
CRIMESPOT: Language Support for Programming
Interactions among Wireless Sensor Network Nodes

Coen De Roover, Christophe Scholliers, Wouter Amerijckx,
Theo D’Hondt and Wolfgang De Meuter

Software Languages Lab
Vrije Universiteit Brussel, Belgium,

(cderoove—cfscholl—wamerijc—tjdhondt—wdmeuter)@vub.ac.be

Abstract—An emerging breed of wireless sensor network
applications tasks nodes not only with sensing, but also with
reacting to sensor readings. Event-based middleware lends itself
to implementing such applications. It offers developers fine-
grained control over how an individual node interacts with the
other nodes of the network. However, this control comes at
the cost of event handlers which lack composability and violate
software engineering principles such as separation of concerns.
In this paper, we present CRIMESPOT as a domain-specific
language for programing WSN applications on top of event-
driven middleware. Its node-centric features enable programming
a node’s interactions through declarative rules rather than
event handlers. Its network-centric features support reusing code
within and among WSN applications. Unique to CRIMESPOT
is its support for associating application-specific semantics with
events that carry sensor readings. These preclude transposing
existing approaches that address the shortcomings of event-based
middleware to the domain of wireless sensor networks.

Keywords-wireless sensor networks; ubiquitous computing;
programming languages

I. INTRODUCTION

Event-driven middleware enables the nodes of a wireless
sensor network (WSN) application to communicate over a
decentralized event bus. The middleware relieves developers
from intricate concerns such as resource management and
volatile connections. Even with these concerns out of the way,
a node’s communication with other nodes is often difficult to
program. Different events need to be reacted to differently
at run-time. This usually implies some form of dispatching
over each event that is received. Reacting to a sequence of
events implies keeping track of how many events of the
sequence have already occurred. Without adequate middleware
support for these problems, developers have to resort to ad-
hoc solutions in event handlers. However, such solutions
have been shown to violate a range of software engineering
principles [1]. A node’s event handler, for instance, cannot
simply be composed with another to have it react to an
additional event sequence. While these problems plague other
event-driven architectures as well, existing solutions do not
readily translate to WSNs. Next to messages concerned with
application logic, events carry sensor readings that have to
be handled as such. Small fluctuations in the payload of
successive events might not warrant a reaction. When a node
disconnects, on the other hand, some of the state changes it

Tent C
Tent B

Tent A

Component:
ComfortLevelMonitor

Component:
TemperatureSensor

Component:
HeatingController

Component:
HumiditySensor

adjustHeating

temperatureReading

humidityReading

Decentralized Event Bus

temperatureReading

adjustHeating

humidityReading

online

online

online

online

Fig. 1. Motivating example: a WSN application for festival tents.

induced in other nodes might have to be undone as well. Not
only will ad-hoc solutions lead to code duplication, they will
also require a considerable amount of bookkeeping.

II. MOTIVATING EXAMPLE

Figure 1 further illustrates the problems identified above.
An event-based WSN application has been deployed to con-
trol the heaters in several festival tents. A HeatingController,
TemperatureSensor and HumiditySensor node is deployed in each
tent. They communicate over a decentralized event bus.
Outgoing arrows depict events published by a node, while
incoming arrows depict events a node is subscribed to.
Each TemperatureSensor and HumiditySensor node continuously pub-
lishes temperatureReading and humidityReading events on
the event bus. HeatingController nodes subscribe to adjustHeating

events. Upon receiving an adjustHeating event, they adjust
the setting of the heater they are associated with. Such events

FR1 The HumiditySensor and TemperatureSensor have to publish their
sensor readings at set intervals.

FR2 The HumiditySensor, TemperatureSensor and HeatingController have to
publish their online presence and location at set intervals.

FR3 The HeatingController has to adjust its associated heater according
to a received adjustHeating event.

FR4 The ComfortLevelMonitor has to compute a tent’s heating level based
on a received temperatureReading event and publish this level
in an adjustHeating event.

FR5 The ComfortLevelMonitor has to control the heating for each tent
individually by sending adjustHeating events only to the
HeatingControllers in the tent to be heated.

FR6 The ComfortLevelMonitor has to relate received humidityReading
and temperatureReading events that originate from the same
tent and use them to compute and log that tent’s comfort level.

FR7 The ComfortLevelMonitor has to make sure that only the most recent
sensor readings from a certain tent are used for computing the
heating- and comfort levels.

FR8 The HeatingController has to make sure that its associated heater
won’t keep heating when the ComfortLevelMonitor fails or gets
disconnected from the WSN.

Fig. 2. Functional requirements for the motivating example.

are published by the ComfortLevelMonitor which decides when
and by how much each heater needs to be adjusted based on
the temperatureReading events it receives. This node also
logs the comfort levels in each festival tent over time. To
this end, it combines the data carried by temperatureReading

events with those carried by humidityReading events. Note
that a single ComfortLevelMonitor node monitors and controls the
comfort levels in all tents. Care must therefore be taken not to
combine temperatureReading and humidityReading events
that originate from different tents. Figure 2 summarizes the
functional requirements for our motivating example.

A. Reacting to Events using Event Handlers

The first three requirements amount to invoking appli-
cation logic or publishing a new event whenever a node
receives an event. Most event-based middleware supports
implementing such reactions in a node’s event handler (e.g.,
a method receiveEvent(Event) invoked by the middle-
ware). To implement (FR3), for instance, the event handler of
HeatingController merely has to read out the payload of each re-
ceived adjustHeating event and adjust its heater accordingly.
No other reactions to such an event are required, nor are there
any other events the node is subscribed to.

