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Abstract

In this paper we explore the structure and applicability of the Dis-
tributed Measurement Calculus (DMC), an assembly language for dis-
tributed measurement-based quantum computations. We describe the for-
mal language’s syntax and semantics, both operational and denotational,
and state several properties that are crucial to the practical usability of
our language, such as equivalence of our semantics, as well as composition-
ality and context-freeness of DMC programs. We show how to put these
properties to use by constructing a composite program that implements
distributed controlled operations, in the knowledge that the semantics of
this program does not change under the various composition operations.
Our formal model is the basis of a quantum virtual machine construction
for distributed quantum computations, which we elaborate upon in the
latter part of this work. This virtual machine embodies the formal se-
mantics of DMC such that programming execution no longer needs to be
analysed by hand. Far from a literal translation, it requires a substantial
concretisation of the formal model at the level of data structures, naming
conventions and abstraction mechanisms. At the same time we provide
automatisation techniques for program specification where possible to ob-
tain an expressive and user-friendly programming environment.

Keywords: quantum computing, measurement-based quantum computing,
distributed computing, formal models, virtual machines.

1 Introduction

During the last decennia, quantum information has managed to become a sig-
nificant field of research in the exact and applied sciences. Although it is a
relatively new discipline one can currently discern several sub-disciplines such
as quantum cryptography, information theory, computability, error correction,
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fault tolerance, computations and of course there is also the experimental re-
search on the construction of quantum computers (Nielsen and Chuang, 2000).
Nevertheless, the development of quantum information as a proper computa-
tional domain of computer science is lagging behind. Indeed there is no such
thing as a quantum computational paradigm. By this we mean a framework in
which quantum problems can be expressed and solved in terms of data struc-
tures, algorithms, techniques such as abstraction, all of these wrapped up in
an associated programming language. Paradigm building has proved to be an
extremely useful approach in computer science. It has led to theoretically equal
but practically very different programming frameworks, such as functional, im-
perative, logic and object-oriented programming. For this reason we expect this
approach to be crucial also in developing quantum programming paradigms.

The first step in paradigm building is to construct a low-level quantum
programming language and determine its properties. By low-level we mean that
we need to define syntactical expressions for each physically allowed quantum
operation: preparation, unitary transformation, measurement, combined with
classical control expressions if so desired. The syntax in its own is not the goal,
but rather a means by which to facilitate investigations with computer science
techniques. First, we need to determine the functionality of a quantum program,
its semantics. The most obvious way to do this is the operational semantics, the
most practical is the denotational semantics. While in the former a program’s
meaning is given as a sequence of state-changing operations, in the latter it is
instead a mathematical object. Paramount is linking both, so that one can use
whichever in future analyses. Through a programming language’s semantics
one can investigate notions such as composition and context-freeness. These
properties are crucial when one wants to build more complex programs. Indeed,
they allow the semantics of these larger programs to be built up from that
of smaller components using rules for composition, rather than having to be
determined from scratch. While these properties may seem obvious, computer
science is littered with examples where they were mistakenly taken to be true,
leading to problems in programming language development (see for example
(Brock and Ackerman, 1981)).

Recent advances in quantum communication and cryptographic computa-
tions motivate the need for a programming paradigm centred on distributed
quantum computations. In a distributed system one has concurrently acting
agents in separated locations, operating locally on a quantum state, which may
be entangled over agents, and coordinating their actions via communication.
Formal frameworks for distributed quantum computation have only very re-
cently begun to appear. Typically, these are a combination of classical pro-
cess theory, which formalises notions of concurrency and communication, the
quantum circuit model, i.e. local operations are unitary transformations of an
agent’s qubits, and given initial shared entanglement. First, there is the work
in (Lalire and Jorrand, 2004; Jorrand and Lalire, 2005), which is directly built
upon classical process calculi. While this model profits from being closely re-
lated to existing classical models, the disadvantage is that it is hard to focus
on quantum behaviour. A different approach is advanced in the model known
as communicating quantum processes or CQP (Gay and Nagarajan, 2004; Gay
et al., 2005), where the typical communication primitives of process calculi are
combined with computational primitives from QPL (Selinger, 2003). The basic
model of CQP is more transparent. This model serves as a basis for the develop-
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ment of formal verification techniques, in particular for proving the security of
larger scale quantum communication systems. In related work, a probabilistic
model-checking tool built upon an existing automated verification component is
developed (Gay et al., 2005). There is also the work in (Adão and Mateus, 2005),
which is specifically tailored to security issues in cryptographic protocols. In our
work, however, we are much more interested in the expressiveness of quantum
distributed computations and the behavioural properties of distributed primi-
tives. In a way, we take the inverse approach, assuming that computations are
well-defined and investigating what programming concepts are at work, instead
of the other way around.

While the fact that formal verification tools for distributed quantum compu-
tation are currently under development may suggest that a mature distributed
paradigm already exists, this is actually not the case. Distributed protocols
are still very much conceived on intuition, and there is no good notion or for-
malisation of the programming concepts that are at work. We therefore require
adequate formal tools with which to explore and evolve the distributed quantum
computing paradigm. In this paper we explore the structure and applicability
of the Distributed Measurement Calculus (DMC) (D’Hondt, 2005; Danos et al.,
2005), an assembly language for distributed measurement-based quantum com-
putations. We describe its syntax and semantics, both operational and denota-
tional, and state several properties that are crucial to the practical usability of
our language, such as equivalence of our semantics, as well as compositionality
and context-freeness of DMC programs. We show how to put these properties
to use by constructing a composite program that implements distributed con-
trolled operations, and demonstrate that the semantics of this program does
not change under the various composition operations. Finally, we elaborate on
an implementation for the DMC language which we developed under the form
of a virtual machine, a platform-independent programming environment that
abstracts away details of the underlying hardware or operating system. This
virtual framework is a crucial step in providing DMC as an experimentation
platform for distributed quantum computations, as reasoning within the formal
model by hand proves quite cumbersome for even small computations. At the
basis of our work lies the measurement calculus (Danos et al., 2007), a low-level
quantum programming language for measurement-based quantum computations
from which we explore the distributed paradigm. Next to the obvious advan-
tage of starting from a proper formal framework, measurement-based models are
well-suited as a starting point for distributed quantum computations because
they are inherently distributed. What is important here is that the well-known
physical framework of quantum computation is ported to an equivalent com-
puter science framework, opening up the field towards investigations from this
branch of science as well.

The structure of this paper is as follows. In the next section we discuss the
syntax of our language, while Sec. 3 covers the semantics of DMC and lists its
properties. Sec. 4 applies the previous to a concrete example, a composite proto-
col implementing distributed controlled gates. We discuss the implementation
of the quantum virtual machine for DMC in Sec. 5, and conclude in Sec. 6.
Some basic knowledge of quantum computation is assumed; for the reader not
familiar with the domain we refer to the excellent (Nielsen and Chuang, 2000).
Our approach in this article is to explain the notions of the model by example,
rather than providing a series of formal definitions which are hard to interpret
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and for which space it too limited. However, we stress that the model is a rig-
orous one, and, while this paper is a stand-alone document, refer the interested
reader to the appendix for the full formal semantics of the DMC language and
(D’Hondt, 2005; Danos et al., 2005) for complete definitions.

2 Syntax

The language we propose is, broadly speaking, an assembly language for dis-
tributed measurement-based quantum computations. It is an assembly language
in that it provides syntax only for the most basic operations while at the same
time being universal. It is measurement-based as we build our language on top
of the measurement calculus (MC) (Danos et al., 2007), an assembly language
for measurement-based quantum computations. The latter depart from the
usual circuit-based approach to quantum computing, where unitary transfor-
mations are the driving force of computations. While measurement operations
were long seen as a necessary but disruptive part of quantum computing, in al-
gorithms such as teleportation they act as an essential part of the computation.
This gave rise to models where the computation is steered by pre-established
generic entanglement combined with measurements, such as the one-way quan-
tum computer (Raussendorf et al., 2003). Because measurements are inherently
probabilistic, correction operations are required that are conditionally applied
depending on previous measurement outcomes, thus rendering the computation
deterministic. All of this is nicely captured in the measurement calculus. For
this reason, as well as the inherent distributive aspect of measurement-based
models, MC is an ideal basis from which to develop our language.

We describe our language model in three layers. The base layer consists of
MC patterns, which describe local quantum computations. These are combined
with distribution primitives into the notion of agents in the middle layer. Fi-
nally, agents and their shared entanglement resources are bundled into networks
in the top layer.

Patterns. In MC a pattern is defined by a sequence of commands together
with sets of qubits for working, input and output memory. As an example
consider the following pattern, which, as we explain below, implements the
Hadamard operation,

H(1, 2) := ({1, 2}, {1}, {2}, Xs1
2 MX

1 E12) . (1)

All qubits are uniquely identified using numbers. The first argument denotes
that the pattern has a computation space of two qubits, referenced by 1 and
2. The next two arguments specify the pattern’s inputs and outputs. Working
qubits that are not input qubits are initialised to |+〉 = |0〉 + |1〉. The last
argument is the pattern’s command sequence, a list of operations taken from
a basic set and executed from right to left, analogous to matrix applications.
Subscripts denote qubit arguments of the operation, while corrections are con-
ditionally executed depending on their superscript. Concretely, one runs the
pattern H by preparing the first qubit in some input state |ψ〉 and the second
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in state |+〉, then entangling both qubits with the controlled-Z operation1 to
obtain CZ12(|ψ〉 ⊗ |+〉) (syntax: E12). Next, the first qubit is measured in the
{|+〉, |−〉} basis (syntax: MX

1 ), where |−〉 = |0〉−|1〉. Finally, an X correction is
applied on the output qubit if the measurement outcome was s1 (syntax: Xs1

2 ).
Here s1 defines a signal – simply 0 or 1 – coming from the X-basis measurement
on qubit 1 in MX

1 . If the signal is 0, the operation is not performed. Measure-
ments are considered to be destructive, which is why qubit 1 does not appear
in the output set.

