
Which Problems Does a Multi-Language Virtual
Machine Need to Solve in the Multicore/Manycore Era?

Stefan Marr,1 Mattias De Wael
Software Languages Lab

Vrije Universiteit Brussel, Belgium
{stefan.marr, madewael}@vub.ac.be

Michael Haupt
Oracle Labs

Potsdam, Germany
michael.haupt@oracle.com

Theo D’Hondt
Software Languages Lab

Vrije Universiteit Brussel, Belgium
tjdhondt@vub.ac.be

Abstract
While parallel programming for very regular problems has been
used in the scientific community by non-computer-scientists suc-
cessfully for a few decades now, concurrent programming and solv-
ing irregular problems remains hard. Furthermore, we shift from
few expert system programmers mastering concurrency for a con-
strained set of problems to mainstream application developers be-
ing required to master concurrency for a wide variety of problems.

Consequently, high-level language virtual machine (VM) re-
search faces interesting questions. What are processor design
changes that have an impact on the abstractions provided by VMs
to provide platform independence? How can application program-
mers’ diverse needs be facilitated to solve concurrent programming
problems?

We argue that VMs will need to be ready for a wide range of
different concurrency models that allow solving concurrency prob-
lems with appropriate abstractions. Furthermore, they need to ab-
stract from heterogeneous processor architectures, varying perfor-
mance characteristics, need to account for memory access cost and
inter-core communication mechanisms but should only expose the
minimal useful set of notions like locality, explicit communication,
and adaptable scheduling to maintain their abstracting nature.

Eventually, language designers need to be enabled to guaran-
tee properties like encapsulation, scheduling guarantees, and im-
mutability also when an interaction between different problem-
specific concurrency abstractions is required.

1. Virtual Machines in the Manycore Era
High-level language virtual machines use highly optimized just-
in-time compilers and garbage collectors to provide performance
characteristics comparable to classic low-level system program-
ming languages. Recent improvements and additions to VMs like
the Java Virtual Machine or Common Language Runtime enable
efficient execution of a wide range of dynamic languages. These
dynamic capabilities are increasingly used to build domain-specific
languages (DSLs) on top of the VMs. In turn, DSLs enable devel-
opers to tackle their problems at an even higher level of abstraction
while utilizing the ecosystem around the VMs.

[Copyright notice will appear here once ’preprint’ option is removed.]

However, VMs have not made the step into the manycore era by
supporting language designers in their utilization of concurrency
and parallelism. While VMs provide low-level abstractions like
threads and often come with a set of libraries for concurrent data
structures or commonly used synchronization concepts, they typi-
cally do not provide mechanisms supporting more than one specific
concurrent programming model out of the box [15].

We argue that such support is necessary, since the various pro-
posed concurrent programming models all have specific applica-
tions where they shine, and use-cases which are not as well sup-
ported. The wide range of available concurrent programming mod-
els includes the following:

• Shared memory with threads and locks is today’s standard.
• Transactional memory promises to handle some of the engi-

neering challenges arising in concurrent situations.
• Actors and message passing systems employing them avoid

typical low-level concurrency issues.
• Data-flow programming is a good fit for a number of computa-

tional problems.

Choosing a single model from this incomplete list is inappropriate
for a multi-language VM. Instead of a non-existing silver bullet
approach, we, like other researchers [4, 5], argue that language
designers should be supported in building concurrency DSLs on top
of VMs, to enable developers to solve their concurrency problems
with appropriate abstractions.

VMs are meant to provide an abstraction layer between the ac-
tual hardware including a specific operating system, and one or
multiple high-level languages. Thus, they provide portability and
platform independence from any underlying system to applications
that solely rely on the standardized functionality of a VM. In addi-
tion to that, VMs typically provide services like adaptive optimiza-
tion and sophisticated garbage collection to leverage the underlying
hardware optimally. These services require enormous amounts of
engineering effort, and can thus not be replicated and adapted for
each new language. This especially holds for DSLs, which make
the reuse of VMs as general execution platforms for different lan-
guages and applications very attractive from an economical point
of view.

