source-code entities which are in some way re-
lated — for example by class hierarchy — are often governed

1Named after the figurehead of genetics Gregor Johann Mendel.

by the same regularities. If a particular trait, that is shared
by most of its relatives, is missing from a particular source-
code entity, we consider that trait as a suitable candidate
for recommendation. In this way, our algorithm differs from
most existing coding assistants: it does not aim at predicting
suitable messages to be sent, or the next action that a developer
needs to take. Rather, it merely focusses on traits that may
be missing from a source-code entity, such as which methods
should potentially be overridden by some class, which source-
code template might be suitable for the currently browsed
method, or which calls to methods or referenced types are
likely missing from a method.

II. MENDEL’S USAGE

We start our description of Mendel by detailing a typical
usage scenario. The example is taken from the implementation
of IntensiVE, an academic tool suite for co-evolving design
documentation and source code. It implements various user
actions and undo functionality using the Command design
pattern [3]. Each user action is modeled as a separate class
inheriting from IVIntensiVEAction. These subclasses
must override the methods performAction and name in
order to, respectively, specify the behavior associated with the
action, and return the name of the action as it will appear in
the interface.

Suppose that a developer wishes to add a new ‘remove’
action to the system. The developer does so by creating a sub-
class RemoveAction of IVIntensiVEAction. Mendel
provides two categories of recommendations: traits that the
new class probably must exhibit and traits that it possibly may
exhibit. For example, it informs the developer that the new
class probably should implement methods performAction,
undoAction and name, and that it should contain the
identifier ‘Action’ in its name.

After having added the new class, the developer starts
implementing the method name. Mendel will now recommend
that this method should probably be classified in the protocol
‘accessing’2 and follow a source-code pattern that returns a
string. The developer updates the method such that it does so.

Next, the developer adds a method performAction.
Mendel provides him with a list of methods that are potentially

2Smalltalk allows methods to be annotated with the category to which they
belong, called a protocol.

useful to be invoked. For example, he may wish to call the
triggerEvent method that notifies the user interface to
update after the model changed. Furthermore, he is reminded
that similar methods make use of the class Factory, and that
these methods perform a super call.

Although not all source code required to complete the new
action class is predictable, our tool can guide the completion
by suggesting common implementation traits in actions such
as names, calls, references, and method structures/templates.

III. RELATED WORK

In previous work [10], we mined the source code of software
systems for architectural knowledge embedded as structural
regularities shared by its source code entities. Contrary to this
previous work, Mendel extracts context-dependent regularities,
which allows the developer to exploit regularities in a timely
manner.

Table I summarizes some approaches that mine source
code to give recommendations and are therefore related to
our tool Mendel. All of these tools share the common goal
of facilitating the usage of third party code (like APIs and
frameworks). In the table, we show for each approach the kind
of data that is used as input, the granularity of the provided
recommendations, a brief description of the technique that is
applied to identify recommendations, and whether or not a
corpus is necessary to train the technique.

IV. MENDEL’S APPROACH

Mendel aims to detect missing traits in source code entities
by analyzing how they differ from source-code entities in
their vicinity. In what follows we provide an overview of the
algorithm that Mendel uses to provide developers recommen-
dations for a source code entity that is currently being worked
on. The approach relies on the assumption that it is possible
to provide suggestions on what is missing in the chosen
entity by analyzing entities related to it [11]. These related
entities can be regarded as “family” of the browsed entity,
which inspired us to use a genetic metaphor. Our approach
consists of 5 steps. Below, we explain each step in detail,
using a running example which is a reduced version of the
example presented in Section II. In particular, consider the
class hierarchy displayed in Figure 1. This hierarchy consists
of a number of classes that implement a Command design
pattern.
Suppose now that a developer adds to this hierarchy a new
class named RemoveAction (indicated with dashed lines),
and wishes to implement the method performAction. In
what follows, we describe each of the steps of our algorithm
to compute the set of recommendations for implementing that
method performAction.

a) Retrieve the family of the analyzed entity: As a first
step of our algorithm, we start by retrieving the set of source-
code entities related to the entity e that is currently being
worked on. Identifying this set family(e) of family members
relies on the assumption that we can provide useful recommen-
dations based on closely related source-code entities. Mendel
allows for the analysis of either classes and methods.

performAction()
ApplicationAction

performAction()
AbstractClipboardAction

performAction()
CutAction

performAction()
PasteAction

performAction()
MoveActionperformAction()

RenameAction

performAction()
AddAction performAction()

RemoveAction

performAction()
AbstractAction

performAction()
DrawActionperformAction()

UpdateAction

Fig. 1. Our running example.