A general pattern is denoted P(V, I,O,A), with computation space V , inputs
I and outputs O (together called the pattern type), and command sequence A
that consists of entanglements Eij , measurements t[Mα

i ]s, or corrections Xs
i or

Zsi , where i, j ∈ V , α ∈ [0, 2π] and s, t ∈ Z2. Allowed measurements are those
in the XY -plane of the Bloch sphere, and are specified by the angle α (MX

1 is
actually syntactic sugar for M0

1 ). Measurement angles may also be conditioned
by signals, written t[Mα

i ]s, with (−1)sα + tπ being the actual measurement
angle. The four basic instructions together with signal conditioning suffice to
make the model universal (Raussendorf et al., 2003; Danos et al., 2007).

Patterns can be combined into larger ones to create arbitrary quantum com-
putations. The sequential composition of patterns P1 = (V1, I1, O1,A1) and
P2 = (V2, I2, O2,A2), with O1 = I2, is defined as

P2P1 := (V1 ∪ V2, I1, O2,A2A1) , (2)

while the parallel composition of the same patterns is defined as

P1 ⊗ P2 := (V1 ] V2, I1 ] I2, O1 ]O2,A1A2) . (3)

Note that one can always rename qubits for parallel composition to become
possible, while sequential composition also needs I2 and O1 to have the same
cardinality.

As an example, here is the pattern to create a 3-fold GHZ-state |000〉+ |111〉,

GHZ123 = ({1, 2, 2̂, 3, 3̂}, ·, {1, 2, 3},H(3̂, 3)E23̂H(2̂, 2)E12̂) , (4)

where 2̂ and 3̂ are working qubits.
MC is equipped with a powerful standardisation theorem which provides a

procedure for bringing any pattern, such as the one above, into EMC-form,
i.e. with entanglements first and corrections last. This is important from an
experimental implementation perspective, and also corresponds nicely with the
typical structure of a distributed quantum protocol where one starts out with
a shared entanglement resource. In fact within MC we can already express
distributed computations such as teleportation,

({1, 2, 3}, {1}, {3}, Xs2
3 Zs13 MX

2 M
X
1 E12E23) . (5)

While the pattern describes the intended computation, we find no notion of
separate parties participating in the teleportation, and neither of the required
communication between them. Purely by convention, and because everybody
knows the protocol, we can say that qubits 1 and 2 belong to Alice and qubit

1A controlled-Z operation on two qubits applies the Z operation to the second qubit
provided the first is set to 1.
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3 to Bob. It is still hard to see if and what both parties have to communicate,
e.g. Bob needs s1 and s2 but has no access to qubits 1 and 2, thus Alice needs
to perform the measurements and communicate the results to Bob. We want
this information to be explicit and obvious in the language, which in turn makes
it easier to describe and reason about distributed quantum programs. To see
that this is important, try to identify what is implemented with the following
distributed protocol,

({0, 0̄, 1, 1̄, 2, 2̄}, ·, {0, 1, 2}, Zs2̄2 Z
s1̄
1 Z

s0̄
0 MGHZ

0̄1̄2̄ E00̄E11̄E22̄) . (6)

Here MGHZ is a pattern for GHZ-measurement. Note that pattern (4) imple-
ments the unitary transformation between the diagonal basis and the GHZ-basis
{|i〉+ |i〉}2n−1

i=0 . Hence a GHZ-measurement is executed by applying the inverse
pattern followed by a measurement in the diagonal basis. We will get back to
this pattern in Sec. 4.

Agents. An agent embodies a single computation node running in isolation
in a distributed algorithm, i.e. a processor or a party such as Alice or Bob.
Each agent has a local command sequence, which operates on a set of resources
contained within its environment. Agent instructions are either measurement
patterns or communication primitives. For example, the teleportation pattern
(5) really needs the following agent definitions for Alice and Bob, respectively,

A : {1, 2}.c!s2.c!s1.M
X
2 M

X
1 E12 and B : {3}.Xs2

3 Zs13 .c?s2.c?s1 . (7)

As we can see an agent definition consists of a type in curly braces, which spec-
ifies what qubits an agent owns, and an instruction sequence. Next to local
quantum operations, written in MC language, we specify the exchange of the
signals s1 and s2 between Alice and Bob via the communication primitives c?
and c!. What is missing here as compared to pattern (5) is the prior shared
entanglement E23, as indeed it is impossible to factorise this part of the pro-
tocol into agent definitions. There is no other option than to specify shared
entanglement separately in the network definition for the full protocol, as we
shall see below. Of course the qubits are still local to the agents – as reflected
in the type – only their description is not.

Formally, an agent is defined by an expression A(i, o) : Q.E , where the type
Q is a set of qubit references and E is a finite instruction sequence composed
of pattern command sequences A, classical message reception c?s and sending
c!s, where s is a signal, and quantum reception qc?q and sending qc!q, where
q is a qubit reference. Corresponding communication actions are synchronised,
meaning that an agent executing a receive will pause its program until the
required agent has sent a message on the same channel and vice versa. Classical
inputs i and outputs o are used in protocols such as superdense coding, and are
not mentioned when there are none. Also, working qubits required by patterns
are initialised to |+〉 as before and are not specified in the type Q.

Networks. A network of agents consists of several agents that execute their
command sequence concurrently. Typically, quantum resources are shared be-
tween agents – indeed most distributed quantum protocols benefit from some
type of shared entanglement being present prior to the start of the protocol. We
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have no way of splitting the representation of these states over agent definitions,
and instead have to specify agents separately in a network’s definition. This is
why a network specification is more than just a collection of agent definitions, a
feature specific to quantum concurrent frameworks and absent in classical con-
currency. To keep track of how a shared resource is distributed each agent’s
type Q specifies which qubits of a shared resource are local to that agent.

At this point we can finally write down the full teleportation protocol, in-
cluding all relevant distributed aspects.

TP := A : {1, 2}.c!s2.c!s1.M
X
2 M

X
1 E12

| B : {3}.Xs2
3 Zs13 .c?s2.c?s1

‖ E23

(8)

Analogous to process algebraic notation we use a vertical bar | to separate
concurrently executing agents. Shared network resources are specified after the
double bar ‖. For teleportation this is the state E23, which was produced and
handed out to Alice and Bob prior to the execution of the protocol. If so desired
the establishment of shared resources can itself be seen as a distributed protocol
involving a server agent polled for entanglement services. We now likewise lift
the pattern given in (6) to a distributed setting, obtaining the following

ES := L : {0̄, 1̄, 2̄}.c0!s0̄.c1!s1̄.c2!s2̄.M
GHZ
0̄1̄2̄ .

| A0 : {0}.Zx0̄
0 .c0?x0̄

| A1 : {1}.Zx1̄
1 .c1?x1̄

| A2 : {2}.Zx2̄
2 .c2?x2̄

‖ E00̄E11̄E22̄ ,

(9)

where MGHZ
0̄1̄2̄ is a pattern executing a GHZ-measurement. This is the entan-

glement swapping protocol for three agents (Zukowski et al., 1993; Bose et al.,
1998), which produces a GHZ-state shared between A0, A1 and A2. Because
the resulting GHZ state is in the diagonal basis we have Z rather than X cor-
rections in the network specification.

Arbitrary networks are denoted N = |iAi(ii,oi) : Qi.Ei ‖σ. For simplicity,
we assume that networks of agents satisfy a number of definiteness conditions
which ensure that the computation is well-defined. For example, an agent may
only operate on qubits he owns, and every communication event needs to have
a corresponding dual event in the network. Of course these issues are important
but we are glossing over them here as we assume checking these occurs in a
pre-compilation step rather than at runtime.

Our extensions to the measurement calculus have made distributed notions
explicit. We can now see directly from a protocol specification what agents
have to communicate to whom as well as which assumptions are made about
non-local entanglement resources. Also, because each agent’s instructions are
expressed separately, we do not impose any particular execution order for local
quantum operations. This makes it clear which parts of the protocols can and
cannot run concurrently.
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3 Semantics

In the previous section we established the syntax of DMC. The next step is
to establish the meaning of a program written down in this language, i.e. its
semantics. Formal semantics is a means of assigning objects to chunks of code
so that one can reason with these objects rather than with the code itself. In
this section we describe an operational as well as a denotational semantics for
DMC programs and, with this in hand, state some important properties of our
framework.

Definition. A network’s operational semantics reflects how it affects the state
of a distributed system on which the network is run. That is, we associate with
each agent a local state (quantum and classical), and specify how the network
specification updates these. Since we always have to take the shared entangle-
ment resources into account the operational semantics does not decompose into
state transformers for each of the agents separately. On top of this a crucial in-
gredient of the semantics specifies how quantum resources move throughout the
system. Concurrency is not really an issue for the semantics because, due to the
linearity of quantum mechanics, the order in which local operations are applied
is unimportant. Hence we pick an order arbitrarily and derive the semantics for
this case.

