
AmbientTalk {Demo}
Modern Actors for Modern Networks

Tom Van Cutsem
Software Languages Lab,
Vrije Universiteit Brussel

tvcutsem@vub.ac.be

Abstract
The purpose of this demo is to showcase the AmbientTalk pro-
gramming language. AmbientTalk is intended to be a “scripting
language for mobile phones”. It’s a dynamic, object-oriented, dis-
tributed programming language with a focus on deployment in so-
called mobile ad hoc networks - networks composed of mobile de-
vices that communicate peer-to-peer using wireless communication
technology. We discuss AmbientTalk’s roots and devote special at-
tention to its concurrent and distributed language features, which
are founded on the actor model.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Object-oriented languages

General Terms Design, Languages

Keywords Actor, MANET, Asynchrony, Events

1. Introduction
AmbientTalk is a modern (born 2006) actor-based programming
language, designed specifically for a new class of computer net-
works, so-called mobile ad hoc networks [5]. These are networks
populated by mostly mobile devices that communicate peer-to-peer
using wireless communication technology, such as WiFi or Blue-
tooth. Thanks to the emergence of smartphone platforms such as
iOS and Android, such networks have become omnipresent, and
in this light AmbientTalk can best be summarized as “a scripting
language for mobile phones”.

The purpose of the demo is to give the workshop audience a
brief overview of AmbientTalk, with special attention to its con-
current and distributed programming model, which is founded on
actors. Our goal is to show how resilient mobile applications can
be constructed with familiar building blocks like objects and mes-
sages, but also in what way these building blocks have to be adapted
to fit the characteristics of mobile ad hoc networks.

2. AmbientTalk’s Concurrency Model
In AmbientTalk, concurrency is spawned by actors: one Ambi-
entTalk virtual machine may host multiple actors which execute
concurrently. AmbientTalk’s concurrency model is based on the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AGERE ’11 Oct. 2011, Portland, OR, USA.
Copyright c© 2011 ACM [to be supplied]. . . $10.00

communicating event loops model of the E programming lan-
guage [4], which is itself an adaptation of the well-known actor
model [1]. The E language combines actors and objects into a
unified concurrency model. Unlike previous actor languages such
as Act1 [3], ABCL [6] and Actalk [2], actors are not represented
simply as “active objects”, but rather as vats (containers).

Thus, actors are not represented as active objects, but rather
as a collection of plain objects that share a single event loop.
That event loop has a single message queue, containing messages
addressed to its objects. The event loop perpetually takes a message
from the message queue and invokes the corresponding method
of the object denoted as the receiver of the message. Messages
are processed serially to avoid race conditions on the state of the
contained objects.

In AmbientTalk, each object is said to be owned by exactly one
actor. Only an object’s owning actor may directly execute one of its
methods. Objects owned by the same actor may communicate using
standard, sequential message passing or using asynchronous mes-
sage passing. AmbientTalk borrows from the E language the syn-
tactic distinction between sequential message sends (expressed as
o.m()) and asynchronous message sends (expressed as o<-m()).
It is possible for objects owned by one actor to refer directly to in-
dividual objects owned by another actor. Such references that span
different actors are named far references (the terminology stems
from E [4]) and only allow asynchronous access to the referenced
object. Any messages sent via a far reference to an object are en-
queued in the message queue of the owner of the object and pro-
cessed by the owner itself.

Figure 1 illustrates AmbientTalk actors as communicating event
loops. The dotted lines represent the event loop processes of the
actors which perpetually take messages from their message queue
and synchronously execute the corresponding methods on the ac-
tor’s owned objects. An event loop process never “escapes” its actor
boundary. When communication with an object in another actor is
required, a message is sent asynchronously via a far reference to
the object. For example, when A sends a message to B, the message
is enqueued in the message queue of B’s actor which eventually
processes it.

A
B

Message
queue

Actor

Object Far reference

Event
Loop

Actor Message from A to B

Figure 1. AmbientTalk actors as event loops

Asynchronous messages can be sent between objects owned by
the same actor (via a local reference) or by different actors (via a

far reference). An asynchronous message send immediately returns
a future, a placeholder for the actual return value.

AmbientTalk’s concurrency model avoids low-level data races
and deadlocks by design. It avoids low-level races because actors
can only directly access their own objects. It avoids deadlocks be-
cause there is no blocking operation: message sending and recep-
tion is fully asynchronous.

