
Language and Middleware Support for Dynamism
in Wireless Sensor and Actuator Network Applications

Nelson Matthys, Sam Michiels,
and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Christophe Scholliers, Coen De Roover,
Wouter Amerijckx, and Theo D’Hondt

Software Languages Lab
Vrije Universiteit Brussel, Belgium

{firstname.lastname}@vub.ac.be

ABSTRACT
Advances in wireless sensing and actuation technology allow
for reasonable amounts of application logic to be embedded
inside wireless sensor networks. Such applications are more
autonomous but are significantly more complex to program
and manage. First, in-network adaptations need to be sup-
ported due to the long-lived nature of the network. Second,
the intrinsic dynamism of the network challenges how appli-
cations interact with each other. Third, as applications be-
come more complex, coordinating their interactions becomes
more difficult. This paper explores how the integration of an
event-based component middleware, a policy-based manage-
ment system, and a domain-specific coordination language
gives rise to comprehensive support for developing and man-
aging this new breed of applications.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: [Distri-
buted Systems, Distributed Applications]

General Terms
Design, Management, Languages

Keywords
components, policy, middleware, domain-specific languages

1. INTRODUCTION
Today’s wireless sensor networks (WSN) are rapidly evolv-

ing into highly interconnected, multi-purpose infrastructure,
which is equipped with a rich set of sensor and actuation
functionality. From an application perspective, these ad-
vances in WSN technology introduce many opportunities for
more realistic, albeit more complex applications to be devel-
oped. Compared to early WSN applications, which merely
focussed on plain data collection data, this new type of ap-
plications is traditionally referred to as wireless sensor and
actuator networks applications (WSANs).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1069-7/11/12 ...$10.00.

WSANs can for instance be deployed in real-world sce-
narios such as logistics or disaster management. These sce-
nario’s require coordination between sensing, intelligent in-
network processing, and actuation functionality. However,
there are three main concerns that typically challenge the
implementation of these scenario’s: (i) functional and non-
functional requirements of WSAN applications are subject
to changes over time, (ii) interactions between WSAN nodes
are highly volatile due to node mobility or communication
failures, and (iii) as applications get more complex, coordi-
nating these inter-node interactions becomes more difficult.

To address concern (i), our previous work proposed a run-
time reconfigurable middleware [6, 9], offering components
as policies as first class abstractions for application devel-
opment and management. This middleware introduced a
loosely-coupled, event-based style of component interaction,
aligning well with the volatile nature of the network (con-
cern (ii)) and simplifying component reconfigurations (con-
cern (i)). However, experience has shown that programming
applications in terms of events rapidly tends to become very
complex, especially when multiple unordered events need to
be composed together to compute the application behaviour
to invoke. Hence, to overcome concern (iii), we previously
proposed a domain-specific language to manage the com-
plexity of inter-node interactions [3].

Throughout this paper, we discuss our recent efforts and
experiences to combine these three individual elements into
an integrated WSAN middleware: LooCI, an event-based
component model for developing adaptive WSAN applica-
tions; PMA, an adaptive policy system for enforcing non-
functional concerns; and CrimeSPOT, a domain-specific
language to implement complex inter-node interactions.

2. EXAMPLE SCENARIO
Consider the scenario illustrated in Figure 1 in which a

WSAN is used to regulate the temperature in a container.
All node interactions happen asynchronously, as nodes pub-
lish events and subscribe to events using a shared decen-
tralized event bus abstraction (cf. concern (ii)). Outgoing
arrows depict events published by a node, while incoming ar-
rows depict events a node is subscribed to. Battery-powered
TemperatureSensors and HumiditySensors register environ-
mental conditions inside the container. These readings are
then used by a TransportMonitor system, employed on ev-
ery storage location, which controls the individual air condi-
tioning units of the containers by publishing AdjustHeating

events. One HeatingController node per container serves
as a wireless actuator for this air conditioning unit and

Heating
Controller

Temperature
Sensor

Humidity
Sensor

Transport
Monitor

Decentralized event bus

Adjust
Heating

Temperature
Reading

Humidity
Reading

Adjust
Heating

Humidity
Reading

Temperature
Reading

Container A
Container B

Container C (Location X)

Temperature
Sensor

Temperature
Reading

Online
Online

Online

Online Online

Figure 1: Motivating logistics scenario.

subscribes to AdjustHeating events. Upon reception of an
AdjustHeating event, the actuator updates the settings of its
air conditioning unit. Finally, every node publishes the con-
tainer identifier in which it resides through an Online event.

