
Program Querying with a SOUL:
the BARISTA tool suite

Carlos Noguera, Coen De Roover, Andy Kellens, Viviane Jonckers
Software Languages Lab,

Vrije Universiteit Brussel, Belgium
Email: {cnoguera,cderoove,akellens,vejoncke}@vub.ac.be

Abstract—Extracting information from the source code of a
program is an important step in the way to program under-
standing, manipulation, development and maintenance. To this
end, logic-based query languages provide a declarative manner
in which to identify program elements of interest. In this paper
we present BARISTA, a tool-suite for querying Java programs
based on the Smalltalk Open Unification Language (SOUL).
BARISTA offers programmers an advanced IDE to write queries
and navigate their results. Tool builders can benefit from SOUL
querying facilities by exploiting the on demand code querying
and query scheduling services offered by BARISTA.

I. INTRODUCTION

Program queries identify program elements that exhibit
characteristics of interest. Logic formulas can be used as ex-
pressive and descriptive specifications of these characteristics.
This merely requires reifying the program under investigation
such that logic variables can range over its elements. Exe-
cuting a proof procedure will then establish whether program
elements exhibit the characteristics specified in a formula. This
logic-based approach to program querying is widespread in
literature (usually based on Prolog [6] or Datalog [3]). We will
focus on querying Java programs using the latest incarnation
of SOUL [8], one of the earliest logic program query languages
that is still under active development.

Tool builders that require gathering information on the
structure and behaviour of a system, can benefit from advanced
program query facilities. Consider implementing a tool for a
Java IDE that highlights repeated string concatenations where
a StringBuilder would be more appropriate. Usually, this
entails telling the IDE to mark some of its AST nodes. We
therefore have to find those AST nodes that correspond to
repeated string concatenations. Invoking the search API of the
IDE is, on one hand cumbersome since the characteristics of
the sough pattern must be described imperatively and on the
other, only a feasible option in case the sought after AST
nodes are characterized behaviorally. However, existing search
APIs do not support control flow and data flow characteristics
required to effectively track the values being concatenated
across the execution of the application. Employing a logic-
based query language would remedy the first shortcoming
of IDE’s search APIs, but provide no help regarding the
second one. Furthermore, since most logic-based program
query approaches represent the program’s source code as a
set of terms, it is up to the tool developer to translate the
results of the query back to AST nodes for further processing.

In its current incarnation SOUL addresses these problems by
reasoning directly over the AST nodes of the application and
allowing for the unification of terms based on static – control
and data flow – analyses.

In this paper we present BARISTA, an Eclipse IDE plugin
that allows tool developers to leverage the code querying fa-
cilities of SOUL to reason over Java code contained in Eclipse
projects. The paper is divided in two parts: a short introduction
to SOUL, its syntax and semantics, and an overview of its most
prominent features. The second part explains the BARISTA
tool-suite and the features it offers both to programmers and
tool builders.

II. LOGIC PROGRAM QUERYING WITH SOUL

SOUL is a logic-based program query language in which
users express the characteristics of the program elements that
SOUL has to identify (e.g., all abstract methods) through logic
conditions that quantify over a reified program representation.
In this section, we briefly introduce the core syntax and
semantics of SOUL in an informal manner. We restrict our
discourse to the features that have changed since the earliest
publications on SOUL, those that facilitate exploiting the
solutions to a program query in software engineering tools
and those that facilitate specifying a program query.

