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Abstract

The topic of this dissertation stands at the crossroads of two emerging technolo-
gies: highly-parallel computing and quantum computing. Both seek to go beyond
the limits of current computing practice: in the absence of further miniaturiz-
ation, highly-parallel computing seeks to increase the available computer power
substantially. Quantum Computing looks beyond the classical approach to com-
putation, leveraging quantum-mechanical effects to increase computing power in
a fundamental way. In the absence and also in the presence of actual quantum
computers it is crucial to support the development of quantum computer applica-
tions by creating an appropriate software framework. Creating such a framework
currently faces two major research challenges. First, one needs to separate the
realization of the quantum computer from the software running on it, whether
it is an actual physical or a simulated realization. Our first contribution lies
with defining a layered software architecture, ranging from a design tool at the
higher abstraction levels to a simulated execution layer underneath. At its core
sits a ‘Quantum Virtual Machine’ using the Measurement Calculus as the un-
derlying quantum computational model. Such a virtual machine layer makes the
application developed on top of it oblivious to how it is executed. The simulated
execution of this quantum virtual machine is fundamentally a computationally
intensive task. Parallel computing offers a way to throw more computational
resources at the problem, in the light of the saturation of sequential performance
of current computers. Simulation is the domain of the second challenge, as it
has very high performance requirements. The simulation problem thus becomes:
how does one expose the inherent parallelism of quantum computing simulation
in a fundamental way, so as to be usable for the highly-parallel computers to
come? Our second contribution is to provide a formal translation of quantum
programs to highly-parallel dataflow computations, and to develop a virtual en-
vironment that compiles and executes such programs. This work demonstrates
several properties of both the formal as well as the virtual level of computation
that validate our approach.
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Korte Inhoud

Het onderwerp van deze verhandeling ligt op het kruispunt van twee opkomende
technologieën: massief parallel computers en kwantum computers. Deze domeinen
bieden een uitweg aan om de rekenbeperkingen van huidige computersystemen
te overstijgen. Gezien de recente afvlakking van de miniaturisatietrend, kunnen
massief parallelle computers blijven de rekenkracht substantieel vergroten. Kwan-
tum computers werpen een blik voorbij de huidige klassieke aanpak en gebruiken
kwantummechanische effecten om de rekenkracht op een fundamentele wijze te
verhogen. Bij het ontbreken, maar ook in aanwezigheid van zulke kwantum
computers is het cruciaal om het ontwikkelen van nieuwe toepassingen te on-
dersteunen door middel van een bijpassend software raamwerk. Twee grote on-
derzoeksvragen dringen zich op bij het maken van een dergelijk raamwerk. Hier-
bij moet eerst de concrete verwezenlijking van de kwantum computer gescheiden
worden van de software die er bovenop uitgevoerd wordt, zij het een fysieke of een
virtuele verwezenlijking betreft. Onze eerste bijdrage ligt bij het definiëren van
een gelaagde software-architectuur, gaande van het ontwerp op een hoger abstrac-
tieniveau tot een gesimuleerde uitvoeringsomgeving onderaan. Centraal bij onze
aanpak is de ‘Quantum Virtual Machine’, die de Measurement Calculus gebruikt
als model voor kwantum computer berekeningen. Deze virtuele machine zorgt
dat de ervoor ontwikkelde toepassingen niet afhangen van de onderliggende uitvo-
eringsstrategie. De gesimuleerde uitvoering van deze kwantum virtuele machine
is in wezen een rekenintensieve taak. Parallelle computers bieden een manier aan
om meer rekenkracht aan te wenden, gezien de verzadiging van sequentiële reken-
prestatie in huidige computersystemen. De tweede onderzoeksvraag wordt bijge-
volg: hoe legt men op een fundamentele wijze het inherente parallellisme bloot in
de gesimuleerde uitvoeringsomgeving, zodat deze toepasbaar is op de aankomende
massief parallelle computers. Onze tweede bijdrage biedt een formele vertaling
van kwantum programma’s naar massief parallelle dataflow programma’s. Daar-
bij ontwikkelen we een virtuele omgeving om dergelijke programma’s te vertalen
en uit te voeren. Deze uitvoeringsomgeving legt verschillende theoretische en
praktische eigenschappen aan de dag die onze aanpak verantwoorden.
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Chapter 1

Introduction

1.1 Context

1.1.1 Overview

Quantum Computing promises astonishing applications that would be hard or
even impossible to achieve with classical computers. Even though it is known
how quantum computers work in principle, it is still hard to find new algorithms
and applications. There is a need for an overarching set of tools, methodologies
and languages for programming such quantum computers: a Quantum Program-
ming Paradigm. The practical1 foundation of such a quantum programming
paradigm is, necessarily, an execution platform: a low-level virtual model of a
quantum computer. This execution platform evidently needs to be automated,
but the current lack of physical programmable quantum computers means that
these need to be simulated by classical computers. Quantum computing simu-
lators face fundamental performance problems; a linear increase in the quantum
computation space translates into an exponential use of classical computation
resources. Performance today means parallel performance; to get the most out
of current computing hardware, the original problem needs to be expressed as
a parallel computation. Sequential performance used to increase exponentially
over time, driven by miniaturization of the microprocessor. But, this has hit a
technical wall, putting the performance burden to produce parallel computations
upon the software, rather than the processor hardware. We see this upheaval as
an opportunity to investigate a highly-parallel formulation of a virtual quantum
computing platform. This dissertation brings together both the quantum and
the classical world by building a practical foundation for a quantum program-

1We use the word practical to contrast with formal.
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Introduction

ming paradigm on the one hand, and investigating the parallel performance of
its simulated execution on the other.

1.1.2 Quantum Computing

[. . . ] because nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum mechanical, and
by golly it’s a wonderful problem, because it doesn’t look so easy.

–Richard P. Feynman

Current computers are based on classical physics and deterministic by nature.
However, the size of a single transistor inside a modern computer has become
small enough that quantum effects come into play; unpredictable, counter-intuitive
and in certain circumstances undesirable. The research field of Quantum Com-
puting (QC) harnesses the strange behavior of elementary particles to perform
computations. Such research effort is not a purely scientific curiosity, QC has
two important foreseen applications; quantum simulation and computation.

Quantum computers for simulation can be built as analog computers, hard-
wired to emulate a certain quantum system. In other words, using an artificial
quantum system to emulate a naturally occurring one. It has been shown [76]
that only a quantum mechanical computer can efficiently and accurately simulate
a quantum system. A large market exists for such simulations, as engineers
and scientists get ever more involved into the very smallest of scales. Quantum
simulation computers are likely to be the first quantum computers to hit the
market, judging from the volume and practical results of publications in this
field.

The second application of quantum computing is of more interest to the com-
puter scientist: using a quantum computer to compute certain problems that
are either too hard or impractical on a classical computer. This aspect of QC
has received a lot of exposure after the publication of Shor’s prime factorization
quantum algorithm [171]. It is important to note: it has not been shown that a
quantum computer is inherently faster than a classical computer. However, there
are major indications that quantum computers can solve certain problems at a
lower computational complexity than classical computers. Nevertheless, possible
applications are highly valuable, enough to justify the current serious investig-
ation from the broad research community and investments from private institu-
tions. It is thus not unreasonable to expect further technological breakthroughs
and the discovery of new applications. We envision that quantum computers will
see a staggered introduction; first as analog computers, hard-wired to solve spe-
cific problems, and later as programmable quantum co-processors or accelerators.

2



The former is happening now, fixed-function quantum mechanical computers are
used in optimization problems [116] and quantum simulation [155].

1.1.3 Quantum Programming

Beware of bugs in the above code; I have only proved it correct, not
tried it.

– Donald Knuth

Mathematics is the art of reducing any problem to linear algebra.

– William Stein

Quantum algorithms and applications are still mainly developed on paper, by
virtue of a person’s expert knowledge. Low-level physical effects, as described
by quantum mechanics, are used to describe quantum algorithms with only little
conceptual abstraction. Most commonly, the semi-formal quantum circuit model
is used to express quantum computations. The circuit model is a simple frame-
work, organizing reversible and deterministic quantum operations as one would
organize logic gates in an electronic circuit. The classical computing elements
often required in these quantum algorithms are kept informal or implicit. Many
quantum computing simulators and imperative quantum programming languages
follow the circuit model, each typically reformulating and formalizing the circuit
model along the way. These approaches thus keep to a low-level formulation
of quantum computing and integrate quantum computation with the classical
programming world at this low level of abstraction.

In contrast, other research efforts focus on formulating quantum computing
using higher-level frameworks from mathematics and computer science: type
theory [86], linear logic [89], lambda calculus [167], functional languages [166],
category theory [1, 70], etc. Most often, their low-level execution is a secondary
concern; these formal frameworks and languages search for new insights and
provide formal tools to facilitate proofs.

Formal frameworks can be powerful tools to aid the discovery and develop-
ment of quantum computing applications. These can be more useful in a virtual
environment, where operations that are tedious when performed by hand are
automated, in which the formal tools can be used to analyze and verify execut-
able quantum programs and where applications can be developed interactively.
Broadly speaking, there is a need for a Quantum Programming Paradigm: a col-
lection of quantum programming tools, models and approaches. However, a pro-
gramming paradigm is not constructed, but is grown over time by accumulating
the contributions of a diverse expert community [175]. Pragmatically speaking,

3



Introduction

there is first and foremost a need for a practical quantum programming frame-
work: an environment in which to interactively write, test and analyze quantum
programs. In other words, there is a need for a programming framework that
combines a low-level execution environment with the higher level formal tools
and techniques.

In the Quantum Computing domain, there already exist executable languages,
automated formal models and a great many low-level quantum computing simu-
lators. Indeed, many quantum computing implementations have been developed
over the years, both high and low-level. However, there has been a lack of an
overarching approach or quantum computer model, one that is used for both
higher-level formal work as well as low-level execution environments. The afore-
mentioned circuit model typically fills the role of quantum computing model
for practical low-level implementations. Although, because of the semi-formal
nature of quantum circuits, many implementations have to create their own spe-
cific formalization and architecture. This creates a moving target for practical
high-level frameworks and for the low-level implementation environments them-
selves. In summary, there is the need for an overarching formal model with a
practical virtual implementation.

1.1.4 Parallel Computing

In order to provide a practical quantum programming framework, the issue of
quantum simulation performance needs to be addressed. There is an existing
body of work on this subject, these traditional approaches use known or novel
techniques to help improve the performance issues with simulating elementary
quantum operations on a classical computer. However, the world of classical
computing is currently being perturbed. Parallel computing is disrupting the
current dominant sequential model of computing. We regard the current state of
affairs as an opportunity to investigate a more fundamental parallel approach to
quantum computing simulation.

After more than sixty years of sequential computing, programmers are now
forced to produce parallel programs, especially in cases where performance is an
issue. In the past, technological advances brought phenomenal improvements to
successive generations of sequential microprocessors. These improvements were
mainly attributed to the successful translation of more transistors, afforded by
Moore’s law, into more performance. Moore’s law is still in effect and, although
showing signs of slowing down, is still expected to continue for the next few dec-
ades [114]. However, several forces have conspired to prevent processor manufac-
turers to translate more transistors effectively into more sequential performance.
This has caused a move in mainstream processors towards so-called multicore pro-
cessors: placing two or more processor cores inside the same microprocessor. For
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the processor hardware industry, this was a fairly small and innocuous change;
after all, multiprocessor systems have been in use for decades, using concur-
rency primitives and operating system features to make use of the additional
processor resources. However, for the programmer this represented a sea-change,
a multicore revolution [178]. Sequential programs today no longer benefit from
new hardware improvements, creating a sequential performance ceiling. Breaking
through this performance ceiling means turning to parallel processing.

Under the current circumstances, parallel computing is poised to change the
direction of future processor architectures and how we program them. The cur-
rent multicore processor design is a transitory phase, produced by incremental
changes to an originally sequential processor architecture. The multicore design
ensures that existing sequential software still works, but also offers additional
parallel resources for software that is programmed to make use of it. The paral-
lel computing model seems at first glance to make only a minor addition to the
sequential model: a handful of low-level concurrency primitives. However, these
fundamentally break the sequential computing model, discarding properties that
programmers rely on to build large software, properties such as determinism and
local reasoning. Parallel programming research dealing with multicore today con-
structs new parallel computing models and abstractions on top of this multicore
model.

However, the multicore design has some fundamental issues that prevent it
from effectively scaling in number of processing cores for general-purpose tasks.
As we will see, the sequential design at the heart of the multicore architecture re-
lies for its performance on low communication latencies and a globally consistent
view on data. As the size of a parallel system increases, it becomes imperative
for parallel approaches to tolerate higher latencies and deal with a decentralized
data organization. Other parallel hardware and software approaches have been
proposed in the past. Even today, the need for more performance has created a
market for niche or special purpose parallel computing hardware, such as acceler-
ators (GPUs, Adapteva [153]) or heterogeneous processors (Cell B/E, APUs [82]).
These parallel hardware approaches all require different programming approaches,
different still from the multicore programming model, but in return offer a more
scalable parallelism. In short, the current multicore era for mainstream pro-
cessors is very likely a transitory phase; the multicore design keeps backwards
compatibility with older sequential software, but has fundamental issues that
prevent it from scaling properly without breaking its programming model. We
take this as an opportunity to break away from the current programming model
when investigating the problem of parallel quantum computing simulation, using
a highly-parallel programming model that does promise scalability.
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Introduction

1.2 Approach

1.2.1 Quantum programming

For our quantum programming virtual framework, we base ourselves on the
formal framework of the Measurement Calculus (MC) by Danos et al. [53]. The
Measurement Calculus brings together several interesting properties that make
it highly suited as a formal basis. It introduces a compositional and modular
quantum program abstraction, around which we build a practical and automated
framework in which to create and combine quantum programs. More import-
antly, the MC is built upon a small, but universal set of low-level operations with
simple semantics that form a ‘quantum assembly language’, as it were.

We use this quantum assembly language to build a practical virtual model
of a Quantum Computer: a Quantum Virtual Machine. The quantum program
abstractions mentioned above are automatically translated to low-level virtual
machine instructions. This virtual machine abstraction allows changes to the
above quantum program abstraction without impacting the virtual machine im-
plementation. In the other direction, this allows changes to the virtual machine
implementation without affecting the quantum programming framework built on
top of it. In other words, the virtual machine enables us to experiment with
different quantum programming approaches and multiple virtual machine imple-
mentations; be it a sequential or parallel quantum simulation and, in principle,
even a physical quantum computer implementation.

