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Abstract
We are on the verge of a post-PC revolution where computing power is shift-
ing from laptops and desktops to smartphones, tablets and everyday ob-
jects such as eyeglasses and coffee machines. Those computing objects come
equipped with a myriad of context sensors such as an accelerometer, a prox-
imity sensor, a gyroscope, a GPS receiver and NFC technology. Context
sensors enable the development of context-aware applications that continu-
ously adapt their behaviour to match the context of use. In this dissertation,
we refer to applications that are always prepared to promptly adapt their be-
haviour in reaction to context changes as reactive context-aware applications.

Our research hypothesis is that developing reactive context-aware ap-
plications remains notoriously difficult because of the lack of suitable pro-
gramming language abstractions coupled with the unpredictable nature of
context changes. More concretely, current programming languages fall short
of providing the appropriate support for developing context-aware applica-
tions that need to react promptly to a sudden context change – especially if
such a context change occurs in the middle of an ongoing procedure execu-
tion. Such a context change may require an ongoing procedure execution to
be promptly interrupted in order to prevent its execution from happening in
a wrong context.

The vision of this dissertation is to investigate novel programming lan-
guage abstractions to facilitate the development of reactive context-aware
applications. We propose a new programming language model called inter-
ruptible context-dependent executions, where a procedure execution is always
constrained to happen only under a developer specified context condition. In
this model, the execution of a context-dependent procedure can be seamlessly
interrupted or resumed depending on whether the specified context condition
is satisfied or not. The language runtime ensures that the execution state
of a context-dependent procedure is automatically preserved between inter-
ruptions. The model features a new dispatching mechanism called reactive
dispatching that continually takes into account new context changes to se-
lect the applicable procedures and to suspend or interrupt ongoing procedure
executions.

We present a proof-of-concept programming language called Flute that
incorporates the interruptible context-dependent executions model. Flute
has been implemented as a meta-interpreter on top of iScheme – a techno-
logical research artefact that we developed to enable the experimentation
with novel language abstractions and features to ease the development of re-
active context-aware applications. iScheme runs on the iOS mobile platform
and as such it fosters experiments on real mobile devices.
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Samenvatting (Abstract in Dutch)

We bevinden ons aan het begin van een ware post-PC revolutie waarin
rekenkracht verschuift van computers naar tablets, naar mobiele telefoons en
zelfs naar alledaagse objecten zoals brillen en koffiemachines. Deze objecten
zijn voorzien van verschillende sensoren voor context zoals versnellingsme-
ters, nabijheidssensoren, gyroscopen, ontvangers voor GPS-signalen en NFC-
technologie. Deze sensoren maken het ontwikkelen van context-bewuste
applicaties mogelijk die hun gedrag voortdurend afstemmen op de context
waarin ze gebruikt worden. In dit proefschrift verwijzen we naar applicaties
die op elk moment ten gevolge van contextveranderingen hun gedrag prompt
kunnen aanpassen als reactieve context-bewuste applicaties.

Onze onderzoekshypothese is dat het ontwikkelen van reactieve context-
bewuste applicaties notoir moeilijk blijft door het gebrek aan geschikte pro-
grammeertaalabstracties en de onvoorspelbare aard van contextveranderin-
gen. Bestaande programmeertalen bieden geen geschikte ondersteuning voor
het ontwikkelen van context-bewuste applicaties die prompt moeten reageren
op een plotse contextverandering –vooral wanneer deze zich voordoet tijdens
de uitvoering van een procedure. Bij zulk een contextverandering kan het
nodig zijn een lopende uitvoering te staken teneinde te voorkomen dat een
procedure uitgevoerd wordt in de verkeerde context.

De visie van dit proefschrift is het ontwikkelen van reactieve context-
bewuste applicaties te ondersteunen via nieuwe programmeertaalabstracties.
Hiertoe stellen we een nieuw programmeertaalmodel voor genaamd onder-
breekbare context-afhankelijke uitvoeringen waarin een door de ontwikkelaar
opgegeven contextvoorwaarde de uitvoering van een procedure beschermt.
Hierbij wordt de uitvoering van een context-afhankelijke procedure onderbro-
ken wanneer de contextvoorwaarde niet langer voldaan is en weer naadloos
hervat van zodra dit terug het geval is. De runtime van de programmeertaal
zorgt ervoor dat de uitvoeringsstaat van een context-afhankelijke uitvoering
automatisch bewaard blijft tussen de onderbreking en de hervatting. Ken-
merkend voor dit programmeermodel is een nieuw dispatching mechanisme
genaamd reactive dispatching dat contextveranderingen in acht neemt bij
het selecteren van nieuwe uit te voeren procedures en bij het onderbreken of
hervatten van lopende procedures.

Als bewijs van concept stellen we de programmeertaal Flute voor die
het programmeermodel van onderbreekbare context-afhankelijke uitvoeringen
incorporeert. Flute is gerealizeerd als een meta-interpreter in iScheme –
een onderzoeksartefact dat we ontwikkeld hebben om het experimenteren
met innovatieve programmeertaalabstracties voor reactieve context-bewuste
applicaties te vergemakkelijken. iScheme bevordert experimenten op mobiele
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1.1 Introduction

This dissertation seeks to develop novel programming language abstractions
for an emerging class of mobile applications that we call reactive context-
aware applications. By reactive context-aware applications we mean appli-
cations that sense their environment and promptly adapt their behaviour in
order to match their physical context of use. A key enabler for reactive
context-aware applications is the rapid advancements in computer hardware
technology where computing devices come equipped with a myriad of con-
text sensors such as a GPS receiver, an accelerometer, a proximity sensor,
a gyroscope, and Near Field Communication (NFC) technology [LML+10].
The explosion of sensor-equipped devices has led us to believe that the fu-
ture of mobile applications lies in reactive context awareness. The presence
of sensors on mobile devices is fundamentally changing the way users inter-
act with software applications. Instead of user-initiated interactions (e.g.,

1
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a pinch gesture on a touch screen to launch an application), we are moving
towards context-driven interactions where context sensors become the driver
for deciding which application or behaviour to run for the current task at
hand (e.g., a device detecting that a user is nearby a bus stop and automati-
cally launching the application to show the bus schedule for that stop). It is
not hard to see the potential of such context-driven interactions in the near
future. Envision, for instance, a mobile operating system that is enhanced
with context awareness to perpetually switch between applications and ap-
plication behaviour to match the changing user’s context without explicit
user intervention. In Chapter 2, we will present a visionary scenario that
substantiates our claims.

Recently, programming languages for context-aware applications have
emerged [HCN08, Val11, Gon08, SGP12a]. However, our survey of the
state of the art (cf. Chapter 3) reveals that current programming languages
fall short of providing suitable support to ease the development of reactive
context-aware applications. Our research hypothesis is that the lack of suit-
able programming language abstractions coupled with the unpredictable na-
ture of context changes renders the task of developing reactive context-aware
applications notoriously difficult. In short, current programming languages
fail to provide adequate support for developing context-aware applications
that need to react promptly to a sudden context change – especially if such a
context change occurs in the middle of an ongoing procedure execution. Cur-
rently, developers have little choice but to resort to explicit management of
the execution state (saving and restoring application execution state between
context changes) and explicit context checks (to ensure that the procedure
execution is always constrained to run only in the correct context). Such
manual approaches are error-prone and may lead to incorrect application
behaviour. The research presented in this dissertation aims at liberating
developers from the bane of developing reactive context-aware applications.

The vision of this dissertation is to investigate novel programming lan-
guage abstractions to facilitate the development of reactive context-aware
applications. We propose a new programming language model that we call
interruptible context-dependent executions. The primary concept of inter-
ruptible context-dependent executions is that a procedure execution should
always be constrained to happen only under particular context conditions.
In this model, the execution of a context-dependent procedure is seamlessly
interrupted or resumed depending on whether the specified context condition
is satisfied or not. In addition, the execution state of a context-dependent
procedure is automatically preserved between interruptions. We present a
new programming language called Flute that epitomises the interruptible
context-dependent executions model.
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To ground our vision, we will first sketch the research context of our work
by positioning this dissertation in existing research domains. We will then
present the problem statement that details the issues that we need to tackle
in this research. After stating the problem statement, we will formulate
the research questions that need to be addressed and then present the main
contributions of our research. We conclude this introductory chapter with a
roadmap to guide the reader through the entire dissertation.

1.2 Research Context

We will briefly introduce four research domains that form the background of
the research that we present in this dissertation. These include ubiquitous
computing, ambient intelligence, context-aware computing, and programming
language design.

Ubiquitous Computing. Nearly two decades ago Mark Weiser proposed
the vision of Ubiquitous Computing where computers become invisible to the
user and are integrated into tiny and cheap everyday objects [Wei93, Wei95].
At the time, Weiser’s vision seemed like science fiction. However, this vision is
becoming a reality thanks to the rapid advances in the hardware technology.
Today, computing devices are available in various sizes and shapes including
household objects (a phenomenon Jessie Dedecker described as “hardware
miniaturisation” in his Ph.D. dissertation [Ded06]). As we write this disser-
tation, researchers are working towards a smaller and cheaper GPS receiver
dubbed the “GPS Dot” that gives a centimetre level precision [Hum12]. Such
device miniaturisation and sensor precision are key enablers for developing
reactive context-aware applications, which is the theme of this dissertation.
Indeed, Weiser noted that if ubiquitous computers know their environment,
they can automatically adapt their behaviour in significant ways [Wei95].

Ambient Intelligence. Ambient Intelligence (AmI) is a vision of a future
in which environments are sensitive and responsive to the presence of peo-
ple inhabiting them [Far11]. The term AmI was coined by the European
Community’s Information Society Technology Group (ISTAG) [Gro03]. It
builds upon the vision of ubiquitous computing. In this vision environments
are interconnected, adaptable, dynamic, embedded, and intelligent and are
capable of anticipating the needs and behaviour of their inhabitants. Most of
the AmI scenarios are targeted towards Smart Homes. A Smart Home envi-
ronment is equipped with sensors and actuators for controlling appliances and
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equipment. Examples of Smart Home services include supporting indepen-
dent living for the elderly and the impaired (e.g., task execution monitoring
and supervision, monitoring the use of medication and sleep). Sadri [Far11]
performed a comprehensive survey of the applications of AmI and observes
that there is a need for context-sensitivity in most of the AmI systems. In
the elderly care systems, for instance, the action to perform is based on the
context situation (e.g., adjusting heaters based on the temperature of the
surroundings or suggesting a new schedule of activities based on the user’s
need).

Context-aware Computing. Context-aware computing is an enabling
technology for both ubiquitous computing and ambient intelligence that fo-
cuses on systems that sense their surrounding context and adapt their be-
haviour accordingly [SAW94]. A prevalent example of contextual information
is location. However, context is more than location. It may include other
information such as nearby people and objects, time of the day, user pref-
erences, communication bandwidth, noise level or even social aspects such
as the age group of the people around you. Developing context-aware ap-
plications poses a number of challenges that range from context acquisition
from the environment, reasoning about raw contextual data, and adapting
the application behaviour accordingly. In this dissertation, we focus on inves-
tigating enabling programming language techniques for prompt adaptation of
context-aware applications in reaction to context changes.

Programming Language Design. At the software engineering level, re-
search on context awareness has mainly been undertaken along two paths,
namely, middleware approaches [DAS01, CEM03, BDR07] and programming
language approaches [HCN08, Val11, Gon08, SGP12a]. In this dissertation,
we pursue a programming language-based approach by investigating the de-
sign of novel linguistic abstractions that ease the development of reactive
context-aware applications. The research presented in this dissertation was
conducted at the Software Languages Lab of the Vrije Universiteit Brus-
sel, Brussels, Belgium. The lab has a strong culture of programming lan-
guage design and over the past years a number of experimental program-
ming languages targeted for the domains of ubiquitous computing, ambi-
ent intelligence, and context-aware computing have been developed. These
include ChitChat [De 04], AmbientTalk [Van08], AmbientTalk/R [Lom11],
Lambic [Val11], and ContextL [HCN08]. Therefore, it is evident that the
path of the programming language approach which has been taken in this
dissertation has been influenced by the language design expertise that is lo-
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cally available. Nevertheless, we are not arguing against the middleware ap-
proach. Instead, we believe that the two approaches complement each other.
For instance, the programming language abstractions that we develop in this
dissertation can ease the development middleware for reactive context-aware
applications.

1.3 Problem Statement

Even though reactive context-aware applications provide end-users with en-
hanced experiences and richer application behaviour, the software technology
for developing these applications is still underdeveloped. We argue that the
lack of suitable programming language abstractions coupled with the un-
predictable nature of context changes renders the task of developing
reactive context-aware applications notoriously difficult. More concretely,
current programming languages fall short of providing the appropriate sup-
port for developing context-aware applications that need to react promptly
to a sudden context change – especially if such a context change occurs
in the middle of an ongoing procedure execution. Current programming lan-
guages are based on the assumption that context changes that occur during
a procedure execution will not immediately affect the application behaviour.
Those assumptions are valid for traditional mobile and desktop applications,
but not for reactive context-aware applications since context changes can
occur at any moment in an unpredictable fashion.

Because context changes can occur at any moment during a procedure
execution, it is possible that a procedure execution that started in a correct
context may end up running in the wrong context. Allowing a procedure
execution to continue executing in a wrong context may result in incorrect
application behaviour (e.g., presenting to the user the application behaviour
that does not match the current context). Currently, there is no suitable
language support that enables developers to constrain an entire proce-
dure execution to a particular context. In order to constrain an entire
procedure execution to a correct context, developers of context-aware ap-
plications have to perform regular explicit context checks in the procedure
body. A disadvantage with such an approach is that context checks need to
be inserted throughout the procedure body. This leads to negative effects on
program comprehension and maintainability (e.g., introducing a new context
source implies modifying multiple existing context checks). In addition, the
developer has to manually express concerns of the decisions to perform when
such context checks are not satisfied. For instance, in order to be able to
restore the execution later on, the developer has to devise means to capture
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and restore the procedure’s execution state. Finally, because program execu-
tions may be interrupted in reaction to context changes, the developer needs
to ensure that the execution environment remains in a consistent state (e.g.,
controlling the visibility of state changes among procedure executions). Such
concerns are not trivial and it is almost impossible to express them manually
due to the unpredictability of context changes.

In Chapter 2, we further discuss the above problems with concrete sce-
narios. We will assess the inadequacy of the current programming languages
for developing context-aware applications in Chapter 3.

1.4 Research Questions
To concretise the above problems, we put forward six research questions:

RQ. 1 How to constrain an entire procedure execution to only occur under
a particular context condition?

RQ. 2 What should happen when a context change occurs in the middle of
an ongoing procedure execution? Should the execution be interrupted and
possibly be resumed later on?

RQ. 3 How to ensure that a procedure execution resumes in a consistent
environment even when the execution was interrupted before its completion?

RQ. 4 How can context be represented in the underlying programming lan-
guage such that it can be manipulated, reacted upon, and combined with other
programs?

RQ. 5 How can context-dependent behaviours be expressed such that new
unanticipated behavioural variations can be added as required without requir-
ing modification of existing behaviour definitions?

RQ. 6 How can a dispatching process for selecting context-dependent be-
haviours to execute be scheduled such that it takes into account the current
context as well as future context changes?

In Section 2.6 we refine the above research questions into requirements
that should be satisfied by programming language features designed for re-
active context-aware applications. Those requirements serve as the basis
of the programming language model, interruptible context-dependent execu-
tions, that we propose in Chapter 4.
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1.5 Contributions

The primary goal of our research is to design and develop a programming
language to facilitate the development of reactive context-aware applications.
The programming language should tackle the problems that we highlighted in
Section 1.3 and should address the research questions that we put forward in
Section 1.4. This dissertation achieves that goal through four contributions
that we describe below:

The interruptible context-dependent executions model. The first
contribution of our research is the interruptible context-dependent execu-
tions model [BVDR+12] that defines the properties and boundaries of a pro-
gramming language for reactive context-aware applications. The interrupt-
ible context-dependent executions model is defined by the characteristics of
reactive context-aware applications, which include context-constrained execu-
tions, prompt adaptability and sudden interruptibility. These characteristics
are described in Section 2.3 and further refined into a set of programming
language requirements for reactive context-aware applications that we de-
scribe in Section 2.6. The programming language requirements for reactive
context-aware applications are: R.1 Chained context reactions, R.2 Context-
dependent interruptions, R.3 Context-dependent resumptions, R.4 Contex-
tual dispatch, R.5 Reactive dispatch, and R.6 Reactive scope management.
To the best of our knowledge there is no existing approach that satisfies
all the requirements. The interruptible context-dependent executions model
satisfies these requirements by ensuring that a procedure execution is al-
ways constrained to only happen under a particular context condition. In
this model, the execution of a context-dependent procedure is seamlessly in-
terrupted or resumed depending on whether the specified context condition
is satisfied or not. In addition, the execution state of a context-dependent
procedure is automatically preserved between interruptions. We present the
interruptible context-dependent executions model in Chapter 4.

A mobile language experimentation laboratory. The second contri-
bution of our research is a language laboratory that we developed to facil-
itate the experimentation with novel language constructs and features for
reactive context-aware applications. We engineered a language laboratory
called iScheme [BVB+12], which blends the rich programming properties of
the Scheme language [Ken96] and a state-of-the-art mobile device that is
equipped with context sensors to enable realistic experiments. For our ex-
periments, we chose Apple’s iOS devices that include the iPhone smartphone
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and the iPad tablet. iScheme supports a language symbiosis between Scheme
and Objective-C [Koc09] (the mainstream language used for iOS develop-
ment) by way of a reflective application-programming interface (API), which
facilitates access to the iOS APIs in an event-driven style. Additionally,
iScheme provides event-driven distribution constructs specially tailored for
distributed mobile computing environments. In particular, the distribution
constructs are based on the ambient-oriented programming model [Ded06]
and have built-in support for peer-to-peer service discovery, asynchronous
remote messaging, and failure handling. We present iScheme in Chapter 5.

A programming language for reactive context-aware applications.
The third contribution of our research is a proof-of-concept programming
language that incorporates the interruptible context-dependent executions
model. We present a new programming language called Flute [BVDR+12]
that adheres to the interruptible context-dependent executions model. The
Flute language is implemented as a meta-interpreter on top of iScheme. The
Flute language enables the developer to specify under what context condi-
tions a procedure should be executed (by means of a single context predicate)
and the language runtime ensures that the context predicate is respected
throughout the procedure execution. In addition, Flute enables developers
to specify what should happen when the context predicate is no longer satis-
fied (e.g., suspend or abort the execution) and what should happen when the
context predicate later becomes satisfied again (e.g., resume or restart the
execution). Developers can scope state changes made during the procedure
execution by means of state management strategies provided by Flute. Flute
features a new dispatching mechanism called reactive dispatching that contin-
ually takes into account new context changes to select applicable procedures
to execute. The Flute language is presented in Chapter 6, its executable
semantics is described in Chapter 7, and is validated in Chapter 8.

A visionary mobile application model. The fourth but not least con-
tribution of our research is a visionary mobile application model where ap-
plications are automatically launched depending on contextual information
without requiring the user to explicitly tap an icon to launch the applica-
tion. In this application model, mobile platforms are enhanced with context
awareness to perpetually switch between applications depending on the ever-
changing user’s context. Moreover, when there a switch between applications,
the current application’s state is automatically saved and the application is
able to resume running from where it left off when the user goes back to the
previous context. The vision of this mobile application model is presented
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in Chapter 2. In Chapter 8, we present a prototype implementation of
a mobile platform called the iFlute platform that epitomises that mobile
application model.

1.6 Supporting Publications

The research presented in this dissertation is supported by peer-reviewed
publications of the author [BLV+12, BVDR+12, BVB+12, BCC+11,
BPV+12, TCW+12, BVT+09, BM12, BDMD09, VGBB+08, PBV+10]. Be-
low we list the most relevant publications.

• Journal: [BLV+12] Engineer Bainomugisha, Andoni Lombide Car-
reton, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter.
A survey on reactive programming. To appear in ACM Computing
Surveys, published by: ACM. (Chapters 3, 6 and 7)

• Conference: [BVDR+12] Engineer Bainomugisha, Jorge Vallejos,
Coen De Roover, Andoni Lombide Carreton, and Wolfgang De Meuter.
Interruptible Context-dependent Executions: A Fresh Look at Pro-
gramming Context-aware Applications. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software Proceedings, SPLASH/Onward!
’12, Tucson, Arizona, USA, published by: ACM, 2012. (Chapters 4
and 6)

• Journal: [BVB+12] Engineer Bainomugisha, Jorge Vallejos, Elisa
Gonzalez Boix, Pascal Costanza, Theo D’Hondt, and Wolfgang De
Meuter. Bringing Scheme programming to the iPhone – Experience.
Software, Practice Experience., 42(3):331-356, published by: John Wi-
ley & Sons, Inc., 2012. (Chapters 6 and 8)

• Book chapter: [BCC+11] Engineer Bainomugisha, Alfredo Cádiz,
Pascal Costanza, Wolfgang De Meuter, Sebastián González, Kim Mens,
Jorge Vallejos, and Tom Van Cutsem. Language engineering for mobile
software. In Paulo Alencar Donald Cowan, editor, Handbook of Re-
search on Mobile Software Engineering: Design, Implementation and
Emergent Applications, published by: IGI Global, 2011. (Chapter 3)

• Conference: [BPV+12] Engineer Bainomugisha, Paridel Koosha,
Jorge Vallejos, Yolande Berbers, Wolfgang De Meuter. Flexub: Dy-
namic Subscriptions for Publish/Subscribe Systems in MANETs. In
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Proceedings of 12th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems, Lecture Notes in Computer Sci-
ence, Stockholm, Sweden, published by: Springer, 2012. (Chapters 2
and 5)

• Conference: [TCW+12] Eddy Truyen, Nicolas Cardozo, Stefan Wal-
raven, Jorge Vallejos, Engineer Bainomugisha, Sebastian Günther,
Theo D’hondt, Wouter Joosen. Context-oriented Programming for
Customizable SaaS Applications. In Proceedings of 27th ACM Sympo-
sium on Applied Computing, Trento, Italy, published by: ACM, 2012.
(Chapter 3)

• Conference: [BVT+09] Engineer Bainomugisha, Jorge Vallejos, Eric
Tanter, Elisa Gonzalez Boix, Pascal Costanza, Wolfgang De Meuter,
Theo D’hondt. Resilient Actors: A Runtime Partitioning Model for
Pervasive Computing Services, In Proceedings of International Con-
ference on Pervasive Services (ICPS’09), London, UK, published by:
ACM, 2009. (Chapters 1 and 9)

1.7 Roadmap

In Section 1.5, we outlined the contributions that this dissertation makes to
the existing research on programming language support for mobile applica-
tions. Naturally, the structure of the remainder of this dissertation is aligned
with the above contributions.

Chapter 2: The Vision of Reactive Context-aware Applications.
This chapter grounds the vision of this dissertation by sketching a
visionary scenario called BainomuAppies in Kampala. The scenario
is about a digital platform that runs on buses and minibuses (a.k.a
matatus) in Kampala. The onboard digital platform is enhanced with
context awareness to show useful information to passengers by running
a suite of interesting applications depending on contextual parameters
such as the geolocation of the bus, the proximity of other buses, the
proximity of certain stops and the identity of the customers that hap-
pen to be onboard the bus at a certain moment in time. From this
scenario, we derive the key characteristics that are exhibited by reac-
tive context-aware applications. Based upon these characteristics we
put forward requirements that a programming language designed for
reactive context-aware applications should adhere to.
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Chapter 3: Programming Technologies for Context-aware Applica-
tions: State of the Art. In this chapter, we survey the state of the
art of programming languages and techniques for context-aware appli-
cations. We sort the existing approaches into four categories: context-
oriented programming languages, first-class continuations, coroutines,
and threads, functional reactive programming languages, and other
programming language facilities, which include guards, assertions and
invariants. We evaluate each approach against the programming lan-
guage requirements that we put forward in Chapter 2. The evaluation
reveals that none of the existing approaches satisfies all the require-
ments.

Chapter 4: Interruptible Context-dependent Executions. This
chapter presents our novel programming language model called inter-
ruptible context-dependent executions (ICoDE) that aims to satisfy re-
quirements that we put forward in Chapter 2. We discuss the main
properties of the ICoDE model, that is, predicated procedures, reac-
tive dispatching, interruptible and resumable executions, scoped state
changes, and representation of context as reactive values. For each
property, we discuss design considerations that need to be taken into
account in supporting it in a concrete programming language. We con-
clude this chapter by providing a distillation of the ICoDE properties
and their design considerations into a set of properties that a program-
ming language for reactive context-aware applications should satisfy.

Chapter 5: iScheme: A Laboratory for Mobile Programming Lan-
guages. In this Chapter 5, we present iScheme, which is an exper-
imentation platform that we developed to facilitate experiments with
novel language constructs and features for reactive context-aware appli-
cations. Central to iScheme, is the language symbiosis between Scheme
and Objective-C, which facilitates the development of dynamic mobile
applications that exploit context sensors available on the iOS devices.
iScheme lays a foundation for the language constructs and features that
we present in Chapter 6.

Chapter 6: The Flute Language: A Developer’s Perspective. This
chapter builds upon Chapters 4 and 5. In this chapter, we present
the Flute, which is the first instantiation of the ICoDE model. Flute
has been implemented as a meta-interpreter in iScheme. It provides
language constructs for realising the properties of the ICoDE model.
Throughout this chapter we demonstrate the language constructs us-
ing a context-aware calendar application. We conclude this chapter by
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mapping the language constructs provided by Flute onto the program-
ming language requirements that we put forward in Chapter 2.

Chapter 7: An Executable Semantics for Flute. This chapter de-
scribes an executable semantics for the Flute programming language
through a meta-interpreter in iScheme. The Flute interpreter is imple-
mented in a continuation-passing style [FW08], which explicitly passes
along a continuation parameter. The continuation parameter makes
the control flow explicit, which facilitates the capturing and saving the
execution state of an expression at any step of the evaluation. The
evaluation of the procedure body is broken down into sequences of ex-
pressions. At each evaluation step, the context predicate is re-evaluated
to determine whether to proceed with the evaluation or not.

Chapter 8: Building Reactive Context-aware Applications using
Flute. In this chapter, we validate the language constructs of Flute
by implementing a mobile platform called the iFlute platform. The
iFlute platform is enhanced with context awareness such that appli-
cations deployed on it are automatically launched depending on the
current context of use. As part of the experiments we developed and
deployed example applications, namely, a context-aware calendar ap-
plication and a context-aware printer assistant, and a context-aware
task guide.

Chapter 9: Conclusions and Future Work. In this chapter, we give a
recap of our research contributions and a mapping of the programming
language requirements for reactive context-aware applications, onto the
Flute language. We also discuss the limitations of our approach and
the possible future avenues of our research.
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2.1 Introduction

We are on the verge of a post-PC revolution where computing power is shift-
ing from laptops and desktops to smartphones, tablets and everyday objects
such as eyeglasses, and coffee machines. The increasing availability of sen-
sors like accelerometers, proximity sensors, gyroscopes, GPS receivers and
Near Field Communication (NFC) technology on those computing objects is
fundamentally changing the way users interact with mobile software applica-
tions. We are moving away from user-initiated interactions to context-driven
interactions, that is, context sensors become the driver for deciding which
application or behaviour to run for the current task at hand without ex-
plicit user intervention. We are moving away from formal interactions to

13
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casual interactions [Epp11], that is, user interactions with applications are
characterised by frequent “in-between moments” such as the user temporarily
playing a favourite video in the middle of an ongoing task. In this disserta-
tion, we refer to applications that are context-driven and are always prepared
for interruptions due to sudden context changes as reactive context-aware ap-
plications.

From the hardware perspective, technologies that enable the development
of reactive context-aware applications are already available on most of today’s
mobile computing devices. However, software technologies are still lagging
behind. For instance, the app model, which is embraced by most of today’s
mobile operating systems, still requires users to explicitly tap an icon in order
to launch an application or select a certain behaviour of the application to
run for the task at hand. We envision that in the near future a single device
will run hundreds of applications and each of those applications will provide
many variants of behaviours, which renders it extremely difficult for the
user to explicitly select which application or behaviour to run for the task
at hand. What is missing is a mobile application platform that is enhanced
with context awareness in order to perpetually switch between applications or
application behaviours to match the ever-changing user’s context. Naturally,
when there is a switch between applications or behaviours (e.g., due to an
in-between moment), users expect applications to automatically save the
current execution state and be able to resume running from where they left
off at a later point in time. Obviously, we cannot expect the user to explicitly
tap a save button (as in PC applications) from time to time in order to save
the application’s state. Applications should remember their execution state
when there is a context change so as to be able to continue seamlessly when
the user goes back to the previous context.

The lack of appropriate software technologies coupled with the unpre-
dictable nature of context changes renders the task of developing reactive
context-aware applications notoriously difficult. Even the context-oriented
programming (COP) paradigm [HCN08] that was recently proposed for de-
veloping context-aware applications is still in its infancy and falls short of
providing appropriate support for developing reactive context-aware appli-
cations described above (we review the state of the art in Chapter 3). As a
consequence, developers have little choice but to resort to explicit manage-
ment of the execution state (saving and restoring application execution state
between context changes) and explicit context checks (to ensure that the pro-
cedure execution is always constrained to run only in the correct context).
However, the unpredictable nature of context changes renders it almost im-
possible for the developer to know beforehand at which points in the program
to implement the above concerns.
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We want to liberate developers from the bane of developing reactive
context-aware applications. It is therefore the vision of this dissertation to
conceive a novel software technology that facilitates the development of reac-
tive context-aware applications. To ground our vision, we will first introduce
a scenario from which we derive the requirements for the desired software
technology.

2.2 A Visionary Scenario: BainomuAppies in Kampala

BainomugiStar is a Kampala-based1 public transport company. They op-
erate several buses and minibuses (a.k.a matatus) on a number of lines all
over the Kampala region. The attractive part of the BainomugiStar bus net-
work is that their buses and minibuses are equipped with an onboard digital
platform that shows useful information to the passengers by running a suite
of interesting apps (“BainomuAppies”). The current app running as well as
the kind of the information shown depends on contextual parameters such as
the geolocation of the bus, the proximity of other BainomugiStar buses, the
proximity of certain stops and the identity of the passengers that happen to
be onboard the bus at a certain moment in time.

The BainomugiStar Company has a network that consists of two types of
stops all over the Kampala region:

Bronze Stops are stops that merely consist of a pole showing the
BainomugiStar-poster, e.g., somewhere on the sidewalk (cf. Fig-
ure 2.1). Technically speaking, the BainomugiStar-poster contains a
Radio-frequency identification (RFID) tag that contains information
such as the timetable at the bus stop. RFID tags can be read and
written by the onboard RFID-reader of most buses and minibuses.
Customers with RFID-enabled phones can tap the poster with their
phones to view the timetable. Communities such as schools can even
change the location of a bronze stop or create a new stop simply by
moving the pole or by attaching a new BainomugiStar poster (contain-
ing the logo and an RFID tag) to the wall of a shop, a house, a school
gate, etc. A poster (containing the tag) can be bought (and registered)
from BainomugiStar.

Golden Stops are stops located in central locations with better digital in-
frastructure (hotels, shopping malls, and government buildings). Tech-
nically speaking, golden stops are equipped with a wireless computing

1Kampala is the largest and capital city of Uganda. Thanks to Wolfgang De Meuter for
coining the terms BainomugiStar and BainomuAppies.
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Figure 2.1: A BainomugiStar poster at a Bronze stop.

device with its own display, just like buses and minibuses are. Golden
stops can communicate with the onboard computer of all minibuses and
buses that temporarily stop there. Golden stops are entirely owned and
maintained by the BainomugiStar Company engineers.

By allowing buses and minibuses to communicate with one another as
well as with the digital infrastructure at the Bronze and Golden Stops, Bain-
omugiStar thus operates a fairly cheap infrastructureless urban information
network that spans a good part of the Kampala region. Individual pas-
sengers that regularly ride a BainomugiStar bus or minibus can obtain a
free RFID-tag that is glued on the flip side of their mobile phone. In the
BainomugiStar information network, each tag is associated with the personal
identity of its owner and other basic information such as shopping and en-
tertainment preferences. As such, a bus or a minibus always knows exactly
the customers onboard during some ride. The onboard information system
can react accordingly and run the application behaviour that is only relevant
for that particular party. Customers who own phones with wireless commu-
nication can connect to the onboard information system and interact with
the BainomugiStar information network (e.g., injecting new information).
BainomugiStar also has a central phone number to which customers with-
out wireless-enabled phones can send SMS-messages. These SMS-messages
are then also injected into the information network. BainomugiStar is cur-
rently lobbying with the Kampala Capital City Authority to make this central
phone number free to all Kampala-registered mobile phone numbers (but not
to companies wishing to distribute publicity).

The onboard screen of the digital platform perpetually switches between
applications and application behaviours depending on the context. The run-
ning applications (“BainomuAppies”) and application behaviours switch all
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Figure 2.2: BainomuAppies for different physical contexts in Kampala.

the time as the bus drives around, as it approaches (bronze or golden) stops,
as it smells other buses, when it is within a range of certain GPS-coordinates
and as people get on or off the bus. As such, the currently running ap-
plications and application behaviours may be interrupted at any moment.
Moreover, when a bus goes back to the previous context, the previously
interrupted applications resume running from where they left off. Taken to-
gether, the BainomuAppies are a bit like the “flight information” application
in a modern airplane; but much more passenger-specific (targeted towards
the specific people onboard during a particular ride); much richer in applica-
tion behaviour that is enriched with context awareness; much more extensible
(new BainomuAppies can be added on to cater for new contexts).

Examples of BainomuAppies applications suite are:

BainoInfo is the default application that runs on the onboard screen; that
is, the application that is running when no other application takes
over. It shows the whereabouts of the bus on a map of Kampala (with
a simple GPS mapping on a pre-loaded map); it displays the weather; it
shows information about nearby shops and fixed infrastructure such as
fuel stations and waste collection or disposal points. This corresponds
to the flight information of an airplane.

BainoStickies are bulletin board styled messages that companies and pas-
sengers can post on the onboard digital platform, on the infrastructure
of a Golden Stop. If the addressee (identified by his RFID tag) gets
on board, BainoStickies takes over the screen, and runs the applica-
tion behaviour that shows the messages. Companies or organisations
might even use the BainoStickies system to percolate messages to en-
tire groups of passengers (e.g., for advertisements or public announce-
ments). The currently running advertisements change depending on
the contextual information such as the age group of passengers on the
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bus. We can think of scenarios where a quorum of addressees has to
be onboard in order for a group-based message to take over the screen.

BainoStop is an application that takes over the screen as soon as a bus or
a minibus approaches a stop. It shows information about the stop on
the onboard screen such as the name of the stop and the timetable.
Because bronze stops are very volatile and can be created depending
on the need of the BainomugiStar clients, it is impossible for buses or
minibuses to have an up-to-date database that maps GPS-coordinates
to stops. Rather, the bus or minibus “smells” a stop simply because it
approaches the RFID-tag that is attached to the poster. Initially, the
tag is empty, but the first time a bus or minibus approaches a stop, the
driver can write meta information about the stop on the tag. This is
the information that will be shown by BainoStop next time the bus or
minibus approaches the stop.

BainoCrimeSpot is an application that shows a map that visualises crime
trends in different parts of Kampala. Passengers can view which city
neighbourhoods are safe to live in or travel in during the night. When
a bus or a minibus reaches an area that is “unsafe” BainoCrimeSpot
shows a warning message such that passengers getting off can take extra
care. Passengers or local police posts can send crime incidents to the
central phone number using SMS or via WiFi for the passengers that
own PDAs.

BainoKatale is an application that detects open markets (“obutale”) in
the neighbourhood and takes over the onboard screen to shows latest
information about food prices in the nearby market. Traders can post
food prices tagged with the location of the market. When BainoKatale
detects that a farmer is onboard it automatically adapts to display the
prices for the products that the farmer provides. The farmer can use
this information to find attractive offers.

2.3 Characteristics of Reactive Context-aware Appli-
cations

Context-aware applications such as the ones described in the above scenario
exhibit new characteristics that set them apart from traditional mobile and
PC applications. Common to the above scenarios is the notion of context-
constrained executions, prompt adaptability and sudden interruptibility and
resumption.
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Context-constrained executions. Context-aware applications are con-
strained to run under particular context conditions. This means that the
execution of a context-aware application should only proceed when the con-
text conditions are satisfied and should not be allowed to execute in the
wrong context situation. This is necessary to ensure that the application
behaviour that is presented to the user at any moment in time matches the
current context of use. For instance, in the above scenario, it is necessary
to ensure that the BainoStop application only runs when the bus is within
range of the bus stop and should not be allowed to execute when the bus is
out range of the stop.

Prompt adaptability. Context-aware applications need to promptly and
continuously adapt their behaviour to match the current context. A single
application is composed of variants of behaviours that need to be dynam-
ically adopted depending on the context. As such, the application needs
to ensure that when there is a context change the correct variant of the be-
haviour is promptly adopted without explicit user intervention. For instance,
in the scenario described above, the BainoStickies application provides differ-
ent information suites for different categories of passengers that are currently
onboard. As passengers board or leave the bus, BainoStickies promptly and
continuously adapts its behaviour to display information that is suitable for
the current audience.

Sudden interruptibility. The kind of applications described above, need
to be constantly interrupted due to the unpredictable nature of context
changes. Unlike traditional applications where a user interacts with a single
application from the start to the end of a certain task, unforeseen inter-
ruptions are the norm in context-aware applications. If there is a context
change, a running application may need to be interrupted such that another
application that matches the current context takes over again. For exam-
ple, in the above scenarios, the application running on the onboard digital
platform can change at any moment in time. When the digital platform is
running the BainoInfo application and the bus approaches a BainomugiStar
stop, the BainoInfo application is interrupted and the BainoStop application
takes over. Similarly, when the bus moves out of range of the stop, BainoStop
is interrupted immediately and BainoInfo automatically resumes from where
it left off.

It should be noted that the above characteristics are not specific to the sce-
narios presented in this chapter but depict a general pattern that is present in
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most context-aware applications. We further discuss other examples of reac-
tive context-aware applications in Chapter 8. Even though reactive context-
aware applications provide end-users with enhanced experiences and richer
information, developing such applications remains notoriously difficult.

2.4 Software Engineering Issues
Here we discuss the key software engineering issues that arise when develop-
ing reactive context-aware applications using the current software technolo-
gies.

Context management. Developers of context-aware applications need to
deal with context management issues such as low-level context acquisition
from physical sensors. Additionally, raw sensor data from such as GPS co-
ordinates need to be aggregated and interpreted into high-level meaningful
contextual information such as location names. Moreover, contextual infor-
mation not only comes from sensors local to a device to but also sensors
located on remote devices. This entails dealing with distribution issues (such
as context discovery and network disconnections). Also, since sensor data
changes all the time, it is necessary to ensure that contextual information
needed by a context-aware application is always kept up-to-date. For in-
stance, in the scenario of BainomuAppies in Kampala, the developer must
implement the concerns of retrieving the GPS coordinates and interpret them
into names of bus stops. Similarly, the developer must implement concerns
of retrieving contextual data from the RFID tags associated with phones of
the passengers that happen to be on the bus.

Constraining an entire execution to the correct context. Develop-
ers of reactive context-aware applications must ensure that an entire appli-
cation’s execution happens only in the correct context. This issue is made
difficult because of the unpredictable nature of context changes. Because
context changes can occur at any moment while an application is execut-
ing, it is possible that an execution that started in the correct context may
end up running in the wrong context. Allowing an application’s execution
to continue executing in the wrong context may result in incorrect applica-
tion behaviour. For instance, in the scenario of BainomuAppies in Kampala,
suppose the BainoStickies application is running an advertisement for a spec-
ified quorum of passengers that are currently on the bus, the advertisements
should not be allowed to continue running the moment the quorum is no
longer met. Otherwise, allowing the advertisement to continue running when
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the quorum is not met would be incorrect. For developers, implementing such
concerns is not trivial.

Prompt adaptation of executions. Developers of reactive context-aware
applications must ensure that all times the appropriate application be-
haviours are selected for execution. The developer needs to express the
logic to enable the application promptly adopt the appropriate behaviour
as soon as a new context change is observed, even when such a context
change occurs while in the middle of an ongoing application’s execution. For
a running application to adopt new behaviour, it requires interrupting the
current execution and starting a new execution that matches the current
context. Such concerns are difficult to implement without adequate software
technologies. For instance, in the scenario of BainomuAppies in Kampala,
as the bus moves about as the bus moves about, applications must adopt
appropriate behaviours all the time (e.g., running the BainoKatale as soon
as the bus approaches a market adopting the behaviour of the BainoStop
application as soon as the bus approaches a bus stop). If such an adapta-
tion occurs while an application is running, then the ongoing execution must
be promptly interrupted, in order for the new application behaviour to take
over.

Preserving the execution state between interruptions. Developers
of reactive context-aware applications must ensure that the application’s ex-
ecution state is preserved between interruptions. This is necessary because
it is desirable for an application to continue running from the same point
it was interrupted when the application goes back to the previous context.
For instance, in the scenario of BainomuAppies in Kampala, suppose that
the BainoInfo application is running and the bus approaches a bus stop. In
that case, the BainoInfo application should be interrupted, its execution state
saved, and starting the execution of the BainoStop application. The moment
the bus leaves the bus stop, the BainoInfo application should resume from
the exact point at which it was interrupted. For the developer, this implies
facing the difficulties of manually saving and restoring the entire execution
state of the application, which is not trivial.

Ensuring a consistent execution environment. Developers of reactive
context-aware applications must ensure that an interrupted application’s ex-
ecutions resumes in a consistent execution environment. Different applica-
tions may be manipulating the same data. As such the currently interrupted
executions may be resumed when shared data has been modified by other ex-
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ecutions. It is therefore necessary to ensure that modifications to the shared
data do not lead to inconsistencies. For instance, in the scenario of Baino-
muAppies in Kampala, suppose that the BainoInfo applications is interrupted
and the BainoKatale application takes over the screen because a farmer hap-
pens to get on the bus. Furthermore, suppose that the farmers changes the
display language of the digital platform to a desired local language. As soon
as the farmer leaves the bus and the BainoInfo resumes executing, the lan-
guage change that was made for the BainoKatale application should not be
visible for the BainoInfo application. Such data management concerns are
difficult to implement without appropriate software technologies.

2.5 Middleware vs Programming Languages

The above issues stress the need for a dedicated software technology to fa-
cilitate the development of reactive context-aware applications. As stated
in Chapter 1, the primary goal of this dissertation is design and develop
such a software technology. When developing such a software technology, a
reoccurring puzzle is whether the software technology should be conceived
as either a programming language or a middleware. In this dissertation, we
chose a programming language approach over a middleware approach because
most of the software engineering issues that we discussed above require a so-
phisticated software technology to manipulate a program’s execution (e.g.,
interrupting an ongoing execution depending on context). Moreover, using
a middleware to interrupt an ongoing program’s execution at any moment
would require the developer to inject multiple calls to the middleware APIs in
the application code. Additional calls to the middleware APIs would also be
required in order to save and restore the program’s execution state between
interruptions. Also, developing such a software technology as a middleware
requires a programming language that already provides some support for
manipulating a program’s execution. For these reasons, this dissertation fo-
cusses on developing a novel programming language technology in order to
ease the development of reactive context-aware applications. As stated in
Chapter 1, this choice has also been influenced by the culture of program-
ming language design at the Software Languages Lab of the Vrije Universiteit
Brussel, Brussels, Belgium – where this research was conducted. In the next
section, we formulate a number of programming language requirements that
should be satisfied by such a programming language technology.
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2.6 Programming Language Requirements

In Section 2.3, we discussed the characteristics that are exhibited by reactive
context-aware applications, namely, context-constrained executions, prompt
adaptability and sudden interruptibility and resumption. In Section 2.4, we
highlighted the software engineering issues that arise when developing reac-
tive context-aware applications using the currently available software tech-
nologies. These include: context management, constraining an entire execu-
tion to the correct context, prompt adaptation of executions, preserving the
execution state between interruptions, and ensuring a consistent execution en-
vironment. The complex nature of these issues (e.g., the need to interrupt a
program execution at any moment depending on context conditions) stresses
the need for a sophisticated software technology to ease the development of
reactive context-aware applications. In order to tackle these issues we focus
on the design and development of a programming language technology.

The first step in designing and developing such a programming language
technology is to define the criteria that must be met by a programming
language for it to be considered suitable for developing reactive context-
aware applications. It is therefore the purpose of this section to put forward
language requirements for such a programming language technology. We
argue that for a programming language to be considered suitable for de-
veloping reactive context-aware applications, it should satisfy the following
requirements: R.1 Chained Context Reactions, R.2 Context-dependent Inter-
ruptions, R.3 Context-dependent Resumptions, R.4 Contextual Dispatch, R.5
Reactive Dispatch, and R.6 Reactive Scope Management. We have distilled
these requirements from the characteristics exhibited by context-aware appli-
cations (cf. Section 2.3) and the software engineering issues that arise when
developing reactive context-aware applications (cf. Section 2.4).

In the literature of programming language technologies for context-aware
applications we found a list of language requirements for context-oriented
programming (COP) languages [HCN08, Val11, Gon08]. However, the lan-
guage requirements for COP are inadequate for reactive context-aware appli-
cations. We will give a full review of the COP languages and other existing
software technologies for context-aware applications in Section 3.2. In the re-
mainder of this section, we describe the programming language requirements
for reactive context-aware applications.

