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Abstract—Version control systems (VCS) have become indis-
pensable to develop software. Next to their immediate advantages,
they also offer information about the evolution of software and
its development process. Despite this wealth of information, it
has only been leveraged by tools that are dedicated to a specific
software engineering task such as predicting bugs or identifying
hotspots. General-purpose tool support for reasoning about the
information contained in a version control system is limited. In
this paper, we introduce the logic-based program query language
ABSINTHE. It supports querying versioned software systems
using logic queries in which quantified regular path expressions
are embedded. These expressions lend themselves to specifying
the properties that each individual version in a sequence of
successive software versions ought to exhibit.

I. INTRODUCTION

Version control systems have become indispensable soft-
ware engineering tools. They enable a developer to work on
a private copy of a jointly developed project and provide
support for merging her changes with the contributions of other
team members later on. As these systems track the history of
a project, they contain a wealth of information that can be
leveraged by other software engineering tools.

This information can be of use to various stakeholders.
Developers spend a significant amount of time understanding
source code before altering it. They need to find answers
to questions such as “why were these changes introduced?”
or “who modified this piece of code most?” [1] that require
information about the history of the source code. Managers
might need to verify whether a development team obeyed
all imposed process constraints. The questions they need
answered include “has the team correctly applied test-driven
development” and “were all changes to the system after its
beta release corrective only?”. Tool builders are therefore
increasingly leveraging version control systems to provide
answers to a particular stakeholder. However, existing tools are
dedicated to specific software engineering tasks and as such,
are ill-suited to answer custom queries. There is therefore a
need for a general-purpose tool that answers questions about
a system’s history that are formulated by the stakeholders
themselves.

In this paper, we present ABSINTHE as such a general-
purpose tool for querying versioned software. It represents the
history of a software system as a directed acyclic graph. The
graph’s nodes represent individual versions of the software,
while its edges correspond to the successor relation between
versions. ABSINTHE offers a logic-based language to query

this history representation. Next to logic predicates for reason-
ing about a system’s state in a particular version, this language
offers quantified regular path expressions for reasoning about
the evolution of the system throughout successive versions.

II. MOTIVATING EXAMPLE

To motivate the need for a general-purpose tool for querying
a system’s history, we discuss an application scenario that
stems from the domain of agile software development. One of
the practices that the agile process actively advocates is that of
test-driven development. The idea is to write the unit tests for
a method before implementing it. As a result, every method
is covered by a unit test, and faults in the implementation can
be spotted early on.

Consider a manager that needs to assess whether test-driven
development was applied throughout a system’s history by
finding violations to the practice. To identify methods for
which the unit tests were introduced later on, the manager
needs the history query “find me all methods in the system
for which there was never a unit test added, or for which
the unit test was added after the method was introduced” to
be answered. While the versions in a repository do not allow
determining whether a unit test was implemented before its
corresponding method, they allow identifying tests that were
added to the system in a later version.

This particular history query is difficult to answer. Without
adequate tool support, the manager has to retrieve all versions
of the system from the repository. To link unit tests to their
corresponding method, she has to analyze the source code of
individual and possibly even across versions. Finally, she has
to verify the temporal relations between the versions in which
the unit test and the method were introduced respectively.
Clearly, tool support to answer such questions is desirable.

III. OVERVIEW OF ABSINTHE

ABSINTHE is a tool for answering questions about the
evolution of versioned software.

Our tool offers a logic-based language for querying the
repository representation. Its syntax and semantics extend
those of SOUL [2] with regular path expressions. Regular
path expressions consist of logic conditions to which regu-
lar expression operators are applied. They enable specifying
which characteristics the history of the system should exhibit
along successive versions. Each condition within a regular path



expression is therefore evaluated implicitly against a different
version of the software.

Conditions on a regular path expression can use any pred-
icate from the existing SOUL libraries for reasoning about
source code. For instance, CAVA [3] and LICOR [4] provide
predicates for reasoning about Java and Smalltalk code respec-
tively. ABSINTHE provides additional predicates of its own
that reify the information within its repository representation.
The following sections discuss each component of ABSINTHE
in detail.