2.1 Dynamic Reconfiguration
Functional and non-functional requirements of WSAN ap-

plications are subject to changes over time (concern (i)). In
the scenario, transportation of food products requires a high
number of nodes in the container to be configured for tem-
perature registration. Afterwards, when the same container
is used for transportation of electronics, the WSAN has to
be reconfigured in order to save on resources. It is unrealis-
tic, or even impossible, to anticipate the needs of all future
usage scenarios at development time. Hence, on-the-fly re-
configuration of functionality is an essential feature WSAN
middleware should provide. The set of reconfiguration fa-
cilities must include operations for dynamic deployment of
individual application components and reconfiguration of ex-
isting functionality. Secondly, many concerns in WSAN ap-
plications are orthogonal to the application. Non-functional
requirements such as energy, security, or persistence settings
may cross-cut the application. To avoid tangled code, the
logic encapsulating these concerns should be separated from
code encapsulating functional requirements. In correspon-
dence with evolution of functional requirements, the set of
non-functional requirements is also subject to change.

In the logistics scenario, the HeatingController may only
react to AdjustHeating events sent by authenticated parties.
However, containers are usually transported across different
locations by subcontracted logistics providers. As such, the
set of authenticated parties (i.e. truck and storage compa-
nies) is variable over time, as well as the credentials that are
applied for securing the system.

2.2 Complex Component Interactions
Events-based middleware provides a good fit for program-

ming highly dynamic environments (concern (ii)). Unfor-
tunately, programming rich inter-node interactions using
events frequently results in reasonable amounts of control
flow statements to be embedded inside a program (con-
cern (iii)). Consider implementing the TransportMonitor

node of the scenario using event-based middleware. Typ-
ically, such middleware invokes an event handler for each
event the node receives. This particular node has to re-
act differently to each received event. Its event handler
will therefore have to dispatch over each received event.
It will also have to store events in memory and match

them with previously received events. For instance, to
send an AdjustHeating event to the actual container from
which an unsuitable TemperatureReading event originated,
the TransportMonitor must match the address of the
event’s origin with the payload of a stored Online event.

Without adequate support for the aforementioned func-
tionality, developers resort to ad-hoc implementations in
event handlers. These are error-prone and bound to be du-
plicated over the event handlers of multiple nodes. More-
over, event handlers cannot be composed in a straightfor-
ward manner. The fact that events carry sensor readings
only aggravates this problem for WSANs. Readings of dif-
ferent sensors expire at different rates. Subsumption of read-
ings might even be deployment-specific. For instance, a fresh
sensor reading from a node invalidates stored readings from
the other nodes in the same container. Previous reactions to
expired or subsumed readings might even have to be com-
pensated for. For instance, to avoid overheating when the
HeatingController gets disconnected from the WSAN.

Even with adequate middleware support for event dis-
patching, storing and matching, implementing event expira-
tion, subsumption and compensation for WSAN applications
still involves a fair amount of bookkeeping. There is there-
fore a need for comprehensive language support that mini-
mizes the accidental complexity that is inherent to program-
ming WSAN applications using event-based middleware.

3. MIDDLEWARE SOLUTIONS
Figure 2 shows an overview of our integrated middleware.

The three main elements are LooCI, an event-based com-
ponent model for developing adaptive WSAN applications;
PMA, an adaptive policy system for enforcement of non-
functional concerns; and CrimeSPOT, a domain specific lan-
guage to implement complex application interactions. Each
of these elements is individually needed for dealing with very
specific concerns of WSAN applications. First, LooCI and
PMA provide support for dynamic adaptation of functional
and non-functional requirements (concern (i)). Second, all
components communicate with each other over a distributed
event-bus making them robust for intermitted disconnec-
tions (concern (ii)). Third, developers can program com-
plex node interactions through declarative rules rather than
low-level events (concern (iii)).

3.1 LooCI: Event-based Component Model
The Loosely-coupled Component Infrastructure (LooCI)

[6] is a lightweight, run-time reconfigurable component model
featuring an event-based style of component interaction. All
LooCI components define their provided interfaces as the
set of events that they publish, whereas the required in-
terfaces of a LooCI component are defined as the events to
which the component subscribes. Components are indirectly
bound over an event bus abstraction, implementing a decen-
tralized publish/subscribe interaction model (cf. Figure 2).

