
A Logic Meta-Programming Foundation for
Example-Driven Pattern Detection in

Object-Oriented Programs
Coen De Roover

Software Languages Lab
Vrije Universiteit Brussel, Belgium

cderoove@vub.ac.be

Abstract—This paper summarizes the doctoral dissertation in
which we introduced an example-driven approach to pattern
detection. This approach enables specifying pattern character-
istics in a familiar language: through a code excerpt that
corresponds to their prototypical implementation. Such excerpts
are matched against the program under investigation according
to various matching strategies that vary in leniency. Each match
is quantified by the extent to which it exhibits the exemplified
characteristics. The smaller this extent, the more likely the match
is a false positive —thus establishing a ranking which facilitates
assessing a large amount of matches. Unique to the matching
process is that it incorporates whole-program analyses in its
comparison of individual program elements. This way, we are
able to recall implicit implementation variants (i.e., those implied
by the semantics of the programming language) of a pattern of
which only the prototypical implementation has been exemplified.

I. INTRODUCTION

Testament to their valuable applications within quality as-
surance, is the growing amount of tools (e.g., CodeQuest [1],
JQuery [2], Metal [3], Condate [4], JTL [5], PQL [6], .QL [7])
that identify source code exhibiting characteristics of interest.
We refer to such tools as pattern detection tools.

A pattern’s characteristics can be structural as well as
behavioral. While the former concern instructions and their
organization (e.g., inter-class relationships such as inheri-
tance), the latter concern the order in which instructions are
executed and the values operated on by these instructions
(i.e., control flow and data flow). Reading from a closed file,
for instance, is characterized behaviorally by two instructions
x.close() and y.read() that are executed sequentially and
operate on the same file. Possible violations of the invariant
that equal objects must have equal hash codes, in contrast,
are characterized structurally by a custom hashCode() method
without a corresponding equals(Object) method.

Tools that support detecting user-specified patterns provide
application-specific support for the development process. They
enable a development team to enforce its coding conventions,
to detect violations against the protocol of an in-house API and
even to check whether there are similar instances of a bug
upon its discovery. Despite their valuable applications, such
pattern detection tools have yet to become an integral part of
every developer’s toolbox. Through an extensive survey, our

dissertation [8] identified several shortcomings of the state-of-
the-art this can be attributed to.

First of all, a pattern’s characteristics have to be speci-
fied in highly specialized languages that are unfamiliar to
most developers. For control flow characteristics alone, spec-
ification languages already include reachability queries [9],
[4], plain [10] as well as temporal logic formulas [11] and
state machines [3] that quantify over control flow graphs.
Moreover, most languages support only the characteristics
that are essential to their intended use. Other characteristics
are not supported at all —even though many patterns are
heterogeneously characterized. There is therefore a need for
a familiar specification language in which structural and
behavioral characteristics can be specified uniformly.

Secondly, we identified the need for a detection mechanism
that recalls implicit implementation variants of specified char-
acteristics. This relieves users from having to enumerate each
variant in a specification. Recent advances in program analysis
have enabled detecting these variants in industrially-sized pro-
grams. However, different analyses implement different trade-
offs with respect to precision and analysis time. For instance,
many alias analyses are only able to assert conservatively
that two expressions may alias during a possible program
execution —in reality, these expressions might not alias at
all. As a result, detailed knowledge about a tool’s enabling
analyses is required to assess the extent to which a reported
pattern instance exhibits the specified characteristics. There
is therefore also a need to facilitate user assessment of the
reported pattern instances.

In the dissertation [8], we presented an example-driven
approach to pattern detection that addresses these shortcom-
ings of the state of the art. Its specification language enables
exemplifying a pattern through familiar code excerpts that
correspond to its prototypical implementation. Its detection
mechanism recalls implicit implementation variants of the
exemplified pattern and ranks these according to the extent
that they exhibit the pattern’s characteristics.

II. OVERVIEW OF THE APPROACH

Our approach is based on four cornerstones: logic meta-
programming, example-based specification, domain-specific
unification and fuzzy logic. We refer to the dissertation for

a discussion of the fifth and crosscutting open implementa-
tions cornerstone. Each cornerstone provides a meta-interface
through which it can be extended at a higher level of abstrac-
tion than its implementation.