A. Repository Representation

Although ABSINTHE features a logic language for specify-
ing history queries, it relies on an object-oriented representa-
tion of the history of a versioned software system. This history
is modeled as a directed acyclic graph. The graph’s nodes
represent individual software versions, while edges represent
the successor relation between two versions. Note that a node
can have multiple outgoing edges. This is the case for versions
that initiate a new branch in the software’s history. Nodes
can also have multiple incoming edges. This is the case for
versions that resulted from the merger of different branches.

History-specific information (i.e., time stamp, log message,
author, revision number) can be accessed for each version
in the repository representation. In addition, each version
contains a snapshot of the source code in that particular
version. This snapshot contains:

• A coarse-grained representation of the software’s struc-
ture. We store information about the structural entities
(i.e., packages, classes, interfaces, fields and methods)
declared in the source code and information about how
they are related (i.e., inheritance, containment). Each
structural entity has a reference to the version of the
software in which it was defined. In addition, frequently
accessed sub-method information is available for each
method in this representation (e.g., the methods it calls,
the classes it references).

• A reference to the complete source code of the version
as stored in the version control system. This code can
be quantified over using one of the existing predicate
libraries for SOUL.

To minimize the memory footprint of the repository rep-
resentation, our implementation uses the same object for an
entity that remains unchanged across successive versions. To
this end, we introduced an additional layer of indirection
between version snapshots and the objects that implement
their structural source code entities. Each structural entity
is assigned a unique identifier. All entity-related information
(e.g., binary relations such as containment and inheritance)
within a version snapshot is stored in terms of these identifiers.
They remain constant throughout the history of the entity. In
turn, each version snapshot maintains a mapping from entity
identifiers to implementation objects. This mapping is only
updated for entities that changed since the previous version.
As a result, version snapshots share implementation objects for

entities that remain unchanged. This implementation strategy
is inspired by the work of Laval et al. [5].

A number of importers can be used to populate ABSINTHE’s
repository representation from a version control system. Cur-
rently, we support importing Java programs from Subversion
repositories and importing Smalltalk programs from either
VisualWorks Store or Monticello repositories.

B. Reification of the Repository Representation

ABSINTHE provides a library of logic predicates for quan-
tifying over its repository representation. These can be used
within history queries. Table I depicts an excerpt from this
predicate library.

Note that the syntax for a predicate in SOUL closely
resembles the one of Smalltalk for a message that is
sent to the first argument of the predicate. Logic vari-
ables start with a question mark. The Prolog equivalent
of a condition ?a isAuthorOfVersion : ?v is therefore
isAuthorOfVersion(A,V). Throughout the remainder of this
paper, we refer to predicates using their name and arity (e.g.,
isAuthorOfVersion/3).

In Table I three categories of predicates can be discerned:
(1) predicates that reify history-specific information about
a version (e.g., isVersion/1), (2) predicates that reify the
structural entities within a version snapshot (e.g., isClass/1)
and their relations (e.g., isMethodInClass:/2), and (3) predi-
cates that reify frequently used sub-method information (e.g.,
methodReads:/2).

Unary predicate isVersion/1 belongs to the first category. It
succeeds if its argument ?v unifies with a version that is stored
in the repository representation. As a result, conditions can use
this predicate to verify whether ?v is bound to a version as
well as to bind ?v to one of the versions in the representation.
This kind of multi-directionality is supported by all predicates
in the library.

The second category of predicates reifies information about
the structural entities in a particular version snapshot. For
example, binary predicate isMethodInClass:/2 reifies the
relation between methods and the classes in which they are
declared. These predicates can only be evaluated relative to a
version snapshot. To make this explicit in the predicate library,
these predicates have been annotated (indicated after the colon)
with an additional logic variable ?version that specifies the
version snapshot of which the structural entities are queried.
Predicate isParsetreeOf:/2 is of special interest. It serves
as an interface between ABSINTHE and the existing predicate
libraries of SOUL. The predicate succeeds if its first argument
unifies with a structural entity (e.g., a method or class) and its
second argument unifies with the corresponding AST of that
entity. The latter is retrieved on-the-fly through the source code
link that is associated with each version snapshot.