A VM aiming to support DSLs in a manycore world conse-
quently needs to provide basic abstractions which enable the imple-
mentation of a wide range of different concurrency models on top
of it. Such support is necessary since implementing unsupported
models on top of a VM usually brings about significant additional
complexity as well as performance disadvantages.

Furthermore, the language specific implementation of a model
atop a VM is typically not reusable for other languages. Examples
are actor languages for the JVM, which usually compromise on

1 2011/9/27



the actor properties they provide [14]. Research in software trans-
actional memory (STM) suggests that low-level support in runtime
systems is a prerequisite for acceptable performance [1]. While per-
formance and implementation effort are important, there is a more
critical requirement: The language semantics must be enforced.
Otherwise, the languages’ benefits will be lost, and reasoning about
correctness becomes infeasible when interaction with other lan-
guages needs to be considered.

Since VMs mediate between concrete hardware designs and
a set of high-level language concepts, both sides influence VM
design. Based on this observation, we identify two questions that
need to be answered to design a VM that enables support for
multiple concurrency models on today’s and tomorrow’s hardware
platforms:

1. Which are the predominating characteristics of multicore and
manycore processors that a VM needs to take into account to
enable applications to deliver optimal performance?

2. Which problems do traditional implementations for concur-
rency models encounter that could be avoided by explicit VM
support?

We will address these questions individually in the following
sections. After that, we outline potential approaches to solving the
identified problems.

2. Predominating Processor Characteristics
With the end of steadily increasing clock-frequencies, processor
designers needed to identify new processor designs to improve
performance with still steadily increasing transistor budgets. At the
moment, the number of feasible but different processor designs that
leverage the additional transistors seems to be larger than it was for
single-core processors [12].

2.1 Brawny vs. Wimpy Cores
A single core’s complexity is one design dimension, ranging from
brawny cores to wimpy cores [17]. The distinction is made based on
the included techniques to improve the performance of sequential
code. Brawny cores include the full set of state-of-the-art technol-
ogy to obtain the best sequential performance from a given pro-
gram. However, technologies like out-of-order execution, register
renaming, and sophisticated branch prediction consume a valuable
share of the transistor budget. The trade-off between power con-
sumption and sequential performance however depends on the in-
dividual program. Thus, wimpy cores invest the available transis-
tor budget to replicate whole cores or arithmetic units instead of
investing in techniques to improve sequential performance. Repli-
cation provides a better energy/performance ratio for parallelizable
problems.

Examples for brawny cores are Intel’s i7 and IBM’s POWER7.
Compared to those, Intel’s Atom, typical ARM-based, or Tilera’s
TILE architecture processors classify as wimpy. Even more wimpy
and special purpose are the hundreds of computational units on a
typical graphics processing unit.

As argued by Hill and Marty [12] and as we already see with
the Cell B.E. processor and AMD’s Bulldozer/Fusion1 architecture,
hybrid architectures are able to combine the best of both worlds.
This might be a good tradeoff when the typical application load
has a mix of different characteristics.

From the point of view of VM design, these different design
options do not have to be exposed to the user. On the contrary, a
VM should abstract from these details and provide a unified and

1 http://www.anandtech.com/show/3863/amd-discloses-bobcat-
bulldozer-architectures-at-hot-chips-2010/4

portable interface. Examples like the Hera-JVM [16] show that it
is possible to target such hybrid architectures like the Cell B.E.
without having to expose it through the VM ISA. Similarly, the
goal of standardization efforts like OpenCL2 is also to provide a
unified set of interfaces for the different platforms.

2.2 Many-Core vs. Many-Thread
Another option in processor design is the ratio of physical to logical
threads supported on a core [10]. This design dimension relates to
the question which parts of a processor can be replicated to get
better performance for a certain work load.

