
Automatic Parallelization of Side-Effecting Higher-Order Scheme Programs

Jens Nicolay, Coen De Roover, Wolfgang De Meuter, Viviane Jonckers
Software Languages Lab
Vrije Universiteit Brussel

jnicolay,cderoove,wdmeuter,vejoncke@vub.ac.be

Abstract—The multi-core revolution heralds a challenging
era for software maintainers. Manually parallelizing large
sequential code bases is often infeasible. In this paper, we
present a program transformation that automatically paral-
lelizes real-life Scheme programs. The transformation has to be
instantiated with an interprocedural dependence analysis that
exposes parallelization opportunities in a sequential program.
To this end, we extended a state-of-the art analysis that copes
with higher-order procedures and side effects. Our parallelizing
transformation exploits all opportunities for parallelization
that are exposed by the dependence analysis. Experiments
demonstrate that this brute-force approach realizes scalable
speedups in certain benchmarks, while others would benefit
from a more selective parallelization.

Keywords-parallelization, static analysis, program transfor-
mation

I. INTRODUCTION

Multi-core processors are here and are here to stay for the
foreseeable future. This revolution heralds a challenging era
for software maintainers. While parallelism is now supported
by commodity hardware, it still has to be exploited in
software to realize a performance increase. For large se-
quential code bases, manual parallelization might not prove
economically viable at all. Invasive, error-prone and labor-
intensive changes can only be justified if they realize the
expected speedup. Alternatively, the compiler or interpreter
can be tasked with introducing parallelism in the execution
of a sequential program. For instance, different loop iter-
ations or recursive procedure applications can be executed
in parallel. While such automatic parallelization techniques
have realized speedups in high-performance computing, ar-
chitectural contrasts (e.g., memory models, interconnection
bandwidths), radically different problem domains (e.g., back
office applications versus particle simulations) and the use of
high-level language features (e.g., closures, polymorphism,
reflection) encumber transposing them into the multi-core
era.

In this paper, we describe a program transformation
that automatically parallelizes higher-order side-effecting
Scheme programs. The transformation must be instantiated
with a sound and sufficiently precise dependence analysis,
for dependent expressions cannot safely be evaluated in
parallel. We build on the state-of-the-art dependence analysis
by Might and Prabhu [1].

The transformation introduces the special form future

and its companion procedure touch wherever it is deemed
possible according to the analysis, making it brute-force in
nature. The transformed program requires a runtime that
supports future/touch constructs as follows:

• (future e) allows expression e to be evaluated imme-
diately or at some unspecified point in the future —and
possibly in parallel with the rest of the program. Either
the value of e is returned, or a promise that represents
the future value of e.

• (touch f) waits for and returns the value of the
promise f or simply returns f itself if it is not a promise

The intentional semantics [2] of future/touch relieves the
transformation from assessing whether it is beneficial to
introduce them at each discovered opportunity. Instead, this
responsibility can be left to the runtime. To illustrate the use
of future/touch, the parallel let expression

(let|| ((a e1)
(b e2))

ebody)

can be implemented as follows:

(let ((fa (future e1))
(b e2))

(let ((a (touch fa)))
ebody))

Using a concurrent runtime, we evaluate our transforma-
tion on well-known benchmark programs with respect to the
following criteria:

1) Completeness how many opportunities for paralleliza-
tion were exposed and subsequently exploited?

2) Performance does the parallelized program execute
faster than the original sequential one?

3) Scalability does the performance of the parallelized
program scale with the hardware support for paral-
lelism?

The experiments demonstrate that our brute-force approach
to parallelization realizes scalable speedups in certain bench-
marks, while others would benefit from a more selective
parallelization.

Although we descibe our technique in the setting of
higher-order Scheme programs, it should be possible to
transpose it to object-oriented programming languages. For

example, [3] discusses the link between the worlds of
functional and object-oriented static analysis.

Section II relates parallelization opportunities to the dif-
ferent kinds of dependencies that can exist between two
expressions. We describe how our transformation discovers
and subsequently exploits opportunities for parallelization
in Section III. Section IV discusses the concurrent runtime
that is required by the transformed programs. Using this
runtime, Section V evaluates our transformation on several
well-known benchmark programs. We conclude this paper
with related and future work in Sections VI and VII.

II. DEPENDENCIES AND PARALLELIZATION

Consider parallelizing program P1 depicted on the left-
hand side of Figure 1. Potential targets for introducing
parallelism are any point in P1 at which a sequence of
expressions is evaluated. For instance, the arguments (h a)

and (h b) of the procedure application (append (h a) (h

b)) could be evaluated in parallel. Whether it is actually
safe to evaluate these expressions in parallel, hinges on the
dependencies among them. Expression e2 is dependent on
expression e1 if e1 must be evaluated before e2 to guarantee
the intended semantics of the program in which these
expressions occur. Dependent expressions cannot safely be
evaluated in parallel. Conversely, evaluating independent
expressions in parallel cannot change the meaning of a
program and hence it is safe to do so.