In the first part of our approach, we do not simply build an ad hoc executable
Measurement Calculus. Rather, we take the opportunity to design an extendable
programming framework around the formal model, by separating each logical
abstraction layer to form a layered architecture. Our vision is for this quantum
programming framework to form a pragmatic basis on which a quantum program-
ming paradigm can grow. In our framework, quantum programs are executed
by a virtual machine, using the MC’s low-level operations as instruction set.
Naturally, the programmer does not directly express quantum programs at this
low level of abstraction. The formal MC framework introduces a modular and
composable quantum program abstraction, which we implement in our practical
framework. To improve the ease of use, this framework includes a graphical ed-
itor application to compose quantum programs in a visual style. The automated
composition of quantum programs and their compilation into the low-level virtual
machine instructions enables users of our framework to compose relatively large
MC quantum computations that would be too tedious or error prone to produce
by hand. These quantum programs can be executed by the virtual machine, after
they have been compiled into a sequence of elementary operations.
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1.2.2 Parallel computing

The simulated execution of the low-level Measurement Calculus operations con-
tains a large amount of inherent parallelism: these operations have a relatively
simple linear algebra formulation with highly repetitive structures. However,
these quantum operations cannot be translated into parallel computations trivi-
ally. Traditional parallel approaches lend themselves well to problems where the
problem space can be split and acted on in separation, but this is not the case
here; each low-level quantum operation of the virtual machine acts on the entire
state space, performing only few operations for comparably large amounts of data
communication. This indicates that a different, more data-oriented, approach is
needed.

We have found that the dataflow [125, 62, 61] model of computation fits this
parallel simulation problem very well. In a dataflow program, operations are
structured as a graph, in which operations are nodes and values are carried over
the arcs connecting the nodes. Dataflow execution follows the availability of data;
an operation is executed when the data it depends on is available. This exposes
the inherent parallelism in the calculation, as the exact sequence in which the op-
erations execute is left open. Such dataflow models of computation were popular
in parallel research during the 70s and 80s, where actual dataflow architecture
processors were developed. It has been shown in the past [98] that typical linear
algebra problems can be efficiently expressed as dataflow programs, there are thus
strong indications that MC’s low-level operations can be naturally expressed as
dataflow computations.

Dataflow processor architectures were researched in the past, but interest
for them waned as sequential processors started to dominate even the high-
performance computing market. Dataflow still survives in different forms; for
instance, closest to its original form, as dataflow analysis techniques in optimiz-
ing compilers and as the Out of Order execution cores in nearly all modern stock
processors. The latter requires in-hardware algorithms to extract limited data-
flow programs from sequential instructions, but these are limited by hardware
complexity cost and by the sequential nature of the input programs. We argue
that the current race for parallelism will bring parallel software and hardware
closer to a highly-parallel fine-grained model of computation, as exemplified by
the dataflow model. First, fine-grained parallel models expose more of a prob-
lem’s potential for parallelism. Second, dataflow’s data-driven execution is better
equipped to handle the increased latencies and data sharing issues that arise in
a large scale parallel system.

In the second part of our approach, we build a conceptual dataflow model
of the quantum virtual machine presented during the first part of the approach.
We start by expressing a quantum program as a coarse dataflow model, in which
each low-level MC operation is an atomic operation. This coarse model is further
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Introduction

refined until we can present a fine-grained dataflow model, in which elementary
arithmetic operations form the atomic operations. As part of the validation, we
implement a parallelizing compiler that transforms an instruction sequence for
the quantum virtual machine into a fine-grained parallel program. The resulting
parallel program is profiled to demonstrate significant parallel speedup.

1.2.3 Structure

We split our approach in two main parts. First, we design and build a virtual
quantum programming framework in Chapter 3, based on the formal Measure-
ment Calculus which we present in Chapter 2. Secondly, we investigate the
formulation of the low-level MC operations in the dataflow model in Chapter 5,
which is validated in Chapter 6 using the combination of theoretical analysis of
the conceptual model and the empirical analysis of a practical implementation.
We present our findings, conclusions and future work in Chapter 7.
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Chapter 2

Measurement-Based
Quantum Computing

In this chapter we establish Measurement-Based Quantum Computing and the
Measurement Calculus as formal foundation on which to build the practical
quantum programming framework in the next chapter. We start with listing the
properties required of a formal framework to serve as basis for such a practical
quantum programming paradigm. Then, we bring the reader a brief overview of
the field of quantum computing, after which we discuss the related work in the
field of quantum programming languages, checking existing frameworks against
the formulated requirements. The main body of the chapter presents the Meas-
urement Calculus in detail with a focus on its low-level operations, as we will come
back to their semantics in later chapters. Finally, at the end of the chapter we
discuss in more depth how the Measurement Calculus satisfies the requirements
we formulate.
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Measurement-Based Quantum Computing

2.1 Requirements for a Quantum Programming
Paradigm

Our requirements are based on Bettelli et al. [24]’s requirements for a similar
quantum programming architecture proposal;

• Completeness: it should be possible to implement at least all quantum
algorithms that can be expressed in the circuit model.

• Integration: support a way to integrate, extend or combine quantum
programs with existing expressive classical programming paradigms.

• Separability: quantum state and operations should be clearly separate
from classical ones. Furthermore, classical computation necessary for the
realization of quantum operations should be separate from any other sup-
porting classical computation.

• Expressivity: support a formulation of quantum programs in a way that
puts human understanding and readability first. In other words support a
programming paradigm with its high level constructs, abstractions, modu-
larization, etc.

• Hardware independence: provide a fixed language or interface with
the underlying implementation, giving room to implementors to optimize
and change the underlying implementation as well as set a fixed target for
language designers when experimenting with language features.

Any conceptual framework exhibiting the above properties forms a firm found-
ation for a practical quantum programming framework. The term ‘practical’
is left ambiguous with intent. By it we mean simultaneously; Practical: being
useful and easy to use for its user, the quantum programmer, to solve problems
and express algorithms. Practical: accommodating to implementation of both
the supporting framework (languages, tools) as well as the actual execution (vir-
tual and physical quantum computation). The above five requirements mainly
cover the former. To cover the latter interpretation, we introduce four additional
requirements for the formal framework;

• Low-Level: each elementary operation has a direct physical realization.
Although, abstracting away concerns such as errors, timings and the actual
implementation choice.

• Executable: formulation of operational semantics exposes the execution
process and the internal machinery required for implementation.
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• Scalable: physical scalability arguably poses the biggest challenge to the
physical realization of quantum computers. A QC framework tackling this
issue stands a better chance at remaining relevant in the future.

• Parallel: virtualisation will remain the main method of executing QC pro-
grams for the foreseeable future. Increasingly, performance means parallel
performance, even on today’s stock computers. A framework supporting
better parallel simulation can thus respond faster and simulate larger pro-
grams within the same time span.
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Measurement-Based Quantum Computing

2.2 Quantum Computing

Quantum Computing and Information is a relative young and interdisciplinary
research field, with sub-disciplines in theoretical and experimental physics, math-
ematics, engineering, philosophy, cryptography and of course computer science.
The domain of Quantum Programming Languages (QPL) has grown into a sub-
domain. It can be distinguished from the rest of the field by its focus on formal
and closed systems in which to express quantum computation, detached from
implementation concerns and typically using techniques developed in computer
science. While QPL is the closest related domain to our work, we feel it helpful
to include a brief and chronological overview of the field of QC, which will help
to place the related work. For further reading on Quantum Computing and re-
lated topics, we refer to the excellent textbooks by Nielsen & Chuang [150] and
Gruska [97].

2.2.1 Overview

The earliest discussions on quantum-mechanical computers date from the early
1980s. The conceptual idea for quantum computers surfaced in articles about
the physical limitations of classical computer hardware [21, 77] and the efficient
simulation of quantum-mechanical systems [76, 77]. Bennett and Brassard [22]
opened up the field of Quantum Cryptography with their quantum key distri-
bution algorithm, which a decade later will prove to be quantum information’s
first commercial application. The Deutsch-Josza algorithm [65] provided in the
early 1990s the first demonstration of a problem in which a classical solution
requires more steps than the quantum algorithm. A few years later, Peter Shor
published a polynomial algorithm for the prime factorization problem [172, 171].
Whereas the Deutsch-Josza algorithm was more of theoretical interest, prime
factorization is a very useful problem to solve and in classical computing has no
known polynomial algorithm. Due to this discovery, Quantum Computing ex-
perienced a large surge in popularity, helped by the fact that prime factorization
is the cornerstone of the popular RSA encryption protocol. Soon after, Grover’s
search algorithm [96] demonstrated another useful quantum algorithm with an
improved run time compared to classical computing. Since then, several other
quantum algorithms have joined the complexity zoo1: quantum annealing [54],
quantum walks [146], quantum cryptography [38], etc. Many of these algorithms
have been developed within the complexity theory field, with similar theoretical
development still under way.

The main tool of the trade in much of the theoretical development mentioned
above is the circuit model. Most textbooks use the circuit model as quantum com-

1http://qwiki.stanford.edu/index.php/Complexity_Zoo
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putational model to represent and explain quantum algorithms. The quantum
circuit model invokes the familiar model of an electronic circuit using gates and
wires, making intermediate computations deterministic and thus easier to reason
about. Circuit model examples can be found in Figure 2.1 in order to give an
impression on the concepts and notation. On these circuit, the quantum states
flow along the wires (horizontal lines) from gate to gate (boxes). Measurements
are depicted using the symbol, destroying the quantum state and thus termin-
ating the wire. These measurements, non-deterministic and non-intuitive, are
performed at the end of the computation, as a way to extract the results from
the computation. Often, measurements are not present in the description of a
circuit, but are part of an implicit and informal classical control structure. A
qubit in the circuit-model starts its life in a certain state, which over its lifetime
evolves by interacting via a certain sequence of gates with multiple qubits.

|0〉 H H

|1〉 H

Uf

(a) Deutsch’s algorithm

m1

m2

|ψ〉 H

|0〉 H ⊕

|0〉 ⊕ Xm2 Zm1

(b) teleportation

Figure 2.1: Some typical quantum circuit examples; the two-qubit special case of
the Deutsch-Josza algorithm and the qubit teleportation circuit. The double line
in the teleportation circuit carries classical data and thus denotes a measurement
outcome control dependency.

In parallel with theoretical progress, experimental research has progressed
as well. Experimental physicists have made important progress at the imple-
mentation side, producing physical demonstrations of known quantum algorithms
such as Shor’s factorization algorithm [194], implementing universal quantum
gates [101] or working towards quantum-mechanical simulations [34]. Early ex-
periments mainly strove to implement qubits, quantum gates and of course the
then recently discovered theoretical algorithms. Many different approaches were
explored: nuclear-magnetic resonance, ion traps, photonics, etc. Such experi-
mental work demonstrated the basic principles, but also exposed serious scalab-
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ility challenges. The search to overcome these challenges led to the development
of new and radically different approaches to quantum computing such as adia-
batic computing [25] and the one-way quantum computer [159]. Certain physical
effects can produce larger and cheaper quantum resources, but the use of such re-
sources requires quantum computational models that are fundamentally different
from the circuit-based one. In summary, the insights gained from experimental
research produced a new generation of quantum computing models. In such mod-
els, the commonly observed implementation pitfalls are avoided by construction.

The one-way quantum computer proposed by Raussendorf and Briegel [159]
works in radically different ways than does a circuit-based one. The rationale
behind the one-way computer is that a large amount of qubits with fixed entan-
glement patterns are cheap to create, but that it is expensive to keep a qubit alive
for long due to decoherence. A qubit needs to be physically isolated to avoid losing
the information it carries; each interaction with a qubit thus increases the chance
of such decoherence. Measuring a qubit will evolve the state of other qubits it is
entangled with and disentangle that qubit. After measurement, that qubit can
thus be considered to be destroyed. This significantly reduces the lifetime and
number of interactions on any one qubit, leading to a more scalable implement-
ation. The one-way quantum computing model has since been demonstrated in
experimental implementations [192, 183, 199].

Besides the physical realization benefits, the one-way computer has theoret-
ical merits: it brings entanglement, measurement and measurement outcomes
to the foreground. This stimulated theoretical research in what now falls under
the name of Measurement-based [33] quantum computing (MQC). Measurement-
based frameworks formed a popular basis for developing new theoretical tools and
contributions: the Measurement Calculus [53], complexity analysis [36], new con-
ceptual tools [55], circuit optimization [35], distributed QC [67], blind quantum
computing [20], etc. Compared to the circuit model, the Measurement-based
model is a radical paradigm shift; one-qubit measurements form the driving force
of the computation and qubits are treated as disposable.

2.2.2 Quantum Programming Languages

The domain of Quantum Programming Languages(QPL) has grown into a sub-
domain of Quantum Computing and Quantum Information. It can be distin-
guished from the rest of the field by its focus on more formal and closed systems
in which to express quantum computations, detached from implementation con-
cerns that typically use techniques developed in Computer Science. Simon Gay
wrote an excellent survey of the QPL domain [85], categorizing the state of the
art as imperative or functional languages, semantic techniques and compilers.
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Rationale

A common criticism leveled against the domain of Quantum Programming Lan-
guages is that “it is pointless to study languages for programming non-existent
hardware”. Gay refutes this criticism using three arguments. First, Quantum
Computing has already produced practical and marketable results. Initially, us-
ing commercial fixed-function hardware such as random number generators and
Quantum Cryptography solutions. Later, the company D-wave systems launched
a commercial quantum computer2 implementing a quantum annealing [116] pro-
cesses that, although not a universal QC, addresses certain optimization and clas-
sification problems [54, 147]. Next, learning from the past, bottom-up program-
ming paradigms developed for the early classical computers had certain avoidable
issues that were only solved decades later with the introduction of languages with
a better theoretical foundation; for example, early FORTRAN compared to Al-
gol60 and Lisp. Co-developing QPL early on, using firm theoretical foundations
can help avoid the issues observed in early purely hardware-oriented bottom-up
programming paradigms. And lastly, the insights gained by the development of
QPL, which are useful even in absence of practical QC.

In the context of our thesis, we add two additional arguments in Chapter 3
relating not to QPL as such, but to a working implementation thereof: supporting
the development of new QC applications and interfacing with implementations.

Related work

The proverbial grandfather of QPL is Knill’s quantum pseudocode proposal [127]
from 1996, operating on the Quantum Random Access Machine (QRAM) work-
ing model of a quantum computer. It is an early attempt to formalize the circuit
model. The QRAM model mimics the conventional Random Access Machine;
classical as well as quantum computational state stored in memory locations,
a conventional imperative language manipulates the quantum locations using
quantum gates. The QRAM model has formed the basis for most imperative
quantum programming languages to date [152, 24, 64, 162, 112]. The first com-
plete quantum programming language was Ömer’s QCL [152] in 2003, a pro-
cedural imperative language. SQRAM by Nagarajan et al. [145] describes and
implements a low-level instruction set for a QRAM-based computer architecture.
The focus of the imperative QPL lies on implementing and executing circuit-
model quantum algorithms using existing programming tools. Some are even
completely embedded in an existing language as a library [24, 64].

2The D-wave quantum annealing computer is not without controversy, mainly receiving cri-
ticism about its lack of definite proof that the quantum annealing process does not work strictly
within classical mechanics. Recently, they did address some of the criticism by demonstrating
quantum effects in the eight qubit case [116].
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The imperative QRAM approaches suffer from the lack of formalization. For
instance, comparing three QRAM-based languages [152, 24, 145] reveals a wide
variety of basic operators and combinators, even if their approaches are funda-
mentally the same. By their nature, QRAM approaches construct circuits by
using functionality of the classical host language. While this does provide some
degree of integration and separability, these mesh together to the extent that it
is hard to distinguish operations necessary for the larger algorithm from those
that simply place a quantum gate within the circuit.