A. Logic Meta-Programming

Logic meta-programming [12] (LMP) is the founding cor-
nerstone of our approach. It advocates using formulas in an
executable logic as specifications of a pattern’s characteristics.
This merely requires reifying the program under investigation
such that variables can range over its elements. Executing
a proof procedure will establish whether program elements
exhibit the characteristics specified in a formula. LMP is
widespread in the literature (e.g., [13], [12], [2], [14], [10] and
[6], [1], [5] use variants of Prolog and Datalog respectively)
for structural or behavioral pattern characteristics. This ten-
dency somewhat lessens the burden that the diversity among
specification languages poses to users.

The declarative nature of logic programming should result
in expressive and descriptive pattern specifications. In practice,
however, such specifications tend to become convoluted and
operational in nature. To illustrate, consider a pattern that
describes a coding convention in which Component subclasses
(except the one named Composite) are required to define a
method acceptVisitor(ComponentVisitor) that logs a mes-
sage before double dispatching to its parameter. The top-right
corner of Figure 1 depicts the prototypical implementation of
a complying class.

The top-left corner of the same figure depicts an LMP
specification for this pattern. As indicated by the if-keyword,
it is a logic query (i.e., a logic formula for which variable
bindings have to be found such that the formula holds). The
syntax1 stems from SOUL [15], the concrete LMP instance on
which we have founded our prototype. This query quantifies
explicitly over the AST nodes of the program under investi-
gation. In each solution to the query, logic variable ?class is
bound to a class declaration AST node that complies with the
coding convention.

Note that the conditions on lines 4–13 merely have to be
negated to find class declaration AST nodes that violate the
coding convention. However:

• The query is convoluted. Lines 1–4 identify a method
?m defined in a class ?class that extends the fully
qualified type example.Component and is not named
Composite. Lines 5–8 ensure that method ?m is named
acceptVisitor and has a single parameter that can be
referred to by the name ?id in its body ?body. Lines
9–13 ensure that this body consists of two statements

1In SOUL, the syntax for a predicate closely resembles the one of
Smalltalk for a message sent to the first argument of the predicate. SOUL
retains the traditional notation for compound terms (i.e., a functor symbol
followed by its arguments). Logic variables are preceded by a question
mark. Logic lists are demarcated by angle brackets. Examples include the
empty list <>, the list with three elements <1,2,3> and every list with
head ?h and tail ?t: <?h|?t>. The SOUL condition on line 6 in the top-
left corner of Figure 1 would therefore be equivalent to the Prolog condition
methodDeclarationHasParameters(M,nodeList([P])).

wrapping the actual expressions ?log and dd that perform
the logging and the double dispatching respectively. Line
13 specifies how the latter has to be implemented: by
means of an invocation of which the receiver is named
?id (i.e., the parameter of the method) and of which the
single argument is an unqualified this-expression (i.e.,
this).

• Expert knowledge is required to understand this query.
First of all, one must know how the program represen-
tation is reified in order to quantify over it. In this case,
AST nodes seem to be reified as compound terms 2 (e.g.,
simpleName(?id)) of which each argument is a reified
child node. Second, one must know how the relations be-
tween reified program elements are reified (e.g., the two-
argument predicate methodDeclarationHasName:/2). Fi-
nally, one has to be aware of the intricate details of the
program representation itself. In this case, the details of
the abstract grammar for the actual AST nodes (e.g.,
expressions within a block are wrapped in a statement)
and the parser that produced them (e.g., System.out can
be parsed as a field access or as qualified reference). Both
stem from the Eclipse JDT.

• The query recalls only the pattern’s prototypical imple-
mentation and not a single of its implementation variants
depicted on the right-hand side of Figure 1. For instance,
line 13 requires the argument to the second statement
in the method to be a this-expression rather than an
arbitrary expression that evaluates to the current object.
The query therefore fails to recognize MustAliasLeaf

as a complying class, even though the required double
dispatching is implemented through a temporary variable.