R.1 Chained Context Reactions
Since the execution of a context-aware application is driven by context
changes, it is necessary that the language provides abstractions for repre-
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senting context. Typically, context sources are low-level physical sensors
such as GPS receivers, accelerometers, and RFID tags. Therefore, a pro-
gramming language designed for reactive context-aware applications should
alleviate the developer from the complexities of low-level context manage-
ment. The programming language should provide abstractions to represent
context sources in order for the application to react upon them and adapt its
context-dependent behaviour accordingly. Additionally, it should be possible
to combine different context sources in order to create new context sources
(e.g., combining GPS and accelerometer context sources to create a con-
text source for a user’s activity). Because the values of those context sources
change over time, the language runtime should ensure that dependent context
sources are always kept up-to-date. That is, when a context source receives
a new value, all the values of the dependent context sources should be au-
tomatically updated without requiring the developer to explicitly propagate
the context changes across the chain of dependent context sources.

R.2 Context-dependent Interruptions
A context-dependent behaviour should be constrained to run only under a
specified context condition. Typically, context-dependent behavioural vari-
ations are represented as procedures in a concrete programming language.
Each context-dependent procedure should be associated with a context pred-
icate that determines the correct context the procedure is allowed to execute
in. The context predicate should be implicitly checked throughout the pro-
cedure execution in order to constrain it to the correct context. Traditional
ways of constraining a procedure execution by means of conditional expres-
sions are impractical because they require the developer to explicitly insert
several if expressions in the procedure body. Such an approach is too cum-
bersome and results in programs written in a style where every expression in
the procedure body is preceded by an if expression. Therefore, a program-
ming language should provide the developer with an appropriate construct
to constrain a procedure to a particular context and the language runtime
should ensure that the constraint is obeyed throughout the execution. If
the context predicate is no longer satisfied while its associated procedure
execution is ongoing, then the execution should be interrupted immediately.
Therefore, a language runtime should be able to promptly interrupt an on-
going procedure execution when its associated context condition is no longer
satisfied. This is necessary in order to prevent a procedure from executing
in the wrong context, which can lead to incorrect application behaviour. In
Figure 2.3 the execution of the procedure P1 is constrained to run only in
context C1. When the physical context no longer C1 while the execution of
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P1 is ongoing, the execution is interrupted.

Procedure P1 Current context

executing

interrupted

executing

interruption point

resumption point

C1

Invocation of P1

Context is C1

Context is C1
again

Context is 
no longer C1

Figure 2.3: Context-dependent interruptions and context-dependent resump-
tions.

R.3 Context-dependent Resumptions
A programming language designed for reactive context-aware applications
should support resumption of a previously interrupted execution. Because
context changes occur continuously it is possible that a previously unsatisfied
context predicate may become satisfied again. When a context predicate
that is associated with an previously interrupted execution becomes satisfied
again it should be possible to resume the execution from the exact point
at which it was interrupted. The resumption of an interrupted execution
should be implicitly handled by the language runtime and should not require
the developer to manually restore a program’s execution state. In Figure 2.3
the previously interrupted execution of the procedure P2 resumes to continue
executing from where it left off the moment the physical context becomes C1
again.

This requirement draws similarities with the unplanned interruptions we
as humans are subjected to in our everyday life. Consider, for example,
two researchers having a conversation in their office and a third researcher
walks into the office. At that moment, the ongoing conversation between
the two researchers may be temporarily interrupted and possibly starting a
new conversation with the third researcher. As soon as the third researcher
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leaves the office, the two researchers can resume their previously interrupted
conversation from where they left off. Fortunately for us, the human mind
can handle unexpected interruptions and is able to easily resume a previously
interrupted task. So, for a language runtime to be able to automatically
resume interruptions executions in reaction to context changes, it should be
built with support for context-dependent resumptions.

R.4 Contextual Dispatch
A context-aware application consists of definitions of context-dependent
behavioural variations for different contexts. Each context-dependent be-
havioural variation should be associated with a context predicate that de-
termines its applicability. It should be possible to group together related
context-dependent behavioural variations under a single grouping entity.
Such a grouping entity should enable the developer to dynamically add new
context-dependent definitions whenever required without requiring a devel-
oper to anticipate all possible future behavioural variations at once. More-
over, the addition of new behavioural variations should not require modifi-
cation of the existing behavioural definitions.

P

P1

P2

P3

C1

C2

C3

a procedure 
definition 

context to
 execute in

physical environment

invocation  of P

current context 
is C1

continuous 
context changes

Figure 2.4: Contextual dispatch and reactive dispatch.

The selection of the appropriate context-dependent behavioural variation
should be based on contextual information. Given the current context param-
eters (e.g., the current location or the user’s activity) and a set of predicate
procedures, the dispatching process should be able to determine which be-
havioural variation to execute based on the context predicate that evaluates
to reactive. We refer to this dispatching mechanism as contextual dispatch.
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Figure 2.4 shows the procedure P that has three definitions P1, P2, and P3.
Each of the procedure represents a context-dependent behavioural variation
for contexts C1, C2, and C3. When P is invoked the procedure to execute
depends on the current context in the physical environment. Therefore, in-
voking P when the current context in the physical environment C1 implies
that the procedure P1 is selected for execution.

R.5 Reactive Dispatch
Since context changes occur continuously, it implies that the applicability of
a context-dependent behavioural variation to execute depends on a context
predicate whose outcome changes over time. This implies that a context-
dependent behavioural variation that cannot be selected in the current con-
text may eventually become applicable when a context change occurs. Hence
it should be selected for execution. This necessitates a sophisticated dispatch-
ing mechanism that is repeated in response to context changes. We refer to
this kind of dispatching mechanism as reactive dispatching in that the dis-
patcher continuously takes into account any new context changes that occur
– even after the first dispatching phase has happened. This in contrast with
existing dynamic dispatching mechanisms [MCC98] where the selection of
the applicable procedure happens once and is based only on the currently
available information. In Figure 2.4 the dispatching process maintains a con-
tinuous interaction with the physical environment. If the current context
later changes to say C2, the dispatching process is repeated and hence the
procedure P2 should be selected for execution.

R.6 Reactive Scope Management
Because an execution of a context-dependent behavioural variation can be
suspended at any moment and resumed at a later moment, it is necessary
to ensure that the execution is resumed in a consistent environment. For
instance, changes to the variables that are shared among context-dependent
behavioural variations may become visible to context-dependent behavioural
variations other than then one that performed those changes. This can lead to
undesirable behaviour (e.g., observing inconsistent values between suspension
time and resumption time). It is therefore desirable that a programming
language for reactive context-aware applications should provide mechanisms
to enable the developer to scope the visibility of state changes.2 In Figure 2.5
2In this dissertation, we consider state changes caused by assignments. Externally visible
side effects such as I/Os are not addressed in this dissertation since they are generally
hard to circumvent.
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Figure 2.5: Reactive scope management.

procedures P1 and P2 share the variables x and y. When the execution
of P1 is interrupted the value of x is 4 while that of y is 8. During the
execution of procedure P2 the value of x is changed to 5. Thus when the
execution P1 is later resumed the value x value has been modified to 5 by P2,
which is different from when it was interrupted. This could lead to incorrect
application behaviour. It is therefore necessary to provide language support
to scope state changes to the variables that are shared among procedures.
In this example, P1 is resumed with the same environment as when it was
suspended. However, a programming language for reactive context-aware
application may provide different options that the developer can choose from
depending on the application.

2.7 Chapter Summary

In this chapter, we have presented the vision of reactive context-aware
applications where applications continuously sense their environment and
promptly adapt their behaviour to match the physical context. In order to
ground our vision, we presented a visionary scenario called BainomuAppies
in Kampala. From this scenario, discussed the characteristics that are exhib-
ited by reactive context-aware applications, namely, sudden interruptibility,
prompt adaptability and context-constrained executions. We subsequently
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Programming Language Requirement
R.1 Chained Context Reactions

R.2 Context-dependent Interruptions

R.3 Context-dependent Resumptions

R.4 Contextual Dispatch

R.5 Reactive Dispatch

R.6 Reactive Scope Management

Table 2.1: Programming language requirements for reactive context-aware
applications.

discussed the software engineering issues that arise when developing reactive
context-aware using the currently available software technologies, namely,
context management, constraining an entire execution to the correct context,
prompt adaptation of executions, preserving the execution state between in-
terruptions, and ensuring a consistent execution environment. In order to
tackle these issues we focus on designing and developing a programming lan-
guage technology for reactive context-aware applications. As a first step
towards such a programming language technology, we put forward program-
ming language requirements (cf. Table 2.1), namely, R.1 Chained Context
Reactions, R.2 Context-dependent Interruptions, R.3 Context-dependent Re-
sumptions, R.4 Contextual Dispatch, R.5 Reactive Dispatch, and R.6 Reactive
Scope Management. These requirements should be satisfied by a program-
ming language in order for it to be considered suitable for developing reactive
context-aware applications. In the next chapter, we use these language re-
quirements to evaluate previous programming technologies for context-aware
applications.
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3.1 Introduction

In Chapter 2, we identified a number of requirements that a programming
language should satisfy in order for it to be considered suitable for devel-
oping reactive context-aware applications. Over the past years researchers
have carried out investigations on programming technologies [HCN08, CH05,
GMH07, VGC+10, Tan08, KAM11, GCM+11, SGP12b] that aim to ease the
development of context-aware applications. The purpose of this chapter is to
survey the state of the art of programming technologies and techniques that
can facilitate the development of context-aware applications. In this sur-
vey, we also cover some programming technologies that were not specifically
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designed for context-aware applications but which exhibit properties that
map well onto some of the programming language requirements for reactive
context-aware applications (cf. Section 2.6).

In Section 3.2, we give a review of the programming languages that sup-
port context-oriented programming for enabling dynamic adaptation of an
application’s behaviour depending on the context of use. Section 3.3, re-
views functional reactive programming languages, which provide reactive ab-
stractions for representing event sources. We also survey advanced control
flow constructs and programming language facilities that enable interrupting
and/or resuming executions. These include first-class continuations (Sec-
tion 3.4.1), coroutines (Section 3.4.2), threads (Section 3.4.3), and finally
Guards [Lea99], invariants and assertions (Section 3.5.2). We evaluate each
approach against the requirements that we put forward in Section 2.6.

3.2 Context-oriented Programming

Context-oriented programming (COP) is a programming language paradigm
proposed by Hirschfeld et. al. [HCN08] that facilitates developing context-
aware applications. The main motivation of COP is to provide programming
language support for dynamically adapting an application’s behaviour to
match the context of use. Hirschfeld et. al. identified a number of prop-
erties that a COP language should support: (i) behavioural variations, (ii)
layers, (iii) dynamic activation and deactivation of layers, and (iv) scoping of
layer activations. Below, we briefly discuss each of the properties of a COP
language as were previously proposed.

Behavioural variations. A COP language should provide support for
defining variations of a given behaviour to specify different behaviours for
different contexts. Behavioural variations are partial definitions of new or
modified behaviour that can be expressed as methods or procedures in the
underlying programming language model. Each behavioural variation should
be associated with a particular contextual situation.

Layers Layers are entities that group behavioural variations that belong
to the same context. Such entities can be first-class and can be referred to
in a program.

Dynamic activation and deactivation of layers Layers can be dynam-
ically activated or deactivated depending on the current context of use. Ac-
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tivating a layer makes its behavioural variations available while deactivating
a layer makes them unavailable.

Scoping of layer activations The scope within which layers are activated
or deactivated can be controlled explicitly.

A number of extensions to general purpose programming lan-
guages [SGP12a] for COP have been developed. These include Con-
textL [CH05] for Lisp, ContextS [HCH08] for Smalltalk/Squeak, Con-
textJ [CHDM06], JCop [App12] and EventCJ [KAM11] for Java, Con-
textJS [LASH11] for Javascript, ContextScheme [Cos10] for Scheme, Con-
textPy [HPSA10] and PyContext [vLDN07] for Python. Vallejos and Gon-
zalez in their respective doctoral theses refined the above COP properties
to develop Lambic [Val11] and Ambience [Gon08], respectively. There are
also some language extensions that do not fully support the COP proper-
ties but which focus on a subset of concerns of context-aware applications.
For instance, Context Values [Tan08] is a COP approach that focuses on
context-aware variables and scoping of side effects. In this section, we re-
view existing COP languages and evaluate them against the programming
language requirements for reactive context-aware applications that we put
forward in Section 2.6.

3.2.1 ContextL and other Layer-based COP Languages

ContextL [CH05] and ContextS [HCH08] were the first concrete language ex-
tensions to support the COP properties. Subsequently, other COP language
extensions such as ContextJ [CHDM06] and ContextPy [HPSA10] were later
implemented based on ContextL and ContextS. We give a detailed review of
ContextL only since they are similar.

ContextL is a COP extension to the Common Lisp Object System
(CLOS). Like CLOS, ContextL is based on the notion of generic func-
tions [BDG+88] where methods belong to a generic function instead of a
class.1 Context-dependent behavioural variations are expressed as different
method definitions that belong to a layered generic function. Developers can
define layered generic functions using the define-layered-function
construct, which is similar to defgeneric for generic function definition
in CLOS. Each behavioural variation (method definition) specifies a layer

1A generic function is an abstract operation that specifies a name, parameters but without
specifying its implementation [Sei04].
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it belongs to. For each context there is a corresponding behavioural varia-
tion definition. A layer definition represents a particular context. ContextL
provides the deflayer construct to define such layers. A layer consists of
only a name and no further properties of its own, instead ContextL provides
constructs that enable developers to add behavioural definitions to them. A
layer groups different behavioural variations for the same context.

Different behavioural variations are made available or unavail-
able at runtime through layer activation and deactivation, respec-
tively. Layer activation and deactivation happen explicitly by us-
ing the (with-active-layers (layer-name) body) and
(with-inactive-layers (layer-name) body) constructs. Acti-
vating or deactivating a layer implies that all behavioural variations that
belong to that layer become available or unavailable. Such layer activations
and deactivations are only in effect within the scope of the construct.
Both layer activations and deactivations are dynamically scoped meaning
that they affect both direct and indirect invocations of the layered generic
functions.

We illustrate ContextL’s support for context-dependent in Listing 3.1.

Listing 3.1: Expressing context-dependent behaviours in ContextL.
1 ;defining layers
2 (deflayer english-layer)
3 (deflayer dutch-layer)
4

5 ;layered generic functions
6 (define-layered-function show-greeting ())
7

8 ;layered method for context-dependent behaviours
9 (define-layered-method show-greeting

10 :in-layer english-layer ()
11 (display "Hello"))
12

13 (define-layered-method show-greeting
14 :in-layer dutch-layer ()
15 (display "Hallo"))
16

17 ;layer activation
18 (with-active-layers (english-layer)
19 (show-greeting)) ===> "Hello"

The example displays a greeting message in a different language depend-
ing on the user’s language (context). We adapt this example from [Tan08].
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The code snippet shows the definition of layers english-layer and
dutch-layer for the Dutch and English languages. show-greeting is
a generic function that is defined using the define-layered-function
construct. The different behavioural variations for the two contexts are de-
fined as layered methods using the define-layered-method construct.
Each layered method specifies its containment layer using the :in-layer
specification. A layer is activated using the with-active-layers
construct, which is dynamically scoped. In the above example, the
english-layer is activated. Therefore, invoking show-greeting dis-
plays the greeting message in English.

Evaluation

We now evaluate ContextL against the requirements of reactive context-
aware applications that we put forward in Section 2.6. The 4 and 6 adjacent
to each requirement imply that the requirement is satisfied or not satisfied.

R.1 Chained Context Reactions 6 ContextL and its siblings do not pro-
vide any dedicated language abstractions to represent context in a pro-
gram. A layer is simply a name of the context and does not contain
contextual information such as the current location that can be rea-
soned about in a program. Developers have to provide a representation
of context and manually express layer activations and deactivations as
reactions to context changes (e.g., by explicitly registering callbacks to
the context sources).

R.2 Context-dependent Interruptions 6 ContextL and other layer-
based COP languages do not provide any language support to constrain
a method execution to a particular context. Once a method definition
is selected and its execution is started, it is not possible interrupt an
ongoing method execution. As such a method execution that started
in a correct context may end up executing in the wrong context, which
can lead to incorrect application behaviour.

R.3 Context-dependent Resumptions 6 Since ContextL and other
layer-based COP languages do not provide support for context-
dependent interruptions, they do no support context-dependent re-
sumptions.

R.4 Contextual Dispatch 4 Context-dependent behavioural variations in
ContextL and its siblings are represented in terms of method defini-
tions. Each method definition specifies the name of a layer (context
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Figure 3.1: Grouping of behavioural variations in ContextL using layers and
layered generic functions.

name) it belongs to. As depicted in Figure 3.1, ContextL and other
layer-based COP languages provide two ways of grouping together re-
lated behavioural variations. The fundamental one to COP being lay-
ers, where behavioural variations that belong to the same context are
grouped together under the same layer. For instance, in Figure 3.1,
behavioural variations f1 and g1 belong to layer 1. The second
grouping mechanism provided by ContextL is layered generic functions,
which are similar to the generic functions of CLOS. A layered generic
function groups together related behavioural variations for different
contexts. For instance, in Figure 3.1, the layered generic function f
consists of two behavioural variations f1 and f2 for different contexts.
It is possible to add new behavioural variations at runtime to existing
layers or layered generic functions without modifying the existing be-
havioural variations. Contextual dispatch is achieved by selecting the
behavioural variation to execute based on the currently active layers.
For instance, if the generic function f is invoked when the layer 1 is
active, the behavioural variation f1 is selected for execution.

R.5 Reactive Dispatch 6 In ContextL and other layer-based COP lan-
guages, the selection of applicable behavioural variations happens only
once. Moreover, the selection is based on the currently active layers,
which are explicitly activated by the running program.

R.6 Reactive Scope Management 6 In ContextL and other layer-based
COP languages, state changes to the variables that are shared among
behavioural variations are visible to all behavioural variations that be-
long to the same layer or generic function. There is no language sup-
port that enables the developer to control the visibility of state changes
among behavioural variations.
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3.2.2 Lambic
Lambic [Val11] is another COP extension to CLOS. Unlike ContextL, Lam-
bic does not have the notion of layers and explicit layer activation. Context-
dependent behavioural variations in Lambic are expressed in terms of pred-
icated generic functions [VGC+10]. It extends the generic functions model
of CLOS to enable method definitions to be associated with context predi-
cates. Context predicates play the role of layers, but context predicates in
Lambic can operate on contextual information or state variables. Lambic
extends the generic function definition form with the :predicates option
that enables the developer to specify a list of predicate functions that can be
used in the method definitions belonging to that predicated generic function.
Similarly, it extends the method definition form with the :when option that
enables the developer to associate a context predicate with a method defi-
nition. Therefore, for each context situation there is method definition with
a corresponding context predicate. When a predicated generic function is
invoked, the method for execution is selected based on the context predicate
that is satisfied.

Listing 3.2 illustrates the definition of context-dependent behaviours in
Lambic.

Listing 3.2: Expressing context-dependent behaviours in Lambic.
1 ;generic function
2 (defgeneric show-greeting (language)
3 (:predicates english? dutch?))
4

5 ;context-dependent behaviours
6 (defmethod show-greeting (language)
7 (:when (english? language))
8 (display "Hello"))
9

10 (defmethod show-greeting (language)
11 (:when (dutch? language))
12 (display "Hallo"))
13

14 (defvar *language* "English")
15 (show-greeting *language*) ===> "Hello"

The example shows the definition of the show-greeting generic func-
tion using the defgeneric construct. It specifies the predicates english?
and dutch?. The predicates return true or false depending on the specified
language. Each method definition is associated with a context predicate to
determine its specificity. Invoking the show-greeting generic function
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with "English" invokes the appropriate method. Therefore, the greeting
message is displayed in English.

Evaluation

We now evaluate Lambic against the language requirements for reactive
context-aware applications that we put forward in Section 2.6.

R.1 Chained Context Reactions 6 Like ContextL, Lambic does not pro-
vide any dedicated language abstractions to represent context sources
that depend on physical sensors such as a GPS receiver. As such de-
velopers have to deal with the low-level issues of context acquisition as
well as manually propagating context changes among dependent con-
text sources in a context-aware application.

R.2 Context-dependent Interruptions 6 In Lambic, context-dependent
behavioural variations are expressed in terms of method definitions.
Each method definition is associated with a context predicate. How-
ever, Lambic does not ensure that the entire method execution is con-
strained to happen only when the associated context predicate is satis-
fied. Lambic does not support the interruption of an ongoing method
execution even when the associated context predicate is no longer satis-
fied. Once a method is selected and its execution is started, any context
changes that occur during the method execution do not immediately
affect the execution (even if they render the context predicate unsat-
isfied). This may result in a method execution running in a wrong
context.

R.3 Context-dependent Resumptions 6 As Lambic does not support
context-dependent interruptions, there is no support for resumptions
either.

R.4 Contextual Dispatch 4 Lambic like ContextL, inherits the generic
functions model of CLOS as its grouping mechanism. Related context-
dependent behavioural variations (method definitions) are grouped to-
gether under a predicated generic function. New method definitions
(behavioural variations) can be added at runtime to an existing predi-
cated generic function without altering the existing method definitions.
Lambic employs a predicate dispatching mechanism [MCC98] where the
method that is selected for execution is based on the context predicate
that is satisfied.
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R.5 Reactive Dispatch 6 In Lambic the dispatching process happens only
once based on the currently available context information. This means
it is not possible for future context changes to affect the dispatching
process. An exception is raised for cases when there is no satisfied con-
text predicate at the dispatching time (even if some context predicate
may later become satisfied).

R.6 Reactive Scope Management 6 Lambic does not provide any ab-
stractions that enable the developer to control visibility of state changes
to variables that are shared among behavioural variations. Therefore,
any changes to the variables that are shared among behavioural varia-
tions become immediately visible to all the behavioural variations shar-
ing those variables.

3.2.3 Ambience

Ambience [Gon08] is a COP language that is built on top of Common Lisp.
Unlike ContextL and Lambic, Ambience does not rely on the object system
of CLOS. Instead, Ambience features its own object system that is based
on prototypes rather than classes. Behavioural variations are expressed in
terms of multimethods [SA05]. A method belongs to one or more prototyp-
ical objects on which it is specialised.2 Every method definition is preceded
with the with-context construct that specifies the context in which the
method is applicable. Ambience represents context as first-class objects.
There is a predefined root context object from which new context objects
can be created through either cloning or delegation-based inheritance. A
context object in Ambience plays the role of a layer, but in addition con-
text values can be added as slots of the context object. For every contextual
situation (e.g., office or home) there is a corresponding context object. A con-
text object can be activated or deactivated using the respective constructs
activate-context and deactivate-context. In addition, the Am-
bience runtime includes a dedicated context manager that is responsible for
context switching (i.e., activating and deactivating context objects). In Am-
bience, the activation of a context object is global to the application. The
current active object is passed as an implicit argument for each method in-
vocation, therefore, the method that is selected for execution depends on
the active context object(s). Recently, an reincarnation of Ambience called

2A method is said to be specialised on an object if it specifies that object as one of the
arguments it can handle. In Ambience, a method can be specialised on more than one
object.
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Subjective-C [GCM+11] has been developed as an extension to the Objective-
C programming language.

Ambience’s constructs for COP are illustrated in Listing 3.3.

Listing 3.3: Expressing context-dependent behaviours in Ambience.
1 ;defining context
2 (defcontext english)
3 (defcontext dutch)
4

5 ;defining context-dependent behaviours
6 (with-context english
7 (defmethod show-greeting ()
8 (display "Hello")))
9

10 (with-context dutch
11 (defmethod show-greeting ()
12 (display "Hallo")))
13

14 ;activating a context
15 (activate-context english)
16 (show-greeting) ===> "Hello"
17

18 ;deactivating a context
19 (deactivate-context english)
20

21 ;activating a context
22 (activate-context dutch)
23 (show-greeting) ===> "Hallo"

The above example shows the definition of the english and dutch
context objects that are defined using the defcontext construct. Meth-
ods are defined within the boundaries of the with-context construct. The
with-context construct takes as argument a context object and a method
definition. Such a method is implicitly specialised on the specified context
object. The method is selected for execution when the context object on
which it specialised is active. A context object is activated and deactivated
using the activate-context and deactivate-context constructs re-
spectively. In this example, the show-greeting method is invoked after
activating the english context object. Therefore, the greeting message in
English is displayed. Finally, the english context object is deactivated and
the dutch context object is activated. Therefore, the greeting message in
Dutch displayed.
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Evaluation

We now evaluate Ambience against the requirements of reactive context-
aware applications that we put forward in Section 2.6.

R.1 Chained Context Reactions 6 Ambience provides a representation
of context as a hierarchy of context objects. However, Ambience does
not support automatic propagation of context changes among context
sources that depend on each other’s value.

R.2 Context-dependent Interruptions 6 In Ambience it is not possible
to constrain an entire method execution to a particular context. More-
over, there is no support for interrupting an ongoing method execution.

R.3 Context-dependent Resumptions 6 As there is no support for sus-
pending an execution, Ambience does not provide support for resump-
tions.

R.4 Contextual Dispatch 4 In Ambience, behavioural variations belong
to objects on which they are explicitly specialised and the context ob-
jects on which they are implicitly specialised. In addition, Ambience
permits implicit grouping of multimethods that have the same name
but with different specialisers. Method definitions in Ambience are ex-
ternal to the object and it is possible to add new method definitions
through the in-context construct. Ambience employs the subjective
dispatching mechanism, where the method that is selected not only de-
pends on the specialisers but also on the current active context object.
At the invocation time, every method call has an implicit context ob-
ject that serves as a context condition that is used to decide the method
to execute for the currently active context object.

R.5 Reactive Dispatch 6 The dispatching process happens only once
upon each dispatching incident. Moreover, the dispatching process is
only is only based on the the current active context objects. Any fu-
ture context activations cannot affect such a dispatching process unless
a running program explicitly invokes the multimethod again.

R.6 Reactive Scope Management 6 In Ambience any state changes to
a shared variable is immediately visible to all other methods that share
those variables. The language does not provide any dedicated language
constructs to enable to developer delimit the scope of state changes.
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3.2.4 Contextual Values

Contextual Values [Tan08] is an extension to Scheme that provides sup-
port for variables whose values depend on the context in which they are
accessed. Unlike previous COP languages that focused on providing differ-
ent behaviours for different contexts, Contextual Values focus on providing
language constructs to enable values themselves to be context-dependent.
Also, Contextual Values provide support for scoping of side effects (assign-
ments). When a state change is performed on a contextual variable, it only
affects the value of the variable that belongs to the context in which the
state change was performed. In addition, the author proposes a dedicated
language construct (scoped ctx exprs) that enables the developer to
scope side effects to a certain region of a program execution. The scoped
construct ensures that all side effects that are performed during the execution
of exprs remain local to the context ctx. The boundary of the scoped
construct is the dynamic extent of the expressions exprs.

Listing 3.4 illustrates Contextual Values using an example.

Listing 3.4: Expressing context-dependent variables in Contextual Values.
1 ;context
2 (define language "English")
3

4 ;default contextual value - English
5 (define greeting (make-cv-init (lambda () language) "Hello"))
6

7 ;contextual value for Dutch
8 (set! language "Dutch")
9 (cv-set! greeting "Hallo")

10 (cv-ref greeting) ===> "Hallo"
11

12 (set! language "English")
13 (cv-ref greeting) ===> "Hello"

The example shows the definition of the greeting contextual variable
that is created using the make-cv-init construct. It contains different
values for different contexts. The values are greeting messages while the con-
texts are the languages. This example is adapted from [Tan08]. The variable
is initialised with the "Hello" greeting for English. The greeting message
for the Dutch language is initialised using the cv-set! construct. Access-
ing the greeting variable when the language is set to Dutch evaluates to
"Hallo". Similarly, accessing the greeting variable when the language
is set to English evaluates to "Hello".
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Evaluation

We now evaluate Contextual Values against the programming language re-
quirements for reactive context-aware applications that we put forward in
Section 2.6.

R.1 Chained Context Reactions 6 Contextual Values do not provide
any dedicated language abstractions for representing context. Con-
text information is represented as regular Scheme variables (e.g., as
strings).

R.2 Context-dependent Interruptions 6 Since Contextual Values were
designed for context-dependent variables, there is no notion of inter-
ruption an ongoing procedure execution.

R.3 Context-dependent Resumptions 6 Contextual Values do not sup-
port resumption procedure executions since they focus on context-
dependent variables.

R.4 Contextual Dispatch 4 Contextual Values support contextual dis-
patch but for variables. However, one can exploit the first-class status
of procedures in Scheme to represent context-dependent behavioural
variations with Contextual Values. Hence achieve contextual dispatch
for context-dependent behavioural variations.

R.5 Reactive Dispatch 6 In Contextual Values the selection of the value
for the current context happens only once.

R.6 Reactive Scope Management 4 The semantics of Contextual Val-
ues are designed to control the scope of state changes to only the con-
text in which they are performed. In addition, the author proposes a
dedicated language construct to scope side effects to remain local to a
certain region of the program execution.

3.2.5 Discussion
In this section, we have reviewed programming language approaches that
fall in the category of context-oriented programming. We have evaluated
each approach against the requirements for reactive context-aware applica-
tions that we identified in Section 2.6. From the evaluation, we observe that
none of the approaches satisfies the requirements of chained context reac-
tions, context-dependent interruptions, context-dependent resumptions, and
reactive dispatch. Most of the layer-based COP languages, such as ContextL
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provide support for contextual dispatch. However, there is no support to en-
sure that the entire execution of a context-dependent behavioural variation
is constrained to a particular context. Contextual Values provide some sup-
port for contextual dispatch and reactive scope management. However, they
do not support chained context reactions, context-dependent interruptions,
context-dependent resumptions, and reactive dispatch.

3.3 Functional Reactive Programming

Functional reactive programming (FRP) [WH00, CK06] is a programming
paradigm that has recently been proposed for developing applications that
continuously react to external changes. We include FRP in this review be-
cause FRP languages typically provide reactive abstractions, behaviours and
events, which enable developers to declaratively express programs as reac-
tions to context changes. Behaviours are first-class reactive abstractions
for representing time-varying values while events are used for representing
streams of timed values. Central to FRP, is the notion of automatic propa-
gation of changes: Functions that operate on behaviours or events are auto-
matically re-evaluated as soon as the value of any of the arguments changes.
This means that developers need not worry about the propagation of the
new event changes to the rest of the application that depend on them. El-
liot et.al [WH00] summarised the key advantages of the FRP paradigm as:
clarity, ease of construction, composability, and clean semantics.

FRP maps well onto context-aware applications because context-aware
applications are essentially reactive in nature since they require continuous
interaction with their environment. A typical context-aware application in-
volves reacting to external context changes to adapt the application’s be-
haviour to the observed context. Using traditional programming solutions
(such as design patterns and event-driven programming) such reactive appli-
cations are typically constructed around the notion of asynchronous callbacks
(event handlers). Unfortunately, coordinating callbacks can be a very daunt-
ing task even for advanced developers since numerous isolated code fragments
can be manipulating the same data and their order of execution is unpre-
dictable. In the literature, the problem of callback management is infamously
known as Callback Hell [Edw09]. FRP tackles the above issues by eliminating
the use of explicit callbacks. It provides abstractions to express programs as
reactions to external events and having the language automatically manage
data and computation dependencies.

FRP was first introduced in Fran [WH00], a domain-specific language de-
signed for developing interactive graphics and animations in Haskell. Most re-
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cently, FRP ideas have been explored in different language extensions includ-
ing FrTime [CK06] for Scheme and Flapjax [MGB+09] for JavaScript. In the
category of FRP languages, we review FrTime, which can be considered as a
representative FRP language. We dub this category FrTime and its Siblings.
Other FRP languages that fall in this category are Scala.React [MRO10] and
AmbientTalk/R [LMVD10].

3.3.1 FrTime and its Siblings
FrTime [CK06] is an FRP extension for Scheme that is designed to ease
the development of event-driven applications. It is embodied in the Racket
(formerly known as DrScheme) environment [FFP09]. The basic reactive
abstractions in the language are behaviours and event streams to represent
continuous time-varying values and discrete values, respectively. To illustrate
how to write a reactive program in FrTime consider an example of annotating
a geographical map with the current user location as the user moves about.
A reactive program to express such an application is as follows.

1 ;gps-latitude and gps-longitude are behaviours
2 (map-user-location gps-latitude gps-longitude)

At first glance, the above code snippet looks like a regular Scheme pro-
cedure application. However, gps-latitude and gps-longitude are
behaviours meaning that they will get new values whenever the user
moves about. Every time any of the behaviours gets a new value the
map-user-location procedure will be automatically re-evaluated. When
Scheme procedures are applied to FrTime behaviours, they are implicitly
lifted to be able to operate on behaviours. Lifting transforms a regular
Scheme procedure such that it operates on behaviours. FrTime employs
a push-based evaluation model, meaning that the propagation of changes is
initiated by the occurrence of new events.

Evaluation

Below, we evaluate FRP against the programming language requirements for
reactive context-aware applications that we put forward in Section 2.6.

R.1 Chained Context Reactions 4 Even though FRP does not provide
support for expressing context-dependent behavioural variations, the
behaviours and events abstractions map well onto the representation
of context changes. Context predicates, for instance, can be expressed
in terms of behaviours such that they are automatically re-evaluated



46 CHAPTER 3. STATE OF THE ART

without the developer having to register explicit callbacks that react to
context changes. Moreover, FRP languages support automatic propa-
gation of changes among dependent behaviours or event sources.

R.2 Context-dependent Interruptions 6 In FRP languages, any change
of a behaviour’s value always triggers the execution of the dependent
function that runs from the start to the end without interruption.
There is no support for constraining a function execution to a particular
context and no support to interrupt an ongoing execution either.

R.3 Context-dependent Resumptions 6 Since FRP languages do not
support context-dependent interruptions, they do not support context-
dependent resumptions either.

R.4 Contextual Dispatch 6 Since FRP languages were not designed for
context-aware applications, they do not provide dedicate support for
contextual dispatch. The developer can define different functions (for
different behavioural variations) and parameterise each with appropri-
ate behaviours. However, the lack of support for contextual dispatch
implies that the developer has to manually precede each function invo-
cation with an explicit context check.

R.5 Reactive Dispatch 4(same function re-evaluation) FRP lan-
guages support re-evaluation of the function when any its arguments
receive new values. However, it is the same function that is evaluated
again.

R.6 Reactive Scope Management 6 FRP languages mostly focus on en-
suring efficient propagation of state changes between dependent compu-
tations or data. They do not provide dedicated support for controlling
the visibility of state changes. However, state changes are not a concern
for FRP languages that are embedded in “pure functional languages”
such as Haskell.

3.3.2 Reactive SML
Reactive SML [R.98] is reactive library for Standard ML that is based on
the notion of reactive expressions.3 Reactive SML was conceived as a low-
level framework on top of which reactive programming abstractions can be
built. However, the semantics of reactive programming in Reactive SML is
closer to the synchronous languages (the precursors of FRP) than the recent
3 A reactive expression is basically an SML expression.
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reactive programming languages. We include it in the review of related work
because of its support to suspend and resume an ongoing execution of a
reactive expression. A reactive expression can be activated and suspended
at certain points determined by the developer. The suspended execution
can later be resumed by explicitly activating it again. The library provides
constructs react and suspend to activate and suspend an execution of
a reactive expression, respectively. The following code snippet shows an
example (adapted from [R.98]) of a reactive expression.

Listing 3.5: Creating a reactive expression
1 val exp = rexp (fn () => (print "FIRST\n";
2 suspend();
3 print "SECOND\n"))

When a reactive expression is activated, it starts executing either until it
reaches the end or it encounters a suspend invocation, which suspends the
execution of the reactive expression. A suspended reactive expression can be
resumed by activating it again using the react construct. Therefore, the
above code snippet will print FIRST when it is first activated and SECOND,
when it is activated again. A reactive expression can explicitly yield control
to another reactive expression by using the activate construct.

Evaluation

The evaluation of Reactive SML mainly focuses on its support for context-
dependent interruptions (R.2) and context-dependent resumptions (R.3).

R.1 Chained Context Reactions 6 Reactive SML does not offer any
dedicated abstractions for representing context.

R.2 Context-dependent Interruptions 4(explicit) In Reactive SML,
interruptions can be expressed using explicit suspend. The devel-
oper needs to explicitly insert the suspend to suspend an execution.
Expressing context-dependent interruptions using this style would im-
ply that each of those constructs should be preceded with a context
condition (e.g., in terms of an if expression).

R.3 Context-dependent Resumptions 4(explicit) Reactive SML sup-
ports resumption of a suspended execution. However, it must be done
explicitly using the react construct.

R.4 Contextual Dispatch 6 As Reactive SML was not designed for
context-aware applications, it does not provide dedicated support for
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dispatching based on context. Therefore, the developer has to use ex-
plicit checks to select among different functions.

R.5 Reactive Dispatch 6 Reactive SML does not provide support for re-
active dispatch.

R.6 Reactive Scope Management 6 Reactive SML does not provide any
support for controlling the visibility of state changes. Thus, any state
changes made to the variables that are shared among reactive expres-
sions are immediately visible to all the reactive expressions that share
those variables.

3.3.3 Discussion
In this section, we have reviewed functional reactive programming languages.
Even though functional reactive programming languages were originally not
conceived for context-aware applications, their support for behaviours and
events for representing event sources, maps well onto some of the require-
ments for reactive context-aware applications. In particular, functional re-
active programming languages satisfy the requirements of chained context
reactions and reactive dispatch that we discussed in Section 2.6. How-
ever, functional reactive programming languages do not provide support for
context-dependent interruptions, context-dependent resumptions, contextual
dispatch, or reactive scope management. Reactive SML provides some sup-
port to interrupt an ongoing execution and to resume a suspended execution.
However, interruptions need to be explicitly expressed by the developer at
certain points in the body of a reactive expression. Expressing context-
dependent interruptions and context-dependent resumptions using this style
is almost impossible as the occurrence of context changes is unpredictable.

3.4 Advanced Control Flow Constructs
Besides the programming languages that are specifically designed for context-
aware applications, there are traditional advanced control flow constructs
that can also be used to develop reactive context-aware applications.
These include first-class continuations [SDF+09], coroutines [Con63], and
threads [NBF96]. One interesting property of these advanced control flow
constructs is that they provide some support for expressing interruptions
and resumptions. In this section, we discuss the properties of these advanced
control flow constructs and evaluate each of them against the requirements
of reactive context-aware applications that we put forward in Section 2.6.
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3.4.1 First-class Continuations
A continuation [SDF+09] is a powerful control flow construct that repre-
sents “the rest of a computation at a given point of the computation”. Gra-
ham [Gra93] describes a continuation as follows.

“A continuation is a program frozen in action: a single functional
object containing the state of a computation. When the object
is evaluated, the stored computation is restarted where it left
off. [...] A continuation can be understood as a generalisation
of a closure. A closure is a function plus pointers to the lexical
variables visible at the time it was created. A continuation is a
function plus a pointer to the whole stack pending at the time it
was created.”

Even though continuations were not conceived for developing context-aware
applications, their support for capturing a program state and later reinstating
it maps well onto the requirements R.2 of Context-dependent Interruptions
and R.3 of Context-dependent Resumptions. In a way every programming
language involves some form of continuations, although in most program-
ming languages continuations are only employed behind the scenes. How-
ever, languages like Scheme [SDF+09] and Standard ML [HDM93] expose
full continuations with a “first-class” status to the developer.

Scheme, for instance, provides the call-with-current-continuation
construct (commonly abbreviated as call/cc). The (call/cc proc)
construct packages the current continuation as a first-class function and
passes it as an argument to the procedure proc. The continuation function
can be stored in a variable, passed around as argument, returned by
procedures and invoked later on. When the continuation function is invoked,
the computation resumes from where it was when the continuation was
captured. In developing reactive context-aware applications, continuations
can be used to interrupt an ongoing procedure execution when a certain
context condition is no longer satisfied, and resume from where it left when
the context condition becomes satisfied again at a later moment.

Evaluation

We now evaluate first-class continuations against the requirements of reactive
context-aware applications that we put forward in Section 2.6.

R.1 Chained Context Reactions 6 Continuations were conceived for
capturing the execution of a running program. They do not provide
abstractions for representing context.
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R.2 Context-dependent Interruptions 4(explicit) First-class continu-
ations exhibit some properties that can be used to achieve the
requirement of the context-dependent interruptions. However, program-
ming with continuations (even for experienced developers) is generally
perceived as difficult [Gra93]. More so in a context-driven setting where
the capturing, saving and resuming of a continuation depends on un-
predictable context changes. By capturing the execution state using
call/cc, the developer is required to explicitly identify the points in
the program where an execution state needs to be captured and when
it can be interrupted or resumed. Expressing context-dependent inter-
ruptions and context-dependent resumptions in this style, implies that
the developer has to precede each expression in the procedure body
with a conditional expression to check for the validity of a certain con-
text condition. Since a context change can potentially occur at any
evaluation step during the execution, it is difficult to determine those
interruption points.

R.3 Context-dependent Resumptions 4(explicit) With continua-
tions, a suspended execution can be resumed by explicitly invoking the
saved continuation.

R.4 Contextual Dispatch 6 Since continuations were not designed for
context-aware applications, they do not provide support for express-
ing context-dependent behavioural variations and there is no support
for contextual dispatch either.

R.5 Reactive Dispatch 6 Continuations do not support reactive dispatch-
ing of context-dependent behavioural variations.

R.6 Reactive Scope Management 6 Although a continuation includes
the variables in the lexical environment at the point it was captured,
there is no support to control the visibility of state changes that might
be performed to those variables. State changes might occur between
when a continuation was captured and when the continuation is in-
voked again (resumed). Consequently, those state changes that were
performed to the variables while a continuation was suspended will
become visible to the continuation when it is resumed.

3.4.2 Coroutines
Coroutines [Con63], though not designed for context-aware applications, ex-
hibit some properties that can facilitate the development of reactive context-
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aware applications. The main properties of coroutines as summarised
in [Mar80] and recently in [MI09] are the following:

• The state local to a coroutine persists between successive calls.

• The execution of a coroutine is suspended as control leaves it, only to
carry on where it left off when control re-enters the coroutine at some
later stage.

An interesting observation is the fact that when a running coroutine trans-
fers control to another coroutine it becomes suspended while the execution
of the target coroutine is resumed. Most coroutine implementations provide
a construct to enable explicit transfer of control (typically named yield
or resume). Originally conceived to simplify the implementation of lex-
ical and syntax analysers, coroutines were later adopted as a concurrency
construct for providing cooperative-based multitasking [MI09]. Some of the
programming languages that support coroutines include Lua [MRI04] and
Simula [GOBK79]. As demonstrated in [HFW86] coroutines can easily be
implemented using only first-class continuations.

Evaluation

As stated above, coroutines were not designed for developing context-aware
applications. However, their support for suspending and resuming of an
execution maps well onto the requirements R.2 of Context-dependent Inter-
ruptions and R.3 of Context-dependent Resumptions. Below, we evaluate
coroutines against the requirements of reactive context-aware applications
that we put forward in Section 2.6.

R.1 Chained Context Reactions 6 The focus of coroutines is on sus-
pending and resuming an execution. They do not provide any dedicated
abstractions for representing context.

R.2 Context-dependent Interruptions 4(explicit) Coroutines provide
support to express interruptions (through suspension) and resumptions.
However, in coroutines the developer has to explicitly transfer control
using the yield construct at certain points in the procedure body.
In context-aware applications, such control transfers have to happen
based on context changes. Developers therefore have to guard the con-
trol transfer construct with a context condition. The main difficulty
is that in context-aware applications it is not trivial to know at devel-
opment time at which points in the procedure body to express those
concerns. As a consequence, the developer is required to insert multiple
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control transfer constructs and guard each one of those with a context
condition.

R.3 Context-dependent Resumptions 4(explicit) As with the
requirement R.2 of context-dependent interruptions, resumptions of a
suspended coroutine must be done explicitly.

R.4 Contextual Dispatch 6 Coroutines provide no dedicated support to
express context-dependent behavioural variations and there is no sup-
port for contextual dispatch. The selection of which coroutine to run for
the current context needs to be performed manually using conditional
expressions.

R.5 Reactive Dispatch 6 As coroutines do not support any form of dis-
patching, they do not support reactive dispatch either.

R.6 Reactive Scope Management 6 Any state changes that are per-
formed to the variables that are shared among coroutines are imme-
diately visible to all coroutines that share those variables.

3.4.3 Threads
Traditional threads [NBF96, GJSB05] can be used to express executions that
can be suspended and resumed. Threads are typically classified according to
their scheduling strategy i.e., preemptive or cooperative[SBS04].

• Preemptive threads may be suspended at any moment in order to give
a chance to another thread to execute. The decision to suspend a
thread is entirely based on the underlying scheduling algorithm and
the thread has no control over the transfer of control to another thread.
The main drawback with preemptive scheduling is that a thread may
be suspended at an inappropriate time, which may result in undesired
consequences.

• Cooperative threads (also known as green threads) are in charge them-
selves to explicitly decide when to relinquish control to another thread.
Coroutines that we discussed above can also be classified as some form
of cooperative threads.

The above description of threads highlights some appealing properties
(i.e., the possibility to suspend or resume a running thread) that can be
used for context-dependent interruptions and context-dependent resumptions.
However, the two categories of threads appear at the two extremes. On
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the one extreme, there are preemptive threads, which are implicit and their
suspension or resumption is entirely based on a preemptive scheduler. Tradi-
tional preemptive threads are unsuitable for developing context-aware appli-
cations since the interruption of context-aware applications depends on cer-
tain context conditions and not on a predefined time-slot by the underlying
scheduler. On the other extreme, there are cooperative threads that require
one thread to explicitly handover control to another thread. Therefore, coop-
erative threads seem to be the only viable threading mechanism to context-
dependent interruptible executions. However, cooperative threads suffer from
the same limitation as coroutines that we discussed in Section 3.4.2.