A. Syntax and Semantics

Like Prolog, SOUL finds solutions to a query using SLD-
resolution. The syntax of SOUL differs slightly from the one of
Prolog though. This is illustrated by the SOUL queries depicted
in Figure 1. SOUL queries start with the keyword if. Logic
variables are preceded by a question mark. In each solution
to the query on line 1–2, variable ?method is bound to an
abstract-method declaration with a name bound to ?name.
The query consists of two conditions. The first condition uses

1 if ?method methodDeclarationHasName: ?name,
2 ?method isAbstractMethod

3 if ?m isMethodDeclaration,
4 [?m getParent] equals: ?t,
5 ?t typeDeclarationHasBodyDeclarations: ?l,
6 ?i equals: [?l lastIndexOf_Object: ?m]

Fig. 1. Logic program queries illustrating some unique features of SOUL.



the binary predicate methodDeclarationHasName:/21

to bind ?method and ?name to a method declaration AST
node and its name. The second condition of the query uses
the unary predicate isAbstractMethod:/1 to restrict the
bindings for ?method to those methods marked as being
abstract. Each pair of bindings for ?method and ?name
constitute a single solution to the query. Both the predicates
used in the query stem from the CAVA library for reasoning
about Java programs, included with the SOUL distribution.

B. Linguistic Symbiosis and AST representation

Note that the program representation used by software en-
gineering tools (static analyses, IDE) and logic program query
languages do not necessarily align. The abstract grammars of
their ASTs might differ or the tool might have canonicalized
the source code before constructing its ASTs. Worse, the tool
might not be using ASTs at all in its representation. This is
true for most tools that are specialized in control flow and
data flow characteristics and that use data structures such as
control flow graphs. Finding the AST node that corresponds
to a node in a control flow graph is hard. Entire sub-graphs
may correspond to a single AST node (e.g., a for-statement).
The nodes of the control flow graph might even stem from an
intermediate representation (e.g., a three-address based one).

SOUL overcomes this issue in two ways: First, the predicates
of the CAVA library only reify AST nodes. While some
predicates consult program analyses that are computed for an
intermediate representation, its elements will not show up in
the solutions to a query. This way, tool builders are shielded
from its intricate details and are not tasked with mapping
intermediate code to source code themselves. Secondly,SOUL’s
symbiosis with the underlying Smalltalk runtime [7] enables
the CAVA library to forego reifying AST nodes as compound
terms. Instead, the reified version of an Eclipse AST node is
the AST node itself. This is illustrated by the condition on
line 4 of Figure 1 where the predicate equals:/2 is used to
unify variable ?t with a Smalltalk term2. Smalltalk terms are
delimited by square brackets and can contain logic variables
wherever Smalltalk variables are allowed.

C. Domain-Specific Unification and Template queries

Example-driven matching of code templates [4], [5] is a
unique feature of SOUL that facilitates specifying program
queries. It enables exemplifying source code characteristics
through familiar template terms rather than specifying them
through convoluted logic conditions. A template term consists
of a functor (e.g., jtClassDeclaration) followed by an
argument and a code excerpt that is demarcated by braces.
The functor of the template term identifies the grammar rule
adhered to by the code excerpt. This grammar describes the
concrete syntax of Java —extended with logic variables and
a minimum of non-native syntax. For instance, the template

1Predicates names are post-fixed with the number of parameters they take.
2A Smalltalk term (e.g., [?m getParent]) unifies with another term

(e.g., ?t) if and only if its expression evaluates to a value that unifies with
the term.

1 if jtMethodDeclaration(?method){
2 abstract ?type ?name(?paramList);
3 }

4 if jtMethodDeclaration(?m){
5 public static void main(String[] args) {
6 ?scanner := new java.util.Scanner(?argList);
7 ?scanner.close();
8 ?scanner.next();
9 }

10 }

Fig. 2. Template queries

term on line 1–3 of Figure 2 exemplifies an abstract method,
providing bindings for its return type, name and argument
list in the logic variables ?type ?name and ?paramList
respectively.

Several matching strategies are employed when resolving a
query. In the most strict strategy, AST nodes in the application
are required to match the AST nodes in the template term.
In the most lenient strategy, AST nodes in the application
must exhibit the control flow specified in the template for
it to match. The template term on lines 4–10 specifies a
control flow in which values from a ?scanner are read
after the ?scanner is closed. Under the strict strategy only
methods that exactly match the template will be identified;
however, under the most lenient strategy, the template will
match if an execution path that starts from a main method in
the application includes the three statements expressed in the
body of the template. Notice that the three statements are not
required to reside in the same method, but rather on different
methods called transitively from the main. In addition to
the control flow specified by the order of the statements in
the template, repeated uses of the ?scanner logic variable
specify a data-flow dependency. In order to support these
characteristics, SOUL relies on domain-specific unification in
which two Java expressions will unify if they are on a may-
alias relation i.e., the two expressions may contain the same
value at runtime.