Replicating an entire core leads to manycore processors. Repli-
cating only register files leads to many-thread processors like with
Intel’s hyperthreads technology or Sun’s CoolThreads in their Ni-
agara processors. This is also called simultaneous multithreading
(SMT). The idea behind SMT is to increase the utilization of the
computational units on a processor by interleaving different threads
on the same cores when one of them stalls on a memory access.
This is especially interesting for superscalar processors able to ex-
ecute more than one instruction during a clock cycle.

AMD takes a middle course with the Bulldozer architecture,
replicating, in addition to the register file, also parts of the arith-
metic units. In this case, only integer units are replicated while
floating-point units are shared. This provides additional compu-
tational resources and can improve performance of certain work
loads.

The impact on memory and cache utilization patterns and
scheduling opportunities requires the VM to be aware of such hard-
ware details to draw the right conclusions. However, most of these
details can be tuned independently from an application inside a VM
implementation. For an application, it is important to have a useful
and transparent notion of scheduling units, i. e., parallel activities
or tasks. For some purposes it is even desirable to allow an applica-
tion to adapt scheduling policies with the goal of scheduling related
threads/activities together if they share data or benefit from SMT.
Furthermore, if activities are known to thrash each others’ caches
or require higher memory bandwidth, they should be scheduled on
independent execution units.

2.3 Memory and Communication
A third design dimension regards memory interconnects and inter-
core communication mechanisms.

The memory wall is a well-known phenomenon that engineers
compensated for with deep cache hierarchies. However, for many-
core processors this is not enough. While the number of cores on a
chip can be increased easily, scaling up the off-chip memory band-
width underlies restrictions. Thus, the memory bottleneck worsens
with more cores.

Now, processor designers experiment with different designs
for inter-core communication and core-local memory or caches to
avoid the bottleneck. The interconnection mechanisms range from
bus-based architectures that communicate via memory over hier-
archical connect busses, to 2D-mesh interconnects with explicit
inter-core communication.

Furthermore, designers experiment with different solutions for
core-local memory. The Cell’s Synergistic Processing Elements
have local directly addressable memory. However, they can ac-
cess main memory only asynchronously. Intel’s Single-chip Cloud
Computer (SCC) design is similar. It also provides a directly ad-
dressable local memory for every core. In contrast to common x86
architectures however, the main memory access in the SCC is not
made coherent by any hardware mechanism and thus, requires syn-
chronization in software.

2 http://www.khronos.org/opencl/

2 2011/9/27



The TILEPro64 has a two-level cache on each core, which is
not directly addressable. Furthermore, memory and caches are kept
coherent with hardware support. This design provides a similar
programming model as on todays multicore systems. However,
it has implications for performance, especially since it is a 64-
core system: Implicit inter-core communication relying on cache
coherence is inefficient. Instead, the TILE architecture provides
explicit means for fast inter-core communication.

Thus, with raising core count, the non-uniformity of memory
access will increase, and communication and synchronization costs
will become dominating factors for parallel performance.

For VM design, we conclude that locality for caches, memory
access, synchronization, and communication are properties that
needs to be considered for memory management and scheduling.
The question is how programming languages can utilize it, and
whether it should be exposed to language designers.

From our perspective, this question is answered by concurrency
models that explicitly or implicitly support the notion of local-
ity, namely partitioned global address space (PGAS) [6] and non-
shared memory models. Since they make locality information ex-
plicit, it can be leveraged directly. Models like the standard Java
thread model, which do not exhibit such information, would require
some dynamic adaptive optimizations which might not be able to
deliver optimal results. Thus, we argue that a VM should expose
a concept of locality to the language implementor, which in turn
could make it explicit in the language or infer it.

2.4 Summary
From our point of view this results in the following requirements
for a multicore/manycore VM. It should . . .

• abstract from heterogeneous processor design by transparently
supporting possibly different instruction sets.

• account for the differences in sequential performance of the
different processing units for its scheduling decisions.

• account for the SMT characteristics in its scheduler.
• be aware of different memory access costs and restrictions,

and take alternative communication mechanisms into account
to improve latency and/or bandwidth usage.