The event handler of the ComfortLevelMonitor, in con-
trast, has to dispatch over online, humidityReading and
temperatureReading events of which the latter requires mul-
tiple reactions. Not only must an adjustHeating event be
published (FR4), but a comfort level has to be computed as well
from the temperatureReading and a previously or yet to be
received humidityReading (FR6). This typically entails storing
received events in memory such that they can be consulted
and related with other events later on. Relating events usually
involves matching their payloads and/or information about
their origin. For instance, the payload of online events relates
node identifiers with tent identifiers (i.e., which node resides
in which tent). Stored online events can therefore be used
to determine which tent an event originated from. This is

necessary to ensure that comfort levels are computed using
events that originate from the same tent (FR6).

Without adequate language or middleware support for the
aforementioned event dispatching, storage and matching, de-
velopers have to resort to ad-hoc implementations. These are
error-prone and bound to be duplicated over the event handlers
of multiple nodes. Furthermore, a node’s event handler cannot
easily be composed with another to have it react to an
additional event.

B. Semantics of Events that Carry Sensor Readings

While the above problems plague other event-driven ap-
plications as well, existing solutions (e.g., complex event
processing) do not readily translate to WSNs. The semantics
of events that carry sensor readings differs significantly from
those that are intended to steer application logic.

First of all, one can wonder how long a received event
remains valid (i.e., still warrants being reacted to later on).
The temperatureReading and humidityReading events might
not be published at the same interval. Storing either until
the corresponding event is received, might lead to comfort
levels being computed from stale information (FR4). One might
therefore want to associate an expiration time with events that
carry sensor readings —in contrast to events that are concerned
with distributed application logic.

Furthermore, multiple temperature sensors can be deployed
in the same tent. Small fluctuations in the payload of succes-
sive temperatureReading events might therefore not warrant
a reaction (FR3) every time one is received. The comfort levels
logged by ComfortLevelMonitor should, on the other hand, always
be computed from the most recently received sensor readings
(FR7). Likewise, a newly received online event immediately
invalidates the information carried by older ones. All of these
issues concern the subsumption of an older event by a newer
one.

Finally, previous reactions to expired or subsumed events
might even have to be compensated for. For instance,
the HeatingController should reset its associated heater if no
adjustHeating event has been received for some time. This
way, it can avoid overheating a tent when the ComfortLevelMonitor

fails or gets disconnected (FR8). In general, compensating for
expired events entails tracking the causality between events
and the reactions they triggered over the WSN.

Even with the aforementioned event dispatching, storage
and matching supported by the middleware or programming
language, implementing event expiration, subsumption and
compensation still involves a fair amount of bookkeeping.
In this paper, we present CRIMESPOT as a language that is
explicitly designed to minimize the accidental complexity that
is inherent to programming WSN applications using event-
based middleware. CRIMESPOT enables developers to focus
on the application’s essential complexity instead.

III. OVERVIEW OF THE APPROACH

CRIMESPOT is a domain-specific programming language
to be used on top of event-based middleware for wireless

sensor networks. From the node-centric perspective, it enables
programming the interactions of a node with other nodes
on the network through declarative rules rather than event
handlers. Each rule specifies how the node should react to
a particular sequence of events. This way, developers are
relieved from having to dispatch explicitly over each received
event and having to track how many events of an event
sequence have already been received. More importantly, inter-
actions can be composed by enumerating the rules that govern
them. From the network-centric perspective, CRIMESPOT
enables developers to specify which rules are to govern which
nodes of the network. Through macro-programming facilities,
the resulting configurations of nodes and rules can be reused
across WSN applications.

Tailored towards WSNs, CRIMESPOT explicitly supports
associating application-specific semantics to events that carry
sensor readings. This includes determining which network
events correspond to a sensor reading, but also when a sensor
reading expires, when a sensor reading subsumes a previous
one and when and how often a new reading warrants triggering
an interaction rule. In addition, CRIMESPOT tracks causality
relations between the events a node receives and the ones it
publishes. This allows determining whether, which and how
nodes are affected when a sensor reading is subsumed or
expires.

Figure 5 and Figure 6 depict the CRIMESPOT implementa-
tion of the motivating example. Without delving into details,
the interaction rule on lines 7–9 of Figure 5 specifies that
a temperatureReading should be published to all network
nodes periodically. Section V and Section IV discuss the
CRIMESPOT features it relies on from the network-centric
and node-centric perspective respectively. We will discuss its
accompanying runtime first.

A. Architecture of the CRIMESPOT Runtime

An instance of the CRIMESPOT runtime has to be instan-
tiated on every network node of which the interactions are
to be governed by CRIMESPOT rules. Figure 3 depicts the
layered architecture of this runtime. The middleware bridge
in the infrastructure layer binds the runtime to the underlying
event-based middleware. It contains middleware-specific func-
tionality to transfer events from and to the decentralized event
bus.

The reification engine in the reification layer reifies the
events that are received from other nodes as facts and stores
them in a fact base. This enables the natural use of pattern
matching in rules to relate stored events through their payload
or origin. Section III-C discusses how the reification engine
can be tailored to the specifics of a WSN application by
storing declarations in its configuration base. Among others,
an expiration time can be associated with a fact that reifies an
event.