To recall implementation variants, an LMP query either has
to enumerate them or specify their shared machine-verifiable
behavior. The former queries quantify over reified AST nodes,
but only recall the enumerated variants. The latter queries re-
call all implementations of the specified behavior, but do so by
quantifying over the reified results of program analyses. This
exposes users to their details —which are more intricate than
those of AST nodes illustrated above. Alternatively, analysis
results can be quantified over using a dedicated language (e.g.,
temporal logic over CFGs). However, most are in stark contrast
with the way developers tend to communicate about patterns;
in terms of class diagrams and code snippets that exemplify
their prototypical implementation.

As the founding cornerstone of our approach, LMP lends its
means for expressing explicit points of variation among pattern
instances (i.e., logic variables and connectives). It also lends
its provisions for abstraction and reuse (i.e., predicate defini-
tion). The remaining cornerstones remedy the aforementioned
shortcomings of LMP.

2SOUL relies on a linguistic symbiosis with Java to reify AST nodes. The
reified version of an AST node is the AST node itself (i.e., an instance of
org.eclipse.jdt.core.dom.ASTNode). This facilitates exploiting query
results in other tools. The domain-specific unification procedure (cf. Sec-
tion II-C) ensures that reified AST nodes unify with structurally equivalent
compound terms.

public class PrototypicalLeaf extends Component {
public void acceptVisitor(ComponentVisitor v) {

System.out.println("Prototypical.");
v.visitPrototypicalLeaf(this);

}
}
public class SuperLogLeaf extends OnlyLoggingLeaf {

public void acceptVisitor(ComponentVisitor v) {
super.acceptVisitor(v);
v.visitSuperLogLeaf(this);

}
}
public class MustAliasLeaf extends Component {

public void acceptVisitor(ComponentVisitor v) {
System.out.println("Must alias.");
Component temp = this;
v.visitMustAliasLeaf(temp);

}
}
public class MayAliasLeaf extends Component {

public Object m(Object o) {
if(getInput() % 2 == 0)

return o;
else

return new MayAliasLeaf();
}
public void acceptVisitor(ComponentVisitor v) {

System.out.println("May alias.");
v.visitMayAliasLeaf((MayAliasLeaf)m(this));

}
}

7

1 if jtClassDeclaration(?singleton){
2 class ?singletonName {
3 static ?singleton ?uniqueInstance = new ?singleton();
4 ![public ?singleton(?paramList) {}];
5 public static ?singleton ?instance() {
6 return ?uniqueInstance;
7 }
8 }
9 },

10 jtExpression(?instance){ new ?singleton(?argList) },
11 absolutelyNot(?instance equals: ?uniqueInstance)

1 if jtStatement(?s){
2 for(?initList; ?iterator.hasNext(); ?updList)
3 ?iterator.next();
4 }

1 if jtMethodDeclaration(?m){
2 public static void main(String[] args) {
3 ?scanner := new java.util.Scanner(?argList);
4 ?scanner.close();
5 ?scanner.next();
6 }
7 }

1 if jtClassDeclaration(?class){
2 class !Composite extends* Component {
3 ?modList ?type acceptVisitor(?t ?v) {
4 System.out.println(?string);
5 ?v.?visitMethod(this);
6 }
7 }
8 }

5

1 if ?type isTypeWithFullyQualifiedName: [’example.Component’],
2 ?class extendsType: ?type,
3 not(?class classDeclarationHasName: simpleName([’Composite’])),
4 ?class definesMethod: ?m,

5 ?m methodDeclarationHasName: simpleName([’acceptVisitor’]),
6 ?m methodDeclarationHasParameters: nodeList(<?p>),
7 ?p singleVariableDeclarationHasName: simpleName(?id),
8 ?m methodDeclarationHasBody: ?body,

9 ?body equals: block(nodeList(<expressionStatement(?log),expressionStatement(?dd)>)),
10 or(?so equals: qualifiedName(simpleName([’System’]),simpleName([’out’])),
11 ?so equals: fieldAccess(simpleName([’System’]),simpleName([’out’]))),
12 ?log equals: methodInvocation(?so,?,simpleName([’println’]),?s),
13 ?dd equals: methodInvocation(simpleName(?id),?,?,nodeList(<thisExpression([nil])>))

11

Fig. 1. Example-driven pattern detection motivated through the shortcomings of the plain logic meta-programming approach to pattern detection.