In program P1, (h a) and (h b) can be evaluated in
parallel because these expressions are independent. To this
end, the aforementioned future/touch special forms can be
introduced in procedure appender:

(define (appender h a b)
(let ((ha (future (h a)))

(hb (h b)))
(append (touch ha) hb)))

In the transformed procedure, expression (future (h a))

informs the evaluator that (h a) can be evaluated in par-
allel with the rest of the program. The (future (h a))

expression evaluates to a so-called promise that represents
the future value of (h a). Expression (touch ha) causes the
evaluator to wait for and return this value. This synchronizes
the expression that is evaluated in parallel and the rest of the
program. While expression (h a) is computed, the program
can compute (h b), so nothing would be gained by turning
(h b) into a future computation as well.

Now consider program P2 depicted on the right-hand
side of Figure 1. In P2, expressions (h a) and (h b) can
no longer be evaluated in parallel. The latter expression
depends on the former through the variable z. This variable
is first read and updated during the evaluation of (h a)

and subsequently during the evaluation of (h b). Evaluating
these expressions in parallel would therefore change the
semantics of the program. Note that procedure appender

in which expressions (h a) and (h b) reside, is identical

in P1 and P2. Analyses that determine the dependences
among expressions therefore have to consider the program
as a whole.

In this paper, we describe a program transformation that
introduces future/touch constructs to exploit all oppor-
tunities for parallelization that are deemed safe by such
a whole-program dependence analysis. The transformation
will parallelize the two applications of h in P1, while it will
correctly leave the corresponding applications in P2 alone.

A. Types of dependencies

Dependencies can be categorized into control and data
dependencies.

1) Control dependencies: Expression e2 is control-
dependent on expression e1 if the result of evaluating e1
determines whether e2 will be evaluated or not. For example,
in the expression

(if (not (zero? x))
(f (/ y z)))

procedure f will only be called if the condition (zero? x)

does not hold. Hence there is a control dependency from (f

(/ y x)) on (not (zero? x)). Control-dependent expres-
sions cannot be reordered without changing the semantics
of a program. We won’t consider control dependencies any
further in the remainder of this paper.

2) Data dependencies: Expression e2 is data-dependent
on expression e1 if e1 is evaluated before e2 and e2 accesses
or modifies a resource that was accessed or modified before
by e1. In the context of this paper, a resource is a variable
pointing to a fixed address that contains a modifiable value.1

We distinguish between four types of data dependencies
among consecutively executed expressions e1/e2, and give
an example of each.
• read/read dependency: e1 and e2 share a variable they

read. In P1 and P2 (h b) is read/read dependent on (h

a) through h.
• read/write dependency: e2 writes a variable that e1

reads. In P2 (set! z (cons x z)) is read/write de-
pendent on (cons x z) through z.

• write/read dependency: e2 reads a variable that e1
writes. In P2 (h a) is write/read dependent on (set!

z (cons x z)) through z.
• write/write dependency: e1 and e2 share a variable they

write to. In P2 (h b) is write/write dependent on (h a)

through z.
Read/read dependencies are harmless in the sense that they
do not preclude evaluating the involved expressions in a
different order. On the contrary, a data dependency that in-
volves updating a variable prohibits evaluating the concerned
expressions in parallel.

1We assume that there is a one-to-one mapping from variable identifiers
to addresses. This can be ensured by applying α-conversion [4] to the input
program.

1 (define (appender h a b)
2 (append (h a) (h b)))

4 (define (lister g)
5 (lambda (x)
6 (list (g x))))

8 (define (square x)
9 (* x x))

11 (appender (lister square) 42 43)

1 (define (appender h a b)
2 (append (h a) (h b)))

4 (define (lister g)
5 (lambda (x)
6 (list (g x))))

8 (define z ’())

10 (define (conser x)
11 (set! z (cons x z)) z)

13 (appender (lister conser) 42 43)

Figure 1. Scheme programs P1 (left-hand side) and P2 (right-hand side) illustrating different types of data dependencies.

B. Determining data dependencies

Our program transformation has to be instantiated with an
analysis that is capable of analyzing three sources of data
dependence.

1) We need to determine the data dependencies between
expressions and variable binding operations caused
by special forms define, let and their variants. This
kind of dependence is relatively straightforward to
discover from the source code. For example, the body
of conser on line 11 of P2 cannot be evaluated before
or in parallel with the define on line 8. The former
depends on the latter since the body expects a binding
for variable z to be present.

2) We need to determine the intra-procedural data depen-
dencies between expressions. These data dependencies
are also lexically evident from the source code and
are therefore straightforward to discover as well. For
example, it is immediately apparent that procedure
application (h a) reads from variables h and a.

3) Lastly, we need an analysis that determines the inter-
procedural data dependencies between expressions.
Inter-procedural dependencies between expressions
are, in contrast with the previous ones, challeng-
ing to determine. We already illustrated this for the
write/write dependency of application (h b) on appli-
cation (h a) in P2. This dependency is not lexically
apparent at either application site. There is no static
control flow readily available for a higher-order pro-
gram [5], and the variables written to or read from
by invocation (h a) in general depend on the values
of both h and a. The advanced dependence analysis
by Might and Prabhu [1] is a suitable candidate
for computing inter-procedural data dependencies be-
tween expressions in higher-order Scheme programs.