Since we analyze object-oriented systems, we consider the
family of a class to be all classes in the same hierarchy.
This set of family members is computed by taking the direct
superclass of the selected class and returning all of this
superclass’ direct subclasses, and the subclasses of these direct
subclasses, except for the class analyzed (which is excluded
from the family). In genealogical terms, the family of a class
are its siblings and nephews/nieces.

Furthermore, while determining the family of a class, we
make a distinction between whether the analyzed class is
concrete or abstract. If a developer is working on an abstract
class, then the recommendations obtained by analyzing related
abstract classes will be more relevant than those from concrete
classes. Therefore, we restrict the family of an abstract class to
classes that are also abstract, whereas the family of a concrete
class will contain only concrete classes. When the analyzed
class does not belong to any class hierarchy (i.e., it directly
inherits from Object) its family is empty.

performAction()
ApplicationAction

performAction()
AbstractClipboardAction

performAction()
CutAction

performAction()
PasteAction

performAction()
MoveActionperformAction()

RenameAction

performAction()
AddAction performAction()

RemoveAction

performAction()
AbstractAction

performAction()
DrawActionperformAction()

UpdateAction

Fig. 2. Determining the family of performAction.

The family of a method is defined as the set of all methods
with the same signature, within classes of the family of
the method’s implementing class. For example, the result of
calculating the family of the method performAction of
class RemoveAction is illustrated in Figure 2. In this figure,
the family members of the selected entity are shown in black;
all other entities have been grayed out. In our calculation,
we consider all direct subclasses of ApplicationAction
(the direct superclass of RemoveAction), except the abstract
class AbstractClipboardAction, and their subclasses,

TABLE I
COMPARISON OF SOME APPROACHES THAT ANALYZE SOURCE CODE TO RECOMMEND HOW TO COMPLETE A PROGRAMMER’S CODE

Tool Data used Recommendation granularity Recommendation principle Corpus
required

Mendel Structural properties, class & method names Implementation hints Similarity between methods or classes based on their structural properties (i.e., traits) No
FrUiT [4] Structural properties Implementation hints Association rules that contain structural properties in the browsed file Yes
Design Prompter [5] Signatures of methods Set of methods missing Number of similar signatures shared by the user’s class and the classes in the corpus Yes
Strathcona [6] Structural properties Examples to complete a method Similarity between methods based on different heuristics per type of structural fact Yes
Best Matching Neighbors [7] Called methods Next method to call Percentage of times both methods have been called together Yes
RASCAL [8] Called methods Next method to call Similarity between classes based on methods called Yes
MAPO [9] Called methods, class & method names Sequence of method calls Similarity between classes based on methods called Yes

to be the family of RemoveAction. All implementations
of the method performAction in any of these classes are
considered to be family members of the entity.

b) Find the traits of the source-code entity analyzed and
of its family members: The second step of our algorithm
consists in determining the traits traits(e) of the source-code
entity e analyzed, and of that entity’s family members. For a
class we consider the following properties:

• The keywords that compose the class’ name. For the
class ApplicationAction these are ‘Application’
and ‘Action’;

• All ancestors of the class;
• The signatures of all methods implemented by the class;
• All types referred to from within the class.
For methods we calculate the following properties:
• A generalized parse tree of the method, giving an abstract

representation of the method’s structure. A generalized
parse tree matches a piece of source code if, except for
the literal values and a renaming of variables, it matches
the parse tree of that source code;