As result, all communication between LooCI components
is carried by semantically typed events that allow for asyn-
chronous and indirect communication between a pair of com-
ponents. By decoupling communicating components through
an asynchronous event-based interaction model, LooCI in-
troduces a loosely-coupled style of system composition, which
is beneficial for adaptation. A per-node reconfiguration en-
gine maintains references to all installed components and
exposes a remote configuration interface on the event-bus,

Distributed Event Bus

LooCI run-time

WSN Node

Application
code

CrimeSPOT
run-time

LooCI Component

PMA run-time

Application
code

CrimeSPOT
run-time

LooCI Component

Figure 2: High-level architecture

which allows for reconfiguration and introspection of all local
components. The set of run-time reconfiguration facilities
in LooCI includes support to dynamically install, remove,
start, or stop individual components, in combination with
dynamic re-wiring of components over the event bus.

The key benefit of LooCI is that it promotes this event-
based interaction paradigm together with components. This
aligns well with the dynamic and interrupt-driven WSAN
nature. More details about LooCI are provided in [6].

3.2 PMA: Policy-based WSAN Management
The Policy Management Architecture (PMA) [9] offers a

policy abstraction to modularize concerns related to con-
figuration and composition of non-functional requirements
inside a WSAN application. Policies in PMA are specified
using a generic declarative policy language, following Event-
Condition-Action semantics.

PMA policies are semantically typed and consist of a de-
scription of the triggering events, a condition that is a logical
expression typically referring to the triggering events and ex-
ternal system aspects, and a list of actions to be enforced
in response. Upon specification, PMA policies are parsed,
analyzed, and transformed into a compact byte code repre-
sentation for efficient dissemination inside the network.

The PMA runtime on every node consists of three key
elements: a secure distribution component, a policy reposi-
tory, and a policy engine. The PMA policy engine is closely
integrated with the LooCI event bus (cf. Figure 2). Every
incoming and outgoing event that flows over the event bus
is first redirected to the policy engine, which checks what
policies have to be applied to that event. The distribution
component provides operations to dynamically and securely
install, enable, disable, or remove a policy. The repository
component is used to store all installed policies and retrieve
all policies matching a given event. More details on PMA
are provided in [9].

3.3 CrimeSPOT: Language Abstractions
CrimeSPOT [3] is a domain-specific programming lan-

guage to be used on top of event-based WSAN middleware.
From a node-centric perspective, it enables programming
component interactions through declarative rules rather than
event handlers. Each rule specifies how the component should
react to a particular sequence of events. This relieves devel-
opers from having to implement event dispatching, storing
and matching. Moreover, component interactions can be
composed in a straightforward manner by enumerating the
rules that govern them.

CrimeSPOT is domain-specific since it supports associ-

ating custom semantics to events that carry sensor readings.
Declarations control the aforementioned event subsumption,
expiration and compensation. With respect to the latter,
CrimeSPOT tracks causality relations between the events
a node receives and the ones it publishes. This allows de-
termining whether, which and how nodes are affected when
a sensor reading is subsumed or expires. From a network-
centric perspective, CrimeSPOT enables developers to spec-
ify which rules are to govern which components. Through
macro-programming facilities, the resulting configurations of
components and rules are reusable within and across WSAN
applications. This network-centric code is compiled to node-
level code that is tailored to each individual component.

Key elements of each CrimeSPOT runtime are its infer-
ence engine, rule base, and fact base. Storing events in a
fact base enables the natural use of pattern matching in
rules to relate events through their payload or origin. The
inference engine re-evaluates the fact base against the rule
base whenever the former changes. The engine is based on
a variant of the Rete algorithm [4], an incremental forward
chainer, that tracks the causality between facts and conclu-
sions. More details on CrimeSPOT are provided in [3].

4. LOGISTICS SCENARIO IMPLEMENTED
We discuss the implementation of the logistics scenario

using our comprehensive language and middleware support.

4.1 LooCI Code
Implementing a LooCI component is fairly simple and

does not impose major changes in the way how developers
write code for the underlying Java ME platform. As such,
developers only need to extend a generic base class, provid-
ing a number of methods to automatically register the com-
ponent with the per-node reconfiguration engine and event-
bus. The code below illustrates a LooCI component im-
plementing HumiditySensor functionality. This component
regularly publishes events of type HUMIDITY_READING.