Our program transformation requires the dependence anal-
ysis to conservatively over-approximate the actual dependen-
cies that will arise at run-time. Every dependency that may
arise at run-time has to be included in the results, but the
result may contain false positives. Some opportunities for
parallelization might therefore remain unexploited because

of a dependence that is a false positive, but – more impor-
tantly – all exploited ones are safe. Of course we require
the analysis to support Scheme’s higher-order procedures
and side effects, so it can be applied to real-life Scheme
programs. We will revisit the analysis in the implementation
section of this paper.

C. Administrative Normal Form

In order to look for parallelization opportunities, we have
to examine dependencies between expressions occurring in
various syntactic constructs in an arbitrary Scheme program.
To facilitate the detection of these opportunities, we can
normalize source code into administrative normal form [6]
(ANF). Complex expression are broken down into a se-
quence of simpler intermediate subexpressions by introduc-
ing unary (i.e., containing one binding) let expressions. For
example, the expression for calculating the n-th Fibonacci
number

(if (< n 2) n (+ (fib (- n 1)) (fib (- n 2))))

is normalized into the following expression:

(let ((_p0 (< n 2)))
(if _p0

n
(let ((_p1 (- n 1)))
(let ((_p2 (fib _p1)))
(let ((_p3 (- n 2)))
(let ((_p4 (fib _p3)))

(+ _p2 _p4)))))))

In this example variables with prefix _p are unique variables
introduced by the conversion process. In a similar manner
ANF conversion also breaks down other types of conditional
expressions, declarations, mutations and procedure bodies by
explicitly naming subexpressions. As a consequence, instead
of specifically treating all the separate syntactic cases for
determining dependence, we can concentrate on one single
construct after ANF conversion, namely a series of nested
unary let expressions.

Because ANF conversion affects all types of Scheme
expressions and terminates only when there are no more
expressions to simplify, we argue that focussing on the

u ∈ Var = set of identifiers

q ∈ Quo = set of literals

p ∈ Prim = set of primitives

lam ∈ Lam ::= (λ(u1 . . . un) ebody)

proc ∈ Proc = Lam + Prim

f, x ∈ Arg = Var + Quo + Proc

e ∈ Exp ::= x

| (f x1 . . . xn)

| (let ((u x)) ebody)

| (let ((u (f x1 . . . xn))) ebody)

| (letrec ((u lam)) ebody)

| (set! u x)

| (if xcond econs ealt)

Figure 2. Administrative normal form (ANF) with recursive functions,
mutable variables and conditional.

resulting series of nested unary let expressions is a suffi-
ciently general approach to uncover data dependencies. For
soundness, it is necessary to treat data dependencies at the
level of individual expressions. However, this granularity
may seem too fine-grained when it comes to parallelization.
In the next section we will actually parallelize source code
at a coarser scale.

Figure 2 depicts the abstract grammar of the ANF variant
we will use throughout the remainder of this paper. Note how
the operands at call sites are always “simple” expressions
(i.e., a reference, literal, or lambda) and that procedure calls
are either let-bound or in tail position.

III. APPROACH

Our approach for the parallelization of Scheme programs
consists of transforming a program into its ANF equivalent,
examine each series of unary nested let expressions for
parallelization opportunities, and rewrite those nested let

expressions by exploiting parallelism where possible. The
granularity at which we examine parallelism is not a let

binding expression, but rather a variable binding operation.

A. Dependence between variable binding operations

It is straightforward to reason about dependence on the
level of variable binding operations: variable binding opera-
tion B2 with binding expression e2 is dependent on variable
binding operation B1 with binding expression e1, if e2 is
dependent on B1 or e2 is dependent on e1. By reasoning
about binding operations and not individual let binding
expressions, we can make our parallelism more coarse-
grained. Instead of evaluating single binding expressions in
parallel, we would like to group as many binding operations
as possible to be evaluated in parallel. We will have more
to say on grouping variable binding operations later.

Just as with expressions before, variable binding oper-
ations can be safely parallelized if and only if there are
no write/read, read/write or write/write data dependencies
between them. These dependencies are easy to detect using a

dependence analysis with the proposed capabilities, although
the following three points deserve additional attention.

1) Closures: Consider the following expression in which
a closure is bound to a variable.
(let ((z #f))
(let ((writez (lambda () (set! z 123) z)))
. . .))

Because the body of a lambda is not evaluated when the
lambda expression is evaluated into a closure, we do not
have to worry about any data dependencies that may arise
on other binding expressions. However, we do have to take
into account that the body of the lambda in our example has
a dependency on the binding operation of variable z. This
means that the binding operations of variables writez and
z cannot occur in parallel.

2) Procedure invocations: The expression below binds
the result of a procedure invocation to a variable.
(lambda (z)
(let ((writez (lambda () (set! z 1) z)))
(let ((squarez (lambda () (* z z))))

(let ((newz (writez)))
(let (zquared (squarez)))
. . .))