B. Example-Based Specification

The example-based specification cornerstone enables ex-
emplifying the prototypical implementation of a pattern’s
characteristics. Within logic formulas, this implementation can
be exemplified as a code excerpt in the concrete syntax of the
program under investigation. This obviates the need to quantify
explicitly over the reified program representation to express
such characteristics. Developers are therefore shielded from
the details of the program representation and its reification.

The bottom-left corner of Figure 1 depicts the example-
based specification for a class that complies with the afore-
mentioned coding convention. In contrast to the LMP specifi-
cation, this specification is concise and descriptive. It closely
resembles the prototypical implementation of a complying
class. Apart from logic variables, only a negation operator
(i.e., !Composite to exclude classes named Composite) and a
reflexive transitive closure operator (i.e., extends* to include
classes that extend Component indirectly) has been added.

We instantiated the example-based specification cornerstone
as so-called template terms [16] in SOUL. The template term in
Figure 1 consists of a functor jtClassDeclaration, a single
argument ?class and a code excerpt demarcated by braces.
The functor identifies the grammar rule adhered to by the code
excerpt. This grammar describes the concrete syntax of Java
—extended with a minimum of non-native syntax and logic
variables. The latter stand for productions that originate from
a non-terminal in the Java grammar. Used as a condition, a
template term succeeds if there is an AST node that matches
the code excerpt. Backtracking over the term successively
unifies each matching node with the argument of the term.
Variables within the excerpt get bound as well.

Support for concrete syntax is not uncommon among ad-
vanced pattern detection tools (e.g., [3], [14], [4], [6], [17]).
In contrast to these approaches, template terms adopt source
code excerpts of a coarse granularity. The concrete syntax
of whole method and class declarations can be used. For
matching such template terms, we do not limit ourselves to

the strictly syntactic strategy that is predominant. Instead, we
match according to multiple strategies that vary in leniency. All
of them are considered when the template term is backtracked
over. As they realize the example-based semantics of template
terms, we refer to these matching strategies as example-based
interpretations. The following example-based interpretations
are predefined:

• Under the syntactic interpretation, AST nodes match a
template term if they exhibit the structural characteristics
exemplified by its code excerpt. Moreover, matching
nodes should not exhibit any other structural charac-
teristics. Only class PrototypicalLeaf from Figure 1
matches the template under this interpretation.

• The lexical interpretation is a less restrictive version of
the syntactic one. Matches have to exhibit the struc-
tural characteristics exemplified by the template, but are
allowed to exhibit additional ones.3 Class declarations,
for instance, are allowed to have additional declarations
besides the exemplified ones.

• Under the control flow interpretation, matching method
declarations have to exhibit the control flow characteris-
tics exemplified by the template term. There should be
a path through the control flow graph of the method
(i.e., existentially qualified) on which all exemplified
instructions are executed. Non-specified instructions are
allowed on the execution path. The path also crosses
method boundaries (i.e., it is inter-procedural). As a
result, matches for an instruction in the template term
need not reside in the method declaration that matches
the term.4 This is why class SuperLogLeaf from Figure 1
matches the template term under this interpretation.

3However, the lexical relations among the elements of a match have to
be the same as the ones among the corresponding elements in the template.
If a statement in the excerpt is preceded by a local variable declaration, for
instance, matching statements have to be preceded by a matching variable
declaration as well.

4However, actual statements such as return-statements are matched intra-
procedurally.

In template terms, multiple occurrences of the same variable
express a data flow characteristic. For instance, the occurrences
of ?v in Figure 1 link the receiver of ?v.visitMethod(this) to
the parameter of method acceptVisitor(?t ?v). Their bind-
ings have to unify —which brings us to the third cornerstone
of our approach.

C. Domain-Specific Unification

Unification is an essential ingredient of the proof procedure
in logic programming. The domain-specific unification proce-
dure [18] treats reified program elements different from other
terms. Unifying two reified program elements can succeed
where the general-purpose unification procedure fails. The
table in Figure 2 lists the most important extensions.