1 public class HumiditySensor extends LooCIComponent
2 implements Runnable {
3 private HumiditySensor humSensor =
4 SensorBoard.getHumiditySensor();
5 public HumiditySensor() {
6 super("HumiditySensor", //component type
7 new EventType[]{ EventTypes.HUMIDITY_READING },//provided
8 new EventType[]{ }); //none required
9 }

10 //start() and stop() methods omitted
11

12 public void run() { //inherited from Runnable
13 while(true){
14 byte[] value = humSensor.getHumidity();
15 publish(new Event(EventTypes.HUMIDITY_READING, value));
16 Utils.sleep(600000); //sleep 10 minutes
17 }
18 }
19 }

Dynamic component deployment and reconfiguration is
achieved by creating an interactive session with the gate-
way device attached to the WSAN. Below is a tran-
script describing the deployment and configuration of the
HumiditySensor component. The component is first de-
ployed over the air to a particular node, followed by the
assignment of a unique component ID ‘3’ by the reconfig-
uration engine on that node (line 1-2). After activation
(line 3-4), introspective queries can be issued to retrieve in-
formation (e.g. component 3 is queried for provided event

types – event ‘101’ (HUMIDITY_READING) is provided) (line 5-
6). Finally, the HUMIDITY_READING interface is wired to the
TransportController component (ID=6) (line 7-8).

1 deploy HumiditySensor.jar 0014.4F01.0000.55E5
2 => 3
3 activate 3 0014.4F01.0000.55E5
4 => true
5 getInterfaces 3 0014.4F01.0000.55E5
6 => [101]
7 wireTo 101 3 0014.4F01.0000.55E5 101 6 0014.4F01.0000.53A2
8 => true

4.2 PMA Code
The PMA policy specified below is used to integrate secu-

rity inside the logistics application of Section 2. Upon policy
deployment, some security initialization statements are first
executed (line 2-3). Before an ADJUST_HEATING event is deliv-
ered to the HeatingController, the event is first checked for
authenticity (line 7). When the sender’s authenticity cannot
be verified, the event is dropped by policy engine (line 9).

1 policy "example" "Auth AdjustHeating events" "AUTH" {
2 uint8_t cid = 0; //local variable
3 on INSTALL { cid <- initialize("SHA-1","SHARED_KEY"); }
4 on UNINSTALL { clear(cid); }
5

6 on event ADJUST_HEATING as e;
7 if(!verify_auth(e,cid))
8 then(
9 deny e;

10)
11 }

4.3 CrimeSPOT Code
Figure 3 depicts an extract of the CrimeSPOT code for

the logistics scenario. As it determines which rules govern
the interactions of which components, it is network-centric.

Quantified Blocks The network-centric code consists of
multiple quantified blocks. These are demarcated by curly
braces and preceded by a quantifier, which specifies the com-
ponent for which the code is intended. Two kinds of blocks
can be distinguished. The first kind groups the component’s
interaction rules. For instance, the block on lines 5–9 en-
compasses an interaction rule for the TemperatureSensor

component. The second kind groups code that implements
application logic. They are similar to the other blocks, ex-
cept that their quantifiers are suffixed with .java.

To enable code reuse within and among WSAN appli-
cations, code blocks can be shared by components. Such
blocks are quantified either by a component enumeration
or by the *-wildcard. The latter is the case for the block
on lines 1–3, which defines a macro variable. Macro vari-
ables, prefixed by a $-sign, substitute for a textual value at
compile-time. They facilitate reconfiguring WSAN applica-
tions. For instance, the $publicationInterval macro variable
determines both publishing intervals (line 8) and expiration
rates throughout the application (lines 7 and 38).

Interaction Rules In general, an interaction rule (e.g.,
lines 37–44) has a fact in its head (e.g., line 37) and a con-
junction of conditions in its body (e.g., lines 39–44). Each
condition has to be satisfied in order for the rule to be ac-
tivated. For a condition to be satisfied, there has to exist
a fact (i.e., a stored event) that matches the condition un-
der a variable substitution. The bindings for each variable
occurrence have to be consistent across the head and the
body of a rule. One rule activation therefore corresponds
to a particular substitution for its variables. Whenever a

rule becomes activated, the inference engine of the compo-
nent adds the rule’s head either to the local or to a remote
fact base. This is determined entirely by meta-data (i.e.,
everything between @[. . .] on line 39).