III. BARISTA TOOL-SUITE FOR PROGRAM QUERYING

BARISTA is a set of Eclipse plugins that serve as communi-
cation bridge between the IDE and SOUL. Its goal is to serve
as an IDE for querying Java programs from within the Eclipse
IDE and to offer services to other plugins that require source
code query facilities.

The BARISTA tool-suite is composed of three eclipse plu-
gins: First, the BARISTA-core plugin offers a Java interface
to the underlying SOUL engine. Queries over the state of
the source code under study are delegated through this in-
terface to the Smalltalk instance that runs SOUL. Symbiosis
between Java objects representing the AST of the system
and the Smalltalk-based reasoning engine is achieved by the
JAVACONNECT library. Second, the BARISTA-UI plugin offers
developers an IDE to write SOUL queries and inspect its
results. Finally, the ARABICA plugin builds on top of the
BARISTA-UI editor to provide a graphic syntax for SOUL



(a) Query Editor provided by the BARISTA-UI plugin (b) Corresponding query result view

Fig. 3. Query editor provided by the Barista-UI plugin.

based on UML-class diagrams. Each of the components of
the BARISTA tool suite are explained below.

A. BARISTA-core

The main plugin in the BARISTA tool suite is BARISTA-
core. It is charged with interfacing between Eclipse plugins
and the SOUL engine. To this end, two services are provided:
on demand code querying and scheduling queries to be run
whenever a particular Java project is built. These two services
are realized by means of a Java interface and a plugin
extension point respectively. In both cases, queries are fed
to the BARISTA-core as strings, and their results are provided
back as maps that go from logic variables present in the queries
to their corresponding bindings for each solution found. It is
important to note that the objects contained in the map are
actual Eclipse JDT AST nodes, which makes the manipulation
of the results (e.g., marking the results of a query on the Java
editor) convenient.

B. A SOUL IDE for Eclipse

Writing SOUL queries can be a daunting task for developers.
Thus, we provide an Eclipse plugin (BARISTA-UI) that serves
as an IDE for writing SOUL queries and inspecting their
results. The BARISTA-UI plugin extends the BARISTA plugin
through the mechanisms explained in the previous section to
provide a query editor and a query results view (Figure 3).
Through BARISTA-UI, developers can execute queries on

projects within their own workspace, serving as a general-
purpose code querying facility, complementing that of the
Eclipse JDT.

The BARISTA-UI plugin provides an advanced query editor
complete with syntax-highlighting, auto-completion, syntax-
error checking and contextual help. Figure 3(a) shows a
query that finds violations to a protocol regarding change
notifications, excluding methods in test packages. Violations to
the protocol are specified by means of a code template, while
the exclusion of test methods is specified using predicates that
state that methods found cannot be contained in a sub-package
of test. In addition to editing SOUL queries, it also serves
as a launcher for queries. For this, the developer must specify
(at the top of the figure) the project in which to perform it, the
repository that contains the rules implementing the predicates
and the evaluator to use. Once these choices are made, the
query can be executed.

By clicking on the Prepare Query button (Figure 3(a)
on the bottom), a Query Results view is launched (Figure 3(b)).
This view allows the developer to control the execution of the
query, asking the underlying SOUL engine for solutions either
all at once (All Results button) or one at a time (Next Result).
Additionally, the view provides statistics on the execution of
the query, such as number of results found and time taken
executing the query. Once the query is executed, bindings for
each variable in each solution found are presented in three
different visualizations: Table, Column and Tree mode. The
developer can interact with each result found by means of



Fig. 4. UML query using ARABICA

a context menu. The menu offers to open an inspector on
the node, open an Eclipse editor that contains the AST node
represented in the solution, or copy a text representation of
the binding to the clipboard. Finally, the developer can mark
all resulting AST nodes using the Marker facilities provided
by Eclipse.