The third category of predicates reify frequently used sub-
method information. For instance, predicate methodReads:/2

succeeds if its first argument unifies with a structural entity
that represents a method and its second argument unifies with
one of the fields read from by this method.



Predicate Description
Versions
?v isVersion Entity is a version
?v isOrigin Is the version an origin
?v isTerminal Is the version a terminal
?v isVersionAtDate: ?d Find the version at a particular date
?d isCommitMessageOfVersion : ?v Retrieve the time stamp of a version
?a isAuthorOfVersion : ?v Retrieve the author of a version
Structural entities within version snapshots
?c isClass : ?version Entity is a class in a particular version
?c isClassWithName: ?n : ?version Class in version has name
?i isInterface : ?version Entity is an interface in a particular version
?i isInterfaceWithName: ?n : ?version Interface in version has name
?m isMethod : ?version Entity is a method
?m isMethodInClass: ?c : ?version Method belongs to class
?m isMethodWithName: ?n inClass: ?c : ?version Method with particular name in class
?p isPackageWithName: ?n : ?version Package with name
?v isInstanceVariableWithName: ?n inClass: ?c : ?version Entity is field with name in class
?c isSuperclassOf: ?sub : ?version Class is a direct superclass of a subclass

?e isParseTreeOf: ?x : ?version Retrieve the original AST node from the repository for an entity
?e wasChanged : ?version Entity was altered in a particular version
Frequently used sub-method information
?m methodReferencesClass: ?c : ?version Method refers to a particular class
?m methodSendsMessage: ?msg : ?version Method sends a particular message
?m methodReads: ?var : ?version Method reads from a field
?m methodWrites: ?var : ?version Method writes to a field

TABLE I
EXCERPT FROM OUR LIBRARY OF LOGIC PREDICATES.

C. Quantified Regular Path Expressions

ABSINTHE extends the syntax and semantics of SOUL, a
Prolog-like language with specialized features for querying
code, with quantified regular path expressions (path expres-
sions for short) [6]. Path expressions are an intuitive formalism
to quantify over the paths through a graph. As such, they are
a natural fit to quantify over the information in ABSINTHE’s
repository representation.

Quantified regular path expressions are akin to regular
expressions, except that they consist of logic conditions to
which regular expression operators have been applied. Rather
than matching a sequence of characters in a string, they match
paths through a graph along which their conditions holds. In
the context of ABSINTHE, they match sequences of succes-
sive versions from the repository representation. Using the
predicates from ABSINTHE’s predicate library, each condition
within a regular path expression quantifies over the structural
entities in a different version snapshot.

Predicate matches:start:end:/4 can be used to embed a
quantified regular path expression in a history query:

?quantifier(?exp)
matches: ?path

start:?start end: ?end

The predicate succeeds if ?path unifies with a list of succes-
sive versions (i.e., a path), between a version that unifies with
?start and a version that unifies with ?end (both inclusive),
that matches the regular path expression bound to ?exp. The
?start and ?end variables do not necessarily need to be
bound: when they are unbound, our tool will backtrack over
all possible combinations of ?start and ?end for which the
regular path expression holds.

The actual regular path expression ?exp consists of a
number of comma-separated logic conditions to which the
following operators can be applied:

• (C)∗<: Consume zero or more versions for which C
holds. The operator is matched greedily: initially, it con-
sumes as many versions on the path as possible; shorter
parts of the path are considered upon backtracking.

• (C)∗>: Consume zero or more versions for which C
holds. The operator is matched lazily: initially, it con-
sumes zero versions on the path; longer parts of the path
are considered upon backtracking.