Evaluation

We now evaluate threads against the requirements of reactive context-aware
applications that we put forward in Section 2.6. In this evaluation, we will
only consider cooperative threads since preemptive threads do not enable
one to suspend a thread based on other conditions other than the underlying
scheduling algorithm.

R.1 Chained Context Reactions 6 As threads themselves were not de-
signed for context-aware applications, they do not provide any abstrac-
tions to represent context.

R.2 Context-dependent Interruptions 4 As with coroutines, using
threads for context-dependent interruptions requires the developer to
identify the points where an execution may be interrupted. However, in
reactive context-aware applications this is almost impossible due to the
unpredictable nature of context changes. The developer has to face the
burden of explicitly inserting several context checks to proceed every
expression in the procedure body. Moreover, such every context check
requires an explicit invocation to suspend the thread. All that burden
lies squarely on the shoulders of the developer.

R.3 Context-dependent Resumptions 4 Expressing context-dependent
resumptions using threads requires the developer needs to setup a cus-
tom management of suspended threads to decide when they need to be
resumed.

R.4 Contextual Dispatch 6 Programming languages that support
threads typically provide a construct to create a thread that takes as
a block of code to execute or a method to run. However, there are
no abstractions for defining context-dependent behavioural variations.
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What is needed for
reactive context-aware

applications
(context controlled)

Implicit interruption and
 resumption

(scheduler  controlled)

Context-dependent
 interruptible executions

Explicit interruption 
and resumption

(developer  controlled)

Preemptive threads

Cooperative threads

First-class continuations

Coroutines

Figure 3.2: An intersection of different programming language facilities for
expressing interruptions and resumptions.

Therefore, the developer has to manually select which thread to
execute using explicit context checks.

R.5 Reactive Dispatch 6 Threads do not support reactive dispatch.

R.6 Reactive Scope Management 6 Threads are well known as being
notoriously difficult to program in the face of shared state [Joh96]. The
lack of appropriate abstractions to control the scope of state changes
implies that the developer has to employ additional techniques such as
locking and software transactional memory (STM) [ST95] to deal with
side effects that may be performed to the state that is shared among
cooperative threads.

3.4.4 Discussion

In this section, we have reviewed existing programming language features
that provide some support for interruptions and resumptions. However, none
of the approaches in this category supports chained context reactions, contex-
tual dispatch, reactive dispatch and reactive scope management. As depicted
in Figure 3.2 first-class continuations, coroutines, and (cooperative) threads
can be used to achieve explicit interruptions and resumptions. This implies
for the developer to manually insert context checks at certain points in a pro-
gram. However, the unpredictable nature of context changes generated exter-
nal to the program renders it almost impossible to manually express context-
dependent interruptions and context-dependent resumptions. Preemptive
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threads can be used to express implicit interruptions and resumptions. How-
ever, the interruptions and resumptions in preemptive threads are based on
the underling scheduler and not on context changes. What is missing is lan-
guage support for context-dependent interruptions and context-dependent
resumptions that is based on context conditions. Such interruptions and re-
sumptions should be performed implicitly by the language runtime and not
by the developer.

3.5 Other Programming Language Facilities

In this section, we review approaches that can be used to express conditions
under which a method execution should start or proceed. These include
Guards [Lea99], Assertions [Hoa83] and invariants [BEM07]. Approaches in
this category also provide some support of what to do when such conditions
fail (e.g., blocking or aborting the execution).

3.5.1 Guards

Guards [Lea99] are synchronisation mechanisms that are used to “guard” a
method such that it only starts executing under certain conditions. They
enable the developer to associate a precondition with a method that specifies
whether the execution of the method should begin or not. Such methods
are known as guarded methods [Lea99]. Before the execution of a guarded
method, the condition is checked and if it is false, the execution is blocked,
resuming later if and when the condition becomes true. Programming lan-
guages that support guards typically provide a WHEN or AWAIT construct to
express such conditionals. For instance, a guarded method can be expressed
as follows in a Java extension for Guards.

Listing 3.6: An example of a guarded method in Java
1 public void counter ()
2 WHEN (count < MAX) {
3 // method body expressions
4 }

The above code snippet shows the definition of the guarded method counter
whose execution will only begin when the condition (count < MAX) is
true.
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Evaluation

We now evaluate Guards against the requirements of reactive context-aware
applications that we put forward in Section 2.6. As Guards were never con-
ceived for context-aware applications, they do not provide any support for
representing context events nor support to dispatch based on the context.
However, their support for guarded methods is comparable to some of the
requirements for reactive context-aware applications, namely, R.2 Context-
dependent Interruptions and R.3 Context-dependent Resumptions. Below we
evaluate Guards against these two requirements.

R.1 Chained Context Reactions 6 Guards do not provide dedicated ab-
stractions for representing context. A condition for a guarded method
operates on regular variables and not on context sources such as GPS
sensors.

R.2 Context-dependent Interruptions 4(blocking) Guards enable
the developer to express a guarded method that is associated with a
condition that should be satisfied before the execution of the method
begins. However, the condition is checked only before the execution
of the method and not throughout the execution of the method body
expressions. When the guard is not satisfied, the invocation and its
associated thread become blocked until the condition becomes true
again. Therefore, there is some form of interruption but only at the
beginning of the method invocation. It is not possible to interrupt an
ongoing method execution.

R.3 Context-dependent Resumptions 4(at the beginning) Guards
provide some support for resumptions but only at the beginning of a
method execution.

R.4 Contextual Dispatch 6 Guards do not support contextual dispatch.
A condition that is associated with a guarded method is only used as a
precondition for a method invocation but not for the selection of which
method to execute for the current context.

R.5 Reactive Dispatch 6 Guards do not support reactive dispatch.

R.6 Reactive Scope Management 6 Guards do not provide support to
control the visibility of state changes to variables that are shared among
guarded methods.
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3.5.2 Assertions and Invariants
Assertions [Hoa83] and invariants [BEM07] found in the design-by-contract
programming methodology [Mey92] have long been employed as techniques
for ensuring program correctness during program execution. They consist
of a Boolean expression that is used to determine whether a program exe-
cution should proceed or not. This characterisation is similar to the notion
of context-constrained executions for context-aware applications. With as-
sertions, the developer inserts an assertion (a condition) at specific points
in a program. If the predicate evaluates to false, the program execution is
typically aborted. Invariants, on the other hand, are implicitly checked at
the beginning (precondition) of a method execution and at the end (postcon-
dition). An invariant should be satisfied both at the start and at the end,
otherwise the execution is aborted.

Evaluation

We now evaluate assertions and invariants against the requirements of reac-
tive context-aware applications that we put forward in Section 2.6.

R.1 Chained Context Reactions 6 Assertions and invariants were con-
ceived as software verification mechanisms, therefore, do not provide
any dedicated abstractions for representing context events.

R.2 Context-dependent Interruptions 4(explicit abort) Assertions
and Invariants provide some support for interruptions (abort). With
assertions the developer is required to explicitly insert a predicate
expression at certain points of the program. With Invariants, the
predicate expression is only checked at the start and the end of the
method body. In both Assertions and Invariants, when the predicate
evaluates to false an exception is raised and the execution is aborted.

R.3 Context-dependent Resumptions 6 With Assertions and Invari-
ants it is not possible to resume the interrupted execution later on
since executions are aborted on interruption.

R.4 Contextual Dispatch 6 Since Assertions and Invariants have no sup-
port for context-dependent behavioural variations, there is no notion
of dispatching to select applicable behavioural variation based on the
current context.

R.5 Reactive Dispatch 6 Assertions and Invariants do not support reac-
tive dispatch.
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R.6 Reactive Scope Management 6 Both Assertions and Invariants do
not provide support to control the scope of state changes. Therefore,
state changes to variables that are shared among procedures are glob-
ally visible even if an execution is aborted due to an unsatisfied pre-
condition or postcondition.

3.5.3 Discussion
In section, we have reviewed programming language facilities that provide
some support to constrain a program execution to a particular condition
and also provide means to interrupt an execution should that condition not
be satisfied or resume the execution should that condition becomes satisfied
again. For instance, Guards (cf. Section 3.5.1) enable the developer to
express a precondition that should be satisfied before an invocation of a
method can begin. Otherwise, the invocation and its associated thread are
blocked until the precondition is satisfied. However, a precondition is only
checked at the beginning of the method execution. In invariants the condition
is checked at the beginning and the end but not throughout the method
execution. Assertions require the developer to manually insert conditions at
certain points in the method body. Both invariants and assertions provide
only abortion as a means of an interruption. They do not provide support
for resumptions. None of the approaches in this category supports chained
context reactions, contextual dispatch, reactive dispatch, and reactive scope
management.

3.6 Synthesis of State of the Art
Table 3.1 presents an overview of the evaluation of the approaches that we
have reviewed in this chapter. Each approach is evaluated against the pro-
gramming language requirements for reactive context-aware applications put
forward in Section 2.6. As can be seen from the summary of the evaluation,
none of the surveyed approaches satisfies all the requirements.

The COP languages provide support for expressing context-dependent
behavioural variations, hence they support contextual dispatch. However, in
the current COP languages it is not possible to interrupt an ongoing proce-
dure execution. Once a procedure is selected and its execution is started, any
context changes that occur during its execution cannot immediately affect
the program behaviour. FRP languages offer reactive abstractions to repre-
sent events. However, they do not support context-dependent behavioural
variations and hence there is no support for contextual dispatch. First-class
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continuations, coroutines, and (cooperative) threads support explicit inter-
ruptions and resumptions. However, explicit interruptions and resumptions
are not suitable for reactive context-aware applications since they require
the developer to perform manual context checks throughout the procedure
body. Other programming facilities such as invariants, and assertions support
limited support of interruption (aborting an execution) and require explicit
context checks.

The above observations have motivated the vision of this dissertation for
a new programming language model, namely, interruptible context-dependent
executions, which is the main theme of Chapter 4.

3.7 Chapter Summary
In this chapter, we have reviewed existing programming language approaches
that may be candidates for easing the development of context-aware appli-
cations. We have classified these approaches into four categories: Context-
oriented programming languages, First-class continuations, coroutines, and
threads, Functional reactive programming languages, and other programming
language facilities, which include Guards, assertions and invariants. Over the
past years there have been a number of context-oriented programming lan-
guages that are specially designed for context-aware applications. However,
none of the current context-oriented programming languages supports all the
language requirements for reactive context-aware applications. There are
existing programming language approaches that provide some support for
interruptions and resumptions. However, since those approaches were not
designed for context-aware applications, they require the developer to use
explicit context checks and do not support the other language requirements
for reactive context-aware applications. In the next Chapter, we propose a
new programming language model that aims to address all the requirements.
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4.1 Introduction
In Chapter 2, we identified requirements that should be satisfied by a pro-
gramming language designed for reactive context-aware applications. In this
chapter, we propose a novel programming language model called interrupt-
ible context-dependent executions (ICoDE) [BVDR+12] that aims to satisfy
those requirements. The primary concept of the ICoDE model is that execu-
tions are always constrained to particular context conditions. In this model,
executions are automatically interrupted (suspended or aborted) when their
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associated context conditions are no longer satisfied. Additionally, suspended
executions are resumed or restarted when their associated context conditions
later become satisfied again. The goal of this chapter is to discuss the main
properties of the ICoDE model. These are: predicated procedures, represen-
tation of context as reactive values, reactive dispatching, interruptible execu-
tions, resumable executions, and scoped state changes. For each property, we
discuss the aspects to consider when designing a concrete programming lan-
guage that features the property. In Chapter 6, we present a programming
language, Flute, which is the first instantiation of the ICoDE model.

4.2 Motivation Revisited
As introduced in Chapters 1 and 2, reactive context-aware applications need
to always be prepared for sudden interruptions due to the unpredictable oc-
currence of context changes on the computing device on which they run. Sec-
ondly, reactive context-aware applications should be able to promptly adapt
their behaviours to match the current context at any moment during the
execution. Additionally, the execution of reactive context-aware applica-
tions should always be constrained to a particular prescribed context. The
assumption that a piece of code can run from the start to the end with-
out interruption does not hold for reactive context-aware applications. In
reactive context-aware applications, a context change can occur at any mo-
ment during an execution thus requiring a prompt interruption of the on-
going execution. When there is a context change, a program execution is
expected to “abandon” the ongoing execution, possibly starting a new execu-
tion that matches the new context. If the old context later becomes available
again, the previously abandoned execution should be reinstated. A challenge
that arises is how to express executions that can be interrupted by context
changes even if they occur during an ongoing execution. These observations
have motivated the ICoDE model that aims to ease the development of re-
active context-aware applications. A programming language that adheres to
the ICoDE model fulfils the requirements put forward in Section 2.6. The
subsequent sections present the main properties of the ICoDE model.

4.3 Terminology
Before unveiling the main properties of the model, we will first define the key
terms that are used throughout this dissertation.

Definition 1 (Context) In literature there exist several definitions of con-
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text. In [ADB+99] authors define context as “any information that can be
used to characterise the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves”. The widely
cited definition of context in context-oriented programming literature is that
“context is any computationally accessible information” [HCN08]. In this
dissertation, we follow the definition of context as in [HCN08] but refine it
to refer to computationally accessible information originating from an appli-
cation’s surrounding environment (physical sensors and the user) that can
influence the behaviour of the application.

Definition 2 (Context predicate) The term context predicate is used to
refer to a function over context parameters that evaluates to true or false.

Definition 3 (Execution) The term execution is used to refer to a running
procedure.

Definition 4 (Context-dependent execution) The term context-
dependent execution is used to refer to an execution that is constrained to
run only under a particular context predicate.

Definition 5 (Execution state) The term execution state is used to refer
to the program counter (i.e., the rest of the expressions to be evaluated) and
the bindings that are in the scope of an execution.

Definition 6 (Execution environment) The term execution environment
is used to refer to the environment that is active at any given position in a
program.

The remainder of this section presents the main properties of the ICoDE
model. These are: predicated procedures, representation of context as reactive
values, reactive dispatching, interruptible, resumable executions, and scoped
state changes.

4.4 Property #1: Predicated Procedures
A context-dependent program consists of procedure definitions (behavioural
variations) for different contexts. Each of those procedures should be associ-
ated with a context predicate that specifies the correct context the procedure
is constrained to. We refer to a procedure that is associated with a context
predicate as a predicated procedure. The role of the context predicate is to
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ensure that the procedure execution always happens in the correct context.
Since a context change can occur at any moment during the procedure execu-
tion, it is necessary to check the context predicate throughout the execution
of the expressions of the procedure body.

The runtime infrastructure of a language that adheres to the ICoDE
model should implicitly re-evaluate the context predicate to ensure that the
entire procedure execution happens only in the correct context. Without con-
tinuous implicit evaluation of context predicates, developers have to manu-
ally guard every expression in a procedure body with a context check in
order to ensure that the context predicate is respected throughout the pro-
cedure execution. Manually guarding expressions is cumbersome and results
in programs written in a style where every expression in the procedure body
is preceded by a context check. Therefore, a programming language that
supports the ICoDE model, should provide a construct to associate a con-
text predicate with a procedure, and the language runtime should ensure
that the context predicate is satisfied throughout the procedure execution.
The ICoDE’s property of predicated procedures fulfils the requirement R.2 of
context-dependent interruptions (cf. Section 2.6).

Language Design Considerations for Predicated Proce-
dures

When providing support for predicated procedures in a programming lan-
guage, there are several design considerations both at the language level and
the runtime semantics. For instance, a context predicate can be associated
with a procedure either when the procedure is defined or when it is invoked.
Another design consideration concerns the choice of the propagation scope of
the context predicate (i.e., the extent to which the context predicate should
be respected). Additionally, supporting predicate procedures requires con-
siderations on how to group related predicated procedures with mutually
disjoint predicates. We discuss these design considerations in the remainder
of this section.

DC #1.1: Associating Context Predicates with Proce-
dures

At the language level, we need constructs to define and associate a context
predicate with a procedure. This requires a design decision on when to as-
sociate a context predicate with a procedure? Two options of associating a
context predicate with a procedure are discussed below.
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As part of the definition. One option is to enable the developer to specify
a context predicate as part of the procedure at the definition time.
This approach requires different definition styles for context-dependent
procedures and regular procedures. However, this change is required
only at the definition site and no modifications are required at the
invocation site.

Outside the definition. Another option is to disassociate a context pred-
icate from the definition of a procedure. In this case, the language
provides a construct to enable the developer to associate a context
predicate with an already defined procedure. The obvious gain of this
approach is that context-dependent procedures are defined in the same
style as regular procedures.

f1 c1

f2()

f1()

f2 c2

c1

c1 ∧ c2

the extent of 
a context predicate

procedure invocation
Legend

f2 is defined outside f1 and 
is invoked from within f1

Figure 4.1: Dynamic propagation of context predicates.

DC #1.2: Propagation of Context Predicates

Another design consideration for ICoDE language concerns the propagation
of context predicates. Context predicate propagation determines the extent
to which a context predicate constrains an execution. For instance, it is
necessary to specify whether the context predicate associated with the caller
procedure is in effect during the execution of the callee procedure. We clas-
sify the three options of context predicate propagation as dynamic context
predicate propagation, lexical context predicate propagation, and no context
predicate propagation. Similar characterisations have been used to explain
the notion of scope in programming languages [Tan09].
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Dynamic Propagation of Context Predicates. In this design option,
the associated context predicate that is specified on a procedure is also re-
spected during the execution of the procedures that are directly or indirectly
invoked in the procedure body of the caller. Conceptually, the context pred-
icates associated with the caller and the callee are conjuncted. This ensures
that all context predicate predicates are satisfied; the caller’s and the callee’s.
Figure 4.1 illustrates dynamic propagation of the context predicate c1. The
procedure f1 is associated with a context predicate c1 while f2 is associated
with a context predicate c2. Invoking f2 from within the body of f1 implies
that the execution of f2 (the callee) must also satisfy the context predicate
c1 of f1 (the caller).

c1

f2()

f1()

f2
c2

c1

 c1 ∧ c2

f1
f2 is defined within f1 and 
is invoked from within f1

the extent of 
a context predicate

procedure invocation
Legend

Figure 4.2: Lexical propagation of context predicates.

Lexical Propagation of Context Predicates. With this design option,
the context predicate associated with a procedure is also respected during
the execution of the procedures that are defined with the lexical scope of the
predicated procedure. However, the context predicate is not respected dur-
ing the execution of the procedures that are invoked from within the body
of the predicated procedure. Figure 4.2 illustrates lexical context predicate
propagation. The context predicate c1 of the procedure f1 is propagated to
the procedure f2 that is defined within the body of f1. Procedures that are
internally defined within the body of the predicated procedure must also sat-
isfy (in addition to their own context predicate) the context predicate that is
associated with the enclosing procedure. This means that all context predi-
cates associated with the predicated procedures in the entire hierarchy of the
lexical scope are conjuncted and must be satisfied throughout its execution.
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Figure 4.3: No propagation of context predicates.
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Figure 4.4: An illustration of a group of predicated procedures.

No Propagation of Context Predicates. With this design option, the
context predicate that is associated with a procedure is only respected during
the execution of that procedure. It is neither respected during the executions
of the procedures that are defined nor invoked from within the body of the
procedure. Figure 4.3 illustrates the absence of context predicate propaga-
tion. The context predicate c1 of the procedure f1 is not propagated to the
procedure f2 that is defined and invoked from within the body of f1.

DC #1.3: Grouping of Related Predicated Procedures

A context-dependent program consists of a suite of definitions of predicated
procedures, each specifying a different behaviour for a particular context.
Often those behavioural variants share state variables and their execution
is driven by the same context parameters. Therefore, besides constructs for
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defining predicated procedures, developers need language support for group-
ing such context-dependent behavioural variants under a single entity that
can be referred to transparently in other parts of the program. That is, it
should be possible to initiate the invocation of behavioural variants belong-
ing to the same group by simply invoking their grouping entity. The group
entity should specify the variables that are shared among the variants that
belong to that entity. Previous COP languages such as ContextL [CH05]
and Lambic [Val11] (which we discussed in Section 3.2) use generic functions
to group related behavioural variations. It should be possible to add new
predicated procedures to an existing grouping entity without requiring mod-
ifications to existing predicated procedures. Figure 4.4 shows an illustration
of the predicated procedures f1 (guarded by the context predicate c1 ) and f2
(associated with a context predicate c2 ) that belong to the grouping entity
named g. The grouping entity defines shared state variables x, y, and z, and
specifies the context sources e1 and e2 that influence the behaviour of the
predicated procedures. Supporting grouping of related predicated procedures
ensures that the requirement R.3 extensible groups of behavioural variations
(cf. Section 2.6) is fulfilled.

4.5 Property #2: Representing Context as Re-
active Values

The execution of a context-dependent program is driven by context, which is
often obtained from external sources such as GPS sensors. For the developer,
this entails dealing with low-level concerns of context representation such as
repetitive acquisition and interpretation of raw contextual data. Moreover,
when there is a context change, the developer is required to manually prop-
agate such a change among numerous context sources that depend on each
other. These issues are further compounded by the unpredictable occurrence
of context changes (cf. Section 2.3). As such the execution of a context-
dependent program is not driven by a logic specified by the developer but by
context changes. Expressing the above concerns using traditional techniques
(such as design patterns and event-driven programming) implies the use of
asynchronous callbacks (event handlers). Unfortunately, manually coordi-
nating callbacks can be a very daunting task since numerous isolated code
fragments can be manipulating the same data and their order of execution is
unpredictable. To reduce the burden faced by the developers, it is desirable
for a programming language that supports the ICoDE model to provide ded-
icated abstractions for representing context and means to react to context
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changes without having to use explicit event handlers.
We refer to the abstraction for representing context sources as reactive

values. Reactive values are reminiscent of the behaviours (time-varying val-
ues) of reactive programming languages [CK06, WH00]. Reactive values are
suitable abstractions for context representation because they eliminate the
use of explicit callbacks. As such developers can write context predicates in
a declarative style. Reactive values represent continually changing values,
are first-class and composable abstractions [WH00]. With this abstraction
context sources are represented as reactive values whose value at any given
moment is the current context. Each reactive value implicitly keeps track
of all reactive values that depend on its value and ensures that its depen-
dents are automatically updated whenever it observes a context change. In
addition, all computations in a program that operate on a reactive value
are automatically notified whenever new contextual information is received.
By supporting the property of representing context as reactive values, the
ICODE model fulfils the requirement R.1 Chained context reactions (cf. Sec-
tion 2.6).

4.6 Property #3: Reactive Dispatching

The execution of a context-dependent program requires a dispatching pro-
cess to determine the appropriate procedures to execute for the current con-
text. Given the current context parameters (e.g., the current location or user
preferences) and a set of procedures together with their associated context
predicates, the dispatching process should be able to determine which proce-
dure to execute based on the context predicate that evaluates to true. The
fact that context changes occur continuously, implies that the applicability
of a predicated procedure to execute depends on a context predicate whose
outcome changes over time. This implies that a predicated procedure that
cannot be selected in the current context may eventually become applicable
when a context change occurs. This necessitates a dispatching mechanism
that is repeated in response to new context changes.

We introduce the concept of reactive dispatching where the language’s
dispatching technique continuously takes into account context changes as
they occur – even after a first dispatching phase has happened. In other
words, the dispatching process is repeated whenever the values of the con-
textual parameters change. This implies that when previously unsatisfied
context predicates later become satisfied, their associated procedures are se-
lected for execution after all. Similarly, in case there is no satisfied context
predicate the dispatching process is repeated later on occurrence of the con-
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text changes that render the context predicates satisfied. Additionally, new
predicated procedures can be added at runtime and are immediately taken
into account by the ongoing dispatching process. This in contrast to existing
dynamic dispatching mechanisms [MCC98] where the selection of the appli-
cable procedure happens once and is based only on the currently available
information. This property fulfils the requirement R.4 Reactive dispatch (cf.
Section 2.6).

Language Design Considerations for Reactive Dispatch-
ing

Supporting reactive dispatching in a concrete language requires several de-
sign considerations. For instance, it is necessary to specify the semantics
of dealing with ambiguous context predicates and handling of return values.
Below we discuss the language design considerations.

DC #3.1: Dealing with Ambiguous Context Predicates

The selection of the applicable procedure is based on the context predicate
that evaluates to true. However, it is possible that more than one context
predicate may be satisfied at the same time. This problem is known as predi-
cate ambiguity problem [Mil04] in the predicate-based dispatching literature.
Previous predicate dispatching approaches solve this issue by verifying that
all predicates are mutually exclusive and that at least one predicate must
be true, at compile time. However, statically verifying the mutual exclusive-
ness of context predicates is impossible if a programming language model
allows developers to write complex predicates. One possible design option is
to rely on the developer to always provide mutually exclusive context predi-
cates. Another design option is to consider a language specified choice (e.g.,
selecting the first one) or the dispatcher can throw an ambiguous context
predicates exception. In his PhD thesis [Val11], Jorge Vallejos explored the
design choice of enabling the developer to specify the order (e.g., by assigning
priorities to the context predicates).

DC #3.2: Handling of Return Values

Invoking a group of related predicated procedures may result in several pro-
cedure invocations (cf. DC #3.1). As such different procedures may finish
executing at different times. Therefore, it is necessary to specify how to
handle the return values from multiple invocations. Each of the procedures
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grouped under the same name may have a return value and therefore, a de-
cision should be taken on how to deal with several return values. We believe
that the language should enable the developer to specify how to handle the
return values, e.g., merging the values or selecting the first one.

4.7 Property #4: Interruptible Executions

The execution of a predicated procedure should be constrained to happen
only under a particular context predicate. This requires that a predicated
procedure starts or continues executing only if its context predicate is sat-
isfied. If the context predicate is no longer satisfied while its associated
procedure execution is ongoing, then the execution should be promptly “in-
terrupted”. A programming language should provide the developer with a
number of interruption strategies that specify what to do when the context
predicate is no longer satisfied. The choice of the interruption strategy de-
pends on the kind of the task that is expressed by the predicated procedure.
By supporting this property, the ICoDE model fulfils the requirement R.2
Context-dependent interruptions (cf. Section 2.6). We identify two interrup-
tion strategies: aborting the execution and suspending the execution.

Abort. With this interruption strategy, the execution is aborted when the
associated context predicate is no longer satisfied. In this case, the execution
is aborted and there is no possibility to resume the execution even if a later
context change renders the context predicate satisfied again. As a conse-
quence, any state changes to the variables that are shared among executions
may need to be undone. We further explore the management of state changes
that arise in interruptible executions in Section 4.9.

Suspend. In this interruption strategy, the execution is paused and its
execution state is automatically saved when the associated context predicate
is no longer satisfied. Pausing an execution means that it is possible to
resume the execution later on if its associated context predicate later becomes
satisfied again. It is important that such a suspension and the execution
state management happens transparently because the unpredictable nature
of context changes makes it difficult for the developer to know beforehand
when the execution needs to be suspended.
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Language Design Considerations for Interruptible Exe-
cutions

Supporting the property of interruptible executions requires several design
considerations. These are concerned with specifying the regions of a proce-
dure body that can be interrupted. We explore two design considerations.

DC #4.1: Implicit Interruptions

In this design choice, a language for ICoDE supports implicit interruptions.
This implies that the entire procedure body can be interrupted at any mo-
ment during its execution. However, it may be necessary to demarcate cer-
tain critical regions of the procedure body that may need to be run without
interruption. For instance, in a procedure body, all-or-nothing IO actions
that should be executed from the start to the end without interruptions.
It is therefore, desirable that a language for ICoDE provides a dedicated
language construct for the developer to demarcate those critical regions as
“uninterruptible”.

DC #4.2: Explicit Interruptions

Another design choice is to require the developer to explicitly demarcate cer-
tain regions as points of the procedure body that are “interruptible”. This
means that execution of procedures is by default uninterruptible. The devel-
oper needs to identify particular regions as points that can be interrupted by
context changes. A drawback with this design choice is that developers have
to identify those regions that are subject of interruptions.

4.8 Property #5: Resumable Executions

An execution that has been suspended should be able to resume from where it
left off when its associated context predicate later becomes satisfied again. As
context changes occur continuously, it is possible that a previously unsatisfied
context predicate becomes satisfied again. For instance, a context predicate
that depends on the current location may become satisfied or unsatisfied as
the user moves about. Such a context predicate may have associated execu-
tions that are currently suspended. Therefore, it is desirable for a program-
ming language to enable the developer specify what to do with a previously
interrupted execution when its associated context predicate later becomes
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satisfied again. For instance, depending on the application, it may be appro-
priate to resume or restart the execution. By supporting this property, the
ICoDE model fulfils the requirement R.3 Context-dependent resumptions (cf.
Section 2.6). Below we discuss two resumption strategies that a programming
language can provide to the developer.

Restart. With this strategy, a previously suspended execution is restarted
from the beginning. This is useful in cases where it is not appropriate to
continue the execution from where it was before the context predicate became
unsatisfied.

Resume. Another strategy is to resume a previously suspended execution
such that it continues from the exact point where it left off before interrup-
tion. This ensures that executions can be seamlessly suspended and resumed
depending on the current context of use. The execution state should be re-
stored to the same program instruction when the execution is resumed. Once
the execution is resumed, the context predicate should be checked again for
the remainder of the execution.

Resumption strategies
Resume Restart

Interruption strategies Suspend 4 4
Abort 6 4

Table 4.1: Possible combinations of the interruption and resumption strate-
gies.

Note that not all resumption strategies are applicable under every in-
terruption strategy (cf. Section 4.8). For instance, specifying a predicated
procedure with the abort interruption strategy implies that it is not possible
to resume the execution. Therefore, the resume resumption strategy is not
applicable. Table 4.1 summarises the interaction among the interruption and
resumption strategies. The 4 in the intersection of an interruption strategy
and a resumption strategy signifies that the combination is possible. While
the 6 signifies that the combination is not possible.

Language Design Considerations for Resumable Execu-
tions
We have so far discussed two possible resumption strategies that determine
what to do when the context predicate associated with a suspended execu-
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tions becomes satisfied again. However, those strategies do not specify when
the resumption mechanism is initiated. Since context predicates operate on
context parameters, it is inefficient to re-evaluate the context predicates im-
mediately after they have become unsatisfied. This is because the values of
the context parameters would most likely not have changed, which means
that the context predicate may still be unsatisfied. As a consequence, there
would be wasteful checks even when there is no context change that can
affect the outcome of the context predicates. Therefore, it is desirable for
a language runtime to incorporate a mechanism that continuously monitors
context changes and automatically initiates the resumption of the currently
interrupted executions when relevant context changes occur. Below we dis-
cuss two design considerations.

DC #5.1: Proactive Resumption

One design option is to periodically re-evaluate the context predicate that is
associated with the suspended execution. The re-evaluation could be done at
every evaluation step or at an interval that is specified by the developer (e.g.,
every 10 seconds). However, such an approach has drawbacks. For instance,
it may lead to wasteful re-evaluation of the context predicate even when no
context changes have occurred since the last evaluation. Another drawback
with this design option is that it may result in a significant latency between
when a context change occurs and when its re-evaluation happens. Hence de-
layed resumption of the suspended executions. Additionally, context changes
may be missed if the change is reverted before the periodic re-evaluation.

DC #5.2: Event-driven Resumption

Another design option is to employ a resumption mechanism that is trig-
gered by the occurrence of relevant context changes. When context param-
eters receive new values, the context predicates that operate on them are
re-evaluated. This in turn may result in suspended executions that are asso-
ciated with those context predicates to be resumed. This design option elim-
inates wasteful re-evaluation of context predicates since the re-evaluation
only takes place when there is a relevant context change. Moreover, the
re-evaluation of the context predicates happens as soon as possible. Event-
driven resumption is facilitated by the fact that context is represented as
reactive values (cf. Property # 2).
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4.9 Property #6: Scoped State Changes

The execution of a context-dependent procedure may result in state changes
to variables that are shared among context-dependent procedures.1 As the
execution of a context-dependent procedure can be suspended and resumed
at a later moment, situations might arise in which state changes performed
during the execution of one context-dependent procedure become visible to
other procedure executions. This can lead to undesirable behaviour (e.g.,
observing inconsistent values of a variable between suspension time and re-
sumption time). It is therefore desirable for an ICoDE programming lan-
guage to provide mechanisms that enable the developer to scope the visibility
of state changes. By supporting this property, the ICoDE model fulfils the
requirement R.6 Reactive scope management (cf. Section 2.6). We identify
three state management strategies that the developer can select from to scope
state changes among executions.

Immediate visibility. Under this strategy, state changes to the variables
that are shared among executions are immediately visible by other executions
that share this state.

Deferred visibility. Under this strategy, state changes remain local to the
execution on interruption but become visible to other executions on comple-
tion of the procedure execution. This means that when an execution is
interrupted, any state changes performed so far are kept local and are not
committed. However, when the execution completes, the state changes are
committed and become visible to the rest of the system. In case the proce-
dure’s execution is suspended, on resumption the execution continues in the
local environment the same as when it was suspended.

Isolated visibility. Under this strategy, state changes remain isolated
from the rest of the system. That is, any state changes made by one execu-
tion are restricted to that execution and are not visible by other executions.
Like in the deferred visibility strategy, a suspended execution resumes in the
same local environment as the one it was suspended in. However, the state
changes remain local and are not committed even after the execution runs
to completion. This ensures isolation of state changes.

Table 4.2 gives an overview of the visibility of state changes for different
state scoping strategies at the time the execution is interrupted and at the
1In our exploration, we only consider assignments and do not consider external side effects
such as I/Os since they are generally hard to circumvent.



76CHAPTER 4. INTERRUPTIBLE CONTEXT-DEPENDENT EXECUTIONS

On interruption On completion

State scoping Immediate globally visible globally visible
Deferred locally visible globally visible

strategies Isolated locally visible discarded

Table 4.2: The effect of the state scoping strategies on the visibility of state
changes on interruption and completion.

time the execution is completed. In the case of the immediate visibility strat-
egy, state changes are always globally visible on interruption and completion.
With the deferred visibility strategy, the state changes are only locally visible
on interruption and become globally visible when the execution completes.
In the case of the isolated visibility strategy, state changes remain local on
interruption and are discarded on completion.

4.10 Chapter Summary
In this Chapter, we have presented a programming language model called
interruptible context-dependent executions (ICoDE). Table 4.3 summarises
the properties of the ICoDE model. For each property we discuss the design
considerations that need to be taken into account in order to support it in
an ICoDE language. Alongside each property, we show the requirement(s)
(cf. Section 2.6) that it satisfies. Below we summarise the properties of the
ICoDE model that define the boundaries of a programming language that
aims to satisfy the programming language requirements for reactive context-
aware applications that we put forward in Section 2.6.

• Property #1: Predicated procedures for expressing context-
dependent behavioural variations. Each context-dependent proce-
dure is associated with a context predicate that is implicitly checked
throughout the execution of the procedure body expressions. This
property satisfies the requirement of Context-dependent interrup-
tions (R.2). Related predicated procedures can be grouped together
under a single identity. In addition, any variables that are shared
among the predicated procedures belonging to the same identity can be
specified as part of the group identity definition. New predicated pro-
cedures can be added to an existing grouping entity at runtime without
requiring any modifications of the existing predicated procedures.

• Property #2: Representing context as reactive values makes
it possible to compose context predicates with the rest of a context-
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Language Property Satisfied
Requirement

Property #1: Predicated procedures
DC #1.1: Associating a context predicate with a procedure R.2 and R.4
� As part of the definition
� Outside the definition

DC #1.2: Propagation of context predicates
� Dynamic propagation
� Lexical propagation
� No propagation

DC #1.3: Grouping of related predicated procedures
Property #2: Representing context as reactive values R.1
Property #3: Reactive dispatching R.4 and R.5

DC #3.1: Dealing with ambiguous context predicates
DC #3.2: Handling of return values

Property #4: Interruptible executions R.2
Interruption strategies
�Abort
�Suspend

Demarcating interruptible regions
DC #4.1: Implicit interruptions
DC #4.2: Explicit interruptions

Property #5: Resumable executions R.3
Resumption strategies
�Restart
�Resume

Resuming a suspended execution
DC #5.1: Proactive resumption
DC #5.2: Event-driven resumption

Property #6: Scoped State Changes R.6
State scoping strategies
�Immediate visibility
�Deferred visibility
�Isolated visibility

Table 4.3: Language properties and design considerations for the ICoDE
model.
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dependent program without having to use explicit event handlers. This
property also facilitates event-driven resumption of suspended execu-
tions. That is, the resumption suspended executions is event-driven
in that previously unsatisfied context predicates are only re-evaluated
when relevant reactive values receive new contextual information. This
property satisfies the requirement of Chained context reactions
(R.1).

• Property #3: Reactive dispatching for selecting which predicated
procedure to run for the current context based on the context predicate
that evaluates to true. By supporting this kind of dispatching the model
satisfies the requirement of Contextual dispatch (R.4). Moreover,
the dispatching process is continuously repeated to take into account of
any new context changes. This satisfies the requirement of Reactive
dispatch (R.5).

• Property #4: Interruptible executions ensures that the execu-
tion of a predicated procedure is constrained to run only under the its
prescribed context predicate. If the context predicate is no longer sat-
isfied the execution can be interrupted based on the developer-specified
interruption strategies: suspend and abort. Additionally, the language
should provide a construct that enables developers to demarcate certain
critical regions in a program as “uninterruptible”. This property satis-
fies the requirement of Context-dependent interruptions (R.2).

• Property #5: Resumable executions ensure that the execution of
a previously interrupted procedure execution can be later reinstated.
It is desirable that an ICoDE language enables the developer to specify
a resumption strategy: resume or restart. This property satisfies the
requirement of Context-dependent resumptions (R.3).

• Property #6: Scoped state changes for controlling the visibility
of changes to the variables that are shared among predicated proce-
dures. The model proposes state scoping strategies: immediate visibil-
ity, deferred visibility, and isolated visibility. This property satisfies the
requirement of Reactive scope management (R.6).

In Chapter 6, we present a programming language called Flute that sup-
ports the ICoDE model. By supporting the ICoDE model, Flute satisfies the
requirements of reactive context-aware applications (cf. Section 2.6). Be-
fore introducing the Flute language, the next chapter presents the mobile
programming language laboratory that we developed to experiment with the
language constructs and features that support the ICoDE model.
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5.1 Introduction

This chapter presents iScheme, a language laboratory that we have devel-
oped to facilitate experimenting with novel language constructs and features
for reactive context-aware applications. The goal of iScheme is to provide a
language experimentation platform with academic purity while not sacrific-
ing the practical aspects of developing realistic mobile software applications.
To accomplish that goal, iScheme blends the rich programming properties
of the Scheme language [Ken96] and a state-of-the-art mobile device that is

79
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equipped with context sensors to enable realistic experiments. For our exper-
iments, we chose Apple’s iOS devices which include the iPhone smartphone
and the iPad tablet. To realise the iScheme mobile language laboratory:

• We port Scheme, which is a small but rich interpreted language, to the
iOS platform; a mobile operating system for the iOS devices.

• We engineer a language symbiosis between Scheme and Objective-C
(the mainstream language used for iOS development) by way of a re-
flective API, which facilitates access from within Scheme to the iOS
APIs in an event-driven style.

• We design and implement event-driven distribution language con-
structs specially tailored for distributed mobile computing environ-
ments. In particular, the distribution constructs are based on the
ambient-oriented programming model [Ded06] and have built-in sup-
port for peer-to-peer service discovery, asynchronous remote messaging,
and failure handling.

The resulting software artefact is a language laboratory that has facilitated
our experimentation with the novel language constructs and features that we
present in Chapter 6.

5.2 iOS Development As We Know It

As stated in Chapter 2, today’s mobile devices are already equipped with
context sensors that make it possible to develop realistic context-aware mo-
bile applications. Apple’s iOS devices are representative for the modern
smartphones and tablets that come with a suite of sensors. The iOS software
development kit (SDK) provides rich APIs for interacting with the embedded
sensors like an accelerometer, proximity sensor, ambient light, compass, GPS
and wireless communication technologies. These APIs facilitate the develop-
ment of highly dynamic and interactive applications such as location-based
services.

Currently, most of the iOS development is restricted to the Objective-C
language [Koc09].1 Objective-C is an object-oriented extension of the C lan-
guage inspired by the Smalltalk-80 [GL95] syntax. It is a proper superset of
C meaning that any valid C program is also a valid Objective-C program. In
1While web scripting languages such as JavaScript are an alternative for developing mobile
applications, they have very limited access to the underlying native APIs, mainly because
of security reasons
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fact, some of the iOS APIs are developed in C rather than Objective-C. Taken
together, the iOS APIs enable developing realistic mobile applications that
exploit hardware capabilities. However, Objective-C has a number of limi-
tations such as the fact that it is quite low-level, limited language extension
mechanisms and the need for explicit memory management.2 These limi-
tations hinder experimenting with new language constructs and features for
modern mobile applications. The remainder of this chapter presents iScheme,
a language laboratory, that we have developed on top of the iOS APIs to fa-
cilitate practical experiments with novel language constructs and features for
dynamic mobile applications.

5.3 Motivation and the Birth of iScheme

We started the work on iScheme [BVB+12] in 2008, about seven months af-
ter the first public release of the iOS SDK (formerly called iPhone SDK) by
Apple Inc. At the time, Apple disallowed programming languages other than
Objective-C.3 What started as a mere curiosity to evaluate Scheme expres-
sions on the iPhone device, has evolved into a fully fledged experimentation
platform for the novel ideas presented in this dissertation. iScheme integrates
the Scheme language4 [Ken96] and the Objective-C runtime [Koc09].

On the one hand, Scheme brings along the rich programming properties
such as automatic garbage collection, structural macros, and higher-order
procedures. Below we further elaborate on the important language properties
that motivated our choice for Scheme.

• Scheme is a small but rich interpreted programming language with a
remarkably simple syntax.

• Scheme features garbage collection, therefore, the developer does not
need to worry about memory management concerns.

• Scheme supports structural macros, which is a powerful language exten-
sion mechanism that facilitates creating new syntactic constructs. Ad-

2While newer versions of Objective-C for the desktop platforms (Mac OS X v10.5 and
later) support automatic memory management, the iOS runtime system does not fully
support automatic memory management.

3However, this restriction was relaxed in 2010.
4iScheme is based on a Scheme interpreter, Skem [D’H10], which is developed at the
Software Languages Laboratory - Vrije Universiteit Brussel. We chose to use a locally
developed Scheme implementation primarily because of the availability of the source code
as well as its author – Theo D’Hondt.
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ditionally, user-defined constructs are indistinguishable from the prim-
itive ones.

• Scheme supports higher-order procedures (i.e., a procedure takes a pro-
cedure as argument or returns a procedure as its return value). The
support for higher-order procedures maps well onto an event-driven
programming model which is the norm in modern mobile applications.

• Scheme provides a dynamic interactive experimentation platform for
trying out new ideas or rapid prototyping applications.

iOS

Objective-C

Language experiments

iScheme

Figure 5.1: An architectural overview of the iScheme language laboratory.

On the other hand, Objective-C and iOS bring along rich libraries such as
sensor APIs and the Cocoa framework for graphical user interfaces (GUIs).
The integration of these two worlds opens the door for an experimentation
platform for new language technologies. With this integration in place,
iScheme provides developers with an event-driven programming model for
accessing iOS hardware capabilities, with higher-order procedures used as
event handlers. In Objective-C, event-driven programs are typically organ-
ised around the notion of delegates, which serve as callbacks whose methods
are invoked when a particular event occurs. Using higher-order procedures as
event handlers maps well onto such an event-driven architecture while keeping
the simplicity of the Scheme programming model. In addition, previous re-
search [CMB+07] has demonstrated that such an event-driven programming
model is also suited for the development of mobile distributed applications.
As such, iScheme provides built-in constructs for service discovery (built on
top of the Bonjour framework), asynchronous remote messaging (built on
top of TCP/IP), and failure handling. This enables distribution concerns
to be encapsulated in high-level constructs while relieving developers of the
difficulties engendered by distribution.
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Figure 5.1 shows an overview of the different components of the iScheme
mobile language laboratory. The components of the language laboratory are:
the iOS, the Objective-C language and iScheme (on top of which language
experiments are conducted). In the next section, we discuss the integration
of Scheme and Objective-C.

5.4 Scheme and Objective-C Symbiosis
In order to enable Scheme and Objective-C interaction, we have built
a language symbiosis layer that is based on the linguistic symbiosis
model [GWDD06]. The linguistic symbiosis model has been previously used
to bridge languages such as SOUL and Smalltalk [Gyb03], AmbientTalk and
Java [VCMDM07], and Java and SmallTalk [BDR09]. The linguistic symbio-
sis model adheres to the following principles:

Data mapping which ensures that data from one language can be passed to
another. For instance, when an Objective-C object crosses the bound-
ary to Scheme it needs to be represented as a Scheme value.

Protocol mapping which ensures that one language has a way to invoke
another language’s behaviour. For instance, Scheme programs require
a mechanism to perform message sends to Objective-C objects, while
Objective-C programs require a mechanism to call Scheme procedures.