Next to the aforementioned fact base, the inference layer
contains a rule base. As soon as an interaction rule has
been added to the rule base, it intervenes in how the node
processes the events received on the event bus. To this end,

Node-specific Application Logic
CrimeSPOT runtime

Reification Layer

Inference Layer

Fact
Base

Inference
Engine

Rule
Base

Middleware Bridge

Infrastructure Layer

Reification
Engine

Configuration
Base

Middleware Bridge

Event-based Middleware

WSN Node

Fig. 3. Architectural overview of the CRIMESPOT runtime.

the inference engine re-evaluates the fact base against the rule
base whenever the former changes —at least, conceptually.
Section III-B discusses how the inference engine evaluates
interaction rules incrementally.

Interaction rules consist of a body and a head separated by
the neck symbol “<-” (cf. lines 7–9 of Figure 5). In general, the
body of a rule consists of conditions that correspond to events
that have been received and stored as facts. They therefore
express which events must have been received in order for the
rule to be activated. The head of most rules consists of a fact.
Whenever such a rule is activated, the inference engine adds
the fact in its head to a fact base. Meta-data (i.e., everything
between @[. . .] such as the to(MAC=*) on line 7) determines
whether the fact is added to the fact base of the local node or to
those of the other nodes on the network. Application logic can
also be invoked when a rule is activated. The head of such rules
consists of a reference to a field (e.g., this.adjustHeater on
line 29 of Figure 5), the value of which will be sent a message
activated(CSVariableBindings) upon rule activation. The
corresponding method can be used to implement application
logic (e.g., adjust heater).

Note that an activated rule can become deactivated in a suc-
cessive evaluation of the rule base against the fact base. This is
the case as soon as one of its conditions is no longer satisfied.
For instance, because the matching fact expired and was
removed from the fact base. The inference engine will undo all
reactions to a rule’s activation upon its deactivation. For rules
with a fact in their head, this fact will be removed from all
fact bases it was added to. For rules with a field reference in
their head, a message deactivated(CSVariableBinding) will
be sent to the value of the field upon their deactivation. The
corresponding method can be used to implement compensating
application logic (e.g., reset heater). Section III-B discusses
how the inference engine tracks the causality between rule
bodies and heads.

B. Inference Engine of the CRIMESPOT Runtime

The inference engine of the CRIMESPOT runtime evaluates
the rule base against the fact base whenever the latter changes.
To this end, the engine uses forward chaining as its inference
strategy. Working from the body of a rule to its head, forward

chaining derives all conclusions that follow from a fact base.
Backward chaining, in contrast, gathers facts supporting a
given conclusion —working from the head of a rule to its body.
Backward chaining is goal-driven whereas forward chaining is
data-driven. The latter lends itself to an incremental evaluation
of the rule base against the fact base. Incremental evaluation is
essential in our setting, as the fact base is updated frequently
(e.g., whenever an event is received).

The RETE algorithm [2] is an incremental forward chainer
that sacrifices memory for speed. The algorithm stores inter-
mediate derivations and combines them with a newly added
fact to derive the additional conclusions that follow from the
augmented fact base. This way, not all conclusions have to
be re-derived from scratch whenever a fact is added to the
fact base. In past work, we extended the RETE algorithm
into the distributed truth maintenance system CRIME [3].
CRIME explicitly tracks the causal links between facts and
conclusions, including distributed ones. This allows computing
the conclusions that no longer follow from a reduced fact base.
Being able to react to such invalidated conclusions is vital to
the way CRIMESPOT reconciles the transient nature of events
with the persistent nature of facts; through customizable event
reification and fact expiration.

C. Reification Engine of the CRIMESPOT Runtime

The reification engine of the CRIMESPOT runtime reifies
transient events as persistent facts. As mentioned before, its
behavior can be tailored completely to the specifics of a WSN
application through declarations. These declarations control
which and how events are to be reified as facts, when the
resulting facts expire and which older facts are subsumed by
a new fact.

Figure 4 illustrates the reification process. Each incoming
event is reified as a fact first. If the event wraps a fact, reifying
the event is trivial (i.e., the fact has to be unwrapped from the
event). This is the case for facts that have been published
through CRIMESPOT rules. Otherwise, the incoming event
must have originated from a node that does not run the
CRIMESPOT runtime on top of the WSN middleware. This
is typically the case for resource-constrained nodes that only
publish events with sensor information. When such an event
is received, the reification engine consults declarations of
the form “mapping <fact> <=> <event>”. Lines 39–40 of
Figure 6 depict an example of such a declaration.1 It specifies
that a middleware event of type 101 with a single Integer

payload is to be reified as a temperatureReading fact with a
single attribute named Celsius. The occurrences of variable
?temp ensure that the value of the fact’s attribute corresponds
to the payload of the event. The factExpires(Seconds=600)

meta-data indicates that these facts are to expire after 10
minutes.

Next, the reification engine consults the declarations of
the form “drop <fact> [provided <conditions>]”. These

1Note that this particular declaration could be omitted from the moti-
vating example as temperatureReading facts are already published by a
CRIMESPOT node (i.e., lines 7–9 of Figure 6).