C. ARABICA UML-based querying

The final plugin of the BARISTA tool suite is ARABICA.
This plugin builds on top of the BARISTA-UI to offer an
alternative syntax for specifying structural patterns in SOUL.
Using ARABICA, queries are formulated using UML class
diagrams and an UML profile that allow developers to de-
scribe which entities of the diagram are variable. Figure 4
illustrates the use of an UML class diagram to specify a
query. The query expresses violations to a design contract
that states that subclasses of the AbstractTool class
which implement the activate() method must also in-
voke super.activate(). In order to specify this design
contract violation, two classes are defined: AbstractTool
and ?subClass. The former is a variable class, specified by
the Variable stereotype, which results on a ?subClass
variable included in the query. An extends relation between
the two classes is marked with the stereotype Transitive
to specify that classes bound to ?subClass must (indi-
rectly) inherit from AbstractTool. Finally, and operation
activate is added to the ?subClass class. This operation
is marked with a stereotype Templated. This stereotype con-
tains an attribute that links it to an UML comment stereotyped
with Template to describe the characteristics that the opera-

tion must exhibit: not contain a call to super.activate().
The ARABICA UML profile defines the four stereotypes:

«Variable» named elements for entities whose names are
mapped to SOUL variables, «Transitive» relations, «Tem-
plated» operations and comments that specify operation «Tem-
plates».

The ARABICA plugin extends the BARISTA-UI editor by
embedding an UML editor in place of the query editor.
All other features offered by the BARISTA-UI plugin remain
unchanged. In addition to extending the BARISTA-UI plugin,
ARABICA reuses the TopCased UML editor [2], and leverages
Acceleo [1] to implement a model to text transformation that
converts stereotyped UML diagrams into SOUL queries.

IV. SUMMARY AND TOOL AVAILABILITY

We have presented BARISTA, a tool suite to query programs
using the logic program query language SOUL. BARISTA
offers a comprehensive querying environment, as well as
extension points to other tools that require code querying
facilities. The BARISTA tool suite can be downloaded from
http://soft.vub.ac.be/SOUL, where further information both on
SOUL and the tool suite can be found.

ACKNOWLEDGEMENTS

This research is supported by the IAP Program of the
Belgian State. Coen De Roover is funded by the Stadium SBO
project sponsored by the “Flemish agency for Innovation by
Science and Technology” (IWT Vlaanderen).

REFERENCES

[1] Acceleo MDA Model to Text Transformations, 2011. http://www.eclipse.
org/acceleo/.

[2] TopCased Open-Source Toolkit for Critical Systems, 2011. http://www.
topcased.org/.

[3] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
Datalog (and never dared to ask). IEEE Transactions on Knowledge and
Data Engineering (TKDE), 1(1), 1989.

[4] C. De Roover. A Logic Meta Programming Foundation for Example-
Driven Pattern Detection in Object-Oriented Programs. PhD thesis, Vrije
Universiteit Brussel, August 2009.

[5] C. De Roover, J. Brichau, C. Noguera, T. D’Hondt, and L. Duchien.
Behavioral similarity matching using concrete source code templates in
logic queries. In Proceedings of the ACM-SIGPLAN Symposium on Par-
tial Evaluation and semantics-based Program Manipulation (PEPM07),
2007.

[6] M. H. V. Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM (JACM), 23(4), October
1976.

[7] K. Gybels, R. Wuyts, S. Ducasse, and M. D’Hondt. Inter-language reflec-
tion: A conceptual model and its implementation. Elesevier International
Journal on Computer Languages, Systems and Structures, 32, 2006.

[8] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, Belgium, January 2001.