In this example, it is permitted to reorder the binding
operations of variables writez and squarez because they
are not dependent. But we cannot reorder the binding
operations of variables newz and squarez because the body
expressions associated with the two lambda expressions have
an interprocedural write/read data dependency on each other
through variable z.

3) Body reference: Besides data dependencies between
variable binding operations, there is one more type of
ordering dependency that we have to take into account. If we
only want to parallelize expressions inside a series of nested
lets without any effect on outside computation, we have to
make sure that all future computations are terminated when
the evaluator has finished evaluating the body expression and
returns its value. In the expression
(let ((z 42))
(let ((x (f z)))
(* z z)))

we want the call (f z) to be finished before the value of
body expression (* z z) is returned as the value for the
entire expression. For this reason, and also to increase our
chances of parallelization, we will always bind the body
expression to a unique variable which we will call body, as
shown below.
(let ((z 42))
(let ((x (f z)))
(let ((body (* z z))) ; body variable

body))) ; =body reference

To distinguish between the variable body and a reference to
it, we will denote the latter as =body. Even though (f z)

does not contribute to the end value of the above expression,

and even though it can be reordered with (* z z), we still
require that =body is dependent on the binding operation of
variable x. In general, we make the body reference expres-
sion =body dependent on any binding operation on which
no other binding operation is dependent. This constraint
ensures that the body reference expression =body is always
the unique last expression in all dependency chains that
we can construct for a series of nested let expressions.
In practice, binding expressions in let expressions that are
evaluated for side-effects only and that do not (indirectly)
contribute to the return value of the let, are rare.

B. Dependency graphs

We can use dependency information to construct a bind-
ing dependency graph that models the temporal evaluation
constraints imposed by the dependencies on variable binding
in series of unary let expressions. This binding dependency
graph is a directed, acyclic graph (DAG) in which each node
represents one variable binding operation from the nested
lets. It also includes the body node that represents the body
reference =body. The body node is always the unique sink
node in a binding dependency graph.

Figure 3 shows an example of a dependency binding
graph for a series of nested unary let expressions. Most
dependencies in the graph are dependencies between binding
expressions and variable binding operations. The depen-
dency of p4 upon p3 is the most interesting dependency
because it expresses an interprocedural dependency resulting
from the two procedure invocations (writez) and (readz).

For more complicated series of unary lets, binding de-
pendency graphs are not always the most straightforward
representation for deciding the optimal order of variable
binding with respect to parallelization. To make this binding
order explicit, we can apply simple graph transformations
like pruning and grouping.
• Pruning is the operation of removing transitive edges.

If we are interested in the order in which variables
are bound, transitive edges are superfluous. In Figure
3b, the dependency of body on p3 can be pruned
because the dependency chain of variables p3→ p4→
body ensures that variable body is always bound after
variable p3. Pruning increases the opportunities for
grouping.

• Grouping is accomplished by taking connected paths
of nodes with exactly one entry point and one exit
point. Because we group variable binding operations
that must always be evaluated in a particular sequential
order, grouping is equivalent to basic block creation in
traditional control flow diagrams. The fact that grouping
makes the introduced parallelism more coarse-grained
is not merely an additional benefit, but essential if we
want to avoid unnecessary synchronization points dur-
ing parallel evaluation, which could result in excessive
overhead. Figure 4b shows the effect of grouping.

The result after pruning and grouping is a binding order
graph, which is a more akin to a task dependency graph
in which a task consists of one or more variable binding
operations. The unique body node is like other nodes but
additionally contains the body reference =body as its last
element.

C. Generating code

Once we have exhaustively applied pruning and grouping,
the resulting binding order graph is in a form that allows
straightforward conversion into Scheme code. To determine
the final variable binding order, we divide the graph into
layers by applying a topological sort. In a topological sort
every node is assigned a rank or level. The level of a node
is equal to the number of nodes in the longest path possible
from that node to the (unique) sink node. The sink node
trivially has level 1.

The key insights for generating code from a binding order
graph are the following:

1) All variable binding operations inside a single node
must be evaluated sequentially (because of the way
we defined the grouping operation).

2) A group of variable binding operations contained
inside a single node can be evaluated in parallel with
other groups of binding operations in nodes of the
same level.

The intuition behind the second insight is that every branch
in the binding order graph can be translated by using a
future/touch construct in the parallelized version. Figure
4c illustrates the code that can be generated from a binding
order graph.

IV. IMPLEMENTATION

We have implemented all the ideas and techniques pre-
sented in this paper. The resulting software artefact is
a Scheme evaluator that is capable of performing auto-
matic parallelization. The evaluator is instantiated with a
static dependence analysis and a runtime capable of han-
dling future/touch constructs. It takes sequential Scheme
programs as input and transforms them into their par-
allel versions. When executed on parallel hardware, the
runtime effectively takes advantage of multiple process-
ing cores when evaluating expressions concurrently. The
evaluator, including the dependency analysis and run-
time, are implemented in Java. It is publicly available
at http://code.google.com/p/streme/source/
browse/\#svn/tags/scam11.