• enable application developers to optimize scheduling decisions
for efficiency where the standard heuristics collide with appli-
cation characteristics.

3. Common Problems in Concurrency Model
Implementations

This section discusses common problems that appear when concur-
rency models are implemented on top of VMs which do not provide
explicit support for properties required by the concurrency model.

Karmani et al. [14] survey actor frameworks on the JVM and
identify two properties which we consider as fundamental not only
for actor-like concurrency models, but for all models which distin-
guish some kind of domain of objects and restrict the possible ways
of inter-domain interaction. These properties are encapsulation and
scheduling fairness.

3.1 State Encapsulation
In object-oriented languages and in languages with mutation in
general, special care has to be taken for state that an actor can
access and change directly. Any shared state is a violation of the
actor model where the only directly mutable state is traditionally
the message box used to communicate between actors and the be-
havior used for processing incoming messages. Thus, in languages
with mutable state, this mutable state has to have a certain owner-

object semaphore {
class SemaphoreActor () extends Actor {

// ...
def enter() {

if (num < MAX) {
// critical section
num = num + 1; } } }

def main(args : Array[String ]) : Unit = {
var gate = new SemaphoreActor ()
gate.start
gate ! enter
gate.enter } }

Listing 1. This semaphore is broken since Scala’s actors do not
enforce encapsulation. (Karmani et al. Fig. 2 [14])

ship relation to an actor that is used to restrict state access to its
owner.

See Lst. 1 for Karmani’s example illustrating the problem. The
used Scala actor implementation does not guarantee encapsulation,
which leads to a simultaneous execution of enter with a race
condition on the num variable.

The main reasons for implementing an actor-like model without
adhering to its characteristics are usually the additional implemen-
tation complexity or performance impact of enforcing such proper-
ties on top of an existing VM. Furthermore, even if such guarantees
are enforced on the language-level, they are often not enforced in
interactions with other languages, which would be a key require-
ment for systems built from different concurrency DSLs that need
to interact.

As already indicated, it is important to note that state encap-
sulation needs to be guaranteed for a variety of models beyond
the actor model, too. It is a universal property that applies to all
models with notions of restricted inter-domain interaction. Thus, it
applies to all non-shared-memory models, most notably CSP (com-
municating sequential processes [13]), and APGAS (asynchronous
PGAS [19]) languages which require that mutation is done locally
to an owning place/region. An example for another model are Clo-
jure’s agents [11], which support unrestricted read access but re-
quire that all state update functions are executed by the agent itself
in a serialized manner.

3.2 Safe Messaging
Karmani et al. further discuss the issue of messaging. Non-shared
memory models require that messaging has pass-by-value seman-
tics. Otherwise, shared state could be introduced by passing normal
references to mutable objects.

An example would be similar to Lst. 1, where a normal Java
collection is passed as argument to the message. In that case, the
collection would be passed by reference, and both actors would
have unsynchronized access to it. Again, this problem is universal
and applies also to, e. g., CPS.

Traditional solutions enforce a pass-by-value semantics ei-
ther by serializing the passed object graph, which comes with a
considerable performance impact, or they use a type-system like
Kilim [22]. However, a type-system comes with additional imple-
mentation complexity and does not necessarily provide its guaran-
tees across language boundaries.

Note that messaging is a concept which can be emulated by
other means on the application/language implementation-level.
However, message passing is a fundamental concept with wide ap-
plicability for concurrent programming in shared and non-shared
memory models. We believe, its fundamental nature and the hard-
ware support for message passing are good reasons to support it
directly in VMs.

3 2011/9/27



object fairness {
class FairActor () extends Actor {
// ...
def act() { loop { react {

case (v : int) => { data = v }
case (wait) => {

// busy -waiting section
if (data > 0) println(data)
else self ! wait

}
case (start) => {

calc ! (add , 4, 5)
self ! wait

} }}}}}

Listing 2. Without scheduling guarantees, busy-waiting can starve
other actors forever. (Karmani et al. Fig. 3 [14])

3.3 Scheduling Guarantees
Another issue, unrelated to state sharing, is the often implied as-
sumption that the used scheduling mechanism provides certain
guarantees.