We adhere to the same principles to achieve a language symbiosis between
Scheme and Objective-C. However, realising linguistic symbiosis between
Scheme and Objective-C is not trivial because of the differences in the pro-
gramming paradigms. Scheme is based on the procedural programming pa-
radigm where operations are performed by procedure applications, whereas
Objective-C is based on the object-oriented programming paradigm where
operations are performed by sending messages to objects. As it is not possible
to make these differences completely seamless, we provide ways to perform
operations from one language to the other. The remainder of this section ex-
plains how we achieve language symbiosis between Scheme and Objective-C.

5.4.1 Data Mapping between Scheme and Objective-C
When an Objective-C object crosses the boundary to Scheme, it is wrapped
as a Scheme value and, therefore, can be bound to a regular Scheme variable
or be passed around as an argument to a Scheme procedure. Figure 5.2 illus-
trates the representation of an Objective-C object in Scheme. An Objective-
C object is wrapped as a generic Scheme value OBJC_TYPE that points to
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Scheme Objective-C

Scheme implementation in C

Scheme wrapper for
 Objective-C object

Objective-C object

implementation of
 Scheme wrapper for
 Objective-C object

Figure 5.2: Linguistic symbiosis between Scheme and Objective-C.

the actual Objective-C instance. The Scheme interpreter is implemented in
C and thus the host language for the Scheme values. Objective-C and C
are inherently symbiotic hence no changes are required to host Objective-C
objects in C.

When a Scheme value crosses the boundary to Objective-C, it is auto-
matically converted to the corresponding Objective-C type, and it can be
bound to an Objective-C variable or passed as argument to an Objective-C
method. In addition, we provide type conversion procedures for convert-
ing Objective-C values to Scheme values and vice versa. For instance, the
string->NSString procedure converts a Scheme string to an Objective-C
NSString while the list->NSMArray procedure converts a Scheme list
to an Objective-C NSMutableArray. A complete record of type conversion
constructs is provided in Appendix A.1.

5.4.2 Protocol Mapping between Scheme and
Objective-C

The difference between the programming paradigms necessitates constructs
to enable Scheme and Objective-C to invoke each other’s behaviour
(procedures or methods). In Scheme, we provide the OBJC-CLASS,
OBJC-INSTANCE, and OBJC-SEND special forms to load Objective-C
classes, create new objects, and send messages, respectively. Conversely,
we provide the SCHEME_CALL construct to invoke Scheme procedures from



5.4. SCHEME AND OBJECTIVE-C SYMBIOSIS 85

within Objective-C. The remainder of this section explains these constructs
by means of examples.

Instantiating and sending messages to Objective-C objects Scheme
programs can instantiate Objective-C classes using the OBJC-INSTANCE
special form, which performs object allocation and initialisation. In addition,
we provide the OBJC-SEND special form, which performs message sends
to an Objective-C instance. We illustrate these constructs by means of a
Scheme procedure that converts a string to audio using the Objective-C class
NSSpeechSynthesizer. This class implements methods for parsing text
and generating synthesised speech.
1 (define (speak-out-loud text)
2 (let ((synthesizer (OBJC-INSTANCE NSSpeechSynthesizer)))
3 (OBJC-SEND synthesizer startSpeakingString: text)))

The above code snippet shows the definition of the speak-out-loud
procedure, which implements the behaviour of converting text to au-
dio. The OBJC-INSTANCE special form takes as argument a name of
an Objective-C class and returns a new instance of the class. The
OBJC-SEND special form takes as arguments an Objective-C class or in-
stance, the method name, and arguments to the method to be invoked.
The (OBJC-INSTANCE NSSpeechSynthesizer) expression creates an
instance of the NSSpeechSynthesizer class and returns a reference to its
instance that is subsequently bound to the Scheme variable synthesizer.
The expression (OBJC-SEND synthesizer startSpeakingString:
text) invokes the startSpeakingString: method on the Objective-C
instance stored in the variable synthesizer with text (the text to speak
out) as the argument. The return value of OBJC-SEND is a return value of
the Objective-C method being invoked and is wrapped as an OBJC_TYPE
value in Scheme.

Loading Objective-C classes from Scheme The symbiosis layer pro-
vides the OBJC-CLASS special form which takes as argument a name of an
Objective-C class, and returns a first-class reference to its class object. The
following example illustrates the use of the OBJC-CLASS special form.
1 (define NSSynthesizer (OBJC-CLASS NSSpeechSynthesizer))

In the above code snippet, the expression (OBJC-CLASS
NSSpeechSynthesizer) returns a reference to the
NSSpeechSynthesizer class which gets bound to the Scheme vari-
able NSSynthesizer. In case the class name does not exist, the return
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value is nil (i.e. a null instance).5 The reference to the class object can be
used to invoke class methods. Note that it is also possible to perform object
instantiation by sending the alloc and init messages to the Objective-C
class object, but we provide the OBJC-INSTANCE special form to this end.

Invoking Scheme procedures from Objective-C Objective-C pro-
grams can call Scheme procedures with the SCHEME_CALL construct, which
takes a Scheme procedure name and a variable number of optional arguments.

1 SCHEME_CALL(procedure-name, args)

The procedure name can be any globally defined Scheme procedure or a
closure that is passed as an argument to an Objective-C method.

5.5 Interacting with Context Sensors in
iScheme

Having presented the language symbiosis between Scheme and Objective-C,
the stage is now set for reaping the benefits of the resulting language experi-
mentation platform. As introduced in Chapter 2, modern mobile applications
require continuous interaction with external sensors and other applications
in order to dynamically adapt their behaviour to match the user’s needs. For
instance a location-based service should maintain a causal connection with
the location sensors such that a change in location leads to an immediate
adaptation of the behaviour, accordingly. iScheme facilitates developers to
easily establish such connections using the symbiosis constructs described
above.

To give a feel for how to program in iScheme while interacting with the
physical sensors available on the iOS devices, we consider an application
that displays a map annotated with the places of interest in the user’s neigh-
bourhood. The application works as follows: (1) Using the iOS GPS APIs,
the application retrieves the current user’s location coordinates. (2) Using
a user-specified query that identifies places of interest (e.g., transport stops,
restaurants, and bars), the application displays a Google map [Goo09] an-
notated with the interesting places that are nearby and the user’s current
location. Figure 5.3 shows the screenshot of the resulting maps application
running on the iPhone device.

The listing below shows a complete implementation of the application in
iScheme.
5In Objective-C, sending a message to nil has no runtime effect
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Figure 5.3: (show-map "Metro") displays a map annotated with the
user’s current location and nearby metro stations.

1 (define (show-map query)
2 (CURRENT-LOCATION
3 (lambda (latitude longitude)
4 (google-maps latitude longitude query))))

The above code shows the definition of the show-map procedure that im-
plements the behaviour of the maps application. The show-map procedure
takes as argument a string query (e.g., “Metro”, “Restaurants” ). The key
part of this program is the CURRENT-LOCATION special form that takes as
argument a procedure. When the above program is evaluated (e.g., by invok-
ing the show-map procedure as (show-map "Metro")), the procedure is
registered as an event handler for the location changes. The procedure is
invoked with the values of latitude and longitude as soon as they become
available from the underlying GPS APIs. google-maps is a helper pro-
cedure that takes as argument the latitude and longitude coordinates and a
user query, and displays a Google map annotated with the places matching
the user query and the current location.

This simple example already shows the benefits of integrating Scheme
with Objective-C. As procedures are first-class values, they can be passed
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around as event handlers instead of dealing with the delegate callbacks as is
the case in plain Objective-C. The CURRENT-LOCATION special form is built
on top of the iOS’s Core Location framework using the symbiosis constructs.

1 (define-macro CURRENT-LOCATION
2 (lambda (event-handler)
3 ‘(let ((Ulocation (OBJC-INSTANCE Ulocation)))
4 (OBJC-SEND Ulocation currentLocation: ,event-handler))))

CURRENT-LOCATION is defined as a macro that accepts as argument a
two-parameter Scheme procedure (an event handler). The two parameters
correspond to latitude and longitude location coordinates. Ulocation is an
Objective-C class that implements a method currentLocation: which
takes as argument a Scheme procedure that is invoked with the latitude
and longitude coordinates as soon as they become available from the GPS
receiver. Other constructs for other sources of context information such as
the accelerometer and the proximity sensors can be implemented in the same
style.

5.6 Ambient-Oriented Programming in
iScheme

When developing distributed mobile applications that interact with each
other over wireless connections, iOS developers have little more than a low-
level socket API to work with. As a result, they have to deal manually with
complex distribution concerns such as discovering services in nearby environ-
ment, setting up sockets for remote communication, serialising invocations
to perform remote method invocations, and handling network disconnec-
tions. To alleviate these difficulties, iScheme provides high-level distribu-
tion constructs. The distribution constructs in iScheme are based on the
ambient-oriented programming (AmOP) model [Ded06]. The AmOP model
has been instantiated in a number of programming languages including Am-
bientTalk [CMB+07] and Lambic [Val11].

To that end, iScheme provides distribution constructs for service discov-
ery (built on top of the Bonjour framework), asynchronous remote messaging
(built on top of TCP/IP), and failure handling. This enables distribution
concerns to be encapsulated in high-level constructs while relieving develop-
ers of the difficulties engendered by distribution. More concretely, iScheme
provides a reactive event loop distribution model that is based on the event
loop model [CMB+07] of the AmbientTalk language. We have built remote
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communication around the concept of asynchronous message passing to ab-
stract over network failures without blocking the control flow.

A running example. Throughout this section, we will use a simple news
service application as a running example to explain the distribution con-
structs. In this application, news editors use their mobile devices to submit
articles to news publishers as they move about. A news publisher broadcasts
current news items, which are printed on the screens of mobile devices of
nearby potential customers that have announced their interest in the current
news.

5.6.1 Decentralised Service Discovery

As services often need to be discovered in the environment as the user moves
about, iScheme offers a built-in publish/subscribe engine to enable applica-
tions discover services in a peer-to-peer manner.

Distributed computation in iScheme is expressed in terms of procedures.
A procedure represents a certain service offered by a device. A device can
acquire a remote reference to a procedure owned by a remote device, and then
interact with it through remote procedure invocations. As fixed name servers
may not be available when two mobile devices come in communication range
and set up a collaboration, iScheme identifies exported procedures by means
of service types. A service type is a lightweight classification mechanism used
to categorise procedures explicitly by means of a nominal type [CMB+07].

In the example of the news service application, the news publishers need
to make available their publishing service to other devices. The code snippet
below shows how a developer can explicitly export the procedure representing
the news publisher service.

1 (define baino-news-type (service-type baino-news))
2 (export-service news-publisher baino-news-type)

A service type is defined using the service-type procedure. In the
above code snippet, the variable baino-news-type stores the service type
baino-news. The export-service procedure publishes onto the net-
work a given procedure as the given service type. From the moment a proce-
dure is exported, it is discoverable by procedures residing in other devices by
means of its associated service type. In this example, the news-publisher
procedure is exported on the network as a baino-news service. The
export-service procedure returns a closure that can be used to take
the procedure “offline” by invoking the cancel-publication procedure.
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iScheme employs a publish/subscribe service discovery protocol. A pub-
lication corresponds to exporting a procedure by means of a service type
(which serves as a “topic” known by both the publisher and the subscriber
[EFGK03]). A subscription corresponds to registering an event handler on a
service type, which is triggered whenever a procedure exported under that
type is encountered on the network. In the news service application, an editor
can be notified whenever a news publisher is discovered as follows:

1 (when-discovered baino-news-type
2 (lambda (publisher-ref)
3 (submit-news publisher-ref)))

The when-discovered construct takes as arguments the service type to
search for and a one-parameter procedure that serves as an event handler.
Such a procedure is invoked with a remote reference to the newly discovered
remote procedure associated with that service type. In the above code snip-
pet, whenever a baino-news service type is discovered, the submit-news
procedure is invoked, passing along the parameter publisher-ref re-
mote reference received. Similar to the export-service construct, the
when-discovered construct itself returns a closure that can be used to
cancel the subscription, by invoking the cancel-subscription proce-
dure.

5.6.2 Asynchronous Remote Procedure Invocation

Once a reference to the remote procedure is obtained, remote procedure
invocations can be performed by means of the remote-send! construct as
follows:

1 (define (submit-news publisher-ref)
2 (for-each
3 (lambda (article)
4 (remote-send! publisher-ref receive-article article))
5 list-of-articles))

The remote-send! construct takes as arguments a remote reference, a
procedure name, and a variable number of optional arguments. Arguments
specified in a remote procedure invocation are parameter passed by copy.
Currently only a subset of the Scheme first-class values (Booleans, Num-
bers, Characters, Symbols, Strings, Pairs and Lists6) can be passed in a

6Pairs and Lists that contain circular references are not supported in our current seriali-
sation mechanism.
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remote procedure invocation. In this example, the submit-news proce-
dure iterates over a list storing news articles to be published, and invokes the
receive-article procedure on the publish-ref reference correspond-
ing to the newly discovered news publisher. The remote-send! construct
performs a non-blocking asynchronous remote procedure call. This means
that remote-send! enqueues a remote procedure call in the Scheme in-
terpreter and it immediately returns nil. As such, callers do not wait for
the remote procedure call to be performed remotely nor for the return value
of such computation.

In order to get the return value of a remote invocation, we provide the
when-resolved construct which registers an event handler that is invoked
when the return value of the remote procedure invocation becomes available.
In our running example, this is used to acknowledge the reception of articles
sent to the news publisher.
1 (define (submit-news publisher-ref)
2 ....
3 (for-each
4 (lambda (article)
5 (when-resolved
6 (remote-send publisher-ref receive-article article)
7 (lambda (receipt)
8 (set! receipts (cons receipt receipts)))
9 (catch

10 (lambda (exception)
11 ;;exception handling code
12 ))))
13 list-of-articles)
14 ...)

The remote-send construct is similar to the remote-send! con-
struct, except that it returns a future (also known as a promise) [Hal85,
LS88]. A future is a placeholder for the return value that will be computed
asynchronously. Once the return value is computed, it replaces the future ob-
ject, and the future is then said to be resolved with the value. Note that regis-
tering a future on a remote-send construct does not block the caller of the
remote procedure call. It is possible to register a block of code which is trig-
gered when the future becomes resolved by means of the when-resolved
construct. The when-resolved construct takes a future and two proce-
dures and registers an event handler on that future. If the future is resolved
to a value, the first closure is invoked, passing along the return value of the
remote computation. In this example, the receipt value is received as the
return value of the receive-article remote procedure call. If the re-
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mote procedure invocation raises an exception, the corresponding future is
said to be ruined by the exception and the procedure given as an argument
to catch is is invoked with the exception. This enables applications to catch
asynchronously raised exceptions and perform some correcting actions.

Device 1 Device 2

p1 p2
p3

message queue

remote
 reference

local
 reference

procedure

event
loop

remote procedure
invocation

Figure 5.4: A distributed computation model of iScheme.

Performing a remote procedure call using remote-send enqueues a re-
mote procedure invocation in iScheme (see Figure 5.4). In case a callee
becomes unreachable because of a network failure, the remote procedure in-
vocation remains queued in the caller side. When the network connection
is restored at a later point in time, the accumulated procedure invocations
are transparently flushed to the remote device in the same order as they
were originally performed. However, sometimes disconnections may take un-
expectedly longer or devices may not move back into communication range
again. To deal with such long-lasting disconnections, developers can asso-
ciate a timeout with the remote procedure invocation to limit the time to
wait for the reception of the return value. Such a timeout can be specified
by means of the due-in construct in the when-resolved construct as
follows:
1 (define (submit-news publisher-ref)
2 .... ;; iterator over each news
3 (when-resolved
4 (remote-send publisher-ref receive-article article)
5 (lambda (receipt)
6 (set! receipts (cons receipt receipts)))
7 (due-in 20.0)
8 (catch
9 (lambda (exception)

10 ;;exception handling code
11 )))
12 ...)

The due-in construct expects as parameter a number denoting a time-
out in seconds. If the return value is not received within the timeout specified,
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the future is automatically ruined and the TimeoutException is raised
which can be handled with the catch construct as explained before.

Language construct Description
OBJC-INSTANCE For instantiating an Objective-C class from

within Scheme.
OBJC-CLASS For obtaining a reference to an Objective-C

class from within Scheme.
OBJC-SEND For performing a message send to an

Objective-C instance from within Scheme.
SCHEME_CALL For invoking a Scheme procedure from within

Objective-C.
OBJC_TYPE A generic representation of Objective-C val-

ues in Scheme.
CURRENT-LOCATION For acquiring GPS coordinates from within

Scheme.
service-type For creating a topic (service type) that can

be used to discover or publish a procedure.
export-service For publishing a procedure into a network

under a specified service type.
cancel-publication For cancelling the publication of a procedure.
when-discovered For discovering a procedure that is available

in the network under the specified service
type.

cancel-subscription For unsubscribing the subscription.
remote-send! For performing an asynchronous remote pro-

cedure invocation with no return value.
remote-send For performing an asynchronous remote pro-

cedure invocation with a return value.
when-resolved For handling return values of asynchronous

remote procedure invocations.
due-in For specifying the maximum time to wait for

return values of an asynchronous remote pro-
cedure invocation.

catch For handling exceptions raised during an
asynchronous remote procedure invocation.

Table 5.1: An overview of the iScheme language constructs.
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5.6.3 Summary
In this section, we have presented the distribution constructs for ambient-
oriented programming in iScheme. These constructs are built on top of the
symbiosis layer using the syntactic extension mechanisms of Scheme (the
macro system). Table 5.1 provides an overview of the main iScheme lan-
guage constructs.7 In the next section, we demonstrate the use of the all the
constructs by using to develop a non-trivial distributed mobile application.

5.7 Case Study: A Distributed Scrabble Game

In this section, we further validate the language symbiosis and distribution
constructs by implementing a distributed mobile application using iScheme.
We consider an example of a distributed peer-to-peer SCRABBLE R�-like
game for the iPhone called AmbiScrabble. AmbiScrabble is a digital ver-
sion of a Scrabble-like game where players work collaboratively with their
iPhones to form words. Figure 5.5 shows the screenshot of the AmbiScrabble
application on the iPhone. A demonstration of the game and other represen-
tative applications that we have developed using iScheme can be found on
the iScheme website.8

Figure 5.5: Screenshot of the AmbiScrabble game running on an iPhone.

7A complete record of type conversion constructs is provided in Appendix A.1.
8http://soft.vub.ac.be/amop/ischeme/example_applications

http://soft.vub.ac.be/amop/ischeme/example_applications
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5.7.1 Requirements
The requirements of the AmbiScrabble game are as follows:

• Players are organised in teams and each player has a rack of letters. The
goal of the game is to consume all the letters of the team by forming
valid English words. The team that first consumes all its letters wins.

• Players belonging to the same team can exchange letters among them-
selves. Also, team members can see each other’s letters and a player
may request particular letters from another team member.

• The game should be designed in a peer-to-peer fashion without assum-
ing a centralised server to coordinate the game.

• The game should be fault-tolerant such that network disconnections
do not hamper the game progress. This requirement is primarily moti-
vated by the fact that the game runs on iPhones equipped with wireless
technology. Connectivity using such a technology is often characterised
by frequent network disconnections either because of limited connec-
tivity or because users move about.

• We assume that there is only one game being played at a time.

Local 
interface

Game controller

Remote 
Interface

Team model

Game model

Rack controller

Team controller

Rack model

GUI proxy Game GUI

Model Controller View

Figure 5.6: Architectural overview of the AmbiScrabble game.
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5.7.2 Design and Implementation
The architecture of AmbiScrabble game is based on the Model-View-
Controller (MVC) pattern. Figure 5.6 shows the main components of the
game. We discuss only representative components of the game for brevity.

• The model holds all the game data and consists of separate model
entities: the game model, the team model, and the rack model.

• The controller manages all the game logic and consists of the game
controller, the team controller, and the rack controller. The game con-
troller consists of local and remote interfaces for managing to local
and distributed interactions, respectively. In addition, the controller
includes the GUI proxy that encapsulates all the interactions between
the controllers and the graphical user interface.

• The view consists of the game GUI entity which implements the graph-
ical user interface of the game (e.g., virtual letters and racks, teams and
players).

We implement the game logic and distribution concerns of the AmbiS-
crabble application in iScheme, while the graphical user interface (GUI) is
implemented in Objective-C using the Cocoa framework. Before discussing
the implementation details of the distribution concerns and GUI interactions
of the AmbiScrabble game, we give an overview of the game implementation.
The following code snippet summarises the relevant parts of the AmbiScrab-
ble application in iScheme.

1 (define (create-ambiScrabble-game)
2 (let ((GUI-proxy (setup-gui))
3 (team-controller (make-team-controller))
4 (rack-controller (make-rack-controller)))
5

6 ; the player’s local interface procedures
7 (define (add-letter-to-rack letter)
8 (rack-controller ’add-letter letter)
9 (notify-team))

10

11 (define (add-new-player player)
12 (team-controller ’add-new-player player))
13

14 (define (get-player-name) ...)
15 (define (get-player-team) ...)
16
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17 (define (initialise-game team-name player-name)
18 (initialise-player-info team-name player-name)
19 ; engage in peer-to-peer discovery of other players
20 (go-online)
21 (discover-other-players))
22

23 ; the player’s remote interface procedures
24 (define (get-player-info)
25 (let ((name (get-player-name))
26 (team (get-player-team)))
27 (list name team)))
28

29 (define (request-letter player-name letter)
30 (process-request player-name letter))
31

32 (define (receive-letter from letters status)
33 (cond ((= status approved)
34 (add-letter-to-rack letters)
35 (notify-team)
36 (alert-request-approved from letters))
37 ((= status refused)
38 (alert-request-refused from letters))
39 ....)
40 ’done)
41

42 (define (remote-interface)
43 (lambda (message . args)
44 (case message
45 ((get-player-info) (get-player-info))
46 ((request-letter) (apply request-letter args))
47 ((receive-letter) (apply receive-letter args)))))
48

49 remote-interface))

The create-ambiScrabble-game procedure consists of: the
GUI-proxy that manages the game’s GUI, the team-controller that
manages the players and teams in the game, and the rack-controller
that manages the player’s rack and the word formation. The application
defines local and remote interfaces which consist of a set of procedures for
the local game logic and for interactions with the remote players, respec-
tively. For example, the local interface contains the add-new-player pro-
cedure that implements the behaviour for adding a player to the appropriate
team and the add-letter-to-rack procedure that implements the be-
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haviour of adding a letter to the player’s rack of letters. The remote interface
contains the get-player-info procedure that is used for obtaining the
remote player’s name and team, the request-letter procedure that is
used for requesting a letter from a remote player belonging to the same team,
and the receive-letter procedure that is used to “throw” letters to the
nearby players. The status argument in the receive-letter procedure
indicates whether the request was accepted or not. All the remote interface
procedures are wrapped in the remote-interface closure that dispatches
a remote procedure invocation to the appropriate procedure. As we will ex-
plain later the remote-interface published in the network in order to
make a game instance to become discoverable by other peers.

GUI Interactions

When the create-ambiScrabble-game procedure is invoked, the game
GUI is launched by invoking the setup-gui procedure in the aforemen-
tioned let construct. The return value of setup-gui procedure is a closure
that encapsulates all the behaviour of Objective-C and Scheme interaction.
The resulting closure is bound to the variable GUI-proxy. We show part
of the implementation of the setup-gui procedure below.

1 ; manages all the interactions between Objective-C and Scheme
2 (define (setup-gui)
3 ...
4 ; Create new instance of gameViewController
5 (let ((viewController (OBJC-INSTANCE gameViewController)))
6

7 ; Show new player
8 (define (display-new-player name rack)
9 (let* ((info (list name rack))

10 (array (list->NSMArray info)))
11 (OBJC-SEND viewController addPlayer: array)))
12

13 ; Remove player from the screen
14 (define (remove-player name)
15 (OBJC-SEND viewController removePlayer: name))
16

17 ; Update team name on the screen
18 (define (set-team-name team-name)
19 (OBJC-SEND viewController updateTeamName: team-name))
20

21 ; Set callback for when letter is selected in word by the user
22 ; Letters should be moved back to the rack.
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23 (define (set-onformword-callback proc)
24 (OBJC-SEND viewController setWordCallback: proc))
25

26 ; Show alert when the formed word is not valid English
27 (define (show-invalid-word-message)
28 (OBJC-SEND viewController showInvalidWordMessage))
29

30 ; Show a request for a letter on the screen
31 (define (show-request-message player-name letter)
32 (let* ((info (list player-name letter))
33 (array (list->NSMArray info)))
34 (OBJC-SEND viewController showRequestMessage: array)))
35

36 ...
37

38 ;dispatcher
39 (lambda (message . args)
40 (case message
41 ((set-team-name) (apply set-team-name args))
42 ((remove-player) (apply remove-player args))
43 ((show-request-message) (apply show-request-message args))
44 ...
45 ((display-new-player) (apply display-new-player args))))))

The game’s GUI implementation in Objective-C contains the class
gameViewController that implements methods for capturing user
input, and updating the GUI whenever the game data in Scheme
changes. In the above code snippet, the variable viewController
holds a reference to the instance of the gameViewController class
that is created using (OBJC-INSTANCE gameViewController). The
display-new-player procedure adds a new player to the GUI and a
rack of letters is added on the GUI by invoking the addPlayer: method
of the gameViewController instance. The remove-player procedure
implements the behaviour of removing a player from the GUI. Procedures
that need to be called when a user performs certain actions on the GUI (e.g.,
a pinch on the submit button to form a word) are registered as callbacks to
Objective-C methods. For example, the set-onformword procedure reg-
isters a Scheme procedure that is called whenever the user presses the button
to form word.
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Distributed Interactions

When the GUI is launched, the player is prompted to enter a name and a
team name. This information is used to initialise the game and the player
data by invoking initialise-game procedure from Objective-C. The next
step of the game setup is to publish the game instance onto the network and
to search for other players in the surroundings by invoking the procedures
go-online and discover-other-players, respectively. Note that we
assume that there is no dedicated centralised server for game coordination
as such. Each game instance publishes and subscribes itself to the network.
The following code snippet shows the implementation of the go-online
procedure that publishes the game.
1 ; the service type
2 (define ambiScrabbleService (service-type ambiScrabble))
3

4 ; publishing the game instance on the network.
5 (define (go-online)
6 (export-service remote-interface ambiScrabbleService))

A game instance is published onto the network with the ambiScrabble
service type (stored in the ambiScrabbleService variable). More con-
cretely, the go-online procedure publishes the remote-interface clo-
sure as an ambiSrabble service using the export-service construct.

The discover-other-players procedure uses the
when-discovered construct to register a subscription to discover
other players in the network as follows:
1 ; discovering other players in the surroundings
2 (define (discover-other-players)
3 (when-discovered ambiScrabbleService
4 (lambda (remote-player)
5 (add-new-player remote-player))))

Whenever a new ambiScrabble service type is discovered, the
add-new-player procedure is applied receiving by parameter the newly
established reference to the remote-player procedure of the remote
player. This procedure performs the necessary remote procedure invoca-
tion to obtain the remote player’s information using the remote-send and
when-resolved constructs as follows:
1 (define (add-new-player remote-player)
2 (when-resolved
3 (remote-send remote-player get-player-info)
4 (lambda (info)
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5 (let ((name (list-ref info name-index))
6 (team-name (list-ref info team-index)))
7 (if (team-exists? team)
8 (if (not (player-exists? name))
9 (add-player remote-player name team-name))

10 (begin
11 (create-new-team team-name)
12 (add-player remote-player name team-name)))))))

The add-new-player procedure performs a remote invocation of the pro-
cedure get-player-info to retrieve the player’s name and team, using the
remote-send construct. The return value of the remote invocation is re-
ceived by parameter in the when-resolved lambda, which checks whether
the team and the player already exist in the data structures of the applica-
tion (i.e. if the player was previously discovered). If the team already exists
but the player does not, then the player is added to that team. Otherwise,
the player is added to the newly created team.

To deal with network disconnections of players, the game makes use of
the due-in construct in the when-resolved construct to notify the dis-
connection of a player. Players whose disconnection exceeds a certain period
of time (e.g., 20 seconds) are greyed out in the GUI as shown below:

1 (when-resolved
2 (remote-send remote-player get-player-info)
3 (lambda (info) ... )
4 (due-in 20.0)
5 (catch
6 (lambda (exception)
7 (grey-out-player remote-player))))

5.7.3 Discussion
In this section, we have shown the language constructs of iScheme by using
them to implement a non-trivial distributed mobile application that runs on
iPhone devices. The implementation of the distributed interactions of the
AmbiScrabble application demonstrate iScheme’s distribution language con-
structs. In addition, the implementation of the GUI interactions of the ap-
plication demonstrate the language symbiosis constructs. iScheme provides
high-level distribution language constructs that facilitate developers to imple-
ment distributed mobile applications without dealing with complex low-level
concerns of the distributed programming as would be the case in when using
plain Objective-C. For instance, the export-service construct makes it
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possible to easily publish Scheme procedures as services over the iPhone’s
Wi-Fi connectivity while the remote-send construct makes it possible to
perform asynchronous remote procedure invocations with support for dealing
with network disconnections. The distribution language constructs employ
an event-driven programming style with Scheme procedures being used as
event-handlers that react to changes in the environment (e.g., appearance
of a new service). For instance, the when-discovered construct regis-
ters a closure as an event-handler that is invoked whenever a new service is
encountered in the network.

It should be noted that the distribution language constructs are imple-
mented using the language symbiosis constructs and the language extension
mechanism of Scheme. In particular, the Scheme macro system provides
support for building syntactic extension constructs. This means that new
language constructs can be created on top of the symbiosis constructs to
ease the development of mobile applications. One immediate benefit of such
an environment is that it serves as an experimentation platform for new
programming language abstractions and facilitates prototyping applications
without facing the complexities of defining classes and GUIs as is the case in
plain Objective-C.

5.8 Implementation Notes

The implementation of iScheme uses a Scheme interpreter called
Skem [D’H10], that was developed by Theo D’Hondt at the Software Lan-
guages Laboratory of the Vrije Universiteit Brussel. Skem is implemented
in ANSI-standard C, and it is thus fully compatible with Objective-C. As
stated in Section 5.2, Objective-C is a proper superset of C meaning that it
is possible to include C code within Objective-C code. In fact, the Objective-
C compiler translates every method call in Objective-C into a C procedure
call. In iScheme, we use Objective-C 2.0, the modern Objective-C version
used by iOS platform and on Mac OS X v10.5 and later.

5.8.1 Reflective Capabilities of Objective-C
Implementing language symbiosis with Objective-C is possible because of
Objective-C’s dynamism and reflective capabilities. The Objective-C reflec-
tive API provides procedures to access information such as the name of a class
and the methods that a class implements (introspection). It also enables ob-
jects to modify their own structure (intercession) [KR91] such as add new
variables, add new classes, or replace method implementations at runtime.
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Objective-C is a dynamic language in the sense that messages are not bound
to their respective method implementations until runtime. All Objective-C
message sends are converted into objc_msgSend procedure calls. For every
message send expression [receiver message] the compiler generates a
call on the messaging procedure objc_msgSend as follows:

1 objc_msgSend(theReceiver, theSelector, arg1....argn);

The objc_msgSend procedure takes at least two arguments:
theReceiver which is the receiver object, theSelector which is the
method name that handles the message and a variable number of arguments
for the specified method. The Scheme and Objective-C symbiosis layer has
been implemented using the Objective-C reflective API. The distribution
constructs are implemented on top of the symbiosis layer. Both the symbio-
sis and distribution constructs are implemented using the macro system of
Scheme.

5.8.2 Limitations

IDE and Debugging Support. iScheme currently comes with a simple
front editor as a programming environment for the iPad tablet device (see
the screenshot in Appendix A.4). It still lacks enhanced debugging support
such as syntax colouring and error reporting.

Performance. The language symbiosis between Scheme and Objective-
C introduces a method call overhead compared to method calls in plain
Objective-C. For instance, every time an Objective-C object is passed to
Scheme needs to be wrapped as a Scheme generic value OBJC_TYPE. In
addition, for each Scheme value passed to an Objective-C method, the sym-
biosis layer needs to check and perform a type conversion to the appropriate
Objective-C object. This can be improved by applying performance enhanc-
ing techniques such as caching of common used objects and selectors.

Serialisation. The current iScheme implementation has a limited seriali-
sation mechanism of datatypes that are parameter-passed to a remote pro-
cedure. For example, there is no support for serialising all first-class values
in Scheme such as closures and continuations.
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5.9 Related Work Notes

In this section, we revisit some of the existing work on Scheme implementa-
tions for mobile platforms and language symbiosis with either Objective-C
or Scheme.

5.9.1 Scheme Implementations on Mobile Platforms

The Gambit-C Scheme system has been recently used to develop iOS
applications [Fee09]. Gambit-C compiles Scheme programs to C code, which
is compatible with Objective-C. The Gambit-C system also includes an in-
terpreter that can used to provide an interactive environment. To interact
with Objective-C, Gambit-C employs the foreign procedure interface (FFI)
approach. FFIs in Gambit-C support interaction in either direction, and as
such it qualifies as a language symbiosis. To access Objective-C methods
from Scheme, wrapper C procedures are generated. The need to generate
wrapper procedures in C for Objective-C methods could be eliminated by
adopting Objective-C’s reflective API that is used in iScheme. The use of
the reflective API also implies that Scheme programs have direct interac-
tion with Objective-C which facilitates the implementation of event-driven
constructs (e.g., for accessing iOS capabilities and distributed programming).

Moby Scheme is an experimental Scheme compiler for smartphones with
particular target for the Android OS [Kri09]. It enables developers to write
Scheme programs that are fed to the compiler in order to generate Java source
code. The Moby Scheme compiler is mostly written in PLT Scheme [FFP09] –
a Scheme implementation that is designed to run on traditional desktop plat-
forms and not on mobile devices. The Moby Scheme compiler itself does not
run on Android OS, but it generates Java source code from the desktop plat-
form. The generated Java source code is used to produce the Android .apk
packages that can take advantage of the native features (e.g., GPS and SMS)
available on the device. One important feature of Moby Scheme is its support
for event-driven programming based on the notion of “Worlds” [FFK10] that
enables one to write programs that react to events (e.g., an incoming SMS
event). As in Moby Scheme, we believe that the event-driven programming
style is well-suited for a mobile setting because of their inherent interactive
nature. In iScheme, we further explore the event-driven programming model
for developing distributed applications by providing constructs for peer-to-
peer service discovery, asynchronous remote communication, and handling
network failures.
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5.9.2 Language Symbiosis
There exist systems that explore language integration with either Objective-
C or Scheme, but on desktop platforms. In this section, review some of those
systems.

Language symbiosis with Objective-C. Java and Objective-C symbio-
sis [App09] is one of the earliest bridges to Objective-C that enables one to
write programs in Java that instantiate and use Objective-C classes from
Java, pass Java objects as arguments to Objective-C methods and directly
subclass Objective-C classes. PyObjc[PyO09] implements language symbio-
sis between Python and Objective-C that enables Python developers to write
Cocoa GUI applications on Mac OS X in pure Python. CL-ObjC [Geo09] is
a Common Lisp library that enables interaction with Objective-C libraries
built on top of a foreign procedure interface. CL-ObjC provides the invoke
construct similar to our OBJC-SEND to perform message sends to Objective-
C instances in a LISP-like way. In addition, CL-OBJC implements an in-
terface that mixes the Common Lisp Object System (CLOS) and Objective-
C’s object system. Unfortunately, all these existing language symbiosis to
Objective-C are limited to desktop development platforms (mostly Mac OS
X) and no single implementation ports to a mobile platform. Our Scheme and
Objective-C symbiosis mainly aims at providing access to features specific to
mobile platforms such as phone, SMS and GPS.

Dot-Scheme is a library that builds an FFI for PLT Scheme [FFP09] with
Microsoft .NET Common Language Runtime (CLR) [Ped03]. It provides the
import-assembly construct that loads the assembly code of a class into
Scheme. For each loaded class a Scheme proxy is generated that wraps the
class as a Scheme value. Dot-Scheme enables invoking the CLR methods
using the Scheme-like syntax though it does not provide support to invoke
Scheme procedures from the CLR.

Kawa and SILK are Scheme implementations that enable interaction
between Scheme and Java. Kawa [Bot98] provides procedures to invoke
Java methods from Scheme. The invoke construct in Kawa is similar
to OBJC-SEND construct in iScheme. In addition, Kawa provides different
variants of invoke, namely, invoke-static to call static methods, and
invoke-special to call only methods in the super class. SILK [AH00]
provides constructs import and class to load Java packages and classes,
respectively. The class construct in SILK is similar to the OBJC-CLASS
construct in our iScheme. Surprisingly, neither Kawa nor SILK provides
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syntactic sugar for Scheme/Java interaction. For instance, in Kawa the Java
method name argument for invoke construct must be a string or a sym-
bol. SILK requires the developer to specify the Java package or the class
to be imported as a string. However, SILK provides support for defining
new methods on Java classes from Scheme and the ability to reflect on Java
objects, the features that we have not explored in our current implementa-
tion. iScheme’s approach differs from most of the existing Scheme and other
languages symbiosis in that we aim at building constructs that ease the de-
velopment of applications that run on mobile devices while exploiting the
capabilities specific to mobile platforms.

5.10 Chapter Summary
In this chapter, we have presented iScheme, which will serve as our linguistic
experimentation platform for the language constructs and features to ease
the development of reactive context-aware applications. Central to iScheme,
is the language symbiosis between Scheme and Objective-C, which facili-
tates the development of dynamic mobile applications that exploit context
sensors available on the iOS devices. In addition, iScheme provides distri-
bution constructs for peer-to-peer service discovery, remote communication,
and handling network failures. These constructs have been built using the
syntactic extension mechanism of Scheme. iScheme lays a foundation for the
language constructs and features that we present in the next chapters.
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6.1 Introduction

One of the goals of this dissertation is to design and implement a pro-
gramming language to enable the development of reactive context-aware
applications. In Chapter 2, we motivated the need for such a language
and identified programming language requirements that should be satis-
fied by that language, namely, R.1 Chained context reactions, R.2 Context-
dependent interruptions, R.3 Context-dependent resumptions, R.4 Contex-
tual dispatch, R.5 Reactive dispatch, and R.6 Reactive scope management.
In Chapter 4, we presented the ICoDE model that aims to define the main

107



108CHAPTER 6. THE FLUTE LANGUAGE: A DEVELOPER’S PERSPECTIVE

properties and the boundaries of a programming language designed for reac-
tive context-aware applications, namely, predicated procedures, representing
of context as reactive values, reactive dispatching, interruptible executions,
resumable executions, and scoped state changes. In Chapter 5, we presented
iScheme [BVB+12], a mobile programming language laboratory that we de-
veloped to facilitate our experiments with new language constructs on a
state-of-the-art mobile computing platform. The stage is now set to intro-
duce the Flute language [BVDR+12] – our proof-of-concept programming
language that adheres to the properties of the ICoDE model. Flute has been
implemented as a meta-interpreter in iScheme. It provides language runtime
support and language constructs for realising the properties of the ICoDE
model. The syntax of the Flute language is essentially an extension of that of
Scheme. Before explaining the constructs and features of the Flute language,
we introduce a running example that we will use throughout this chapter.

Recall that in Chapter 2, we introduced the BainomuAppies in Kam-
pala scenario to motivate the need for the software technology for reactive
context-aware applications. However, given the large scale and infrastructure
demands (buses, minibuses, onboard computers, etc.) of the BainomuAppies
in Kampala scenario, it is not feasible to implement that scenario within the
scope of a Ph.D. dissertation. Instead we consider a variant case study, called
the iFlute platform. The iFlute platform exhibits characteristics similar to
those of the onboard digital platform for the BainomuAppies scenario (cf.
Section 2.3) only that it runs on a mobile device – specifically the Apple iPad
tablet. Like the onboard digital platform, the iFlute platform is enhanced
with context-awareness to perpetually switch between applications and be-
haviours in reaction to context changes. Examples of applications that run
on the iFlute platform include: Kalenda, which is a context-aware calendar
application; Pulinta, which is a context-aware printer assistant; and Tasiki,
which is a context-aware task guide. In Chapter 8, we provide a full descrip-
tion of the iFlute platform, the applications and their implementation using
Flute. In this chapter, we consider the Kalenda application as a running
example to describe the Flute language from a developer’s perspective.

6.2 A Running Example: Kalenda Applica-
tion

Kalenda is a context-aware calendar application that runs on the iFlute plat-
form. The Kalenda application automatically launches to show the relevant
calendar items whenever the user moves within range of his/her workplace.
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Calendar items may include user’s private appointments (e.g., family events
or a doctor appointment) that should be displayed only to the device owner
and public items (e.g., workplace meetings or bank holidays) that can be
visible to everyone (e.g., co-workers). A reactive context-aware calendar ap-
plication should adapt to automatically hide the private agenda items when
the owner is not using the device. For instance, suppose that a user who is
browsing through his/her private calendar items temporarily gives the de-
vice to a coworker. The calendar application should immediately adapt to
show only public items and adapt the display properties (e.g., font size or
colour) to match the coworker’s preferences. Furthermore, suppose that the
coworker gives back the device to the owner, the calendar application should
immediately restore the owner’s previous calendar items view. Figure 6.1
shows an instance of the calendar application running in the public mode on
the Apple iPad tablet.
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Figure 6.1: An instance of the Kalenda application executing in the public
mode.

6.3 Building Blocks: Modes and Modals
To incorporate the ICoDE model, Flute introduces two building blocks,
namely, modes and modals.
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(define <context-source-name> (ctx-event))

(define <modal-name> (modal (<context-sources>) <shared-variables>))

(mode (<modal-name>)
<context-predicate>
<value-expression>)

(mode (<modal-name>)
<context-predicate>
(<configuration-options>)
(lambda (<parameters>)

<body>))

Figure 6.2: An informal description of the Flute syntax for modal, mode,
and context source definitions.

Definition 7 (Mode) A mode defines a variant of behaviour (context-
dependent procedure) or state (context-dependent variable) for a particular
context. A mode is constrained to a particular context through a developer
specified context predicate.

Definition 8 (Modal) A modal is a group of related modes. In addition,
it specifies the state variables that are shared among different modes and it
specifies context sources that are used in the context predicates of those modes.

In Flute, a context-dependent procedure and a context-dependent vari-
able is represented as a mode. Each mode defines a different behaviour or
value for a different context. Related modes are grouped together under the
same modal. In the context-aware calendar application, for example, there
are different procedure modes, “private” and “public”, for showing the agenda
items depending on whether the device user is the owner or not. Such proce-
dure modes can be grouped together under a single modal, “agenda”. Flute
provides language constructs to create modals and modes. However, the de-
veloper does not need to worry about ensuring that the appropriate mode
is always executed for the current context of use. The language runtime
ensures that the right mode is executed for the right context and that the
entire execution of the mode happens under the specified context condition.
Moreover, as we will see in the next sections new modes can be dynamically
added to a modal as required.
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Having introduced the building blocks of the Flute language, we will now
discuss its support for the ICoDE model (cf. Chapter 4) by means of illus-
trative examples. We will use the Kalenda application that was introduced
above as the running example throughout this chapter. Figure 6.2 shows the
informal description of the Flute syntax for mode, modal, and context source
definitions.

6.4 Variables Modals and Modes

In Flute, a variable modal can have one or more values that correspond to
different execution contexts. Therefore, a variable access yields a different
value depending on the context in which it is accessed. This is unlike vari-
ables in conventional programming languages where a variable access always
yields the same value. For instance, when developing our context-aware cal-
endar application, we require a variable that contains a different colour value
depending on the device user (i.e., a grey colour when the device user is the
owner and a brown colour when the device user is not the owner). In Flute,
this behaviour can be implemented as follows.

Listing 6.1: Defining variable modes
1 (define current-user (ctx-event))
2

3 (define bg-colour (modal (current-user)))
4

5 (mode (bg-colour)
6 (not-owner? current-user) ;a context predicate
7 brown-colour)
8

9 (mode (bg-colour)
10 (owner? current-user)
11 grey-colour)

Listing 6.1 creates bg-colour as a variable modal that has two colour
modes. A modal is created using the special form modal while a mode is
created using the special form mode. The modal definition specifies a context
source upon which context predicates operate. A context source is created
using the special form ctx-event. In the above example, current-user
is populated with a value that indicates the current user of the device. The
details of initialising context sources with values from physical sensors (such
as GPS) are discussed in Section 6.7.2. For now it suffices to know that
the current-user context source is automatically kept up-to-date by the
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language runtime such that its value at any given moment indicates the
current device user. Each mode definition specifies the modal it belongs
to, a context predicate and a value for the mode. Figure 6.3 depicts the
representation of the two modes belonging to the bg-colour modal. Note
that it is possible to add new modes to a variable modal at runtime. This
has an advantage that developers can add unanticipated variable modes on
demand. The evaluation semantics of creating variable modals are discussed
in Section 7.5.3.

grey-colour

device 
owner

context source

brown-colour

not device 
owner

bg-colour

current user

variable modes

variable modal

Figure 6.3: The bg-colour variable modal that has a different colour de-
pending on the current context of use.

6.4.1 Variable Modal Access Semantics
Just like a regular variable, the value of a variable modal can be accessed
through its name. The difference, however, is that accessing a variable
modal can yield a different value depending on the current context of use.
For instance, in the above example, the variable modal bg-colour yields
brown-colour or grey-colour depending on the current device user.
The REPL transcript below illustrates the semantics of accessing the vari-
able modal bg-colour. The input expression is prefixed with the prompt
> while the result of evaluating the expression is prefixed with a ===>.
1 ;suppose the current user is the device owner
2 > bg-colour
3 ===> grey-colour
4

5 ;suppose the current user is not the device owner
6 > bg-colour
7 ===> brown-colour

Flute employs a contextual dispatching mechanism to select the right value
for a variable modal. In other words, the value for a variable modal is
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that of a mode whose context predicate evaluates to true. In case there are
multiple values (i.e., if there is more than one context predicate that evaluate
to true) or there is no value found (i.e., if there is no context predicate
that evaluates true), an exception is thrown. The evaluation semantics of
contextual dispatch for variable modals are discussed in Section 7.5.5.