D
ec

en
tra

liz
ed

Ev

en
t B

us

Event Middleware
Bridge

Reification
Engine

Configuration
Base

Fact
Base

Fact

Event
Reification Drop? Subsumes? Assert

Reification Process

Fig. 4. The reification engine of the CRIMESPOT runtime.

determine whether the newly created fact should be added
to the fact base. This might not be the case if existing facts
subsume the newly created fact. If the fact doesn’t have
to be dropped, the engine consults the declarations of the
form “incoming <newfact> subsumes <oldfact> [provided

<conditions>]”. These determine which facts have to be
removed from the fact base because they are subsumed by
the newly created fact. Only then, the new fact is added to the
fact base.

Consider the declaration on line 27 of Figure 5. It speci-
fies that a new adjustHeatingLevel fact subsumes all other
facts of the same type. As a result, the fact base of the
HeatingController node will always contain the most recently
received fact. The declaration on lines 5–6 of Figure 6 specifies
that an online fact subsumes other online facts that were
received from the same network node. To this end, variable
?m substitutes for the MAC-address of the node that published
the new fact (in the from meta-data on line 5) as well as for
the MAC-address of the node that published the older fact (in
the from meta-data on line 6). Note that a different variable
substitutes for the value of the Tent-attribute of both facts.
Indeed, nothing precludes a node from being moved.

IV. NODE-CENTRIC CRIMESPOT FEATURES

The preceding sections introduced the runtime that supports
the CRIMESPOT language. Here, we introduce the node-
centric features of this programming language. These enable
programming the interactions of a node with others through
declarative rules rather than the predominant event handlers.
We will focus on the features that are required to understand
the CRIMESPOT implementation of the motivating example.
First, we discuss the activation and deactivation of rules in
more detail.

A. Rule Activation and Deactivation

The body of a CRIMESPOT rule corresponds to a con-
junction of conditions. Each condition has to be satisfied in
order for the rule to be activated. A condition is satisfied if a
matching fact exists in the node’s fact base. Facts consist of a
functor, a sequence of named attributes and optional meta-data.
The = symbol separates the name of each attribute from its
value. Meta-data is demarcated by a @[. . .] construct. Among
others, the fact-like declarations within this construct record
information about the fact’s origin. For instance, the fact base

1. TemperatureSensor,	 HumiditySensor,	 HeatingController	 {
2. 	 	 	 	 publishPresenceEvery($onlineInterval).
3. }
4.
5. TemperatureSensor	 {
6. 	 	 	 	 temperatureMapping($readingInterval).
7. 	 	 	 	 temperatureReading(Celsius=?temp)@[to(MAC=*),
8. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 factExpires($readingInterval)]	
9. 	 	 	 	 	 	 <-‐	 ?temp	 is	 this.getTemperature()@[renewEvery($readingInterval)].
10. }
11.
12. TemperatureSensor.java	 {
13. 	 	 	 	 private	 CSValue	 getTemperature()	 {	 return	 ...	 }
14. }
15.
16. HumiditySensor	 {
17. 	 	 	 	 humidityMapping($readingInterval).	 	 	
18. 	 	 	 	 humidityReading(Percent=?p)@[to(MAC=*),
19. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 factExpires($readingInterval)]
20. 	 	 	 	 	 <-‐	 ?p	 is	 this.getHumidity()@[renewEvery($readingInterval)]	 	 	 	 	
21. }

22. HumiditySensor.java	 {
23. 	 	 	 	 private	 CSValue	 getHumidity()	 {	 return	 ...	 }
24. }
25. 	
26. HeatingController	 {
27. 	 	 	 	 incoming	 adjustHeating(Level=?new)	 subsumes	 adjustHeating(Level=?old).
28.
29. 	 	 	 	 this.adjustHeater
30. 	 	 	 	 	 	 <-‐	 adjustHeating(Level=?h).
31. }
32.
33. HeatingController.java	 {
34. 	 	 private	 CSAction	 adjustHeater	 =	 new	 CSAction()	 {
35. 	 	 	 	 	 public	 void	 activated(CSVariableBindings	 bindings)	 {	 //adjust	 heating	 }
36. 	 	 	 	 	 public	 void	 deactivate(CSVariableBindings	 bindings)	 {	 //reset	 heating	 }
37. 	 	 };	 	
38. }

Fig. 5. CRIMESPOT code for the TemperatureSensor, HumiditySensor and HeatingController nodes in the motivating example.
1. ComfortLevelMonitor	 {	
2. 	 	 	 	 temperatureMapping($readingInterval).
3. 	 	 	 	 humidityMapping($readingInterval).
4.
5. 	 	 	 	 incoming	 online(Tent=?tnt,Component=?c)@[from(MAC=?m)]
6. 	 	 	 	 subsumes	 online(Tent=?otnt,Component=?c)@[from(MAC=?m)].	
7.
8. 	 	 	 	 subsumesOlderFromSameTent(humidityReading,Percent).
9. 	 	 	 	 subsumesOlderFromSameTent(temperatureReading,Celsius).
10. 	 	 	 	 	 	 	 	 	 	 	 	
11. 	 	 	 	 this.logComfortLevel
12. 	 	 	 	 	 	 <-‐	 humidityReading(Percent=?h)@[from(MAC=?hm)],	 	 	 	 	 	 	
13. 	 	 	 	 	 	 	 	 	 temperatureReading(Celsius=?t)@[from(MAC=?tm)],
14. 	 	 	 	 	 	 	 	 	 online(Tent=?tnt)@[from(MAC=?hm)],
15. 	 	 	 	 	 	 	 	 	 online(Tent=?tnt)@[from(MAC=?tm)].
16. 	 	 	 	
17. 	 	 	 	 adjustHeating(Level=?heatingLevel)@[to(MAC=?hcm),
18. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 factExpires($readingInterval)]
19. 	 	 	 	 	 	 <-‐	 temperatureReading(Celsius=?t)@[from(MAC=?tm)],
20. 	 	 	 	 	 	 	 	 	 online(Tent=?tnt)@[from(MAC=?tm)],
21. 	 	 	 	 	 	 	 	 	 ?heatingLevel	 is	 this.computeHeatingLevel((Number)?t),
22. 	 	 	 	 	 	 	 	 	 online(Name=HeatingController,Tent=?tnt)@[from(MAC=?hcm)].
23. }
24.
25. ComfortLevelMonitor.java	 {
26. 	 	 	 private	 CSValue	 computeHeatingLevel(Number	 t)	 {	 return	 ...	 }
27. 	 	 	 private	 CSACtion	 logComfortLevel	 =	 new	 CSAction()	 {	 ...	 }	
28. }