A. Concurrency constructs

The concurrent runtime understands a subset of R5RS
Scheme, together with some additional constructs for con-
currency. The primitive concurrency constructs are touch

and future, which behave like true annotations having
intentional semantics. This means that future is not simply

(let ((z 0))
(let ((writez (lambda () (set! z 123))))
(let ((readz (lambda () z)))
(let ((p3 (writez)))
(let ((p4 (readz)))
(cons p3 p4))))))

(a) A series of unary let expression.

=body

z

writez

readzp3

p4

body

(b) Corresponding graph.

Figure 3. Dependency binding graph for a series of nested unary let expressions. Binding nodes are oval-shaped. The body reference node is depicted
in a rectangular shape. An edge between two nodes means that the target node is dependent on the source node.

=body

z

writez

readzp3

p4

body

(a) After pruning.

z

writez, p3 readz

p4, body, =body

(b) After grouping.

(let ((z 0))
(let ((writez undefined))
(let ((fp3 (future

(begin
(set! writez (lambda ()

(set! z 123)))
(writez)))))

(let ((readz (lambda () z)))
(let ((p3 (touch fp3)))
(let ((p4 (readz)))
(let ((body (cons p3 p4)))
body)))))))

(c) Corresponding code.

Figure 4. (a). The binding dependency graph of Figure 3 after pruning dependency p3 → body. (b) Binding order graph obtained from (a) by grouping.
(c) The code that is generated for the graph in (b).

fork or spawn for example, in which case evaluation is
unconditionally started in another thread and touch plays
the role of a join that returns a value. future/touch is not
delay/force either, computing the value of an expression
at the point where it is needed. And both future and touch

are not simply the identity function id, the function that
immediately returns its evaluated operand. In theory future

and touch can have any of the previous three semantics, and
this at the discretion of the runtime. In practice, our runtime
will only apply fork or id semantics:

• It will strive for maximizing parallelism by using fork

semantics whenever the number of actively running
future computations does not exceed a certain preset
threshold. In this case future returns a promise.

• It will fall back to id semantics whenever it decides not
to initiate a future computation. future then returns the
value of its operand.

The intentional semantics of future and touch are not
chosen by accident, but are actually indispensable for our
brute-force approach to work. Every initiation of a future

computation using future, managing future computations,
and sychronizing their results through touch, incurs a
runtime cost. This overhead may outweigh the possible
performance gains realized by parallelization, especially in
highly recursive code. The intentional semantics allow us to
not care about the possible overhead parallelism may incur,
by leaving it up to the runtime system to decide to actually
set up a future computation or not.

B. Architecture

The architecture of our evaluator follows a typical pipeline
design. The pipeline consists of various analyzers, trans-
formers and compilers that are chained together and each
do a piece of the work. The pipeline can be divided into a
front-end, middle-end and back-end.

The front-end is responsible for parsing and macro ex-
pansion, and produces an abstract syntax tree (AST).

The middle-end contains infrastructure to analyze and
transform ASTs. First, the AST is converted into ANF.
Then static analysis on all series of nested unary lets is
conducted. The result of this analysis is one binding order
graph per structure of nested lets. These graphs form the
basis for deciding if and how to rewrite the lets to introduce
parallelism.

The back-end is a concurrent Scheme runtime that under-
stands ANF and future/touch. It uses the Java fork/join-
framework [7] that employs a work-stealing strategy to
execute submitted tasks. This framework is scheduled for
inclusion in Java 7, but already available as a separate JAR
file for Java 6. When a future computation is submitted
as a task to a java.util.concurrent.ForkJoinPool, the
returned instance of Future serves as a promise value. The
procedure touch checks if it receives a Future as argument.
If so, it performs a blocking get() on its argument, else
touch simply returns its argument.

V. EXPERIMENTS AND DISCUSSION

In order to validate our brute-force automatic paralleliza-
tion approach, including the underlying static analysis and
concurrent runtime, we carried out experiments by paral-
lelizing and running several well-known Scheme bench-
marks. The experiments were carried out on a Sun Java 1.6.0
runtime environment with a HotSpot 64-bit server JVM run-
ning on an Intel machine with 8 Xeon processors. Because
of hyperthreading, the number of reported processors by a
call to Runtime.getAvailableProcessors() is actually 16.

The underlying dependence analysis is based on k-CFA.
For running the benchmarks we set its sensitivity k = 4.
Lower values for k resulted in some code paths not being
taken. Higher values did not have a noticeable impact on the
results.

We briefly describe some of the benchmarks we used in
our experiments and will discuss here, in the table below.

fib Tree-recursive version of the function that calcu-
lates the n-th Fibonacci number, with (< n 2)

as condition for termination. For our benchmark
n = 40.

tak Function involving triple recursion in the version
of McCarthy, returning z when (not (< y x)).
The three arguments used are 40, 30 and 20.

quicksort Straightforward implementation of Hoare’s sort-
ing algorithm, applied to a fixed list of 500,000
generated pseudo-random numbers.

nboyer Benchmark that is more representative of real
programs performing symbolic computation, em-
ploying rule-directed rewriting. We use n = 3.

nqueens Combinatorial problem requiring the placement of
n queens on a n × n chessboard so that no two
queens attack each other. We take n = 12.