6.4.2 Assignment Semantics for Variable Modals

An assignment to a variable modal only affects the value of the variable mode
whose context predicate evaluates to true. Before performing a state change,
the correct mode is looked up depending on the current context of use. The
following transcript illustrates a mutation of the bg-colour introduced in
Listing 6.1.

1 ;suppose the current user is the device owner
2 > (set! bg-colour blue-colour)
3

4 ;now accessing bg-colour with the user still the device owner
5 > bg-colour
6 ===> blue-colour
7

8 ;suppose the current user is not the device owner
9 ;the value of the not device owner mode is not affected

10 > bg-colour
11 ===> brown-colour

As we can see from the above code example, performing an assignment op-
eration on the bg-colour variable modal when the current device user is
the owner, only affects the value of that mode.

6.5 Procedure Modals and their Modes

Context-dependent behavioural variations in Flute are expressed through
procedure modes. Related procedure modes are grouped together under one
procedure modal. Flute provides constructs to enable creation of procedure
modals and procedure modes. We will illustrate procedure modals and their
modes using our running example of the Kalenda application. Remember
that the Kalenda application consists of two context-dependent behavioural
modes: (i) private agenda mode, and (ii) public agenda mode. The private
agenda mode is executed when the owner is using the device, whereas the
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public agenda mode is executed when another user is using the device.1

6.5.1 Creating a Procedure Modal
Flute supports the creation of an entity that groups together related proce-
dure modes under one identity, a procedure modal. Similar to the variable
modals (cf. Section 6.4), a procedure modal is created using the special form
modal. In addition, a procedure modal may specify variables that will be
shared by all procedure modes that belong to this modal. The syntax of the
special form for creating a procedure modal is as follows.

(define <modal-name> (modal (<context-sources>)
<optional-shared-variables>))

The variable <modal-name> is bound to the resulting modal. The spe-
cial form modal takes two arguments. The first argument is a list of context
sources that are used in the context predicates of the procedure modes that
belong to that modal (cf. Section 6.5.2). The second argument includes the
optional definition of variables that are shared by the modal’s modes. The
following excerpt illustrates how an agenda modal of the Kalenda application
can be defined.

Listing 6.2: Defining variables that are shared among the procedure modes
belonging to the same modal
1

2 (define agenda (modal (current-user)
3 (define date-range 2)
4 (define display-scale 4)))

The agenda modal is used to group together procedure modes for pre-
senting different agenda items depending on the current device user.
current-user is the context source that will be used in the context predi-
cates of the procedure modes to check whether the device is being used by its
owner or not. Variables date-range and display-scale are the vari-
ables that are shared by all modes belonging to that modal. A modal does
1In this example we use the device orientation sensor to simulate the change of the current
device user. In the near future, we can imagine the use of NFC-enabled wristwatches to
detect the identity of a user.
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not specify which modes belong to it. Instead, modes are the ones that spec-
ify which modal they belong to. This enables addition of modes to a modal
at runtime whenever required. Note that modals in the spirit of Scheme are
first-class entities. In the next section, we discuss the definition of procedure
modes.

6.5.2 Creating Procedure Modes
Flute supports Property #1: Predicated Procedures of the ICoDE
model (cf. Section 4.4) through procedure modes. The general form for
creating a procedure mode is as follows. The mode special form takes as

(mode (<modal-name>)
<context-predicate>
(<configuration-options>)
(lambda (<parameters>)

<body>))

argument, a modal, a context predicate, a list of interruption, resumption,
and state scoping strategies <configuration-options>, and a proce-
dure that is created using the lambda special form. The context predicate
<context-predicate> constrains the execution of the mode to a par-
ticular context of use. The code excerpt below illustrates the definition of
different modes for the agenda modal. Each mode provides a different be-
haviour for presenting the agenda items depending on the current device
user.

Listing 6.3: Defining procedure modes
1 (define agenda (modal (current-user)
2 (define date-range 2)
3 (define display-scale 4)))
4

5 (define config
6 (create-config suspend resume isolated))
7

8 (define show-private-agenda
9 (mode (agenda)

10 (owner? current-user) ;context predicate
11 (config) ;configuration options
12 (lambda ()
13 (show "private agendas")
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14 (set! display-scale 8)
15 (show bg-colour)
16 (scale display-scale)
17 ...
18 (show calendars))))
19

20 (define show-public-agenda
21 (mode (agenda)
22 (not-owner? current-user)
23 (default-config)
24 (lambda ()
25 (show "public agendas")
26 (show bg-colour)
27 ...
28 (show calendars))))

Listing 6.3 creates two procedure modes show-private-agenda and
show-public-agenda using the special form mode.2 Both modes be-
long to the agenda modal. The agenda modal definition specifies the
current-user variable as the context source that will be used in the con-
text predicates for its procedure modes. In addition, it defines the variables
date-range (on Line 2) and display-scale (on Line 3) that are shared
by the modes belonging to the agenda modal. The date-range value
specifies the date range of calendar items to display. The display-scale
value specifies the scale of the font size for the calendar display. As with
variable modes, new procedure modes can be dynamically added to a modal.

Each procedure mode is associated with a context predicate that
should be satisfied throughout the execution of that mode. In the above
example, the context predicates for the show-private-agenda and
show-public-agenda modes are owner? and not-owner?, respec-
tively. As already mentioned above these context predicates operate on the
current-user context source. Figure 6.4 depicts the two modes of the
agenda modal. The context predicates specified in each mode play two
roles. First, they are used by the language runtime to dispatch a call to the
right mode to execute for the current context of use. Second, they are used by
the language runtime to ensure that the execution of the mode is constrained
to the correct context by perpetually evaluating the context predicate at ev-
ery evaluation step of the mode. In Section 6.5.3, we further discuss the
2For brevity, the above implementation of the Kalenda application does not include the
graphical GUI concerns of the calendar application, but is restricted to textual display.
The full implementation of the context-aware calendar application is further discussed in
the validation chapter (cf. Section 8.4).
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dispatching process for procedure modes.

show-private-agenda

device 
owner

context source

show-public-agenda

not device 
owner

agenda

current user

procedure modes

a procedure modal and 
variables that
are shared by
its modes

date-range: 2
display-scale: 4

Figure 6.4: An illustration of the agenda modal and its modes.

In addition, a procedure mode definition includes configuration options
that specify a strategy for interruption (i.e., suspend or abort), a strat-
egy for resumption (i.e., resume or restart) and a strategy for scop-
ing state changes (i.e., immediate, deferred or isolated). The de-
veloper may use the default configuration default-config or can de-
fine own configuration options using the create-config abstraction.
The default-config specifies the configuration options as (:p-false
suspend :p-true restart :state-changes immediate), which
implies that when the context predicate is false the execution is suspended,
when the context predicate becomes satisfied again the execution is restarted
and any state changes are immediately visible. In the above example, the
private agenda mode specifies the configuration as config that is defined on
Line 5 while the public agenda mode uses the default configuration. In Sec-
tion 6.5.4 we further discuss the interruptible context-dependent execution
of procedure modes.

6.5.3 Reactive Dispatching for Modes

Flute supports Property #3: Reactive Dispatching of the ICoDE
model (cf. Section 4.6) by incorporating a reactive dispatching mecha-
nism for modes. In Flute, the execution of modes is initiated by invok-
ing a modal. When a modal is invoked, a dispatching mechanism selects
the right mode to execute for the current context. For instance, the invo-
cation of the agenda modal i.e., (agenda), may result in either the
show-private-agenda mode or the show-public-agenda mode be-
ing executed. Procedure modes are not directly invoked by the developer but
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by the dispatching mechanism. Because of this, all modes belonging to the
same modal are required have the same number of parameters.

The dispatching process starts by evaluating all context predicates that
are associated with the modes that belong to the invoked modal. The mode
whose context predicate evaluates to true is scheduled for execution. How-
ever, unlike traditional dispatching mechanisms in conventional languages,
the dispatching process in Flute does not happen just once. Since context
changes occur continuously, it is possible that some context predicates that
could not be satisfied, become satisfied later and thus require their associ-
ated modes to be executed. In Flute, the dispatcher is implicitly registered to
the invoked modal’s context sources and the dispatching process is triggered
anew whenever context sources receive new values. This means that modes
that were not previously selected for execution may be selected later. So
even when there is no applicable mode, the Flute dispatcher does not throw
a mode-not-found exception because the mode may be applicable later when
relevant context changes are observed. In Section 7.5.6 we discuss the tech-
nical details for the reactive dispatching mechanism in the Flute interpreter.

Note that it is possible to directly bind a procedure mode (created using
the mode special form) to a name. This enables invoking such a mode di-
rectly. In that case, the context predicate associated with the mode is only
used to ensure that execution of the mode happens in the correct context.
Also, allowing modes to be invoked directly makes it possible to define re-
cursive procedure modes. In the next section, we discuss the interruptible
execution semantics for procedure modes.

6.5.4 Interruptible Execution of Modes
Flute supports Property #4: Interruptible Executions of the ICoDE
model (cf. Section 4.7) through interruptible context-dependent execution of
procedure modes. Once a mode has been scheduled for execution, its asso-
ciated context predicate must be satisfied throughout the mode’s execution.
The Flute runtime implicitly re-evaluates the context predicate throughout
the mode execution. In the context predicate happens to evaluate to false,
the execution is promptly interrupted. The kind of interruption depends on
a developer specified interruption strategy. Flute supports the interruptions
strategies suspend and abort of the ICoDE model (cf. Section 4.7).

For instance, in the Kalenda application, both the
show-private-agenda and show-public-agenda modes are
specified with the suspend as their interruption strategy. Suppose that
the agenda modal is initially invoked when the device is being used by
its owner. Hence the owner? predicate is satisfied. As a result, the
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show-private-agenda mode will be selected and its execution started
to show all the agenda items including private appointments and workplace
meetings. Suppose that the device owner then gives the device to another
user while the show-private-agenda mode is executing. As a conse-
quence, there will be a context switch and the context predicate owner? will
no longer be satisfied. The execution of the show-private-agenda mode
cannot be allowed to continue. As its configuration options config specify
suspend as the interruption strategy, the mode’s execution is suspended.
On the other hand, the context predicate not-owner? will be satisfied as
soon as the device changes hands. Therefore, the show-public-agenda
will take over and its execution will be started to show only the public
agenda items. In Section 7.5.6 we discuss the details of how the evaluation
of procedure modes works in the Flute interpreter.

6.5.5 Event-driven Resumption of Suspended Execu-
tions

Flute supports Property #5: Resumable Executions of the ICoDE
model (cf. Section 4.8) through event-driven resumption of suspended execu-
tions. The language runtime ensures that suspended executions are resumed
when their associated context predicates later become satisfied again. As
context changes occur, context sources receive new values and as a result
context predicates that operate on those context sources may become satis-
fied again. Suspended executions whose context predicates become satisfied
again are scheduled for resumption. The kind of resumption depends on
a developer specified resumption strategy. Flute supports the resumptions
strategies resume and restart of the ICoDE model (cf. Section 4.8).

In the Kalenda application, suppose that while the
show-public-agenda mode is executing, the device is given back to the
owner. Then the execution of the public agenda mode will be interrupted
promptly. Conversely, the execution of the show-private-agenda
mode will be resumed from where it left off since the resumption strategy
in the configuration options is resume. For instance, if the user was
scrolling an agenda items list before the interruption, the application will be
resumed at the same position where the user was. Resumption of suspended
executions is triggered by the occurrence of relevant context changes. In this
example, the language runtime is implicitly registered to the context source
current-user and is notified when a new value is received (we discuss
the representation of context sources as reactive values in Section 6.7.2).
Subsequently, the owner? context predicate is re-evaluated and the
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previously suspended show-private-agenda mode’s execution will be
resumed if the predicate evaluates to true.

show-private-agenda

executing

interrupted

executing

device 
owner

Invocation

show-public-agenda

executing

interrupted

not device 
owner

Invocation

date-range:    2
display-scale: 4

on start

on resumption
date-range:    2
display-scale: 8

date-range:  2
display-scale: 4

on start

(set! display-scale 8)

date-range:    2
display-scale: 8

on interruption

Figure 6.5: An illustration of the isolated state change scoping strategy
in action.

6.5.6 Scoped State Changes
Flute supports Property #6: Scoped State Changes of the ICoDE
model (cf. Section 4.9) through configuration options that enable the de-
veloper to specify a strategy for controlling the visibility of the state changes
made by a mode to the variables that are shared among procedure modes.
Flute supports three state scoping strategies immediate, deferred and
isolated of the ICoDE model.

In the Kalenda application (cf. Listing 6.3), the
show-private-agenda mode is specified with the isolated strategy,
which implies that all state changes remain local to that mode. For instance,
the show-private-agenda mode modifies the display-scale variable
to increase display scale (i.e., (set! display-scale 8) on Line 14).
Such a state change will remain local to the show-private-agenda mode
and will not be visible to the show-public-agendamode. Figure 6.5 illus-
trates the state change management with the isolated strategy as the ex-
ecution switches back and forth between the show-private-agenda and
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show-public-agenda modes. Suppose that show-private-agenda’s
execution is interrupted after changing the value of the display-scale
variable to 8. As the show-private-agenda mode is specified with
the isolated strategy, when the show-public-agenda mode takes
over, the value of the display-scale variable will still be 4. However,
if the show-private-agenda later resumes executing, the value of the
display-scale will be 8 (i.e., the one it was changed to before the
interruption).

With the isolated strategy, the Flute runtime keeps a local copy when
a variable is accessed for the first time, and any subsequent changes are made
to that local copy. Other state change scoping strategies are immediate
and deferred as discussed in Chapter 4 Section 4.9. With the deferred
strategy, the Flute runtime keeps a local copy as in the isolated strategy,
with an additional validation step before committing the changes when the
mode completes executing. The validation step involves comparing the values
of variables when they were first read and its current value. If the validation
step succeeds, then the mode state changes are committed. Otherwise, the
state changes are discarded. We further discuss how state change scoping
strategies are realised in the Flute interpreter in Section 7.5.7.

6.5.7 Nested Procedure Modes

Flute supports nested mode definitions (i.e., it is possible to define a mode
within another mode). Recall from Section 4.4 that the ICoDE model re-
quires the context predicate associated with an enclosing predicated pro-
cedure be satisfied throughout the execution of its nested predicated proce-
dures. In the ICoDE model this mechanism is classified as lexical propagation
of context predicates. The ICoDE model also requires that the context predi-
cate associated with a predicated procedure be satisfied during the execution
of the predicated procedures that are invoked from that predicated proce-
dure’s body. In the ICoDE model this mechanism is classified as dynamic
propagation of context predicates. As Flute adheres to the ICoDE model,
it supports both lexical and dynamic propagation of context predicates. In
the remainder of this section we illustrate the definition of nested procedure
modes and the propagation of context predicates among the modes.

Defining nested procedure modes. In Flute, a nested mode “inherits”
the context predicate of its enclosing mode. Therefore, the execution of a
nested mode must satisfy both its associated context predicate and that of
its enclosing mode. In order to illustrate the lexical propagation of context
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Figure 6.6: Lexical propagation of context predicates for nested procedure
modes.

predicates in Flute, we will extend our running example of the Kalenda ap-
plication. Recall from Section 6.2 that the Kalenda application is among a
suite of applications that are deployed in the iFlute platform. Up to now
we have focussed on the definition of its two context-dependent behavioural
modes for showing the agenda items. The Kalenda application as a whole is
also defined as a mode that belongs the modal that groups together all the
applications of the iFlute platform, as shown below.

Listing 6.4: Nested mode definitions.
1 (define flute-apps (modal (location)))
2

3 (define calendar-assistant
4 (mode (flute-apps)
5 (office? location)
6 (config)
7 (lambda ()
8 (define show-private-agenda
9 (mode (agenda)

10 (owner? current-user)
11 (config)
12 (lambda ()
13 ...)))
14 (define show-public-agenda
15 (mode (agenda)
16 (not-owner? current-user)
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17 (default-config)
18 (lambda ()
19 ...))))))

Listing 6.4 shows the definition of the show-private-agenda and
share-agenda modes as nested modes of the calendar-assistant
mode. The calendar-assistant represents the entire calendar applica-
tion and it is associated with the context predicate office? that ensures
that the application should only be launched when the user is in his/her
office. The calendar-assistant mode belongs to the flute-apps
modal that groups together context-aware applications that run in the iFlute
platform. As show-private-agenda and show-public-agenda are
nested modes of the calendar-assistant mode, the office? context
predicate should also be satisfied during the execution of those nested modes
(in addition to their own context predicates). Figure 6.6 illustrates the lexical
propagation context predicates among the procedure modes of the Kalenda
application.

6.5.8 Demarcating Uninterruptible Regions
As discussed in Section 4.7, it is desirable for a programming language that
adheres to the ICoDE to enable the developer demarcate certain regions of
a procedure’s body that may need to be run without interruption (e.g., all-
or-nothing IO actions). To this end, Flute provides the language construct
(continuous <expressions>) to demarcate certain parts of a procedure
body as uninterruptible regions. The language runtime ensures that the
execution of the <expressions> are evaluated without interruption. In
Section 7.5.8 we discuss the evaluation of the continuous special form in
the Flute interpreter.

6.6 Scoping Semantics
Flute adheres to the lexical scoping semantics of the Scheme language in
which it is embedded. However, the introduction of the variables that are
specified as part of the modal definition, requires a slight variation of variable
lookup semantics. Below we illustrate the scoping issues that arise.

Listing 6.5: Variable and procedure lookup semantics
1 ;modal definition
2 (define x 2)
3 (define m (modal (x)
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4 ;modal-specific shared variable
5 (define y 4)))
6

7 (define x 20)
8 (define y 40)
9

10 ;mode definition
11 (mode (m)
12 ;which x is it?
13 ;which y is it?
14 (smaller? x y)
15 ...
16 (lambda ()
17 (define x 200)
18 ;which x is it?
19 ;which y is it?
20 (show (+ x y))))

x: 2
…

x: 20
y: 40

x: 2
y: 4

Global environment

Modal environment

Mode local 
environment

x: 2
…

x: 20
y: 40

Variable lookup during 
context predicate evaluation 

Variable lookup during
 mode evaluation

x: 200

x: 2
y: 4

(a) (b)

Figure 6.7: An illustration of the environment structure for the variable look
up during the evaluation of context predicates and modes.

In Listing 6.5 above, we define a modal m that captures the variable x as a
context source (i.e., at Line 3). In addition, the modal defines the variable
y that is shared among all modes belonging to that modal. Lines 7 and 8
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define new global variables. The need for new scoping semantics becomes ap-
parent in the lookup of the variables used in the context predicate expression
(smaller? x y) and in the body of the mode. Figures 6.7 (a) and (b)
depict the resulting environment structure for the context predicate and the
evaluation of the mode. The modal environment includes the variables that
are defined in the modal (i.e., at Line 5) and the variables that are captured
by the modal (i.e., at Line 3).

Variable lookup during context predicate evaluation. Variable
lookup during the evaluation of a context predicate is as follows:

1. To evaluate a context predicate, the lookup of variables starts from
the modal environment, which includes variables that are explicitly
captured and those that are defined by the modal (cf. Figure 6.7 (a)).

2. If the variable is not found in the modal environment, the lookup pro-
ceeds to the enclosing environment of the mode.

To illustrate variable lookup during a context predicate evaluation, con-
sider the code example in Listing 6.5. In that example, the variables x and y,
which are used in the context predicate expression (smaller? x y), will
resolve to 2 and 4 during the evaluation of that context predicate expression.

Variable lookup during mode evaluation Variable lookup during eval-
uation of a mode is as follows:

1. To evaluate the body of a mode, the lookup of variables starts from the
local environment of the mode.

2. If the variable is not found in the mode’s local environment, the lookup
proceeds to the environment of the modal to which it belongs.

3. If the variable is not found in the modal environment, the lookup pro-
ceeds to the enclosing environment of the mode.

Therefore, in the above example the variables x and y that are used in the
procedure mode will resolve to 200 and 4, respectively. Notice that the value
of y resolves to that of the modal environment. These scoping semantics are
particularly essential for the evaluation of context predicates and modes that
are added at runtime to existing modals.
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6.7 Representing Context as Reactive Values

Flute supports Property #2: Representing Context as Reactive Val-
ues of the ICoDE model (cf. Section 4.5) through abstractions for reactive
values. Flute’s support for reactivity is inspired by existing work on func-
tional reactive programming (FRP) [CK06, MGB+09] (cf. Section 3.3). In
this section we first discuss Flute’s support for reactive values and in Sec-
tion 6.7.2 we show how to represent context sources as reactive values.

6.7.1 Reactive Values in Flute
A reactive value is like a regular value in a programming language, except that
when its value changes, any computation that uses its value is automatically
recomputed. Flute provides the ctx-event construct for creating reactive
values. Listing 6.6 below depicts a reactive program in Flute.

Listing 6.6: Defining reactive values in Flute.
1 (define x (ctx-event 1))
2 (define y (+ x 1))
3 (define z (< x y))

In Flute, a reactive value is created using the ctx-event construct, which
takes an optional initial value as its argument. In this example, the variable x
is bound to the resulting reactive value whose initial value is 1. Additionally,
when a procedure is applied to a reactive value, the result is also a reactive
value. As such, the variable y is bound to a reactive value whose value at any
given moment is x+1, while the variable z is bound to a reactive value whose
value is a Boolean that indicates whether or not the value of x is less than
that of y. As x is a reactive value whenever its value changes the value of y
is automatically updated and so the value of z is also automatically updated.
Flute provides the update-value! construct for updating the value of a
reactive value. For instance, the value of x can be updated by evaluating the
expression (update-value! x 2). The update-value! construct
is particularly used to acquire (non-reactive) low-level data from external
sensors (cf. Section 6.7.2).

Automatic and consistent propagation of changes. The Flute lan-
guage runtime ensures that when a value of a reactive value changes, such
a change is automatically and consistently propagated among all its depen-
dents. It does so by automatically tracking dependencies among dependent
reactive values. Figure 6.8 depicts the dependency graph for the reactive
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Figure 6.8: A dependency graph among reactive values.

program in Listing 6.6. The propagation mechanism employs a push-based
evaluation model. That is, propagation of changes among dependent reactive
values is driven by availability of new values (data-driven) rather than the
demand. Whenever a reactive value receives a new value, all reactive val-
ues that depend on it are scheduled for updating. When scheduling reactive
values for updating, it is important that such updates are consistently propa-
gated. Otherwise, update inconsistencies can occur – a phenomena known as
glitches [CK06] in the reactive programming literature. Glitches occur when
reactive values are updated in a wrong order. This can result in fresh values
being combined with stale values, leading to a incorrect program state. In
order to illustrate the glitch problem, let us go back to the reactive program
in Listing 6.6. Figure 6.9 depicts a possible propagation of updates among
the reactive values x, y, and z.
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Figure 6.9: The need for consistent propagation of changes.

As x is less than x+1, the value of the variable z is expected to always
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be true (i.e., #t). Initially when the value of x is 1, the value of y is 2 and
that of z is #t. If the value of x later changes to say 2, the value of y is
expected to change to 3 while the value of z is expected to be #t. However,
in a naive reactive implementation, changing the value of x to 2 may cause
the expression (< x y) to be re-evaluated before the expression (+ x 1).
Thus the value of z will momentarily be #f, which is incorrect (i.e., an
update inconsistency). Eventually, the expression (+ x 1) will be recom-
puted to give a new value to y. Therefore, the value of z will be recomputed
again to reflect the correct value #t. In the reactive programming literature,
such a momentary view of inconsistent state is known as a glitch [CK06].
Flute eliminates such update inconsistencies, by arranging expressions in a
topologically sorted graph, a technique also used in other FRP languages like
FrTime [CK06], and Flapjax [MGB+09].

Implicit lifting. When native procedures such as +, < and user defined
procedures are applied to a reactive value, they are implicitly lifted to operate
on reactive values. The return value of applying a procedure to a reactive
value is also a reactive value whose value at any moment is the result of
applying that procedure to that reactive value. Internally, the Flute language
runtime transparently establishes a dependency between the two the reactive
values. Taking the example in Listing 6.6 again, evaluating the expression
(+ x 1) implies that the + procedure is implicitly lifted to operate on x
and its return value is also a reactive value whose value is recomputed every
time the value of x changes. Implicit lifting enables combining procedures
with reactive values.

6.7.2 Defining Context Sources in Flute
Now that we have discussed Flute’s support for reactive values, let us show
they are used for representing context sources.

Listing 6.7: Defining sources
1 ;defining a context source
2 (define gps-coordinates (ctx-event))
3

4 ;definition of the location context source
5 (define location
6 (gps->location gps-coordinates))
7

8 ;obtaining GPS coordinates
9 (CURRENT-LOCATION
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10 (lambda (latitude longitude)
11 (update-value! gps-coordinates
12 (cons latitude longitude))))

Listing 6.7 shows the definition of the context source gps-coordinates
as a reactive value using the ctx-event construct. The gps->location
procedure transforms raw GPS coordinates into a high-level contex-
tual value such as ’office or ’home. As gps-coordinates
is a reactive value, the result of the expression (gps->location
gps-coordinates) is also a reactive value (cf. Section 6.7.1). This
means that the Flute language runtime establishes a dependency between
gps-coordinates and location. The GPS coordinates are obtained
using the CURRENT-LOCATION construct that is provided by iScheme. As
explained in Section 5.5, this construct takes a procedure as its argument
and registers it as an event-handler that is invoked whenever GPS sensors
have new latitude and longitude values. Non-reactive raw GPS coordinates
are added to gps-coordinates using the update-value! construct.
As location depends on gps-coordinates, whenever new GPS coordi-
nates are received, the value of location is automatically updated by ap-
plying the gps->location procedure to the value of gps-coordinates.
Such automatic propagation of changes ensures that context sources that de-
pend on each other are always kept up-to-date.

6.8 Programming Language Requirements Re-
visited

The preceding sections have presented the features of the Flute language.
We introduced its language constructs that facilitate the development of
reactive context-aware applications. The Flute language has been designed
to adhere to the ICoDE model that we discussed in Chapter 4. Flute is
the first language to support interruptible context-dependent executions. By
adhering to the ICoDE model, Flute satisfies the language requirements that
we put forward in Chapter 2. In this section, we review each requirement
and discuss how it is addressed by Flute.

Chained Context Reactions (R #1) Flute provides a reactive value ab-
straction that is used to represent context sources. By representing
context sources as reactive values, Flute enables developing programs
that operate on context sources without explicitly managing callbacks.
To this end, Flute provides the ctx-event construct for representing
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context sources as reactive values. Reactive values employ a push-
driven evaluation model for automatic propagation of context changes.
As discussed in Section 6.7.2, representing context sources as reactive
values maps well onto the event-driven resumption of suspended exe-
cutions.

Context-dependent Interruptions (R #2) Flute provides the mode ab-
straction, which is a predicated procedure that is associated with a
context predicate that specifies the context condition under which the
procedure is constrained to run. As discussed in Section 6.5.2, the con-
text predicate associated with each mode is implicitly checked through-
out the execution of the procedure body. This ensures that the entire
procedure execution is constrained to the developer prescribed context
predicate. The execution of a procedure mode in Flute can be inter-
rupted at any moment if its associated context predicate is no longer
satisfied. As discussed in Section 6.5.4, Flute provides two interruption
strategies, suspend and abort, that a developer can choose from to
specify a suitable interruption mechanism for a mode.

Context-dependent Resumptions (R #3) As discussed in Sec-
tion 6.5.5, Flute provides two resumption strategies – resume and
restart – that a developer can choose from to specify a suitable
resumption mechanism (i.e., what to do when the associated context
predicate becomes satisfied again) for a mode.

Contextual Dispatch (R #4) Flute provides the modal abstraction that
is used to group together related procedure and variable. A modal can
be bound to a name, is a first-class entity and can be referred to in other
parts of the program. As discussed in Section 6.5.3, it is possible to
initiate the execution of modes that belong to the same modal by simply
invoking the modal. Flute employs a contextual dispatching mechanism
that selects the right mode to execute for the current context based on
the context predicate that evaluates to true. Additionally, the modal
abstraction enables the developer to add new modes at runtime to an
existing modal without modifications of the existing modes.

Reactive Dispatch (R #5) Flute supports a new dispatching mechanism
that we designate as reactive dispatching. The reactive dispatching of
procedure modes as discussed in Section 6.5.3 continuously takes into
account of any new context changes, even when those context changes
happen after the first dispatching phase has completed. As such, previ-
ously unsatisfied predicates may become satisfied and their associated



6.8. PROGRAMMING LANGUAGE REQUIREMENTS REVISITED 131

procedure modes will be selected for execution. Additionally, new pro-
cedure modes that are added (after the previous dispatching process)
are also considered whenever the dispatching process is repeated.

Reactive Scope Management (R #6) As discussed in Section 6.5.6,
Flute supports three state scoping strategies that enable the devel-
oper to scope the visibility of state changes among executions. These
are: immediate, deferred, and isolated. At the definition of a
mode, the developer can specify how to control the visibility of state
changes that are made during the execution of the mode, by specifying
an appropriate state scoping strategy.

Language Description Satisfied
Construct Requirement

ctx-event For representing a context source R.1
as a reactive value

mode For creating predicated R.2 and R.4
context-dependent procedures
or variables

modal For creating a group of R.4 and R.5
related context-dependent
procedures or variables

suspend
abort Configuration options R.2 and R.3
resume to specify interruption
restart or resumption

deferred State scoping strategies R.6
immediate to specify how to
isolated to control the visibility

of state changes

Table 6.1: Flute language constructs.
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6.9 Chapter Summary
In this chapter, we have presented the Flute language and discussed its lan-
guage support for developing reactive context-aware applications. Table 6.1
summarises the language constructs provide Flute that enables Flute satisfy
the language requirements that we put forward in Chapter 2. Throughout
this chapter we have demonstrated the language constructs using a context-
aware calendar application. Flute satisfies the requirements for reactive
context-aware applications by incorporating the ICoDE model. To recapitu-
late, Flute provides the following features.

• Flute supports variable modes that facilitate the creation of variables
whose value depends on the context of use.

• It supports procedure modes that enable developers to express predi-
cated procedures with a single context predicate. The context predicate
is implicitly checked throughout the mode’s execution.

• It supports the modal abstraction that enables developers to group
together related modes and specify variables that are shared among
procedure modes that belong to the same modal. The design of modals
facilitates adding new modes at runtime.

• Flute features the reactive dispatching mechanism that continuously
takes into account of any new context changes to select new applicable
modes to execute for the current context. The applicable mode is the
one whose context predicate evaluates to true.

• Flute features interruptible executions. It provides interruption strate-
gies (suspend and abort) that enable the developer to specify what to do
with the execution when the associated context predicate is no longer
satisfied.

• Flute features resumable executions. It provides resumption strategies
(resume and restart) that enable the developer to specify what to do
with the suspended execution when its associated context predicate
later becomes satisfied again.

• It provides a number of state scoping strategies (immediate, deferred,
and isolated) that enable the developer to control the visibility of state
changes to the variables that are shared among procedure modes.

• Flute provides the ctx-event construct for representing context
sources as reactive values.
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7.1 Introduction

Chapter 6 presented the language constructs and features of Flute from a
developer’s perspective. In this chapter we turn our focus to the semantics
of the Flute programming language from an implementation point of view.
We describe exact semantics of Flute through a meta-interpreter. The goal
of this semantics is to define a working prototype of the Flute language that
we can tryout on a mobile platform equipped with sensors. To this end,
we have constructed a prototype of Flute as a meta-interpreter conceived
on top of iScheme. As presented in Chapter 5, iScheme is a language ex-
perimentation laboratory that we developed to enable the prototyping of
language constructs and features. Central to iScheme, is the language sym-
biosis between Scheme and Objective-C. On the one hand, Scheme provides

133
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a suitable infrastructure to create new languages, thanks to its minimalistic
syntax and rich features. On the other hand, Objective-C provides rich APIs
that enable access to context sensors such as GPS and accelerometer that
are available on the iOS devices. Therefore, iScheme provides the benefits of
both worlds and thus enables prototyping the Flute language and testing it
on a state-of-the-art mobile device.

This chapter starts with a discussion on the semantics requirements in
Section 7.2 and the implementation choices in Section 7.3. We then give
a recap of the Flute language syntax in Section 7.4. In Section 7.5, we
present the different components of the Flute interpreter starting with its
main evaluator.

7.2 Executable Semantics Requirements
The requirements of the Flute’s executable semantics are derived from the
language constructs and features presented in Chapter 6. The executable
semantics for Flute should support:

• the definition of modals for context-dependent variables and context-
dependent procedures.

• the definition of modes for context-dependent variables and context-
dependent procedures.

• reactive dispatching for procedure modes.

• interruptible and resumable execution of procedure modes. It should
provide interruption (suspend and abort) and resumption (resume and
restart) strategies

• state scoping strategies (immediate, isolated, and deferred).

• the definition of context events as reactive values.

7.3 Executable Semantics Choices
When defining an executable semantics of a language on top of an existing
language like Scheme, there are various options one can choose from. Here
we discuss two choices:

A language extension. One choice is to construct an executable semantics
as an extension to an existing programming language through facilities
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such as macros. The desired semantics of the Flute language makes this
choice unsuitable. Flute requires non-trivial features (e.g., interrupt-
ing the evaluation of every expression) that are difficult to implement
correctly using language extension facilities. This difficulty can be al-
leviated if the existing language supports advanced runtime reflective
APIs that provide some meta-level “hooks” (e.g., eval and apply) to
intercept the evaluation and procedure application.

An interpreter or (a compiler). Another choice is to build an executable
semantics as an interpreter or (a compiler) from the ground up to create
a new language on top of an existing language like Scheme.

In this dissertation, we choose the interpreter approach over the language
extension approach. This choice is motivated by the fact that Flute requires
drastic changes to the evaluation semantics of the existing language. Those
are impossible to express using language extension facilities. Building our
own interpreter gives us full control over the evaluation semantics and fa-
cilitates introducing new language semantics on demand. The interpreter
approach also has other general advantages such as precise semantics of the
language, and easy to experiment with new language constructs and features.
Simon De Schutter observed similar trade-offs by implementing a mini variant
of Flute using the language extension approach and one using the interpreter
approach in his master’s thesis [Sch12].

7.4 The Flute Syntax
Before discussing the internals of the Flute interpreter, let us first give a recap
of its syntax. Flute’s syntax extends that of Scheme [MF08]. Listing 7.1
shows the syntactic extensions to Scheme.

Listing 7.1: The concrete Flute syntax extension of Scheme.
1 <variable-modal> ::= (modal (<variable>+))
2 <procedure-modal> ::= (modal (<variable>+) <expr>+)
3 <variable-mode> ::= (mode (<variable-modal>) <expr> <expr>+)
4 <procedure-mode> ::= (mode (<procedure-modal>) <expr> (<config>) <lambda>)
5 <config> ::= (create-config <expr>+)
6 <context-event> ::= (ctx-event)
7 <context-event> ::= (ctx-event <expr>)
8 <uninterruptible> ::= (continuous <expr>+)

For brevity, here we only show the core of our extension to Scheme. A full
account of the Flute syntax is provided in the Appendix. Below we summarise
the purpose of each language construct:
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• modal is for creating modals of variables and procedures.

• mode is for creating modes of variables and procedures.

• create-config is for creating interruption, resumption and state
scoping strategies.

• ctx-event is for creating context events as reactive values, and

• continuous is for demarcating non-interruptible regions in a proce-
dure body.

In the next section we describe the details of how the above constructs are
supported in the interpreter.

7.5 The Flute Meta-interpreter
The Flute interpreter is implemented in a continuation-passing style
(CPS) [FW08]. It explicitly passes a continuation parameter along with
the environment. Structuring the interpreter in CPS is fundamental for real-
ising Flute’s semantics. In particular, CPS enables capturing and saving the
execution context of an expression at any stage of the evaluation.

7.5.1 Architectural Overview
The general structure of the Flute meta-interpreter follows that of a classical
metacircular evaluator with an interplay between eval and apply [AS96].1
Figure 7.1 shows the architectural overview of the Flute meta-interpreter. It
consists of the:

• main evaluator which is the main entry of the evaluation of a Flute
program.

• modal evaluator that handles the evaluation of procedure modal and
variable modal definitions.

• mode evaluator that handles the evaluation of procedure mode and
variable mode definitions.

• modal invocation evaluator that handles the evaluation of the pro-
cedure modal application.

1The structure of the Flute meta-interpreter is based on the SLIP metacircular interpreter
that is developed at the Software Languages Lab by Theo D’Hondt [D’H09].
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Figure 7.1: An architectural overview for the Flute meta-interpreter.

• reactive and contextual dispatch evaluator that handles the selec-
tion of the applicable procedure mode to execute in a reactive manner.

• procedure mode’s body evaluator that handles the context-
dependent and interruptible evaluation of a procedure mode’s body
expressions. In addition, it applies the appropriate interruption and
state scoping strategies if the ongoing procedure evaluation is inter-
rupted. It also handles the scheduling of suspended executions for
resumption at a later moment.
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• reactive values evaluator that handles the evaluation of reactive
values. It establishes and manages the dependency graph of reactive
values. In addition, it performs implicit and automatic lifting of ordi-
nary procedures to be able to operate on reactive values.

• variable modal access evaluator that handles the evaluation of ac-
cessing variable modals.

• contextual dispatch evaluator for variable modals that handles
the dispatching process for determining the value for variable modal
for the current context of use.

• scoped assignments evaluator that handles the evaluation of state
changes to variables that are shared by procedure modes.

• non-interruptible regions evaluator that handles the evaluation of
non-interruptible regions.

In the next sections we describe the semantics of each of the above entities
of the Flute meta-interpreter.

7.5.2 The Main Evaluator
At the heart of the Flute interpreter is the main evaluator that handles the
evaluation of Flute programs. Its structure is as follows.

Listing 7.2: The core evaluator of the Flute interpreter
1 (define (eval expr continue env tailcall)
2 (cond
3 ((symbol? expr)
4 (eval-variable expr continue env))
5 ((pair? expr)
6 (let ((operator (car expr))
7 (operands (cdr expr)))
8 ((apply
9 (case operator

10 ((define) eval-define )
11 ((lambda) eval-lambda )
12 ((set!) eval-set! )
13 ((let) eval-let )
14 ((modal) eval-modal )
15 ((mode) eval-mode )
16 ((continuous) eval-continuous)
17 ...
18 (else (eval-application operator)))
19 operands) continue env tailcall)))
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20 (else (continue expr env))))

The eval procedure accepts the expressions to evaluate exp, the continua-
tion continue, the environment env, and a Boolean value tailcall that
indicates whether a procedure call is in a tail position2. The evaluator uses
the cond and case statements to dispatch over the different ways of eval-
uating the expression. Each Flute construct is represented as a case clause.
The interesting parts of the eval are the Flute constructs such as modal,
mode, and continuous. In the remainder of this section, we discuss the
evaluation of those constructs as well as the semantics of variable lookup and
assignments.

7.5.3 Representing Modals
Recall from Section 6.3 that a modal is a group of related variable modes
or procedure modes. In addition, it can include variables that are shared
among different modes and can specify context sources that may affect the
execution of those modes. The construction of a modal is handled by the
eval-modal procedure (shown in Listing 7.3).

Listing 7.3: The evaluation of variable and procedure modal creation
1 ;modal creation (variable modal or proc modal)
2 ;<modal> ::= (modal (<variable>+))
3 ;<modal> ::= (modal (<variable>+) <expr>+)
4

5 (define (eval-modal . exprs)
6 (lambda (continue env tailcall)
7 (define empty-envt ’())
8 (if (pair? exprs)
9 (let* ((params (car exprs))

10 (args (map lookup params))
11 (event-sources args)
12 (modal-envt (bind-params params args empty-envt)))
13 (define (continue-after-modal-exprs value env-after-modal-exprs)
14 (continue (make-modal event-sources env-after-modal-exprs) env))
15 (if (pair? (cdr exprs))
16 (eval-seq (cdr exprs) continue-after-modal-exprs modal-envt tailcall)
17 (continue-after-modal-exprs ’() modal-envt)))
18 (continue (make-modal ’() empty-envt) env))))

In order to explain the evaluation of a modal expression, let us con-
sider the following Flute program that creates a modal with a context
2An expression in a tail position does not require the control flow to be accumulated. This
technique is known as tail call optimisation or elimination [FW08].
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source current-user and explicit shared variables date-range and
display-scale.
1 (modal (current-user)
2 (define date-range 2)
3 (define display-scale 4)))

The interpretation of the above Flute program proceeds as follows:

1. In the main evaluator, this expression matches the modal clause and
therefore, the evaluation is handled by the eval-modal procedure (cf.
Listing 7.2).

2. The eval-modal starts by extracting the context sources and cre-
ating a modal environment modal-envt. The modal environment
contains variables that are explicitly imported (e.g., current-user
in Listing 7.5.3). The lookup of imported variables is performed in the
current environment (cf. Line 10).

3. Then the modal environment is extended with the bindings of the
shared variables by evaluating the remainder of the sequence of ex-
pressions using the eval-seq procedure (cf. Line 16).

Modal

Modal environment

List of context sources

List of modes

Figure 7.2: A modal representation.

4. At the end of constructing the modal environment, control is handed
over to the continue-after-modal-exprs procedure that con-
structs the modal using the make-modal procedure (cf. Line 14).
The modal is passed to the current continuation continue along with
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the current environment env. A modal is represented as a vector data
structure. It contains a frame of context sources and the modal envi-
ronment. In addition, a modal consists of a list of modes. Figure 7.2
depicts the representation of a modal. However, the list of modes is
empty at the modal creation time since there are no modes that have
been added to the modal yet. In the next section, we discuss the details
of creating a mode and adding it to its modal. The code excerpt below
shows the definition of the make-modal procedure.

1 (define (make-modal event-sources envt)
2 (let ((modes ’()))
3 (vector modal-tag modes envt event-sources)))

7.5.4 Representing Modes
Now that we have explained the evaluation semantics of modals, let us turn
to the evaluation of modes. A mode defines a variant of behaviour (context-
dependent procedure) or state (context-dependent variable) for a particular
context. A context predicate is associated with each mode that constrains it
to that context. Additionally, a mode definition specifies the modal to which
it belongs (cf. Section 7.5.3). The evaluation of a mode creation is handled
by the eval-mode procedure that is shown in the Listing 7.4 below.

Listing 7.4: The evaluation of a variable mode or a procedure mode.
1 ; mode evaluation (variable mode or proc mode)
2 ; <mode> ::= (mode (<modal>) <expr> <expr>+)
3 ; <mode> ::= (mode (<modal>) <expr> (<config>) <lambda>)
4 ; <config> ::= (create-config <expr>+)
5

6 (define (eval-mode modal-expr pred-expr value-expr . exprs)
7 (lambda (continue env tailcall)
8 (define modal-binding (assoc (car modal-expr) env))
9 (define (continue-after-value-expr variable-value env-after-value-expr)

10 ...)
11 (define (continue-after-config mode-config env-after-value-expr)
12 ...)
13 (if (pair? exprs)
14 (eval (car value-expr) continue-after-config env #f)
15 (eval value-expr continue-after-value-expr env #f))))

Note that the mode construct can be used to create a variable mode or a
procedure mode. Therefore, the eval-mode procedure handles the evalu-
ation of variable and procedure modes. The evaluation process proceeds as
follows:
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1. The eval-mode starts by performing a lookup of the specified modal
in the current environment (cf. Line 8).

2. Depending on whether the expressions exprs are for variable
mode or a procedure mode, the evaluation process is handed
over to either continue-after-value-expr procedure or
continue-after-config procedure. We describe the definitions
of those two procedures below.

Variable Modes. As mentioned above, the interpretation of variable
modes is handled by the continue-after-value-expr procedure that
is shown in the Listing 7.5.

Listing 7.5: The evaluation of a variable mode creation
1 ...belongs to the body of eval-mode in Listing 7.4 ...
2

3 (define (continue-after-value-expr variable-value env-after-value-expr)
4 (define modal (cdr modal-binding))
5 (let* ((params ’())
6 (modal-envt (modal-env modal))
7 (mode-envt (append modal-envt env))
8 (mode-proc (make-proc params (list value-expr) mode-envt))
9 (mode (make-mode pred-expr mode-proc mode-envt)))

10 (add-mode! modal mode)
11 (continue mode-proc env)))

The main goal of the variable mode evaluation is to create a mode and add
it to the specified modal. Internally, the value for a particular variable mode
is not immediately evaluated. This implies that the actual value of the mode
is evaluated on demand when the variable modal it belongs to is accessed.
The expression corresponding to the mode’s value is represented as a pro-
cedure mode-proc, which is constructed using the make-proc procedure.
The procedure’s lexical environment is extended with the environment of the
specified modal. The variable mode is represented as a vector data structure
that consists of a predicate expression pred-expr, a procedure containing
the mode’s value expressions mode-proc, and the extended environment
mode-envt. The predicate expression is used by the dispatcher to deter-
mine the applicable variable mode for the current context of use. A variable
mode is added to the specified modal using the add-mode! procedure.
Figure 7.3 depicts the representation of a mode.

