
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Bringing Scheme
Programming to the iPhone
— Experience

Engineer Bainomugisha†, Jorge Vallejos,
Elisa Gonzalez Boix, Pascal Costanza,
Theo D’Hondt, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2 / B-1050 Brussels / Belgium

SUMMARY

The iPhone SDK provides a powerful platform for the development of applications that
make use of iPhone capabilities such as sensors, GPS, Wi-Fi or Bluetooth connectivity.
Thus far we observe that the development of iPhone applications is mostly restricted to
using Objective-C. However, developing applications in plain Objective-C on the iPhone
OS suffers from limitations such as the need for explicit memory management and lack
of syntactic extension mechanism. Moreover, when developing distributed applications
in Objective-C, programmers have to manually deal with distribution concerns such
as service discovery, remote communication, and failure handling. In this paper, we
discuss our experience on porting the Scheme programming language to the iPhone OS
and how it can be used together with Objective-C to develop iPhone applications. To
support the interaction between Scheme programs and the underlying iPhone APIs, we
have implemented a language symbiosis layer that enables programmers to access the
iPhone SDK libraries from Scheme. In addition, we have designed high-level distribution
constructs to ease the development of distributed iPhone applications in an event-driven
style. We validate and discuss these constructs with a series of examples including an
iPod controller, a maps application and a distributed multiplayer Scrabble-like game.
We discuss the lessons learned from this experience for other programming language
ports to mobile platforms.

key words: iPhone development; Scheme; Objective-C; language symbiosis; interactive scripting

environment; event-driven programming

∗Correspondence to: Engineer Bainomugisha
†E-mail: ebainomu@vub.ac.be
Contract/grant sponsor: Engineer Bainomugisha is funded by the SAFE-IS project in the context of the
Research Foundation - Flanders (FWO); Elisa Gonzalez Boix is funded by the Prospective Research for
Brussels program of IWOIB-IRSIB, Belgium; Jorge Vallejos is funded by the VariBru project of the ICT
Impulse Programme of the ISRIB.

Received 09 January 2010
Copyright c⃝ 2000 John Wiley & Sons, Ltd. Revised 14 July 2010

2 E. BAINOMUGISHA ET.AL.

1. INTRODUCTION

The iPhone SDK provides a powerful platform for the development of highly interactive
applications that make use of iPhone’s hardware capabilities such as sensors (accelerometer,
proximity, and ambient light), GPS, Wi-Fi and Bluetooth connectivity. Typical example
applications are those providing location-aware services [19], such as the AroundMe
application [26] that enables users to locate businesses in the surroundings (e.g., movie theatres,
supermarkets, or restaurants).

However, thus far we observe that to program native iPhone applications, one is forced to use
mostly Objective-C [21]. While web scripting languages such as JavaScript are an alternative
for developing iPhone applications, they have very limited access to the underlying native APIs,
mainly because of security reasons. This restriction on the development language implies that
programmers have to face the limitations of Objective-C, such as the need for explicit memory
management †, and the lack of syntactic extension mechanism. Moreover, when developing
a distributed iPhone application, programmers have little more than a low-level socket API
to work with, directly on top of the supported networking protocols (e.g., Bonjour). As a
result, programmers have to manually deal with distribution issues such as service discovery,
setting up sockets for remote communication, serialising invocations in order to perform remote
method invocations, and network failure handling.

In this paper, we present iScheme ‡, our approach to port Scheme programming language to
the iPhone platform. iScheme makes it possible to develop iPhone applications using Scheme
and Objective-C. Integrating Scheme with Objective-C yields a language blend that boasts
of the well-known Scheme benefits such as automatic garbage collection, structural macros,
and higher-order functions, while enabling the reuse of existing Objective-C libraries (e.g., the
Cocoa framework for GUI construction). Moreover, Scheme provides a good runtime with an
interactive and dynamic scripting environment that enables rapid application development.

In the last couple of years, some Scheme implementations have been ported to mobile
platforms, namely Gambit-C Scheme [11] and Moby Scheme [22] for the iPhone and Android
platforms, respectively. Gambit-C has been used to develop realistic iPhone applications
that are accessible in the iPhone App Store. Moby Scheme is mainly used for educational
purposes and has been used by beginner students to develop interactive game applications
and animations [12]. At a software engineering level, we observe that those ports take a
compiler-based Foreign Function Interface (FFI) approach in which Scheme programs are
compiled to C and Java source code for the iPhone and Android platforms, respectively. As
a result, programmers do not need to deal with portability issues and can easily deploy their
Scheme applications on mobile devices. Those ports also provide access to the phone APIs
(e.g. GPS data). Typically, the native phone’s APIs employ an event-driven programming
style, as computation in mobile devices is mostly driven by all kinds of events coming from

†While newer versions of Objective-C for the desktop platforms (Mac OS X v10.5 and later) support automatic
memory management, there is no automatic garbage collection in the iPhone runtime system.
‡iScheme is based on a Scheme interpreter [9] that is developed at our laboratory. We chose to use a locally
developed Scheme implementation primarily because of the availability of the source code as well as its author.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 3

the environment (e.g., changes in the orientation or physical position of the phone, network
events, user input, etc.). In this respect, Moby Scheme provides some support for event-driven
programming which allows programs to react to a set of predefined events such as changes
in the orientation of the phone. While there is some integration of event-driven programming
on these existing ports, none of them provides constructs for distribution operating on top
of the runtime platforms for distribution for Java or Objective-C. For instance, network
disconnections need to be manually dealt with using a classic exception handling mechanism.
This results in application code where exception handling is scattered all over the program.
We note that disconnections cannot be ignored as in the case of desktop applications, since
they are omnipresent in a mobile setting [23, 8].

In this work, we take a different approach to support Scheme and Objective-C interaction.
Rather than using the FFI approach, iScheme employs Objective-C reflective API. This
enables direct interaction between Scheme and Objective-C without need for writing wrapper
functions in C. More concretely, we built a language symbiosis layer between Scheme and
Objective-C that enables access to the Objective-C APIs from Scheme programs. Language
symbiosis has been proposed in existing works as a means to enable two programs written
in different languages to invoke each other’s behaviour and exchange data [18]. With this
symbiosis in place, iScheme provides developers with an event-driven programming model for
accessing iPhone capabilities, with higher-order functions used as event handlers. In Objective-
C, event-driven programs are typically organised around the notion of delegates, which serve
as callbacks whose methods are invoked when a particular event occurs. Using higher-order
functions as event handlers maps well onto such an event-driven architecture while keeping
the simplicity of the Scheme programming model. From prior work at our lab, we have found
that such an event-driven programming model is also suited for the development of distributed
applications running on mobile devices [6]. As such, iScheme provides built-in constructs for
service discovery (built on top of the Bonjour framework), asynchronous remote messaging
(built on top of TCP/IP), and failure handling. This allows distribution concerns to be
encapsulated in high-level constructs while relieving programmers of the difficulties engendered
by distribution.

The contributions of this paper are: we port Scheme, which is a small but rich interpreted
language, to the iPhone platform. We engineer a language symbiosis between Scheme and
Objective-C by way of a reflective approach, which facilitates access to the iPhone APIs in
an event-driven style. We design and implement event-driven distribution constructs specially
tailored for mobile computing environments. In particular, our distribution constructs have
built-in support for peer-to-peer service discovery, asynchronous remote messaging, and failure
handling. We discuss our experience and summarise techniques of implementing language
symbiosis with Objective-C. Our experience should serve as a stepping stone for Scheme
programmers interested in developing applications for the iPhone, researchers that design
languages for mobile devices as well docents teaching introductory programming courses. In
addition, our experience may serve as a basis for other language ports to mobile devices
employing runtime platforms with reflective capabilities, such as those found in the iPhone
and the Android devices.

Availability: iScheme packaged as a scripting environment, is available for download at
http://soft.vub.ac.be/amop/ischeme. The sample applications presented in this paper

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

http://soft.vub.ac.be/amop/ischeme

4 E. BAINOMUGISHA ET.AL.

Figure 1. Evaluating Scheme expressions on the iPhone. In this example, the latitude and longitude
values are retrieved from the GPS API using the CURRENT-LOCATION construct.

have been tested on iPhone and iPod touch devices running iPhone OS 2.0 or later. So far we
have used Apple’s iPhone Development Certificate [3] to deploy applications to real devices.
As of June 7th, 2010 the Apple iPhone Developer Program License Agreement [3] stipulates
that applications may embed interpreters. This means that iPhone applications developed in
iScheme can be submitted to the App Store [28].

2. SCHEME PROGRAMMING ON THE IPHONE

In this section we present the interactive iScheme environment with an example Scheme
program running on the iPhone. This interactive environment is a simple Read-Eval-Print
Loop (REPL) that enables one to load Scheme programs and directly execute them on the
device. Such an environment coupled with the portability mobile devices provides a good
platform to prototype new ideas of applications and interact with the iPhone APIs as well as
scripting existing applications (e.g., SMS and phone).

To showcase iScheme on the iPhone device, we have developed a simple interactive
environment, which provides basic functionality to input and evaluate Scheme code, and
display the result. The editor embeds a Scheme interpreter and is deployed to the iPhone device
like any other third party iPhone application §. For convenience, the interactive environment
supports loading of Scheme files using the load function, which enables editing Scheme source
code using any favourite Scheme editor, and afterwards uploading the Scheme files to the

§Deploying applications developed in iScheme to the iPhone does not require any modifications to the iPhone
OS.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 5

iPhone. For example, a Scheme program contained in a file "GPS-location.scheme" can be
dynamically loaded as (load "GPS-location").