Concretely, the operational semantics of a network is found by collapsing
individual small-step semantical rules into one transition system. The full small-
step semantics of DMC can be found in the appendix; it consists of a number of
quantum mechanical rules – corresponding to measurement pattern commands
– and a number of communication rules. These affect the global quantum state
(EMC commands), the local resources (quantum communication), and the local
memory (M commands and classical communication). Since measurement is
probabilistic, so are the small-step rules. The formal semantics of measurement
pattern commands is well established (Danos et al., 2007; D’Hondt, 2005), and
just needs to be lifted to the DMC setting. We elaborate here the semantics of
typically distributed concepts introduced in the previous section. The formal
semantics of MC relies on the component Γ, the outcome map, which contains
a number of bindings from signal names to measurement outcomes. In DMC
the outcome map is lifted to a local agent memory recording also the values
of classical messages. Concretely, a classical communication event between two
agents has the following semantics, given that Γb, the local memory of Bob,
evaluates the name y to the value v,

A : (Qa,Γa).Ea.c?x | B : (Qb,Γb).Eb.c!y

=⇒ A : (Qa,Γa[x→ v]).Ea | B : (Qb,Γb).Eb .
(10)

Here Γa[x ↓ v] means that we assign a new binding of x to v in the local
memory of Alice. These rules are typically much harder to read and write
down formally than to apply concretely. What we are saying here is that if a
classical communication takes place, the value is looked up by the sending agent,
and received and bound to a new name by the receiving agent, after which
the computation (Ea and Eb) continues. Sending and receiving qubits over a
quantum channel changes the types Q of the agents involved. An agent sending
a qubit can no longer perform any operations on it, therefore the corresponding
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qubit reference is removed from Q, while it is added to the receiving agent.
Formally, the rule for the exchange of a qubit with reference i is given by

A : (Qa,Γa).Ea.qc?i | B : (Qb,Γb).Eb.qc!i

=⇒ A : (Qa ∪ {i},Γa).Ea | B : (Qb\{i},Γb).Eb .
(11)

It goes without saying that the way in which the actual communication of a qubit
is implemented is more intricate than this simple rule. However, by providing
quantum communication as primitive syntax we are precisely choosing not to
get into these implementation matters. Both rules mentioned here do not affect
the global quantum state, which is why it is not mentioned. This is not the
case for the small-step semantics for pattern commands, which moreover may
be probabilistic. The full small-step semantics can be found in the appendix or
in (D’Hondt, 2005; Danos et al., 2005).

We obtain the operational semantics by defining computation paths in the
usual way and gathering all small steps in a computation path in one big step
from initial to final state in that path. As such the operational semantics of
a quantum distributed network is essentially a probabilistic transition system
(PTS). However, since resource allocation is crucial, we have to augment this
PTS with information on how qubits move throughout the network. This is
formalised as a type signature. We denote the operational semantics of a net-
work N by JN Kop. For example, the operational semantics of TP is given by
the deterministic transition system

JTP Kop : ({1}, ·)→ (·, {3}) . ρ1 =⇒ ρ3 , (12)

where ρ is the density matrix specifying the input quantum state to be teleported
and subscripts indicate qubit systems. The operational semantics of the ES
network given in (9) is also deterministic.

JESKop : (·, ·, ·, ·)→ (·, {0}, {1}, {2}) . 0 =⇒ GHZD012 , (13)

where the superscript D denotes that the resulting state is in the diagonal basis.
Note that we only write real quantum inputs in the type while not mentioning
entanglement resources. The good thing about operational semantics is that in
principle it can be derived automatically by induction on the small-step rules.

Denotational semantics is a second means of assigning a formal meaning to
a chunk of code, this time by way of mathematical objects. If we look at the
skeleton of a distributed protocol, i.e. the equivalent non-distributed pattern,
we find a multi-local probabilistic quantum operation, which is mathematically
represented by (a special type of) completely positive map (CPM). Since proto-
cols with different distribution of resources are observationally different, we have
to pair this CPM with a function mapping input to output resources, formally
represented by a type signature. We denote this type of semantics by JN Kde for
a network N . For example, the denotational semantics of TP is given by the
map

JTP Kde : ({1}, ·)→ (·, {3}) . I , (14)

i.e. TP implements the identity map from qubit 1 to qubit 3. Here we see the
importance of the type signature in specifying the semantics. The subtle differ-
ence between both types of semantics becomes more apparent once one starts
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investigating more complex protocols involving mixed states and probabilistic
semantics.

As we see from the examples both types of semantics are quite similar, and
indeed we have the following result, which we state without proof.

Proposition 3.1 There is a precise correspondence between the operational
and the denotational semantics of networks of agents, that is to say

∀N1,N2 : N1 ≡op N2 ⇐⇒ N1 ≡de N2 . (15)

Two networks are semantically equivalent if they have the same semantics.2

While the equivalence between semantics may seem obvious (certainly from the
example), it is crucial to prove this statement formally, as it allows one to switch
between semantics where appropriate without giving the issue further thought.
We note that in general this equivalence is not guaranteed.

Building larger protocols. With syntax and semantics in hand we can now
consider constructing larger networks from smaller components. We consider
parallel as well as sequential composition of networks, denoted by ⊗ and ◦
respectively. These operations are defined in the obvious way so we will not spell
out concrete definitions here. Suffice to say that one needs to pay attention to
agent as well as qubit names to ensure that networks are connected as desired.
More importantly we need to make sure that these forms of composition are
consistent with the semantics, as is indeed the case.

Proposition 3.2 The semantics of networks is compositional, i.e.

JN2 ◦ N1K = JN2K ◦ JN1K . (16)

JN1 ⊗N2K = JN2K⊗ JN1K (17)

Here we have a first application of Prop. 3.1, as first we do not need to specify
which type of semantics we mean in the statement of Prop. 3.2 , and second we
can choose the most convenient semantics for the proof, which is the denota-
tional semantics. While the compositions on the left hand side are at the level
of agent and network definitions, the composition of network semantics on the
right hand side is a functional one at the level of type signatures, PTS’s and
CPMs. For the full proof we refer to (D’Hondt, 2005); an example is given in
Sec. 4.

A second important notion when constructing larger protocols, closely re-
lated to compositionality, is that of contexts. Informally speaking a context
is a program with a “hole” in which a network specification can be inserted,
typically denoted C[·]. On some occasions, one finds that programs that are
considered equivalent in isolation no longer behave in the same way when placed
within the context of a larger program. This is particularly the case in concur-
rent systems. A historical example is the Brock-Ackerman anomaly (Brock and

2For example, one can prove that qubit communication between two agents is semantically
equivalent to the teleportation network.
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Ackerman, 1981), by which it was realised that simple input-output behaviour
is not enough to reason about equivalence of concurrent systems. In our frame-
work contexts C[N ] are given by arbitrary network compositions C in which
our network N is placed. What is different with ordinary compositionality is
that the quantum resources of the network N are no longer considered to be
independent of those of its context. Indeed in Prop. 3.2 quantum resources are
considered to be provided independently, such that composite networks oper-
ate on disentangled inputs. While this is sensible when each of the networks
operate in isolation, it is less so when a network is only one factor in a com-
plex compositional structure. Hence we first need to show that our semantics
is independent of so-called entanglement contexts. This is a consequence of the
following proposition, which we state here without proof.

Proposition 3.3 Suppose L : ρA −→ ρB =
∑
k LkρAL

†
k is a completely pos-

itive map. Then for all quantum states ρAC applying L to the A-part of ρAC
results in

ρBC =
∑
k

(Lk ⊗ IC)ρAC(L†k ⊗ IC). (18)

The proof, though easy, is not trivial. Using this proposition and composition-
ality we have the following important result.

Corollary 3.4 Equivalence holds in arbitrary contexts, that is, if N1 ≡ N2,
then for all network contexts C[·] we have that C[N1] ≡ C[N2].

4 Applications

We now show how all of the formal ingredients can be put to use in a concrete
example. The distributed primitive we will investigate is that of a distributed
remotely controlled gate (Yimsiriwattana and Lomonaco, 2005). Near-future
quantum computers are expected to have only a limited number of qubits per
machine. Even in quantum simulating environments the current qubit limit is
only about 36 (Raedt et al., 2006). Hence one can imagine that quantum com-
putations need to proceed much like cluster computations today, with resources
spread over different processors in order to make them feasible. One common
situation would be where the central processor needs to execute a controlled
operation with the target qubits spread over a group of agents. Following the
ideas in (Yimsiriwattana and Lomonaco, 2005), once we have a GHZ resource
we can execute a distributed controlled gate. Calling the central processor L (for
Leader), and assuming there are two subordinate processors A and B, the trick
is to establish a shared control qubit between target agents, which is achieved
through the share control (SC) protocol as follows,

SC := L : {c, 0}.c1,2!s0. M
X
0 E0c .

| A1 : {1}.Xx0
1 .c1?x0

| A2 : {2}.Xx0
2 .c2?x0

‖ GHZD012

(19)

Here qubit c is the input control qubit which is in the state α|0〉 + β|1〉. That
the protocol indeed establishes its goal may be seen from its semantics, which
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can be derived unambiguously to be

JSCKop : ({c}, ·, ·)→ ({c}, {1}, {2})
(α|0〉+ β|1〉)c =⇒ (α|000〉+ β|111〉)c12 .

(20)

Once this type of shared entanglement is in place each target agent just has to
execute a local controlled unitary gate with as control its qubit in the shared
entanglement resource. Note that because we have context-independence of the
semantics, target qubits may be entangled over different agents. However, in
order for the distribution approach to be possible at all, the controlled unitary
CU must have U = U1 ⊗ U2 where, U1 and U2 operate on a number of target
qubits smaller or equal than the maximum available qubits for each agent.