29. *.java	 {
30. 	 	 	 	 private	 CSValue	 getTentBasedOnGPSReading()	 {	 return	 ...	 }
31. }
32.
33. *	 {
34. 	 	 	 	
35. 	 	 	 	 defvar	 $readingInterval:	 Seconds=600.
36. 	 	 	 	 defvar	 $onlineInterval:	 Seconds=3600.
37.
38. 	 	 	 	 defmacro	 temperatureMapping():
39. 	 	 	 	 	 	 	 	 mapping	 temperatureReading(Celsius=?temp)@[factExpires($readingInterval)]	
40. 	 	 	 	 	 <=>	 Event_101(Integer=?temp).
41. 	 	 	 	 	 	 	 	
42. 	 	 	 	 defmacro	 humidityMapping():
43. 	 	 	 	 	 	 	 	 mapping	 humidityReading(Percent=?h)@[factExpires($readingInterval)]	
44. 	 	 	 	 	 <=>	 Event_102(Integer=?h).
45.
46. 	 	 	 	 defmacro	 publishPresenceEvery($time):
47. 	 	 	 	 	 	 	 online(Tent=?tnt,Name=$NAME)@[to(MAC=*),factExpires($time)]	 	
48. 	 	 	 	 	 	 	 	 	 	 <-‐	 ?tnt	 is	 this.getTentBasedOnGPSReading()@[renewEvery($time)].
49. 	 	 	 	 	 	 	 	
50. 	 	 	 	 defmacro	 subsumesOlderFromSameTent($reading,$type):
51. 	 	 	 	 	 	 	 incoming	 $reading($type=?new)@[from(MAC=?mac)]
52. 	 	 	 	 	 	 	 subsumes	 $reading($type=?old)@[from(MAC=?othermac)]
53. 	 	 	 	 	 	 	 provided	 online(Tent=?tnt)@[from(MAC=?mac)],	
54. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 online(Tent=?tnt)@[from(MAC=?othermac)].
55. }

Fig. 6. CRIMESPOT code for the ComfortLevelMonitor (left) and code that is shared by all nodes in the motivating example (right).

of the ComfortLevelMonitor node contains facts of the following
form:
temperatureReading(Celsius=27)
@[factExpires(Seconds=600),from(MAC=1234:1234:1234:1234)]

The syntax for conditions is similar to the one of facts,
except that a logic variable (i.e., an identifier starting with a
question mark) can substitute for the concrete value of a named
attribute. For a condition to be satisfied, there has to be a fact
that matches the condition under a variable substitution (i.e.,
a mapping of variables to the values they are bound to). Note
that a fact can match a condition with less attributes and meta-
data. The fact only has to exhibit the attributes and meta-data
that are specified in the condition. This is why CRIMESPOT
uses named attributes.

The bindings for each occurrence of a variable have to be
consistent across the head and the body of a rule. One rule
activation therefore corresponds to a particular substitution
for its variables. If the fact base contains three matching
temperatureReading facts, for instance, the rule is activated
three times with a corresponding binding for ?temp:
temperature(Celsius=?temp)
<- temperatureReading(Celsius=?temp).

The fact base will therefore be extended with three new
temperature facts. As soon as a new temperatureReading

fact is added to fact base, the rule is activated anew with
another variable substitution that results in a new temperature

fact. Conversely, as soon as a temperatureReading fact is
removed from the fact base, the rule will be deactivated for
the corresponding variable substitution. As a result, one of the
temperature facts produced by this rule will be removed.

B. Relating Facts

As illustrated by the motivating example, WSN nodes often
have to store and relate the events they receive. Through mul-
tiple occurrences of a variable in a rule’s body, CRIMESPOT
supports relating facts that reify received events based on their
content as well as their origin. Consider the interaction rule
of the ComfortLevelMonitor on lines 11-15 of Figure 6. The first
two conditions succeed if both a humidityReading and an
online fact are stored in the fact base. However, variable ?hm

requires these facts to have originated from the same network
node. Within the meta-data of each condition, the variable
substitutes for the MAC address the fact was published from.
As a result, variable ?tnt will be bound to the tent from which
the humidityReading originated. This is an example of origin-
based relating of facts. The last two conditions use another
occurrence of this variable to find a temperatureReading from
the same tent. This is an example of content-based relating of
facts.