To give a feel for how to program in iScheme while interacting with the iPhone APIs in
an event-driven style, we consider an application that retrieves the GPS coordinates for the
current device position. Figure 1 shows the complete implementation of such a program in
Scheme and the resulting GPS longitude and latitude coordinates. The key part of this program
is the CURRENT-LOCATION construct that takes as argument a closure (name of a function or
an anonymous function constructed on the fly with the lambda keyword). This closure is
invoked with the values of latitude and longitude from the GPS APIs. In this example, the
latitude and longitude coordinates are composed into a list that is printed to the screen using
the display function. This simple example already shows the benefits of integrating Scheme
with Objective-C. Thanks to the higher-order functions, closures are passed around as event
handlers instead of dealing with the delegate callbacks as is the case in plain Objective-C. In
the following section, we explain the language symbiosis between Scheme and Objective-C.

3. BRIDGING SCHEME AND OBJECTIVE-C

In order to enable Scheme and Objective-C interaction, we have built a language symbiosis
layer that is based on the linguistic symbiosis model [18]. The linguistic symbiosis model ¶ has
been previously used to bridge two languages (e.g., SOUL and Smalltalk [17], AmbientTalk
and Java [27]). It adheres to the following principles:

Data mapping which ensures that data from one language can be passed to another. For
instance, when an Objective-C object crosses the boundary to Scheme needs to be
represented as a Scheme value.

Protocol mapping which ensures that one language has a way to invoke another language’s
behaviour. For instance, Scheme programs require a mechanism to perform message sends
to Objective-C objects and vice versa.

3.1. Linguistic Symbiosis between Scheme and Objective-C

Realising linguistic symbiosis between Scheme and Objective-C is not trivial because of the
differences in the programming paradigms. Scheme is based on the functional programming
paradigm where operations are performed by function applications, whereas Objective-C is
based on the object-oriented programming paradigm where operations are performed by
sending messages to objects. As it is not possible to make these differences completely seamless,
we therefore provide ways to perform operations from one language to the other. The remainder
of this section explains how we achieve language symbiosis between Scheme and Objective-C.

¶FFIs that provide a two-way language interaction also qualify as language symbiosis.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

6 E. BAINOMUGISHA ET.AL.

Scheme Objective-C

Scheme implementation in C

Scheme wrapper for
 Objective-C object

Objective-C object

Scheme wrapper for
 Objective-C object
implementation

Figure 2. Linguistic symbiosis between Scheme and Objective-C

3.1.1. Data mapping between Scheme and Objective-C

Figure 2 illustrates the representation of an Objective-C object in Scheme. When an Objective-
C object crosses the boundary to Scheme, it is wrapped as a Scheme value and therefore can
be bound to a regular Scheme variable or passed around as an argument to a Scheme function.
The Scheme interpreter we are using is implemented in C and thus the host language for the
Scheme values. An Objective-C object is wrapped as a generic Scheme value (OBJC TYPE) that
points to the actual Objective-C instance. Objective-C and C are inherently symbiotic hence
no changes are required to host Objective-C objects in C.

When a Scheme value crosses the boundary to Objective-C, it is automatically converted to
the corresponding Objective-C type, and it can be bound to an Objective-C variable or passed
as argument to an Objective-C method. We define type conversion functions for converting
Objective-C values to Scheme values and vice versa. We further explain the type conversion
functions in Section 3.2.4.

3.1.2. Protocol mapping between Scheme and Objective-C

The difference in the programming paradigms requires constructs to enable Scheme
and Objective-C to invoke each other’s behaviour. In Scheme we provide OBJC-CLASS,
OBJC-INSTANCE, and OBJC-SEND constructs to load Objective-C classes, create objects, and
send messages, respectively. On the other hand, we provide SCHEME CALL construct to invoke
Scheme functions from within Objective-C. We explain these symbiosis constructs using
examples in the remainder of this section.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 7

3.2. Scheme/Objective-C Symbiosis by Example

3.2.1. Instantiating and sending messages to Objective-C objects from Scheme

Scheme programs can instantiate Objective-C objects using the OBJC-INSTANCE construct,
which performs object allocation and initialisation. In addition, we provide the OBJC-SEND
construct, which performs message sends to an Objective-C instance. We illustrate these
constructs by means of an example of a Scheme function that converts a string to audio
using the Objective-C class NSSpeechSynthesizer. This implements methods for parsing text
and generating synthesised speech, as follows:

(define (speak-out-loud text)
(let ((synthesizer (OBJC-INSTANCE NSSpeechSynthesizer)))

(OBJC-SEND synthesizer startSpeakingString: text)))

The above code snippet shows the definition of the speak-out-loud function, which
implements the behaviour of converting text to audio. The OBJC-INSTANCE construct takes
as argument a name of an Objective-C class and returns a new instance of the class. The
OBJC-SEND construct takes as arguments an Objective-C class or instance, the method name,
and arguments to the method to be invoked. The (OBJC-INSTANCE NSSpeechSynthesizer)
expression creates an instance of the NSSpeechSynthesizer class and returns a reference to its
instance that is then bound to the Scheme variable synthesizer. The expression (OBJC-SEND
synthesizer startSpeakingString: text) invokes the startSpeakingString: method on
the Objective-C instance stored in the variable synthesizer with text (the text to speak out)
as the argument. The return value of OBJC-SEND is a return value of the Objective-C method
being invoked and is wrapped as OBJC TYPE value in Scheme. We explain in Section 3.2.4
the type conversion functions to convert an Objective-C object to the appropriate Scheme
value (e.g., Objective-C’s NSString to a Scheme string).

3.2.2. Loading Objective-C classes from Scheme

The symbiosis layer provides the OBJC-CLASS construct which takes as argument an Objective-
C class, and returns a reference to its class object. The following example illustrates the use
of the OBJC-CLASS construct.

(define NSSynthesizer (OBJC-CLASS NSSpeechSynthesizer))

In the above code snippet, the expression (OBJC-CLASS NSSpeechSynthesizer) returns
a reference to the NSSpeechSynthesizer class that is bound to the Scheme variable
NSSynthesizer. In case the class name does not exist, then the return value is a reference
to nil (i.e. a null instance) ∥. The reference to the class object can be used to invoke class
methods. Note that it is also possible to perform object instantiation by sending the alloc and

∥In Objective-C, sending a message to nil has no runtime effect

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

8 E. BAINOMUGISHA ET.AL.

init messages to the Objective-C class object, but we provide the OBJC-INSTANCE construct
to this end.

3.2.3. Invoking Scheme functions from Objective-C

Objective-C programs can call Scheme functions with the SCHEME CALL construct, which takes
a Scheme function name and a variable number of optional arguments.

SCHEME_CALL(function-name, args)

The function name can be any globally defined Scheme function or a closure that is passed as
an argument to an Objective-C method.

3.2.4. Type conversions

When Scheme values are passed to Objective-C methods, implicit conversion is performed to
appropriate types in Objective-C (e.g., number to NSNumber and string to NSString). In
addition, we provide functions to perform explicit conversions of Scheme values to Objective-
C values. For example, the string->NSString function converts a Scheme string to an
Objective-C NSString. The number->NSNumber function converts a Scheme number to an
Objective-C NSNumber. The list->NSMArray function converts a Scheme list to an Objective-
C NSMutableArray.

By default, return values from Objective-C methods are wrapped as a generic OBJC TYPE
Scheme type, which is a Scheme value representation of Objective-C objects in the Scheme
interpreter. Objective-C objects are not automatically converted to Scheme values whenever
they cross from Objective-C to Scheme world. This is mainly because: the identity of an
Objective-C object may be lost when they are converted back and forth, a single Objective-
C type may correspond to many Scheme values, and the conversion overhead involved (we
discuss the preliminary benchmarks on method call overhead Section 7.2). We instead provide
type conversion functions for converting Objective-C values to their Scheme counterparts. For
example, NSString->string function converts an Objective-C NSString to a Scheme string.
The NSNumber->number function converts an Objective-C NSNumber to a Scheme number.
Explicit type conversion implies that the programmer decides to convert Objective-C objects
to Scheme values when it is necessary. For example, an Objective-C instance that is passed
to Scheme to be later passed as argument to an Objective-C method, does not require a
conversion. Not only does this imply that unnecessary conversions may be avoided, but also
the object identity of the Objective-C instance is preserved.

Let us illustrate the conversion functions with an example of retrieving the iPhone’s
configuration settings (e.g., device name, model, and iPhone OS version). The UIKit framework
provides the UIDevice class with methods to access the device’s information such as the name,
the device model, and the operating system name. We implement this example in Scheme using
the symbiosis constructs as follows:

; This is an example retreiving the iPhone device
; configuration settings from Scheme

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 9

(define (show-my-iphone-details)
(let* ((UIDevice (OBJC-CLASS UIDevice))

(device (OBJC-SEND UIDevice currentDevice))
(device-name (OBJC-SEND device name))
(name-string (NSString->string device-name))
(device-model (OBJC-SEND device model))
(model-string (NSString->string device-model))
(system-name (OBJC-SEND device systemName))
(system-string (NSString->string system-name))
(device-details (string-append

"device name: " name-string
"model: " model-string
"system: " system-string)))

(display device-details)))

The above code snippet shows the definition of the show-my-iphone-details function that
makes use of the type conversion function NSString->string. The (OBJC-CLASS UIDevice)
expression returns a reference to the UIDevice class that is then bound to a Scheme variable
UIDevice. The (OBJ-SEND UIDevice currentDevice) expression invokes the class method
currentDevice on the class UIDevice and returns the instance representing the current
device. We first send the messages name, model, and systemName to retrieve the Objective-C’s
NSString objects for the device name, model, and the operating system, respectively. We then
use the function NSString->string to convert each of the device details to a Scheme string.
Evaluating the the expression (show-my-iphone-details) displays the iPhone configuration
settings as follows:

(show-my-iphone-details)
=> device name: Engineer-iPhone model: iPhone system: iPhone OS

3.3. Scripting the Native iPhone Applications Using Scheme

One of the benefits that Scheme brings to the iPhone is the ability to create Scheme scripts
that dynamically interact with the native iPhone applications (such as the iPod, and the
address book). The ability to interact with the native applications from Scheme opens the
way for interesting applications. For instance, one can easily develop a variation of the native
iPod application enriched with location information (e.g., to stop playing music when a user
walks into a meeting room). In the remainder of this section, we describe an example Scheme
application that interacts with the iPod application.