We see that the SC protocol requires GHZ entanglement. It is probably
realistic to assume that in a quantum network each agent can ask for Bell-state
entanglement with the central server. It is not so realistic to assume that groups
of agents can demand direct GHZ entanglement whenever they need it; rather,
we expect GHZ entanglement to be produced via the entanglement swapping
protocol. Note that, since we need GHZ entanglement between L, A1 and A2,
we need to compose L with A0 in the ES protocol as presented earlier in (9),
that is

L := A0 ◦ L : {0, 0̄, 1̄, 2̄}.Zx0̄
0 .c1!s1̄.c2!s2̄.M

GHZ
0̄1̄2̄ . (21)

What we are actually doing here is composing the SC protocol with no shared
resource with the ES protocol to establish the resource, and our semantics
ensures that this is something we can do unambiguously. Indeed, we have

JSC ◦ ESK = JSCK ◦ JESK
= ({c}, ·, ·)→ ({c}, {1}, {2})

. (α|0〉+ β|1〉)c =⇒ (α|000〉+ β|111〉)c12,

(22)

with JSCK and JESK given in (20) and (13) respectively.

More agents. The networks that we defined for implementing the distributed
remote gate protocol can be generalised to n agents. This requires generalised
procedures for GHZ-measurement, entanglement swapping and establishing a
shared control qubit. First, an n-fold GHZ state is produced by generalising
the 3-GHZ-pattern given in (4). That is, through the pattern with no input
qubits, output qubits {1, 2, . . . , n} and an event sequence interleaving E and H
operations, as follows,

GHZ1...n = H(n̂, n)E(n−1)n̂ . . . E34̂H(3̂, 3)E23̂H(2̂, 2)E12̂ , (23)

where the hatted qubits are again working qubits. Again, a GHZ-measurement
is executed by applying the inverse pattern followed by a diagonal-basis mea-
surement. This leads to the pattern

MGHZ
1...n = M0

1̂
M0

2̂
. . .M0

n̂E12̂H(2, 2̂)E23̂H(3, 3̂)E34̂ . . . E(n−1)n̂H(n, n̂) , (24)

with input qubits the qubits {1, 2, . . . , n} to be measured and with no outcome
qubits. Using this sub-pattern we can establish GHZ-entanglement between
the leader L and agents A1 through to An by the generalised entanglement
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swapping protocol (Zukowski et al., 1993; Bose et al., 1998), which has the
following network specification,

ES := L : {0, 0̄, . . . , n̄}.Zx0̄
0 .(ci!sī)

n
i=1.M

GHZ
0̄...n̄

|ni=1 Ai : {i}.Zxī
i .ci?xī

‖ ⊗ni=0 Eīi .

(25)

This is just the generalisation of network (9) where we have merged agents L
and A0 for the purpose of establishing a shared control qubit as before. The
signal s = s0̄ . . . sn̄ corresponds to a projection on the GHZ-state |s〉+ |s〉. This
network has the following semantics,

JESKop : (·, . . . , ·)→ ({0}, {1}, . . . , {n}) . 0 =⇒ GHZD0...n . (26)

After establishing GHZ-entanglement between agents a shared control qubit is
obtained through the following protocol.

SC := L : {c, 0}.ci!s0. M
X
0 E0c .

|ni=1 Ai : {i}.Xx0
i .ci?x0

‖ GHZD0...n
(27)

The semantics of this network is given by

JSCKop : ({c}, ·, . . . , ·)→ ({c}, {1}, . . . , {n})
(α|0〉+ β|1〉)c =⇒ (α|0〉⊗(n+1)

+ β|1〉⊗(n+1)
)c1...n .

(28)

Control qubit c can now indirectly control unitary operations at the sites of
all agents by having agent Ai execute a local pattern for a controlled unitary
gate where the control is its qubit i and the targets are locally available qubits.
Again, for this approach to be possible the controlled unitary CU must have
U = U1 ⊗ . . .⊗ Un where each of the sub-unitary Ui is executable by agent Ai.

5 Virtualisation

In the above we introduced a formal language for distributed quantum compu-
tation. Providing a number of tools for constructing higher-level programs, it
should be seen as a first step in a bottom-up construction of a distributed quan-
tum programming paradigm. However, the previous section clearly shows how
cumbersome it is to describe and evaluate computations purely within the for-
mal model. Rather, these developments are only really useful when one thinks
of the language DMC in terms of a quantum virtual machine (QVM). A virtual
machine is a platform-independent programming environment that abstracts
away details of the underlying hardware or operating system. In our setting it
is a low-level language abstraction layer which executes DMC programs inde-
pendent of the actual implementation of quantum operations, which could be
executed by any of several existing quantum simulators or even by a physical
quantum computer. A QVM forms a crucial layer in a tiered quantum compu-
tation architecture (Svore et al., 2006) by acting as mediator between a set of
low-level basic quantum gates and the construction of more complex quantum
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programs,. This is invaluable if one is concerned with developing higher-level
distributed quantum computation languages through experimentation and ab-
straction. Using the QVM as a firm basis we show we can build abstraction
layer upon layer, towards an invaluable user-friendly and flexible programming
environment.

Translating the formal model into a virtual machine has the obvious bene-
fits of automating program execution and composition. Furthermore, low-level
inspection during a pre-compilation step can automatically determine a number
of issues such as well-definedness of code. While the formal language we have
discussed in the above provides the backbone for our virtual machine, its actual
implementation is far from trivial. Issues such as well-definedness of programs,
identifiers and variables within local computations as well as in larger program
contexts and efficiency all come into play in a more concrete sense that is ab-
sent in the more abstract formal model. We will dwell on such elements of
our implementation where it essentially and significantly differs from the formal
DMC model. Note that we use the adjectives formal and virtual to differentiate
between similar objects in the formal model and the virtual one whenever the
context is unclear.

Instead of developing an ad-hoc computer program to execute the formal
DMC language directly, we have opted for a layered design that clearly separates
each feature of the language into a separate ’compilation’ step from a more
abstract version of the language into a more concrete one. We use this to our
advantage; first implementing a stand-alone MC virtual framework and then
formulating the DMC’s as an extension, as we have done for the formal model.
The structure of the rest of this section reflects this design, dealing first with
an execution then a composition layer for sequential MC-based computations in
Sec. 5.2. Next we extend this platform towards a distributed version thereof in
Sec. 5.3. In Sec. 5.4 we expose the implementation specific details and specify
the syntax and semantics of each layer in turn. In the final part of this section
we show a user-friendly tool to graphically design computations, based on our
platform. However, we will first give an overview of our virtual framework’s
design.

5.1 Overview

Setting aside our graphical toolkit shown in Sec. 5.5, our virtual framework can
be seen as a compiler suite; compiling a more abstract and expressive language
into a small assembly-like execution language. This execution language can be
seen as the instruction set architecture of a low-level Quantum Virtual Machine,
forming the basis layer in our design. The design of the full DMC virtual
environment is presented here incrementally, starting with the virtualisation of
the MC and then moving on to the distribution extensions forming the DMC
virtualisation.

We first focus on the execution layer for the MC. To design this we have to
turn the formal MC language into a more concrete form. Taking as a running
example the Hadamard pattern from Eq.(1)

H(1, 2) := ({1, 2}, {1}, {2}, Xs1
2 MX

1 E12) ,
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becomes the computer readable expression

((E 1 2) (M 1 0) (X 2 (s 1))) .

The exact syntax and semantics of this and following examples are elaborated
on in Sec. 5.2.

Measurement pattern expressions and the composition thereof are added in
a separate layer, as the pattern abstraction is not needed during execution.
The measurement pattern abstraction introduces qubit sorts and local qubit
references. The Hadamard command sequence example above is expressed as a
pattern

((?i ?o) (?i) (?o) ((E ?o ?i) (M ?o 0) (X ?o (s ?i)))) ,

which can be easily compiled into the above executable expression by taking
only the command sequence and replacing the variable names, preceded by a
question mark above, by concrete and unique qubit identifiers. This is per-
formed by the composition layer on which we focus ourselves in Sec. 5.2.2.
Measurement patterns are introduced as a way to compose multiple command
sequences effectively, by merging several patterns into a singleton. For example,
the Controlled-NOT pattern can be expressed as a combination of the Hadamard
and a Controlled Z operation

∧X := (I(1)⊗H(3, 4)) ◦ ∧Z(1, 3) ◦ (I(1)⊗H(2, 3)) . (29)

The composition mechanics are explained further in Sec. 5.2.2. Combining the
execution and composition layer we can illustrate the design for the virtual MC
framework in Figure 1.

For the DMC virtual framework in Sec. 5.3 we expand the stand-alone MC
virtual framework above horizontally. That is, extending each layer instead of
adding new ones. The new executable language for the execution layer now
contains multiple command sequences that need to be executed concurrently,
instead of the one command sequence. Each command sequence expresses the
computation performed by a different agent in the network. The set of opera-
tions in the execution layer’s language is extended with the basic communication
primitives. The pattern layer is extended with support for agent patterns and
network composition. The former adds channels next to qubit variables, the lat-
ter expresses how qubits and channels are shared across agents in the network.
Similar to the MC virtual framework, a network is composed and compiled
down to the underlying execution language. Agents as they appear in formal
DMC become a type of pattern that can not only be composed by their in-
and output qubits, but also by communication channels. Agents are composed
with each other and with the global resource pattern R, according to the net-
work configuration NC. Figure 2 illustrates this with the classic teleportation
example.

The definition of pattern compositions lend themselves well to a graph-based
visual notation, as we will see. We exploit this fact with a Graphical User
Interface(GUI) in Sec. 5.5, avoiding a cluttered textual notation.