Relating Facts Consider the rule on lines 37–44. As
indicated by the enclosing quantifier, it governs the interac-
tions of the TransportMonitor component. The rule adds
an appropriate adjustHeating fact to the fact base of the
HeatingController in a particular container. The actual
?heatingLevel is computed from a temperature reading ?t
and a humidity reading ?h, which get bound through the
conditions on line 39 and line 41 respectively. These condi-
tions also bind variables ?tm,?ti, ?hm and ?hi to the origi-
nating components’ MAC address and component ID respec-
tively. Through a common variable ?c, the conditions on
lines 40 and 42 subsequently ensure that these components
reside in the same container. Analogously, the condition on
line 44 provides bindings for ?cm and ?ci. These are used in
the head of the rule to express that the adjustHeating fact
should be added to the correct fact base (line 37). Note that
the online facts don’t have to be received from the network,
but could be pre-defined as illustrated by lines 26–29.

Application Logic CrimeSPOT supports invoking ap-
plication logic from within rule bodies. To this end, it pro-
vides conditions of the form “<variable> is <invocation>”
which bind their left-hand side to the result of the invocation
on their right-hand side. For instance, line 43 binds ?heat-
ingLevel to the result of computeHeatingLevel(). The rule on
lines 6–8 schedules its invocations of getTemperature() at an
interval of 600 seconds. Application logic can also be invoked
when a rule is activated. The head of such rules consists of
a reference to a field (e.g., lines 14–15), the value of which
will be sent a message activated(CSVariableBindings) upon
activation. Application logic can be implemented in the cor-
responding method (e.g., to adjust the container’s heater).

Fact Subsumption Declarations of the form “incoming
<newfact> subsumes <oldfact>” control subsumption. For
instance, lines 31–32 specify that a newly received
temperatureReading subsumes older ones that were received
from the same component. The subsumed facts will be re-
moved from the fact base. To this end, variables ?m and
?i substitute for the MAC address and component ID, re-
spectively, of the component that published the new fact
(cf. the from meta-data on line 31) as well as for the MAC-
address and component ID of the component that published
the older fact (cf. the from meta-data on line 32).

Compensating Actions Finally, an activated rule can
become deactivated in a successive evaluation of the rule
base against the fact base. This is the case as soon as one
of its conditions is no longer satisfied. For instance, be-
cause the matching fact expired or was subsumed. The in-
ference engine will undo the reaction to a rule’s activation
upon its deactivation. For rules with a fact in their head,
this fact will be removed from all fact bases it was added
to. For rules with a field reference in their head, a message
deactivated(CSVariableBinding) will be sent to the value of
the field upon their deactivation. The corresponding method
can be used to implement compensating application logic
(e.g., to reset the container’s heater).

5. INTEGRATED IMPLEMENTATION
Three implementations of the LooCI and PMA middle-

ware have been proposed: one for the Contiki platform run-

1. *	 {
2. 	 	 	 	 defvar	 $publicationInterval:	 Seconds=600.
3. }
4.
5. TemperatureSensor	 {
6. 	 	 	 	 temperatureReading(Celsius=?temp)@[to(MAC=*),
7. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 factExpires($publicationInterval)]	
8. 	 	 	 	 	 	 <-‐	 ?temp	 is	 this.getTemperature()@[renewEvery($publicationInterval)].
9. }
10.
11. HeatingController	 {
12. 	 	 	 	 incoming	 adjustHeating(Level=?new)	 subsumes	 adjustHeating(Level=?old).
13.
14. 	 	 	 	 this.adjustHeater
15. 	 	 	 	 	 	 <-‐	 adjustHeating(Level=?h).
16. }
17.
18. HeatingController.java	 {
19. 	 	 private	 CSAction	 adjustHeater	 =	 new	 CSAction()	 {
20. 	 	 	 	 	 public	 void	 activated(CSVariableBindings	 bindings)	 {	 /*	 adjust	 heating	 */	 }
21. 	 	 	 	 	 public	 void	 deactivate(CSVariableBindings	 bindings)	 {	 /*	 reset	 heating	 */	 }
22. 	 	 };	 	
23. }