Objective-C provides the Media Player framework that enables access to the iPod library
and methods to play movies, music, audio podcasts, and audio books. This framework enables
developers to build applications that make use of the iPhone’s media facilities. However,
developing such an application in plain Objective-C requires one to go through complexities of
GUI programming. Using the symbiosis constructs in Scheme, one can build such applications
on the fly. The implementation of such an application in Scheme is shown below.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

10 E. BAINOMUGISHA ET.AL.

(define (ipod-controller)
(let* ((Controller (OBJC-CLASS MPMusicPlayerController))

(Query (OBJC-CLASS MPMediaQuery))
(query (OBJC-SEND Query songsQuery))
(musicPlayer (OBJC-SEND Controller iPodMusicPlayer)))

(OBJC-SEND musicPlayer setQueueWithQuery: query)
(lambda (action)
(case action
((play) (OBJC-SEND musicPlayer play))
((stop) (OBJC-SEND musicPlayer stop))
((pause) (OBJC-SEND musicPlayer pause))
((play-next) (OBJC-SEND musicPlayer skipToNextItem))))))

The ipod-controller function reifies the behaviour of the iPhone’s built-in
iPod application. The expression (OBJC-CLASS MPMusicPlayerController) loads the
MPMusicPlayerController Objective-C class and binds it to the Controller variable. The
MPMusicPlayerController class implements methods for retrieving the instance of the media
player.

The (OBJC-CLASS MPMediaQuery) expression loads the MPMediaQuery class and binds
it to the variable Query. The MPMediaQuery class implements methods for constructing
media query types (such as albums, artists, or songs). In this example, we create a
media query of the music items grouped and sorted by the song name, by invoking the
method songsQuery on the MPMediaQuery class. Invoking the method iPodMusicPlayer on
MPMusicPlayerController returns the reference to the device’s iPod music player instance
that is bound to the musicPlayer variable. Next, we set the playback queue by invoking
the method setQueueWithQuery: on the music player with the query type. In this example,
the playback queue contains all songs. In addition, the music player provides methods play,
pause, skipToNextItem to control the playback queue.

The ipod-controller function returns a dispatcher function ∗∗ that takes one argument
and performs the corresponding action (play, pause, stop, skip to next item) depending on the
specified argument. For example, the following scripts can be evaluated on the iPhone to play
and forward to next media items:

;; example usage
(define my-ipod-controller (ipod-controller))

; to start playing
(my-ipod-controller ’play)

; to play next song

∗∗iScheme provides a small prototype-based object system, which eliminates the need to write a dispatcher
function. For didactical reasons we write all examples in a functional style.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 11

(my-ipod-controller ’play-next)

3.4. Summary

In this section we have introduced and explained the Scheme and Objective-C symbiosis
that is based on four language constructs: OBJC-CLASS, OBJC-INSTANCE, OBJC-SEND and
SCHEME CALL. We have demonstrated with examples how to create and send messages to
Objective-C instances from Scheme. We discussed the type conversion functions that make
it possible to convert Objective-C values to Scheme values and vice versa. We subsequently
presented the iPod controller example that demonstrates how Scheme programs interact
with the native iPhone applications using the symbiosis constructs. In the next section, we
demonstrate constructs built on top of the symbiosis layer, which ease the development of
iPhone applications.

4. EVENT-DRIVEN PROGRAMMING FOR THE IPHONE DEVELOPMENT

As introduced in Section 1, Scheme’s support for higher-order functions and closures, maps
well onto the event-driven programming model employed in the iPhone APIs. In this section we
present an event-driven programming model for accessing iPhone capabilities and programming
distributed applications on the iPhone. First, we explain constructs for accessing the iPhone
capabilities (e.g., GPS location information) in an event-driven style. Secondly, we explain
the distribution constructs to discover software services, communicate, and deal with network
failures by means of events.

4.1. Constructs for Accessing iPhone Capabilities

4.1.1. GPS location information

The Core location framework in the iPhone SDK, makes use of events to deliver the
current GPS coordinates to the event handlers. As shown in Section 2 iScheme provides the
CURRENT-LOCATION construct, which is built on top of the Core location framework using our
symbiosis constructs. It takes a Scheme closure as its argument and invokes it whenever the
new location information becomes available from the underlying GPS APIs. The following
code shows the full implementation of the CURRENT-LOCATION construct.

(define-macro CURRENT-LOCATION
(lambda (event-handler)

‘(let ((Ulocation (OBJC-INSTANCE Ulocation)))
(OBJC-SEND Ulocation currentLocation: ,event-handler))))

CURRENT-LOCATION is defined as a macro that accepts as argument a two-parameter Scheme
closure (the event handler). Ulocation is an Objective-C class that implements a method
currentLocation: which takes as argument a Scheme closure that is invoked with the latitude

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

12 E. BAINOMUGISHA ET.AL.

and longitude coordinates as soon as they become available from the iPhone’s GPS receiver.
For example, evaluating an expression (CURRENT-LOCATION list) returns a list of the GPS
coordinates as explained in Section 2.

4.1.2. Interacting with the native iPhone applications

The iPod controller example presented in Section 3.3 already shows how to interact with the
native iPhone applications using our symbiosis construct. However, writing Scheme programs
using the symbiosis constructs (such as OBJC-SEND) makes the programmer think in terms of
Objective-C message sends. To alleviate this problem, we have implemented a generic openApp
construct, that enables interaction with the native applications (e.g., phone, SMS, mail, maps)
in a pure Scheme programming style. The following code shows the definition of the make-call
and send-sms constructs that enable access to the phone and SMS features.

;; example (make-call "026291241")
(define (make-call to)
(openApp phone to))

;; example (send-sms "026291241")
(define (send-sms to)
(openApp sms to))

In the above example, the make-call and send-sms constructs take a string argument
representing the phone number and starts the phone call or launches the SMS application with
the specified recipient. For example, evaluating the expression (make-call "026291241")
starts a phone call to the phone number "026291241". Similarly, evaluating (send-sms
"026291241") launches the SMS application with the specified recipient.

The openApp macro takes as argument the application name and optional arguments
required by the application (e.g., in the above example the phone number for the phone or
SMS applications). It is built using the symbiosis constructs as follows:

(define-macro openApp
(lambda (app . args)

‘(let* ((url-str (create-url ’,app ,@args))
(UIApp (OBJC-CLASS UIApplication))
(appInstance (OBJC-SEND UIApp sharedApplication))
(NSURL (OBJC-CLASS NSURL))
(url (OBJC-SEND NSURL URLWithString: url-str)))

;; launch the application
(if url-str

(OBJC-SEND appInstance openURL: url)
(display "iphone application not supported!")))))

The openApp construct is implemented as a macro using the define-macro form. The
function create-url returns an application URL string given the application name and a

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 13

list of the required arguments. The UIApplication class provides methods to control the
current running applications on the iPhone OS. The sharedApplication method returns the
UIApplication instance associated with the current running application that is then bound to
appInstance. The URLWithString: method creates NSURL instance from the url-str string.
Evaluating the expression ((OBJC-SEND appInstance openURL: url)) invokes the method
openURL on the UIApp instances and launches the specified application.

In Section 5.1 we present a concrete maps application that illustrates the usage of the
CURRENT-LOCATION and the openApp constructs.

4.2. Constructs for Distributed Programming

As previously explained, we have built high-level constructs on top of the symbiosis layer that
alleviate the difficulties of distribution. More concretely, iScheme provides a reactive event
loop distributed model that is based on the AmbientTalk language event loop model [6]. We
have built remote communication around the concept of asynchronous message passing in
order to abstract over network failures without blocking the control flow. In order to deal
with the fact that services may need to be discovered in the environment as the user moves
about without relying on predefined infrastructure, iScheme has a built-in publish/subscribe
engine to allow applications discover services in a peer-to-peer manner. Next, we explain the
different constructs iScheme provides to programmers for distributed programming by means
of a simple news service application. In this application, news editors can submit articles to
news publishers while moving about. Then the news publisher can broadcast news items, which
are printed on the screen of iPhones of nearby potential customers that have announced their
interest in the current news.

4.2.1. Exporting Functions as Services

Distributed computation in iScheme is expressed in terms of functions. A function represents
a certain service offered by a device. A device can acquire a remote reference to a function
owned by a remote device, and then interact with it by performing remote function invocations.
As fixed name servers may not be available when two iPhones come in communication range
and set up a collaboration, iScheme identifies exported functions by means of service types.
Service types are a lightweight classification mechanism used to categorise functions explicitly
by means of a nominal type.

In the example of the news service application, the news publishers need to make available
their publishing service to other devices. The code snippet below shows how a programmer
can explicitly export the function representing the news publisher service.