Another distinct camp in QPL are the functional languages. Selinger de-
veloped an influential functional language called Quantum Programming Lan-
guage [166], incorporating a type system and two equivalent notations: textual
and an ingenious graphical quantum flow charts. Another important functional
language is QML by Grattage [94]. Functional languages typically have a different
focus and purpose from their imperative counterparts, seeking to investigating
unusual language features [94], higher-order abstractions or assist in proofs [70].

The Measurement Calculus by [53] provides the required formalization of a
small but powerful low-level framework, a measurement-based assembly language,
on which it builds higher-order concepts. The expressive power of the MC is evid-
ent from its use in the field as conceptual tool. It also has been advocated before
as a basis for a bottom-up approach to a higher-level programming paradigm [66]
in a distributed setting, for which we provided a virtual implementation [67] by
extending our layered architecture covered later in Chapter 3. To this date, we
know of only two other MC implementations besides our own. The calculus it-
self, a code rewriting process essentially, was implemented by D’Hondt [66] in the
context of a PhD thesis. Independently from our own virtual implementation,
Allcock [6] implemented as part of a master thesis an ad-hoc C++ implementa-
tion.
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2.3 Operational Basics

The Measurement Calculus (MC) is a theoretical framework and a formaliza-
tion of the measurement-based QC model. It defines a small and elegant core
language with simple operational semantics. In addition, the MC also intro-
duces a small calculus of equations and a pattern abstraction, supporting the
design and analysis of MC programs. This pattern abstraction is presented in
the next section. First, we present the operational principles of Measurement-
based Quantum Computing (MQC), for which the MC’s operational semantics
provides us a realistic, powerful, low-level and universal instruction set. Such
properties are important for the Quantum Virtual Machine, which we introduce
in the next chapter.

2.3.1 Overview

The basic computational resource for MQC is a cluster state: a large and highly-
entangled quantum state. In a cluster state, all qubits are prepared in a regularly-
structured entanglement network, typically a mesh or 2D lattice. This structure
describes the large quantum states that can be obtained by using certain phys-
ical effects, such as those described by the Ising interaction [49]. The conceptual
generalization of such a cluster state is the graph state, in which nodes repres-
ent qubits and edges an entanglement relations. The MC starts its computation
by forming a graph state using two-qubit entanglement operations. Computation
then proceeds with a measuring phase, in which single-qubit measurement opera-
tions are applied to the graph state. These measured qubits are removed from the
state, but the outcome of the measurement stored. In the third and final phase
of execution, correction operations are applied when necessary to compensate
for the non-deterministic effects of the measurement operations. The following
MC formulation of the Hadamard transformation provides the smallest example
which contains all three elements:

H := Xs1
2 M1E1,2 (2.3.1)

where H is the operator

H =
1√
2

[
1 1
1 −1

]
. (2.3.2)

In order, from right to left, we have an entanglement operation E, measurement
M and correction X. The numbers in subscript are the target qubit names and s1

denotes the measurement outcome of qubit 1. Before moving on to the detailed
description of syntax and semantics, we show a rough schematic overview of the
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effect of all three phases on the graph state. Therein, we visualize the graph
state at each phase, using shaded circles for qubits and edges between them for
entanglement.

input:

entanglements measurements corrections

output:

1

1 2

E1,2

1 2

M1

2

Xs1
2

2

Qubit 1 is taken as input state, combined with a fresh qubit 2 in the entanglement
step and subsequently destroyed in the measurement phase. Qubit 2, which was
modified as a side effect of the measurement, is modified by a correction operation
to reach the desired output state.

We present the operational semantics of the Measurement Calculus from
Danos et al. [53] by presenting the action of each operation upon the compu-
tational state in turn. Required notational conventions, linear algebra and QC
fundamentals will be presented along the way. The Measurement Calculus offers
three types of operations: Entanglement (E), Measurement (M) and Correction
(X,Z). To distinguish between MC operations and the linear algebra operators
more clearly, we will refer to MC operations as Commands.

2.3.2 Computation State and Preparation

Computational state is a pair (q,Γ): a quantum state q and a classical state
Γ. The classical part Γ is used to store the outcome of qubit measurements.
The outcome of a measurement is either 0 or 1. Each qubit is destroyed after
measurement and can thus be measured only once. It is thus sufficient to say
that Γ maps qubit names to a Boolean value.

The classical state or signal map Γ fulfills two purposes. First, it stores
measurement outcomes, which can be part of a quantum algorithm’s result.3

However, the main purpose of the classical state is to control the execution of
subsequent operations during computation, thus rendering an essentially non-
deterministic computation deterministic.

Linear algebra is typically used for the mathematical formulation of quantum
mechanics. The postulates of quantum mechanics tell us that the quantum state
q is a vector in a specific type of vector space. More concretely q is a unit

3This is the case for Quantum Key Distribution protocols [73] that result in 0 and 1 outcomes
that form encryption keys when concatenated.
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vector in a complex vector space that has an inner-product. Its unique properties
give rise to a geometric interpretation of a single qubit state. This geometric
interpretation, called the Bloch sphere as in Figure 2.2, is a common intuitive aid
that can be used to visualize a qubit state as a vector or point on the surface of a
unit sphere. All non-input qubits needed by the MC computation are prepared in

|0〉

|1〉

X
Y

(a) |+〉 =
1
√

2
(|0〉+ |1〉)

|0〉

|1〉

X
Y

(b) |−〉 =
1
√

2
(|0〉 − |1〉)

Figure 2.2: Bloch sphere representations of the diagonal basis vectors |+〉 in (a)
and |−〉 in (b).

a so-called |+〉 state, which together with |−〉 forms the diagonal basis, as opposed
to the computational basis formed by |0〉 and |1〉. The |+〉 and |−〉 states are in
a superposition of the |0〉 and |1〉 basis states:

|+〉 =
1√
2

[
1
1

]
, |−〉 =

1√
2

[
1
−1

]
.

Both states, when visualized on the Bloch sphere, appear on the sphere’s equator.
One of the quantum mechanical postulates state that composite systems are

obtained by taking the tensor product of the separate systems. The computa-
tion’s quantum state thus starts out as a product state of all qubits involved in
the computation. Taking the Hadamard example above with the input qubit 1 in
state |ψ〉, the computation would start out with |ψ〉⊗|+〉 as computational state.
To distinguish individual qubits, subscripts are often added to the notation. The
example’s initial state is thus often written as |ψ〉1|+〉2. In general, the quantum
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computational state q thus starts out as

q = |ψ〉 ⊗

⊗
i∈Q
|+〉i

 (2.3.3)

taking |ψ〉 combined input state and Q the set of all non-input qubit names used
in an MC computation.

2.3.3 Entanglement: E

Qubits are said to be entangled when they cannot be represented as a product
of individual qubit states. The MC introduces a special-purpose entanglement
command E. This entanglement command targets two qubits, making it the
only multi-qubit operation in the MC. The effect of the E command on a two-
qubit state is described by the ∧Z operator, which has the following matrix
representation:

∧Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Its action is to apply the Pauli-Z operator
[
1 0
0 −1

]
to the target (second) qubit

when the control (first) qubit is set. For example, on the two-qubit initial state
of the Hadamard example:

∧Z |ψ〉|+〉 = ∧Z α|00〉+ α|01〉+ β|10〉+ β|11〉√
2

=
α|00〉+ α|01〉+ β|10〉 − β|11〉√

2
,

(2.3.4)

with |ψ〉 the single qubit state |ψ〉 = α|0〉+β|1〉. As the quantum state is typically
composed of more than two qubits, it is necessary to syntactically distinguish E
commands that act on different qubits by writing Ei,j where i and j are qubit
names. Putting the target qubit names in subscript we see that for example E2,3

acts on the target qubit 2 and control qubit 3. Due to linearity, when applying
the operator to a larger state we obtain the following behavior

∧Zi,j
∑

αk|k〉 =
∑{

−αk|k〉 if |k〉 = . . . |1〉i . . . |1〉j . . .
αk|k〉 otherwise

(2.3.5)
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in which we use |k〉 = . . . |1〉i . . . |1〉j . . . to mean all basis states which have |1〉
at the positions of qubits i and j. Putting it all together, the action of the E
command on the quantum state can be described as follows.

q, Γ
Ei,j−→ ∧Zi,j q, Γ (2.3.6)

Some useful properties are that swapping target and control produces the
same operation

Ei,j = Ej,i (2.3.7)

and that repeating an operation will cancel it out, as it is its own reverse

Ei,jEi,j q = q . (2.3.8)

Entanglement operations can be chained together, such as for example in:
∧Z4,3 ∧Z3,2 ∧Z2,1

⊗
i∈{1,2,3,4} qi. One can associate any graph with an en-

tangled state, representing qubits as nodes and entanglement relations as edges.
This associated state is a graph state. Reusing the above chaining example, the
entanglement graph would be

1 2 3 4
,

which represents a different entangled state than

1 2

3 4

E1,2E2,4E4,3E3,1 ,

and different still from

1 2

3 4

E1,4E4,3E3,1E1,2 .

In MQC terminology, the above describes a graph state. The lattice-shaped
cluster states used by the original one-way quantum computer model are a special
instance of graph states, for example the above case E1,2E2,4E4,3E3,1 forms a
two-by-two cluster state. Early physical experiments use such cluster states [199],
with some recent results indeed demonstrating that large-scale cluster states can
be realized [34]. The graph state is a sensible abstraction, capturing essential
qubit interactions. Graph states do have physical realizations, for instance by
starting from a cluster state and disentangling certain qubits [104, 5].
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2.3.4 Measurement: M

The measurement command Mα
i performs a single-qubit measurement with tar-

get qubit i. The measurement angle α ∈ [0,2π) is a parameter that modifies the
measurement basis. The angle α corresponds to the basis {|+α〉,|−α〉} where

|+α〉 =
1√
2

(
|0〉+ eiα|1〉

)
(2.3.9)

|−α〉 =
1√
2

(
|0〉 − eiα|1〉

)
. (2.3.10)

without losing the universality property. The geometric interpretation of the
above is evident when considering Euler’s eiα = cosα+ i sinα describing a point
on a circle in the complex plane. The measurement angle when omitted is as-
sumed to be α = 0, yielding the diagonal basis pair {|+〉,|−〉} which is represen-
ted on the Bloch sphere in Figure 2.3a. Increasing α rotates this diagonal basis
around the Bloch sphere’s equator, within the XY -plane.

|+〉

|−〉

|0〉

|1〉

X
Y

(a) α = 0

|0〉

|1〉

X
Y∣∣+π

4

〉

∣∣−π
4

〉

α

(b) α = π
4

|0〉

|1〉

∣∣+π
2

〉
∣∣−π

2

〉

X
Yα

(c) α = π
2

Figure 2.3: Bloch sphere representations of the {|+α〉,|−α〉} measurement basis
with some increasing values for angle parameter α: the diagonal or X basis
|±0〉 = 1√

2
(|0〉 ± |1〉) in (a), an arbitrary basis |±α〉 in (b) and the Y basis∣∣±π

2

〉
= 1√

2
(|0〉 ± i|1〉) in (c).

The measurement operation Mα
i will thus modify the quantum part q of the

computational state such that the state of the qubit i is turned into either |+α〉 or
|−α〉. This means qubit i’s state is now known and disentangled from any other
qubits. The effect of Mα

i on the graph-state representation would be to remove all
edges involving the node for qubit i. The quantum state of the computation after
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measurement would thus be either the composed states q′ ⊗ |+α〉i or q′′ ⊗ |−α〉i.
Following the measurement-based approach, the state of qubit i is disregarded,
removing the qubit’s factor from the larger state to result in q′ or q′′. To be more
precise, using the inner product notation

q′ = 〈+α|iq (2.3.11)

q′′ = 〈−α|iq . (2.3.12)

The probabilities for either q′ or q′′ are calculated by comparing the norms of the
pre- and post-measurement states. 4

p (0) =
‖〈+α|iq‖
‖q‖

(2.3.13)

p (1) =
‖〈−α|iq‖
‖q‖

(2.3.14)

Coming back to the Hadamard example, applying the measurement command
M1 on the post-entanglement state ∧Z |ψ〉1|+〉2 from Equation (2.3.4). The
measurement command measuring in basis {|+〉,|−〉} has a certain probability of
applying either 〈+| or 〈−|, resulting in the post-measurement state

〈+|1 (α|00〉+ α|01〉+ β|10〉 − β|11〉)
= (α+ β) |0〉+ (α− β) |1〉

(2.3.15)

or

〈−|1 (α|00〉+ α|01〉+ β|10〉 − β|11〉)
= (α− β) |0〉+ (α+ β) |1〉

(2.3.16)

respectively5.
The classical part Γ of the computational state is modified to store the out-

come of the measurement. We use the convention that si = 0 if the outcome
of measuring qubit i was basis |+α〉. Otherwise, si = 1 if the qubit collapsed
to |−α〉. The command Mα

i modifies Γ to associate the qubit name i with the
outcome. Dealing with such outcomes will be the domain of signals, a topic
we will touch on shortly. In summary, the action on the quantum state of the
measurement command can be either of two transitions

q,Γ
Mα
i−→ 〈+α|i q, Γ[0/i] (2.3.17)

q,Γ
Mα
i−→ 〈−α|i q, Γ[1/i] . (2.3.18)

in which we write Γ[0/i] to mean the modification to Γ such that Γ(i) = 0.

4The ‖q‖ in the norm is required because we do not normalize.
5As covered in the appendix, quantum states are equal up to a global phase. Not following

normalization, we can leave out the 1√
2

factors.
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2.3.5 Corrections

By their very nature, measurements introduce non-determinism in the compu-
tation, transitioning probabilistically to either of two possible post-measurement
states. Correction operations are typically applied after a measurement to merge
these two computational branches. Taking the Hadamard example again, we can
see that the |+〉 (s1 = 0) measurement outcome produced the correct result by
comparing Equation (2.3.15) to

H|ψ〉 =
1√
2

[
1 1
1 −1

]
(α|0〉+ β|1〉)

= (α+ β) |0〉+ (α− β) |1〉 .

The same result can be obtained from the outcome |−〉 (s1 = 1) branch from
Equation (2.3.16) by applying the Pauli-X unitary operation X :=

[
0 1
1 0

]
X ((α− β) |0〉+ (α+ β) |1〉) = (α+ β) |0〉+ (α− β) |1〉 .

Another correction operation used by the Measurement Calculus is the Pauli-Z
unitary operator Z :=

[
1 0
0 −1

]
.