The same technique can be used to link the head of a
rule to its body. This is illustrated by the rule on lines

18–23 of Figure 6. The occurrences of ?hcm ensure that
an adjustHeatingLevel fact is added to the fact base of
the particular heating controller in the tent from which the
temperature reading originated. By default, facts are only
added to the local fact base. This behavior is changed by the
to(MAC=?hcm) declaration in the fact’s meta-data. Likewise, a
to(MAC=*) declaration will add the fact to all fact bases. If
the underlying middleware does not support such unicasts, the
infrastructure layer of our runtime will simulate them through
broad-casts that are filtered at the receiver side.

Both rules have multiple conditions in their body. Note that
there merely has to be a matching fact in the fact base for
each condition. A rule does not by itself specify an order in
which the corresponding events must have been received. This
is appropriate as sensor readings arrive non-deterministically.
The aforementioned subsumption declarations ensure that only
the most recent sensor readings are stored for each tent. Other-
wise, the first rule would be activated multiple times: once for
each combination of humidity and temperature readings that
are stored. In general, an interaction rule cannot be understood
in isolation from the declarations that configure the reification
engine.

C. Error Handling

Some form of error handling might be in order when
a match can’t be found for a condition. To this end, a
matchEvery declaration can be added to the meta-data of
the condition. Whenever a match hasn’t been found in the
specified amount of time, a timedOut fact will be added to the
local fact base. The condition in the following rule expects a
new matching fact at least every minute:
gotReadingFrom(MAC=?mac)
<- temperatureReading(Celsius=?)@[from(MAC=?mac),

matchEvery(Seconds=60)].

Whenever such a fact has not arrived one minute after the last
one, the following timedOut fact will be asserted:
timedOut(Head=gotReadingFrom_1,Condition=temperatureReading).

The inference engine will activate the error handling rule with
the corresponding timedOut condition in its body. As soon as
a match is found for the condition that timed out, the timedOut

fact will be removed from the fact base. Consequentially, the
error handling rule will be deactivated as well.

D. Invoking Application Logic

Finally, CRIMESPOT supports invoking application logic
from within the body or the head of an interaction rule.
Although other ports are possible, our run-time currently
expects the underlying middleware to be executed on the
Squawk VM [4]. A node’s application logic therefore has to
be implemented in this Java variant. The next section will
discuss network-centric features of CRIMESPOT that enable
specifying interaction rules and application logic in a uniform
manner.

As discussed before, rules can have a reference to a field in
their head (e.g., this.adjustHeater on line 29 of Figure 5).
When such a rule is activated, the inference engine sends
a message activated(CSVariableBindings) to the value of

this field. The bindings for the variables in the rule’s body
are given as an argument. The corresponding Java method is
to implement the application logic. Conversely, the message
deactivated(CSVariableBinding) is sent to the value of the
field upon the rule’s deactivation. The corresponding method
can compensate for the other. This is particularly useful for
error handling rules that were activated because of timeouts.
Among others, state changes can be undone.

Java methods can also be invoked from within the body
of a rule. To this end, CRIMESPOT supports conditions of
the form “<variable> is <invocation>”. Such a condition
binds the variable on its left-hand side to the result of the
invocation on the right-hand side. Usually, is-conditions have
either a renewEvery or an evalEvery declaration among their
meta-data. Both schedule the method to be invoked at set
intervals. The former declaration invalidates previous matches
for the condition, thus causing a deactivation of the rule in
which it resides. The latter declaration gives rise to multiple
matches for the is-condition, each with a different binding for
the variable on the left-hand side. This can be useful to store
a log of sensor readings in a node’s fact base, but is memory-
intensive.

The rule on lines 7–9 of Figure 5 uses an is-condition with a
renewEvery declaration. As a result, method getTemperature

is invoked periodically. Note that the temperatureReading

facts published by this rule are declared to expire after
the same interval. This is an optimization that allows the
TemperatureSensor node to forego ordering all other nodes to
remove a temperatureReading every time the rule is deacti-
vated. Instead, the fact will have been removed already because
it expired.

V. THE NETWORK-CENTRIC CRIMESPOT FEATURES

Having discussed the node-centric features of the
CRIMESPOT programming language, we shift our focus to
its network-centric features. Used to specify which rules and
application logic are to govern the behavior of which nodes,
these provide a holistic view of the WSN application as a
whole. In this view, it is immediately apparent which nodes
communicate with each other and how often. Macro definition
and application provides an indispensable means to abstract
and reuse code within and among WSN applications.

The resulting network-centric applications, such as the one
depicted in Figure 5 and Figure 6, are compiled into node-
level code that is tailored to each individual WSN node.
The underlying event-driven middleware is the compilation
target. The resulting code can be deployed as is through the
middleware’s over-the-air deployment facilities. It includes a
CRIMESPOT runtime of which the rule base and configuration
base have been populated.

A. Quantified Code Blocks

A CRIMESPOT file consists of blocks of code for each node
required by the WSN application. Two kinds of blocks can be
distinguished. The first kind groups node-centric CRIMESPOT

code such as interaction rules and the declarations that con-
figure the reification engine. These are demarcated by braces
preceded by a quantifier. This quantifier specifies the WSN
node for which the code is intended. For instance, lines 5–10
of Figure 5 group all the code for the TemperatureSensor node.