One example discussed by Karmani et al. is the actor model’s
implication that no actor is starved forever. This property is re-
quired to guarantee global progress of a correct program. With-
out it, it would not be possible to eventually deliver all messages.
Typical situations in existing implementations are that the sched-
uler does not guarantee any fairness. Self-messaging loops, like in
the example Karmani et al. give, could starve all other actors from
running, which then would prevent any global progress, since the
expected message would never arrive.

Depending on the semantics the VM provides, other operations
can also be problematic with respect to scheduling guarantees.
Examples include computationally expensive operations in absence
of preemptive scheduling, and calls to blocking native/primitive
functions which hinder the execution of other actors on that thread.

An example of such an implementation approach can be found
in Clojure’s agents implementation. Here, the developer has to be
aware of the implementation strategy, since calling blocking func-
tions or doing long calculations will block other agents from mak-
ing progress for a perhaps unacceptably long time. Clojure provides
an explicit (send-off) function which starts a new thread for such
calls, which is scheduled preemptively to enable other agents to
make progress.

To avoid breaking the guarantees of a concurrency model, a VM
should provide a lightweight unit of scheduling to the language
developer which can provide such guarantees and has the expected
performance characteristics.

3.4 Immutability
Immutability is a guarantee often only provided on the language-
level. It is not only relevant to support certain concurrency seman-
tics, but also to enable performance optimizations like replication.

The JVM for instance, provides only a weak notion of im-
mutability. The most severe problem for the semantics of im-
mutable objects are the reflective capabilities of the JVM. Changing
a final field is allowed by the JVM specification even though the
spec. states restrictions on the visibility of such changes to enable
compiler optimizations like inlining.

Another example for the use of immutability is VisualWorks
7. 3 It allows to mark objects as immutable and raises an excep-
tion when mutation is attempted. However, the exception handler is
free to mutate such an object. This behavior is used to map objects

3 VisualWorks 7: http://www.cincomsmalltalk.com/CincomSmalltalkWiki/
VisualWorks+7+White+Paper

to persistent data storage and enable efficient consistency manage-
ment.

For a concurrency-aware VM, immutability can be used for per-
formance optimizations, either to avoid copying of shared objects,
or to replicate them to improve locality of access. In either case,
immutability semantics have to be guaranteed to avoid problems.
Again, such a guarantee is problematic across language boundaries
and thus needs to be supported on a lower level.

3.5 Model Interaction: Language-Level vs.
Implementation-Level

As outlined in the introduction, we think it will be necessary to
use different concurrency models in the same application to solve
problems with appropriate abstractions.

However, as this section argued so far, interaction across lan-
guage/concurrency model boundaries can be problematic. Encap-
sulation properties, scheduler guarantees, and immutability seman-
tics can be specific to a model and should be preserved even across
boundaries.

Typical examples are the interaction with existing code and
libraries, which have not been adapted to be compatible with a
specific model. Another example is the implementation of a new
concurrency model, i. e., a specific language.

Imagine building a new language on top of the JVM with sup-
port for immutable objects. When that language tries to utilize the
rich ecosystem and its libraries, the immutability guaranteed for a
specific object should be preserved on the language-level. Ideally,
existing libraries are usable without adaptations. However, when
a library attempts to mutate an immutable object, one approach
would be to raise an exception instead of silently disregarding the
language guarantees.

However, at the same time, implementing that particular lan-
guage with Java must be possible. This implies that it needs to be
possible to distinguish between a language-level immutability and
implementation-level immutability. Otherwise it becomes problem-
atic to, for instance, build circular immutable data structures.

3.6 Summary
From our point of view, these problems result in the following
requirements. VMs should provide . . .

• configurable enforcement of encapsulation guarantees between
domains of objects.

• message-passing with configurable semantics for arguments
to allow optimal implementations (e. g. by transferring object
ownership, or using copy-on-write).

• configurable scheduling guarantees separated by domains of
objects.