In summary, correction operations can turn inherently non-deterministic com-
putation into a deterministic one by compensating for certain measurement out-
comes. Their action on the quantum state is described by the transitions

q, Γ
Xi−→ Xi q, Γ (2.3.19)

q, Γ
Zi−→ Zi q, Γ . (2.3.20)

2.3.6 Signals

Signals are the mechanism used by the MC to control the conditional execution
of commands. For example, the Xs1

2 command applies the X2 operation only if
the signal s1 evaluates to 1, doing nothing otherwise.

q, {s1 → 0}
X
s1
2−→ q, {s1 → 0}

q, {s1 → 1}
X
s1
2−→ X2 q, {s1 → 1}

The notation si evaluates to the outcome of qubit i in the given outcome map Γ.
More formally:

Γ ` si ⇓ Γ(i) . (2.3.21)

Syntactically, the signal for corrections is specified in the exponent of the com-
mand, echoing the exponentiation of matrix operations X0

i = I or X1
i = Xi. The

24



signal on a correction command is assumed to be 1 when omitted. Measurement
commands can be equipped with two signals called s and t. These signals modify
the measurement angle; the s-signal flips the sign of the angle and the t-signal
adds π to the angle. This can be defined using the appropriate syntax as:

t [Mα
i ]
s

:= M
(−1)sα+tπ
i (2.3.22)

in which either signal s or t defaults to 0 when omitted.
A signal expression can contain a sum of multiple outcomes and values. Such

sum is still evaluated to the Boolean value of 0 or 1 by summing the value
of each term modulo two. For example s = s2 + s3 + 1 evaluates to 0 under
Γ = {s2 → 0, s3 → 1}. Formally,

Γ ` s ⇓ u Γ ` t ⇓ v
Γ ` s+ t ⇓ u⊕ v

(2.3.23)

where ⊕ is sum modulo two or the logical xor operation.
Evidently, a command equipped with a signal can only execute when the

outcomes appearing in the signal are present in the signal map Γ. We call such
constraints on the command execution order signal dependencies. Other such
constraints are covered under the pattern abstraction in the next section.

2.3.7 Command Sequence

For the sake of clarity, we look at the action of each MC command as individual
and atomic operations. However, an MQC computer ideally performs certain op-
erations simultaneously. All entanglements at the front of the command sequence
can be applied at the same time as part of the state preparation. Measurements
that do not depend on one another and corrections to different qubits can also
be applied simultaneously. But, the sequential view is semantically equivalent to
this quantum parallel one, thanks to the linearity of the involved operators.

Putting all of the semantic rules together form the basis for the Measurement
Calculus’ operational semantics as presented by Danos et al. [53]:

q, Γ
Ei,j−→ ∧Zi,j q, Γ (2.3.24)

q, Γ
X
sΓ
i−→ XsΓ

i q, Γ (2.3.25)

q, Γ
Z
sΓ
i−→ ZsΓi q, Γ (2.3.26)

q, Γ
t[Mα

i ]s−→ 〈+αΓ
|i q, Γ[0/i] (2.3.27)

q, Γ
t[Mα

i ]s−→ 〈−αΓ
|i q, Γ[1/i] (2.3.28)
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in which αΓ := (−1)sα+ tπ, and sΓ refers to the value of signal s under Γ. These
rules are applied to each command in a command sequence in right-to-left order.
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2.4 Measurement Calculus

2.4.1 Patterns

In the example command sequence Xs1M2E1,2, qubit 1 is implicitly used as an
input qubit and qubit 2 as output qubit. For larger cases, it is useful to define
what rule each qubit plays in the computation: input, output or temporary
working qubits. This is the starting point of the following section, where we
present the measurement pattern abstraction as defined by the MC.

A measurement pattern groups a command sequence with qubit sets. We
take V to be the computational space, the set of all qubit names in the command
sequence. The qubits in sets I,O ⊂ V are respectively input and output qubits;
qubits that are neither are called working qubits. As mentioned in the previous
section, certain ordering constraints must be obeyed in the command sequence,
these are distilled into the definiteness conditions [53].

Definition 1. A pattern P := (V,I,O,A) consists of the qubit sets V,I,O and a
command sequence A obeying the four definiteness conditions:

• (D0) no command depends on an outcome not yet measured;

• (D1) no command acts on a qubit already measured;

• (D2) a qubit i is measured if and only if i is not an output.

The pattern for the Hadamard example above becomes:

H := ({1,2}, {1}, {2}, Xs1
2 M1E12)

Patterns are equivalent under a simple qubit rewrite rule: any qubit name can be
substituted by another, if done so consistently. To refer to a pattern with specific
names, the syntax H(3,4) is used for example as a shorthand for the pattern

H(3,4) = ({3,4}, {3}, {4}, Xs3
4 M3E34)

where the concrete qubits of V are explicit. Such rewriting becomes essential
when combining patterns into larger computations.

Pattern combination is the merging of two patterns into a larger one. Two
patterns P1 := (V1,I1,O1,A1) and P2 := (V2,I2,O2,A2) can be combined through
one of two ways: composite and tensor combination. These are the pattern
combinations as originally defined in Danos et al. [53]. When the qubit sets of
both patterns are entirely disjoint,

V1 ∩ V2 = ∅ (2.4.1)
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we can perform a tensor or parallel compose:

P1 ⊗ P2 := (V1 ∪ V2, I1 ∪ I2, O1 ∪O2, A1A2) . (2.4.2)

In other words, neither pattern interferes with the another and they can thus be
merged trivially.

A composite or sequential compose is performed by connecting input with
output qubits

P1 ◦ P2 := (V1 ∪ V2, I1, O2, A1A2) (2.4.3)

and can thus only be achieved on the condition that

V1 ∩ V2 = O1 = I2 . (2.4.4)

For example, connecting the input and output qubits of two Hadamard operations
yields the composed pattern:

H(2,3) ◦ H(1,2) = ({1,2,3}, {1}, {3}, Xs2
3 M2E23X

s1
2 M1E12)

Note that the resulting pattern depends on qubit names, manual qubit renaming
thus plays a part in composition. In the above example, qubit 2 is shared by
both to connect input to output. In larger cases, the number of input and output
qubits do not always match properly. For instance, the ∧X pattern example
from Danos et al. [53] implements the ∧X quantum gate based on the circuit:

H Z H

by first introducing the two trivial patterns

I := ({1},{1},{1}, ∅) (2.4.5)

∧Z := ({1,2},{1,2},{1,2}, E12) (2.4.6)

and combining composite and parallel composition with carefully selected qubit
names:

∧X :=
(
I(1)⊗H(3,4)

)
◦ ∧Z(1,3) ◦

(
I(1)⊗H(2,3)

)
= ({1,2,3,4},{1,2},{1,4}, Xs3

4 M3E34E13X
s2
3 M2E23) .

(2.4.7)

The two pattern combination rules work well for small cases, but become a tedious
and error-prone process on larger-scale pattern combinations. Later in Chapter 3
we introduce an alternative pattern combination rule in order to help automate
this process.

Pattern combination is a simple but powerful abstraction as it supports the
design of computations by enabling modularization and local reasoning. Because
the pattern semantics is provably compositional [53], a component can be de-
veloped without having to take into account the entire system.
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2.4.2 Rewrite rules

The MC defines a set of equations, a calculus, that acts as local rewrite rules,
changing the ordering of a command sequence. The chief purpose of this calculus
is to rewrite wild patterns into standardized patterns. A pattern in standard form
performs first all entanglement operations, then all measurements and finally all
corrections. This is an important and very useful element of the MC. For one,
only standardized patterns can be executed by a physical measurement-based
computer. However, in the context of virtual execution, the standardization of
patterns can causes performance degradation. Putting all entanglement oper-
ations in front defeats some of the vital space optimization techniques for the
simulation environment, which we cover in Section 3.5. Wild patterns typically
destroy qubits right after introducing a new one, keeping the total number of
entangled qubits down compared to the standardized pattern. In practice, we
will thus keep patterns in their wild form due to performance reasons. Due to
the importance of standardization for the MC, we do show their effect on a short
example to impart some intuition. For further details, definitions, properties and
proofs, we refer to Danos et al. [53].

Taking the wild pattern obtained by composition of the Hadamard pattern
above, we can turn it into a standard pattern using the rewrite rules.

H(2,3) ◦ H(1,2) = Xs2
3 M2E23X

s1
2 M1E12 EijX

s
i ⇒ Xs

i Z
s
jEij (2.4.8)

= Xs2
3 M2X

s1
2 Zs13 E23M1E12 EijAk ⇒ AkEij (2.4.9)

= Xs2
3 M2X

s1
2 Zs13 M1E23E12 MiX

s
i ⇒ [Mi]

s
(2.4.10)

= Xs2
3 [M2]

s1 Zs13 M1E23E12 AkZi ⇒ ZiAk (2.4.11)

= Xs2
3 Zs13 [M2]

s1 M1E23E12 (2.4.12)

The commutation rules can be obtained and verified as matrix equalities. Other
rules are somewhat more straightforward, such as that two commands operating
on different target qubits and outcomes can be freely commuted, which can be
seen in Equations (2.4.9) and (2.4.11). Correction commands can be absorbed
in the s- or t-signal of measurement operations, which is the reason why these
signals on measurements were introduced in the first place.

We stress again the importance of this standard EMC-form, the rewrite
rules and the standardization process; Each pattern is guaranteed to have a
unique standard form. The rewrite rules preserve the pattern’s semantics, do not
add signal dependencies, but can remove some. The standardization process is
guaranteed to terminate. These patterns are more parallel from the quantum
point of view, all entanglement operations can be performed at the start of the
computation as part of the program preparation. Patterns in such form also have
theoretical analytical benefits [37, 55, 36], but are also essential for promising a
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scalable physical implementation [161].
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2.5 Measurement Calculus Properties

At this point we can explain in more detail the arguments for and against our
choice of the MC as quantum computational model, having discussed in the
above the operational semantics and pattern abstraction. We separate conceptual
from practical merits, matching them with the requirements presented at the
start of the chapter. With the term conceptual we group the properties that are
important intrinsic qualities for a quantum computing framework, regardless of
how we intend to use it. With practical, we group properties that are relevant
to our thesis topic and thus help in building a practical quantum programming
paradigm.

2.5.1 Conceptual framework

The MC was conceived to be an expressively powerful and a universal concep-
tual framework for quantum computation, using conceptual and formal tools
originally from the field of computer science. Its expressive power arises from
the pattern abstraction, the composition and standardization of which adheres
to the compositionality, locality and modularity properties. In addition to this
expressiveness comes the improved computational power compared to the cir-
cuit model [36]. Explicit classical control and explicit non-local operations allow
the MC to express certain distributed algorithms more elegantly, which can be
observed in research results dealing with new algorithms such as computabil-
ity [36], characterization [37], distributed computing [67] with in particular blind
computing [20].

Universality means that the set of operations in the MC can be combined to
express any quantum computation. This property is shown by defining a universal
set. Analogously, in the context of classical computer circuits, the nand logic
gate implemented physically by a transistor forms a universal set for classical
computing: any boolean function can be implemented using a combination of
nand gates. For quantum computing in the circuit model, arbitrary single-qubit
unitary operations and the controlled-not (∧X) gate form a universal set. The
universal set for the measurement-based model is shown [52] by the MC to be
the following two measurement patterns:

J (α) := Xs1
2 M−α1 E12 (2.5.1)

∧Z := E12 (2.5.2)

In other words, any conceivable quantum computation can be decomposed into
a combination of these two measurement patterns.
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2.5.2 Practical framework

The MC is rooted in the one-way computer model, which by construction provides
a scalable framework for doing quantum computations. As discussed before, it
does so by being designed to use an efficiently obtainable quantum resource [34,
173, 192]. Advances have also been made in making this one-way computer model
more fault-tolerant [160].

The MC’s command sequences form a low-level framework, each command has
a direct physical realization. Naturally, each command is still abstracting away
concerns such as errors, timing and the actual implementation. This low-level
nature, small set of operations and universality make the MC an assembly lan-
guage or ’Instruction Set Architecture’ for a virtual measurement-based quantum
computer. The MC’s operational semantics and its small instruction set nature
of the command sequences offer a straightforward virtual implementation, in the
form of a simple abstract machine or interpreter.

Measurement-based computations typically use more qubits than circuit-based
ones, but the operations acting on the larger quantum state are simpler. Indeed,
each command is realized by a diagonal matrix operation, which we will see in
Chapter 5 plays a vital role in expressing the operations as parallel computations.

The MC possesses explicit classical control (signals) and an explicit classical
state (outcome map). Both traits are important for a practical implementation,
as it allows implementations to encapsulate the classical machinery required to
execute the quantum program. This helps both the integration with existing
programming languages as well as separability. As seen in our related work sec-
tion, this is still often a perceived issue in practical QPL implementations. An
example of the benefit of both properties can also be found in a distributed
setting, in which a signal can contain outcomes communicated from a different
machine. This last example is essential in the distributed measurement calculus,
for which we developed a virtual implementation [67] within the layered archi-
tecture presented in the next chapter.

2.5.3 Matching the Requirements

In summary, we can distill from the above discussion all the features necessary
as per our requirements towards building a Quantum Programming Paradigm.
Completeness: is satisfied by the MC’s universality proof. Integration: is aided
by a clear instruction set and explicit classical machinery. Separability: quantum
state is separate from classical state and explicit classical control in the MC’s op-
erational semantics. Expressiveness: can be claimed due to the expressive power
of MC’s pattern abstraction and a pattern algebra that is sound, compositional
and context-free. Hardware independence: is achieved as the MC operations
abstract away from how each is implemented. Low-level: MC’s handful of opera-
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tions map directly on physical operations for the one-way computer. Operational
semantics: MC’s semantics defined simple operational semantics with a small
amount of state transformation steps. Scalable: cluster and graph states are
used as quantum computation resource, which promises to be scale more easily,
relatively speaking, in number of entangled qubits. Parallel: MC’s simple ele-
mentary operations lead to a natural parallel computing realization of its virtual
execution.
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Chapter 3

Practical Foundation for a
Quantum Programming
Paradigm

This chapter continues on the formal basis established last chapter. Here, we work
out a complete working proposal for a Quantum Programming Paradigm based
around the measurement-based Quantum Computing model. The contents of
this chapter is not a report on a Measurement Calculus implementation. Rather,
we establish a architecture of multiple abstraction layers that conceptually follow
the natural boundaries of the formal MC model. We do report on several im-
plementations of these abstraction layers, occasionally going into details. Some
of these implementation details resurface during Chapter 5 or Chapter 6, others
specifics are offered in order to be precise. Important in this chapter are the
various abstraction layers of the architecture, their interface and mutual interac-
tion. After the introduction and an overview of the architecture, the structure of
the chapter will follow various layers from applications down to the realization of
quantum operators.
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3.1 Introduction

Programming paradigms are collections of formal and informal methodologies,
tools, abstractions, etc. to facilitate and support writing programs in a certain
style. Each paradigm offers a different approach to programming a computer. An
individual Quantum Programming Language is a vehicle or part of a Quantum
Programming Paradigm (QPP). In the last chapter, we presented some of the
common reasons for the pursuit of Quantum Programming Languages. For the
case of a QPP, we can add two additional arguments: developing a Quantum
Programming Paradigm supports development of quantum computing algorithms
and applications, but can also help in the development of quantum computer
hardware.