5.2 The quantum virtual machine

We first present a virtual environment for the MC, providing a way to compose
measurement patterns and execute the result. This environment implements
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Figure 1: Schematic representation of the virtual MC framework, using a Con-
trolled NOT pattern example.

the MC as presented in its original publication Danos et al. (2007). We identify
the command sequence and measurement patterns as its two main features. The
command sequence describes the actual quantum computation semantics, while
the measurement pattern acts as an abstraction mechanism to compose multiple
command sequences into a larger one.

5.2.1 Execution layer

The execution layer takes a concrete command sequence as an input and is in
charge of performing the semantics. A command sequence is an expression that
lists quantum operations with concrete qubit identifiers. We present these as
integers, used as indices. This is expressed as structured data, for the computer
to work with it. We choose to represent this data syntactically with symbolic
expressions or s-expressions (McCarthy, 1960), as popularised by the program-
ming language Lisp. At the same time we choose to adhere insofar as possible to
the notation used in the formal model. A BNF specification of this syntax can
be found in the implementation section 5.4. The following command sequence
will after execution have performed the hadamard operation with qubit 1 as
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Figure 2: Schematic representation of the virtual DMC framework, using a
teleportation network example.

input and qubit 2 as output.

((E 1 2) (M 1 0) (X 2 (s 1))) . (30)

An important difference here is that the command sequence operations are
executed from left to right. In the formal model’s notation this was the reverse.
The right to left order reflects matrix operations in linear algebra. In a virtual
model this makes less sense and so we choose a left to right ordering, out of
both implementation reasons and computer science tradition.

The execution layer consists of an interpreter which directly executes each
operation in turn. It is essentially an automatic version of the operational
semantics described earlier in Sec. 3 and specified in full in the appendix. In the
formal model the quantum state is represented as a single state vector, a tensor
product of all qubits during initialisation. Given the computational explosion of
operations on larger tensors, this is highly impractical in a classical simulation
environment. In our implementation we use a technique that only puts qubits
together in a tensor when entangled. This is possible because the MC ensures
us that qubits only get entangled after the entanglement operation, and only
measurement will again break this entanglement. This technique is described
in further detail in the implementation section 5.4.

5.2.2 Composition layer

The language understood by our execution layer is in itself a full QC language,
although writing larger quantum algorithms in it by hand quickly becomes a
tedious and error-prone process. The measurement calculus introduces measure-
ment patterns and pattern composition simplify this task. Pattern definitions
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enable local reasoning while composition allow for the creation of more com-
plex programs out of smaller parts. More general patterns can be defined by
using parameters, and algorithms can be programmed by composing them out
of smaller patterns. All these abstractions are taken care of by the composi-
tion layer explained here. Its compiler effectively machine-generates command
sequences for the execution layer.

Patterns are command sequences where all qubit names are categorised as
either input, output or working qubits. Defining patterns is a straightforward
process: the command sequence syntax is the same as the execution layer lan-
guage, but instead of concrete qubit references, variable names may be used.
We precede variable names with a question mark to stress the difference with
constants and concrete identifiers. The measurement pattern for the familiar
Hadamard pattern is expressed in our environment as

H := ((?i ?o) (?i) (?o) ((E ?o ?i) (M ?o 0) (X ?o (s ?i)))) .

Additionally, a pattern definition can be parametrised, which is necessary
for patterns such as the J (α)-pattern (Danos et al., 2007). This is implemented
in a straight forward way by using substitution, and does not influence other
semantics.

Measurement patterns can be composed into a larger one in parallel or se-
quentially, as defined formally in Eqs. (2) and (3) respectively. These definitions
rely on the author of the pattern to prepare the composition by rewriting qubit
names and, in case of sequential composition, tensoring identity patterns where
needed to make sure the condition V1 ∩ V2 = O1 = I2 is met.

In a parallel composition, the patterns do not share any qubits. It is up to
the author to choose unique qubit names in a way such they overlap, usually by
renaming those that names do. In the following example we perform a parallel
composition of two Hadamard patterns.

H := ((?i ?o) (?i) (?o)

((E ?o ?i) (M ?o 0) (X ?o (s ?i))))

H(1, 2) ◦ H(3, 4) := ((1 2 3 4) (1 2) (3 4)

((E 1 2) (M 1 0) (X 2 (s 1))

(E 3 4) (M 3 0) (X 4 (s 3))))

In a sequential composition the patterns have interdependencies; patterns
intentionally share qubit names. The pattern author has to rename and match
the correct qubit names to get the correct combinations. Using the same ex-
ample, we sequentially compose two H patterns by matching one’s output with
the other’s input.

H(1, 2) ◦ H(2, 3) := ((1 2 3) (1) (3)

((E 1 2) (M 1 0) (X 2 (s 1))

(E 2 3) (M 2 0) (X 3 (s 2))))
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It is crucial to automate this renaming process in a setting where we wish
the programmer to be able to compose arbitrary patterns in intricate configu-
rations. Our pattern compiler does precisely that. It allows the programmer
to declare his intentions in non-trivial composition cases, whereas a standard
rule is applied in absence thereof. This allows us to automate the tedious part
of the qubit renaming process, while at the same time reducing the chance for
human error on larger pattern compositions. In our approach the programmer
has to list patterns in order and, in the non-trivial cases, give pairs of qubits to
specify how patterns are to be composed. The patterns are composed by first
instantiating the involved measurement patterns with fresh variable names, and
then matching the names of the given variable pairs. Our automated renam-
ing process works by generating a set of bindings that map the qubit variable
names in every pattern to new ones, such that the chosen names are equal if
they appear in the same pair. This is essentially the same process as one is
assumed to execute manually when composing patterns in the formal model.
For a more detailed and formal explanation of this renaming process we refer
to the implementation section 5.4.

5.3 The distributed quantum virtual machine

Now that our virtual machine for sequential MC computations is established, we
can describe its extension into a distributed version for the DMC. Incorporating
distribution into our framework comes down to extending each of the abstraction
layers. Our design philosophy has been to view network definitions as essentially
a specialised forms of pattern composition. That is, they are dealt with in an
extension of the composition layer from Sec. 5.2.2, and compiled towards a set
of distributed pattern definitions, i.e. patterns which also allow communication
commands. This set of distributed patterns, together with information on how
the network is set up in terms of shared resources and agent channels agents,
is then assembled to an executable form and sent to a distributed extension of
the execution layer from Sec. 5.2. We discuss the execution layer in Sec. 5.3.1
and composition, now called network layer, in Sec. 5.3.2 below.

5.3.1 Execution layer

As with the MC case, the input language for the execution layer is executed
by an interpreter. In the case of the DMC, a network with agent patterns is
compiled into a list of command sequences, instead of a single one. Each of
these sequences is the data representation of an agent’s command sequence in
the context of a distributed network. The DMC execution layer is to run these
sequences concurrently. The shared resource pattern (behind the double bars ||
in the formal model) is dealt with during a preparation step before starting the
concurrent execution of the agents’ command sequences. This way the shared
qubits are initialised in the right way once we start the actual execution. While
the agent abstraction is not explicitly present in the execution layer language,
it does feature the required distribution functionality. Namely channel commu-
nication operations and concurrent execution of multiple command sequences.

The syntax used to express command sequences has changed little compared
to the MC’s case, adding a send and recv operation for message communication
over a channel. The main difference is the DQVM’s interpreter interleaving
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the execution of multiple command sequences, and handling (simulating) the
channel communications. Full syntax, semantics and implementation details
are provided in the implementation section 5.4.

5.3.2 Network layer

The network layer is the extended composition layer, where the programmer de-
fines distributed programs. Such as, for example, the network for entanglement
sharing specified formally in Eq. (9). A network consists of a list of agent defi-
nitions, a shared resource pattern, and a network configuration which specifies
how resources are distributed and connected. Concretely, a network specifies
a list of patterns, namely a single regular pattern for the shared resources and
the extended patterns of all involved agents. For example, to define the en-
tanglement swapping network from Eq. (9) we need the leader agent pattern L
together with the agent pattern A and the resource pattern R:

L :=
(
(?q0, ?q1, ?q2) (?ch0, ?ch1, ?ch2)

(MGHZ
?q0,?q1,?q2 (send ?ch0 (s ?q0)) (send ?ch1 (s ?q1)) (send ?ch2 (s ?q2)))

)
A :=

(
(?q) (?ch) ((recv ?ch v) (X ?q v))

)
R :=

(
V I O ((E ?a ?b) (E ?c ?d) (E ?e ?f))

)
,

where V = I = O = (?a ?b ?c ?d ?e ?f). The full network is specified by
the expression ES := (R, {L,A(1),A(2),A(3)}, NC) , where NC is the network
configuration.

NC =
( (

(R ?a) (L ?q0)
) (

(R ?c) (L ?q1)
) (

(R ?e) (L ?q2)
)

(
(R ?b) (A(1) ?q)

) (
(R ?d) (A(2) ?q)

) (
(R ?f) (A(3) ?q)

)
(
(L ?ch0) (A(1) ?q)

) (
(L ?ch1) (A(2) ?q)

) (
(L ?ch2) (A(3) ?q)

) )

As in Sec. 5.2.2, each of these patterns is instantiated with distinct qubit
and channel variable names. The network configuration drives the composition
of patterns in a network, which steers an automatic renaming process like in
Sec. 5.2.2. This network configuration contains two elements. First, a list of
qubit variable pairs linking output qubit variables of the shared resource pat-
tern to input qubit variables of some agent pattern. Second, there are now also
channel variables to be matched between agent patterns, due to the communi-
cation extension to their command sequence. However, the matching of channel
names can be performed by the same renaming process defined earlier. After
the automated renaming process the resource and agent patterns are assembled
and collected in a list, forming the multiple command sequences that are used
as input to the DQVM’s interpreter in the execution layer.