• the fundamental concept of immutability, since it is relevant
for cross-domain interaction, but also for various compiler op-
timizations.

• the explicit notions of an implementation level and reflective
operations.

4. Possible Solution Approaches
The literature in the field of supporting heterogenous architectures
and handling scheduling issues is already providing solutions for
most of the problems discussed here.

As mentioned in Sec. 2.1, the Hera-JVM [16] shows that it is
practical to abstract from instruction set and memory model dif-
ferences. Shelepov et al. [20] present a solution to schedule tasks
on heterogenous architectures; and schedulers like SLAW [9] are
able to take locality into account. Approaches like Lithe [18] give

4 2011/9/27



more control over the scheduling to the user and hierarchical place
trees are a framework to enable the user to model data locality to
facilitate scheduling and data movement [25]. Work done by Ungar
and Adams regards caching characteristics and performance impli-
cations to make an object-oriented system feasible on architectures
like the TILE64 [23].

Literature on supporting multiple concurrency models on top
of the same VM is considerably more scarce. Most notable is the
language virtualization done by Chafi et al [5]. Compared to a VM-
based approach like ours, they advocate a language-based solution
that avoids potentially unsafe operations in the first place; i. e., they
use either type systems or frameworks for language composition.
Neither of these seems to be appropriate when supporting a large-
scale ecosystem. In our approach, the VM provides these safety
mechanisms and is independent of the semantics of any particular
tool chain or sub-ecosystem.

One mechanism we are aware of that provides an enforcement
for encapsulation guarantees for a specific concurrency model is
the language symbiosis of AmbientTalk [24]. It enforces actor se-
mantics when interacting with Java code. To support such prop-
erties on the VM-level, solutions like AppDomains of the Com-
mon Language Infrastructure [7], Java’s SecurityManager and
ClassLoader could be a start. However, these mechanisms are ei-
ther heavyweight or too inflexible for the configurability required
for different concurrency models and their interactions.

The VMs we are aware of that provide message-passing prim-
itives are the DisVM4 and Erlang’s BEAM [2]. The semantics of
messages and how objects are passed need to be considered care-
fully to enable different semantics and performance optimizations.
Extensible mechanisms, as used in distributed systems, are a start-
ing point [8].

One notion of immutable objects is supported by VMs like
VisualWorks 7. While Java does not go beyond offering idioms,
there has been discussion to introduce support for object life-cycle
allowing larval mutable objects which can later mature into im-
mutable ones.5 Another option would be to treat immutable objects
as owned by a special domain which does not allow any mutation.
Thus, mechanisms to provide different semantics for concurrency
models could be general enough to support the notion of generally
immutable objects, too.

Explicit support for reflective operations and switching between
different semantic layers was proposed with 3-Lisp and its reflec-
tive towers [21]. However, to control language-level reflection ca-
pabilities, a finer degree of control, as it is possible with Mirrors [3],
is desirable.

5. Conclusion
VMs need to change in order to cope with the new requirements
of the multicore and manycore era. They need to provide language
designers with richer concurrency mechanisms to enable them to
provide concurrency DSLs that allow application developers to
attack their problems on a higher level of abstraction.

New hardware characteristics require control over scheduling,
memory usage, communication, and locality concerns.

On the language level, the support for different concurrency
models needs to allow language designs to vary the given guaran-
tees with respect to encapsulation, scheduling, and properties like
immutability. Furthermore, these guarantees need to be enforceable
in interactions across models, languages, and reflective operations.

This will increase the value of VMs as the center of ecosystems
with large libraries of reusable artifacts and tools, and will hope-

4 http://doc.cat-v.org/inferno/4th_edition/dis_VM_specification
5 http://blogs.oracle.com/jrose/entry/larval_objects_in_the_vm

fully lead to natural solutions for the different concurrency prob-
lems.

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Sh-

peisman. Compiler and runtime support for efficient software transactional mem-
ory. In Proc. of PLDI ’06, pages 26–37. ACM, 2006.