• (C)+<: Consume one or more versions for which C
holds. This operator is matched greedily.

• (C)+>: Consume one or more versions for which C
holds. This operator is matched lazily.

• (C)times:n: Consume n versions for which C holds.
• not(C): Consume the current version if C does not hold

in it.
In addition, meta-variable ?THIS_VERSION always unifies with
the current version against which a condition is evaluated. The
resulting binding is local to this condition. The following meta-
symbols can be used alongside the logic conditions in a path
expression as well:

• origin: Only consumes the current version if is not the
successor of any other version.

• terminal: Only consumes the current version if it does
not have any successors.

Finally, the ?quantifier variable determines whether a
path expression is universally or existentially quantified.
To illustrate these concepts, consider the graph of versions
depicted in Figure 1. This graph consists of 9 versions with
V1 being the single origin, and versions V5 and V9 being
terminals. When ?start is bound to version V1 and ?end
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Fig. 1. Illustration of a graph of versions.

1 if
2 ?start isOrigin,
3 ?end isTerminal,
4 a(
5 not(? isClassWithName: Evaluator),
6 (?class isClassWithName: Evaluator)+<)
7 matches: ?path from: ?start to: ?end

Fig. 2. Example of a universal path expression.

is bound to V5, an existentially quantified expression
e(?exp) matches: ?path start: ?start end: ?end

verifies whether there exists a path between V1 and
V5 that matches ?exp. In other words, either the path
(V1, V2, V3, V4, V5) or the path (V1, V6, V7, V5) should
match ?exp. The universally quantified expression
a(?exp) matches: ?path start: ?start end: ?end, in
contrast, verifies whether ?exp holds for all paths between
?start and ?end. Note that not all paths through the graph
need to match ?exp, but rather only the paths between ?start

and ?end. Upon backtracking, variable ?path receives a
binding for each path that matches ?exp.

Lines 4–7 of Figure 2 depict a universally quantified regular
path expression that is embedded in a logic query. This query
identifies pairs of origins ?start and terminals ?end for which
there always exists a class Evaluator on all paths between
them —except in the first version of the path. The first
two conditions of the query (lines 2 and 3) bind variables
?start and ?end to an origin and a terminal respectively.
The universally quantified regular path expression on lines 4–7
consists of two conditions. The first condition (line 5) verifies
that no class named Evaluator exists in the first version on the
path. The second condition (line 6), to which the +< operator
has been applied, verifies that a class named Evaluator exists
from the second version on the path until the end of the path.

Both conditions within the path expression use predicate
isClassWithName:/2. As mentioned above, its annotated vari-
able ?version parameterizes the predicate with the version
snapshot over which it is to quantify. Ordinary conditions that
use this predicate therefore have to provide a binding for this
variable. This is not necessary for conditions within a path
expression. They are implicitly evaluated against a version by
the path expression evaluator.

IV. MOTIVATING EXAMPLE REVISITED

Above we introduced as a motivating example the situation

1 if
2 ?start isOrigin,
3 e(
4 (true)*>,
5 (and(?m isMethod,
6 not(? isTestFor:?m)))+<,
7 or(not(?m isMethod),
8 terminal,
9 ?test isTestFor:?m))

10 matches: ?path

11 start: ?start

12 end: ?end

Fig. 3. Verifying test-driven development.

in which a manager needs to find violations of her develop-
ment team against the principle of test-driven development. In
natural language, we formulated the history-related question
that the manager needs answered as “all methods in the system
for which there was never a unit test added, or for which this
unit test was added after the method was introduced”.

Figure 3 depicts the corresponding ABSINTHE query. It
assumes that a predicate isTestFor:/2 exists which verifies
whether a unit-test tests a particular method.