Procedure Modes. The evaluation process for creating procedure modes
is essentially an extension of that for creating variable modes. In addition to



7.5. THE FLUTE META-INTERPRETER 143

Mode

Mode environment

Context predicate
 expressions

a procedure containing the 
body or value expressions

Figure 7.3: A mode representation.

a context predicate, a procedure mode also specifies the configuration options
(interruption, resumption, and state scoping strategies), and a lambda ex-
pression. Listing 7.6 shows the definition of the continue-after-config
that handles the creation of a procedure mode.

Listing 7.6: The evaluation of a procedure mode creation
1 ...belongs to the body of eval-mode in Listing 7.4 ...
2 (define (continue-after-config mode-config env-after-value-expr)
3 (define modal (cdr modal-binding))
4 (let* ((params (mode-params exprs))
5 (body-exprs (mode-exprs exprs))
6 (event-sources (modal-event-sources modal))
7 (modal-envt (modal-env modal))
8 (mode-envt (append modal-envt env))
9 (mode-proc (make-c-proc params (cons event-sources pred-expr)

10 mode-config body-exprs mode-envt))
11 (mode (make-mode pred-expr mode-proc mode-envt)))
12 (add-mode! modal mode)
13 (continue mode-proc env)))

The goal of this evaluation process is to construct a procedure mode and add
it to the specified modal. A procedure mode is represented as a vector data
structure created by the procedure make-mode. It consists of a predicate
expression pred-expr, a procedure mode-proc and a mode evaluation
environment mode-envt. The procedure is constructed from the param-
eters params and the body expressions body-exprs that are extracted
from the lambda expression. In addition, it includes the context sources
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event-sources, the configuration options mode-config, the mode en-
vironment. The resulting procedure mode is added to the specified modal
using the add-mode procedure. Finally, the procedure mode is passed to
the current continuation continue along with the evaluation environment.
Unlike variable modes where the predicate is only used for selecting the appli-
cable mode, in a procedure mode, the predicate is re-evaluated throughout
the execution of the procedure body. We further discuss the semantics of
the evaluation of the body of a procedure mode in Section 7.5.6. Figure 7.3
depicts the representation of a mode.

7.5.5 Evaluating Variable Modals
So far, we have discussed the representation of the modal and modes of vari-
ables in the interpreter. However, we have not discussed evaluation semantics
of accessing a variable modal. Flute features uniform syntax for access-
ing variable modals and regular Scheme variables, for example, (define x
10) (cf. Section 6.4.1). However, the evaluation of variable modal references
differs from that of regular Scheme variables. The difference is that access-
ing a variable modal yields a different value depending on the context of use.
Listing 7.7 shows the definition of the eval-modal-variable procedure
that implements the evaluation of a variable modal reference.

Listing 7.7: Evaluating variable modals.
1 (define (eval-modal-variable modal continue env)
2 (define modes (modal-modes modal))
3 (define preds (modal-preds modal))
4 (define (iterate preds modes true-count mode-proc)
5 (if (null? preds)
6 (if (= true-count end-true-count)
7 (mode-proc ’() continue env #f)
8 (error "Ambiguous predicates for variable modal" true-count))
9 (let* ((head-pred (car preds))

10 (tail-preds (cdr preds))
11 (head-mode (car modes))
12 (tail-modes (cdr modes))
13 (mode-envt (mode-env head-mode)))
14 (define (continue-after-pred value env)
15 (if value
16 (iterate tail-preds tail-modes (+ true-count 1)
17 (mode-proc head-mode))
18 (iterate tail-preds tail-modes true-count mode-proc)))
19 (eval head-pred continue-after-pred mode-envt #f))))
20 (iterate preds modes start-true-count #f))

The evaluation of a variable modal proceeds as follows:
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1. The evaluation starts by obtaining the list of modes and their corre-
sponding context predicates (cf. Lines 2-3).

2. Each context predicate is then evaluated to select the right mode to
execute for the current context.

3. The value for the variable modal is determined by evaluating the pro-
cedure mode whose context predicate evaluates to true (mode-proc
’() continue env #f) (cf. Line 7).

In case there is no context predicate that evaluates to true or there are multi-
ple context predicates that evaluate to true an ambiguous predicate exception
is thrown. This semantics is appropriate for variable modal references since
the expression where a variable modal reference is used expects a value to
be returned. However, as we explain in the next section, the dispatching of
procedure modals requires different semantics.

7.5.6 Evaluating Modal Invocations
The preceding sections have explained the details of representing procedure
modals and modes. However, what we have not yet discussed is implemen-
tation for the selection of the applicable procedure mode to execute and the
evaluation of the procedure modes. We now explain the evaluation of pro-
cedure modal invocations and the execution of procedure modes. When a
procedure modal is invoked a reactive dispatching process is initiated to select
the applicable mode to execute for the current context (cf. Section 6.5.3).

Contextual and Reactive Dispatch for Procedure Modals

The dispatching process for procedure modals is essentially similar to that
of variable modals. However, unlike variables modals where the dispatching
process happens only once, the dispatching process for procedure modals is
repeated whenever the relevant context sources get new values. This means
that even when there is no context predicate that is satisfied, there is no
exception thrown. Instead the dispatcher is scheduled to be repeated on the
occurrence of relevant context changes (cf. Section 6.5.3). Listing 7.8 shows
the definition of the eval-modal-dispatch procedure that implements
the dispatching of procedure modes.

Listing 7.8: Contextual dispatch for a procedure modal.
1 (define (eval-modal-dispatch modal continue env)
2 (define modes (modal-modes modal))
3 (define preds (modal-preds modal))
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4 (define true-count-end 1)
5 (define true-count-start 0)
6

7 (define (iterate preds modes true-count mode-proc modes-after-dispatch)
8 (if (null? preds)
9 (if (= true-count true-count-end)

10 (begin
11 (modal-modes! modal modes-after-dispatch)
12 (continue mode-proc env))
13 (if (< true-count true-count-end)
14 (continue #f env)
15 (error "Ambiguous context predicates" true-count)))
16 (let* ((head-pred (car preds))
17 (tail-preds (cdr preds))
18 (head-mode (car modes))
19 (tail-modes (cdr modes))
20 (mode-envt (mode-env head-mode))
21 (remaining-modes (cons head-mode modes-after-dispatch))
22 (head-mode-proc (mode-proc head-mode)))
23 (define (continue-after-pred value env)
24 (if value
25 (iterate tail-preds tail-modes (+ true-count 1)
26 head-mode-proc modes-after-dispatch)
27 (iterate tail-preds tail-modes true-count
28 mode-proc remaining-modes)))
29 (eval head-pred continue-after-pred mode-envt #f))))
30 (iterate preds modes true-count-start #f ’()))

The entry point to the eval-modal-dispatch is the invocation to the
iterate procedure that takes a list of context predicates and a correspond-
ing list of procedure modes (cf. Lines 2-3). The evaluation of context
predicates proceeds as in the case of the variable modals. The procedure
mode whose context predicate evaluates to true is passed to the continuation
continue, which handles the evaluation of the procedure application (cf.
Line 12).

Registration of a Resumption Handler for the Dispatcher

The eval-modal-dispatch procedure (i.e., the dispatcher) is reified as
resumption handler for the dispatching process that is implicitly registered as
an event handler to the context sources of the modal. This makes it possible
to restart the dispatching process whenever context sources receive values
that may affect the context predicates. Listing 7.9 shows the implementation
of the resumption handler for the dispatcher and its registration as an event
handler to the relevant context sources.



7.5. THE FLUTE META-INTERPRETER 147

Listing 7.9: Registration of a resumption handler for the dispatcher.
1 (define (start/restart-dispatch)
2 (eval-modal-dispatch modal continue-after-operator env))
3

4 (define (dispatcher restart-dispatch event-sources)
5 (if (ormap event? event-sources)
6 (let* ((dispatch-event (ctx-event))
7 (dispatch-thunk
8 (lambda ()
9 (restart-dispatch))))

10 (set-thunk! dispatch-event dispatch-thunk)
11 (for-each
12 (lambda (event-source)
13 (if (event? event-source)
14 (register dispatch-event event-source)))
15 (listify event-sources)))))

The above code excerpt shows the reification of the
eval-modal-dispatch as a resumption handler
start/restart-dispatch (cf. Line 1). The dispatcher pro-
cedure implements the concerns of registering the resumption handler
as an event-handler to the relevant context sources. By invoking the
dispatcher procedure as (dispatcher start/restart-dispatch
event-sources), a new context source is created using the ctx-event
construct. The resulting context source is bound to the dispatch-event
name (cf. Line 6). It consists of the dispatch-thunk thunk that reifies
the invocation to the dispatcher. It is then registered as an observer to
the context sources (cf. Line 14). Whenever any of the context sources
receives a new value, the thunk of the dispatch-event context source is
invoked and hence the dispatching process is restarted. As it can be seen the
above implementation for reactive dispatching depends on Flute’s support
for reactive values. We further discuss the evaluation semantics of reactive
values in Flute in Section 7.6.

Interruptible Evaluation of Procedure Modes

As discussed in Section 6.5.4, a context predicate serves two roles: (1) it is
used by the dispatcher to select the procedure mode to execute, and (2) it
is used to ensure that the entire mode execution happens only in the correct
context. In the interpreter, this behaviour is ensured by introducing new se-
mantics in the evaluation of a procedure body of a mode. Listing 7.10 shows
the definition of the eval-seq procedure that ensures that the mode’s con-
text predicates are satisfied throughout the procedure body execution. The
context predicates may consist of the context predicate that is specified as
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part of the mode’s definition and of the context predicates that are inherited
from the enclosing procedure modes (cf. Section 6.5.7).

Listing 7.10: The interruptible evaluation of a procedure body.
1 (define (eval-seq pred-expr config body-exprs args id proc-stm continue env tailcall)
2 (define head (car body-exprs))
3 (define tail (cdr body-exprs))
4 (define event-sources (car pred-expr))
5 (define context-pred (cdr pred-expr))
6 (define resumption-mechanism (p-true-config config))
7 (define compensating-action (p-false-config config))
8 (define state-mechanism (state-changes-config config))
9

10 (define (continue-with-seq value env-after-seq)
11 (apply-state-strategy value env-after-seq)
12 (eval-seq pred-expr config tail args id proc-stm
13 continue env-after-seq tailcall))
14

15 (define (continue-after-context-pred boolean env-after-pred)
16 (define (continue-after-compensating-action action-value env-after-user-action)
17 (let ((state-strategy (get state-strategies state-mechanism)))
18 (if state-strategy
19 (state-strategy interrupted env-after-user-action)))
20 (continue interrupted env-after-user-action))
21 (if (and (equal? boolean #f) (interruptible? head))
22 (begin
23 (if (equal? resumption-mechanism resume)
24 (save-execution resume-evaluation event-sources id))
25 (eval compensating-action continue-after-compensating-action
26 env-after-pred #f))
27 (if (null? tail)
28 (begin
29 (apply-state-strategy completed env-after-pred)
30 (eval head continue env-after-pred tailcall))
31 (eval head continue-with-seq env-after-pred #f))))
32

33 (define (seq-evaluation-entry)
34 (eval context-pred continue-after-context-pred env #f))
35

36 (seq-evaluation-entry))

The above procedure body evaluation differs from that of classical inter-
preters in that the evaluation can be interrupted at any step of the eval-
uation and can be resumed from where it left off at a later moment.3 The
3The eval-seq in the Listing 7.10 is simplified to only show the main parts of the
procedure’s body evaluation. A complete record of the eval-seq implementation is
provided in the Appendix.
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evaluation of a procedure body is decomposed into a sequence of expressions.
The context predicate expression is evaluated before the evaluation of each
sequence. This ensures that the execution of the procedure happens only
when the specified context predicate is satisfied.

The entry point for the evaluation of the procedure body is the invoca-
tion of the seq-evaluation-entry procedure (cf. Line 36). The context
predicate is evaluated before evaluating the body expressions of a proce-
dure (cf. Line 34). After the evaluation of the context predicate, control
is handed over to the continue-after-context-pred procedure with
the value (true or false) of the context predicate. The eval-seq pro-
cedure iterates over the expressions of the procedure body until either there
are no more body expressions remaining or the context predicate evaluates
to false. If the value of the context predicate is true, then evaluation of
body expressions continues normally. However, if the value of the context
predicate is false, the execution is interrupted by invoking the top level conti-
nuation continue. If the resumption strategy is resume, then the current
continuation is saved by calling the save-execution procedure. It is
not necessary to save the execution if the interruption strategy is abort or
restart. Notice that the save-execution procedure in addition to the
current execution also takes as argument the relevant context sources. This
makes it possible to resume the execution when relevant context sources re-
ceive new values. The implementation of the save-execution procedure
is shown in Listing 7.11.

Scheduling of Suspended Executions for Resumption

The scheduling a suspended execution for later resumption is handled by the
save-execution procedure as shown below.

Listing 7.11: Scheduling suspended executions for resumption.
1 (define (save-execution continue-point context-sources id)
2 (if (ormap event? context-sources)
3 (let ((execution-event (ctx-event)))
4 (let ((execution-thunk
5 (lambda ()
6 (del saved-executions id)
7 (del-thunk! execution-event)
8 (continue-point))))
9 (set-thunk! execution-event execution-thunk)

10 (put saved-executions id execution-thunk))
11 (for-each
12 (lambda (context-source)
13 (if (event? context-source)
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14 (register execution-event context-source)))
15 (listify context-sources)))))

The semantics of scheduling suspended execution for resumption is reminis-
cent of that of reactive dispatching (cf. Section 7.5.6 Listing 7.9). The sus-
pended execution is reified as resumption handler that is triggered to resume
the suspended execution when relevant context sources receive new values. In
the above code excerpt, execution-event is a resumption handler which
is created using the ctx-event construct. It is registered as an observer
to the relevant context sources (cf. Lines 11-15). When any of the context
sources receives a new value, its thunk is invoked and hence the evaluation
of the procedure’s body expressions is resumed. Note that on resumption
the context predicate is re-evaluated and if it is satisfied the execution is
suspended again.

7.5.7 Evaluation of Scoped Assignments
The Flute language provides strategies to control the visibility of state
changes (assignments) made during a mode execution (cf. Section 6.5.6).
To this end, we augment the evaluation of assignments (set!) in the Flute
interpreter with mechanisms to scope state changes. Listing 7.12 shows the
definition of the eval-set! that handles the evaluation of the assignment
semantics.

Listing 7.12: Evaluating assignments
1 (define (eval-set! variable expr)
2 (lambda (continue env tailcall)
3 (define (continue-after-expr value env-after-expr)
4 (let* ((binding (assoc variable env-after-expr))
5 (active-stm (current-stm))
6 (write-log (get active-stm s-write-log))
7 (read-log (get active-stm s-read-log))
8 (binding-write (assoc variable write-log))
9 (binding-read (assoc variable read-log))

10 (commits (get active-stm s-commits)))
11

12 (define (delay-side-effects)
13 (let ((todo (lambda () (set-cdr! binding value))))
14 (del active-stm s-commits)
15 (put active-stm s-commits (cons todo commits))))
16

17 (define (extend-read-log)
18 (let ((new-read-log (cons binding read-log)))
19 (del active-stm s-read-log)
20 (put active-stm s-read-log new-read-log)))
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21

22 (define (extend-write-log)
23 (let* ((log-binding (cons variable value))
24 (new-write-log (cons log-binding write-log)))
25 (del active-stm s-write-log)
26 (put active-stm s-write-log new-write-log)))
27

28 ;if variable is already the write log, update the value.
29 (if binding-write
30 (set-cdr! binding-write value)
31 ;binding in read log but not in write log
32 ;include in the write log and update the write-binding
33 (if binding-read
34 (extend-write-log)
35 ;include in the read and write logs
36 ;update the write log and add to commit queue
37 (if binding
38 (begin
39 (extend-read-log)
40 (extend-write-log))
41 (error "inaccessible variable: " variable))))
42 (delay-side-effects)
43 (continue value env-after-expr)))
44 (eval expr continue-after-expr env #f)))

The technique we employ to keep track of state changes is reminiscent of that
of the software transactional memory (STM) approaches [ST95, HMPJH05].
At the start of the execution of a procedure mode, a transaction is created for
keeping track of the state changes that are performed during the execution.
Thus the granularity of a transaction is on the procedure level and not based
on a dedicated language construct, such as atomic in traditional STM ap-
proaches. The Flute constructs for controlling the visibility of state changes
(i.e., immediate, deferred, isolated), enable the developer to tell
the interpreter when state changes should be made visible (committed) to
the rest of the system (cf. Section 6.5.6). However, these constructs share a
common infrastructure for keeping track of state changes.

A transaction consists of a read log, a write log, and a list of commits to
perform. A read log contains the values of the variables when they are first
accessed. A write log contains of state changes that are performed during the
execution. A list of commits consists of delayed state changes that need to
be performed. The evaluation process of the assignments proceeds as follows:

1. The eval-set! starts by retrieving the transaction active-stm
for the current execution, and its read log, write log, and the list of
commits (cf. Lines 5-10).
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2. As already mentioned above, state changes are performed to a local
write log instead of the original location of the variables in the shared
environment. If the variable is already in the write log, meaning it
has already been previously accessed, then its value is mutated in the
write log (cf. Line 29). Subsequent access to that variable during the
procedure mode execution refer to its value in the write log .

3. If the variable is not in the write log but it is already in the read log
(meaning that it has been accessed but has not been mutated), then
the write log is extended with the new binding for the variable (cf.
Line 33). Next the assignment is performed for the binding in the
write log (cf. Line 40).

4. Otherwise, if the variable is neither in the read log nor in the write log,
then both logs are extended with a new binding, and the assignment is
performed for the binding in the write log.

5. The call to the delay-side-effects procedure packages the as-
signments to the shared environment as a nullary procedure that is
then added to the list of commits to be performed at a later time (cf.
Line 42).

The reason for keeping two separate logs for reads and writes is that when
committing the transaction we need to perform a validation step to assert
that the variables have not been changed by other modes between the time
when they were first read and when the commit happens.

State Scoping Strategies

Having explained the implementation details of the transactions, we
now explain the state scoping strategies (isolated, deferred, and
immediate). As already mentioned above, all the strategies share a com-
mon transactions infrastructure. However, each strategy defines different
semantics on when to make the state changes visible to other executions.
Listing 7.13 shows the definition of the strategies.

Listing 7.13: State scoping strategies.
1 ;commit and continue execution --
2 ;validate changes and commit or abort
3 (define (commit-changes status env-after-seq)
4 (let* ((active-stm (top active-stms))
5 (commits (get active-stm s-commits))
6 (read-log (get active-stm s-read-log)))
7 ...
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8 (if (validate read-log env-after-seq)
9 (commit (reverse commits))

10 (abort-execution))))
11

12 ;state:isolated strategy
13 (define (isolated-strategy status env-after-seq)
14 (ignore-changes status))
15

16 ;state:deferred strategy
17 (define (deferred-strategy status env-after-seq)
18 (if (equal? status completed)
19 (commit-changes status env-after-seq)
20 (ignore-changes status)))
21

22 ;state:immediate strategy
23 (define (immediate-strategy status env-after-seq)
24 ;this is opposite of isolation
25 ;i.e., on interruption or completion
26 (commit-changes status env-after-seq))

The commit-changes procedures implements the logic of committing a
transaction. It implements a two-step process that consists of a validation
step and a commit step. The validation step asserts that variables in the
read log have the same values as in the current environment. If they have
the same values it implies that no other execution has modified those vari-
ables. Therefore, the commit step of the delayed assignments is performed.
Otherwise, the commit process is aborted. The decision on when to commit
state changes is different for each of the state scoping strategies.

Isolated strategy ensures that state changes remain visible only local to
the execution and are not committed to the shared environment. The
isolated-strategy procedure defines the logic of the isolated
state scoping strategy. The transaction is discarded once the procedure
execution completes (cf. Lines 13-14).

Deferred strategy ensures that the state changes are committed when the
procedure execution completes. The deferred-strategy proce-
dure in Listing 7.13 implements the logic of the deferred state scop-
ing strategy. The flag status indicates whether a procedure execu-
tion has been interrupted or has completed. If the procedure execu-
tion has been interrupted, then the state changes are not committed.
However, the transaction log is retained for later use when the execu-
tion is resumed. If the procedure execution completes, then the state
changes are committed by calling the commit-changes procedure
(cf. Lines 17-20).
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Immediate strategy, unlike the deferred strategy, commits the state
changes on interruption or completion. In Listing 7.13, the
immediate-strategy procedure implements the logic of the
immediate state scoping strategy (cf. Lines 23-26).

7.5.8 Representing Uninterruptible Regions
As discussed in Section 6.5.8, Flute enables the developer to demar-
cate certain regions in a procedure body as uninterrupted using the con-
struct (continuous <exprs>). Listing 7.14 shows the definition of the
eval-continuous procedure that implements the evaluation of uninter-
ruptible regions.

Listing 7.14: Evaluating uninterruptible regions
1 (define (eval-continuous . exprs)
2 (lambda (continue env tailcall)
3 (let* ((params ’())
4 (args ’())
5 (proc (make-proc params exprs env)))
6 (eval (cons proc args) continue env #f))))

The evaluation converts the expressions exprs into a nullary procedure that
is then immediately scheduled for evaluation. Since this procedure has no
associated context predicate, the evaluation of its body (i.e., the expressions
exprs) will complete without interruption.

7.6 Semantics of Reactive Values in Flute

As discussed in Section 6.7.2, context sources are represented as reactive val-
ues. In this section we describe exact semantics of of reactive values in Flute.
Recall that a reactive value is created using the ctx-event construct. For
instance, a context source for representing the current GPS coordinates is
defined as a reactive value as follows.

Listing 7.15: Defining context sources as reactive values.
13 ;Creating a context source
14 (define gps-coordinates (ctx-event))

Reactive values do not require sophisticated evaluation machinery like that
of procedure or variable modes. It is possible to implement the constructs
for reactive values as native Flute procedures instead of special forms. At
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startup, the environment for the Flute interpreter is initialised with a list of
native Flute procedures that can be used in Flute programs.

7.6.1 Evaluation of Defining Reactive Values
Listing 7.16 shows the definition of the cps-ctx-event procedure that
implements the creation of a reactive value.

Listing 7.16: Evaluating the creation of reactive values.
1 ;native for creating a reactive value
2 (define (cps-ctx-event expr continue env tailcall)
3 (define meta-ctx-event ctx-event)
4 (if (pair? expr)
5 (continue (meta-ctx-event (car expr)) env)
6 (continue (meta-ctx-event) env)))

The cps-ctx-event procedure takes as argument the expression expr
that represents an optional initial value for a reactive value. The cre-
ation of a reactive value is delegated to a non-cps iScheme procedure
ctx-event. In the Flute environment the cps-ctx-event is mapped
onto the ctx-event procedure by adding a binding to the global environ-
ment (i.e., (cons ’ctx-event cps-ctx-event). The definition of the
iScheme ctx-event procedure is shown in Listing 7.18.

7.6.2 Evaluation of Updating Reactive Values
Recall that Flute provides the update-value! construct for updating the
value of a reactive value (cf. Section 6.7.1). The update-value! construct
is particularly used to acquire (non-reactive) low-level data from external
sensors (cf. Section 6.7.2). In the Flute interpreter, the update-value!
construct is implemented as follows.

Listing 7.17: Updating a reactive value.
15 (define (cps-update-value! expr continue env tailcall)
16 (define event (car expr))
17 (define new-event (cadr expr))
18 (define meta-update-value! update-value!)
19 (meta-update-value! event new-event)
20 (continue event env))

The update-value! construct is mapped onto the
cps-update-value! procedure above. The cps-update-value!
procedure takes as argument the expression expr that consists of a
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reactive value and the value to update the reactive value to. The updat-
ing of a reactive value is delegated to the non-CPS iScheme procedure
update-value!.

7.6.3 Representing Reactive Values
At the meta level, a reactive value is represented as vector data structure (as
depicted in Figure 7.4). It consists of the following:

tag height value

Reactive value

thunk list of 
consumers ID

Figure 7.4: A representation of a reactive value.

• the tag that is used by the Flute interpreter to check whether a value
is a reactive value or not.

• the height that is used for ordering the dependency graph of reactive
values in order to ensure that propagation of changes happen consis-
tently without glitches. Initially, the height of a freshly constructed
reactive value that does not depend on any other reactive values is 0.

• the value of the reactive value.

• the thunk that is invoked to update the reactive value’s value whenever
the reactive values it depends on receive new values.

• the list of consumers that depend on the reactive value’s value. Initially,
the list of the consumers is empty. The list of consumers are scheduled
for update whenever the reactive value receives a new value.

• the identifier for the reactive value.

Listing 7.18 shows the definition of the ctx-event iScheme procedure
that is responsible for creating reactive value data structure.

Listing 7.18: Creating reactive values.
1 (define (ctx-event . value)
2 (define (new-event)
3 (define thunk (lambda () ’no-value))
4 (vector event-tag initial-height undefined thunk ’() (getid)))
5
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6 (let ((self (new-event)))
7 (if (and (pair? value) (event? (car value)))
8 (begin
9 (register self (car value))

10 (set-thunk! self
11 (lambda ()
12 (update-value! self (current-value (car value)))))
13 (update-value! self (current-value (car value))))
14 (if (pair? value)
15 (update-value! self (car value))))
16 self))

The ctx-event procedure takes as argument an optional initial value for
a reactive value. If there is no initial value provided, a new reactive value
is constructed using the new-event procedure (cf. Line 6) and its initial
value is undefined. If an initial is provided, the value of the reactive
value is set to that value. The initial value can either be non-reactive value
(e.g., 1) or a reactive value. In case the initial value is a reactive value,
it is necessary to establish a dependency between the two reactive values.
Such a dependency is established by calling the register procedure (cf.
Line 9). By establishing a dependency between the two reactive values, it
is ensured that the value of the new reactive value is updated whenever the
value of the reactive value it depends on changes. The thunk of the new
reactive value reifies the action of updating the value of the reactive value.
The current-value procedure is used to obtain the current value of a
reactive value. The implementation of the current-value procedure is as
follows:

Listing 7.19: Obtaining the current value of a reactive value.
1 (define (current-value any)
2 (if (event? any)
3 (vector-ref any value-idx)
4 any))

The current-value procedure takes as argument a reactive value data
structure and retrieves the its current value at the index value-idx.

7.6.4 Establishing a Dependency between Reactive Val-
ues

One of the key semantics of reactive values is that the language runtime
automatically tracks dependencies among reactive values. For instance, as
discussed in Section 7.6.3, creating a new reactive value in terms of another
requires registering a dependency between the two reactive values. We refer
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to the reactive value that depends on another reactive value as a consumer,
and the reactive value that is depended on by another reactive value as the
producer. Listing 7.20 shows the register procedure that implements the
logic of establishing a dependency between reactive values.

Listing 7.20: Establishing a dependency between reactive values.
1 (define (register consumer producer)
2 (if (not (consumer-exists? consumer producer))
3 (let* ((consumer-height (event-height consumer))
4 (producer-height (event-height producer))
5 (max-height (max consumer-height producer-height)))
6 (update-height! consumer (+ 1 max-height))
7 (new-consumer! producer consumer))))

The register procedure takes as argument a consumer reactive value and a
producer reactive value and establishes a unidirectional dependency between
the producer and the consumer. Each reactive value maintains a list of its
consumers. As discussed in Section 7.6.3 a reactive value has a height. When
establishing a dependency between reactive values, the consumer’s height is
updated to be higher than that of the producer. This means that the con-
sumer’s height is always higher than that of any of its producers. When
scheduling reactive values for updating, the height is used to topologically
sort a graph of reactive values. This ensures that the processing of updates
happens in the correct order (without glitches)(cf. Section 6.7.1). This glitch
avoidance technique is similar to that of other functional reactive program-
ming approaches such as FrTime [CK06] and Flapjax [MGB+09]. Note that
the dependency graph must be acyclic in order to avoid non-terminating
propagation of changes.

7.6.5 Supporting Implicit Lifting
Recall from Section 6.7.1 that it is possible to apply native iScheme pro-
cedures such as <, + and user defined procedures to reactive values. For
instance, one can write a reactive program in Flute as follows.

Listing 7.21: A reactive program that requires implicit lifting.
1 (define x (ctx-event 1))
2 (define y (< x 1))

The iScheme < native procedure expects numbers as arguments and applying
it to a reactive value x would generate a type error. When the Flute evaluator
encounters such an expression, the procedure is implicitly lifted to be able
operate on the reactive value and returns a new reactive value whose value
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at any moment is the result of applying that procedure to its arguments.
Listing 7.22 shows the implementation of the procedures that handle the
lifting of ordinary iScheme procedures.

Listing 7.22: Lifting of procedures to operate on reactive values.
1 (define (event-values events)
2 (map current-value events))
3

4 (define (frpify proc)
5 (lambda args
6 (let ((arguments (event-values args)))
7 (apply proc arguments))))
8

9 (define (lift proc)
10 (lambda args
11 (let* ((new-event (ctx-event))
12 (frp-proc (frpify proc))
13 (thunk (lambda ()
14 (update-value! new-event
15 (frp-proc args)))))
16 (set-thunk! new-event thunk)
17 (thunk)
18 (for-each
19 (lambda (event)
20 (if (event? event)
21 (register new-event event)))
22 args)
23 new-event)))

If any of the arguments of a procedure is a reactive value, the evaluator
automatically lifts the procedure using the lift procedure above. First, a
new reactive value is created (cf. Line 11). The ordinary procedure is then
lifted to a procedure that can operate on reactive values using the frpify
procedure (cf. Line 12). The frpify procedure obtains the values of the
reactive values using the event-values procedure and applies the ordinary
iScheme procedure. The thunk reifies the action of updating the value of the
newly constructed reactive value to the result of applying the lifted procedure
to the arguments. Finally, the reactive value is registered as a consumer of
any reactive values that are in the arguments of the procedure (cf. Lines 18-
22). Whenever any of the reactive values receives a new value the thunk is
called again and the value of the reactive value is updated.
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7.7 Chapter Summary
In this chapter, we have described exact semantics of the Flute language
through a meta-interpreter. We chose to implement the Flute language as
an interpreter because it gives us full control over the evaluation of every
language detail. We have presented the interpreter starting from the gen-
eral evaluator and then the individual evaluators for each core construct of
Flute. The interpreter is implemented in a continuation passing style, which
facilitates the task of capturing and saving the procedure execution at any
evaluation step.
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8.1 Introduction
This chapter validates the ICoDE model instantiation in the Flute program-
ming language. Recall from Section 2.2 that we introduced a visionary sce-
nario – dubbed BainomuAppies in Kampala – that was used to motivate
reactive context-aware applications. In the BainomuAppies scenario, buses
and minibuses in Kampala are equipped with an onboard digital platform
that runs a suite of applications. The current application running as well as
the nature of the information shown depends on contextual information such
as the geolocation of the bus, the proximity of other buses and certain stops,
and the identity of the passengers on the bus at a certain moment in time.
Given the large scale and the required infrastructure of the scenario it is not
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feasible to realise it within the scope of a Ph.D. dissertation. We therefore
consider a variant of the BainomuAppies in Kampala scenario that was more
feasible to implement, yet equally representative for reactive context-aware
applications.

We have implemented a prototype mobile platform called iFlute Platform
on which context-aware applications can be deployed. This scenario exhibits
characteristics similar to those of the BainomuAppies in Kampala scenario
(cf. Section 2.3). We use Flute as the programming language to develop
context-aware applications that are deployed on the iFlute platform. These
include a context-aware calendar application, a context-aware printer assis-
tant, and a context-aware task assistant. As in the BainomuAppies in Kam-
pala scenario, the currently running application and its behaviour depend on
the current context of use. For each application we present its implementa-
tion and evaluate Flute’s language constructs against the requirements that
should be satisfied by a programming language for reactive context-aware
applications (cf. Section 2.6). We conclude this chapter by comparing Flute
with existing approaches. In particular, we compare the implementation of
some of the examples in the Flute programming language with that of first-
class continuations – one of the few approaches that provide support for
(explicit) interruptions and resumptions (cf. Section 3).

8.2 The iFlute Platform

The iFlute platform consists of a suite of applications for different tasks
(each task corresponds to a behaviour for a different context) in the context
of a personal assistant. To alleviate the burden of manually selecting which
application and behaviour to run for the current task, the iFlute platform
is enhanced with context-awareness to automatically present to the user the
appropriate behaviour for the task at hand. When there is a context change,
the running application’s behaviour is promptly interrupted and replaced
by a new behaviour that is appropriate for that context. The previously
interrupted application’s behaviour can be resumed from where it left off at
a later moment when the user goes back to the previous context. Figure 8.1
shows the screenshot of the iFlute platform running on an iOS device.

Example applications that have deployed on the iFlute platform include
a context-aware calendar application, a context-aware printer assistant, and
a context-aware task assistant. Like in the BainomuAppies scenario, the
current application and its behaviour depends on the context of use. Below
we briefly describe each of the applications:
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Figure 8.1: The iFlute platform running on a tablet device.
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Kalenda: A Context-aware Agenda Application. The first exam-
ple is the context-aware calendar application that we used as a running
example for explaining the Flute programming language (cf. Section 6.2).
Kalenda automatically launches to show the agenda items whenever the user
moves within range of his/her workplace. The agenda items may include the
user’s private appointments (e.g., family events or a doctor appointment)
that should be displayed only to the device owner and public items (e.g.,
workplace meetings or bank holidays) that can be seen by anyone. There-
fore, when the owner is not the one using the device, it can dynamically adapt
to show only the agenda items that are public. For instance, suppose that
a user who is browsing through his/her private calendar items temporarily
hands over the device to a coworker. The calendar application should adapt
immediately to show only public items and adapt the display properties (e.g.,
font size or colour) to match the coworker’s preferences. Furthermore, if the
coworker gives the device back to the owner, the calendar application should
immediately restore the owner’s previous view of the agenda items.

Pulinta: A Context-aware Printer Assistant. The Pulinta applica-
tion automatically launches when the user is in a printer room or is nearby
a printer. It provides functionalities for monitoring a printer’s status (e.g.,
toner and paper levels) and managing printing tasks. The printing tasks are
enhanced with context-awareness to dynamically adapt the printing of sen-
sitive documents on a shared printer. For instance, when the user is printing
sensitive documents from his/her mobile device and another person walks
into the printer room, the printing task is interrupted promptly. The in-
terrupted printing task is resumed from where it left off when that person
leaves.

Tasiki: A Context-aware Task Assistant. The third example is a task
assistant application that assists the user to perform routine daily tasks such
as managing phone calls and processing emails. For a person with a busy
schedule it can hectic to keep track of the people that need to be called during
the course of the day. Moreover, for certain people it may be appropriate
to use a specific communication technology (e.g., Skype, teleconferencing
equipment or a state-of-the-art phone system in a car). At the beginning
of the day, the Tasiki application enables the user to specify the people to
call, the required technology, when and where it is appropriate to initiate
phone calls to certain contacts. The application uses this information to
automatically initiate phone calls to certain contacts and connect to the
right technology whenever the user is in the right context and there are
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contacts that need to be called. For instance, it may be convenient to make
phone calls to co-workers when the user is at his/her workplace’s conference
room while for business people a modern phone system in car might be
convenient. Thus, when the user is in a conference room at his/her workplace,
the application checks if there are any co-workers contacts to call and offers
to initiate the phone calls. Similarly, when the user is in his/her car the
application is automatically launched and offers to initiate phone calls to
the business contacts, if any. The application always remembers the next
contacts to call and automatically resumes from where it left off as the user
moves about.

8.3 Implementing the iFlute Platform

We have implemented a prototype of a mobile platform called the iFlute
Platform where reactive context-aware applications can be deployed. The
screenshot of the platform running on an iOS device is shown in Figure 8.1.
The GUI concerns of the platform are implemented in iScheme. In this
chapter, we will focus on the implementation of the context-dependency con-
cerns. A complete record of the iFlute platform implementation is provided
in the appendix.

The context-dependency concerns of the iFlute platform are structured
around modals, modes, and context sources as follows.

Modal Mode Context predicate Context source

flute-apps
calendar-assistant office?
printing-assistant printer-room? current location
task-assistant at-conference-room-or-car?

Table 8.1: Modals and modes of the iFlute platform.

• Context-aware applications on the iFlute platform belong to the modal
flute-apps. The context source for the modal is the current loca-
tion, which is derived from the GPS sensor. Context sources are defined
as reactive values.

• Each context-aware application is represented as a mode that belongs
to the flute-apps modal.

• Each context-aware application is associated with a context predicate
that constrains it to a specific context: the Kalenda application is
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constrained to run only when the user is in his/her office, the Pulinta
application is constrained to run only when the user is in a printer
room, and the Tasiki application is constrained to run only when the
user is at his/her workplace’s conference room or car. Figure 8.2 depicts
an overview of the iFlute platform and the context-aware applications
that are deployed on it.

Implementation of Context Sources as Reactive Values. The im-
plementation of the location context source for the iFlute platform is shown
below.

Listing 8.1: Defining context sources as reactive values in Flute
1 (define gps-coordinates (ctx-event))
2 (define location (gps->location gps-coordinates))
3

4 (CURRENT-LOCATION
5 (lambda (latitude longitude)
6 (update-value! gps-coordinates
7 (cons latitude longitude))))

The context source gps-coordinates as a reactive value using Flute’s
ctx-event construct. Its values are raw latitude and longitude loca-
tion coordinates. However, the iFlute platform requires high-level con-
text information (e.g., the location as office or printer room) to decide
on which application to run. The procedure gps->location trans-
forms GPS coordinates into the desired high-level location names. Since
gps->location operates on a reactive value gps-coordinates, its re-
turn value is also a reactive value that is bound to the variable location. As
such, the gps->location procedure is automatically re-evaluated when-
ever gps-coordinates receives a new value. Hence, the value of the
location variable is also updated. The acquisition of (non-reactive) raw
location coordinates is accomplished using the CURRENT-LOCATION con-
struct, which is provided by iScheme (cf. Section 5.5).

Implementation of the Context Predicates. Each application on the
iFlute platform is associated with a context predicate that determines its
applicability to the current context of use. Listing 8.2 shows the defi-
nition of the context predicates. The office? predicate evaluates to
true when the current location is office, the printer-room? predicate
evaluates to true when the current location is printer room, while the
at-conference-room-or-car? predicate evaluates to true when the
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Figure 8.2: An overview of the iFlute platform and the context-aware appli-
cations that are deployed on it.
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current location is conference room or car.1 We assume that the context
predicates are mutually exclusive (i.e., at most, only one context predicate
can be satisfied).

Listing 8.2: Implementation of the context predicates.
1 (define (office? user-location)
2 (equal? user-location office))
3

4 (define (printer-room? user-location)
5 (equal? user-location printer-room))

Implementation of the iFlute Platform using Modals and Modes.
The iFlute platform is structured as a modal grouping several modes, each
corresponding to an application. The code listing below depicts how the
iFlute platform is implemented using the abstractions of the Flute program-
ming language.

Listing 8.3: Implementation of the iFlute platform in Flute
1 ;The iFlute platform modal for the apps belong to the platform
2 (define flute-apps (modal (location)))
3

4 (define config
5 (create-config suspend resume isolated))
6

7 ;Kalenda application defined as a mode belonging to the flute-apps modal
8 (define calendar-assistant
9 (mode (flute-apps)

10 (office? location)
11 (config)
12 (lambda ()
13 ;...cf. Section 8.4 for complete implementation
14 )))
15

16 ;Pulinta application defined as a mode belonging to the flute-apps modal
17 (define printing-assistant
18 (mode (flute-apps)
19 (printer-room? location)
20 (config)
21 (lambda ()
22 ;... cf. Section 8.5 for complete implementation
23 )))
24

25 ;Tasiki application defined as a mode belonging to the flute-apps modal

1In Listing 8.2, office and printer-room are globally defined variables whose values
are symbols ’office, and ’printer-room respectively.
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26 (define task-assistant
27 (mode (flute-apps)
28 (at-conference-room-or-car? location)
29 (config)
30 (lambda ()
31 ;...cf. Section 8.6 for complete implementation
32 )))
33

34 ;starting all apps on the iFlute platform
35 ...
36 (flute-apps)

The modal flute-apps represents the iFlute platform to which applica-
tions (modes) can be added. The flute-apps modal specifies location
as the context source (cf. Listing 8.1). The flute-apps modal de-
fines a grouping entity for the platform’s applications: a context-aware
calendar application, a printing assistant application, and a context-aware
task assistant application. Each application is defined as a mode. The
calendar-assistant mode represents the context-aware calendar ap-
plication, the printing-assistant mode represents the context-aware
printing assistant application, while the task-assistant mode represents
a context-aware task assistant application. Each application mode is asso-
ciated with context predicates (cf. Listing 8.2) to specify the context in
which the mode is allowed to execute. Additionally, each mode is speci-
fied with the configuration option config that specifies the interruption
strategy suspend, the resumption strategy resume, and the state scoping
strategy isolated. The suspend and resume strategies ensure that each
application is suspended when its associated context predicate is no longer
satisfied and is resumed when the context predicate is later satisfied again.
The isolated strategy ensures that the state changes of each application
remain isolated from the rest of the system.

When the iFlute platform starts up, the applications are deployed (cf.
Figure 8.1) and the flute-apps modal is invoked. By invoking the
flute-apps modal, the dispatching process is initiated to select the appli-
cation that is appropriate for the current context of use. The application to
run depends on the context predicate that evaluates to true. In case there
is no context predicate that evaluates to true, no application is launched.
However, when the context source location receives a new value, the dis-
patching process is repeated to select the matching application. Thus as
the user moves about, the running application may become suspended or
resumed to ensure that the running application matches the current con-
text. Note that each application consists of context-dependent behavioural
variations that we discuss in detail in the next sections.
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Evaluation
From the above implementation of the iFlute platform, we make the following
observations that showcase the strengths of the Flute language. We align each
strength with the requirements that should be satisfied by a programming
language for reactive context-aware applications (cf. Section 2.6).

• The modal and mode abstractions of the Flute language enables defin-
ing the iFlute platform as an extensible group of applications. The
flute-apps modal makes it possible to add new modes of applica-
tions whenever required. Each application is associated with a context
predicate that is used to select the appropriate application to run for
the current context of use. As the selection of the application to run
is managed by Flute’s runtime, there is no need for explicit context
checks (cf. Requirement R.4 Contextual dispatch). Furthermore, the
specified context predicate is re-evaluated continually throughout the
execution of a mode’s procedure body. Hence, the application’s exe-
cution is always constrained to the correct context (cf. Requirement
R.2 Context-dependent interruptions).

• By defining context sources as reactive values, it is possible to use them
in context predicates without requiring the use of explicit event han-
dlers. For instance, the location context source which denotes the
current user location is used in the predicates for the modes. Also,
Flute’s language runtime ensures the value of location is automat-
ically updated whenever the value of gps-coordinates changes.
Without such support the developer would have to manually ensure
that location is updated whenever gps-coordinates receives a
new value (cf. Requirement R.1 Chained context reactions). Further-
more, the dispatcher is notified whenever the relevant context sources
receive new values. This automatically re-triggers the dispatching pro-
cess again to select the appropriate application to run for the current
context (cf. Requirement R.5 Reactive dispatch).

• The configuration option config enables the developer to specify the
interruption, resumption, and state scoping strategies (cf. Require-
ments R.2 Context-dependent interruptions, R.3 Context-dependent
resumptions, and R.6 Reactive scope management). For instance, the
context-aware calendar application specified with the suspend inter-
ruption strategy and the resume strategy. Flute’s language runtime
uses these developer-specified strategies in ensuring that the execution
state is preserved between interruptions. The developer does not need
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to worry about when to interrupt or resume an execution. Moreover,
each application’s mode is specified with the isolated state scoping
strategy which ensures that state changes remain local to the appli-
cation. Without such language support the developer would have to
control manually the visibility of state changes, which is not trivial and
may lead to an inconsistent execution environment.

�
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 before 
continuing.

Figure 8.3: The Kalenda application executing in the public mode.

8.4 Implementing the Kalenda Application
One of the applications deployed on the iFlute platform is the Kalenda ap-
plication. As introduced in Section 8.2, the Kalenda application adapts its
behaviour to show private or public agenda items depending on whether the
device is being used by the owner or not. Additionally, the display proper-
ties such as background colour and font size vary depending on the user. To
implement the Kalenda application in Flute, we structure it as follows.

• The procedure modal of the Kalenda application is the agenda modal.
This modal groups together behavioural modes of the Kalenda applica-
tion. The modal specifies the current user of the device as the context
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Modal Mode Context predicate Context source

agenda show-private-agenda is-owner?
show-public-agenda is-not-owner?

bg-colour grey colour is-owner? current-user
brown colour is-not-owner?

calendars personal calendars is-owner?
public calendars is-not-owner?

Table 8.2: Modals and modes of the Kalenda application.

source that is used in the context predicates of the modes. In addition,
it specifies variables that are shared by all its modes. These include
variables for display scale and date range that are used to fine-tune the
display properties of the calendar.

• There are two procedure modes for the context-dependent behavioural
variations of the Kalenda application: The show-private-agenda
mode that is executed when the device is being used by the owner, and
the show-public-agenda mode that is executed when the user is
not the device owner.

• There are two variable modals: bg-colour variable modal that stores
a different value (colour) depending on the context (i.e., whether the
current user is owner or not), and the calendars variable modal that
stores a different list of calendars depending on the context.

Listing 8.4 shows the implementation of the Kalenda application in Flute.
The GUI concerns of the application and the interaction with the native
calendar APIs of the iOS are implemented using the symbiosis provisions of
iScheme (cf. Section 5.4).