(define news-service (service-type iPhone-news))
(export-service news-publisher news-service)

A service type is defined using the service-type construct. In the above code snippet, the
variable news-service stores the service type iPhone-news. The export-service construct
publishes onto the network a given function as the given service type. From the moment a

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

14 E. BAINOMUGISHA ET.AL.

function is exported, it is discoverable by functions residing in other devices by means of its
associated service type. In this example, the news-publisher function is exported on the
network as a iPhone-news service. The export-service construct returns a closure that can
be used to take the function offline by invoking the cancel-publication construct.

4.2.2. Service Discovery

iScheme employs a publish/subscribe service discovery protocol. A publication corresponds to
exporting a function by means of a service type (which serves as a “topic” known by both
the publisher and the subscriber [10]). A subscription corresponds to registering an event
handler on a service type, which is triggered whenever a function exported under that type is
encountered in the network. In the news service application, an editor can be notified whenever
a news publisher is discovered as follows:

(when-discovered news-service
(lambda (publisher-ref)

(submit-news publisher-ref)))

The when-discovered construct takes as arguments the service type to search for and a one-
parameter closure that serves as an event handler. Such a closure is invoked with a remote
reference to the newly discovered remote function associated with that service type. In the
above code snippet, whenever a iPhone-news service is discovered, the submit-news function
is invoked, passing along the parameter publisher-ref remote reference received. Similar to
the export-service construct, the when-discovered construct returns a closure that can be
used to cancel the subscription, by invoking cancel-subscription construct.

4.2.3. Asynchronous Remote Function Invocation

Once a reference to the remote function is obtained, remote function invocations can be
performed by means of the remote-send! construct as follows:

(define (submit-news publisher-ref)
(for-each
(lambda (article)
(remote-send! publisher-ref receive-article article))

list-of-articles))

The remote-send! construct takes as arguments a remote reference, a function name,
and optional variable number of arguments. Arguments specified in a remote function
invocation are parameter passed by copy. Currently only a subset of the Scheme first-class
values (Booleans, Numbers, Characters, Symbols, Strings, Pairs and Lists††) can be parameter

††Pairs and Lists that contain circular references are not supported in our current serialisation mechanism.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 15

passed in a remote method invocation. In this example, the submit-news function iterates
over a list storing news articles to be published, and invokes the receive-article function
on the publish-ref reference corresponding to the newly discovered news publisher. The
remote-send! construct performs a non-blocking asynchronous remote function call. This
means that remote-send! enqueues a remote function call in the Scheme interpreter and
it immediately returns nil. As such, callers do not wait for the remote function call to be
remotely performed nor for the return value of such computation.

In order to get the return value of a remote invocation, we provide the when-resolved
construct which registers an event handler that is invoked when the return value of the remote
function invocation becomes available. In our running example, this is used to acknowledge
the reception of articles sent to the news publisher.

(define (submit-news publisher-ref)
.... ;;iterator over each news
(when-resolved
(remote-send publisher-ref receive-article article)
(lambda (receipt)
(set! receipts (cons receipt receipts)))

(catch
(lambda (exception)
;;exception handling code
)))

...)

The remote-send construct works similar to the remote-send! construct but it returns
a future instead. A future is a placeholder for the return value that will be computed
asynchronously. Once the return value is computed, it replaces the future object, and the future
is then said to be resolved with the value. Note that registering a future on a remote-send
construct does not block the caller of the remote function call. It is possible to register a block
of code which is triggered when the future becomes resolved by means of the when-resolved
construct. The when-resolved construct takes a future and two closures and registers an
event handler on that future. If the future is resolved to a value, the first closure is invoked,
passing along the return value of the remote computation. In this example, the receipt value
is received as the return value of the receive-article remote function call. If the remote
function invocation raises an exception, the corresponding future is said to be ruined with the
exception and the catch closure is applied to the exception. This enables applications to catch
asynchronously raised exceptions and apply some correcting actions in a way similar to the
well-known try-catch construct.

As explained before, performing a remote function call using remote-send enqueues a remote
function invocation that is enqueued in the Scheme interpreter. When a network failure of
the device hosting a function that needs to be remotely invoked occurs, the remote method
invocation is still stored in the caller side. When the network partition is restored at a later
point in time, the accumulated function invocations are transparently flushed to the remote
device in the same order as they were originally performed. However, sometimes disconnections

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

16 E. BAINOMUGISHA ET.AL.

may take unexpectedly longer or devices may not move back into communication range again.
To deal with these long-lasting disconnections, programmers can attach a timeout to the
remote function invocation to limit the time to wait for the reception of the return value. Such
a timeout can be attached by means of the due-in construct in the when-resolved construct
as follows:

(define (submit-news publisher-ref)
.... ;; iterator over each news
(when-resolved
(remote-send publisher-ref receive-article article)
(lambda (receipt)
(set! receipts (cons receipt receipts)))

(due-in 20.0)
(catch

(lambda (exception)
;;exception handling code
)))

...)

The due-in construct expects as parameter a number denoting a timeout in seconds. If the
return value is not received within the timeout specified, the future is automatically ruined and
the TimeoutException is raised which can be handled with the catch construct as explained
before.

In Section 5.2, we present a concrete distributed application developed using these
constructs.

4.3. Summary

In this section we have presented an event-driven programming model in Scheme that
eases the development of interactive and distributed iPhone applications. The constructs for
accessing the iPhone capabilities (the GPS, phone, and SMS) further hide away the symbiosis
constructs. This yields the advantage that Scheme programmers do not have to think in terms
of Objective-C programming. We have built non-trivial distribution constructs for service
discovery, asynchronous remote messaging, and network failure handling. We further illustrate
these constructs using concrete examples in the next section.

5. APPLICATIONS

In this section we present two concrete iPhone applications that we develop using the constructs
(explained in Section 4). The first example is a maps application that demonstrates writing an
iPhone application in Scheme while making use of the iPhone GPS capabilities. The second
example is a distributed peer-to-peer digital SCRABBLE R⃝-like game that demonstrates the
use of distributed programming constructs in iScheme.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 17

Figure 3. (show-map "Metro") displays the Google map annotated with current location and nearby
metro stations.

5.1. Building a maps application

We built a maps application that combines a Google map and places of interest in the
neighbourhood. The application works as follows: (1) Using the iPhone GPS, the application
retrieves the current user’s location. (2) Using the user specified query of the places of interest
(e.g., hotels, transport stops, hospitals), the application displays a Google map [16] annotated
with the nearby places and the current user location. Figure 3 shows the screen shot of the
resulting maps application running on the iPhone device.

Below we present the implementation of the maps application in Scheme:

(define (show-map query)
(CURRENT-LOCATION
(lambda (latitude longitude)
(google-maps latitude longitude query))))

The above code shows a complete definition of the show-map function that implements the
behaviour of the maps application. The show-map function takes as argument a user query
(e.g., “Metro”, “Hotel”). The CURRENT-LOCATION construct as explained in Section 4.1 is used
to retrieve the latitude and longitude coordinates. The argument to the CURRENT-LOCATION

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

18 E. BAINOMUGISHA ET.AL.

construct is a closure that takes two arguments that is invoked with the latitude and longitude
coordinates.

The google-maps function in show-map, given the latitude, longitude and a user query,
displays a Google map annotated with the places matching the user query and the current
location. The google-maps function is implemented using the openApp construct (explained
in Section 4.1) as follows:

(define (google-maps lat longi search-query)
(openApp maps lat longi search-query))

The first argument to the openApp construct is the application name (in this example, maps).
The second and third arguments are the longitude and latitude coordinates while the fourth
argument is the search query. The above maps application code can be loaded and evaluated
directly on the device. For example, evaluating (show-map "Metro") shows the Google map
annotated with metro stations in the neighbourhood as shown in Figure 3.

5.2. AmbiScrabble: Building a distributed peer-to-peer game application

To further illustrate the distributed programming constructs integrated in iScheme, we now
present a peer-to-peer game for the iPhone called AmbiScrabble. AmbiScrabble is a digital
version of a Scrabble-like game where players work collaboratively with their iPhones to form
words. A demonstration of the game can be found on the iScheme website‡‡. Figure 4 shows
the screen shot of the AmbiScrabble application on the iPhone. Players are organised in teams
and each player has a rack of letters. Letters are consumed by forming valid English words.
The team that first consumes all its letters wins. Players belonging to the same team can
exchange letters among themselves.

The AmbiScrabble game has been designed in a peer-to-peer fashion without assuming a
centralised server to coordinate the game. It is also fault-tolerant such that player failures
do not hamper the game progress. These design choices are primarily motivated by the fact
that the game runs on iPhones equipped with wireless technology. Connectivity using such
a technology is often characterised by frequent network disconnections either as because of
limited connectivity or users may continuously move about.

We implement the game logic and distribution concerns of the AmbiScrabble application
in iScheme, while the graphical user interface (GUI) is implemented in Objective-C using
the Cocoa framework. Before describing how our constructs are used to implement GUI
interactions between Objective-C and Scheme and the distribution concerns of the game,
we give an overview of the game implementation. The following code snippet summarises the
relevant parts of the AmbiScrabble application in iScheme.

(define (create-ambiScrabble-game)
(let ((GUI-proxy (setup-gui))

‡‡http://soft.vub.ac.be/amop/ischeme/example_applications

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

http://soft.vub.ac.be/amop/ischeme/example_applications

BRINGING SCHEME PROGRAMMING TO THE IPHONE 19

Figure 4. The screen shot of the AmbiScrabble game.

(team-controller (make-team-controller))
(rack-controller (make-rack-controller)))

; the player’s local interface functions
(define (add-letter-to-rack letter)
(rack-controller ’add-letter letter)
(notify-team))

(define (add-new-player player)
(team-controller ’add-new-player player))

(define (get-player-name) ...)
(define (get-player-team) ...)