First, we regard application development support. Even when eventually
practical quantum computers surface, it is likely they will remain an expensive
computational resource, for a long while at least. A QPP can support the search,
development and testing of both new and existing applications for quantum com-
puters. Virtualisation is one obvious way to support this; it enables algorithms
and applications to be developed for quantum computers not yet available or too
expensive to operate, at least, if the working model and simulator are accurate
enough. Another way to support QC development is by automating and formal-
izing the expression of quantum algorithms. Currently, quantum algorithms and
applications are developed by virtue of the creativity, ingenuity and mathemat-
ical rigor of the creator. A programming paradigm seeks to facilitate much of
this work, but always with the hope that a practical and well-developed QPP
opens it up for other research domains and applications. The second argument
for developing a QPP is to help the development of implementations. A prac-
tical QPL implementation can, when sufficiently hardware-independent, provide
a common testing and benchmark system for implementations. Once quantum
computers pass the current proof-of-concept and embryonic stage of development,
it will become important to quantitatively compare and assess different physical
implementation approaches. Today, this argument already applies to virtual im-
plementations. For instance, our QPP prototype enables us in Chapter 6 to
compare the two radically different virtual implementations of Chapters 3 and 5.

Approach Programming paradigms, as can be guessed from the definition
above, are not designed and created as much as formed by accretion of new
ideas, tools and technology over time. Building a programming paradigm is a
misnomer, rather more fitting is the term growing a Quantum Programming
Paradigm [175]. We currently see two main stakeholders in QC: designers and
implementers. Designers are the mathematicians, physicists and computer sci-
entists developing quantum computing algorithms and applications. Implement-
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ors are the experimental physicists and engineers building the physical quantum
computers. Also belonging to this latter group are the programmers building
the languages, related tools as well as the virtual execution environment. For
a Quantum Programming Paradigm (QPP) to be effective, it needs to integrate
the concerns of both stakeholders.

For designers, expressiveness and tools are important. Algorithms and applic-
ations should be straightforward to express for an expert. Tools aid in the ana-
lysis, verification and transformation of programs; a good formal basis is required
for the development of such tools, in order to represent, analyze and manipulate
programs. Although programming paradigms often use abstraction layers to
shield the programmers from underlying engineering issues, it is hard to develop
an effective paradigm in isolation without regard for the supporting computer
architecture, virtual or actual. Computer science has multiple examples of top-
down designed paradigms that only got wide acceptance across the programming
community after demonstrating a practical mapping to the reigning computer ar-
chitecture: the von Neumann architecture computer or Random Access Machine
model. Examples are functional programming [121], logic programming [200] and
relational algebra [50].

Previous chapter, we presented the Measurement Calculus and argued that it
possesses properties to satisfy both the designer and implementer stakeholders.
Yet, an ad-hoc implementation of the MC would not fit the vision of growing a
QPP. An ad-hoc implementation aims to make something work, but is not con-
cerned with extensibility. Our strategy is to create a small kernel with all the
necessary elements from top to bottom, but which is designed from the start to
be extended and grown in multiple directions. To this purpose, we build our QPP
around a quantum computer architecture built as a series of abstraction layers.
Each abstraction layer hides underlying implementation concerns and focuses on
other concerns. A layered architecture is a conversation between different stake-
holders, allowing experts to focus on specific parts and problems without breaking
or redesigning the entire architecture. Such an abstraction layer approach is ubi-
quitous in today’s computer software architectures; an application running on
a modern operating system will run through easily a dozen layers: a language
layer, virtual machine, compiler, kernel, network layer, etc.

In this chapter we construct the practical foundations of a Quantum Pro-
gramming Paradigm, based around the measurement-based model. We do not
ourselves construct an entire set of methodologies and high-level programming
abstractions. Rather, we focus on establishing a firm foundation in the form
of a practical quantum computer architecture. Concretely, we design a layered
architecture for a measurement-based quantum computer, with a complete and
practical implementation of the multiple layers of abstraction, ranging from a
virtual machine implementation to a graphical design tool.
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Related Work Revisiting the related work in the domain of quantum program-
ming languages, one can observe some practical language and architecture pro-
posals that can be considered as a first step toward a QPP; for instance the more
physically-oriented architecture proposal by Svore et al. [181] and the SQRAM
model with its dual instruction set architecture proposal by [145]. These imperat-
ive low-level approaches directly or indirectly follow Knill’s QRAM circuit-based
computational model. As mentioned before, these approaches suffer from a lack
of formalization of QRAM and the circuit model; each implementation needs to
first define its own set of low-level operations and then integrating them into a
new or existing language. This still leaves open the opportunities to develop the
conceptual framework and formal tools required to build a QPP. In this respect,
the functional Quantum Programming Languages such as Grattage’s QML [94]
and Selinger’s QPL [166] can be found to be the opposite. Functional QPLs are
typically constructed with a strong focus on conceptual work, such as higher-
level expression, type theory and category theory. Implementation, however, is a
secondary concern. The functional QPL Closest to our requirements is Selinger’s
QPL, which has described operational as well as denotational semantics, map-
ping the language to lower-level circuit-based gates. The Measurement Calculus,
as we have seen in last chapter, offers a best of both worlds, combining a simple
and practical low-level implementation side with a higher-level conceptual side.
Additionally, the Measurement Calculus has been used, beyond its original re-
search, to develop conceptual tools, forming what could be considered the start of
a QPP. With the perceived issues in the circuit-based model of QC discussed last
chapter, it is useful to provide an alternative quantum computing model based
on the measurement-based model and the Measurement Calculus.
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3.2 Architecture

A layered architecture is designed to separate different concerns into separate lay-
ers. The Measurement Calculus already satisfies the requirements for a Quantum
Programming Language presented in Chapter 2: completeness, integration, sep-
aration, expressiveness and hardware independence. We have chosen the layers
around the abstractions provided by the MC, so as to preserve the required prop-
erties. The structure of the proposed layered architecture is as follows.

• Application layer: integration. MC programs need to be integrated into
classical programming languages in order to build useful applications. In
the application layer, the QPP is connected to the programming environ-
ment at large. We envision and implement two ways in which this can
happen: a graphical design tool for non-programmers and a pattern library
extension for programmers.

• Pattern layer: expressiveness. The pattern layer provides pattern com-
position functionality, but also implements a pattern assembler to transform
a given pattern into an concrete and executable command sequence.

• Execution layer: completeness and separation. Given a command se-
quence, the execution layer orchestrates the execution of its MC commands,
taking care of the required classical computations.

• Realization layer: hardware independence. The realization layer virtually
or physically executes an individual quantum operation.

Different aspects of the MC form the basis for the proposed layered architecture.
Its operational semantics and command sequences are the basis for the execution
layer. The pattern abstraction’s qubit renaming and composition rules are em-
bodied in the pattern layer, which automates this process while abstracting from
the underlying semantics.

Each layer is developed and implemented separately, as a separate abstraction,
library or even executable computer program. It is fundamental to the layered
architecture design that each layer implementation can be changed, extended
and even substituted without affecting any other layers. Our implementations
of the different layers form a practical foundation on which to experiment with
and extend the measurement-based quantum computing paradigm. In practice,
our implementations of each layer have already seen several alternatives and
extensions. For instance, we provide two parallel application layers: a pattern
library and a graphical design tool. Both produce the same output for the pattern
layer, but take a different approach. We also implemented two different execution
layers: a sequential interpreter called qvm and a parallel compiler mcc. Although,
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both use a different realization layer due to their radically different approaches.
A distributed extension to several layers was implemented in the context of our
work on the Distributed Measurement Calculus [67].

To summarize, we offer a visualization of the layered architecture structure
in Figure 3.1. The structure of this chapter follows the structure of the layered
architecture, going from application to realization layer. In each layer, we go
in more detail for its related MC concepts and implemented functionality. The
last section validates the layered architecture approach by revisiting the required
properties in more detail.

User

Application Layer

Pattern Layer

Execution Layer

Realization Layer

pattern compositions composed pattern

command sequence outcomes

quantum operations

Figure 3.1: Overview of the layered architecture structure.
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3.3 Application Layer

The application layer concerns itself with integrating basic quantum computa-
tions into larger concrete and useful applications. This abstraction level uses
patterns as first-class entities, block boxes that can be passed around and manip-
ulated only by certain composition operations provided by the pattern layer. The
pattern layer underneath will perform the actual pattern creation, compositions
and required transformations. We currently offer two different application layer
approaches: the pattern library and graphical pattern editor applications. The
former introduces pattern entities and operations into an existing programming
language, highlighting the integration characteristic and its benefit in construct-
ing complex patterns. The latter application we implemented is a Graphical User
Interface (GUI) tool that exposes the pattern algebra as a small visual language,
stressing expressiveness. The library approach requires programming expertise,
but as we will see can be more powerful. The graphical approach allows non-
programming experts to express and execute larger patterns without the tedium
associated with doing the same manually.

The common example we will be using here is the construction of a pattern
realizing the Quantum Fourier Transform (QFT), some familiarity of which is
assumed during this discussion. The QFT is an interesting case; it is a well-
known and often used quantum operation, requires a non-trivial composition of
multiple measurement patterns and possesses a recursive structure: each n-qubit
QFT can be defined in terms of an n− 1-qubit version. We define the QFT (n)
pattern by following its circuit definition in Figure 3.2, which can be composed
with Hadamard (H) and controlled-phase gates (∧P (α)).

H P (π2 ) . . . P ( π
2n−2 ) P ( π

2n−1 )

. . .

... QFT (n−1)

Figure 3.2: Recursive definition of QFT (n): the Quantum Fourier Transform for
n qubits using circuit notation.
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The one-qubit phase gate

P (α) :=

[
1 0
0 eiα

]
(3.3.1)

performs a rotation of a qubit state by angle α over the Z-axis on the Bloch Sphere
representation. To realize P (α) and its controlled version ∧P (α), we decompose
both into applications of the unitary operators J(α) and ∧Z, for which we have
already seen the measurement patterns J (α) and ∧Z in previous chapter. Any
single-qubit unitary can be decomposed into a series of J(α) unitary operators,
such that

P (α) = J(0) J(α) . (3.3.2)

Similarly, any two-qubit controlled-unitary operator, such as ∧P (α), can be de-
composing in terms of J(α) and ∧Z, using the general controlled-unitary decom-
position from Danos et al. [52]. Further details on this decomposition and our
realization of the ∧P (α) can be found in the appendix. The decomposition after
simplification can be found in Figure 3.3 in circuit notation for clarity. Compos-
ing a pattern realizing QFT thus consists of first composing ∧P(α) from J (α)
and ∧Z patterns, then composing QFT (n) from ∧P(α) and H. We use these
∧P and QFT (n) patterns as cases for non-trivial pattern composition examples
throughout this chapter.

J(α
2

) H

P (α) J(α−π
2

) Z H Z J(−α
2

) Z H J(π
2

) H

≡

Figure 3.3: Circuit representation of ∧P (α)’s decomposition into J(α) and ∧Z
gates, with H = J(0).

3.3.1 Library Approach: First Class Patterns

The most straightforward way to integrate the components of the pattern layer
in an existing host programming language is to provide the pattern functionality
through a library. Central to this approach is to provide patterns as first-class
citizen in the host programming language: patterns can be created, combined
and stored and passed around as a regular program entity. This library approach
enables the use of the expressive power of an existing programming language when
creating and composing measurement patterns. It also facilitates the integration
of quantum computations within an existing programming language.
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Our prototype implementation integrates measurement patterns into the Com-
mon Lisp programming language. We use the realization of the QFT (n) as work-
ing example using real code-fragment. This necessarily includes some program-
ming and Common Lisp idiosyncrasies, for instance the use of alphabetic qubit
names (a,b) instead of numeric ones (1,2). With the following code fragments, we
wish to demonstrate how measurement patterns can be reified in practice within
the application layer. Patterns entities are created either ex-nihilo or from com-
bining two existing patterns.

Pattern definition A benefit of using Common Lisp is its syntactic macro
system, which we make use of to extend the base language with a defpattern

syntax to create new patterns. For instance, the J (α) and ∧Z patterns are
defined in Listing 3.1. The arguments of defpattern are respectively the list

; ; J (α) :=
(
{1,2}, {1}, {2}, Xs1

2 M−α1 E12

)
( defpattern J ( alpha ) ( a ) (b) ( )

(X b ( s a ) )
(M a (− alpha ) )
(E a b ) )

; ; ∧Z := ({1,2},{1,2},{1,2}, E12)
( defpattern CZ ( ) ( a b) ( a b) ( )

(E a b ) )

Listing 3.1: Pattern library definition for the two patterns of the universal
set: J (α) and ∧Z.

of parameters and then the names for input (I), output (O) and working qubits
(V \ (I ∪O)). Qubit names are treated as variables, strictly local to the pattern
definition. The qubit sets are followed by the command sequence definition. This
is specified using a Lisp-style rendering of the MC syntax, which is discussed in
further detail for the execution layer below. The result of the first definition in
Listing 3.1 is the creation of a new Lisp function called J. Invoking this function
with e.g. (J 0) creates a pattern entity representing J (0). Similarly, a pattern
entity representing ∧Z is created by invoking (CZ).

Pattern composition The two composition rules from the MC are realized by
the functions compose and tensor-compose, named after the respective formal
composition rules presented in Section 2.4.1. The (compose p1 p2) function
can be seen to link the first output qubit of pattern p1 to the first input qubit
of p2, the second to the second and so on . . . ; a process that is defined in the

43



Practical Foundation for a Quantum Programming Paradigm

composite composition rule in Equation (2.4.3). As in the formal MC framework,
both patterns need to have matching input and output qubit sets: O1 = I2. The
function (tensor-compose (list p1 p2 ...)) follows Equation (2.4.2), but
can merge an entire list of patterns. Note that in both cases, unlike in the formal
framework, no qubit explicit names need to be specified. This is a design choice;
in practice, most patterns are chained together as with the above two compose
functions. We will introduce a third composition function below to achieve more
complex compositions.

The Z-axis rotation pattern

Rz(α) := H(2,3) ◦ J (α)(1,2)

can be defined as a regular Lisp function with the following code.

(defun Rz ( alpha )
( compose ( J alpha )

(H) ) )

Note that the composition functions in Lisp, e.g. the above compose function,
combine patterns in left-to-right order, in contrast with the formal MC’s right-
to-left. A slightly more complex pattern composition, the pattern

∧X :=
(
I(1)⊗H(3,4)

)
◦ ∧Z(1,3) ◦

(
I(1)⊗H(2,3)

)
strings multiple composition functions together and is defined in code as:

(defun CNOT ()
(compose (tensor-compose ( l i s t n i l (H)))

(compose (CZ)
(tensor-compose ( l i s t n i l (H) ) ) ) ) ) .

The nil stands in for the identity pattern I, conforming more closely to Lisp’s
idiosyncrasies than would a (I). The stringing together of compose functions, as
in the above, occurs enough in practice to justify some convenience functional-
ity. The compose function is extended to also accept as either argument a list
of patterns, instead a single pattern. This list is passed to tensor-compose,
creating a simple shorthand (compose (list p1 p2) p3) to mean (compose

(tensor-compose (list p1 p2)) p3). This first convenience simplifies the
above example into the following.