Listing 8.4: The Implementation of the Kalenda in Flute
1 ;definition of the contetx source as a reactive value
2 (define current-user (ctx-event))
3

4 ;context predicates
5 (define (is-owner? current-user)
6 (equal? current-user device-owner))
7

8 (define (is-not-owner? current-user)
9 (equal? current-user not-device-owner))

10

11 ;calendar application defined as a mode belonging to the flute-apps modal
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12 (define calendar-assistant
13 (mode (flute-apps)
14 (office? location)
15 (config)
16 (lambda ()
17 (define calcontrollername "Flute Calendar Manager")
18 (define UIColor (OBJC-CLASS UIColor))
19 (define calcontroller (get iFluteappcontrollers calcontrollername))
20 (define tableView (OBJC-SEND calcontroller tableView))
21

22 (define (matching-events filter-pred)
23 (OBJC-SEND eventstore eventsMatchingPredicate: filter-pred))
24

25 (define (refresh-tableview colour)
26 (OBJC-SEND calcontroller setBackgroundColor: colour)
27 (OBJC-SEND tableView reloadData))
28

29 ;variable modal for calendar objects
30 (define calendars (modal (current-user)))
31

32 ;variable mode - personal calendars
33 (mode (calendars)
34 (is-owner? current-user)
35 (get-personal-calendars))
36

37 ;variable mode - public calendars
38 (mode (calendars)
39 (is-not-owner? current-user)
40 (get-public-calendars))
41

42 ;variable modal for background colour
43 (define bg-colour (modal (current-user)))
44

45 ;variable mode - public agenda colour
46 (mode (bg-colour)
47 (is-not-owner? current-user)
48 (OBJC-SEND UIColor brownColor))
49

50 ;variable mode - private agenda colour
51 (mode (bg-colour)
52 (is-owner? current-user)
53 (OBJC-SEND UIColor grayColor))
54

55 ;procedure modal for agenda behavioural variations
56 (define agenda (modal (current-user)
57 (define date-range 2)
58 (define display-scale 4)))
59

60 ;procedure mode - showing private agenda behaviour
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61 (define show-private-agenda
62 (mode (agenda)
63 (is-owner? current-user)
64 (config)
65 (lambda ()
66 (define cals-array (list->NSMArray calendars))
67 (define filter-pred (create-pred cals-array date-range))
68 (define day-events (matching-events filter-pred))
69 (define eventslist (OBJC-INSTANCE NSMutableArray))
70 (set-events-list! eventslist)
71 (set-default-cal! (car calendars))
72 (add-events-to-eventslist eventslist day-events)
73 (set! display-scale 8)
74 (scale display-scale)
75 (refresh-tableview bg-colour))))
76

77 ;procedure mode - showing public agenda behaviour
78 (define show-public-agenda
79 (mode (agenda)
80 (is-not-owner? current-user)
81 (default-config)
82 (lambda ()
83 ;... event filtering and agenda items setup
84 (set-events-list! eventslist)
85 (set-default-cal! (cdr calendars))
86 (refresh-tableview bg-colour))))
87

88

89 (agenda))))

In the above implementation, calendar-assistant is a mode definition
for the Kalenda application that belongs to the flute-apps modal (cf.
the implementation of the iFlute platform in Section 8.3). It is associated
with the context predicate office? to specify that it is launched when the
user is in his/her office. The office? context predicate operates on the
context source location that was specified as part of the definition of the
flute-apps modal (cf. Listing 8.3). The current-user context source
is a reactive value which is defined using the ctx-event construct. At any
given time, the value of the current-user denotes the current user of the
device (i.e., the owner or not the owner). In this scenario, we use the device
orientation sensor of the iOS to simulate the different device users. But in
the future, we can imagine the use of NFC-enabled wristwatches to detect
the identity of a user. The is-owner? and is-not-owner? context
predicates evaluate to true or false depending on whether the current device
user is the owner or not. As with the iFlute platform implementation, we
assume that the context predicates are mutually exclusive (i.e., at most one
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context predicate can be satisfied).
The two variable modals calendars and bg-colour respectively store

a different calendar list and background colour depending on the current con-
text of use. The calendar variable modal consists of two modes: the first
mode is associated with the is-owner? context predicate and evaluates
to the list of personal calendars, while the second mode is associated with
the is-not-owner? context predicate and evaluates to the list of pub-
lic calendars. In this scenario, the calendars are retrieved from the iOS
native calendar store using the iScheme constructs. The bg-colour vari-
able modal also consists of two modes: one that evaluates to the colour
grey, and the other evaluates to the colour brown. The colour values are
retrieved from the iOS APIs using the iScheme symbiosis constructs. The
agenda modal groups together different modes of the calendar. It speci-
fies the current-user as the context source. In addition, it includes the
shared variables date-range and display-scale that specify the range
of agenda items to show and the display scale for the calendar.

The show-private-agenda mode implements the context-dependent
behaviour for showing private agenda items. It is associated with the
context predicate is-owner?, which ensures that the private agenda
items are shown only when the device is being used by the owner. The
show-private-agenda mode specifies its modal as agenda. Note
that since the show-private-agenda mode is defined within the
calendar-assistant mode, it inherits the context predicate office?
that is associated with the calendar-assistant mode (cf. propagation
of context predicates in Section 6.5.7). This implies that both office? and
is-owner? context predicates should be satisfied during the execution of
the show-private-agenda mode. In addition, it specifies the configura-
tion option as config. As defined in Listing 8.3, the config configurations
specify suspend, resume, and isolated as the interruption, resumption
and state scoping strategies. The suspend and resume strategies ensure
that the device owner always resumes from the same point as before, in case
the device owner gives the device to another user. The isolated strategy
ensures that state changes remain local to the show-private-agenda
mode. Thus the state change that is performed on the display-scale
variable (i.e., (set! display-scale 8)) remains only visible to the
show-private-agenda mode.

As calendars and bg-colour are variable modals, they evaluate to
values of modes that are guarded by the context predicate is-owner?
when they are accessed in the body of show-private-agenda. The
cals-array variable is an array of the calendars that should be shown
to the device owner. Agenda items are filtered using the date-range vari-
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able before being added to the list of events for display.
The show-public-agenda procedure mode implements the context-

dependent behaviour for showing public agenda items. It belongs
to the agenda modal and is associated with the context predicate
is-not-owner? that specifies the context it is constrained to run
in. Additionally, the show-public-agenda mode is specified with the
default-config that designates suspend, restart, and immediate
as the interruption, resumption and state scoping strategies. The restart
interruption strategy signifies that execution is restarted (cf. Section 4.8).
The motivation for the restart strategy is that since the device may be
given to several users, it is appropriate to restart the execution for each user.
Similar to the show-private-agenda mode, accessing the calendars
and bg-colour variable modals evaluate to the appropriate value for the
context of use.

Evaluation
The previous section has presented the implementation of the Kalenda appli-
cation in Flute. Below we highlight the benefits of using Flute to implement
such an application.

• In the Kalenda implementation, we use Flute’s ctx-event to rep-
resent the context source current-user as a reactive value. As
current-user is a reactive value, context predicates is-owner?
and is-not-owner? operate on it without explicit use of event
handlers. Additionally, the developer does not need to worry about
ensuring that its value is up-to-date. The Flute runtime ensures
that the value of current-user automatically updated whenever
a new value becomes available from the device orientation sensor (cf.
Requirement R.1 Chained Context Reactions).

• The context-dependent behaviours of the agenda are implemented
by the show-private-agenda and show-public-agenda pro-
cedure modes. Each agenda mode is associated with a context pred-
icate that is not only used to determine its applicability but also for
constraining its entire execution to the correct context. The Flute lan-
guage runtime ensures that the context predicate is satisfied through-
out the procedure mode’s execution. This eliminates the need for ex-
plicit context checks in the body of the mode (cf. Requirement R.2
Context-dependent interruptions). Additionally, the support for modes
of variables enable the creation of variables that evaluate to a different
value depending on the current context of use.
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• The modal abstraction enables grouping of related behavioural or vari-
able modes under a single entity. New modes can be added at run-
time as required. That is, new context-dependent behavioural modes
can be added to the agenda modal without requiring modification
to the show-private-agenda and show-public-agenda proce-
dure modes. When the agenda modal is invoked, the procedure mode
whose context predicate is satisfied is selected for execution. This elim-
inates the need to select manually the right mode to execute for the
current context of use (cf. Requirement R.4 Contextual dispatch).
Moreover, the dispatching process is automatically is repeated when-
ever a relevant context change is observed. Thus new modes that are
added to a modal at runtime become part of the potential modes the
dispatcher can select from (cf. Requirement R.5 Reactive dispatch).

• Each agenda mode is associated with an interruption strategy, a re-
sumption strategy, and a state scoping strategy. For instance, the
show-private-agenda mode is associated with (suspend resume
isolated). This designates that the mode’s execution is suspended if
the context predicate is no longer satisfied, resumed if the context
predicate becomes satisfied again, and that any state changes made
during the mode’s execution remain only locally visible. The devel-
oper does not need to worry about scoping the state changes that are
performed during the execution of a mode (cf. Requirements R.2
Context-dependent interruptions, R.3 Context-dependent resumptions,
and R.6 Reactive scope management).

8.5 Implementing the Pulinta Application
The second application that is included on the iFlute platform is the Pulinta
application. As introduced in Section 8.2, the Pulinta is enhanced with
context-awareness such that it is launched when the user enters a printer
room. Additionally, the printing behaviour is enhanced with context-
awareness such the printing of confidential documents continues only if the
user is alone in the printer room. The implementation of the Pulinta appli-
cation is structured as follows.

• The procedure modal of the Pulinta application is the printing
modal. It groups together context-dependent behaviours (procedure
modes) of the Kalenda application. The printing modal specifies
the motion detector as the context source. In this scenario, we use the
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Figure 8.4: The Pulinta Application running when the user is in the printer
room.

Modal Mode Context predicate Context source

printing confidential-printing alone?
regular-printing people-nearby? motion-detector

documents confidential documents alone?
regular documents people-nearby?

Table 8.3: Modals and modes of the Pulinta application.



8.5. IMPLEMENTING THE PULINTA APPLICATION 179

proximity sensor of the iOS device to indicate whether a user is alone
or not.

• There are two procedure modes of the Pulinta application: the
confidential-printing mode for printing confidential docu-
ments, and the regular-printing mode for non-confidential doc-
uments. The confidential-printing mode should only be exe-
cuted when the user is alone in the printer room.

• In addition, the Kalenda application includes the documents vari-
able modal that evaluates to the appropriate list of documents to print
depending on the current context of use (i.e., the user is alone or not).

Listing 8.5 shows the implementation of the Pulinta application in Flute.
For brevity the implementation eliminates the GUI concerns of the applica-
tion (a complete record of the implementation is provided in the appendix).

Listing 8.5: Implementation of the Pulinta application in Flute.
1 ;defining the context source for user detection
2 (define motion-detector (ctx-event))
3

4 (define printing-assistant
5 (mode (flute-apps)
6 (printer-room? location)
7 (config)
8 (lambda ()
9 (define documents (modal (motion-detector)))

10

11 (define printing (modal (motion-detector)
12 ;shared variable for paper level
13 (define paper-level (tray-load))))
14

15 ...
16 (mode (documents)
17 (alone? motion-detector)
18 (filter confidential? app-directory))
19

20 (mode (documents)
21 (people-nearby? motion-detector)
22 (filter regular? app-directory))
23

24 (define confidential-printing
25 (mode (printing)
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26 (alone? motion-detector)
27 (default-config)
28 (lambda ()
29 (define print-queue documents)
30 (define header "Confidential")
31 (define owner user-name)
32 ;loop over documents
33 ;add metadata and print
34 (for-each
35 (lambda (doc)
36 (metadata header owner doc)
37 (print doc))
38 print-queue))))
39

40 (define regular-printing
41 (lambda (printing)
42 (people-nearby? motion-detector)
43 (default-config)
44 (lambda ()
45 (define print-queue documents)
46 ;loop over documents and print
47 (for-each
48 (lambda (doc)
49 (print doc))
50 print-queue))))
51 ...
52 (render-toner-paper-status)
53 (printing))))

The printing-assistant mode belongs to the flute-apps modal
(cf. Listing 8.3) and is specified with a context predicate printer-room?
which implies that the application is launched only when the user enters a
printer room. Line 9 creates the documents variable modal whose value
is a list of either confidential or regular documents depending on the cur-
rent context of use when it is accessed (i.e., confidential documents if the
user is alone in the printer room and regular documents if there is an-
other person in the printer room). The presence of another person in
a printer room is derived from the context source motion-detector.
Line 11 creates the printing procedure modal. It consists of the
confidential-printing and regular-printing modes. A context
predicate is associated with each mode to specify when it should be exe-
cuted. For instance, the confidential-printing mode is associated
with the alone? context predicate, which implies that the mode should be
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executed only if the user is alone in the printer room. Therefore, suppose the
confidential-printing mode is executing and another person walks
into the printer room, the printing is suspended and resumed from where it
left off, when the person walks out of range.

Evaluation
As with the Kalenda application, using Flute to implement the Pulinta appli-
cation showcases the following strengths of the Flute programming language.

• Since the motion-detector context source as a reactive value, the
alone? and people-nearby? context predicates can operate on
it without using explicit callbacks (cf. Requirement R.1 Chained
context reactions).

• A context predicate is associated with each printing mode, which is
used by the Flute runtime to ensure that the entire mode executions is
constrained to run only in the correct context (cf. Requirement R.2
Context-dependent interruptions).

• The documents variable modal groups together different modes of
the variable, while the printing modal serves as a grouping en-
tity for different printing modes (i.e., the regular-printing and
confidential-printing modes). Flute’s dispatching mechanism
ensures that the right printing and documents modes are selected based
on the context predicates that are satisfied (cf. Requirement R.4
Contextual dispatch). Moreover, the dispatching process to select the
right printing mode to execute as other people enter or leave the printer
room (cf. Requirement R.5 Reactive dispatch).

• As in the Kalenda application, each printing mode is associated with
interruption, resumption, and state scoping strategies (cf. Require-
ments R.2 Context-dependent interruptions, R.3 Context-dependent
resumptions, and R.6 Reactive scope management).

8.6 Implementing the Tasiki Application
The third example is the Tasiki application, which is a context-aware task
assistant application. The application launches to assist the user to perform
certain tasks (e.g., making phone calls, and processing emails). For instance,
when the user is in a conference room at his/her workplace, the application
checks if there are any co-workers contacts to call and offers to initiate a phone
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call. Similarly, when the user is in his/her car the application automatically
offers to initiate phone calls to the business contacts. The implementation
of the Tasiki application is structured as follows.

Modal Mode Context predicate Context source

to-call call-from-car in-car?
call-from-conference-room at-conference-room?

contacts-list business-contacts in-car? location
co-workers-contacts at-conference-room?

Table 8.4: Modals and modes of the Tasiki application.

• The to-call is a procedure modal that groups together the context-
dependent behavioural variations of the Tasiki application. It relies
on the context source is location whose value indicates whether the
user is in his car or in a conference room at his/her workplace.

• Currently, there are two context-dependent behavioural variations of
the to-call modal: the call-from-car procedure mode, and the
call-from-conference-room procedure mode.

• The variable modal contacts-list is a reference to the contacts
database on the phone. It has two modes: the business-contacts
and co-workers-contacts each representing the contacts to call
in the respective category.

Listing 8.6 shows the implementation of the Tasiki application in Flute.

Listing 8.6: Implementation of the Tasiki application in Flute
1 ;context predicate definitions
2 (define (at-conference-room? user-location)
3 (equal? user-location ’conference-room))
4

5 (define (in-car? user-location)
6 (equal? user-location ’car))
7

8 (define (at-conference-room-or-car? user-location)
9 (or (at-conference-room? user-location)

10 (in-car? user-location)))
11

12 (define task-assistant
13 (mode (flute-apps)
14 (at-conference-room-or-car? location)
15 (config)
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16 (lambda ()
17

18 (define to-call (modal (location)))
19

20 (define contacts-list (modal (location)))
21

22 (mode (contacts-list)
23 (at-conference-room? location)
24 (co-workers-contacts))
25

26 (mode (contacts-list)
27 (in-car? location)
28 (biz-contacts))
29

30 (define call-from-car
31 (mode (to-call)
32 (in-car? location)
33 (config)
34 (lambda ()
35 (show "calling business contacts")
36 (if (null? contacts-list)
37 (show "business contacts list is empty")
38 (let ((contact (car contacts-list)))
39 (set! contacts-list (cdr contacts-list))
40 (show (contact-name contact))
41 (dial (phone-number contact))
42 (turn-on-phone-speaker)
43 (connect-to-car-speakers)
44 (if (dial-next-contact? (user-response))
45 (to-call)))))))
46

47 (define call-from-conference-room
48 (mode (to-call)
49 (at-conference-room? location)
50 (config)
51 (lambda ()
52 (show "calling co-workers contacts")
53 (if (null? contacts-list)
54 (show "co-workers contacts list is empty")
55 (let ((contact (car contacts-list)))
56 (set! contacts-list (cdr contacts-list))
57 (show (contact-name contact))
58 (dial (phone-number contact))
59 (turn-on-phone-speaker)
60 (connect-to-conference-equipment)
61 (if (dial-next-contact? (user-response))
62 (to-call)))))))
63 (to-call))))
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In the above implementation, task-assistant is a mode that rep-
resents the entire Tasiki application and belongs to the flute-apps
modal (cf. the implementation of the iFlute platform in Sec-
tion 8.3). The task-assistant is specified with the context predicate
at-conference-room-or-car? (cf. Line 14), which implies that the
application should only be launched when the user is either at his/her
workplace’s conference room or in his/her car. The task-assistant
mode includes the call-from-conference-room procedure mode (cf.
Lines 47-62) and call-from-car procedure mode (cf. Lines 30-45) that
are grouped together under the to-call procedure modal. The variable
modal contacts-list (cf. Line 20) has two modes for the business con-
tacts and co-workers contacts to call. Both the to-call procedure modal
and the contacts-list variable modal rely on the location reactive
value as the context source for the context predicates of their modes.

Each mode is guarded by a context predicate that constrains it to run
only under a specific context. For instance, the call-from-car mode
is guarded by the in-car? predicate which ensures that it is only exe-
cuted when the user in his/her car. Observe that procedure modes in this
example are implemented in a recursive style. Each procedure modes calls
the to-call modal, which re-dispatches over the correct procedure mode
to execute again. A mode’s execution starts by showing a message on the
phone’s screen showing the kind of contacts the user is calling. A contact is
retrieved from the list of contacts contacts-list. As contacts-list
is a variable modal, accessing it yields a different contacts list depending
on the context of use (i.e., business contacts or co-workers contacts). Af-
ter retrieving the contact, we perform a mutation on the contacts-list
variable modal in order to update it to the remaining contacts to call. Note
that mutating a variable modal only affects the contacts list of the variable
mode that corresponds to the current context of use (cf. Variable modal as-
signment semantics Section 6.4.1). Next we show the contact’s name on the
screen, dial the phone number and turn the phone’s speaker. A connection is
then established to the car’s speakers or conference room phone equipment
depending on whether the user is in his/her car or is in the conference room.
After the call is finished, the user is prompted whether he/she wants to con-
tinue with the next contact. If the user chooses to continue, the to-call
modal is called again, and the dispatching process is repeated again. If the
user moves out of a certain context (e.g., out of the car), the procedure
mode’s execution is suspended. The execution is resumed to proceed with
the next contact the next time the user moves back to the right context.
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Evaluation
The above implementation of the Tasiki application in Flute showcases the
following strengths:

• The above implementation benefits from Flute’s support for contextual
and reactive dispatch to determine the right procedure mode to execute
for current context of use without use of explicit conditional checks. By
invoking the to-call modal, the Flute language runtime selects the
right mode to execute calling mode.

• Flute’s support for variable modals and variable modes enables the
variable reference contacts-list to yield different contacts list de-
pending on the current context of use. Moreover, when variable modal
is mutated, the language runtime ensures that only the variable mode
that matches the current context is affected. This enables use of a
single reference to the contacts list and eliminates the need for extra
checks to select the right contacts list.

• As with the Kalenda and Pulinta application, each procedure mode
is associated with a configuration config that specifies the interrup-
tion, resumption and state scoping strategies that enable procedure
executions to be interrupted and resumed at any moment.

In the above sections, we have presented the implementation of the
context-aware applications that are deployed on the iFlute platform. Fig-
ure 8.5 depicts an overview of the executions of the each of the applica-
tions. For brevity, the figure shows only the execution paths for procedure
modal, procedure modes, variable modals, and variable modes. The exe-
cution paths for regular Scheme procedures are not depicted. The arrows
from the call-from-car and call-from-conference-room proce-
dure modes to the to-call procedure modal depict recursion.

8.7 Related Work Revisited
In Chapter 3, we reviewed the state of the art for programming languages
and techniques for context-aware applications. In this section, we compare
our approach with the state of the art.

8.7.1 Comparing Flute with First-class Continuations
Having demonstrated the use of the Flute language in implementing exam-
ple reactive context-aware applications, it is appropriate to show how closely
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flute-apps
procedure modal

calendar-assistant
procedure mode

show-private-agenda
procedure mode

show-public-agenda
procedure mode

agenda 
procedure modal

printing-assistant
procedure mode

task-assistant
procedure mode

calendars 
variable modal

bg-colour 
variable modal

brown-colour
variable mode

personal calendars
 variable mode

grey-colour
variable mode

public calendars
 variable mode

printing
procedure modal

regular
procedure mode

confidential
procedure mode

documents
variable modal

confidential documents
variable mode

regular documents
variable mode

to-call 
procedure modal

call-from-conference-room
procedure mode

call-from-car 
procedure mode

contacts-list
variable modal

co-workers-contacts
variable mode

business-contacts
variable mode

Figure 8.5: An overview of the execution paths for the context-aware appli-
cations on the iFlute platform.

related approaches compare with Flute when implementing similar appli-
cations. In this comparison, we consider parts of the Tasiki example and
re-implement them using first-class continuations (cf. Section 3.4). We con-
sider first-class continuations because from the survey of the state of the
art (cf. Chapter 3), first-class continuations are one of the few approaches
that enable interrupting and resuming ongoing procedure executions, albeit
explicitly.

We re-implement the behaviour of the call-from-car procedure mode
(cf. Listing 8.6) of the Tasiki application using call/cc construct of the
Scheme programming language. In order to be able to express interruptions
using first-class continuations, we will first implement a high-level construct
save/suspend using call/cc.

Listing 8.7: Implementation of the save/suspend procedure using
call/cc
1 (define escaper
2 (lambda ()
3 "escaper thunk"))
4

5 (define escaper-init
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6 (lambda (continue)
7 (set! escaper continue)))
8

9 (call/cc escaper-init)
10

11 (define resume
12 (lambda ()
13 "no suspended execution found"))
14

15 (define suspend
16 (lambda (exit-procedure)
17 (escaper (exit-procedure))))
18

19 (define (save-execution execution)
20 (set! resume execution))
21

22 (define save/suspend
23 (lambda ()
24 (call/cc
25 (lambda (continue)
26 (save-execution continue)
27 (suspend (lambda () ’suspended))))))

Listing 8.7 shows the implementation of the save/suspend procedure (cf.
Lines 22-27). The save/suspend procedure captures the current continu-
ation using call/cc native procedure and suspends the current execution.
We implement a number of helper procedures such as escaper in order to
achieve the desired semantics. The captured continuation is saved in the
resume variable.

Having implemented the save/suspend procedure, we will now show
how it can be used to express interruptible context-dependent executions.
Listing 8.8 shows the implementation of the call-from-car using the
save/suspend procedure.

Listing 8.8: Implementation of the call-from-car mode using call/cc
1 (define call-from-car
2 (lambda (contacts-list)
3 (if (in-car? location)
4 (show "calling business contacts")
5 (save/suspend))
6 (if (null? contacts-list)
7 (show "the queue for business contacts is empty")
8 (let ((contact (car contacts-list)))
9 (if (in-car? location)
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10 (show (contact-name contact))
11 (save/suspend))
12 (if (in-car? location)
13 (dial (phone-number contact))
14 (save/suspend))
15 (if (in-car? location)
16 (turn-on-phonespeaker)
17 (save/suspend))
18 (if (in-car? location)
19 (connect-to-car-speakers)
20 (save/suspend))
21 (if (in-car? location)
22 (if (dial-next-contact? (user-response))
23 (call-from-car (cdr contacts-list)))
24 (save/suspend))))))

In order to ensure that the call-from-car procedure is constrained to
execute only if the user is in the right context (i.e., in his/her car), the
in-car? condition is inserted before every expression in the procedure
body (Lines 3, 9, 12, 15, 18, and 21). If the context condition is false (i.e.,
if the user is not in his/her car), then the procedure execution is saved and
suspended using the save/suspend procedure (Lines 5, 11, 14, 17, 20, and
24).

The above implementation of the call-from-car procedure is visi-
bly convoluted because of the repetitive code that is needed for context
checks, saving the execution state and suspending the execution. Clearly,
implementing reactive context-aware applications in this style is difficult and
error-prone. Even with all the context checks and manual execution state
management, the above implementation is lacking since it does not include
the logic of resuming suspended executions when previously unsatisfied con-
dition later become satisfied again. Moreover, the developer is still required
to perform manual dispatching to select the right procedure to execute for the
current context of use. Flute’s support for contextual and reactive dispatch
eliminates the need for such explicit context checks and manual dispatch.
It enables the developer to associate a context predicate with a procedure
mode only once and the language runtime implicitly re-evaluates the context
checks throughout the execution the procedure’s body expressions. More-
over, Flute’s support for reactive values facilitates event-driven resumption
of suspended executions.

8.7.2 Discussion
To further showcase how Flute compares with the exisiting approaches, we
present an overview of the evaluation of the state of the art alongside the
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Flute language (cf. Table 8.5). As Table 8.5 shows the Flute language satis-
fies all the programming requirements for reactive context-aware applications
(cf. Section 2.6).

• By representing context sources as reactive values Flute satisfies the
requirement R.1 of Chained context reactions. The enables implement-
ing context predicates as reactions to context changes without using
callbacks. Moreover, Flute’s language runtime automatically prop-
agates context changes among context sources that depend on each
other.

• By supporting procedure modes and variables, Flute satisfies the
requirement R.2 of Context-dependent interruptions. The Flute lan-
guage runtime ensures that the context predicates that are associated
with modes are satisfied throughout the procedure execution. This
eliminates the need for explicit context checks in the procedure body.

• Through the modal abstraction for grouping procedure modes or vari-
ables, Flute to satisfies the requirement R.4 of Contextual dispatch.
The right mode to execute for the current context of use is selected
based on the context predicate that is satisfied. Moreover, new modes
can be added to a modal as requiring without requiring modifications
to existing modes.

• Flute’s language runtime support for continuous selection of appropri-
ate modes to execute satisfies the requirement R.5 of Reactive dispatch.
Flute ensures that modes that are added to a modal at runtime become
potential candidates for the dispatcher to select from.

• Flute provides interruption and resumption strategies to enable the
developer specify what to do when the context predicate is no longer
satisfied or becomes satisfied again. By doing so Flute satisfies the re-
quirements R.2 of Context-dependent interruptions, and R.3 of Context-
dependent resumptions.

• Finally, Flute provides a number of state scoping strategies to enable
the developer specify how to scope the state changes made during a
mode’s execution. By doing so Flute satisfies the requirement R.6 of
Reactive scope management.
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8.8 Chapter Summary
In this chapter, we have demonstrated the Flute language in action by us-
ing it to implement concrete examples of reactive context-aware applica-
tions. For each application, we evaluated the Flute language against the
programming language requirements for reactive context-aware applications
(cf. Section 2.6). We subsequently compared Flute with first-class continu-
ations (which is a closely related approach that supports interruptions and
resumptions of executions), by implementing one of the applications using
the continuation abstraction of the Scheme programming language. Further-
more, we have presented an overview of the evaluation of existing approaches
alongside the Flute language, which shows that Flute satisfies all the pro-
gramming language requirements for reactive context-aware applications.
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In this concluding chapter we give a summary of how the preceding chap-
ters combine to answer the questions that we promised to tackle in Chapter 1
and the software engineering issues that we discussed in Chapter 2. We fur-
ther discuss the limitations of our work and also provide insights into poten-
tial research directions of our work.

9.1 Restating the Problem Statement
“I’m talking about the limitations of programming which force
the programmer to think like the computer rather than hav-
ing the computer think more like the programmer ”–Dmitriev
Sergey [Dmi04].

Current programming languages fall short of providing support for develop-
ing context-aware applications that must react promptly to a sudden
context change – especially if such a context change occurs in the mid-
dle of an ongoing procedure execution. Consequently, developers have little
choice but to resort to explicit management of the execution state (saving
and restoring the procedure execution state between context changes) and
explicit context checks (to ensure that the procedure execution is always
constrained to run only in the correct context). However, the un-
predictable nature of context changes renders it almost impossible for
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the developer to know beforehand at which points in the procedure body
to implement the above concerns. Doing this manually may result in incor-
rect application behaviour, such as a procedure continuing to run in a wrong
context. Also, the developer must ensure manually that the execution envi-
ronment remains in a consistent state between any interruptions caused by
context changes.

Programming language requirements. To tackle the above problems,
we put forward requirements that should be satisfied by a programming lan-
guage designed for developing reactive context-aware applications. Table 9.1
summarises those programming language requirements.

Language Requirement
R.1 Chained Context Reactions
R.2 Context-dependent Interruptions
R.3 Context-dependent Resumptions
R.4 Contextual Dispatch
R.5 Reactive Dispatch
R.6 Reactive Scope Management

Table 9.1: Revisiting the language requirements.

Survey of the state of the art. After putting forward the requirements
that should be satisfied by a programming language for reactive context-
aware applications, we performed a comprehensive study to evaluate the
strengths and limitations of the existing approaches. We surveyed the state of
the art of (context-oriented) programming languages and techniques that can
be used to develop context-aware applications (cf. Chapter 3). The survey
reveals that none of the reviewed approaches satisfies all the requirements.
To address the above requirements, we proposed the interruptible context-
dependent executions model and instantiated it in the Flute language. These
research artefacts form the contributions of the research presented in this
dissertation that we summarise in the next section.

9.2 Summary of the Contributions
The main goal of our research was to design and develop a programming lan-
guage that facilitates the development of reactive context-aware applications.
The programming language should satisfy the requirements summarised in
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Table 9.1. We have achieved that goal and satisfied all the requirements
through the following contributions. Our contributions are backed by an
executable semantics that runs on a mobile platform.

9.2.1 The ICoDE Model
In Chapter 4, we proposed the interruptible context-dependent executions
model (ICoDE) [BVDR+12]. The ICoDE model defines the properties and
boundaries of a programming language designed for developing reactive
context-aware applications. For each language property, we discussed de-
sign considerations that need to be taken into account in order to support it
in a concrete programming language. Below we summarise the distillation of
the properties of the interruptible context-dependent executions model.
Predicated procedures. We argued that each context-dependent proce-

dure should be associated with a context predicate that is implicitly
checked throughout the execution of the procedure body. This prop-
erty satisfies the requirement of Context-dependent interruptions
(R.2). Related predicated procedures are grouped together under a
single identity. In addition, any variables that are shared among the
predicated procedures belonging to the same identity can be specified
as part of the group identity definition. New predicated procedures can
be added to an existing grouping entity at runtime without requiring
any modifications of the existing predicated procedures.

Representing context as reactive values. We argued that reactive val-
ues are suitable abstractions for representing context sources. This
makes it possible to compose context predicates with the rest of a
context-dependent program without having to use explicit event han-
dlers. Moreover, representing context as reactive values facilitates the
event-driven resumption of suspended executions. This property satis-
fies the requirement of Chained context reactions (R.1).

Reactive dispatching. We argued that the selection of the predicated pro-
cedure to run for the current context should be based on the context
predicate that evaluates to true. By supporting this kind of dispatching
mechanism the ICoDE model satisfies the requirement of Contextual
dispatch (R.4). Moreover, the dispatching process is continuously re-
peated to take into account of any new context changes. This satisfies
the requirement of reactive dispatch (R.5).

Interruptible executions. This property ensures that the execution of a
predicated procedure is constrained to run only under the its prescribed
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context predicate. If the context predicate is no longer satisfied the exe-
cution can be interrupted based on the developer-specified interruption
strategies: suspend and abort. Additionally, the language should pro-
vide a construct that enables developers to demarcate certain critical
regions in a program as “uninterruptible”. This property satisfies the
requirement of Context-dependent interruptions (R.2).

Resumable executions. This property ensures that the execution of a pre-
viously interrupted procedure execution can be later reinstated. It is
desirable that an ICoDE language enables the developer to specify a
resumption strategy: resume or restart. This property satisfies the
requirement of Context-dependent resumptions (R.3).

Scoped state changes. Due to the fact that the execution of predicated
procedures can be suspended or resumed at a later moment, it may
result in situations where state changes performed during the execution
of one procedure become visible to other executions. We identified three
state scoping strategies, namely, immediate visibility, deferred visibility,
and isolated visibility – that a programming language should provide
to the developer to scope the visibility of state changes. This property
satisfies the requirement of Reactive scope management (R.6).

9.2.2 The iScheme Mobile Language Laboratory
In Chapter 5, we presented iScheme [BVB+12], a language laboratory that
we built to facilitate experimenting with the language constructs and features
for a programming language designed for developing reactive context-aware
applications. iScheme blends the rich programming properties of the Scheme
language and a state-of-the-art mobile device that is equipped with context
sensors to enable realistic experiments. For our experiments, we chose Ap-
ple’s iOS devices that include the iPhone smartphone and the iPad tablet.
In order to realise the iScheme language laboratory:

• We ported Scheme, which is a small but rich interpreted language, to
the iOS platform; a mobile operating system for the iOS devices.

• We engineered a language symbiosis between Scheme and Objective-
C [Koc09]. With this language symbiosis in place, iScheme provides
developers with an event-driven programming model for accessing iOS’s
context sensors with higher-order procedures used as event handlers.

• We built distribution constructs specially tailored for distributed mo-
bile computing environments. These distribution constructs are based
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on the ambient-oriented programming model [Ded06] and have built-in
support for peer-to-peer service discovery, asynchronous remote mes-
saging, and failure handling. This enables distribution concerns (e.g.,
accessing remote contextual information) to be encapsulated in high-
level constructs while relieving developers of the difficulties engendered
by distribution.

9.2.3 An ICoDE Language: Flute

In Chapter 6, we presented Flute [BVDR+12], a proof-of-concept program-
ming language that we built on top of iScheme to facilitate the development
of reactive context-aware applications. The Flute language adheres to the
ICoDE model. We described its language constructs by way of a running
example (i.e., a context-aware calendar application). We further validated
the language constructs in Chapter 8. Flute has been implemented as a
meta-interpreter on top of iScheme [BVB+12]. This executable semantics
was presented in Chapter 7. By incorporating the interruptible context-
dependent executions model, Flute satisfies the language requirements for
reactive context-aware applications and answers the research questions for-
mulated in Section 1.4. Below we summarise the abstractions of the Flute
language and their mapping to the language requirements and research ques-
tions.

• Flutes supports variable modes that facilitate the creation of variables
whose value depends on context.

• Flute supports procedure modes that enable developers to express pred-
icated procedures with a single context predicate that is implicitly
checked throughout the mode execution. By supporting modes of
procedures and variables, Flute satisfies the requirement of Context-
dependent interruptions (R.2) and answers Research Question 1:
How to constrain a procedure execution to only occur under a particu-
lar context condition?

• Flute supports the modal abstraction that enables developers to group
together related modes and specify variables that are shared by those
modes. The design of modals facilitates adding new modes at run-
time. By providing the modal abstraction, Flute answers Research
Question 5: How can context-dependent behaviours be expressed in such
away that new unanticipated behavioural variations can be added as re-
quired without requiring modification of existing behaviour definitions?
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• Flute supports the reactive dispatching mechanism that continuously
takes into account new context changes in order to select the applicable
modes for the current context of use. By supporting the reactive dis-
patching mechanism, Flute satisfies the requirements of Contextual
dispatch (R.4) and Reactive dispatch (R.5), and answers Research
Question 6: How can the dispatching process of which behavioural vari-
ation to execute be scheduled take into account of the current and the
future context?

• Flutes supports interruptible and resumable executions. It provides
interruption strategies (suspend and abort) that enable the developer
to specify what to do with the execution when the associated context
predicate is no longer satisfied. Additionally, Flute provides resump-
tion strategies (resume and restart) that enable the developer to specify
what to do with the suspended execution when its associated context
predicate later becomes satisfied again. Through its interruption and
resumption strategies, Flute satisfies the requirements of Context-
dependent interruptions (R.2) and Context-dependent resump-
tions (R.3) and answers Research Question 2: What should happen
when a context change occurs in the middle of an ongoing procedure
execution? Should the execution be interrupted and possibly be resumed
later on?

• Flute provides a number of state scoping strategies (immediate, de-
ferred, and isolated) that enable the developer to control the visibility
of state changes to the shared state. By providing state scoping strate-
gies, Flute satisfies the requirement of Reactive scope management
(R.6) and answers Research Question 3: How to ensure that a proce-
dure execution occurs in a consistent state even when the execution is
interrupted before its completion?

• Flute provides the ctx-event construct for representing context
sources as reactive values. Reactive values employ a push-driven eval-
uation model for automatic propagation of context changes among de-
pendent context sources. Moreover, reactive values facilitate the event-
driven resumption of suspended executions. By representing context
sources as reactive values, Flute satisfies the requirement of Chained
context reactions (R.1) and answers Research Question 4: How can
context be represented in the underlying programming language such
that it can be manipulated, reacted upon, and combined with other pro-
grams?
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9.2.4 The iFlute Platform

In Chapter 2, we presented a visionary mobile application model where mo-
bile platforms are enhanced with context awareness to automatically launch
the appropriate application without requiring the user to explicitly to tap an
icon to launch the application. In order to ground our vision we introduced a
scenario (dubbed BainomuAppies in Kampala). In the BainomuAppies sce-
nario, buses and minibuses in Kampala are equipped with an onboard digital
platform that runs a suite of applications. The currently running applica-
tion as well as its behaviour depends on contextual information such as the
geolocation of the bus, the proximity of other buses and certain stops, and
the identity of the passengers that happen to be onboard the bus at a cer-
tain moment in time. From this scenario, we derived programming language
requirements that should be satisfied by a language designed for developing
reactive context-aware applications.

In Chapter 8, we presented a prototype implementation of a mobile
platform called the iFlute platform that epitomises that mobile application
model. The iFlute platform runs on iOS and is developed using the Flute
language and iScheme. The iFlute platform contains a suite of mobile appli-
cations for different contexts. To alleviate the burden of manually selecting
which application to run for the current task, the iFlute platform is enhanced
with context-awareness to automatically present the user the appropriate be-
haviour for the task at hand. When there is a context change, the running
application’s behaviour is promptly interrupted. The application’s execution
state is automatically saved between interruptions and the application is able
to resume from where it left off at a later moment when the user goes back to
the previous context. We developed example mobile applications using Flute
and deployed them on the iFlute platform. These include a context-aware
calendar application, a context-aware printer assistant, and a context-aware
task guide.

9.3 Limitations and Future Work

No research is without limitations and science will never be finished. The
work presented in this dissertation is not an exception to that “rule”. Below,
we discuss some of the limitations of our work as well as future research
directions of our work.
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9.3.1 Custom Strategies

As discussed in Section 6.5.4, the interruption and resumption of a procedure
execution is based on a developer-specified strategy. The instantiation of
the ICoDE model in Flute offers the developer a number of strategies to
select from when defining a mode. As discussed in Section 7.5.6 the Flute
meta-interpreter is structured to allow the definition of new interruption and
resumption strategies. However, Flute does not offer any meta-level hooks
that enable the developer to create custom strategies without modifying the
interpreter.

Such hooks would empower the developer with the flexibility to define
different interruption and resumption strategies other than the predefined
ones. Realising such support requires exposing the evaluation process to
the Flute programs since the interruption and resumption strategies involve
manipulating the evaluation process. A similar mechanism could be imagined
to enable the developer to define custom scoping strategies to control the
visibility of state change in an application-specific manner.

9.3.2 Garbage Collection of Suspended Executions

Garbage collection is an essential feature of modern programming languages
and so it is for an ICoDE language. As already discussed in the previous
chapters, procedure executions an ICoDE language are constrained to run
only when their associated context predicates are satisfied. If the context
predicate is no longer satisfied the procedure execution is interrupted (sus-
pended or aborted). A question that arises is how long should a suspended
procedure execution be stored before being subjected to garbage collection?
In the best case scenario the suspended execution will be resumed at a later
point when its associated context predicate becomes satisfied again. How-
ever, it is not always the case that every suspended procedure execution will
be resumed at some point in the future. In the worst case scenario, the
context predicate that is associated with a suspended execution may never
become satisfied again. Such executions should be automatically garbage
collected by the language runtime.

The current implementation of the Flute language does not embed any
special techniques to identify such “never satisfied again” suspended execu-
tions. The main difficulty is due to the fact that it is almost impossible to a
priori identify context predicates that will never be satisfied again. Potential
solutions to this limitation include enabling the developer to specify a context
condition-based lease such that when it expires and the corresponding exe-
cution that is still suspended is automatically garbage collected [BCV+09].
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9.3.3 Evaluation Overhead

The interruptible context-dependent executions model advocates for inter-
rupting a procedure execution at any moment during the execution. To this
end, the associated context predicate is re-evaluated at every step of the
evaluation. This incurs an extra evaluation overhead because of extra checks
and evaluation of context predicates that needs to be performed. A possible
solution to this limitation is to explore the use of interrupts (as in operat-
ing systems [MR97]). Instead of re-evaluating the context predicate at every
evaluation step, the evaluation of a procedure body can continue evaluating
the procedure body expressions until an interrupt signal is raised indicating
that a context source has received a new value. Upon receiving the inter-
rupt signal the evaluator can the re-evaluate the context predicate. This can
reduce the overhead of the unnecessary re-evaluation of context predicates
even when their context sources have not received new values. Also, while
exploring the design spaces for the ICoDE model, we looked at the possibil-
ity of enabling the developer to explicitly demarcate certain regions of the
procedure body that are “interruptible” instead of the current choice of en-
abling the developer demarcate the “uninterruptible” regions. While such an
approach would limit the extra evaluation step to certain regions, it is not
always possible to identify such “interrupted regions” as context changes can
potentially occur at any moment as discussed in Section 2.3.

9.3.4 Ambiguous Context Predicates

Another limitation which is not specific to our approach but common to
other predicate-based dispatch approaches is the predicate ambiguity prob-
lem [Mil04, Val11]. Ambiguous context predicates may arise either when
there is no context predicate that is satisfied or there are multiple context
predicates that are satisfied at the same time. In case there is no context pred-
icate that is satisfied, this is not an issue for an ICoDE language because the
dispatching process is implicitly scheduled to be repeated when the relevant
context sources receive new values. Hence, a previously unsatisfied predi-
cate may later become satisfied when the dispatching process is repeated in
reaction to a context change. In case there are multiple context predicates
that are satisfied at the same time there is a need to specify the mode to
execute or the action to perform. The current instantiation of the ICoDE
model in Flute relies on the developer to write mutually exclusive context
predicates for modes that belong to the same modal. However, sometimes
the developer may specify ambiguous context predicates where multiple pred-
icates are satisfied at the same time. When the Flute dispatcher encounters
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such cases, an ambiguous context predicates exception is raised. However,
this is one design choice and there is room for exploring the solution space
to this problem. Previous predicate dispatching approaches attempt to re-
solve ambiguities by verifying that all predicates are mutually exclusive and
that at least one predicate must be true, at compile time. However, stati-
cally verifying the mutual exclusiveness of context predicates is only possible
if the language for expressing context predicates is limited and also if con-
text predicates are restricted to operate on a known domain of values. As
the ICoDE model does not impose any restriction on the domain values for
context predicates or the language for expressing context predicates, it is im-
possible to statistically verify the mutual exclusiveness of context predicates.
A possible solution to this problem is to consider a language specified choice
(e.g., selecting the first one) or a developer specified order (e.g., by assigning
priorities to the context predicates).

9.3.5 Distributed Interruptible Executions

In this dissertation, we have explored the interruptible context-dependent
executions (ICoDE) model in a non-distributed setting. A potential future
research track is extending the ICoDE model in a distributed setting. Rather
than context-dependent executions that are interrupted and resumed on the
same device, executions can be spread across multiple devices. We can en-
vision scenarios where it may be desirable to interrupt an ongoing context-
dependent execution on one device and resume it on another device. In
previous work [BVT+09], we investigated a service partitioning model to
enable non-technical users to migrate certain parts of software applications
from one device to another. It is therefore promising to investigate an in-
tegration of such service partitioning model with the ICoDE model. The
resulting model could enable interrupting a running application and seam-
lessly resuming it on another device. Consider for instance, a user playing a
game on a TV while at home. When the user leaves his/her home the running
game is interrupted and migrated to the user’s tablet device. The user can
resume from the exact point the game was interrupted and continue playing
the game on the tablet. A difficulty that we foresee lies in transmitting the
execution state between devices. The support for distribution of the iScheme
mobile language laboratory (cf. Chapter 5) provides the infrastructure for
experimenting with distributed interruptible context-dependent executions.
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9.3.6 An ICoDE Language for the Real World
In this dissertation, we have presented the first instantiation of the ICoDE
model in the Flute programming language. In Chapter 7, we presented its
proof-of-concept implementation through a meta-interpreter that is built on
top of iScheme. A meta-interpreter is great for establishing the exact seman-
tics of a programming language as well as experimenting with new language
constructs and features. However, the major drawback of a meta-interpreter
approach is that it introduces an evaluation overhead and suffers from per-
formance issues. More research is needed on building a “real world” ICoDE
programming language from the ground up using “a closer to the metal”
programming language like C. Such an implementation approach would also
permit building a fully interruptible system where every procedure call can be
potentially interrupted. In the current instantiation of the ICoDE model in
Flute, the evaluation of program expressions may result in procedure calls to
iScheme or Objective-C methods. However, it is not possible to constrain the
execution of the iScheme procedures or Objective-C methods to the context
predicate of a procedure mode to which such expressions belong. Implement-
ing an ICoDE programming language from the ground up would allow inter-
rupting almost every expression in a procedure body. Another possible incar-
nation of the ICoDE model is to explore its integration with existing context-
oriented programming approaches [HCN08, CH05, GMH07, VGC+10].