(define (initialise-game team-name player-name)
(initialise-player-info team-name player-name)
; engage in peer-to-peer discovery of other players
(go-online)
(discover-other-players))

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

20 E. BAINOMUGISHA ET.AL.

; the player’s remote interface functions
(define (get-player-info)
(let ((name (get-player-name))

(team (get-player-team)))
(list name team)))

(define (request-letter player-name letter)
(process-request player-name letter))

(define (receive-letter from letters status)
(cond ((= status approved)

(add-letter-to-rack letters)
(notify-team)
(alert-request-approved from letters))
((= status refused)
(alert-request-refused from letters))
....)

’done)

(define (remote-interface)
(lambda (message . args)
(case message
((get-player-info) (get-player-info))
((request-letter) (apply request-letter args))
((receive-letter) (apply receive-letter args)))))

’started))

The create-ambiScrabble-game function consists of: the GUI-proxy that manages the
game’s GUI, the team-controller that manages the players and teams in the game, and the
rack-controller that manages the player’s rack and the word formation. The application
defines local and remote interfaces which consist of a set of functions to interact with the
GUI and with the remote players, respectively. For example, the local interface contains the
add-new-player function that implements the behaviour for adding a player to the appropriate
team and the add-letter-to-rack function that implements the behaviour of adding a letter
to the player’s rack of letters. The remote interface contains the get-player-info function
that is used for obtaining the remote player’s name and team, the request-letter function
that is used for requesting a letter from a remote player belonging to the same team, and the
receive-letter function that is used to “throw” letters to the nearby players. The status
argument in the receive-letter function indicates whether the request was accepted or
not. All the remote interface functions are wrapped in the remote-interface closure that
dispatches a remote function invocation to the appropriate function.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 21

5.2.1. GUI Interactions

When the create-ambiScrabble-game function is invoked, the game GUI is launched by
invoking the setup-gui function. The return value of setup-gui function is a closure that
embodies all the behaviour of Objective-C and Scheme interaction. The resulting closure is
bound to the variable GUI-proxy. We show part of the implementation of the setup-gui
function below.

; manages all the interactions between Objective-C and Scheme
(define (setup-gui)
...
; Create new instance of gameViewController
(let ((viewController (OBJC-INSTANCE gameViewController)))

; Show new player
(define (display-new-player name rack)
(let* ((info (list name rack))

(array (list->NSMArray info)))
(OBJC-SEND viewController addPlayer: array)))

; Remove player from the screen
(define (remove-player name)
(OBJC-SEND viewController removePlayer: name))

; Set callback for when letter is selected in word by the user
; Letters should be moved back to the rack.
(define (set-onformword-callback proc)
(OBJC-SEND viewController setWordCallback: proc))

...))

The game’s GUI implementation in Objective-C contains the class gameViewController
that implements methods for capturing user input, and updating the GUI whenever the
game data in Scheme changes. In the above code snippet, the variable viewController
holds a reference to the instance of the gameViewController class that is created using
(OBJC-INSTANCE gameViewController). The display-new-player function displays a new
player, and a rack of letters on the GUI by invoking the addPlayer: method of the
gameViewController class. The remove-player function implements the behaviour of
removing a player from the GUI. Functions that need to be called when a user performs
certain actions on the GUI (e.g., a pinch on the submit button to form a word) are registered
as callbacks to Objective-C methods. For example, the set-onformword function registers a
Scheme function that is called whenever the user presses the button to form word.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

22 E. BAINOMUGISHA ET.AL.

5.2.2. Distributed Interactions

When the GUI is launched, the player is prompted to enter a name and a team. This
information is used to initialise the game and the player data by invoking initialise-game
function from Objective-C. The next step of the game setup is to publish the game instance
onto the network and to search for other players in the surroundings by invoking the functions
go-online and discover-other-players, respectively. Note that we assume that there is no
dedicated centralised server for game coordination and as such, each game instance publishes
and subscribes itself to the network. The following code snippet shows the implementation of
the go-online function that publishes the game.

; the service type
(define ambiScrabbleService (service-type ambiSrabble))

; publishing the game instance on the network.
(define (go-online)
(export-service remote-interface ambiScrabbleService))

A game instance is published onto the network with the ambiScrabble service type (stored
in the ambiScrabbleService variable). More concretely, the go-online function publishes the
remote-interface closure as a ambiSrabble service using the export-service construct.

The discover-other-players function uses the when-discovered construct to register a
subscription to discover other players in the network as follows:

; discovering other players in the surroundings
(define (discover-other-players)
(when-discovered ambiScrabbleService

(lambda (remote-player)
(add-new-player remote-player))))

Whenever a new ambiScrabble service type is discovered, the add-new-player function is
applied receiving by parameter the newly established reference to the remote-player function
of the remote player. This function performs the necessary remote function invocation to
obtain the remote player’s information using the remote-send and when-resolved constructs
as follows:

(define (add-new-player remote-player)
(when-resolved
(remote-send remote-player get-player-info)
(lambda (info)
(let ((name (list-ref info 0))

(team-name (list-ref info 1)))
(if (team-exists? team)

(if (not (player-exists? name))
(add-player remote-player name team-name))

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 23

(begin
(create-new-team team-name)
(add-player remote-player name team-name)))))))

The add-new-player function performs a remote invocation of the function get-player-info
to retrieve the player’s name and team, using the remote-send construct. The return value of
the remote invocation is received by parameter in the when-resolved lambda, which checks
whether the team and the player already exist in the data structures of the application (i.e. if
the player was previously discovered). If the team already exists but the player does not, then
the player is added to that team. Otherwise, the player is added to the newly created team.

In order to deal with network disconnections of players, the game makes use of the due-in
construct in the when-resolved construct to notify the disconnection of a player. Players
whose disconnection exceeds a certain period of time (e.g., 20 seconds) are greyed out in the
GUI as shown below:

(when-resolved
(remote-send remote-player get-player-info)
(lambda (info) ...)
(due-in 20.0)
(catch

(lambda (exception)
(grey-out-player remote-player))))

5.3. Evaluation

The example applications described above demonstrate that the language symbiosis between
Scheme and Objective-C yields a number of benefits:

iPhone capabilities are accessible from Scheme. The Scheme and Objective-C symbiosis
provides constructs to enable Scheme applications access to the Objective-C frameworks. For
example, the Core location framework (for GPS information) and the Bonjour framework
(for service publication and discovery) are now accessible using the symbiosis constructs.
The maps example shows how to easily obtain GPS coordinates using Scheme with the
CURRENT-LOCATION construct. The AmbiScrabble application illustrates the use of the
export-service construct which is built on top of the Bonjour framework that makes it
possible to publish Scheme functions as services over the iPhone’s Wi-Fi connectivity.

Using Scheme macros to build language constructs. The Scheme macro system provides
support for building syntactic extension constructs. This means that new language constructs
can be created on top of the symbiosis constructs to ease the development of iPhone
applications. For instance, the maps example makes use of the openApp construct that enables
interaction with the native iPhone applications. The distribution constructs demonstrated in
the AmbiScrabble application enables the programmer to write distributed iPhone applications
without dealing with the low-level details of distributed programming as would be the case in
plain Objective-C.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

24 E. BAINOMUGISHA ET.AL.

Using Scheme higher-order functions as event-handlers. The above two examples have
demonstrated the use of the constructs that ease the development of event-driven programs.
Scheme’s higher-order function features and closures make it suitable for the event-driven
programming model upon which the iPhone APIs are based. We have shown the use of Scheme
closures as event-handlers by building non-trivial constructs for accessing iPhone capabilities
and distributed programming. For instance, the CURRENT-LOCATION construct registers a
closure as the event-handler that is invoked whenever there is change in the current location.
Retrieving GPS coordinates using plain Objective-C requires the programmer to define class
delegates and implement callback methods. We have further demonstrated the use of closures
as event-handlers that react to changes in the environment (e.g., appearance of a new service).
For instance, the when-discovered construct registers a closure as an event-handler that is
invoked whenever a new service is encountered in the network.

Scheme as a scripting environment. The dynamic interactive Scheme environment on the
iPhone enables one to evaluate Scheme scripts directly on the device. Scripting on the iPhone
provides support to interact with native applications such as SMS, mail, phone and iPod. One
immediate benefit of such an environment is that it serves as an experimentation platform
for new ideas or rapid prototyping applications without facing the complexities of defining
classes and GUIs as is the case in plain Objective-C. For instance, using the constructs
CURRENT-LOCATION, make-call and send-sms it is possible to write applications that explore
the GPS, phone, and SMS capabilities in a few lines of code. The maps application example
clearly demonstrates this.

In this paper, we have realised the above benefits of integrating Scheme and Objective-C
using a locally developed Scheme interpreter [9]. However, the symbiosis layer and the event-
driven constructs are independent of the Scheme interpreter, and could be implemented on
top of any other Scheme implementation or other languages with similar features as Scheme.

6. IMPLEMENTATION

In this section we discuss how the Scheme and Objective-C symbiosis has been implemented.
The symbiosis implementation essentially has two sides: Objective-C to Scheme where the
interpreter is embedded in Objective-C applications, and the Scheme to Objective-C where
Scheme programs have access to the Objective-C runtime. First, we explain how the Scheme
interpreter is embedded in Objective-C applications.