(defun CNOT ( )
( compose ( l i s t n i l (H) )

( compose (CZ)
( l i s t n i l (H) ) ) ) )
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In practice, some compositions have a long chain of such compose applications.
The convenience function compose-list better captures the user’s intent by tak-
ing a list of patterns and pairwise applying compose. This further simplifies the
running example into:

(defun CNOT ( )
( compose-list ( l i s t n i l (H) )

(CZ)
( l i s t n i l (H) ) ) )

Combining these simple compose functions allows us to define the controlled-
phase or ∧P(α) by following the circuit diagram in Figure 3.3.

(defun CP ( ang le )
( compose-list

( l i s t n i l ( J (/ (− ang le p i ) 2 ) ) )
(CZ)
( l i s t n i l (H) )
(CZ)
( l i s t n i l ( J (− (/ ang le 2 ) ) ) )
(CZ)
( l i s t ( compose ( J (/ ang le 2 ) )

(H) )
( compose-list (H)

( J (/ p i 2 ) )
(H) ) ) ) )

The last composition functionality we introduce here aids in expressing com-
positions that combine a small pattern with a much larger one. This can be
observed in the QFT (n) circuit in Figure 3.2, where one or two-qubit gates are
connected to the much larger QFT (n − 1). We introduce a manual-compose

function that allows a more explicit handling of which input should be connected
to what output. This function takes an additional argument, a list of links. A link
takes two zero-based indexes, identifying a qubit name by position in the pat-
terns’ output and respectively input set; i.e. (link 3 0), signifies that the fourth
qubit output qubit of the first pattern should be connected to the first input qubit
of the second pattern. Note that both patterns passed to manual-compose are
not required to have the same input/output qubit set sizes, as was the case for
compose and tensor-compose. Continuing with the QFT (n) example, the pat-
tern for ∧P has a control and a target qubit. The pattern was constructed such
that its first (index 0) input/output qubit is the control qubit and the second
(index 1) the target. The two auxiliary functions connect-H and connect-CP

defined in Listing 3.2 use manual-compose to compose the H and ∧P patterns
to a given pattern by linking the correct qubits. Using two mutually recursive
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(defun connect−H ( pattern )
( manual-compose (H) pattern

( l i s t ( l i n k 0 0 ) ) ) )

(defun connect−CP ( pattern k )
( let ( ( CP−pattern (CP (/ p i (expt 2 (− k 1 ) ) ) ) ) )

( manual-compose CP−pattern pattern
( l i s t ( l i n k 0 (− k 1) )

( l i n k 1 0 ) ) ) ) )

Listing 3.2: Two auxiliary functions used in the definition of QFT. connect-H
connects a H pattern entity’s only qubit to the first qubit of the given pattern.
connect-CP similarly links ∧P’s target qubit to the given pattern’s first qubit
and the control to the k’th qubit.

functions, we obtain the following final definition for QFT (n) in Listing 3.3. The
k parameter is used to identify between individual contolled-phase gates in the
circuit representation.

(defun QFT (n)
( i f (= n 1)

(H)
( recur−CP 1 n ) ) )

(defun recur−CP ( k n)
(cond ((= k 1)

( connect−H ( recur−CP (+ k 1) n ) ) )
((<= k n)

( connect−CP ( recur−CP (+ k 1) n)
k ) )

((> k n)
( tensor-compose ( l i s t n i l (QFT (− n 1 ) ) ) ) ) ) )

Listing 3.3: The QFT Lisp function creating of a QFT (n) pattern entity by com-
posing H, ∧Z and, recursively, QFT (n − 1) patterns. The stop condition is
QFT (1) = H

Execution Executing a measurement pattern means performing the low-level
commands in the pattern’s command sequence. The pattern entity in our library
prototype has a specific internal representation to reify the formal measurement
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patterns, a representation geared towards easier pattern combination rather than
execution. It is also not the role of the application layer to implement the ex-
ecution functionality, only to integrate and mediate with the pattern layer for
composition and execution layer for execution. Therefore, the library prototype
also includes the function assemble that turns a pattern entity into an executable
form that complies with the execution layer’s interface. This executable form has
a simple plain text representation, allowing it to be simply saved to a file or sent
to an execution layer implementation for execution.

3.3.2 Graphical Pattern Editor

Where the above library approach empowers a programmer, we offer a funda-
mentally different application layer approach for non-programmer experts by
implementing a computer-aided pattern design tool. Its users can create and
compose new patterns in a familiar graphical user interface environment. We
use a visual boxes-and-lines language that captures the essentials to represent
patterns and their composition constraints. While the visual notation evokes the
circuit notation, the actual language and abstractions are different. The design
tool exposes the same pattern layer to its users, but does it with different ab-
straction mechanisms than does the library approach.

To highlight some functionality of the design tool in its current state, we
step through an example design process in which a user creates a 3-qubit QFT
pattern. We provided a screen capture of each stage in Figure 3.4. New patterns
can be added either ex-nihilo or by adding the current pattern composition in the
Pattern Composition Editor, using the buttons at the top of the window. The
agent pattern button is part of the functionality for distributed measurement
patterns from D’Hondt and Vandriessche [67], not discussed here. The user is
provided with some elementary patterns to start out with, which can be seen on
the screen captures in Figure 3.4 as rectangular buttons under Saved Patterns.
Clicking on such rectangular button will add a box to the Pattern Composition
Editor pane representing a pattern instance. The circles left and right of the
box represent respectively input and output qubits ports. A pattern composition
is created by connecting these input and output ports, unconnected qubit ports
become the input and output qubits of the new pattern. Note that for semantic
reasons, covered in the pattern layer, no cycles can be created and qubit ports
can only be used in one connection. One cannot connect a pattern’s output to a
another pattern’s input that already has a chained connection to the first pattern.
The application will detect such cycles and refuse to proceed.

To realize theQFT pattern the user first constructs a HadamardH (a), Phase
P (b) and controlled-phase ∧P (c) pattern. The H pattern is realized by entering
the angle parameter of the J pattern box (a), then saving this trivial composition
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(a) (b)

(c) (d)

Figure 3.4: Step-by-step tool-assisted creation of a QFT(3) pattern by definition
of the Hadamard pattern H in (a), phase pattern P in (b), controlled-phase
∧P(α) in (c) and finally the modular composition thereof to obtain the QFT (3)
pattern in (d).
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as the H pattern. The phase pattern is composed by combining the J and H
patterns, which is a matter of connecting J ’s output to H’s input port (b). In
the same fashion, we chain together J , H and P patterns following Figure 3.3
to create the much larger controlled-phase or ∧P pattern (c). Finally, we form
the three-qubit QFT pattern (d) by connecting CP and H pattern boxes. This
last example highlights the ease in which complex patterns can be expressed with
the graphical pattern notation. However, it also highlights the expressive power
and flexibility afforded by the library approach. Indeed, lacking recursion, the
graphical notation cannot express the generalized QFT (n), only build patterns
for specific instances of n.

In summary, the design tool aids the design of measurement patterns in a user-
friendly way, but does not add to the expressive power of the pattern layer. In
contrast, the program library approach gives expert programmers more power by
integrating the measurement pattern abstraction with an existing programming
language. In the conclusion and future work chapter, we discuss several ways
in which the design tool can be brought closer to the expressive power of the
language integration approach.
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3.4 Pattern Layer

The pattern layer concerns itself with the internal machinery required to compose
and transform measurement patterns. Measurement patterns and their compos-
ition rules were already introduced by the MC as an abstraction mechanism, but
require some changes in order to be automated. Performing and even defining
larger pattern compositions by hand is a tedious and error-prone process. The
MC can be a more useful conceptual tool in a context where the pattern algebra
execution is not only reified and automated, but also expressed in a scalable way.

Conceptually, the pattern layer is also tasked to do pattern standardization.
As shown in Chapter 2, the MC defines a process to transform wild patterns
into a standardized form in which all entanglement operations happen first, then
measurements and finally corrections. This process was already automated and
implemented in [66]. Standardized patterns are a more efficient form for physical
quantum computer implementations. However, as we show in the execution layer,
a wild pattern (see Section 2.4.1) is typically more efficient in a virtual execution
environment. We have therefore not implemented the standardization process
in the current pattern environment. In the future work section we discuss this
topic and suggest a standardization counterpart for a virtual environment. In
principle, any pattern-level transformation and operation happens inside this
pattern layer. Currently, the pattern layer implements two main operations: the
generalized composition and pattern assembly.

The two rules for parallel and composite pattern composition in Equation (2.4.2)
and (2.4.3) cannot be trivially automated as they stand. It is implicit that qubits
get renamed in order to achieve the correct result and to satisfy the rule’s pre-
conditions. We replace qubit names by logic variables and replace the renaming
process by variable matching. While this may seem more complex, it allows for
easier automation of the composition rules and separates the way the composi-
tion is expressed from the underlying composition rules. Indeed, this separation
is crucial to allow several alternative ways of expressing patterns and their com-
position, as was demonstrated in the application layer. This functionality is
implemented by the generalized composition, which provides a consistent pattern
definition and composition abstraction to the application layer above. Addition-
ally, a pattern assembly process breaks down the pattern structures internal to
the pattern layer into concrete command sequences, which can be passed to the
execution layer for execution.

3.4.1 Defining generalized compositions

Before presenting the composition process, we first define some notation. The
following pattern and composition structure notations are used to clearly sep-
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arate the conceptual MC patterns P from the internal structure P̄ used in the
implementation.

Defining patterns We essentially replace the implicit renaming rule of the MC
by logic variable names and variable matching, invoking some of the concepts
used in logical programming languages. To distinguish clearly between both
here, we will represent logical variables as letters prefixed by a question mark.
For instance, the Hadamard pattern

H := ({1,2},{1},{2},Xs1
2 M1E1,2)

becomes

H̄ := ({?a,?b},{?a},{?b},Xs?a
?b M?aE?a,?b) .

A variable ?a stands for any possible qubit name, but only matching variable
names within the same pattern definition take the same qubit name value. Vari-
ables are local to the pattern, meaning that a ?a in another pattern definition
represents a different variable. It is evident that the use of variables is equivalent
to and only subtly different from MC’s concrete qubit name patterns with the
free rewriting. However, it does lay the groundwork for a different and more gen-
eral way of expressing pattern compositions to support an automatic renaming
process.

Definition 2. A general pattern structure P̄(?a, ?b, . . .) of a pattern P represents
the set of all possible P(a,b, . . .) with a,b, . . . distinct qubits.

Defining compositions We illustrate some of the inherent complexity in pat-
tern composition by deconstructing a small but non-trivial example. Taking the
∧X gate example again, which in circuit notation is expressed

H Z H

and formulated as pattern composition in [53] as

∧X :=
(
I(1)⊗H(3,4)

)
◦ ∧Z(1,3) ◦

(
I(1)⊗H(2,3)

)
. (3.4.1)

The writer of such pattern composition has to take into account two main design
constraints. The first is that the composite rule (P1 ◦ P2) rule requires both
patterns to have the same number of output and input qubits respectively. The
second design constraint is the choice of qubit names, all involved patterns need
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new qubit names so as to string the correct input and output qubits together.
Expressed more formally, the writer of the above composition is implicitly solving

{(I(h)⊗H(f,g)) ◦ ∧Z(d,e) ◦ (I(c)⊗H(a,b))

choosing qubit names a . . . h

such that b = e, e = f, c = d, d = h}
(3.4.2)

by hand. For a human, this can, for large compositions, become a tedious and
error-prone process. However, the process of choosing the correct qubit names is
straightforward to automate for a computer, e.g. using simple constraint satisfac-
tion. The constraint-based expression of a composition opens up a different way
of composing patterns, one in which the patterns involved do not need to be of
a same size. Such composition expression can avoid the now superfluous identity
patterns and even forgo the two composition operations. Leaving the constraint
satisfaction to an automated process, the pattern composition example can be
expressed using general pattern structures as(

{ H̄(?a, ?b), C̄Z(?d, ?e), H̄(?f, ?g) } ,
{ (?b, ?e), (?e, ?f) }

)
,

(3.4.3)

where the qubit variable pairs indicate equality constraints. The above compos-
ition structure has a natural graph visualization, shown in Figure 3.5, taking
pattern structures as nodes and variable pairs as edges.

∧Z

H H

?d ?d

?e ?e?a ?b ?g?f

Figure 3.5: Graphical representation of Equation (3.4.3), the general composition
structure expressing ∧X ’s pattern composition

The following defines the structure used to express pattern compositions and
will shortly be used in the automated composition process. We stress that this
is not an operational expression as with the MC’s composition operations ◦ and
⊗. Rather, it is used to express the intent of a composition, to be used as input
to the automated renaming process presented below.

Definition 3. A general composition structure (P,C) is a set P of general pat-
tern structures P̄ and a set C of equality constraint pairs (?o,?i), in which ?o and
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?i are respectively output and input qubit variables of different patterns in P . Any
?o and ?i may only appear once as respectively first (output) element and second
(input) element of any constraint pair (?o,?i). Additionally, the graph construc-
ted with the patterns from P as nodes and constraint pairs (?o,?i) as edges must
form a directed acyclic graph.

This structure together with the automated composition process subsumes
the two MC composition rules. Both rules can be expressed as a general com-
position structure. Take in the following equations P1 :=

(
V̄1, Ī1, Ō1, Ā1

)
and

P2 :=
(
V̄2, Ī2, Ō2, Ā2

)
to be the general pattern structure equivalents of patterns

P1 := (V1, I1, O1, A1) and P2 := (V2, I2, O2, A2) respectively. Also take the func-
tions v1 : V1 → V̄1 and v2 : V2 → V̄2 mapping a pattern’s concrete qubit name to
the respective general pattern structure’s qubit variable, such that for instance
v1(1) =?a.

P1 ⊗ P2 = ({P1, P2} ,∅) (3.4.4)

P2 ◦ P1 =({P1, P2} , {(v1(o), v2(i))| o ∈ O1, i ∈ I2, o = i} ) (3.4.5)

With this generalized pattern and composition structure in place we can present
the automatic renaming procedure.

3.4.2 Generalized Composition

The automated generalized composition takes a general composition structure
(P,C) as input and ultimately produces a new general pattern structure P̄ as
output. This composition process works in two stages. In a first stage, the
automated renaming process, qubit variables of patterns in P are substituted
with fresh qubit variables to create a new set of pattern structures P ∗, such that
the constraints in C are satisfied in P ∗. In a second stage, all pattern structures
in P ∗ are merged into a single the pattern structure P̄ using the generalized merge
process.

(P,C)
renaming

=⇒ P ∗
merge
=⇒ P̄

The automated renaming process works by first generating a substitution
map S. This map will be used to substitute qubit variables in each general
pattern structure so as to satisfy the equality constraints. Starting empty S = ∅,
the renaming process iterates over each constraint in the general composition
structure’s constraint set, adding new substitutions to S. When S contains a
certain substitution S[?a/?b], then S(?b) =?a. To ensure that the construction of
new bindings occurs in a well-defined and finite manner, elementary compositions
in a composite structure are processed in topological order. To be precise, any
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valid general composition structure can be, as discussed earlier, viewed as a
graph. This graph is walked through in topological order, each edge a constraint
pair that is applied to the rules below when walked over. Depending on the
variables contained in the pair, one, two or no new substitutions are added to
the substitution map S. The rules to add new substitutions per constraint pair
are as follows.