A. Safety and completeness

We have not constructed a formal proof of the correctness
of our approach. Assuming that the underlying dependence
analysis from [1] is sound is already a big step in the right
direction, considering that this analysis handles the hardest
case of dependence as a consequence of procedure invoca-
tion. Because the remaining lexical dependence analysis is
less complex and our dependency graph transformations are
straightforward, we are confident that a more formal proof
of the safety and completeness of our approach is feasible.

Instead of a formal proof, we assessed safety and com-
pleteness by creating and maintaining a batch of unit tests
that test the safe parallelization of all opportunities present in
small test programs that cover the different cases. Addition-
ally, for small programs and benchmarks manual verification
is also possible. For larger benchmarks like nboyer manual
parallelization, and the verification thereof, becomes tedious
and error-prone. However, because our approach scales from
small test programs to large ones (the unit of testing is a
single series of nested unary lets), together with the fact that
we test the correctness of the values produced by parallelized
benchmarks when run on parallel hardware, suggests that our
approach is safe and covers all parallelization opportunities.

The number of interprocedural dependencies inside nested
lets per benchmark, detected by static analysis, is rather
low: 0 for fib, 2 for tak, 6 for quicksort and nboyer and
12 for nqueens. Of course, proving the absence of this type
of dependencies remains crucial in our approach.

B. Scalability

For measuring scalability we examine the impact of the
number of available processing cores on the running time
of our parallelized benchmarks. Our experiments are carried
out on a JVM. As a result, there is no way to know whether
each thread is mapped to a different CPU when available
[7]. Furthermore, the ForkJoinPool instance used by our
concurrent runtime is initialized with a parameter called
parallelism that indicates the target number of worker
threads used by the pool. Internal documentation of the class
states that “it is impossible to keep exactly the target (par-
allelism) number of threads running at any given time” and
that “heuristic guidance” is required. However, monitoring
of CPU activity while executing the benchmarks, together

2.50x

3.00x

3.50x

4.00x

4.50x
A

b
so

lu
te

 s
p

e
e

d
u

p

fib

tak

0.00x

0.50x

1.00x

1.50x

2.00x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
b

so
lu

te
 s

p
e

e
d

u
p

Parallelism

tak

quick

nboyer

nqueens

Figure 5. Absolute speedup of parallelized benchmarks as a function of
parallelism.

with the data from micro-benchmarks like fib, show that
the number of processors used by the JVM increases as the
parallelism increases.

For running our benchmarks we established the threshold
for creating future computations at 2(n−1) for parallelism n.
With this value we keep the number of future computations
under control so the runtime does not get swamped with too
many tasks, creating overhead. On the other it ensures that
there are enough tasks so that the worker threads can keep
themselves busy.

Figure 5 shows a graph of the speedup of our benchmarks
plotted against the level of parallelism. In this figure we
see that micro-benchmark fib scales well when parallelism
increases. Benchmarks tak and quicksort also scale, but not
as good as fib. These three benchmarks are implemented
with divide-and-conquer algorithms and clearly benefit from
our transformation. The reason is that these algorithms
result in a computation tree at run-time consisting of many
independent tasks. Furthermore, the longest running tasks
are created in the beginning of the computation, when
the limit on the number of concurrently executing future
computations has not yet been reached.

nboyer and nqueens don’t scale at all when parallelized,
but show a significant performance degradation that stabi-
lizes at a certain degree of parallelism. Closer examination
of the parallelized nboyer and nqueens programs reveals
that the expressions wrapped inside futures are very simple.
Typical examples include taking the car or cdr of a list, or
subtracting two numbers. Clearly the overhead of evaluating
many short-running expressions in parallel has a negative
impact on the running time. As expected, this overhead
increases as the degree of parallelism increases.

C. Performance

The goal of parallelization ultimately is to get a speedup
in performance when parallel programs are executed on
parallel hardware. Let Ts be the time it takes to execute

the unparallelized ANF-converted benchmark in serial, and
Tp(n) the time it takes to execute the parallelized benchmark
with parallelism n. The absolute speedup for parallelism n
then is given by the quotient Ts/TP (n).

The execution time Tp(1) of a parallelized benchmark is
larger than the running time of its sequential version Ts,
although we perform some limited post-processing on the
parallelized code. This can be seen in Figure 5, where for all
benchmarks the absolute speedup is below 1 for n = 1. For
parallelized benchmarks that do not scale, it automatically
follows that for parallelism n > 1, Tp(n) will never be
smaller than Ts. For parallelized benchmarks that do scale
well, Tp(n) will eventually dip below Ts as the degree of
parallelism increases.

The reason for the slowdown in execution time Tp(1)
versus Ts is that the subsequent program transformations
that transform a sequential Scheme program into a parallel
one, introduce additional syntax. This negatively impacts ex-
ecution time, although we believe that there is still room for
improvement by applying more aggressive post-processing
on the parallelized code than is now the case.

D. Heuristic

A recursive divide-and-conquer program should scale
well when parallelized with our approach. However, the
quicksort benchmark did not scale as well as the fib

benchmark when parallelism increased, although both are
implemented as a tree-recursive algorithm.