The query consists of a single existential regular path
expression that quantifies over the history of the system to
identify a ?path starting from an origin ?start (line 2) that
contains methods for which there either never was a unit test
provided, or for which the unit test was introduced in a later
version than the method. The path expression is structured as
follows:

• Starting from the origin ?start, the path expression
consumes zero or more versions on the path (line 4) until
it encounters a sequence of one or more versions (using
the +< operator – lines 5 and 6) that contain a method ?m

for which there exists no corresponding unit test.
• Violations are indicated by verifying in the next version

(lines 7–9) that either method ?m is no longer present
(line 7), we reach the end of the path (terminal in line
8) meaning that there never existed a unit test for the
method, or the unit test for the method was added after
the introduction of the method itself (line 9).

In each solution to this query, variable ?m is bound to a
method that violates the test-driven development practice. A
user of ABSINTHE can then further investigate these methods,
or use them in subsequent queries. For instance, to find out
which developer made the violation. Note that we did not bind
version ?end beforehand. Depending on whether the method
got removed, there never existed a unit test for the method, or
the unit test was introduced afterwards, ?end will respectively
be bound to the version in which the method was removed, the
last version on the path, or the version in which the unit test
was added. Also note that the same logic variable ?m is used
in multiple parts of the path expression. As the binding for
this variable can be used throughout the path expression, this
allows us to actually express properties about the source-code
entity that cross version boundaries.



V. RELATED WORK

Mining Software Repositories: In the mining software
repositories community, a number of approaches that analyze
the information contained in version control systems have been
proposed. While a complete overview of these approaches
lies outside the scope of this paper, we provide a number of
illustrative examples. Hassan [7] proposes a set of complex
metrics over the changes in a repository to predict possible
faults. Hindle et al. [8] use the commit messages of each
revision to track what each developer is working on. They
present a way to visualize the topics developers work on,
allowing a team leader to track the performance of their team
members. Giger et al. [9] track the semantic evolution of a
software repository, in combination with a bug tracker, for bug
prediction. Bradley and Murphy present Rationalizer [10], a
tool that integrates historical information into the source code
editor, providing developers information regarding what was
changed by whom, and why.

The work presented in this paper complements these ap-
proaches: while the above aim at supporting one particular
task or solve one particular problem, the goal of ABSINTHE
is to offer stakeholders a tool to create custom queries over
the history of the source code, to retrieve information that is
necessary to solve the task at hand.

Logic Program Querying: One of the cornerstones of
ABSINTHE is the use of a logic programming language to
query software. In particular, we have extended the SOUL pro-
gram query language with quantified regular path expressions
for reasoning about the evolution of versioned software. A
number of similar logic-based program query languages have
been proposed. Examples include JQuery [11], JQL [12] and
PQL [13]. However, none of these languages can be used
to reason about the history of a system. They are limited to
reasoning about a single version.

Querying Source Code History: There exist a number
of query languages that are closely related to ABSINTHE.
SCQL [14] is a query language to reason over the evolution of
a version repository. Internally it represents a version control
system as a graph. Each author, file and revision is a vertex
in this graph. Each revision is assigned a timestamp and is
connected with the corresponding files and author for that
revision. It provides a temporal specification language that
allows a user to express relationships as “previous”, “after”,
“always”, “never” etc. SCQL does not link version snapshots
to source code and therefore does not support queries that are
as fine-grained as the ones supported by ABSINTHE.

In earlier work we introduced Time warp [15]. Time warp
is a prototype extension of SOUL that has a similar goal
as ABSINTHE. It offers an ad-hoc specification language for
quantifying over instances of HISMO [16] models. While this
work has inspired the development of the approach detailed in
this paper, ABSINTHE uses a custom repository representation
for scalability reasons and offers a more structured approach
to quantify over its information. The main contribution of this
paper over previous work is the use of quantified regular path

expressions to analyze the history of the source code of a
system.

VI. SUMMARY

This paper introduced the ABSINTHE tool for reasoning over
version repositories. The contributions of this paper are:

• A logic-based approach for querying the history of ver-
sioned software systems.

• The identification of quantified regular path expressions
as a suitable means for specifying which characteristics
the history of the system should exhibit along successive
versions.
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