6.1. Embedding Scheme in Objective-C Applications

The Scheme interpreter used was developed at our lab and is implemented in ANSI-standard C,
and it is thus fully compatible with Objective-C. Embedding a Scheme interpreter in Objective-
C enables the use of Scheme code within an Objective-C application. This implies that one
can write parts of the application in Objective-C (e.g., the application front-end) and others
in Scheme (e.g., the application logic). In Section 2, we presented a simple iScheme interactive
environment for evaluating Scheme code on the iPhone (in a REPL fashion). At first glance, it

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 25

looks like a regular Objective-C application but it actually embeds the Scheme interpreter that
does the code evaluation. The iScheme system is approximately 736kb and can be deployed to
the iPhone, the iPod touch or the iPad devices like any other third party application without
modifying the iPhone OS.

In what follows, we explain the step-by-step procedure of setting up the Scheme environment
in Objective-C.

6.1.1. Initialising the Scheme Interpreter from Objective-C

The Scheme interpreter provides an API that enables an Objective-C application to instantiate
and interact with the interpreter. The API is wrapped as an Objective-C class iScheme that
provides methods to evaluate Scheme expressions, getting the results of expressions and error
messages. The interpreter is initialised by creating an instance of the iScheme class. Internally,
the initialisation involves setting up storage space and the Scheme evaluation environment.
Multiple instances of the interpreter can be created and are completely independent. The
following code snippet illustrates the initialisation step.

iScheme *schemeVM = [[iScheme alloc] initWithDelegate:theDelegate];

The iScheme object is initialised with the theDelegate object that must implement the
receiveResult: method to handle the result of evaluating a Scheme expression. If there is no
delegate specified, the default implementation of receiveResult: is used which simply logs
the results to the standard output.

6.1.2. Evaluating Scheme Expressions in Objective-C

Once the Scheme interpreter is successfully initialised, Scheme expressions are evaluated by
calling the C macro SCHEME CALL(function-name, args) (explained in Section 3) or the
schemeCall: method as follows:

[schemeVM schemeCall:schemeCode];

The argument to the schemeCall: method is a string representing the Scheme code. The
result from evaluating the Scheme expression is returned via the receiveResult: delegate
method. In case the expression evaluation results in an error, the result string is the error
description (e.g., "undefined variable").

6.2. Implementation of the Scheme and Objective-C Symbiosis

So far, we have explained how to embed Scheme programs in Objective-C applications, but a
little about the behind the scenes of the Scheme and Objective-C symbiosis. As discussed
in Section 3, our symbiosis implementation is based on the previous work on language
symbiosis–the linguistic symbiosis model [18]. The symbiosis constructs explained in Section 3
are implemented using Scheme macros that translate to native functions which in turn are
implemented using Objective-C’s reflective capabilities. Let us first briefly explain the reflective

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

26 E. BAINOMUGISHA ET.AL.

capabilities of Objective-C before delving into the implementation details of the Scheme and
Objective-C symbiosis.

6.2.1. The Objective-C Reflective Capabilities

Objective-C is an object-orientation extension to C language using Smalltalk-80 [14]-like
semantics. It is a proper superset of C meaning that it is possible to include C code within
Objective-C code. In fact, the Objective-C compiler translates every method call in Objective-C
into a C function call. The Objective-C runtime defines data structures to capture information
about classes as well as selectors, instance variables’ templates needed for introspection [20].
In this paper, we use Objective-C 2.0, the modern Objective-C version used by iPhone
applications and 64-bit programs on Mac OS X v10.5 and later. In what follows, we explain
how Objective-C programs can interact with the runtime system.

Interacting with the Objective-C Runtime. Language symbiosis with Objective-C is
possible because of its dynamism and reflective capabilities. The Objective-C runtime
library provides functions to access information such as name of a class, a number of
and what methods are implemented (introspection) by a class. It also allows objects to
modify their own structure (intercession) [20] such as add new variables, add new classes,
or replace method implementations at runtime.

Messaging. Objective-C is a dynamic language in the sense that messages are not
bound to their respective method implementations until runtime. All Objective-C
message sends are converted into objc msgSend function calls. For every message send
expression [receiver message] the compiler generates a call on the messaging function
objc msgSend as follows:

objc_msgSend(theReceiver, theSelector, arg1....argn);

The objc msgSend function takes at least two arguments: theReceiver which is the
receiver object, theSelector which is the method name that handles the message and a
variable number of arguments for the specified method. In the remainder of this section
we explain how we implement the language symbiosis between Scheme and Objective-C
based on objc msgSend and other runtime functions.

6.2.2. Accessing Objective-C Classes from Scheme

The OBJC-CLASS construct illustrated in Section 3 is a macro that translates to the native
function objc-string->class as follows:

; an Objective-C class from a Scheme string representing a class name
(define-macro OBJC-CLASS
(lambda (class-name)

‘(let* ((class-string ,(symbol->string class-name))
(objc-class (objc-string->class class-string)))

objc-class)))

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 27

The define-macro construct defines a macro OBJC-CLASS that takes an Objective-C class
name parameter and converts it into a string that is then used as an argument in the call to the
objc-string->class function. For instance, (OBJC-CLASS NSSpeechSynthesizer) translates
to (objc-string->class "NSSpeechSynthesizer"). The objc-string->class function is
based on the Objective-C runtime library function objc getClass(const char *class name)
which takes the string name of a class and returns its definition. The returned pointer to the
class definition is reified as an OBJC TYPE Scheme value so that it can be bound to a Scheme
variable. The OBJC TYPE Scheme type encapsulates an Objective-C instance in Scheme world
and is implemented as a C struct that contains a pointer to the location of the actual Objective-
C object.

6.2.3. Sending Messages to Objective-C Objects from Scheme

As we introduced in Section 3, sending messages to Objective-C instances from Scheme is
achieved by use of the OBJC-SEND construct. OBJC-SEND is implemented as a macro that
translates to the native SOC function call. The SOC function takes as argument an Objective-C
instance or class, a method name as a string, a variable number of arguments for the method,
and performs an Objective-C message send using the objc msgSend function.

Note that a programmer can still perform Objective-C message sends using the SOC function.
However, from our experience, we found it cumbersome to always specify the method name as
a string, thus we implemented a syntactic sugar construct, to wit OBJC-SEND. The following
code shows the definition of the OBJC-SEND macro based on the SOC function:

; Sending a message to an Objective-C instance
; the receiver may be an Objective-c instance or class
(define-macro OBJC-SEND
(lambda (receiver method-name . args)

‘(let* ((selector ,(symbol->string method-name))
(objc-object (SOC ,receiver selector ,@args)))

objc-object)))

The define-macro construct defines a macro OBJC-SEND that takes on parameters as
the receiver, method name and a list of arguments to the named method which is then
transformed into a call to the SOC function with the selector converted into a string.
For example, (OBJC-SEND UIDevice currentDevice) translates to (SOC <UIDevice:class>
"currentDevice"). The SOC function is implemented on top of the Objective-C’s
objc msgSend(id theReceiver, SEL theSelector, ...) function which is used to send
messages to objects in memory. Each SOC is subsequently transformed into objc msgSend
as we illustrate below:

(OBJC-SEND receiver selector arg1 arg2 argn)

⇓

(SOC receiver selector-string arg1 arg2 argn)

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

28 E. BAINOMUGISHA ET.AL.

⇓

objc_msgSend(receiver, NSSelectorFromString(selector-string), arg1, arg2, argn)

The return value of objc msgSend is the return value of the method which is reified as
OBJC TYPE. The NSSelectorFromString method converts a string to a selector name.

6.2.4. Creating Objective-C Instances from Scheme

Creating an Objective-C instance from Scheme is achieved by means of the (OBJC-INSTANCE
class-name) construct. OBC-INSTANCE is implemented as a macro and translates to the native
Scheme make-objc-instance function as follows:

; Creating an Objective-C instance from a string of an Objective-c class name
(define-macro OBJC-INSTANCE
(lambda (class-name)

‘(let* ((class-string ,(symbol->string class-name))
(objc-object (make-objc-instance class-string)))

objc-object)))

The macro OBJC-INSTANCE that takes one argument representing the name of the class
and calls the make-objc-instance function with the class name converted to a string. The
make-objc-instance function is implemented using objc msgSend introduced in Section 6.2.1
by subsequently sending the alloc and init messages to the named class as follows:

void *theClass = objc_getClass(className);
void *theObject1 = objc_msgSend(theClass, @selector(alloc));
void *theObject2 = objc_msgSend(theObject1, @selector(init));

The invocation of the objc getClass function returns the class definition of the class named
className. The subsequent lines of code allocate and initialise the instance of the named class
using the alloc and the init messages, respectively. theObject2 is a pointer to the resulting
instance of the class which is reified as OBJC TYPE Scheme type and returned to Scheme.

6.2.5. Memory Management

One substantial advantage of developing applications in Scheme is that the programmer does
not need to manually take care of memory management. This is unlike in Objective-C where
the programmer is responsible for manually dealing with the memory management issues. In
iScheme, when Objective-C objects cross the boundary to the Scheme world, they are wrapped
as a generic Scheme value and the Scheme garbage collector takes care of freeing the memory
allocations. Internally, when the garbage collector encounters a wrapper Scheme value holding
an Objective-C object, it sends the release message to the Objective-C object.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 29

6.3. Limitations

The Scheme and Objective-C symbiosis implementation explained in this section is still in its
first version that can still further be improved. We highlight some of the limitations of the
current implementation:

Serialisation. In our current implementation, the serialisation mechanism of the datatypes
that are parameter passed to a remote function does not support all the first-class values in
Scheme. For example, there is no support for serialising closures and continuations.

Memory management. We need to further investigate how the Objective-C retainCount and
release methods integrate with the Scheme garbage collector. The fact that retainCount and
release memory management constructs are treated as regular Objective-C methods, makes
it possible to invoke these methods using OBJC-SEND construct which may be a potential
interference with the Scheme garbage collector.