The first extension ensures that reified AST nodes unify with
structurally equivalent compound terms, even if they have not
been reified as such. 2 The remaining extensions are specific to
the pattern detection domain. Implicit implementation variants
(i.e., those implied by the semantics of the programming lan-
guage) of the same pattern characteristic unify. This obviates
the need to enumerate these variants in a specification. To this
end, the domain-specific procedure consults whole-program
analyses when unifying individual reified program elements.

For instance, a semantic analysis determines whether an
unqualified and fully qualified type should unify. An alias
analysis determines whether two expressions should unify.
This allows syntactic deviations as long as the expressions may
evaluate to the same object at run-time. Method invocation
and declaration names unify if the invocation may invoke the
declaration. Users benefit from the results of these analyses
without being exposed to their intricate details.

D. Fuzzy Logic

A fuzzy variant of SOUL [19], close to f-Prolog [20], lends
our detection mechanism a means to rank the results it reports.
Each result is quantified by the extent to which it exhibits the
characteristics in a specification. The smaller this extent, the
more likely the reported instance is a false positive.

Concretely, truth degrees are associated with each match
for a template term. These are bounded by the example-based
interpretation under which the match was found. They cannot
exceed 1, 9

10 and 8
10 for the syntactic, lexical and control

flow interpretation respectively. The properties of the match
itself further refine this upper bound. Matches are ranked
lower if they required a unification that could introduce false
positives. To this end, unification degrees are associated with
each domain-specific extension (cf. Figure 2). They reflect the
likelihood that such an extension may introduce false positives
due to imprecisions in its enabling analysis.

Most notably, expressions unify with a unification degree
of 1

2 if they may alias according to an inter-procedural points-
to analysis. Unifying such expressions can introduce false
positives if the expressions do not evaluate to the same object
during all possible program executions. Expressions that reside
in the same method unify with a unification degree of 9

10 if
they are guaranteed to alias during all executions according

to an intra-procedural must-alias analysis. If both expressions
are the same AST node, they unify with a degree of 1.

The screenshot in Figure 1 illustrates that our detection
mechanism recalls all implementation variants of the coding
convention. Class PrototypicalLeaf is ranked highest as it
exhibits the exemplified characteristics to the greatest extent.
Next is class SuperLogLeaf which could only be detected by
following its super method invocation, but without having to
consult a program analysis. Class MayAliasLeaf is ranked
lowest as it only preforms the required double dispatching
when the user inputs an even number. Its detection required
consulting program analyses.

III. AN ILLUSTRATIVE EXAMPLE

We briefly illustrate our approach by applying its instantia-
tion in SOUL to instances of the Observer design pattern and
the lapsed listener pitfall in their implementation.

Detecting Observers Lines 1–20 in the bottom-left corner
of Figure 2 depict an example-based specification for the
Observer pattern. The depicted specification consists almost
entirely of logic variables. These indicate explicit points of
variation that are constrained by the unification procedure.
We have highlighted the occurrences of the same variable in a
distinct color. When substituting for an expression or a variable
declaration, these express data flow characteristics.

Lines 1–15 exemplify the subject participant as a class with
a collection of ?observers to which an ?observer can be
added through method ?addObserver. Note that we have used
different variables for the parameters of ?removeObserver and
?addObserver. Otherwise, the specification would require that
at least one observer is added to and removed from a subject
at run-time. This is because our unification procedure unifies
parameters only if they are in a may-alias relation. Method
?notifyObservers notifies the subject’s observers of a state
change. Rather than enumerating the different ways in which
the ?observers field can be iterated through, the specification
exemplifies the method as one with two successively evaluated
instructions. The first evaluates to the ?observers field, while
the second sends message ?update to an ?observer that has
been added to this field through method ?addObserver. Lines
16–20 exemplify the observer participant as a class in which
the invoked ?update method resides. Note that this already
constrains ?observerClass to a class declaration in the sub-
type hierarchy of ?observerType. No additional conditions are
therefore required to express this constraint.

A matching Observer implementation is depicted next to
this specification. To highlight the domain-specific unifications
its detection required, the colors in both figures correspond.
For instance, the occurrences of ?observer substitute for
expressions as diverse as ((ChangeObserver)e.next()) and
the parameter of method addObserver —both deemed in a
may-alias relation though.