25. TransportMonitor	 {	
26. 	 	 	 	 online(Container=`A,	 Component=`TemperatureSensor,	 MAC="x1:x2:x3:x4",	 ID=1).
27. 	 	 	 	 online(Container=`A,	 Component=`HumiditySensor,	 MAC="y1:y2:y3:y4",	 ID=1).
28. 	 	 	 	 online(Container=`A,	 Component=`HeatingController,	 MAC="z1:z2:z3:z4",	 ID=1).
29. 	 	 	 	 //	 …
30.
31. 	 	 	 	 incoming	 temperatureReading(Celsius=?new)@[from(MAC=?m,ID=?i)]
32. 	 	 	 	 subsumes	 temperatureReading(Celsius=?old)@[from(MAC=?m,ID=?i)].	
33.
34. 	 	 	 	 incoming	 humidityReading(Percent=?new)@[from(MAC=?m,ID=?i)]
35. 	 	 	 	 subsumes	 humidityReading(Percent=?old)@[from(MAC=?m,ID=?i)].
36. 	 	 	 	
37. 	 	 	 	 adjustHeating(Level=?heatingLevel)@[to(MAC=?cm,ID=?ci),
38. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 factExpires($readingPublicationInterval)]
39. 	 	 	 	 	 	 <-‐	 temperatureReading(Celsius=?t)@[from(MAC=?tm,ID=?ti)],
40. 	 	 	 	 	 	 	 	 	 online(Container=?c,	 MAC=?tm,	 ID=?ti),
41. 	 	 	 	 	 	 	 	 	 humidityReading(Percent=?h)@[from(MAC=?hm,ID=?hi)],
42. 	 	 	 	 	 	 	 	 	 online(Container=?c,	 MAC=?hm,	 ID=?hi),
43. 	 	 	 	 	 	 	 	 	 ?heatingLevel	 is	 this.computeHeatingLevel((Number)?t,(Fraction)?h),
44. 	 	 	 	 	 	 	 	 	 online(Container=?c,	 Component=`HeatingController,	 MAC=?cm,	 ID=?ci).
45. }
46. 	
47. TransportMonitor.java	 {
48. 	 	 	 public	 Number	 computeHeatingLevel(Number	 temp,	 Fraction	 humid)	 {	 return	 ...;	 }
49. }

Figure 3: CrimeSPOT code for the components in the logistics scenario.

ning on 8-bit motes, one for the Squawk VM running on
32-bit SunSPOT motes and one for the OSGi platform run-
ning on a variety of mobile devices. All of them share an
event bus abstraction over which events are exchanged in
the same binary format. This way, the middleware spans
across a broad spectrum of contemporary WSAN devices.

We ported the CrimeSPOT runtime, prototyped in Java,
to the LooCI implementation for the Squawk VM. The re-
sulting runtime resides within each LooCI component of
which the interactions are to be governed by CrimeSPOT.
The event handler of such a component forwards the
CrimeSPOT facts it receives to the CrimeSPOT runtime.
In order to exchange CrimeSPOT facts over the LooCI
event bus, we encode them as LooCI events that carry
as their payload a textual representation of the fact and a
unique identifier. The latter are key to removing facts from
remote fact bases in response to fact subsumption, expira-
tion or compensation (cf. Section 3.3).

The predefined fact-to-event encoding suffices for WSAN
applications that consist entirely out of CrimeSPOT-
enabled LooCI components. For WSAN applications that
also feature plain LooCI components, for instance running
on one of the smaller supported motes, developers have to
specify a bidirectional mapping from plain LooCI events
to CrimeSPOT facts. The following declaration maps the
LooCI events published by the HumiditySensor component
with an integer payload (cf. Section 4.1) to humidityReading

facts with a Percent attribute. This way, the CrimeSPOT-
enabled TransportMonitor component (cf. Section 4.3) can
react to these events.

1 <=> humidityReading(Percent=?h)@[factExpires($publicationInterval)]
2 event(EventTypes.HUMIDITY_READING)@[payload(Integer=?h)].

6. EVALUATION AND EXPERIENCES
We have evaluated the performance of our integrated

middleware on Java ME CLDC 1.1 compliant SunSPOT
motes [10] (180 MHz ARM9 CPU, 512 kB RAM, 4 MB
flash, Squawk VM version ‘RED-100104’).