S(?o) = S(?i) = ∅ , ?f fresh

S
(?o,?i)−→ S[?f/?o][?f/?i]

(3.4.6)

S(?o) = ?f, S(?i) = ∅

S
(?o,?i)−→ S[?f/?i]

(3.4.7)

S(?i) =?f, S(?o) = ∅

S
(?o,?i)−→ S[?f/?o]

(3.4.8)

In other words, when neither names in the constraint pair appear in the substitu-
tion set S, rule (3.4.6) will trigger. A fresh qubit variable name ?f is chosen and
added as substitution for both variable names in the pair. Rules (3.4.7) & (3.4.8)
ensure that if a substitution already exists for one of the variable names in the
pair, the other will use the same substitution. The topological ordering ensures
that at all times only one of the three rules will execute; any variable may appear
only once as first and once as second element in a constraint pair. After all edges
have been visited by the walk, the substitution set S is complete. Finally, each
pattern structure (V̄ ,Ī,Ō,Ā) ∈ P of the input general composite structure (P,C)
has its qubit variables substituted

(V̄ ,Ī,Ō,Ā)
S−→ (V̄ ′,Ī ′,Ō′,Ā′) , (3.4.9)

such that

∀?a ∈ (V̄ ,Ī,Ō,Ā), ?b ∈ (V̄ ′,Ī ′,Ō′,Ā′) :

{
?b =?a if S(?a) = ∅
?b =?f if S(?a) =?f

. (3.4.10)

Applying the automated renaming process to the running example in Equa-
tion (3.4.3) will result in the expression(

{ H(?a, ?b), CZ(?d, ?e), H(?f, ?g) } ,
{ (?b, ?e), (?e, ?f) }

)
⇓ renaming

{H(?a,?z),∧Z(?d,?z),H(?z,?g)} (3.4.11)
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in which ?b, ?e and ?f were substituted with a fresh ?z. After this renaming
process, all patterns are merged into a single pattern.

The generalized merge is applied pairwise to the set of all patterns P ∗ res-
ulting from the renaming process. Command sequences are appended and qubit
sets merged, similar but quite different from MC’s composite rule. Essentially,
all qubit variables that appear in both a pattern’s output and input set are con-
sidered internal working qubits and removed from the new input and output sets.
We describe this merge with a new merge rule that is more general but also more
complex than MC’s two composition rules. Concretely, we have the following new
composition rule definition, where patterns are assumed to have already passed
the renaming process.

Definition 4. The generalized merge of general patterns structures

(V̄1, Ī1, Ō1, Ā1) and (V̄2, Ī2, Ō2, Ā2)

is a new pattern structure

(V̄1 ∪ V̄2, Ī, Ō, Ā2Ā1)

where

Ī = Ī1 ∪ (Ī2\Ō1) (3.4.12)

Ō = (Ō1\Ī2) ∪ Ō2 . (3.4.13)

Indeed, qubit variables from the old input and output sets that were matched
become auxiliary qubits and hence are only represented in the working set V̄ .
Merging the running example from Equation (3.4.11) finally produces the desired
general pattern structure

{H(?a,?z),∧Z(?d,?z),H(?z,?g)} (3.4.14)

⇓ merge (3.4.15)

∧X̄ := {{?a,?z,?d,?g}, {?a,?d}, {?g,?d},
Xs?z

?g M?zE?z,?gE?z,?dX
s?a
?z M?aE?a,?z} .

(3.4.16)

We stress again that this pattern rule and the necessary renaming process are
to be taken in the context of their automated execution. Pattern and composition
structures are generated by the application layer, passed to the pattern layer for
their automated composition, which in its turn returns a new pattern structure
to the application layer. The graphical editor generates a composite structure
by transforming the visible graph, the library approach offers composition oper-
ations that either implicitly specify constraints (compose and tensor-compose)
or explicitly (manual-compose).
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3.4.3 Pattern assembly

The general pattern structure is used as internal structure for the pattern layer.
In order for a pattern represented as such to be executed, it needs to be assembled
into a more directly executable form. The assembly step is very straightforward,
it extracts the command sequence from pattern structure and chooses concrete
qubit names for each qubit variable. The result of this simple assembly process
is a concrete MC command sequence, without the pattern’s qubit sets, that can
be passed to the execution layer.
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3.5 Execution Layer

The execution layer forms the border between the quantum and classical com-
puting worlds. It concerns itself with orchestrating the execution of quantum op-
erations and managing the quantum and classical states. In other words, it deals
with implementing the classical execution part of MC’s operational semantics.
The execution layer itself does not perform any quantum computation, this is
left to the realization layer. The execution layer takes care of the required clas-
sical control; storing measurement outcomes, computing signals and controlling
the execution of individual commands.

The execution and realization layer are not always completely separable. Rad-
ically different realization layer implementations can require a different execution
layer implementation. For instance, a virtual and physical realization of quantum
operations necessarily require different classical programs to either simulate or
drive the physical machinery. Although conceptually the interface between exe-
cution and realization layer cannot be fixed, we still make the distinction. Within
a specific approach, a quantum operation can still be changed without affecting
its interface or observable behavior. In practice, this refers to the tweaking, op-
timizing and debugging of quantum operations. We will call a specific execution
and realization approach a Quantum Virtual Machine.

3.5.1 Machine model: vision of a Quantum Computer

Before presenting the implementation of a virtual measurement-based computer,
is useful to establish a conceptual working model of such a quantum computer.
The prevalent vision of a quantum computer in literature is one in the role of a co-
processor [127, 145]. QC promises performance for certain classes of computation,
classical computers will likely remain more effective in their current role for the
foreseeable future. A quantum computer in the role of a co-processor enables
quantum computation for the specific tasks it is good at, leaving much of the
classical computing task to the controlling general-purpose processor. Special
purpose co-processors are typically either completely controlled by a general-
purpose central processor or by a limited embedded one.

In Chapter 2 we have established the use of the MC as a low-level ’assembly
language’. The MC requires limited computational power to manage the clas-
sical state, computing signals and controlling command executions. We choose
to embed this limited classical functionality within the quantum computer co-
processor part of our conceptual working model. With such an approach, the
precise inner workings and interface between the classical and quantum part of
the quantum co-processor are encapsulated and abstracted away. The program
input to the quantum processor can thus be a concrete MC command sequence.
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This leaves the handling of measurement patterns and application integration
to the general-purpose classical computer. We visualize our conceptual working
model in Figure 3.6. In our layered architecture, the application and pattern
layers are realized on the classical computer part. The execution layer repres-
ents the quantum computer, but can itself be completely classically implemented.
This classical part of the quantum computer orchestrates the execution of the
quantum operations, which are implemented by the realization layer.

commands
((E 1 2)...(X 2 (q 1)))

signals & outcomes

composing

H(2,3) ◦ H(1,2)

classical computer

quantum

classical

quantum computer

Figure 3.6: Schematic working model of a quantum co-processor.

3.5.2 The Quantum Virtual Machine

A virtual machine or VM is an implementation technique often used for high-level
programming languages such as Smalltalk, Self, Java, C#, Lisp and Lua. The
purpose of a VM is to alleviate a certain engineering problem: implementing a
programming language, which can often change, on top of a variety of under-
lying computing platforms. In other words, a VM abstraction helps deal with
changes to the abstraction layers both above and underneath. Traditional com-
pilers directly translate a programming language to native processor instructions
or a low-level language. Such direct translations to an execution platform require
changes to the implementation for each change in both the top language and
the bottom platform. A virtual machine meets the underlying platform half-way.
Essentially an interpreter, a VM operates using a rather low-level set of instruc-
tion; low-level enough to be simple to implement on a real computing platform,
but still general enough to still be applicable to a variety of platforms. Similarly,
the VM’s instruction set abstracts away enough low-level elements such that the
programming language implementation on top takes less effort to (re-)implement
than a machine-specific implementation. The VM abstraction fits our desired
QPP approach: designing each layer with extensibility in mind.
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The Measurement Calculus already suggests an obvious VM instruction set:
the MC commands, as presented in Section 2.3. The commands already form
a compact, complete and low-level set of operations, satisfying the typical VM
instruction set requirements. While the QVM is essentially an executable Meas-
urement Calculus, there are a few necessary differences with the formal model:
abstraction, syntax and state implementation. As we have already seen above,
the pattern abstraction is factored out and handled by a pattern layer. The
QVM only accepts as input a concrete sequence of commands. The MC Syntax
is turned into a machine-readable form. Rather than choosing a VM’s tradi-
tional bytecode representation, we opt for the more flexible and human-readable
s-expression syntax [140]. Both abstraction and syntax are part of the QVM
interface, how the QVM implements its semantics does not have an impact on
this interface.

Currently, we have three different QVM implementations. The first was a
prototype built in the Common Lisp programming language, using QLisp [64] as
realization layer. Much of the insights gained in its development were used to-
wards developing a more optimized C implementation, which we refer to as qvm.
This implementation step reuses parts of the a popular QC library for the realiza-
tion layer, but its execution layer remains equivalent to the Lisp implementation.
The third QVM implementation uses a parallelizing compilation approach and
is the subject of Chapter 6. Here, we will deal with execution layer elements
common to all our implementations: the interface and the managing of execution
state and operations.

3.5.3 Interface and Syntax

Turning the mathematical notation of the MC into a machine-readable expres-
sion syntax is relatively straightforward. The most notable difference is the order
in which commands in a sequence are applied. The MC follows the matrix ap-
plication convention, which is right to left. For the machine-readable command
sequence syntax, it is more traditional for commands in a list to be applied in
left to right fashion. Thus, the command sequence

Xs2
3 Zs13 [M2]

s1 M1E23E12

becomes

((E 1 2) (E 2 3) (M 1 0) (M 2 0 (q 1)) (Z 3 (q 1)) (X 3 (q 2))) .
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More formally, the new syntax is described (using BNF) as

<sequence> ::= ( { <command> } )
<command> ::= <correction> | <measurement> |

<entanglement>

<correction> ::= ( X <quref> [<signal>] ) |

( Z <quref> [<signal>] )
<measurement> ::= ( M <quref> <angle>

[<s-signal>] [<t-signal>] )
<entanglement> ::= ( E <quref> <quref> )
<signal> ::= 1 | <outcome> |

( + <signal> { <signal> } )
<outcome> ::= ( q <quref> )

(3.5.1)

in which { } is used for repetition and [ ] for option and qubit names <quref>

are simple integers.
The interface of an external application with the QVM is exclusively using this

syntax. We currently have not yet specified a application interface (API) for com-
municating the outcomes and other information such as final and intermediate
quantum state. Typically, in the implementations of the QVM we provide, this
information is offered to outside applications as simple data collections or out-
put files. Examples of interactions with a QVM implementation can be found in
Figure 3.6. The implementation used in the example is our fast sequential QVM
implementation written in C, called qvm. It can be used from the command line
as an interactive interpreter, as shown in the first example Figure 3.6 (a). The
user is prompted on the lines with qvm> to input a single command which is
directly executed, showing the resulting state and prompting for follow up com-
mands. The second example (b) passes a file, generated by an application-layer
program, containing a complete command sequence.

3.5.4 Execution

As mentioned before, the execution layer implementation often depends on the
QVM approach. However, some basic elements are always required: the com-
mand sequence input in machine-readable expression syntax needs to be parsed,
the classical and quantum states need to be managed, signals calculated and
quantum operations controlled. Still, it is evident from MC’s compact opera-
tional semantics that an execution layer implementation can be straightforward:
an interpreter iterating front to back over each command in the given command
sequence, evaluating the command’s signal and, depending on the result, apply
or skip the command. In the MC operational semantics, the entanglement and
correction operators are trivial from an execution point of view: their respective
operator is applied to the quantum state. The measurement command is slightly
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s o f t 8 5 : qvm yvdr i e s s $ . /qvm − i
S t a r t i ng QVM in i n t e r a c t i v e mode .

qvm> (E 1 2)

qmem has 1 tang l e s :
{ [ 1 , 2 ] ,
{

0.500000 +0.000000 i |0> (2 .500000 e−01) ( |00>)
0 .500000 +0.000000 i |1> (2 .500000 e−01) ( |01>)
0 .500000 +0.000000 i |2> (2 .500000 e−01) ( |10>)
−0.500000 +0.000000 i |3> (2 .500000 e−01) ( |11>)
}}
s i g n a l map : {
}

qvm> (M 1 pi /4)

qmem has 1 tang l e s :
{ [ 2 ] ,
{

0.146447 +0.353553 i |0> (1 .464466 e−01) ( |0>)
0 .853553 −0.353553 i |1> (8 .535534 e−01) ( |1>)
}}
s i g n a l map : {

1 −> 1 ,
}

qvm> (X 2 (+ 1 (q 1 ) ) )

qmem has 1 tang l e s :
{ [ 2 ] ,
{

0.146447 +0.353553 i |0> (1 .464466 e−01) ( |0>)
0 .853553 −0.353553 i |1> (8 .535534 e−01) ( |1>)
}}
s i g n a l map : {

1 −> 1 ,
}

qvm> (Z 2 (q 1) )

qmem has 1 tang l e s :
{ [ 2 ] ,
{

0.146447 +0.353553 i |0> (1 .464466 e−01) ( |0>)
−0.853553 +0.353553 i |1> (8 .535534 e−01) ( |1>)
}}
s i g n a l map : {

1 −> 1 ,
}

(a)
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s o f t 8 5 : qvm yvdr i e s s $ . /qvm cphase .mc
I have read :
( (E 1 0) (M 1 (− −1.17809724))
(X 0 (S 1) ) (E 6 0) (E 0 7) (M 0 (− 0) )
(X 7 (S 0) ) (E 6 7) (E 7 14)
(M 7 (− −0.39269908)) (X 14 (S 7) )
(E 6 14) (E 14 21) (M 14 (− 0) )
(X 21 (S 14)) (E 21 26)
(M 21 (− 1 .57079632)) (X 26 (S 21))
(E 26 31) (M 26 (− 0) ) (X 31 (S 26))
(E 6 36) (M 6 (− 0 .39269908)) (X 36 (S 6) )
(E 36 41) (M 36 (− 0) ) (X 41 (S 36 ) ) )

Resu l t ing quantum memory i s :
qmem has 1 tang l e s :
{ [ 31 , 41 ] ,
{

0.500000 +0.000000 i |2> (2 .500000 e−01) ( |10>)
0 .353553 +0.353553 i |3> (2 .500000 e−01) ( |11>)
0 .500000 −0.000000 i |0> (2 .500000 e−01) ( |00>)
−0.500000 +0.000000 i |1> (2 .500000 e−01) ( |01>)
}}
s i g n a l map : {

0 −> 1 ,
1 −> 0 ,
6 −> 0 ,
7 −> 0 ,
14 −> 1 ,
21 −> 0 ,
26 −> 1 ,
36 −> 0 ,
}

(b)

Figure 3.6: Example command-line interactions with our QVM implementation
written in the C language, called qvm. (a) is an artificial example showing step-
by-step interaction with the user, (b) executes the controlled-phase pattern for
α = π

4 on the implicit |++〉 state.
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more involved. it needs to calculate the measurement angle based on its two
signals and add the measurement outcome to the outcome map Γ.