The second kind of blocks groups code that implements
application logic in the language supported by the underlying
middleware. They are similar to the other blocks, except that
their quantifiers are suffixed with .java. Our prototype expects
the underlying middleware to be executed on the Squawk
VM [4]. Application logic therefore has to be implemented in
this Java variant. For instance, lines 12–14 of Figure 5 group
all the application logic required by the TemperatureSensor node.

When a code block is to be shared by multiple WSN
nodes, it suffices to use an enumeration of their names as
the quantifier. This is illustrated by the first line of Figure 5.
Furthermore, a *-wildcard can be used for blocks that are to
be shared by all WSN nodes. This is illustrated by the blocks
on the right-hand side of Figure 6.

B. Macros and Macro Variables

CRIMESPOT supports macro variables within code blocks.
Such variables are prefixed by a $-sign and are either prede-
fined or defined by the developer within the scope of a particu-
lar code block. Macro variables substitute for a textual value at
compile-time. They do not exist anymore at run-time. The pre-
defined macro variable $NAME can be used wherever the name
of a node is expected. This is useful when quantifying over
multiple nodes. Line 47 of Figure 6 uses this macro variable
to pass the name of a node as an attribute of the online facts
it publishes. Line 35 of Figure 6 has the $readingInterval

macro variable substitute for the Seconds=600 attribute. To
ensure all sensor nodes publish their readings at the same
interval, this variable is defined in the scope of a block that
is quantified by the *-wildcard. Among others, the variable is
referred to by the TemperatureSensor on lines 7–9 of Figure 5.
Used in this manner, macro variables ensure that a WSN
application is easier to reconfigure.

Procedure-like macros can also be defined. For in-
stance, lines 50–54 of Figure 6 define the macro
subsumesOlderFromSameTent($,$). It substitutes for a sub-
sumption declaration specifying that a fact of type $reading

with an attribute named $type subsumes all older $reading

facts that are received from a node in the same tent. This
macro is applied with the required arguments on lines 8–9
of the same figure. Likewise, the publishPresenceEvery($)

macro defined on lines 46–48 is applied for all sensor nodes
on line 2 of Figure 5. Macros enable reuse of quantified code
blocks within and across WSN applications.

VI. PRELIMINARY EVALUATION

We instantiated CRIMESPOT on top of the LOOCI [5]
event-based middleware for the Squawk VM [4] (i.e.,
SUNSPOT motes). As LOOCI advocates the use of loosely
coupled components for programming WSN nodes, all of
our code blocks are actually compiled to components rather

than plain Java classes. The advantage of loosely coupled
components is that they can be replaced at run-time. In
addition, the middleware takes care of over-the-air deployment
and the routing of events over a decentralized event bus. We
therefore inherit all characteristics regarding memory footprint
and event dissemination from this middleware. The resulting
CRIMESPOT instance is freely available online [6].

A. Expressiveness

We implemented several small, but representative WSN
applications to evaluate the expressiveness of CRIMESPOT.
Examples include active temperature and river monitoring,
fire detection and dynamically measuring whether the sensor
range of a node is covered by others as well. We refer to the
master’s thesis of Amerijckx [7] for their implementations.
Each application required on average 2.11 components (min:
2, max: 4). The average component has about 0.22 declarations
for the reification engine (min: 0, max: 4), 4.14 interaction
rules (min: 3, max: 14) and 3.72 component methods (min: 4,
max:10). This is testament to the conciseness of CRIMESPOT
applications. More code was required for the motivating ex-
ample of this paper due to the complexity of its functional
requirements.

A substantial amount of code would be required to imple-
ment these applications in plain Java on top of event-based
middleware. As argued in Section II, this would lead to ad-
hoc and error-prone implementations of event dispatching,
storage and matching that are duplicated across the event
handlers of each node. The latter have been shown to violate
several software engineering principles such as composability,
scalability and separation of concerns [1]. On top of that,
a significant amount of bookkeeping would be required to
implement event expiration, subsumption and compensation
as required by our motivating example.

B. Overhead

The price to pay for all this domain-specific support is
reasonable. Our runtime requires about 460kB of ROM (i.e.,
9.7% of the flash memory available on the SUNSPOT mote).
This is to be expected as we made no conscious effort to
reduce this footprint at all. There is therefore ample room
for improvement. The amount of RAM that is consumed
by a rule at run-time depends on the complexity of the
corresponding Rete network. A rule that represents the worst-
case situation for 6 conditions consumes about 30kB of RAM.
In addition, every asserted fact consumes about 3kB of RAM.
We attribute these numbers to the completely object-oriented
implementation of the RETE network.

To give an indication about the performance of our run-
time, it takes about 80ms on average for a received fact to be
added to the local fact base. It then takes another 140ms before
the aforementioned worst-case rule is activated in reaction to
this fact. Again, the performance of our runtime is difficult to
measure as it depends on the complexity of its RETE network.

The processing capabilities of the SUNSPOT motes is there-
fore more than adequate. In this regard, they are situated at the

high-end of the WSN market. However, we firmly believe that
the software engineering benefits brought by CRIMESPOT
will outweigh the cost of such nodes as the complexity of
WSN applications increases.

VII. RELATED WORK

To the best of our knowledge, CRIMESPOT is unique
among the approaches that have been proposed for program-
ming WSNs [8]. It attempts to bring node-centric program-
ming of active WSNs closer to network-centric programming
of passive WSNs.