ROM RAM

LooCI runtime 52 kB 37 kB

LooCI component (average) 1.8 kB 26 kB

PMA runtime 28 kB 1 kB

PMA policy (average) 70 bytes 280 bytes

CrimeSPOT runtime (per component) 460 kB ±30 kB

Table 1: Memory footprint

Memory footprint: Table 1 reports on memory usage.
The LooCI runtime consumes 52 kB of ROM (0,6% of avail-
able flash memory on the SunSPOT). Dynamic memory re-
quirements (RAM) for the LooCI runtime are 37 kB (7% of
available RAM). LooCI components consume on average 2
kB of ROM and 26 kB of RAM. The disparity between ROM
and RAM requirements of a component can be explained by
SunSPOT-specific overhead. The PMA runtime is equally
small in terms of ROM and RAM. The CrimeSPOT run-
time requires about 460 kB of ROM per component (i.e.,
9.7% of available flash memory). However, we made no con-
scious effort to reduce this footprint at all. As such, suffi-
cient room for improvement exists. The amount of RAM
consumed by a rule depends on the complexity of the corre-
sponding RETE network [4]. A rule representing the worst-
case situation for 6 conditions consumes about 30 kB of
RAM. In addition, every asserted fact consumes about 3
kB of RAM. We attribute these numbers to our completely
object-oriented implementation of the RETE network.

Performance overhead: The performance overhead of
event publishing in LooCI and processing by PMA is rel-
atively low. It takes 0.5 ms on average to publish an event
and redirect it to the policy engine, whereas it requires an-
other 0.5 ms per policy evaluation. CrimeSPOT requires
80 ms on average for a received fact to be added to the local
fact base. It then takes another 140 ms before the aforemen-
tioned worst-case rule is activated in reaction to this fact.
Again, the performance of the runtime is difficult to measure
as it depends on the complexity of its RETE network.

Development overhead: It would be challenging to im-
plement the logistics scenario without any middleware sup-
port —in particular its dynamic reconfiguration. This is less
clear for the domain-specific language support of our solu-
tion. An implementation on top of event-based middleware
is certainly feasible, but would require implementing event
dispatching, storage and matching (cf. Section 2). Not only
are ad-hoc implementations error-prone, they are bound to
be duplicated across the event handlers of several nodes.
These have been shown to violate important software engi-
neering principles such as composability and separation of
concerns [7]. Moreover, a significant amount of bookkeeping
would be required to implement the scenario’s required event
expiration, subsumption and compensation. We therefore
argue that our domain-specific language support minimizes
the accidental complexity that is inherent to programming
WSAN applications using event-based middleware.

In conclusion, the processing capabilities of the SunSPOT

nodes are more than adequate. However, they are situated
at the high-end of the WSAN market. In this regard, we
firmly believe that the benefits brought by LooCI, PMA,
and CrimeSPOT will outweigh the cost of such nodes as
the complexity of WSAN applications increases.

7. RELATED WORK
In recent years, a number of run-time reconfigurable com-

ponent models have been introduced in the WSAN field, in-
cluding OpenCOM [5] and RUNES [2]. OpenCOM is a gen-
eral purpose component model, which has been deployed in a
number of real world WSAN scenarios. OpenCOM supports
dynamic reconfiguration via a compact runtime kernel. The
RUNES [2] model brings OpenCOM functionality to even
more constrained devices. Compared to LooCI, OpenCOM
and RUNES only support local component interactions and
thus adopt a tightly coupled interaction style. Both models
do not consider distributed interactions a priori, but real-
ize distribution through custom overlay frameworks. Marsh
et al. [8] define a memory efficient policy language solely
focussing on the domain of WSAN security. Finger [12] is
a lightweight TinyOS-based policy system. Compared to
PMA, Finger offers no support of run-time addition of poli-
cies containing new events and actions.

FACTS [11] comes close to CrimeSPOT’s rule-based ap-
proach to programming inter-node interactions. Nodes in-
teract by exchanging facts, which can be reacted to through
declarative rules. However, logic variables cannot be used
within these rules. Hence, a node cannot react to sev-
eral related facts. As causality between rule bodies and
heads is not tracked, rule deactivation cannot be reacted to.
CrimeSPOT’s macroprogramming facilities are comparable
to those introduced by ATaG [1]. ATaG specifies a WSAN
application in terms of tasks that have to be instantiated on
particular nodes. Its graphical notation is more expressive
concerning the instantiation of tasks on nodes and the inter-
actions between tasks. However, no support is provided for
programming the tasks themselves. Reactions to incoming
data still have to be implemented through event handlers.