Detecting Lapsed Listeners Lapsed listeners are observer
participants that are no longer needed, but never unregister
from their subject. Lines 1–20 of the specification exem-
plify the classes that participate in the design pattern (i.e.,

?x unifies with ?y
binding for ?x binding for ?y conditions degree
an ASTNode an ASTNode unify under general-purpose procedure 1
an ASTNode a compound term each argument ti of the compound term f (t1, . . . , tn) and each corresponding child ci of the AST

node unifies with degree δi and functor f unifies with the name of the node’s class

�n
ı=1δi

a Type a Type according to the semantic analysis, denote same type or are co-variant return types 1
a method invocation
Name

a method declara-
tion Name

invocation may invoke declaration according to the static type of the receiver or the dynamic type
of the objects it may evaluate to

1
4 or 1

2

a class declaration
Name

an instance creation
expression Name

expression instantiates declared class 1

an Expression an Expression according to an intra-procedural must-alias analysis or according to an inter-procedural may-
alias analysis, must or may evaluate to the same object at run-time

9
10 or 1

2

an Expression a variable declara-
tion Name

expression references the variable according to a semantic analysis 9
10

1 class Point implements ChangeSubject {
2 private HashSet observers ;
3 public void addObserver (utils.ChangeObserver o) {

4 observers .add(o);
5 }
6 public void removeObserver(ChangeObserver o) {

7 this.observers .remove(o);
8 }
9 public void notifyObservers() {

10 for (Iterator e = observers .iterator() ; e.hasNext() ;) {

11 ((ChangeObserver)e.next()) . refresh (this);
12 }
13 }
14 }
15 class Screen implements ChangeObserver {
16 public void refresh (ChangeSubject s) { ... }
17 }
18 class Main {
19 public static void main(String[] args) {
20 Point p = new Point(5, 5);

21 Screen s1 = new Screen ("s1") ;

22 Screen s2 = new Screen("s2");
23 p. addObserver (s1);
24 p.addObserver(s2);
25 ...
26 p.removeObserver(s2);
27 }
28 }

9

1 if jtClassDeclaration(?subjectClass){
2 class ?subjectName {
3 ?mod1List ?t1 ?observers = ?init;
4 public ?t2 ?addObserver (?observerType ?observer) {

5 ?observers .?add(?observer);
6 }
7 public ?t3 ?removeObserver(?observerType ?otherObserver) {

8 ?observers .?remove(?otherObserver);
9 }

10 ?mod2List ?t4 ?notifyObservers(?param1List) {
11 ?observers ;
12 ?observer . ?update (?argList);
13 }
14 }
15 },

16 jtClassDeclaration(?observerClass){
17 class ?observerName {
18 ?mod3List ?t5 ?update (?argList) {}
19 }
20 },

21 jtExpression(?register){ ?subject. ?addObserver (?lapsed) },

22 not(jtExpression(?unregister){ ?subject.?removeObserver(?lapsed) }),

23 jtExpression(?alloc){ ?lapsed := new ?observerName (?argList) }

8

Fig. 2. Domain-specific extensions of the unification procedure illustrated on the detection of lapsed listeners in the Observer design pattern.

?subjectClass and ?observerClass). Lines 21–23 exemplify
the lapsed listener pitfall at the instance-level: as instances
of the participating classes that exhibit the characteristics of
the pitfall. They identify ?lapsed objects that are added to a
?subject (line 21), but never removed from it (line 22). The
final condition term is optional. It identifies the expression
that instantiated the lapsed object. To this end, it uses the
non-native operator := which unifies the logic variable on
its left-hand side with the AST node that matches the code
on its right-hand side. As a result, ?alloc will be bound to
new Screen("s1") for the depicted program.

Note that the depicted specification only detects possible
lapsed listeners. It does not identify the point in the program’s
execution after which an observer is no longer needed, nor
does it specify that the ?unregister expression should be
executed after the ?register expression. It can therefore only
be used to issue warnings. Actual lapsed listeners could be
identified through a subsequent dynamic analysis.