Another future research track is to apply an ICoDE language to bigger
“real world” case studies of reactive context-aware applications. One of these
is the BainomuAppies in Kampala scenario that was used to motivate re-
active context-aware applications in Chapter 2. As mentioned in Chapter 8
that scenario was not feasible to implement within the scope of a Ph.D.
dissertation because of its large scale and infrastructure demands (buses,
minibuses, onboard computers, etc.). The benefits of using an ICoDE lan-
guage to develop the BainomuAppies in Kampala scenario are twofold: our
work will be further validated using a bigger case study (possibly revealing
new research challenges), and the onboard digital platform on minibuses and
buses in Kampala will have a socio-economic impact on the lives of the peo-
ple in Kampala by providing them with an interactive digital information
platform. Also, we believe that in the near future sensors that are available
on mobile devices will become more and more precise (e.g., location sensors
with a centimetre level precision [Hum12]). This will give rise to new sce-
narios of reactive context-aware applications that will make the need for the
interruptible context-dependent executions model even more apparent.
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Appendix A

Additional Details of iScheme

In this appendix we provide further details of the iScheme language labo-
ratory. These include type conversions, interacting with native applications
via iScheme and lessons learned.

A.1 Type conversions in iScheme

When Scheme values are passed to Objective-C methods, implicit conversion
is performed to appropriate types in Objective-C (e.g., number to NSNumber
and string to NSString). In addition, we provide procedures to perform
explicit conversions of Scheme values to Objective-C values. For example, the
string->NSString procedure converts a Scheme string to an Objective-C
NSString. The number->NSNumber procedure converts a Scheme num-
ber to an Objective-C NSNumber. The list->NSMArray procedure con-
verts a Scheme list to an Objective-C NSMutableArray.

By default, return values from Objective-C methods are wrapped as
a generic OBJC_TYPE Scheme type, which is a Scheme value representa-
tion of Objective-C objects in the Scheme interpreter. iScheme provides
procedures for converting Objective-C values to their Scheme counterparts.
For example, the NSString->string procedure converts an Objective-C
NSString to a Scheme string. The NSNumber->number procedure con-
verts an Objective-C NSNumber to a Scheme number.

Let us illustrate the conversion procedures with an example of retrieving
the device model. The UIKit framework provides the UIDevice Objective-
C class that implements methods to access the device’s information such as
the name, the device model and the operating system name. We implement
this example in Scheme using the symbiosis constructs as follows:

1 ; An example of retreiving a mode of an iOS device using Scheme
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2 (define (show-my-device-details)
3 (let* ((UIDevice (OBJC-CLASS UIDevice))
4 (device (OBJC-SEND UIDevice currentDevice))
5 (device-model (OBJC-SEND device model))
6 (model-string (NSString->string device-model))
7 (device-details (string-append "device model: " model-string)))
8 (display device-details)))

The above code snippet shows the definition of the
show-my-device-details procedure that makes use of the type conver-
sion procedure NSString->string. The (OBJC-CLASS UIDevice)
expression returns a reference to the UIDevice class that is then
bound to a Scheme variable UIDevice. The (OBJ-SEND UIDevice
currentDevice) expression invokes the class method currentDevice
on the class UIDevice and returns the instance representing the current
device. We first send the message model to retrieve the Objective-C’s
NSString object for the device model. We then use the construct
NSString->string to convert the Objective-C string object to a Scheme
string. Evaluating the expression (show-my-device-details) displays
the model of the device as follows.

1 (show-my-device-details)
2 ===> device model: iPad

A.2 Interacting with Native iOS Applications
in iScheme

iScheme provides a scripting environment that enables developers to create
Scheme programs that dynamically interact with the native iOS applications
such as the music player, phone, SMS, calendar and contacts. This opens
the way for developers to prototype new ideas and test them directly on the
device without having to create a project, compile and deploy the application
as is the case in the Objective-C development. For instance, one can easily
develop a variation of the native iTunes application enriched with location
information (e.g., to stop playing music when a user walks into a meeting
room).

In the remainder of this section, we describe an example Scheme applica-
tion that interacts with the iTunes native media player application on the iOS
devices. Objective-C provides the Media Player framework that enables ac-
cess to the media library and methods to play movies, music, audio podcasts,
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and audio books. This framework enables developers to build applications
that make use of the media facilities. Using the symbiosis constructs in
Scheme, one can build such applications on the fly. The implementation of
such an application in Scheme is shown below.

1 (define (iTunes-controller)
2 (let* ((Controller (OBJC-CLASS MPMusicPlayerController))
3 (MQuery (OBJC-CLASS MPMediaQuery))
4 (query (OBJC-SEND MQuery songsQuery))
5 (musicPlayer (OBJC-SEND Controller iPodMusicPlayer)))
6 (OBJC-SEND musicPlayer setQueueWithQuery: query)
7 (lambda (action)
8 (case action
9 ((play) (OBJC-SEND musicPlayer play))

10 ((stop) (OBJC-SEND musicPlayer stop))
11 ((pause) (OBJC-SEND musicPlayer pause))
12 ((play-next) (OBJC-SEND musicPlayer skipToNextItem))))))

The iTunes-controller procedure reifies the behaviour
of the media player application. The expression (OBJC-CLASS
MPMusicPlayerController) loads the MPMusicPlayerController
Objective-C class and binds it to the Controller variable. The
MPMusicPlayerController class implements methods for retrieving
the instance of the media player.

The (OBJC-CLASS MPMediaQuery) expression loads the
MPMediaQuery class and binds it to the variable Query. The
MPMediaQuery class implements methods for constructing media query
types (such as albums, artists, or songs). In this example, we create a media
query of the music items grouped and sorted by the song name, by invoking
the method songsQuery on the MPMediaQuery class. Invoking the
method iPodMusicPlayer on MPMusicPlayerController returns
the reference to the device’s iPod music player instance that is bound to
the musicPlayer variable. Next, we set the playback queue by invoking
the method setQueueWithQuery: on the music player with the query
type. In this example, the playback queue contains all songs. In addition,
the music player provides methods play, pause, skipToNextItem to
control the playback queue.

The iTunes-controller procedure returns a dispatcher procedure 1

that takes one argument and performs the corresponding action (play, pause,

1iScheme provides a small prototype-based object system, which eliminates the need to
write a dispatcher procedure. For didactical reasons we write all examples in a procedureal
style.
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stop, skip to next item) depending on the specified argument. For example,
the following scripts can be evaluated directly on the device to play and
forward to next media items.
1

2 ;; example usage
3 (define my-iTunes-controller (iTunes-controller))
4

5 ; to start playing
6 (my-iTunes-controller ’play)
7

8 ; to play next song
9 (my-iTunes-controller ’play-next)

A.3 Lessons Learned
In this section we put forward our experiences gathered from porting Scheme
to the iPhone, implementing a language symbiosis between Objective-C and
Scheme, and implementing constructs that ease the development of the event-
driven applications for mobile devices. We generalise the key concepts to
make our experience usable to port other programming languages to the
iPhone device.

A.3.1 On Implementing Language Symbiosis with
Objective-C

Implementing language symbiosis with Objective-C is possible because of
its dynamism and reflective capabilities. The Objective-C runtime library
provides procedures to perform introspection (e.g., access to the methods a
class implements) and intercession (e.g., adding a class, replacing a method
implementation) on Objective-C objects at runtime. Below, we summarise
the language constructs that one needs to implement in order to realise an
interaction with Objective-C. For each construct we point out the relevant
key Objective-C runtime procedures required to implement it.

First, the symbiotic language needs to define a language construct for
loading Objective-C classes. For this, the Objective-C runtime library pro-
vides the procedure objc_getClass(const *class_name) that takes
the string name of a class and returns a pointer to the class definition. In
our Scheme, we implemented the OBJC-CLASS construct.

Second, an construct is required to provide means to send
messages to Objective-C instances from the symbiotic language.
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To this end, the Objective-C runtime provides a procedure
objc_msgSend(theReceiver, theSelector, args) that per-
forms message sends to an Objective-C object (the receiver) given a name
of a method (the selector), and an optional variable number of arguments.
A string representing a method name can be converted to a selector using
the NSSelectorFromString runtime library procedure. In our Scheme,
we implemented the OBJC-SEND construct.

The third set of language constructs is type conversion procedures. Type
conversion can be implicit – meaning that values of one language are auto-
matically converted to another language as they cross the bridge, or explicit
– meaning that the programmer makes use of the conversion procedures. In
our implementation, we perform automatic conversion when Scheme values
cross to Objective-C and provide the programmer with conversion procedures
(such as NSString->string) to convert Objective-C objects to Scheme
values.

Other than the language symbiosis constructs that enable interaction be-
tween two languages, there are extensions required in the symbiotic language.
First, the symbiotic language needs to be extended with a generic represen-
tation of the Objective-C objects. For example, we extend the Scheme value
types with the OBJC_TYPE as a wrapper for Objective-C objects in Scheme.
Second, a native procedure needs to be added to the symbiotic language
to handle the calls to Objective-C. For example, we extend our Scheme in-
terpreter with the SOC native procedure that serves as an interface to the
Objective-C world.

A.3.2 On the Method Call Overhead
Implementing language symbiosis between two languages involves a sacrifice
on performance. For example, method calls from Scheme to Objective-C
involve a significant overhead compared to method calls in plain Objective-C.
We performed preliminary benchmarks to quantify the method call overhead
caused by the symbiosis.

We measured the method call overhead (in ms) on the iPhone 3G with
ARM1176 412MHz and 128MB RAM running iPhone OS 3.1.3. We consid-
ered three different methods that vary by the number of parameters (zero,
one, and two). All three methods have empty bodies and the parameters are
of type NSNumber. Table A.1 shows the times per method call for the three
methods (in plain Objective-C versus calls from Scheme to Objective-C). For
each measurement we performed one million method calls.

There is a significant increase in the times of the method calls from
Scheme to Objective-C. We have not applied any optimisation techniques
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Table A.1: Preliminary benchmarks on the method call overhead from
Scheme to Objective-C.

Number of parameters
0 1 2

Method calls in Objective-C (ms) 0.00022 0.00023 0.00025
Method calls from
Scheme to Objective-C (ms) 0.13500 0.15500 0.16150

in our current implementation. One possible factor for this increase is the
fact that every Objective-C instance passed to Scheme needs to be wrapped
as a Scheme generic value OBJC_TYPE. In addition, for each Scheme value
passed to an Objective-C method, the symbiosis layer needs to check and
perform a type conversion to the appropriate Objective-C object. As future,
we would like to try performance enhancing techniques (such as caching of
the selectors and method implementations).

A.4 iScheme Editor for the iPad

Figure A.1: The screen shot of the iScheme front-end editor running on the
iPad device.



Appendix B

Flute Source Code

In this appendix we provide a complete record of the source code for the
executable semantics of the Flute meta-interpreter.

B.1 Implementation for Reactive Values

1 ; Flute-FRP implementation of FRP in iScheme.
2 ; Features: automatic dependency management.
3 ; Context sources are represnted as reactive values.
4

5 ; (define <variable> (ctx-event <expression>))
6 ; (update-value! <context-source> <expression>)
7 ; (lift <native-function>)
8

9 (define event-tag ’event-tag)
10 (define tag-idx 0)
11 (define height-idx 1)
12 (define value-idx 2)
13 (define thunk-idx 3)
14 (define consumers-idx 4)
15 (define id-idx 5)
16 (define initial-height 0)
17 (define undefined ’undefined)
18

19 (define (new-event)
20 (define thunk (lambda () ’no-value))
21 (vector event-tag initial-height undefined thunk ’() (getid)))
22

23 (define (ctx-event . value)

211
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24 (let ((self (new-event)))
25 (if (and (pair? value) (event? (car value)))
26 (begin
27 (register self (car value))
28 (set-thunk!
29 self
30 (lambda ()
31 (update-value!
32 self
33 (current-value (car value)))))
34 (update-value! self (current-value (car value))))
35 (if (pair? value)
36 (update-value! self (car value))))
37 self))
38

39 (define (event? any)
40 (and (vector? any)
41 (= (vector-length any) (vector-length (new-event)))
42 (eq? (vector-ref any tag-idx) event-tag)))
43

44 (define (any-is-event? objects)
45 (ormap event? objects))
46

47 (define (event-values events)
48 (map current-value events))
49

50 (define (register consumer producer)
51 (if (not (consumer-exists? consumer producer))
52 (let⇤ ((consumer-height (event-height consumer))
53 (producer-height (event-height producer))
54 (max-height (max consumer-height producer-height)))
55 (update-height! consumer (+ 1 max-height))
56 (new-consumer! producer consumer))))
57

58 (define (new-consumer! producer new-consumer)
59 (let ((consumers (vector-ref producer consumers-idx)))
60 (vector-set! producer consumers-idx (cons new-consumer consumers))))
61

62 (define (consumer-exists? consumer producer)
63 (member (event-id consumer)
64 (map event-id (event-consumers producer))))
65

66 (define (event-< event1 event2)
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67 (< (pq-element-priority event1) (pq-element-priority event2)))
68

69 (define (alert-consumers consumers)
70 (let ((toupdate-pq (make-pq ’() event-<)))
71 (for-each
72 (lambda (event)
73 (pq-insert! toupdate-pq event (event-height event)))
74 consumers)
75 (recompute (pq-sort toupdate-pq))))
76

77 (define (recompute stale-events)
78 (for-each
79 (lambda (event) ((event-thunk (cdr event))))
80 stale-events))
81

82 (define (update-value! event value)
83 (if (event? value)
84 (begin
85 (register event value)
86 (set-thunk!
87 event
88 (lambda ()
89 (update-value!
90 event
91 (current-value value))))))
92 (if (new-value? (current-value event) (current-value value))
93 (begin
94 (vector-set! event value-idx (current-value value))
95 (alert-consumers (event-consumers event)))))
96

97 (define (event-consumers event)
98 (vector-ref event consumers-idx))
99

100 (define (event-thunk event)
101 (vector-ref event thunk-idx))
102

103 (define (set-thunk! event thunk-value)
104 (vector-set! event thunk-idx thunk-value))
105

106 (define (current-value any)
107 (if (event? any)
108 (vector-ref any value-idx)
109 any))
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110

111 (define (undefined? value)
112 (eq? value undefined))
113

114 (define (event-id event)
115 (vector-ref event id-idx))
116

117 (define (new-value? old-value new-value)
118 (or (undefined? new-value)
119 (not (eq? old-value new-value))))
120

121 (define (event-height event)
122 (vector-ref event height-idx))
123

124 (define (update-height! event height)
125 (vector-set! event height-idx height))
126

127 (define (frpify proc)
128 (lambda args
129 (let ((arguments (event-values args)))
130 (apply proc arguments))))
131

132 (define (lift proc)
133 (lambda args
134 (let⇤ ((new-event (ctx-event))
135 (thunk
136 (lambda ()
137 (update-value!
138 new-event
139 (apply proc (event-values args))))))
140 (set-thunk! new-event thunk)
141 (thunk)
142 (for-each
143 (lambda (event)
144 (if (event? event)
145 (register new-event event)))
146 args)
147 new-event)))
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B.2 The Flute Meta-Interpreter

As discussed in Section 7.5, the Flute meta-interpreter is implemented in a
continuation-passing style (CPS) [FW08]. It explicitly passes a continuation
parameter along with the environment. Structuring the interpreter in CPS
is fundamental for realising Flute’s semantics. In particular, CPS enables
capturing and saving the execution context of an expression at any stage of
the evaluation. The structure of the Flute meta-interpreter is based on the
SLIP metacircular interpreter that is developed at the Software Languages
Lab by Theo D’Hondt [D’H09].

1 ; Flute is an experimental programming language for developing
2 ; context-aware applications
3 ; The key idea behind Flute is that proc executions should be
4 ; interruptible and resumable at any moment.
5 ; This interpreter is built in a CPS style
6 ; The structure of the Flute meta-interpreter is based
7 ; on the SLIP metacircular interpreter by Theo D’Hondt
8 ; <expr> ::= <computation>|<lambda>|<modal>|<mode>
9 |<quote>|<variable>|

10 ; <modal> ::= (modal (<variable>+))
11 ; <modal> ::= (modal (<variable>+) <expr>+)
12 ; <mode> ::= (mode (<modal>) <expr> <expr>+)
13 ; <mode> ::= (mode (<modal>) <expr> (<config>) <lambda>)
14 ; <config> ::= (create-config <expr>+)
15 ; <context-event> ::= (ctx-event)
16 ; <context-event> ::= (ctx-event <expr>)
17 ; <uninterruptible> ::= (continuous <expr>+)
18

19 (define meta-level-eval eval)
20

21 (define saved-executions (dictionary))
22 (define active-stms (make-stack))
23

24 (define beginning ’beginning)
25 (define during ’during)
26 (define interrupted ’interrupted)
27 (define immediate ’immediate)
28 (define deferred ’deferred)
29 (define isolated ’isolated)
30 (define resume ’resume)
31 (define suspend ’suspend)
32 (define restart ’restart)
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33 (define abort ’abort)
34 (define completed ’completed)
35 (define aborted ’aborted)
36 (define no-true-pred ’no-true-pred)
37

38 ;Trascations operations
39 (define (make-transcation id)
40 (let ((transcation (dictionary)))
41 (put transcation ’ID id)
42 (put transcation ’read-log ’())
43 (put transcation ’write-log ’())
44 (put transcation ’commits ’())
45 transcation))
46

47 (define (current-stm)
48 (if (stack-empty? active-stms)
49 (make-transcation (getid))
50 (top active-stms)))
51

52 (define (initialise-stm-log stm)
53 (push! active-stms stm))
54

55 (define (install-configs config)
56 (put config ’ :state-changes ’(immediate))
57 (put config ’ :r-env ’(rt))
58 (put config ’ :p-true ’(restart ’()))
59 (put config ’ :p-false ’(suspend ’())))
60

61

62 (define (current-configs config)
63 (config ’?))
64

65 (define (create-config)
66 (let ((config (dictionary)))
67 (install-configs config)
68 config))
69

70 (define (p-false-config config)
71 (get config ’ :p-false))
72

73 (define (p-false-config! config strategy)
74 (del config ’ :p-false)
75 (put config ’ :p-false strategy)
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76 config)
77

78 (define (p-true-config config)
79 (get config ’ :p-true))
80

81 (define (p-true-config! config strategy)
82 (del config ’ :p-true)
83 (put config ’ :p-true strategy)
84 config)
85

86 (define (state-changes-config config)
87 (get config ’ :state-changes))
88

89 (define (state-changes-config! config strategy)
90 (del config ’ :state-changes)
91 (put config ’ :state-changes strategy)
92 config)
93

94 (define (resumption-env-config config)
95 (get config ’ :r-env))
96

97 (define (resumption-env-config! config strategy)
98 (del config ’ :r-env)
99 (put config ’ :r-env strategy)

100 config)
101

102 (define modal-tag ’modal)
103 (define mode-tag ’mode)
104 (define variable-modal-tag ’variable-modal)
105 (define proc-modal-tag ’proc-modal)
106 (define modal-tag-idx 0)
107 (define modes-idx 1)
108 (define modal-envt-idx 2)
109 (define modal-event-sources-idx 3)
110 (define pred-idx 1)
111 (define mode-proc-idx 2)
112 (define mode-envt-idx 3)
113 (define (make-modal event-sources envt)
114 (let ((modes ’()))
115 (vector modal-tag modes envt event-sources)))
116

117 (define (make-mode pred-expr mode-proc envt)
118 (vector mode-tag pred-expr mode-proc envt))
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119

120 (define (modal-modes modal)
121 (vector-ref modal modes-idx))
122

123 (define (modal-modes! modal modes)
124 (vector-set! modal modes-idx modes))
125

126

127 (define (mode-pred mode)
128 (vector-ref mode pred-idx))
129

130 (define (modal-preds modal)
131 (define modes (modal-modes modal))
132 (map mode-pred modes))
133

134 (define (modal-env modal)
135 (vector-ref modal modal-envt-idx))
136

137 (define (modal-event-sources modal)
138 (vector-ref modal modal-event-sources-idx))
139

140 (define (mode-env mode)
141 (vector-ref mode mode-envt-idx))
142

143 (define (mode-proc mode)
144 (vector-ref mode mode-proc-idx))
145

146 (define (modal? any)
147 (and (vector? any)
148 (eq? (vector-ref any modal-tag-idx) modal-tag)))
149

150 (define (add-mode! modal mode)
151 (let ((modes (vector-ref modal modes-idx)))
152 (vector-set! modal modes-idx (cons mode modes))))
153

154 (define (variable-modal? modal)
155 (and
156 (modal? modal)
157 (assoc variable-modal-tag modal)))
158

159 (define (proc-modal? modal)
160 (and
161 (modal? modal)
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162 (assoc proc-modal-tag modal)))
163

164

165 (define (save-execution continue-point context-sources id)
166 (if (ormap event? context-sources)
167 (let ((execution-event (ctx-event)))
168 (let ((execution-thunk
169 (lambda ()
170 (del saved-executions id)
171 (del-thunk! execution-event)
172 (continue-point))))
173 (set-thunk! execution-event execution-thunk)
174 (put saved-executions id execution-thunk))
175 (for-each
176 (lambda (context-source)
177 (if (event? context-source)
178 (register execution-event context-source)))
179 (listify context-sources)))))
180

181 (define (interruptible? seq)
182 (not (and (pair? seq)
183 (eq? (car seq) ’continuous))))
184

185 (define (dispatcher restart-dispatch event-sources)
186 (if (ormap event? event-sources)
187 (let⇤ ((dispatch-event (ctx-event))
188 (dispatch-thunk
189 (lambda ()
190 (restart-dispatch))))
191 (set-thunk! dispatch-event dispatch-thunk)
192

193 (for-each
194 (lambda (event-source)
195 (if (event? event-source)
196 (register dispatch-event event-source)))
197 (listify event-sources)))))
198

199 (define (wrap-native-proc native-proc)
200 (lambda (args continue env tailcall/unwrap)
201 (if (equal? tailcall/unwrap unwrap)
202 (continue native-proc env)
203 (let ((native-value (apply native-proc args)))
204 (continue native-value env)))))
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205

206

207 (define (unwrap-proc cps-proc continue env tailcall)
208 (define args ’args)
209 (cps-proc args continue env ’unwrap))
210

211 (define (cps-get expr continue env tailcall)
212 (define meta-get get)
213 (define dict (car expr))
214 (define key (cadr expr))
215 (define (continue-after-unwrapping proc env)
216 (continue (meta-get proc key) env))
217 (unwrap-proc dict continue-after-unwrapping env unwrap))
218

219 (define (cps-nsstring->string expr continue env tailcall)
220 (define nsstring (car expr))
221 (define meta-nsstring->string NSString->string)
222 (continue (meta-nsstring->string nsstring) env))
223

224 (define (cps-string->nsstring expr continue env tailcall)
225 (define string (car expr))
226 (define meta-string->nsstring string->NSString)
227 (continue (meta-string->nsstring string) env))
228

229 (define (cps-list->nsmarray expr continue env tailcall)
230 (define lst (car expr))
231 (define meta-list->nsmarray list->NSMArray)
232 (continue (meta-list->nsmarray lst) env))
233

234 (define (cps-nsmarray->list expr continue env tailcall)
235 (define nsmarray (car expr))
236 (define meta-nsmarray->list NSMArray->list)
237 (continue (meta-nsmarray->list nsmarray) env))
238

239 (define (cps-update-value! expr continue env tailcall)
240 (define event (car expr))
241 (define new-event (cadr expr))
242 (define meta-update-value! update-value! )
243 (meta-update-value! event new-event)
244 (continue event env))
245

246 (define (cps-ctx-event expr continue env tailcall)
247 (define meta-ctx-event ctx-event)
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248 (if (pair? expr)
249 (continue (meta-ctx-event (car expr)) env)
250 (continue (meta-ctx-event) env)))
251

252 (define (cps-apply expr continue env tailcall)
253 (define proc (car expr))
254 (define args (cadr expr))
255 (proc args continue env tailcall))
256

257 (define (cps-create-config expr continue env tailcall)
258 (define meta-create-config create-config)
259 (continue (meta-create-config) env))
260

261 (define (cps-current-configs expr continue env tailcall)
262 (define config (car expr))
263 (define meta-current-configs current-configs)
264 (continue (meta-current-configs config) env))
265

266 (define (cps-p-false-config! expr continue env tailcall)
267 (define config (car expr))
268 (define new-strategy (cadr expr))
269 (define meta-p-false-config! p-false-config! )
270 (continue (meta-p-false-config! config new-strategy) env))
271

272 (define (cps-p-true-config! expr continue env tailcall)
273 (define config (car expr))
274 (define new-strategy (cadr expr))
275 (define meta-true-config! p-true-config! )
276 (continue (meta-true-config! config new-strategy) env))
277

278 (define (cps-state-changes-config! expr continue env tailcall)
279 (define config (car expr))
280 (define new-strategy (cadr expr))
281 (define meta-state-changes-config! state-changes-config! )
282 (continue (meta-state-changes-config! config new-strategy) env))
283

284 (define (cps-resumption-env-config! expr continue env tailcall)
285 (define config (car expr))
286 (define new-strategy (cadr expr))
287 (define meta-resumption-env-config! resumption-env-config! )
288 (continue (meta-resumption-env-config! config new-strategy) env))
289

290
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291 (define (cps-call-cc expr continue env tailcall)
292 (define proc (car expr))
293 (define (continuation args dynamic-continue dynamic-env tailcall)
294 (continue (car args) env))
295 (proc (list continuation) continue env tailcall))
296

297 (define (bind-variable variable value env)
298 (define binding (cons variable value))
299 (cons binding env))
300

301 (define (bind-params params args env)
302 (if (symbol? params)
303 (bind-variable params args env)
304 (if (pair? params)
305 (let⇤
306 ((variable (car params))
307 (value (car args ))
308 (env (bind-variable variable value env)))
309 (bind-params (cdr params) (cdr args) env))
310 env)))
311

312

313 ; <modal> ::= (modal (<variable>+))
314 ; <modal> ::= (modal (<variable>+) <expr>+)
315 (define (eval-modal . exprs)
316 (lambda (continue env tailcall)
317 (define empty-envt ’())
318 (define (lookup variable)
319 (define binding (assoc variable env))
320 (if (pair? binding)
321 (cdr binding)
322 (meta-level-eval variable (interaction-env))))
323 (if (pair? exprs)
324 (let⇤ ((params (car exprs))
325 (args (map lookup params))
326 (event-sources args)
327 (modal-envt (bind-params params args empty-envt)))
328 (define (continue-after-modal-exprs value env-after-modal-exprs)
329 (continue (make-modal event-sources env-after-modal-exprs) env))
330 (if (pair? (cdr exprs))
331 (eval-seq (cdr exprs)
332 continue-after-modal-exprs
333 modal-envt tailcall)
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334 (continue-after-modal-exprs ’() modal-envt)))
335 (continue (make-modal ’() empty-envt) env))))
336

337 ; <mode> ::= (mode (<modal>) <expr> <expr>+)
338 ; <mode> ::= (mode (<modal>) <expr> (<config>) <lambda>)
339 ; <config> ::= (create-config <expr>+)
340 (define (eval-mode modal-expr pred-expr value-expr . exprs)
341 (lambda (continue env tailcall)
342 (define modal-binding (assoc (car modal-expr) env))
343

344 (define (continue-after-value-expr variable-value env-after-value-expr)
345 (define modal (cdr modal-binding))
346 (let⇤ ((params ’())
347 (modal-envt (modal-env modal))
348 (mode-envt (append modal-envt env))
349 (mode-proc (make-proc params (list value-expr) mode-envt))
350 (mode (make-mode pred-expr mode-proc mode-envt)))
351 (add-mode! modal mode)
352 (continue mode-proc env)))
353

354 (define (continue-after-config mode-config env-after-value-expr)
355 (define (mode-params exprs)
356 (car (cdr (car exprs))))
357 (define (mode-exprs exprs)
358 (cdr (cdr (car exprs))))
359 (define modal (cdr modal-binding))
360 (let⇤ ((params (mode-params exprs))
361 (body-exprs (mode-exprs exprs))
362 (event-sources (modal-event-sources modal))
363 (modal-envt (modal-env modal))
364 (mode-envt (append modal-envt env))
365 (mode-proc (make-c-proc params
366 (cons event-sources pred-expr)
367 mode-config body-exprs mode-envt))
368 (mode (make-mode pred-expr mode-proc mode-envt)))
369 (add-mode! modal mode)
370 (continue mode-proc env)))
371

372 (if (pair? exprs)
373 (eval (car value-expr) continue-after-config env #f)
374 (eval value-expr continue-after-value-expr env #f))))
375

376
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377 (define (eval-seq pred-expr config body-exprs args id
378 proc-stm continue env tailcall)
379 (define head (car body-exprs))
380 (define tail (cdr body-exprs))
381 (define event-sources (car pred-expr))
382 (define context-pred (cdr pred-expr))
383 (define resumption-mechanism (car (p-true-config config)))
384 (define compensating-action (cadr (p-false-config config)))
385 (define state-mechanism (car (state-changes-config config)))
386 (define state-strategies (dictionary))
387

388 (define (commit side-effects)
389 (let ((run (lambda (proc) (proc))))
390 (map run side-effects)))
391

392 (define (validate read-log env)
393 (if (not (null? read-log))
394 (let⇤ ((variable (caar read-log))
395 (log-value (cdr (car read-log)))
396 (binding (assoc variable env))
397 (original-value (cdr binding)))
398 (if (equal? log-value original-value)
399 (validate (cdr read-log) env)
400 #f))
401 #t))
402

403 (define (abort-execution)
404 (display "failed transcation validation !!"))
405

406 (define (isolated-strategy value env-after-seq)
407 (ignore-changes value))
408

409 (define (deferred-strategy value env-after-seq)
410 (if (equal? value completed)
411 (commit-changes value env-after-seq)
412 (ignore-changes value)))
413

414 (define (immediate-strategy value env-after-seq)
415 (commit-changes value env-after-seq))
416

417 (define (commit-changes value env-after-seq)
418 (let⇤ ((active-stm (top active-stms))
419 (commits (get active-stm ’commits))
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420 (read-log (get active-stm ’read-log)))
421 (if (or (equal? value completed) (equal? value interrupted))
422 (pop! active-stms))
423 (if (validate read-log env-after-seq)
424 (commit (reverse commits))
425 (abort-execution))))
426

427 (define (ignore-changes value)
428 (if (or (equal? value completed) (equal? value interrupted))
429 (pop! active-stms)
430 ’done))
431

432 (define (install-state-strategies)
433 (put state-strategies immediate immediate-strategy)
434 (put state-strategies deferred deferred-strategy)
435 (put state-strategies isolated isolated-strategy)
436 ’done)
437

438 (define (apply-state-strategy value env-after-seq)
439 (let ((state-strategy (get state-strategies state-mechanism)))
440 (if state-strategy
441 (state-strategy value env-after-seq))))
442

443 (define (continue-with-seq value env-after-seq)
444 (apply-state-strategy value env-after-seq)
445 (eval-seq pred-expr config tail args id
446 proc-stm continue env-after-seq tailcall))
447

448 (define (continue-after-context-pred boolean env-after-pred)
449 (define (continue-after-compensating-action
450 action-value env-after-user-action)
451 (let⇤ ((state-strategy (get state-strategies state-mechanism)))
452 (if state-strategy
453 (state-strategy interrupted env-after-user-action)))
454 (continue interrupted env-after-user-action))
455 (if (and (eq? boolean #f) (interruptible? head))
456 (begin
457 (if (equal? resumption-mechanism resume)
458 (save-execution during resume-evaluation event-sources id))
459 (eval compensating-action continue-after-compensating-action
460 env-after-pred #f))
461 (if (null? tail)
462 (begin
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463 (apply-state-strategy completed env-after-pred)
464 (eval head continue env-after-pred tailcall))
465 (eval head continue-with-seq env-after-pred #f))))
466

467 (define (resume-evaluation)
468 (if (equal? state-mechanism immediate)
469 (begin
470 (initialise-stm-log (make-transcation id)))
471 (initialise-stm-log proc-stm))
472 (eval (cdr pred-expr) continue-after-context-pred env #f))
473

474 (define (seq-evaluation-entry)
475 (install-state-strategies)
476 (eval context-pred continue-after-context-pred env #f))
477 (seq-evaluation-entry))
478

479 (define (make-c-proc params pred-expr config exprs env)
480 (lambda (args continue dynamic-env tailcall)
481 (define id (getid))
482 (define p-true-mechanisms (p-true-config config))
483 (define lexical-env (bind-params params args env))
484

485 (define (continue-after-seq value env-after-seq)
486 (define (restart-strategy)
487 (define event-sources (car pred-expr))
488 (if (equal? value interrupted)
489 (save-execution during evaluation-entry event-sources id)
490 (save-execution during evaluation-entry event-sources id)))
491 (let⇤ ((resumption-mechanism (car p-true-mechanisms))
492 (resumption-compensating-action (cadr p-true-mechanisms)))
493 (if (equal? resumption-mechanism restart)
494 (restart-strategy))
495 (continue value dynamic-env)))
496

497 (define (evaluation-entry)
498 (let⇤ ((proc-stm (make-transcation id))
499 (lexical-env-after-pred
500 (bind-variable ’pred pred-expr lexical-env))
501 (lexical-env
502 (bind-variable ’default-config config lexical-env-after-pred)))
503 (initialise-stm-log proc-stm)
504 (eval-c-seq pred-expr config exprs args id
505 proc-stm continue-after-seq lexical-env #t)))
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506 (evaluation-entry)))
507

508 (define (eval-modal-dispatch modal continue env)
509 (define modes (modal-modes modal))
510 (define preds (modal-preds modal))
511 (define true-count-end 1)
512 (define true-count-start 0)
513

514 (define (iterate preds modes true-count mode-proc modes-after-dispatch)
515 (if (null? preds)
516 (if (= true-count true-count-end)
517 (begin
518 (modal-modes! modal modes-after-dispatch)
519 (continue mode-proc env))
520 (if (< true-count true-count-end)
521 (continue #f env)
522 (error "Ambiguous predicates for procedure modal" true-count)))
523 (let⇤ ((head-pred (car preds))
524 (tail-preds (cdr preds))
525 (head-mode (car modes))
526 (tail-modes (cdr modes))
527 (mode-envt (mode-env head-mode))
528 (remaining-modes (cons head-mode modes-after-dispatch))
529 (head-mode-proc (mode-proc head-mode)))
530 (define (continue-after-pred value env)
531 (if value
532 (iterate tail-preds tail-modes (+ true-count 1)
533 head-mode-proc modes-after-dispatch)
534 (iterate tail-preds tail-modes true-count
535 mode-proc remaining-modes)))
536 (eval head-pred continue-after-pred mode-envt #f))))
537 (iterate preds modes true-count-start #f ’()))
538

539 (define (needs-result-handling? arg)
540 (or (equal? arg no-true-pred)
541 (equal? arg interrupted)))
542

543 (define (eval-application operator)
544 (lambda operands
545 (lambda (continue env tailcall)
546 (define binding (assoc operator env))
547

548 (define (continue-after-operator proc env-after-operator)
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549 (define (eval-operands operands args env)
550 (define (continue-with-operands value env-with-operands)
551 (eval-operands (cdr operands) (cons value args)
552 env-with-operands))
553 (if (null? operands)
554 (proc (reverse args) continue env tailcall)
555 (eval (car operands) continue-with-operands env #f)))
556 (if (equal? proc #f)
557 (continue no-true-pred env)
558 (eval-operands operands ’() env-after-operator)))
559

560 (if binding
561 (let ((value (cdr binding)))
562 (if (modal? value)
563 (let⇤ ((modal value)
564 (event-sources (modal-event-sources modal)))
565 (define (start/restart-dispatch)
566 (eval-modal-dispatch modal continue-after-operator env))
567

568 (dispatcher start/restart-dispatch event-sources)
569 (start/restart-dispatch))
570 (eval operator continue-after-operator env #f)))
571 (eval operator continue-after-operator env #f)))))
572

573

574 (define (normalise-pred-exprs exprs env)
575 (let⇤ ((event-sources ’())
576 (lexical-pred (assoc ’pred env)))
577 (if (null? exprs)
578 (if lexical-pred
579 (cons event-sources (cddr lexical-pred))
580 (cons event-sources exprs))
581 (cons event-sources exprs))))
582

583 (define (normalise-pattern pattern)
584 (let ((normalised-pattern ’(() () ())))
585 (if (null? pattern)
586 normalised-pattern
587 (if (null? (cdr pattern))
588 (begin
589 (set-car! normalised-pattern (car pattern))
590 normalised-pattern)
591 (if (null? (cddr pattern))
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592 (let⇤ ((pred (cadr pattern))
593 (pred-config (list pred ’())))
594 (set-cdr! pattern pred-config)
595 pattern)
596 pattern)))))
597

598 (define (normalise-config config env)
599 (let ((lexical-config (assoc ’default-config env)))
600 (if (null? config)
601 (list (cdr lexical-config))
602 config)))
603

604 (define (eval-if pred consequent . alternative)
605 (lambda (continue env tailcall)
606 (define (continue-after-pred boolean env-after-pred)
607 (if (eq? boolean #f)
608 (if (null? alternative)
609 (continue ’() env-after-pred)
610 (eval (car alternative) continue env-after-pred tailcall))
611 (eval consequent continue env-after-pred tailcall)))
612 (eval pred continue-after-pred env #f)))
613

614 (define (eval-quote expr)
615 (lambda (continue env tailcall)
616 (continue expr env)))
617

618 (define (eval-seq exprs continue env tailcall)
619 (define head (car exprs))
620 (define tail (cdr exprs))
621 (define (continue-with-seq value env)
622 (eval-seq tail continue env tailcall))
623

624 (if (null? tail)
625 (eval head continue env tailcall)
626 (eval head continue-with-seq env #f)))
627

628 (define (make-proc params exprs env)
629 (lambda (args continue dynamic-env tailcall)
630 (define (continue-after-seq value env-after-seq)
631 (continue value dynamic-env))
632 (define lexical-env (bind-params params args env))
633 (if tailcall
634 (eval-seq exprs continue lexical-env #t)
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635 (eval-seq exprs continue-after-seq lexical-env #t))))
636

637

638 (define (eval-define pattern . exprs)
639 (lambda (continue env tailcall)
640 (if (symbol? pattern)
641 (let⇤ ((binding (cons pattern ’()))
642 (env (cons binding env)))
643 (define (continue-after-expr value env-after-expr)
644 (set-cdr! binding value)
645 (continue value env-after-expr))
646 (eval (car exprs) continue-after-expr env #f))
647 (let⇤ ((binding (cons (car pattern) ’()))
648 (env (cons binding env))
649 (proc (make-proc (cdr pattern) exprs env)))
650 (set-cdr! binding proc)
651 (continue proc env)))))
652

653 (define (eval-lambda params . exprs)
654 (lambda (continue env tailcall)
655 (continue (make-proc params exprs env) env)))
656

657 (define (evaluate-set! variable expression)
658 (lambda (continue env tailcall)
659 (define (continue-after-expression value env-after-expression)
660 (define binding (assoc variable env-after-expression))
661 (if binding
662 (if (modal? (cdr binding))
663 (mutate-modal-variable (cdr binding) value continue env)
664 (set-cdr! binding value))
665 (error "inaccessible variable: " variable))
666 (continue value env-after-expression))
667 (evaluate expression continue-after-expression env #f)))
668

669 (define (eval-c-set! variable expr)
670 (lambda (continue env tailcall)
671 (define (continue-after-expr value env-after-expr)
672 (let⇤ ((binding (assoc variable env-after-expr))
673 (active-stm (current-stm))
674 (write-log (get active-stm ’write-log))
675 (read-log (get active-stm ’read-log))
676 (binding-write (assoc variable write-log))
677 (binding-read (assoc variable read-log))
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678 (commits (get active-stm ’commits)))
679

680 (define (delay-side-effects)
681 (let ((todo (lambda () (set-cdr! binding value))))
682 (del active-stm ’commits)
683 (put active-stm ’commits (cons todo commits))))
684

685 (define (extend-read-log)
686 (let ((new-read-log (cons binding read-log)))
687 (del active-stm ’read-log)
688 (put active-stm ’read-log new-read-log)))
689

690 (define (extend-write-log)
691 (let⇤ ((log-binding (cons variable value))
692 (new-write-log (cons log-binding write-log)))
693 (del active-stm ’write-log)
694 (put active-stm ’write-log new-write-log)))
695

696 (if binding-write
697 (set-cdr! binding-write value)
698 (if binding-read
699 (extend-write-log)
700 (if binding
701 (begin
702 (extend-read-log)
703 (extend-write-log))
704 (error "inaccessible variable: " variable))))
705 (delay-side-effects)
706 (continue value env-after-expr)))
707 (eval expr continue-after-expr env #f)))
708

709

710 (define (eval-modal-variable modal continue env)
711 (define modes (modal-modes modal))
712 (define preds (modal-preds modal))
713 (define end-true-count 1)
714 (define start-true-count 0)
715 (define (iterate preds modes true-count mode-proc)
716 (if (null? preds)
717 (if (= true-count end-true-count)
718 (mode-proc ’() continue env #f)
719 (error "Exactly one true pred is expected " true-count))
720 (let⇤ ((head-pred (car preds))
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721 (tail-preds (cdr preds))
722 (head-mode (car modes))
723 (tail-modes (cdr modes))
724 (mode-envt (mode-env head-mode)))
725 (define (continue-after-pred value env)
726 (if value
727 (iterate tail-preds tail-modes (+ true-count 1)
728 (mode-proc head-mode))
729 (iterate tail-preds tail-modes true-count mode-proc)))
730 (eval head-pred continue-after-pred mode-envt #f))))
731 (iterate preds modes start-true-count #f))
732

733 (define (eval-variable variable continue env)
734 (define binding (assoc variable env))
735 (if binding
736 (let ((value (cdr binding)))
737 (if (modal? value)
738 (eval-modal-variable value continue env)
739 (continue (cdr binding) env)))
740 (let ((native-value (meta-level-eval variable (interaction-env))))
741 (if (proc? native-value)
742 (continue (wrap-native-proc (frpify native-value)) env)
743 (continue native-value env)))))
744

745 (define (eval-c-ref variable)
746 (lambda (continue env tailcall)
747 (let⇤ ((binding (assoc variable env))
748 (active-stm (current-stm))
749 (write-log (get active-stm ’write-log))
750 (read-log (get active-stm ’read-log))
751 (binding-write (assoc variable write-log))
752 (binding-read (assoc variable read-log))
753 (log-binding (cons variable ’nil)))
754 (define (extend-read-log)
755 (let ((new-read-log (cons binding read-log)))
756 (del active-stm ’read-log)
757 (put active-stm ’read-log new-read-log)))
758

759 (if binding-write
760 (continue (cdr binding-write) env)
761 (if binding
762 (begin
763 (extend-read-log)
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764 (continue (cdr binding) env))
765 (let ((native-value (meta-level-eval variable (interaction-env))))
766 (if (proc? native-value)
767 (continue (wrap-native-proc (frpify native-value)) env)
768 (continue native-value env))))))))
769

770 (define (eval-continuous . exprs)
771 (lambda (continue env tailcall)
772 (let⇤ ((params ’())
773 (args ’())
774 (proc (make-proc params exprs env)))
775 (eval (cons proc args) continue env #f))))
776

777

778 (define (eval expr continue env tailcall)
779 (cond
780 ((symbol? expr)
781 (eval-variable expr continue env))
782 ((pair? expr)
783 (let ((operator (car expr))
784 (operands (cdr expr)))
785 ((apply
786 (case operator
787 ((begin) eval-begin )
788 ((define) eval-define )
789 ((if) eval-if )
790 ((lambda) eval-lambda )
791 ((quote) eval-quote )
792 ((set! ) eval-set! )
793 ((let) eval-let )
794 ((let⇤) eval-let⇤ )
795 ((continuous) eval-continuous )
796 ((modal) eval-modal )
797 ((mode) eval-mode )
798 (else (eval-application operator)))
799 operands) continue env tailcall)))
800 (else (continue expr env))))
801

802 (define natives
803 (list (cons ’apply cps-apply )
804 (cons ’call-cc cps-call-cc )
805 (cons ’update-value! cps-update-value! )
806 (cons ’ctx-event cps-ctx-event)
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807 (cons ’create-config cps-create-config)
808 (cons ’p-false-config! cps-p-false-config! )
809 (cons ’p-true-config! cps-p-true-config! )
810 (cons ’state-changes-config! cps-state-changes-config! )
811 (cons ’current-configs cps-current-configs)
812 (cons ’default-config (create-config))
813 (cons ’NSString->string cps-nsstring->string)
814 (cons ’string->NSString cps-string->nsstring)
815 (cons ’list->NSMArray cps-list->nsmarray)
816 (cons ’NSMArray->list cps-nsmarray->list)))
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