[2] J. Armstrong. A history of erlang. In Proc. of HOPL III, pages 6–1–6–26. ACM,
2007. ISBN 978-1-59593-766-X.

[3] G. Bracha and D. Ungar. Mirrors: design principles for meta-level facilities of
object-oriented programming languages. In Proc. of OOPSLA ’04, pages 331–
344. ACM, 2004.

[4] B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, B.-Y. Su, M. Snir, K. Olukotun,
P. Hanrahan, and H. Chafi. Ubiquitous parallel computing from berkeley, illinois,
and stanford. IEEE Micro, 30(2):41–55, 2010.

[5] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan, M. Oder-
sky, and K. Olukotun. Language virtualization for heterogeneous parallel com-
puting. In Proc. of OOPSLA ’10, pages 835–847. ACM, 2010.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform cluster
computing. In Proc. of OOPSLA ’05, pages 519–538. ACM, 2005.

[7] ECMA International. Standard ECMA-335 - Common Language Infrastructure
(CLI). 4 edition, June 2006.

[8] S. Gopal, W. Tansey, G. C. Kannan, and E. Tilevich. Dexter — an extensible
framework for declarative parameter passing in distributed object systems. In
Proc. of the ACM/IFIP/USENIX 9th International Middleware Conference, pages
144–163. Springer-Verlag, 2008. ISBN 978-3-540-89855-9.

[9] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: A scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. SIGPLAN Not., 45:341–342,
January 2010.

[10] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. Weiser. Many-
core vs. many-thread machines: Stay away from the valley. IEEE Comp. Arch.
Letters, 99(2), 5555.

[11] S. Halloway. Programming Clojure. Pragmatic Programmers. Pragmatic Book-
shelf, 1 edition, 2009. ISBN 1934356336.

[12] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41
(7):33–38, 2008.

[13] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, 1978.

[14] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for the jvm platform:
A comparative analysis. In Proc. of PPPJ ’09, pages 11–20. ACM, 2009.

[15] S. Marr, M. Haupt, and T. D’Hondt. Intermediate language design of high-level
language virtual machines: Towards comprehensive concurrency support. In
Proc. of the 3rd VMIL Workshop, pages 3:1–3:2. ACM, October 2009. (abstract).

[16] R. McIlroy and J. Sventek. Hera-jvm: a runtime system for heterogeneous multi-
core architectures. In Proc. of OOPSLA ’10, pages 205–222. ACM, 2010.

[17] T. N. Mudge and U. Hölzle. Challenges and opportunities for extremely energy-
efficient processors. IEEE Micro, 30(4):20–24, 2010.

[18] H. Pan, B. Hindman, and K. Asanović. Lithe: Enabling efficient composition of
parallel libraries. In Proc. of HotPar ’09. USENIX Association, 2009.

[19] V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham, D. Grove,
S. Kodali, I. Peshansky, and O. Tardieu. The asynchronous partitioned global
address space model. Technical report, June 2010.

[20] D. Shelepov, J. C. S. Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,
S. Blagodurov, and V. Kumar. Hass: A scheduler for heterogeneous multicore
systems. SIGOPS Oper. Syst. Rev., 43:66–75, April 2009.

[21] B. C. Smith. Reflection and semantics in lisp. In Proc. of POPL ’84, pages
23–35. ACM, 1984.

[22] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In Proc. of
ECOOP ’08, pages 104–128, 2008.

[23] D. Ungar and S. S. Adams. Hosting an object heap on manycore hardware: An
exploration. In Proc. of DLS ’09, pages 99–110. ACM, 2009.

[24] T. Van Cutsem, S. Mostinckx, and W. De Meuter. Linguistic symbiosis between
event loop actors and threads. Computer Languages, Systems & Structures, 35
(1):80 – 98, 2009.

[25] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical place trees: A portable
abstraction for task parallelism and data movement. In Proc. of the 22nd LCPC
Workshop, volume 5898 of LNCS, pages 172–187. Springer, 2009.

5 2011/9/27