6.4. Summary

In this section we have discussed the step-by-step procedure on how to embed Scheme
programs in an Objective-C application. We subsequently explained how the symbiosis
constructs in Scheme: OBJC-CLASS, OBJC-INSTANCE and OBJC-SEND map to primitive
functions make-objc-instance, objc-string->class and SOC, respectively. We further
explain how Scheme native functions interact with the Objective-C runtime using its reflection
library functions (such as objc msgSend) to perform message sends to instances in memory,
and objc getClass to load class definitions at runtime.

7. LESSONS LEARNED

In this section we put forward our experiences gathered from porting Scheme to the iPhone,
implementing a language symbiosis between Objective-C and Scheme, and implementing
constructs that ease the development of the event-driven applications for mobile devices. We
generalise the key concepts to make our experience usable to port other programming languages
to the iPhone device.

7.1. On Implementing Language Symbiosis with Objective-C

Implementing language symbiosis with Objective-C is possible because of its dynamism
and reflective capabilities. The Objective-C runtime library provides functions to perform
introspection (e.g., access to the methods a class implements) and intercession (e.g., adding
a class, replacing a method implementation) on Objective-C objects at runtime. Below,
we summarise the language constructs that one needs to implement in order to realise an
interaction with Objective-C. For each construct we point out the relevant key Objective-C
runtime functions required to implement it.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

30 E. BAINOMUGISHA ET.AL.

Table I. Preliminary benchmarks on the method call overhead from
Scheme to Objective-C

Number of parameters

0 1 2

Method calls in Objective-C (ms) 0.00022 0.00023 0.00025
Method calls from
Scheme to Objective-C (ms) 0.13500 0.15500 0.16150

First, the symbiotic language needs to define a language construct for loading Objective-C
classes. For this, the Objective-C runtime library provides the function objc getClass(const
*class name) that takes the string name of a class and returns a pointer to the class definition.
In our Scheme, we implemented the OBJC-CLASS construct.

Second, an construct is required to provide means to send messages to Objective-C
instances from the symbiotic language. To this end, the Objective-C runtime provides a
function objc msgSend(theReceiver, theSelector, args) that performs message sends
to an Objective-C object (the receiver) given a name of a method (the selector), and an
optional variable number of arguments. A string representing a method name can be converted
to a selector using the NSSelectorFromString runtime library function. In our Scheme, we
implemented the OBJC-SEND construct.

The third set of language constructs is type conversion functions. Type conversion can
be implicit – meaning that values of one language are automatically converted to another
language as they cross the bridge, or explicit – meaning that the programmer makes use of the
conversion functions. In our implementation, we perform automatic conversion when Scheme
values cross to Objective-C and provide the programmer with conversion functions (such as
NSString->string) to convert Objective-C objects to Scheme values.

Other than the language symbiosis constructs that enable interaction between two languages,
there are extensions required in the symbiotic language. First, the symbiotic language needs to
be extended with a generic representation of the Objective-C objects. For example, we extend
the Scheme value types with the OBJC TYPE as a wrapper for Objective-C objects in Scheme.
Second, a native function needs to be added to the symbiotic language to handle the calls to
Objective-C. For example, we extend our Scheme interpreter with the SOC native function that
serves as an interface to the Objective-C world.

7.2. On the Method Call Overhead

Implementing language symbiosis between two languages involves a sacrifice on performance.
For example, method calls from Scheme to Objective-C involve a significant overhead compared
to method calls in plain Objective-C. We performed preliminary benchmarks to quantify the
method call overhead caused by the symbiosis.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 31

We measured the method call overhead (in ms) on the iPhone 3G with ARM1176 412MHz
and 128MB RAM running iPhone OS 3.1.3. We considered three different methods that vary by
the number of parameters (zero, one, and two). All three methods have empty bodies and the
parameters are of type NSNumber. Table I shows the times per method call for the three methods
(in plain Objective-C versus calls from Scheme to Objective-C). For each measurement we
performed one million method calls.

There is a significant increase in the times of the method calls from Scheme to Objective-C.
We have not applied any optimisation techniques in our current implementation. One possible
factor for this increase is the fact that every Objective-C instance passed to Scheme needs to
be wrapped as a Scheme generic value OBJC TYPE. In addition, for each Scheme value passed
to an Objective-C method, the symbiosis layer needs to check and perform a type conversion
to the appropriate Objective-C object. As future, we would like to try performance enhancing
techniques (such as caching of the selectors and method implementations).

8. RELATED WORK

In this section we discuss existing work on Scheme implementations for mobile platforms and
language bridges to Objective-C or Scheme.

8.1. Scheme Implementations on Mobile Platforms

The Gambit-C Scheme system [11] has been recently used to develop a number realistic iPhone
applications (available in the iPhone’s App Store). Gambit-C compiles Scheme programs to
C code that is compatible with Objective-C, and it can be compiled and deployed to the
iPhone OS. The Gambit-C system also includes an interpreter that can used to provide
an interactive environment with support for a remote REPL. To interact with Objective-C,
Gambit-C employs the foreign function interface (FFI) approach. FFIs in Gambit-C support
interaction in either direction, and as such it qualifies as a language symbiosis. In order to access
Objective-C methods from Scheme, wrapper C functions are generated. The need to generate
wrapper functions in C for Objective-C methods could be eliminated by adopting Objective-C’s
reflective API that we employ in iScheme. The use of the reflective API also implies that Scheme
programs have direct interaction with Objective-C which facilitates the implementation of
event-driven constructs (e.g., for accessing iPhone capabilities and distributed programming).

Moby Scheme [22] is an experimental Scheme compiler for smart phones with particular
target for the Android OS [15]. It allows developers to write Scheme programs that are fed to
the compiler to generate Java source code. The Moby Scheme compiler is mostly written in
PLT Scheme [13] – a Scheme implementation that is designed to run on traditional desktop
platforms and not on mobile devices. The Moby Scheme compiler itself does not run on Android
OS, but it generates Java source code from the desktop platform. The generated Java source
code is used to produce the Android .apk packages that can take advantage of the native
features (e.g., GPS and SMS) available on the device. One important feature of Moby Scheme
is its support for event-driven programming based on the notion of “Worlds” [12] that enables
one to write programs that react to events (e.g., an incoming SMS event). As in Moby Scheme,

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

32 E. BAINOMUGISHA ET.AL.

we believe that the event-driven programming style is well-suited for a mobile setting because of
their inherent interactive nature. In iScheme, we further explore the event-driven programming
model for developing distributed applications by providing constructs for peer-to-peer service
discovery, asynchronous remote communication, and handling network failures.

8.2. Linguistic Symbiosis

Linguistic symbiosis is not novel and has been explored in existing approaches as a way
to enable two languages to invoke each other’s behaviour and exchange data [18, 7]. There
are several language implementations that explore linguistic symbiosis with Objective-C or
Scheme.

Java and Objective-C symbiosis [2] is one of the earliest bridges to Objective-C that allows
one to write programs in Java that instantiate and use Objective-C classes from Java, pass
Java objects as arguments to Objective-C methods and directly subclass Objective-C classes.
PyObjc[25] implements language symbiosis between Python and Objective-C that enables
Python programmers to write Cocoa GUI applications on Mac OS X in pure Python. CL-
ObjC [5] is a Common Lisp library that enables interaction with Objective-C libraries built
on top of a foreign function interface. CL-ObjC provides the invoke construct similar to
our OBJC-SEND to perform message sends to Objective-C instances in a LISP-like way. In
addition, CL-OBJC implements an interface that mixes the Common Lisp Object System
(CLOS) and Objective-C’s object system. Unfortunately, all these existing language symbiosis
to Objective-C are limited to desktop development platforms (mostly Mac OS X) and no single
implementation ports to mobile platforms. Our Scheme and Objective-C symbiosis mainly aims
at providing access to features specific to mobile platforms such as phone, SMS and GPS.

There do exist Scheme implementations that define language symbiosis with other
programming languages such as C and Java. We will focus our discussion on approaches that
implement symbiosis between Scheme and an object-oriented programming language.

Dot-Scheme [24] is a library that builds an FFI for PLT Scheme [13] with Microsoft .NET
Common Language Runtime (CLR). It provides the import-assembly construct that loads
the assembly code of a class into Scheme. For each loaded class a Scheme proxy is generated
that wraps the class as a Scheme value. Dot-Scheme enables invoking the CLR methods using
the Scheme-like syntax though it does not provide support to invoke Scheme functions from
the CLR.

Kawa [4] and SILK [1] are Scheme implementations that enable interaction between Scheme
and Java. Kawa provides functions to invoke Java methods from Scheme. The invoke construct
in Kawa is similar to OBJC-SEND construct in our approach. In addition, Kawa provides different
variants of invoke, namely, invoke-static to call static methods, and invoke-special to
call only methods in the super class. SILK provides constructs import and class to load
Java packages and classes, respectively. The (class "java class name") construct in SILK
is similar to the OBJC-CLASS construct in our approach.

Surprisingly, neither Kawa nor SILK provides syntactic sugar for Scheme/Java interaction.
For instance, in Kawa the Java method name argument for invoke construct must be a string
or a symbol. SILK requires the programmer to specify the Java package or the class to be
imported as a string. However, SILK provides support for defining new methods on Java

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

BRINGING SCHEME PROGRAMMING TO THE IPHONE 33

classes from Scheme and the ability to reflect on Java objects, the features that we have not
explored in our current implementation. Our approach differs from most of the existing Scheme
and other languages symbiosis in that we aim at building constructs that ease the development
of applications that run on mobile devices while exploiting the capabilities specific to mobile
platforms.