5.4 Virtual DMC Syntax, Semantics and implementation

The following sections delve deeper into some of the implementation and design
details of the virtual DMC framework. The structure follows that of the design:

20



execution and composition first for the MC case, then the same for the DMC
extensions. Note that everything presented here has been implemented and
is executable. Rather than listing Common Lisp source code, we expose the
implementation in a semi-formal way.

5.4.1 MC Execution layer: Command Sequences

Syntax We first presents the syntax we have chosen to represent the concrete
command sequences for the MC. We use a BNF notation where the symbols in
boldface indicate syntax (round brackets and literals), while square and curly
brackets are meta-syntax symbols which denote option (zero or one occurrence)
and repetition (occur any finite number of times) respectively.

<sequence> ::= ( { <instruction> } )
<instruction> ::= <correction> | <measurement> | <entanglement>

<correction> ::= ( X <quref> [ <signal> ] ) |

( Y <quref> [ <signal> ] )
<measurement> ::= ( M <quref> <angle> [ <signal> ] [ <signal> ] )
<entanglement> ::= ( E <quref> <quref> )
<signal> ::= 0 | 1 | <input-name> |

( s <quref> ) | ( + <signal> { signal } )
(31)

The only real difference with the formal command sequence syntax is the han-
dling of signals of measurement outcomes, referring to them explicitly with
(s <qref>) rather than relying on the naming convention sn to denote the
outcome on qubit n. This is the full syntax of the command sequence execution
language we use as a ‘quantum assembly language’, it contains only concrete
identifiers and constants.

Command Sequence Interpreter The interpreter is the actual implemen-
tation of the MC semantics, it takes a language in the above syntax and directly
executes it one operation at a time, following the semantics in the formal model.
We have chosen for a simple recursive implementation of the interpreter, where
it continuously calls itself with the remaining command sequence after execut-
ing the first operation. Each recursive call of the interpreter takes, modifies and
passes along the execution state. Like in the formal semantics this state consists
of a quantum and classical part, respectively denoted Q and Γ below. They are
defined as follows in our interpreter.

Γ ::= (o, i) (32)

Q ::= T |T ⊗Q (33)

T ::= ({q1, q2, . . . qn}, |ψq1q2...qn〉), n ∈ N (34)

Differences with the formal model arise from practical considerations. To
save on space, the quantum state Q is represented as a set of tangles T . As
described below, tangles achieve this by avoiding unnecessary tensor products.
The classical state Γ is split into the outcome map o and the input map i to
simplify lookup of qubit and input names respectively. Effectively, the out-
come map contains only measurement results during execution. The input map
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contains other classical information, typically used to communicate and control
the computation classically. This simplifies implementation and prevents unin-
tended name clashes. As an illustration, consider the quantum cryptographic
protocol by Bennett and Brassard. . . (1984) that requires a classical input to
choose which basis to measure a fresh qubit in. The measurement result would
be put in the outcome map, while the classical 0 or 1 signal to control the
measurement basis is to be found in the input map.

Quantum state using Tangles The introduction of our tangles concept
comes from the following observations. First, there is an exponential increase
in space complexity when combining multiple qubits together using the tensor
product. Next we see that in practice the entanglement graph is often not
connected, meaning that a qubit is not always entangled with all other qubits
in the graph. In the formal model, the quantum state is represented as a tensor
product of all qubits in the entanglement graph out of convenience. Finally,
the MC guarantees that only the Entanglement operation will entangle two
qubits, forming an edge in the graph state. Indeed it is the only multiple-qubit
operation. This is not obvious in the circuit model for quantum computation,
where arbitrary multiple-qubit operations are common. Because of these reasons
we introduce the concept of a tangle for our implementation of the quantum
state. Conceptually, a tangle is a representation of a connected entanglement
graph. It provides a more compact representation of the quantum state by
avoiding unnecessary tensor products.

In our interpreter, the full qubit state Q is composed of a number of indi-
vidual tangle objects T , which are, evidently, updated during execution. Con-
cretely, during initialisation a new tangle Ti : ({qi}, |ψ〉) is created for each
qubit, where qi a single qubit reference, and auxiliary qubits have |ψ〉 = |+〉.
After interaction due to an entanglement operation Eqiqj qubit references qi and
qj are put into the same tangle Tij... : ({qi, qj , . . . }, |ψqiqj ...〉), while the original
tangles Ti and Tj are destroyed. Here the dots represent other qubits which
have interacted with qubits i or j earlier in the computation. After initialisa-
tion each command in the command sequence is executed closely following the
semantics of the formal model, albeit updated to the slight variations in auxil-
iary structures as exhibited above. In our proof-of-concept implementation, we
have implemented the semantics directly using numerical linear algebra. This
implementation was based on a Lisp-based simulation environment developed
earlier in (Desmet et al., 2006).

5.4.2 Pattern composition and the automated renaming process

Qubit names in the formal MC have a double purpose, serving both as concrete
qubit identifier and qubit variable by subjecting them to rewriting. In our
virtual framework we enforce the use of qubit variables in measurement patterns,
leaving the pattern compilation step to choose concrete qubit identifiers. The
purpose of this is to enforce local reasoning: a qubit variable name is only
valid inside the pattern currently being defined. When composing patterns
sequentially, qubit names that have to be shared between patterns are provided
separately using qubit variable pairs. The renaming process will match the
correct variable names when composing the patterns.
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Figure 3: Graphical representation of ∧X ’s pattern composition.

We explain the general composition case first, as we define the standard
rule in terms thereof later on. As a running example, let us consider the
Controlled-NOT pattern ∧X , which is defined in terms of the H and ∧Z =
({1, 2}, {1, 2}, {1, 2}, E12) patterns, as follows.

∧X := (I(1)⊗H(3, 4)) ◦ ∧Z(1, 3) ◦ (I(1)⊗H(2, 3)) (35)

where I is the identity pattern, used as filler to match the number of in and
output qubits. This composition pattern simply follows from the matrix identity.
The same intent can also be expressed without using concrete qubit names as
follows

∧X := {(I(q8)⊗H(q7, q6)) ◦ ∧Z(q5, q4) ◦ (I(q3)⊗H(q2, q1))

with q2 = q4, q3 = q5, q4 = q6, q5 = q8)}, (36)

which is just the textual version of Figure 3 (in fact, as we shall see below, our
framework also provides a graphical tool for specifying constraints, as in the
figure). By simply matching variable names, we can derive Eq. (35) automati-
cally from Eq. (36). In fact we can simplify Eq. (36) further by getting rid of
identity patterns and only expressing non-trivial matching qubit names, which
is specified in our (left-to-right) syntax as follows,

{(H(q1, q2)),∧Z(q4, q5),H(q6, q7)), {(q2, q4), (q4, q6)}} . (37)

Note that the syntax uses pairs for constraints, and we have reverted to our
left-to-right evaluation order as everywhere in the virtual model. With this
generalised notation for pattern composition in place we can derive an automatic
renaming procedure, corresponding to the standard rules for composing patterns
(e.g. linking up the first pattern’s output qubits one by one with the second
pattern’s input qubits for sequential composition).

When a set of qubit pairs has been specified for a pattern composition –
either automatically or by the user himself – the automated renaming process
works by generating a set of bindings that map the qubit variable names in
every pattern in the composition to new ones, such that the chosen names are
equal if they appear in the same pair. This is essentially the same process as one
is assumed to execute manually when composing patterns in the formal model.
To ensure that the construction of new bindings occurs in a well-defined and
finite manner, elementary compositions in a composite structure are processed
in topological order. To be precise, an arbitrary pattern composition expression
such as the one in Eq. (37), is viewed as a graph, with patterns as nodes and
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qubit variable pairs as edges. Since we allow only pattern combinations that
form directed acyclic graphs, there is a unique topological ordering on the list
of nodes, and this is the order in which we evaluate composition bindings. The
full set of bindings B is constructed iteratively through the following rules on
the pairs of every elementary pattern composition in topological order.

B(q) = B(q′) = ∅ , qc fresh

(q, q′)→ B[qc/q][qc/q
′]

(38)

B(q) = qc

(q, q′)→ B[qc/q
′]

(39)

B(q′) = qc

(q, q′)→ B[qc/q]
(40)

In other words, when both names in the pair do not appear in the binding list,
rule (38) will trigger. A fresh qubit variable name qc is chosen and added as
binding for both variable names in the pair. Rules (39) & (40) ensure that if a
binding already exists for one of the variable names in the pair, the other will
use the same binding. The topological sort will ensure that at all times only
one of the three rules will execute.

Once the binding set B is constructed qubit variables in each of the com-
posing patterns are substituted with their bound value, P ′i = {B(q)|∀q ∈ Pi}.
After this renaming process all patterns in the composition can finally be merged
pairwise by merging qubit sets and appending command sequences. Since our
composition mechanism encompasses both definitions in the formal model our
rules for joining qubits sets are also slightly more complicated (as they are
more general). Concretely, we have the following definition, where patterns are
assumed to have already passed the renaming process.

Definition 5.1 The composition of patterns P1 = (V1, I1, O1,A1) and P2 =
(V2, I2, O2,A2) is defined as the pattern P = (V1 ∪ V2, I, O,A1A2) where

I = I1 ∪ (I2\O1) (41)

O = (O1\I2) ∪O2 . (42)

Indeed, qubit variables from the old input and output sets that were matched
become auxiliary qubits and hence are only represented in the working set V.