A second observation was that the process of parallelizing
a sequential program introduced extra syntax that has a
negative impact on the running time of a program.

To see if we could lower the running time and improve
the scalability of our parallelized quicksort, we digressed a
little from our purely brute-force approach by experimenting
with a very simple heuristic.

The heuristic is applied on a binding order graph (Section
III-B) and works as follows:
• Fold all nodes that don’t apply non-primitive proce-

dures into one single node.
• All nodes that do contain non-primitive procedure in-

vocations are left untouched.
The effect of applying this heuristic is that we only intro-
duce a future construct when a non-primitive procedure
invocation is involved. We only work with non-primitives
(i.e., user-defined procedures) because the invocation of a
primitive usually does not result in a deep computation tree
at run-time. Alternatively, for primitives it is possible to do a
more specific case-by-case analysis to see which invocations
are worth parallelizing. Note that for this heuristic we need
the value flow from the static analysis in order to determine
the type of procedures that flow to operator positions.

Figure 6 shows the impact of this heuristic on the perfor-
mance of the parallelized quicksort benchmark. Applying
the heuristic is not only beneficial in terms of scalability,

2.00x

2.50x

3.00x

3.50x
A

b
so

lu
te

 s
p

e
e

d
u

p

0.00x

0.50x

1.00x

1.50x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
b

so
lu

te
 s

p
e

e
d

u
p

Parallelism

quick

quick-h

Figure 6. Absolute speedup of quicksort benchmark, with (quick-h)
and without (quick) heuristic applied.

it also reduces the running time. For parallelism n = 1 the
running time decreases from 65.9 seconds to 55.1 seconds,
or a 84% improvement. For n = 16, the running time
decreases from 29.6 seconds to 18.5 seconds, which is still
nearly a 63% improvement.

Applying the heuristic on the nqueens benchmark also
had a significant impact. The heuristic effectively rejected
all the parallelization opportunities present in the code. As
a consequence, the “parallelized” nqueens benchmark was
essentially unchanged from the original sequential bench-
mark. Therefore it did not suffer from the performance
degradation as did nqueens when parallelized without the
heuristic applied (depicted in Figure 5). Of course, no
speedup was realized either.

Applying the heuristic on other benchmarks had no im-
pact. fib and tak always feature a non-primitive procedure
invocation, and nboyer had a shorter running time for n < 8
but exhibited the same performance degradation afterwards.

VI. RELATED WORK

Our research builds on the work by Might and Prabhu [1].
They present an interprocedural static analysis on which
we rely to decide whether it is safe to parallelize certain
expressions in a program. In [1] the authors also briefly
touch upon the question of whether the introduction of
parallelization at some point is beneficial or not, although it
is never explored any further. We do not directly answer this
question in our brute-force approach ourselves, but clearly
make a choice by basically ignoring this factor, with the
exception of experimenting with a simple heuristic to only
parallelize non-primitive procedure applications.

Might and Prabhu were inspired by the work of Harrison,
who designed the Parcel and Miprac compilers that perform
interprocedural dependence analysis and program restructur-
ing to automatically parallelize Scheme programs [8], [9].
An important difference with our approach is that Parcel
relies on an unstructured and complex intermediate form that

bears little resemblance to the original input program. As
a consequence, Parcel’s parallelization algorithms are also
very complex and difficult to extend or adapt. In contrast,
our approach is very straightforward because it uses ANF
as an intermediary form. ANF is a subset of Scheme and
as such it is already well-understood and probably easier to
analyze and manipulate in a Scheme context.

Halstead’s Multi-Lisp extended Scheme for expressing
concurrency and introduced the concept of futures into
Lisp [10]. pcall is a construct in Multi-Lisp that concur-
rently evaluates the arguments of a procedure invocation
in a fork/join style. Halstead recognizes that pcall can be
rewritten using futures, similarly to how we proposed to
implement let|| as a standard let using futures. He also
remarks that the “use of pcall within a recursive procedure
such as a tree walk can result in exponential amounts of
parallelism”, which agrees with the excellent results we
observe for highly recursive divide-and-conquer benchmarks
in our experiments.

One alternative approach to parallelization is manual
parallelization. However, it is generally accepted that in
general manual refactoring is tedious and error-prone. This
is worsened by the fact that the predominant model of
concurrent programming today is based on multithreading,
which is a very difficult to comprehend by programmers due
to the intrinsic non-determinism that threads introduce [11].

In automatic dynamic parallelization, the compiler or
interpreter is tasked with introducing parallelism into a
sequential program [12] at runtime. The most obvious dif-
ference with our approach is that the necessary analysis also
takes place at runtime. Static and dynamic analysis can work
together to increase their usefulness.

VII. FUTURE WORK

The experience gained by designing and implementing our
brute-force parallelization technique has inspired us to start
building an improved version based on the same ideas but
with more focus on usability and practicality. The idea is to
investigate the implementation of an analysis that does not
require an a priori code transformation like ANF conversion.
The results from this analysis then can be used in source-
to-source program transformations that require not only the
preservation of program semantics but also program syntax.
Practical applications that spring into mind are IDEs that
are able to flag concurrent constructs that are unsafe, or
are able to indicate opportunities for parallelization that are
unexploited.