8. CONCLUSION AND FUTURE WORK
We discussed the integration of LooCI, an event-based

component model that embraces dynamic reconfiguration;
PMA, an adaptive policy system for enforcement of non-
functional concerns; and CrimeSPOT, a domain-specific
language for implementing complex component interac-
tions. Together, they provide comprehensive support for the
complexities that are inherent to developing active WSAN
applications. We implemented and evaluated a prototype
integration using a scenario from the logistics domain that
motivates the need for such support. Although the result-
ing WSAN application is dynamic in its functional and
non-functional concerns, its inter-node interactions were
relatively straightforward to implement. In future work,
we will further extend the integration of LooCI, PMA
and CrimeSPOT. Among others, we will investigate how
LooCI components can safely share a single CrimeSPOT
runtime when they are deployed on the same node – even
if their colocation is short-lived. Another avenue comprises
middleware and language support for interacting with the
physical n-hop neighborhood of a node.

Acknowledgements: This research is partially funded by the

Interuniversity Attraction Poles Programme of the Belgian State

of the Belgian Science Policy, the Flemish agency for Innovation

by Science and Technology (IWT Vlaanderen), and the Research

Fund K.U.Leuven. It is conducted in the context of the IWT-

SBO-STADiUM project No. 80037 and IWT-SBO-SymbioNets

project No. 090062.

9. REFERENCES
[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner.

The abstract task graph: a methodology for
architecture-independent programming of networked
sensor systems. In Proceedings of workshop on
End-to-end, sense-and-respond systems, applications
and services, pages 19–24, 2005.

[2] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P.
Picco, and S. Zachariadis. Reconfigurable
component-based middleware for networked embedded
systems. International Journal of Wireless
Information Networks, 14(2):149–162, 2007.

[3] C. De Roover, C. Scholliers, W. Amerijckx,
T. D’Hondt, and W. De Meuter. Language support for
programming interactions among wireless sensor
network nodes. In Proceedings of the 5th Int’l
Symposium on Ubiquitous Computing and Ambient
Intelligence (UCAmI 2011), 2011.

[4] C. Forgy. Rete: A fast algorithm for the many pattern
/ many object pattern match problem. Artificial
Intelligence, 19:17–37, 1982.

[5] P. Grace, G. Coulson, G. Blair, B. Porter, and
D. Hughes. Dynamic reconfiguration in sensor
middleware. In Proc. of the 1st workshop on
Middleware for sensor networks, pages 1–6, 2006.

[6] D. Hughes, K. Thoelen, W. Horré, N. Matthys, P. J.
del Cid Garcia, S. Michiels, C. Huygens, W. Joosen,
and J. Ueyama. Building wireless sensor network
applications with LooCI. Int’l Journal of Mobile
Computing and Multimedia Communications,
2(4):38–64, October 2010.

[7] I. Maier, T. Rompf, and M. Odersky. Deprecating the
observer pattern. Technical report, EPFL, 2010.

[8] D. Marsh, R. Baldwin, B. Mullins, R. Mills, and
M. Grimaila. A security policy language for wireless
sensor networks. Journal of Systems and Software,
82(1):101–111, 2009.

[9] N. Matthys, C. Huygens, D. Hughes, J. Ueyama,
S. Michiels, and W. Joosen. Policy-driven tailoring of
sensor networks. In Proceedings of the 2nd
International conference on Sensor Systems and
Software, volume 51. Springer, December 2010.

[10] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and
D. White. Java on the bare metal of wireless sensor
devices: the Squawk Java virtual machine. In
Proceedings of the 2nd international conference on
Virtual Execution Environments, pages 78–88, 2006.

[11] K. Terfloth, G. Wittenburg, and J. Schiller.
Rule-oriented programming for wireless sensor
networks. In Proceedings of EAWMS, DCOSS, 2006.

[12] Y. Zhu, S. Keoh, M. Sloman, E. Lupu, N. Dulay, and
N. Pryce. Finger: An Efficient Policy System for Body
Sensor Networks. In Proceedings of the 5th IEEE
MASS, September 2008.