We stress again that except in the most complex cases, the programmer does
not have to explicitly denote qubit bindings when creating pattern compositions.
Indeed, in most situations these can be created automatically or one can use
implicit notation for qubit bindings as in the formal model. For example, we
automatically derive regular sequential composition as specified in Eq. (2) when
both patterns have distinct and unique variable names while the number of out-
put and input qubits are the same. The automatic renaming process ensures
that the condition I2 = O1 holds by automatically creating a composition ex-
pression of P1 and P2 while identifying each qubit in O1 with the corresponding
one in I2 (i.e. in sequential order). Likewise, parallel composition as specified
in Eq. (3) can be trivially derived, simply by not specifying any qubit pairs.
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Without being renamed, the qubit names of each pattern in the parallel com-
position remain unique. Because of this, Eqs. (41)-(42) essentially merge the
corresponding qubit spaces in the right way. With these shortcuts for the origi-
nal composition operations in hand, we may now return to our example pattern
∧X . Indeed, while one way of specifying this composition is given in Eq. (37),
by relying on the shortcut for sequential composition we can also express this
composition without qubit names as:

∧X := (I ⊗H) ◦ ∧Z ◦ (I ⊗H) . (43)

The compiler will instantiate each pattern with fresh variable names, which,
since they are unique, will precisely lead to the desired compositions as specified
in the expressions above.

5.4.3 DQVM, the DMC execution layer

We extend the input language syntax for the QVM (specified in Eq. (31)) to
support DMC computations as follows:

<network program> ::= ( <resources sequence> { <agent sequence> } )
<resources sequence> ::= ( { <instruction> } )
<agent sequence> ::= ( { <agent instruction> } )
<agent instruction> ::= <instruction> |

<channel-send> | <channel-receive>

<channel-send> ::= ( send <channel-name> <signal> )
<channel-receive> ::= ( recv <channel-name> <input-name> ) .

(44)
This is again a mirror of the formal syntax, bar the use of the labels send

and recv instead of ! and ? to indicate message sending and reception re-
spectively – this to avoid confusion with variable names. Also, communication
commands carry a variable specifying the channel to be used for communication,
an improvement over the formal model where the use of channels was somewhat
implicit. Finally, preceding the agent sequences we see the command sequence
to construct the shared resource. It is used as a kind of initialisation procedure,
carried out before the rest of the program. This resource sequence is carried
out by the regular MC execution layer as seen in Sec. 5.2. The quantum state
resulting from this execution is then passed on to the initial state of the network
extended execution layer.

The main functionality of the DQVM’s interpreter over the QVM’s is to
do with communication operations and the scheduling of multiple command
sequences. Practically, this means that the current state of execution retained
in the interpreter’s environment not only contains information on the quantum
and classical states of the network (Q and Γ respectively) but also on issues to
do with channel usage and scheduling. We call the latter the network state N
and add it to the interpreter’s environment. The network state N = {C,P}
holds the channel map C and the network program P . The latter is a simple
collection of each agent’s command sequence at each point in the computation,
and is used by he interpreter to keep track of each command sequence as it is
dynamically scheduled for execution. Each command sequence is executed to the
point where it is empty or a send or receive operation blocks. A next command
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sequence will then take turn via a round robin selection and be executed in the
same fashion. This round robin system ensures that sequences with blocking
operations become available for execution at later time, successfully executing
the send or receive operation in question if a matching receive or send has been
performed by a previous sequence’s turn. This process halts when all command
sequences are empty. Deadlocks or similar errors will cause the interpreter to
get stuck in a loop. We note that the formal semantics of a network is the
same for any chosen schedule and for this reason we may choose a schedule at
will without having to worry about the network’s behaviour deviating from the
intended one (Danos et al., 2005).

The second component of the network state is the channel map C. It simply
maps channel names to values (sent along the channel) and is used to implement
the communication primitives in a straightforward way:

C(ch) = ∅ Γ(s) = v

Γ, C, ((send ch s) E) → Γ, C[v/ch], (E)
(45)

C(ch) = v

Γ, C, ((recv ch name) E) → Γ[v/name], C[∅/ch], (E)
. (46)

Here ch is a channel name, Γ(s) denotes the value of the signal s with respect
to the given outcome map and E is the rest of the execution sequence. In other
words, the send operation associates the value to be sent to the appropriate
channel name in the channel map C, while the corresponding receive operation
removes the value from C and stores it in the classical state. In case where
a channel already contains a value during a send operation along a particular
channel, the send operation blocks, and likewise for a receive operation on an
empty channel:

C(ch) = v

C, ((send ch v′) E) → C, ((send ch v′) E)
(47)

C(ch) = ∅
C, ((recv ch name) E) → C, ((recv ch name) E)

. (48)

Note that these rules constitute a concretisation of the semantical rule for clas-
sical communication in the formal model (see Eq. 10). Here we have chosen
a concrete semantics using a form of blocking, in the sense that execution of
a particular command sequence may halt until certain requirements are met,
embodied in the equations above.

Next to the network state, the interpreter’s environment also keeps track of
the quantum and the classical state of the network. For practical reasons we
reuse the original QVM’s computation state as described in Sec. 5.2.1, i.e. we
have one global quantum state Q and one global classical state Γ for the entire
network. This simplifies the structure of the DQVM, allowing it to focus on
the network-specific features while the QVM is used for the execution of regular
MC operations. Indeed, the quantum state Q is passed through unchanged to
the QVM which executes regular MC (i.e. quantum) operations. The execution
schedule described above imposes a synchronised access to this global state
(Q,Γ), while our naming procedure ensures that names are unique so that there
are no clashes between classical variable names of different agents. Note that a
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more sophisticated implementation would adhere to the DMC’s formal semantics
where each agent has its own local state. For local quantum states this is to
some extent captured by our use of tangles for disentangled quantum states
(cfr. Eq. (32)). For classical states this would require a separate environment
for each agent such that a received value is stored in the local classical state of
the receiving agent.

5.5 A graphical user interface

In the above we gave an overview on the design and architecture of our virtual
machine for the DMC language. While the subject of this article has to do
with the inner structure of our framework, the goal of the latter is nevertheless
to provide a user-friendly programming environment. For this reason we have
developed a graphical user interface (GUI) on top of the virtual machine to
facilitate experimentation. This GUI tool currently supports only regular (non-
distributed) patterns, allowing definition of patterns from scratch as well as in
terms of compositions of existing patterns. Figure 4 shows the GUI being used
to define a pattern, the W3 entanglement pattern, as a composition of known
patterns; at the bottom we find the compiled version of that same pattern. As
seen previously in this section our framework allows for a general, more explicit
form of composition, such that explicit set of qubit name pairs subsumes the im-
plicit method of matching qubits by manual rewriting. While expressing these
pairs in writing is still a feat for large programs, a graphical notation similar
to Figure 3 is much more expressive. Our GUI uses a similar notation where
black boxes denote in- and outputs and the user may connect these in arbitrary
ways to concretise the desired connections. This technique allows a quantum
programmer to express complex quantum algorithms more easily, certainly for
composition structures with non-trivial connections between component pat-
terns.

6 Conclusion

In the above we describe an assembly language for distributed measurement-
based quantum (or DMC) computations in all its aspects. While the first half
of this article deals with the formal model, the second half elaborates on a
virtual framework developed in close relationship with the formal model, i.e. a
programming environment for the DMC language.

DMC programs satisfy several formal properties crucial to the practical
usability of the language, such as compositionality and context-freeness. We
showed how to put these properties to use by formally implementing a compos-
ite program to control operations in a distributed setting, and demonstrated
that the semantics does not change under the various composition operations.
DMC was developed with expressiveness in mind, a crucial property when estab-
lishing the first layer in a distributed quantum programming paradigm. Indeed
only through experimentation combined with abstraction can one hope to move
towards a higher level in the language hierarchy. Our first experiments on pa-
per already prove that DMC is indeed capable of expressing more complicated
programs and that the formal features are necessary and sufficient in deter-
mining their functionality. This is very different in flavour from earlier formal
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Figure 4: Graphical User Interface of the QVM’s design tool, showing the com-
position and compilation of the 3-qubit W entanglement state preparation pat-
tern.

frameworks in this area (Gay and Nagarajan, 2004; Jorrand and Lalire, 2005),
which are much more concerned with issues such as verification, and focus on
providing tools such as type systems to facilitate investigations of this nature.

While the first half or this article shows that it is possible in principle to write
DMC programs within the formal model, the limits of its usability are acutely
felt even for the relatively small example of distributed controlled operations. In-
deed, as an experimentation platform our formal framework is only really useful
in terms of a quantum virtual machine (QVM), a programming environment for
the DMC language automating execution and composition of DMC programs.
In the second half of this work we discuss a first implementation of such a virtual
machine, a proof-of-concept execution environment effectively virtualising the
formal DMC model. The benefits of having a QVM are many: as a first layer
of a tiered quantum computation architecture (Svore et al., 2006), a platform
for automated verification and model-checking, and maybe most importantly,
a basis from which to develop higher-order distributed quantum computation
languages through experimentation and abstraction. Our QVM is built up in
terms of several abstraction layers, most importantly a platform-independent
execution layer to deal with the low-level semantics of basic patterns, and a com-
position layer to create and compose larger programs. The composition layer
comes with an associated compiler that translates any compositional structure
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to one single pattern definition. Any pattern definition, be it specified directly
by the user or produced by the compiler, is assembled into an expression that the
execution layer understands, essentially a command sequence where all variable
names have been replaced by concrete references in the intended way. While the
execution layer is defined independently of any actual implementation, we used
a Lisp-based simulation environment in our experiments to evaluate execution-
layer expressions. The QVM is extended with distributed structures at all layers
into a distributed quantum virtual machine (DQVM) which allows specification
and execution of arbitrary distributed networks. Finally, a graphical user inter-
face (GUI) is added to facilitate usability of the framework. We note that due to
the fact that some aspects of the formal model necessitate further concretisation
in a virtual model, there are some differences in syntax and semantics between
the two. For example the implicit naming conventions for variables, channels,
and in the composition of programs, required a concrete design in the virtual
setting.