IV. EVALUATION

In the dissertation [8], we formulated several well-motivated
desiderata for each dimension in the design of a pattern detec-
tion tool: its specification language, its detection mechanism
and its program representation. When fulfilled, these result in
a general-purpose tool that can be applied to detect structural
and behavioral pattern characteristics using descriptive speci-
fications in a uniform language. Through running examples,
we motivated each individual cornerstone of our approach

using the desiderata it helps to fulfill. Next, we evaluated our
approach as a whole on these desiderata by detecting patterns
that are representative for the intended use of a general-
purpose tool: design patterns, µ-patterns and bug patterns.

Overall, the patterns were straightforward to specify in
an example-driven manner. Even though the patterns are
diverse and heterogeneously characterized, their specifications
are descriptive. The majority consists of exclusively template
terms with little non-native syntax. We had to resort to higher-
order logic predicates only for cardinality constraints such
as “for-all” and “as-many-as”. We were able to detect most
of the pattern instances with few false positives. Recalling
the missing instances would require exemplifying additional
prototypical implementations of the pattern —of which the
detection mechanism recognizes implicit implementation vari-
ants. Many false positives could be eliminated by adding logic
conditions to the specification that implement heuristics.

V. FUTURE WORK

There are still many open questions related to our approach.
For instance, the ranking of the detection results was intended
to reflect their projected likelihood of being a false positive.
Large corpus-based studies are needed to test these projections
against reality. Using UML-like diagrams instead of code
templates to exemplify a pattern would be a natural extension
of our approach. Interestingly, logic variables could serve as
links between a class diagram and a sequence diagram in
such specifications. We have already started to explore this

path. The most challenging question concerns methods for
generalizing concrete instances into an example-based pattern
specification that is no more and no less permissive than
intended. Perhaps the corresponding search space could even
be explored automatically. To our knowledge, the resulting
tool would be unique given that example-based specifications
are backed by advanced program analyses.

Extensive corpuses of software idioms, bug patterns and
design patterns are still lacking. Corpuses of design pattern
instances exist, but their coarse-grained nature renders assess-
ing detection results difficult. For example, they do not contain
information about which operations are called in a Template
Method.

From a broader perspective, it will become increasingly
important to investigate how the valuable software engineering
tools that we develop as a community can become an integral
part of every developer’s toolbox. In a sense, our own work
attempts to vulgarize program analyses in the hope that de-
velopers start applying them to everyday software engineering
problems.

VI. LESSONS LEARNED

I conclude with some personal reflections for the PhD
symposium. What sped up my PhD process significantly was
a conscious decision not to reinvent the wheel, but to stand
on the shoulder of giants instead. I did not implement a
logic programming language from scratch, but rather incor-
porated my ideas into SOUL. Besides saving time, this also
exposed the ideas to the other researchers working on or with
SOUL. A joint research artefact easily gathers momentum.
Likewise, I decided to rely on the Eclipse JDT for structural
program information and on the SOOT analysis framework
for behavioral program information. This was not an obvious
choice though. Live instances of these Java programs had to
be interacted with, but SOUL is implemented in Smalltalk.
Some perseverance (and the JAVACONNECT Smalltalk-to-Java
interconnection library) was necessary to make this work. To
make a long story short, I’m greatly indebted to all researchers
that made their artifacts publicly available. On the other hand,
sometimes it takes implementing an algorithm yourself to fully
grasp all of its details.

That said, it is important not to spend time on the wrong de-
tails. I devoted a substantial amount of time devising example-
driven specifications for every single µ-pattern. Validation-
wise, however, this contributed little to the dissertation. In
the last year of my research, analysis paralysis was always
looming. To others susceptible to this terrible infliction I can
only advise to trust your advisors when they say you have
enough material and write everything down as quickly as
possible. To put everything into perspective, an anonymous
researcher once told me that a PhD is akin to a driver’s license.
In the end, it only marks the beginning of your academic
career.

ACKNOWLEDGMENT

I would like to thank the promotor and co-promotor of my
dissertation for their support: Wolfgang De Meuter and Johan

Brichau. Coen De Roover is funded by the Stadium SBO
project sponsored by the “Flemish agency for Innovation by
Science and Technology” (IWT Vlaanderen).