• All types used by the method;
• The signatures of all methods invoked from within the

method;
• The protocol in which the method is classified;
• All super calls occurring within the method.
To illustrate the idea, Figure 3 shows a list of traits for

each of the performAction methods in the family of
RemoveAction.performAction.

performAction()
ApplicationAction

performAction()
AbstractClipboardAction

performAction()
CutAction

performAction()
PasteAction

performAction()
MoveActionperformAction()

RenameAction

performAction()
AddAction performAction()

RemoveAction

performAction()
AbstractAction

performAction()
DrawActionperformAction()

UpdateAction
Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls move:
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Calls copy

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls rename:
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Calls remove

Fig. 3. Determining the traits of the family members of performAction.

c) Find the dominant traits in the family: The third
step of our algorithm consists in identifying the dominant
traits dominantTraits(e) that characterize the members of

the family of e. Dominant traits are those that are exhibited
by most of the entities of the family. At first glance, it might
appear logical to consider traits to be dominant only if they are
shared by all family members. From previous experience [10]
however we observed that regularities tend to be not uniformly
respected in source code: while a majority of the methods in
a family may respect for example a naming convention, it is
not necessarily the case for all. Such deviations are typically
caused by the fact that regularities are often only implicitly
known and are not automatically enforced in the source code.
It is to accommodate such deviations that we consider a trait
dominant if the majority of the family exhibits this trait.

performAction()
ApplicationAction

performAction()
AbstractClipboardAction

performAction()
CutAction

performAction()
PasteAction

performAction()
MoveActionperformAction()

RenameAction

performAction()
AddAction performAction()

RemoveAction

performAction()
AbstractAction

performAction()
DrawActionperformAction()

UpdateAction

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls move:
Refers ActionStack
Calls updateParent

Perform super call
Protocol pasting
Calls triggerEvent
Structure <...>
Calls add
Calls copy

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls rename:
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Calls remove

Fig. 4. Dominant traits in the running example.

As sizes of families tend to vary, the majority threshold
was chosen in such a way that it allows for deviations even
for small families, but such that the number of deviations is
still proportional to the size of the family. After a trial-and-
error validation we found that a log4 of the size of the family
behaved well for most of the families tested. In other words,
for a given family of entities F , we consider a trait dominant if
at least τd(F) := |F | − blog4 |F |c family members exhibit
that trait.

Figure 4 shows the dominant traits of the
performAction methods in our running example.
As all performAction methods perform a super call and
call a method triggerEvent, these traits are dominant for
method performAction. Furthermore, all methods, except
the method performAction on class PasteAction, are
classified in the protocol ‘operations’. Within our running
example, the value of τd is 4 (there are 5 elements in the
family F of method performAction; blog4 |F |c equals
1). Since the amount of entities in the family exhibiting this

property is still larger than or equal to 4, the property of
being classified in the protocol ‘operations’ is also considered
a dominant trait.

d) Find the recessive traits: Recessive traits are used to
detect traits that might possibly be needed by the analyzed
entity but that are shared only with a smaller subset of the
family. That is, recessive relatives share characteristics with the
entity analyzed that are beyond obvious family characteristics
(i.e., dominant traits).

We define the set recessiveTraits(e) of recessive traits
of an entity e as those family traits that are not part of the
dominant traits of the entity, but that are present in at least τr
members of the family. Again by trial-and-error we came up
with the following definition for τr:

τr(e) =

{
2
3 ∗ |family(e)| if e is a class
2 if e is a method

For a class, we consider a trait to be recessive if it is shared
by at least two third of the family members. As the number of
family members of a method often tends to be much smaller
than that of a class, we consider a method trait recessive as
soon as it is shared by 2 of the method’s family members.

performAction()
ApplicationAction

performAction()
AbstractClipboardAction

performAction()
CutAction

performAction()
PasteAction

performAction()
MoveActionperformAction()

RenameAction

performAction()
AddAction performAction()

RemoveAction

performAction()
AbstractAction

performAction()
DrawActionperformAction()

UpdateAction

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls move:
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Calls copy

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls rename:
Refers ActionStack
Calls updateParent

Perform super call
Protocol operations
Calls triggerEvent
Structure <...>
Calls add
Calls remove

Fig. 5. Recessive traits in the running example.