3. Demo: a Simple Echo Service
During the demonstration, we will construct a simple echo service
from scratch to showcase some of AmbientTalk’s language fea-
tures. The echo service simply accepts any incoming message and
returns it immediately to the sender. We deliberately choose a triv-
ially simple application to focus attention on the language rather
than the application. A straightforward definition of such an echo
service is defined in listing 1.

Listing 1. Definition of a Simple Echo Service
// the singleton echo service object
def s := object: {

// method declaration
def echo(msg) {

system.println(”Received: ”+msg);
msg // return value is the same message
}
}

// define the type of the service (on the server)
deftype EchoService;

// advertise the service in the network
def pub := export: s as: EchoService;

The code in listing 1 defines a singleton echo service object
s, and subsequently advertises this service in the local ad hoc
network. The AmbientTalk VM takes care of broadcasting this
advertisement to nearby listening VMs. On the client-side, a typical
interaction with such an echo service is shown in listing 2.

Listing 2. A Simple Client Interaction
// define the type of the service (on the client)
deftype EchoService;

// discover the service
when: EchoService discovered: { |echoService|

system.println(”Discovered an echo service”);

// send an asynchronous message to the service
def reply := echoService<−echo(”test message”)@TwoWay;
// the following call does not block the actor:
when: reply becomes: { |value|

// react to the incoming reply
system.println(”Reply: ” + value);
}
}

Note that the client actor interacts with the echo service in a
fully asynchronous and event-driven way: it first registers a call-
back to be triggered when an echo service was discovered by the
underlying AmbientTalk VM. When this event occurs, the client
sends an asynchronous echo message, and awaits the reply. Await-
ing the reply is done by posting a callback, so that the underlying
actor remains responsive to other events.

The above code only scratches the surface of AmbientTalk’s
language features. During the demo, we will additionally mention:

Futures Many callbacks can be avoided by using futures. We also
discuss how futures can be chained together, leading to data-
flow rather than control-flow synchronization.

Failures We discuss how AmbientTalk treats network failures, and
how it allows applications to recover from them.

4. Summary
The purpose of the demo is to give a brief overview of Ambi-
entTalk, a modern actor-based language. We focus specifically on
AmbientTalk’s concurrency and distribution model, founded on ac-
tors. Through the construction of a simple echo service, we will
explain AmbientTalk’s support for service discovery, asynchronous
message passing and failure handling.

Availability
An open-source interpreter for AmbientTalk is available at http:
//ambienttalk.googlecode.com. The interpreter is written in
Java and runs on any 1.4-compliant or later JVM. A special Ambi-
entTalk distribution for Android phones is also available.

Acknowledgments
Tom Van Cutsem is a Postdoctoral Fellow of the Research Founda-
tion, Flanders (FWO). AmbientTalk is the product of a group effort.
We thank Jessie Dedecker, Stijn Mostinckx, Wolfgang De Meuter,
Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Car-
reton, Kevin Pinte and Dries Harnie.

References
[1] G. Agha. Actors: a Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986. ISBN 0-262-01092-5.
[2] J.-P. Briot. From objects to actors: study of a limited symbiosis in

smalltalk-80. In Proceedings of the 1988 ACM SIGPLAN workshop on
Object-based concurrent programming, pages 69–72, New York, NY,
USA, 1988. ACM Press. ISBN 0-89791-304-3. doi: http://doi.acm.org/
10.1145/67386.67403.

[3] H. Lieberman. Concurrent object-oriented programming in ACT 1.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent
Programming, pages 9–36. MIT Press, 1987.

[4] M. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers:
Programming in E as plan coordination. In Symposium on Trustworthy
Global Computing, volume 3705 of LNCS, pages 195–229. Springer,
April 2005.

[5] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and
W. De Meuter. Ambienttalk: object-oriented event-driven programming
in mobile ad hoc networks. In Inter. Conf. of the Chilean Computer
Science Society (SCCC), pages 3–12. IEEE Computer Society, 2007.

[6] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented con-
current programming in ABCL/1. In Conference proceedings on
Object-oriented programming systems, languages and applications,
pages 258–268. ACM Press, 1986. ISBN 0-89791-204-7. URL http:
//doi.acm.org/10.1145/28697.28722.