REFERENCES

[1] E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: Scalable source
code queries with Datalog,” in Proceedings of the 20th European
Conference on Object-Oriented Programming (ECOOP06), ser. Lecture
Notes in Computer Science, vol. 4067, 2006, pp. 2–27.

[2] K. De Volder, “JQuery: A generic code browser with a declarative con-
figuration language.” in Proceedings of the 8th International Symposium
on Practical Aspects of Declarative Languages (PADL06), 2006, pp. 88–
102.

[3] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler extensions,”
in Proceedings of the Fourth Symposium on Operating Systems Design
and Implementation (OSDI00), Oct. 2000.

[4] N. Volanschi, “A portable compiler-integrated approach to permanent
checking,” in Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE06), 2006, pp. 103–112.

[5] T. Cohen, J. Y. Gil, and I. Maman, “JTL: the Java Tools Language,” in
Proceedings of the 21st ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA06),
2006, pp. 89–108.

[6] M. Martin, B. Livshits, and M. Lam, “Finding application errors and
security flaws using PQL: a program query language,” in Proceedings
of the 20th ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages and Applications (OOPSLA05), 2005, pp. 365–383.

[7] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman,
N. Ongkingco, D. Sereni, and J. Tibble, “Keynote address: .ql for source
code analysis,” in Proceedings of the 7th. IEEE International Working
Conf. on Source Code Analysis and Manipulation (SCAM07), 2007, pp.
3–16.

[8] C. De Roover, “A logic meta programming foundation for example-
driven pattern detection in object-oriented programs,” Ph.D. dissertation,
Vrije Universiteit Brussel, August 2009.

[9] S. Drape, O. de Moor, and G. Sittampalam, “Transforming the .NET
intermediate language using path logic programming,” in Proceedings
of the 4th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’02), 2002, pp. 133–144.

[10] H. Falconer, P. H. J. Kelly, D. M. Ingram, M. R. Mellor, T. Field, and
O. Beckmann, “A declarative framework for analysis and optimization,”
in Proceedings of the 16th International Conference on Compiler
Construction (CC07), 2007.

[11] D. Lacey, “Program transformation using temporal logic specifications,”
Ph.D. dissertation, University of Oxford, August 2003.

[12] R. Wuyts, “A logic meta-programming approach to support the co-
evolution of object-oriented design and implementation,” Ph.D. disser-
tation, Vrije Universiteit Brussel, Belgium, January 2001.

[13] R. F. Crew, “ASTLOG: A language for examining abstract syntax trees,”
in Proceedings of the 1997 USENIX Conference on Domain-Specific
Languages (DSL’97), 1997, pp. 229–242.

[14] M. Appeltauer and G. Kniesel, “Towards concrete syntax patterns
for logic-based transformation rules,” in Proceedings of the Eighth
International Workshop on Rule-Based Programming (RULE07), 2007.

[15] “The SOUL Website,” http://soft.vub.ac.be/SOUL/, 2011.
[16] C. De Roover, J. Brichau, C. Noguera, T. D’Hondt, and L. Duchien,

“Behavioral similarity matching using concrete source code templates
in logic queries,” in Proceedings of the Symp. on Partial Evaluation and
semantics-based Program Manipulation (PEPM07), 2007, pp. 92–102.

[17] E. Visser, “Meta-programming with concrete object syntax,” in Pro-
ceedings of the 1st Conf. on Generative Programming and Component
Engineering (GPCE02), 2002, pp. 299–315.

[18] J. Brichau, C. De Roover, and K. Mens, “Open unification for program
query languages,” in Proceedings of the XXVI International Conference
of the Chilean Computer Science Society (SCCC 2007), 2007.

[19] C. De Roover, J. Brichau, and T. D’Hondt, “Combining fuzzy logic and
behavioral similarity for non-strict program validation,” in Proceedings
of the 8th ACM-SIGPLAN Symposium on Principles and Practice of
Declarative Programming (PPDP06), 2006, pp. 15–26.

[20] D. Li and D. Liu, A fuzzy Prolog database system. John Wiley & Sons,
Inc., 1990.