9. CONCLUSION AND FUTURE WORK

In this paper, we report on our experience of porting a Scheme implementation to the iPhone
platform. We have implemented a language symbiosis between Scheme and Objective-C using
the reflective API of Objective-C. The symbiosis layer enables developers to write iPhone
applications in Scheme, thus benefiting from its well-known features such as automatic garbage
collection, higher-order functions (for event-driven programming), and structural macros (for
syntactic extension). We have designed constructs for accessing iPhone capabilities (e.g., GPS
information) as well as distribution constructs (for peer-to-peer service discovery, remote
communication, and handling network failures). These constructs facilitate the development
of local and distributed iPhone applications in an event-driven style. We have presented a
series of examples that demonstrate the benefits of the Scheme and Objective-C interaction
as well as the constructs provided on top of the symbiosis layer. Finally, our discussion of the
lessons learned in our setting generalise the key concepts of building a language symbiosis with
Objective-C, thus making our experience usable for other ports of languages to the iPhone or
other mobile phone platforms.

Given the benefits of event-driven programming constructs that we have realised, we
would like to explore further the possibilities of providing a reactive programming model
for the iPhone development. More concretely, we would like to integrate a functional reactive
programming model with our distribution constructs. We currently extending the iScheme
interactive environment to the iPad with enhanced programming support such as syntax
colouring, error reporting, and file management.

ACKNOWLEDGEMENTS

We thank Nick De Cooman for undertaking the AmbiScrabble project to validate the Scheme and
Objective-C symbiosis. We are grateful to the anonymous reviewers and the editors who made

important suggestions to improve the paper. We would like to thank Éric Tanter for the initial ideas
about this work and also suggesting the venue of publication. We thank Ellie D’Hondt for the final
review of the paper. This work was partially funded by the Research Foundation - Flanders (FWO),
the SAFE-IS project, the MoVES project, the STADiUM project, the VariBru project of the ICT
Impulse Programme of the Institute for the encouragement of Scientific Research and Innovation of
Brussels (ISRIB), and the Prospective Research for Brussels program of IWOIB-IRSIB, Belgium.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

34 E. BAINOMUGISHA ET.AL.

REFERENCES

1. K. Anderson and T. J. Hickey. SILK – a playful blend of Scheme and Java. In Proceedings of the Scheme
and Functional Programming Workshop, September 2000.

2. Apple Inc. Using the Java bridge, September 2009. http://developer.apple.com/legacy/mac/library/.
3. Apple Inc. The iPhone development center, 2010. http://developer.apple.com/iphone/.
4. P. Bothner. Kawa: compiling dynamic languages to the Java VM. In Proceedings of the annual conference

on USENIX Annual Technical Conference, ATEC ’98, pages 41–41, Berkeley, CA, USA, 1998. USENIX
Association.

5. G. Cant. A portable Objective-C bridge for Common Lisp, September 2009. http://www.common-lisp.
org/project/cl-objc/.

6. T. V. Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. D. Meuter. Ambienttalk: Object-
oriented event-driven programming in mobile ad hoc networks. In SCCC ’07: Proceedings of the XXVI
International Conference of the Chilean Society of Computer Science, pages 3–12, Washington, DC, USA,
2007. IEEE Computer Society.

7. T. V. Cutsem, S. Mostinckx, and W. D. Meuter. Linguistic symbiosis between event loop actors and
threads. Computer Languages, Systems & Structures, 35(1):80–98, 2009.

8. J. Dedecker, T. V. Cutsem, S. Mostinckx, and W. D. Meuter. Ambient-oriented programming in
AmbientTalk. In Proceedings of the 20th European Conference on Object-oriented Programming (ECOOP,
pages 230–254. Springer, 2006.

9. T. D’Hondt. The skem interpreter, 2010. http://soft.vub.ac.be/soft/skem.
10. P. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe. ACM

Computing Surveys, 35:114–131, 2003.
11. M. Feeley. The Gambit Scheme system, September 2009. http://dynamo.iro.umontreal.ca/~gambit.
12. M. Felleisen, K. Fisler, and S. Krishnamurthi. How to design worlds: Imaginative programming in

DrScheme., June 2010. http://world.cs.brown.edu.
13. M. Flatt, R. B. Findler, and PLT. Guide: PLT scheme. Introduction PLT-TR2009-guide-v4.2.3, PLT

Scheme Inc., December 2009. http://plt-scheme.org/techreports/.
14. W. Golubski. A complete semantics for Smalltalk-80. Computer Languages, 21(2):67–79, July 1995.
15. Google Inc. Android OS, September 2009. http://www.android.com/.
16. Google Inc. Google Maps for mobile, September 2009. http://www.google.com/mobile/products/maps.

html.
17. K. Gybels. SOUL and Smalltalk - just married: Evolution of the interaction between a logic and an object-

oriented language towards symbiosis. In Proceedings of the Workshop on Declarative Programming in the
Context of Object-Oriented Languages, 2003.

18. K. Gybels, R. Wuyts, S. Ducasse, and M. D’Hondt. Inter-language reflection - a conceptual model and
its implementation. Journal of Computer Languages, Systems and Structures, 32:109–124, 2006.

19. E. Kaasinen. User needs for location-aware mobile services. Personal Ubiquitous Computing, 7(1):70–79,
2003.

20. G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press, Cambridge, MA, USA,
1991.

21. S. Kochan. Programming in Objective-C 2.0. Addison-Wesley Professional, 2009.
22. S. Krishnamurthi. The Moby Scheme compiler for smartphones or, is that a parenthesis in your pocket?

In Proceedings of the International Lisp Conference (ILC 2009), 2009.
23. C. Mascolo, L. Capra, and W. Emmerich. Mobile computing middleware. In Advanced lectures on

networking, pages 20–58. Springer-Verlag, 2002.
24. P. Pedro. Dot-Scheme: A PLT Scheme FFI for the .NET framework. In Proceedings of the Scheme and

Functional Programming Workshop, 2003.
25. PyObjC Project. PyObjC: The Python <-> Objective-C bridge, September 2009. http://pyobjc.

sourceforge.net/.
26. TweakerSoft. Aroundme, September 2009. http://www.tweakersoft.com/mobile/aroundme.html.
27. T. Van Cutsem, S. Mostinckx, and W. De Meuter. Linguistic symbiosis between actors and threads. In

ICDL ’07: Proceedings of the 2007 international conference on Dynamic languages, pages 222–248, New
York, NY, USA, 2007. ACM.

28. Wikipedia. App store, 2010. http://en.wikipedia.org/wiki/App_Store.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

http://developer.apple.com/legacy/mac/library/
http://developer.apple.com/iphone/
http://www.common-lisp.org/project/cl-objc/
http://www.common-lisp.org/project/cl-objc/
http://soft.vub.ac.be/soft/skem
http://dynamo.iro.umontreal.ca/~gambit
http://world.cs.brown.edu
http://plt-scheme.org/techreports/
http://www.android.com/
http://www.google.com/mobile/products/maps.html
http://www.google.com/mobile/products/maps.html
http://pyobjc.sourceforge.net/
http://pyobjc.sourceforge.net/
http://www.tweakersoft.com/mobile/aroundme.html
http://en.wikipedia.org/wiki/App_Store

	1 INTRODUCTION
	2 SCHEME PROGRAMMING ON THE IPHONE
	3 BRIDGING SCHEME AND OBJECTIVE-C
	3.1 Linguistic Symbiosis between Scheme and Objective-C
	3.1.1 Data mapping between Scheme and Objective-C
	3.1.2 Protocol mapping between Scheme and Objective-C

	3.2 Scheme/Objective-C Symbiosis by Example
	3.2.1 Instantiating and sending messages to Objective-C objects from Scheme
	3.2.2 Loading Objective-C classes from Scheme
	3.2.3 Invoking Scheme functions from Objective-C
	3.2.4 Type conversions

	3.3 Scripting the Native iPhone Applications Using Scheme
	3.4 Summary

	4 EVENT-DRIVEN PROGRAMMING FOR THE IPHONE DEVELOPMENT
	4.1 Constructs for Accessing iPhone Capabilities
	4.1.1 GPS location information
	4.1.2 Interacting with the native iPhone applications

	4.2 Constructs for Distributed Programming
	4.2.1 Exporting Functions as Services
	4.2.2 Service Discovery
	4.2.3 Asynchronous Remote Function Invocation

	4.3 Summary

	5 APPLICATIONS
	5.1 Building a maps application
	5.2 AmbiScrabble: Building a distributed peer-to-peer game application
	5.2.1 GUI Interactions
	5.2.2 Distributed Interactions

	5.3 Evaluation

	6 IMPLEMENTATION
	6.1 Embedding Scheme in Objective-C Applications
	6.1.1 Initialising the Scheme Interpreter from Objective-C
	6.1.2 Evaluating Scheme Expressions in Objective-C

	6.2 Implementation of the Scheme and Objective-C Symbiosis
	6.2.1 The Objective-C Reflective Capabilities
	6.2.2 Accessing Objective-C Classes from Scheme
	6.2.3 Sending Messages to Objective-C Objects from Scheme
	6.2.4 Creating Objective-C Instances from Scheme
	6.2.5 Memory Management

	6.3 Limitations
	6.4 Summary

	7 LESSONS LEARNED
	7.1 On Implementing Language Symbiosis with Objective-C
	7.2 On the Method Call Overhead

	8 RELATED WORK
	8.1 Scheme Implementations on Mobile Platforms
	8.2 Linguistic Symbiosis

	9 CONCLUSION AND FUTURE WORK