The virtual machine developed in this article, while covering almost all as-
pects of the formal model, is a first implementation and as such there are several
avenues for improvement. We list these here moving from higher-abstraction
layers to lower ones. First, the distributed layer requires several extensions to
be fully compatible with the formal model, most importantly by giving agents
a more prominent role and allowing network composition. In order to develop
the GUI into a fully-featured development tool, it also needs to be lifted to
a distributed setting: adding agents and networks to the graphical notation
is top priority. Ultimately the goal is to make the graphical notation into a
self-contained language, allowing the programmer to specify arbitrary programs
without needing to create ex-nihilo patterns, which involves writing command
sequence code by hand. Second, much work can be done at the level of opti-
misation of the execution layer, which now relies on conventional rather than
optimal data structures for its implementation. We are in the process of develop-
ing tailor-built data structures, so enhancing the performance of our framework
by relying on domain-specific measurement calculus optimisations. For exam-
ple, we are currently looking into the stabiliser calculus as a means to efficiently
execute MC operations where possible, switching to a different representation
when operations unsupported by the stabiliser calculus are performed. Optimi-
sations at the level of command sequences are also possible, such as detecting
and directly initialising cluster states rather than constructing them incremen-
tally by executing the required entanglements. On the other hand, classically
simulating large entangled states means dealing with an exponential blow-up of
computational time and space. For this reason the so-called EMC form (Danos
et al., 2007) (which puts entanglements first) is not always the preferred one in a
simulation setting, since we need to minimise the size of entangled states during
the length of the computation. Finding the right balance between direct cluster
state generation and exploiting classical resources at their fullest is an exer-
cise which is currently underway. Finally, we are heavily looking into parallel
computing techniques to improve the simulation of quantum operations, at the
moment carried out by straightforward linear algebraic techniques. Concretely,
we are investigating the compilation of command sequences into a dataflow net-
work (Gordon et al., 2006). In such a network quantum states are represented
by a long stream of amplitudes, which has the double benefit of exposing the
inherent parallelism while at the same time relaxing the need to fit entire vectors
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inside the same computer memory. This line of research has already lead to a
first implementation of a parallelised simulation environment in (Verhaegen,
2009).
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8 Appendix

Here we give the full operational semantics of the distributed measurement
calculus. We are concerned here with the small-step rules, indicating how atomic
expressions in the language are evaluated. The big-step operational semantics
of a program is found by grouping the pertaining small-step rules into one
transition for the whole program. We use the standard notation of sequents
and rules. A sequent Γ ` E ↓ is read as “given environment Γ, the expression
E evaluates to the value v”. In case that the environment itself changes during
evaluation of an expression E we write Γ, E −→ Γ′. We write Γ(x) for the value
of x in Γ and Γ[v/x] for the environment Γ with the added binding of x to v.
Sequents can be combined into rules S

S′ which are just a different notation for
S ⇒ S′.

There are four groups of rules, dealing with classical values (signals and an-
gles), measurement patterns and distributed measurement patterns respectively.
Each group builds on top of the previous one. The first group of rules is to do
with the evaluation of signals.

Γ ` 0 ↓ 0
and

Γ ` 1 ↓ 1
(49)

Γ ` si ↓ Γ(i)
(50)

Γ[v/si] ` si ↓ v
and

Γ[v/si] ` sj ↓ Γ(j)
if i 6= j (51)

Γ ` s ↓ v Γ ` t ↓ u
Γ ` s+ t ↓ v ⊕ u (52)

Here Γ is the outcome map or classical state, and ⊕ denotes addition in Z2.
Angles, which can have signal dependencies percolated through via dependent
measurements, are also purely classical. Values of signals are looked up in Γ via
the ruleset for signals in order to determine the actual value of a measurement
angle. This procedure is summarised in the following rules.
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Γ ` α ↓ α (53)

Γ ` s ↓ v Γ ` t ↓ u
Γ ` t[α]s ↓ (−1)v.α+ u.π

(54)

Γ ` [α]s ↓ 0[α]s
and

Γ ` t[α] ↓ t[α]0
(55)

Having defined how signals and angles are evaluated, we can now move on to
the operational semantics of the basic commands. These commands operate on
an environment consisting of a quantum state ρ as well as a classical state Γ. We
have presented these rules here for density matrices; in pure state derivations we
often use state transitions for brevity. Specifically, for a pure state we have ρ =
|ψ〉〈ψ|, which is mapped to L|ψ〉〈ψ|L†, with L any of the entanglement, Pauli
or projection operators below. A pure state transition can then be alternatively
specified as mapping |ψ〉 to L|ψ〉.

ρ,Γ, Eij −→ ∧Zijρ∧Zij ,Γ
(56)

Γ ` s ↓ v
ρ,Γ, Xs

i −→ Xv
i ρX

v
i ,Γ

(57)

Γ ` s ↓ v
ρ,Γ, Zsi −→ Zvi ρZ

v
i ,Γ

(58)

Γ ` t[α]s ↓ β
ρ,Γ, t[Mα

i ]s −→λ0
〈+β |i ρ |+β〉i,Γ[0/i]

, λ0 =
tr(|+β〉〈+β |i ρ)

trρ
(59)

Γ ` t[α]s ↓ β
ρ,Γ, t[Mα

i ]s −→λ1
〈−β |i ρ |−β〉i,Γ[1/i]

, λ1 =
tr(|−β〉〈−β |i ρ)

trρ
(60)

ρ,Γ, C1 −→λ ρ
′,Γ′

ρ,Γ, C2C1 −→λ ρ′,Γ′, C2
(61)

The first three commands are purely quantum and straightforward. The mea-
surement command is the only command that affects the quantum state as
well as the classical state. First, the measurement angle has to be evaluated,
which in turn requires evaluating the X- and Z-signals by the previous sets of
rules. Measurement commands are also the only nondeterministic commands,
as the measured qubit is projected onto either |+α〉 or |−α〉 with transition
probabilities as stated. Usually, the convention is to renormalise the state after
measurement, but we do not adhere to it here, as in this way the probability
of reaching a given state can be read off its norm, and moreover the overall
treatment is simpler. The last rule is for a composition of commands.

Finally, we need a set of rules to deal with distributed extensions to pat-
terns. Essentially these transitions describe how agents A(i, o) : Q.E and net-
works N = |iAi(ii,oi) : Qi.Ei ‖σ evolve over different time steps. We adopt a
shorthand notation for agents, leaving out classical inputs and output, which
do not change with small-step reductions.
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ai = Ai : Qi.Ei
ai.E = Ai : Qi.[Ei.E]

a−q = A : Q\{q}.E
a+q = A : Q ] {q}.E [q/x] ,

(62)

where E is some event, and Ei and E ′i are event sequences. A configuration is
given by the system state σ together with a set of agent programs, and their
states, specifically

σ, |iΓi,ai = σ,Γ1,a1 | Γ2,a2 | . . . | Γm,am . (63)

The small-step rules for configuration transitions, denoted =⇒, are specified
below; we provide some explanations afterwards. When the system state is not
changed in an evaluation step, we stress this by preceding a rule by σ `.

σ,P(V, I,O,A),Γ −→λ σ
′,Γ′

σ,Γ,A : I ]R.[E .P] =⇒λ σ′,Γ′,A : O ]R.E (64)

Γ2(y) = v

σ ` (Γ1,a1.c?x | Γ2,a2.c!y =⇒ Γ1[x 7→ v],a1 | Γ2,a2)
(65)

σ ` (Γ1,a1.qc?x | Γ2,a2.qc!q =⇒ Γ1,a
+q
1 | Γ2,a

−q
2 )

(66)

L =⇒λ M

L | N =⇒λ M | N
(67)

Implicit in these rules is a sequential composition rule, which ensures that
all events in an agent’s event sequence are executed one after the other. The
first rule is for local operations; we have written the full pattern instead of
only its command sequence here to make pattern input and output explicit.
Because a pattern’s big-step semantics is given by a probabilistic transition
system described by −→, we pick up a probability λ here. Furthermore, an
agent changes its sort depending on pattern’s output O. The next rule is for
classical rendezvous and is straightforward. For quantum rendezvous, we need to
substitute q for x in the event sequence of the receiving agent, and furthermore
adapt qubit sorts. The last rule is a metarule, which is required to express
that any of the other rules may fire in the context of a larger system. L and
R stand for any of the possible left-, respectively right-hand sides of any of the
previous rules, while L′ is an arbitrary configuration. Note that we might need
to rearrange terms in the parallel composition of agents in order to be able to
apply the context rule. This can always be done since the order of agents in
a configuration is arbitrary. In derivations of network execution, we often do
not explicitly write reductions as specified by (67), but rather specify in which
order the other rules fire for the network at hand. It is precisely in this last
rule that introduces nondeterminism at the network level, that is, several agent
transitions may be possible within the context of a network at the same time.
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