ANF conversion and the parallelization of nested lets
introduces additional syntax which hampers the absolute
speedup of the parallelized program. In order to address this
situation, we intend to apply additional post-processing on
the resulting parallelized code to reduce its runtime.

Our implementation of the underlying static analysis has
some limitations. First of all, we do not model the car and

cdr separately but consider a cons cell to be one resource,
which incurs a precision penalty when specifically reading
from or writing to the car or cdr. Similarly, we don’t
model the individual elements of a vector. In future work,
we want to increase the precision of the analysis by being
able to reason over these individual elements of cons cells
and vectors. At the moment, reading from a cons cell or
vector always returns a placeholder value (”any”). Another
limitation in the analysis is the fact that it currently cannot
handle this “any” value when it occurs as a possible value
of an operator.

VIII. CONCLUSION

We described a brute-force technique for the paralleliza-
tion of Scheme programs containing higher-order procedures
that perform side effects. Our approach starts by transform-
ing the input program into administrative normal form. This
serves two purposes: it introduces many series of nested
unary let expressions that are the target of our automatic
parallelization approach, and it renders the program in a
form that is suitable for dependence analysis. The key idea
is to look at every series of nested let expressions, and
decide where it is possible to evaluate binding expressions
in parallel using state-of-the-art static dependence analysis.
To generate code we construct dependency graphs that
model the dependencies inside a series of nested unary let

expressions. We transform these graphs in such a way that
it becomes evident at which points future and touch can
be introduced. We also described the intentional semantics
that future/touch must possess in a concurrent runtime on
which the parallelized programs will be executed.

We implemented an evaluator that employs our brute-
force parallelization technique, together with a concurrent
runtime that provides future/touch with the required inten-
tional semantics, and applied it to a number of benchmarks.

The conclusion from our experiments is that it is feasible
to use a brute-force approach, backed by a static analysis, to
safely and automatically parallelize Scheme programs. The
parallelization is effective for programs that contain recur-
sive divide-and-conquer algorithms, which scale well when
executed on parallel hardware. Our experiments suggest that
our approach can benefit from complementary techniques for
parallelizing more general Scheme programs.

ACKNOWLEDGMENTS

The authors thank Matthew Might for his useful com-
ments and suggestions during the implementation of the
analysis. Jens Nicolay is funded by the COGNAC project
sponsored by the “The Research Foundation - Flanders”
(FWO Vlaanderen). Coen De Roover is funded by the
Stadium SBO project sponsored by the “Flemish agency for
Innovation by Science and Technology” (IWT Vlaanderen).
This research is partially supported by the IAP Programme
of the Belgian State.

REFERENCES

[1] M. Might and T. Prabhu, “Interprocedural Dependence Anal-
ysis of Higher-Order Programs via Stack Reachability,” Tech-
nical Report CPSLO-CSC-09-03, p. 75, 2009.

[2] C. Flanagan and M. Felleisen, “The semantics of future
and its use in program optimization,” in Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1995, p. 220.

[3] M. Might, Y. Smaragdakis, and D. V. Horn, “Resolving
and exploiting the k-cfa paradox: Illuminating functional vs.
object-oriented program analysis.” in Proceedings of the 31st
Conference on Programming Language Design and Imple-
mentation (PLDI 2006), Toronto, Canada, June 2010, pp.
305–315.

[4] G. E. Revesz, Lambda-calculus, Combinators and Functional
Programming, 1st ed. New York, NY, USA: Cambridge
University Press, 2009.

[5] O. Shivers, “Control flow analysis in scheme,” ACM SIG-
PLAN Notices, vol. 23, no. 7, p. 174, 1988.

[6] C. Flanagan, A. Sabry, B. Duba, and M. Felleisen, “The
essence of compiling with continuations,” ACM SIGPLAN
Notices, vol. 28, no. 6, pp. 237–247, 1993.

[7] D. Lea, “A Java fork/join framework,” in Proceedings of the
ACM 2000 conference on Java Grande. ACM, 2000, pp.
36–43.

[8] W. Harrison III, “PARCEL: Project for the automatic restruc-
turing and concurrent evaluation of lisp,” in Proceedings of
the 2nd international conference on Supercomputing. ACM,
1988, p. 538.

[9] W. Harrison III and Z. Ammarguellat, “PARCEL and
MIPRAC: Parallelizers for Symbolic and Numeric Programs,”
1992.

[10] R. Halstead Jr, “Multilisp: A language for concurrent sym-
bolic computation,” ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), vol. 7, no. 4, pp. 501–538,
1985.

[11] E. Lee, “The problem with threads,” Computer, vol. 39, no. 5,
pp. 33–42, 2006.

[12] C. Herzeel and P. Costanza, “Dynamic parallelization of
recursive code: part 1: managing control flow interactions
with the continuator,” in Proceedings of the ACM
international conference on Object oriented programming
systems languages and applications, ser. OOPSLA ’10.
New York, NY, USA: ACM, 2010, pp. 377–396. [Online].
Available: http://doi.acm.org/10.1145/1869459.1869491