If we apply this definition to our running example (see Fig-
ure 5), we identify as recessive traits that performAction
methods use the type ActionStack and call the methods
updateParent and add, since these traits are shared by
three of the family members of the method we are analyzing.

e) Propose the suggested traits for the analyzed source-
code entity: The proposed traits are suggested changes or
additions to the source code entity analyzed. As explained
before, we distinguish two kinds of proposed traits: traits that
the analyzed entity probably3 should exhibit, and traits that
the entity possibly may want to exhibit. This distinction is
made to emphasize the fact that a different level of certainty
is associated with these recommendations.

We consider traits that are not present in the analyzed
entity e, but that are dominant with respect to the family, as

3Note that even for the dominant traits there is no guarantee, only a high
likelihood, that the analyzed entity should indeed exhibit that property, but in
the end it is up to the developer to make the final decision.

properties that probably should be implemented by the entity,
and define this set of traits as:

probableTraits(e) = dominantTraits(e) \ traits(e)
Applied to our running example, Mendel would suggest

that the method performAction probably should perform a
super call, call the method triggerEvent and be classified
in the protocol ‘operations’.

Conversely, traits shared by recessive relatives of an entity
e are considered as traits that the entity may possibly exhibit.
This set of traits is defined as:

possibleTraits(e) = recessiveTraits(e) \ traits(e)
In our running example, our tool suggests that the

method may need to refer to ActionStack and call
updateParent or add.

The set of all suggestions is defined as:
suggested(e) = probableTraits(e) ∪ possibleTraits(e)

ACKNOWLEDGMENTS

Angela Lozano is funded as a post-doc researcher on a Belgian
FNRS-FRFC project. This work has also been supported by the
Interuniversity Attraction Poles (IAP) Programme of the Belgian
State – Belgian Science Policy.

DOWNLOAD AND ACCESS TO EXPERIMENTAL DATA

Our research prototype Mendel is available on soft.vub.ac.be/
mendel. To validate our approach, we conducted an experiment
on five open-source systems. For each of those systems, we
performed a quantitative analysis of the recommendations pro-
vided by our algorithm, by comparing these recommendations
with the actual implementation of the system. All experimental
data can also be found on that web page.

REFERENCES

[1] K. Beck, Smalltalk Best Practice Patterns. Prentice Hall, 1997.
[2] J. Coplien, Advanced C++ Programming Styles and Idioms. Addison-

Wesley, 1992.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] M. Bruch, T. Schäfer, and M. Mezini, “FrUiT: IDE support for frame-
work understanding,” in Proceedings of Eclipse ’06 at OOPSLA. New
York, NY, USA: ACM, 2006, pp. 55–59.

[5] O. Hummel, W. Janjic, and C. Atkinson, “Proposing software design
recommendations based on component interface intersecting,” in Pro-
ceedings of RSSE 2010. New York, NY, USA: ACM, 2010, pp. 64–68.

[6] R. Holmes, R. J. Walker, and G. C. Murphy, “Approximate structural
context matching: An approach to recommend relevant examples,” IEEE
Trans. Softw. Eng., vol. 32, pp. 952–970, December 2006.

[7] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of ESEC/FSE 2009.
New York, NY, USA: ACM, 2009, pp. 213–222.

[8] F. Mccarey, M. O. Cinnéide, and N. Kushmerick, “Rascal: A recom-
mender agent for agile reuse,” Artif. Intell. Rev., vol. 24, pp. 253–276,
November 2005.

[9] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories,” in Proceedings of MSR 2006. New York, NY, USA:
ACM, 2006, pp. 54–57.

[10] A. Lozano, A. Kellens, K. Mens, and G. Arevalo, “Mining source code
for structural regularities,” in Proceedings of WCRE 2010. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 22–31.

[11] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of SIGSOFT/FSE
2006. New York, NY, USA: ACM, 2006, pp. 23–34.