We will discuss the most closely related node-centric
approaches first. LOGICAL NEIGHBORHOODS [9] advocates
sending message to logically specified groups of nodes in
the network. The way in which we addressed all nodes in
a festival tent is less descriptive and hence open to similar
improvements. TEENYLIME [10] allows neighboring nodes
to interact by storing tuples in a shared tuple space. However,
both approaches require an event handler to react to incoming
events. The rule-based language FACTS [11] comes closest
to the node-centric features of CRIMESPOT. It allows nodes
to interact by exchanging facts. These facts can be reacted
to through declarative rules. However, logic variables cannot
be used within these rules. As a result, a node cannot react
to several related facts. In addition, facts cannot be declared
to expire. As the causality between bodies and heads is not
tracked, rule deactivation cannot be reacted to either.

The network-centric features of CRIMESPOT are compa-
rable to those introduced by ATAG [12]. ATAG advocates
specifying a WSN application in terms of tasks that have
to be instantiated on particular nodes. Unlike CRIMESPOT,
ATAG employs a graphical notation and is more expressive
concerning the instantiation of tasks on nodes and the inter-
actions between tasks. However, ATAG provides no support
for programming the tasks themselves. Reactions to incoming
data still have to be implemented through an event handler.
Moreover, there is no control over the subsumption and
expiration of this data.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced CRIMESPOT as a domain-
specific language that minimizes the accidental complexity
inherent to programming WSN applications using event-based
middleware. We carefully motivated the need for such a
language through a motivating example. This example is
representative for applications in which nodes are not only
tasked with sensing, but also with reacting to sensor readings.
Having introduced the runtime that supports CRIMESPOT,
we detailed its node-centric and network-centric features. In
a preliminary evaluation, we discussed the expressiveness of
this language and the overhead of its supporting runtime
as instantiated on state-of-the-art middleware. The resulting
prototype implementation is freely available.

In future work, we will investigate how developers can exert
more control over the causality tracking that allows reacting
to rules that lose a match (e.g., when a fact expires). While

desirable in most WSN situations, this tracking does cause an
overhead for facts that are extremely short-lived. Along the
same lines, we intend to investigate how more control can be
offered over the order in which rules with a common body
are activated. Currently, the activation precedence of rules is
determined by the order in which they are specified. Finally,
CRIMESPOT does not offer facilities for publishing a fact to
the physical n-hop neighborhood of a node. Facts that have
a to(MAC=*) declaration among their meta-data are assumed
to be network-wide. It would be interesting to investigate
language support for changing a fact as it traverses physical
hops.

ACKNOWLEDGMENTS

The authors thank everyone who contributed to the CRIME
inference engine upon which CRIMESPOT builds: Eline
Philips and Stijn Mostinckx. Coen De Roover is funded by
the Stadium SBO project sponsored by the “Flemish agency
for Innovation by Science and Technology” (IWT Vlaanderen).
Christophe Scholliers is funded by a doctoral scholarship from
the same agency. This research is partially supported by the
IAP Programme of the Belgian State.

REFERENCES

[1] I. Maier, T. Rompf, and M. Odersky, “Deprecating the observer pattern,”
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,
Tech. Rep., 2010.

[2] C. Forgy, “Rete: A fast algorithm for the many patterns/many objects
match problem.” Artificial Intelligence, vol. 19, no. 1, pp. 17–37, 1982.

[3] S. Mostinckx, C. Scholliers, E. Philips, C. Herzeel, and W. D. Meuter,
“Fact spaces: Coordination in the face of disconnection,” in Proceed-
ings of the 9th International Conference on Coordination Models and
Languages (COORDINATION07), 2007, pp. 268–285.

[4] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java on the
bare metal of wireless sensor devices: the Squawk Java virtual machine,”
in Proceedings of the 2nd International Conference on Virtual Execution
Environments (VEE06). ACM, 2006, pp. 78–88.

[5] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid, S. Michiels,
C. Huygens, and W. Joosen, “LooCI: a loosely-coupled component
infrastructure for networked embedded systems,” in Proceedings of the
7th International Conference on Advances in Mobile Computing and
Multimedia (MoMM09), 2009, pp. 195–203.

[6] “CrimeSPOT website,” http://soft.vub.ac.be/amop/crime/sunspot, 2011.
[7] W. Amerijckx, “Language support for programming interactions among

wireless sensor network nodes,” Master’s thesis, Vrije Universiteit
Brussel, 2011.

[8] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Computing Surveys,
vol. 43, no. 3, pp. 19:1–19:51, 2011.

[9] L. Mottola and G. Picco, “Logical neighborhoods: A programming
abstraction for wireless sensor networks,” in Proceedings of the 2nd
ACM/IEEE International Conference on Distributed Computing on Sen-
sor Systems (DCOSS06), 2006.

[10] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Programming wire-
less sensor networks with the TeenyLime middleware,” in Proceedings of
the ACM/IFIP/USENIX 2007 International Conference on Middleware
(MIDDLEWARE07), 2007, pp. 429–449.

[11] K. Terfloth, G. Wittenburg, and J. Schiller, “FACTS - a rule-based
middleware architecture for wireless sensor networks,” in Proceedings
of the 1st International Conference on Communication System Software
and Middleware (COMSWARE06), 2006, pp. 1–8.

[12] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract
task graph: a methodology for architecture-independent programming
of networked sensor systems,” in Proceedings of the 2005 Workshop
on End-to-End, Sense-and-Respond Systems, Applications and Services
(EESR05), 2005, pp. 19–24.