In practice, the need for optimizations and analysis adds additional complex-
ity. Indeed, the parallelizing compiler implementation of the QVM covered in
Chapter 6 builds several intermediate representations in order to find parallel
workloads. We focus here on a state size optimization common to both our
sequential and parallel QVM implementation. The adjectives sequential and par-
allel are used at the execution layer to differentiate between implementations
issuing commands one by one or simultaneously. It does not matter at this point
if the realization of the command’s quantum operations is itself parallel or not.
Indeed, it could well be possible to create a QVM with a sequential execution
layer with a parallel realization layer and vise versa. So far, we have imple-
mentations of a completely sequential and a completely parallel QVM. The state
optimization presented below is common to both practical QVM implementa-
tions, it introduces a smarter quantum state management that does not affect
and is not affected by the realization layer below.

State optimization

An amplitude vector increases exponentially in size relative to the the number
of entangled qubits in the quantum state it represents. This means that re-
moving even a single qubit from an entangled state already halves the storage
requirements. In practice, the entanglement graph of an MC computation is of-
ten not fully connected, meaning a qubit is not always entangled with all other
qubits in a graph. This suggests an essential optimization for any virtual QC
implementation: decomposing the quantum state in tensor factors when pos-
sible. Indeed, e.g. representing a 16-qubit quantum state q requires 216 = 65536
amplitudes. If that state can be decomposed as a product of two 8-qubit states
q = qA ⊗ qB , that factorizable state can be represented using only 2.28 = 512
stored amplitudes. Moreover, operators can be safely applied in parallel if they
act on distinct factor states, something we will rely on in Chapter 5. Keeping
track of factorizable quantum states is hardly new, it was already discussed by
Knill in his quantum pseudo-code proposal [127] and was implemented by Ömer
in QCL as Quantum Registers [152]. To our knowledge, this has not yet been
applied to a measurement-based QC context. At first glance, it may seem that
such size optimization would not benefit the measurement-based model, because
of it’s use of highly entangled quantum states. However, the MC’s semantics
do not require patterns to be in the standardized form, in which all entangle-
ments are performed at the start. Indeed, in practice, leaving patterns in a wild,
un-standardized, form leaves room for state size optimizations.

In general finding tensor product factors of a given arbitrary quantum state
is a hard problem [193]. We can however make a conservative approximation,
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because of the MC’s closed set of operations and the explicit entanglement op-
erator. In essence, every qubit state is kept in a separate factor state or tangle
(defined below), until it is entangled with an other. This simple analysis can
be performed dynamically when applying each command, directly modifying the
tangle’s quantum state and qubit set to create, merge or shrink the tangle. The
dynamic approach is taken by our QLisp and C implementations, who take an
interpreter QVM approach. The same analysis can be performed statically, by
checking the target qubits of all commands in the sequence before starting the
actual execution. The latter static analysis is performed by the parallel compiler
discussed in Chapter 5, which uses the information to incorporate tangle states
in a graph.

We present one state size optimization here, based on the fly management
of qubit state allocation. The first principle is to allocate qubits only when
they first appear in any command, typically in an entanglement. Next, qubit
state storage is shrunk after measurement as the qubit gets destroyed. Finally,
the computational state no longer contains a single quantum state, but rather
a collection of separately evolving states; each implementing a disjoint subset of
qubit identifiers. We call the association of quantum state with a set of qubit
identifiers a tangle.

Definition 5. A tangle TQ is a pair (q,Q) where Q is the qubit set, a set of
qubit names, and where q ∈ hQ is the quantum state of the qubits in Q, with hQ
the associated quantum state space over Q i.e.

⊗
i∈Q C2. We write Ti,j,... for

T{i,j,...}, with the notational convention that the quantum state subscripts, when
omitted, use the order in Q:

Ti,j,... = (α1|0i0j . . .〉+ . . .+ α2|Q| |1i1j . . .〉) .

As an example, take the two tangles

T1,3 = (|00〉+ |11〉, {1,3}) and T4,2 = (|10〉+ |01〉, {4,2}) .

The subscript convention is used to avoid ambiguities: does |01〉 mean |0214〉
or |0412〉? Tangles explicitly associate state with a qubit set, partitioning the
quantum state space into a collection of disjoint state spaces requires such qubit
sets to be explicit. To aid the discussion of tangle management, we introduce
the membership function τ which maps a qubit name to the tangle it’s being
represented in:

∀i : τ(i) =

{
TQ if ∃TQ : i ∈ Q
∅ otherwise

. (3.5.2)

The changes to the operational semantics from Section 2.3.2 are relatively
straightforward. First, the computational state is changed from (q,Γ) into
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({TQ, T ′Q, . . .}, Γ), i.e. the quantum state becomes a set of qubit tangles. Next,
the initial quantum state is a singleton tangle {TI} containing all input qubits
that we conservatively assume to be entangled. Then, each command is applied
as before, but to the quantum state of the tangle τ(i) of its target qubit i, rather
than the single global quantum state. In the case that τ(i) = ∅, the command is
applied as before to a fresh tangle (|+〉,{i}). The correction commands Xi and
Zi are applied as before, as is the entanglement Ei,j when τ(i) = τ(j). For the
case that τ(i) 6= τ(j), we amend the operational semantics with the following
rule:

(qi,Qi),(qj ,Qj)
Eij−→ (∧Zij (qi ⊗ qj) , Qi ∪Qj) . (3.5.3)

Measurement is as before, although the target qubit is removed from the tangle:

(q,Q)
Mα

i−→ (〈+α|i q,Q \ [i]) . (3.5.4)

As is apparent from the above amendments to the semantics, the individual oper-
ators and signal map manipulations are left as they were. Although the changes
are only small, this simple state management technique enables the virtual ex-
ecution of much larger measurement patterns. The storage requirement is still
exponential, but it is exponential in the number of qubits in the largest tangle,
not in the total number of qubits appearing in the measurement pattern.
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3.6 Realization layer

The realization layer concerns itself with the evolution of the quantum state
itself: the quantum operators. As with the execution layer, each implementation
can have widely different approaches, but the basic and naive approach is very
straightforward. Any extra complexity again arises from optimizations. The next
two chapters will discuss parallel realization of quantum operators in detail, we
will therefore keep to an overview of sequential optimization approaches. Many
of the specifics overlap, we will thus provide an overview rather than a detailed
report on the implementation.

We first present a simple but naive approach to the realization layer that
directly implements linear algebra semantics, demonstrating that the realiza-
tion layer can be compact but also quite wasteful. We cover a more optimized
approach next; the MC’s closed set of operations presents an optimization op-
portunity, arising from each operation’s properties. This optimized approach was
taken by the realization layer of the qvm implementation, using the C program-
ming language with parts of the libquantum1 library. Parts of the optimization
techniques used are common even among circuit-based QC simulators, such as
libquantum, QCL [152] or QLisp [64]. The purpose of our qvm implementation is
to provide a reference implementation with good sequential performance. Later
in this dissertation, the qvm implementation will serve as a benchmark baseline.

3.6.1 Naive Linear Algebra approach

The minimal functionality of a realization layer is the realization of each of the
operators found in the MC’s operational semantics: ∧Z, X, Z and the measure-
ment projection 〈±α|. A straightforward and common approach is to implement
these operators directly by their linear algebra formulation, i.e. matrix operators
acting on the state vector. Many programming languages include linear algebra
extensions, such as the de facto standard BLAS, that can be used for this purpose.
Recall that a single-qubit operator Ui is really a notational shorthand for some
Im⊗U⊗In, a direct linear algebra approach would thus have to create exponen-
tially large matrix operators that match the state vector in size. Removing this
wasteful behavior automatically brings us to the operator optimizations presented
below. A less naive linear algebra approach exploits the regular block structure
of the Kronecker product ⊗, the tensor product special case for vectors and
matrices. This regular structure is further discussed in Chapter 5. These linear
algebra approaches are often present in circuit-based simulators, even in optim-
ized implementations employ it as a fallback to implement more general unitary

1This quantum simulation library is commonly used in QC research and was included in the
prominent SPEC benchmarks. More information can be found on http://www.libquantum.de
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gate operations. Because the MC only requires a compact set of operators, it is
worth examining each in detail and providing optimized implementations.

3.6.2 Correction and Entangle Operator optimization

Closer inspection of the basic MC operators in Section 2.3 does indeed reveal
a relatively simple structure. All operators involved are linear operators with a
simple diagonal transformation matrix. As a consequence, the Xi, Zi and ∧Zi,j
operators can be implemented as a single in-place iterative loop over the state
vector. To provide a compact and exact formulation, we will use code fragments
written in the C programming language and thus assume some passing familiarity
with C and some of its bit-level operations.

Recall the ∧Z semantics in Equation (2.3.5), from Section 2.3:

∧Zi,j
∑

αk|k〉 =
∑{

−αk|k〉 if |k〉 = . . . |1〉i . . . |1〉j . . .
αk|k〉 otherwise

. (3.6.1)

This translates directly into the C subroutine

for ( int k=0; k<s i z e ; k++) {
// is |k〉 = . . . |1〉i . . . |1〉j . . .?
i f ( ( k & bitmask_i_j ) == bitmask_i_j )

state_vector [ k ] ∗= −1;
}

in which state vector is an array of amplitudes with the convention that amp-
litude αi resides at array index i. bitmask i j is the bit-level representation of
. . . |1〉i . . . |1〉j . . . with 0 bits in positions other than i and j. The technique to
work with the binary representation of the qubit basis vectors is nearly ubiquit-
ous in QC simulators, we use similar bit-level shortcuts in Chapter 6. The Zi
and Xi operators each have a similar efficient, iterative and in-place realizations,
as with the above subroutine. Although with the obvious difference that their
bitmask i matches . . . |1〉i . . .. To be complete, the semantics of

Zi
∑

αk|k〉 =
∑{

−αk|k〉 if |k〉 = . . . |1〉i . . .
αk|k〉 otherwise

(3.6.2)

and

Xi

∑
αk|k〉 =

∑{
αk|. . . 1i . . .〉 if |k〉 = . . . |0〉i . . .
αk|. . . 0i . . .〉 otherwise

(3.6.3)

are respectively implemented as
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for ( int k=0; k<s i z e ; k++) {
// is |k〉 = . . . |1〉i . . . ?
i f ( ( k & bi tmask i ) == bi tmask i )

s t a t e v e c t o r [ k ] ∗= −1;
}

and

for ( int k=0; k<s i z e ; k++) {
// is |k〉 = . . . |1〉i . . . ?
i f ( ( k & bi tmask i ) == bi tmask i )

s t a t e v e c t o r [ k ] = s t a t e v e c t o r [ kˆ b i tmask i ] ;
} .

To summarize, each non-measurement MC operator can be realized by iterat-
ing over each amplitude and performing some manipulation depending on the
associated basis vector.

3.6.3 Measurements

Measurement outcomes

Measurement operations are inherently probabilistic. In nature, this naturally
happens automatically and obtaining the outcome is something that happens
after the facts. In a virtual execution environment, the outcome of the meas-
urement needs to be determined before applying the measurement operation. In
virtual QC implementations, we have observed three basic ways of choosing a
non-deterministic outcome.

• Weighted Probabilistic: calculate the probability for all possible measure-
ment outcomes and select one based on a weighted (pseudo-)random prob-
ability.

• Coin Toss: select a measurement outcome by (pseudo-)random coin toss
with equal probability.

• Fixed: determine measurement outcomes beforehand, either by always
choosing the same outcome or by using a predetermined outcome map.

The probabilistic method emulates nature by emulating the expected probability
for each outcome, probabilities that are calculated based on the pre-measurement
state. While accurate this method comes with a performance penalty, as the
probability needs to be calculated. In practice, this means another iteration
pass over the state vector. Circuit-based QC relies on these probabilities, but
MC patterns deal differently with measurements. Deterministic measurement
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patterns rely on correction operations to obtain the same result regardless of
the outcome. This opens the second and third option from the above list, both
to avoid the performance hit of calculating probabilities. The coin toss option
simply chooses an outcome based on a regular 50/50 coin toss. The fixed option
determines the outcomes beforehand. Our qvm implementation can be configured
to use either the fixed or probabilistic measurement outcome strategy.

Measurement operator

We present here an iterative algorithm for implementing the 〈+α| or 〈−α| actions
on a quantum state. First, we need to introduce some notation to concisely
express the required binary numeral manipulation. Recall that the index k of each
basis vector |k〉 has a binary numeral representation of its index. We introduce
the notation b1 · b0 to concatenate binary numerals, such that

|k〉 = |kn−1〉|kn−2〉 . . . |k1〉|k0〉
k = kn−12n−1 + kn−22n−2 + . . .+ k121 + k020

= kn−1 · kn−2 · · · k1 · k0

and taking

k = kn−1 · · · kj · · · k0 = l · kj · r
k̄ = l · r .

The action of 〈+α|j on an individual basis state can then be shown to be

〈+α|j |k〉 =

{
〈+α|0〉

∣∣k̄〉 =
∣∣k̄〉 if kj = 0

〈+α|1〉
∣∣k̄〉 = e−iα

∣∣k̄〉 if kj = 1
. (3.6.4)

Applied on a quantum state, we can express the result as

〈+α|j
N−1∑
k=0

αk|k〉 =
∑
l

∑
r

(
αl·0·r + e−iα αl·1·r

)
|l〉|r〉 (3.6.5)

=

N
2 −1∑
k̄=0

(
αevenj(k̄) + e−iα αoddj(k̄)

) ∣∣k̄〉 (3.6.6)

with 2n = N and where the helper functions evenj and oddj insert respectively
a 0 and 1 at the binary numeral position j:

evenj(k̄) = l · 0j · r
oddj(k̄) = l · 1j · r .

The corresponding C-style pseudo code
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for ( int k=0; k<N/2 ; k++) {
even = state_vector [ even_j ( k ) ] ;
odd = state_vector [ odd_j ( k ) ] ;
output_state_vector [ k ] = even + e−iα ∗ odd ;

}

is still a single iteration. Although the algorithm it is not an in-place one, as was
the case in the other operations that could only modified the original state vector.
The new quantum state, implemented by array output state vector, is filled
by summing the matching two amplitudes from the input state state vector.
Note that the size of state vector is double that of output state vector. The
functions even index(k,i) and odd index(k,i) perform the necessary bit-level
operations. The action of measurement operator 〈−α|i only differs in the above
by the sign of a single constant 〈−α|1〉 = −e−iα.

As an aside, we show that the MC’s diagonal basis measurement can be
performed in terms of the standard basis measurement by using the equality

〈0|HP−α = 〈+α| , (3.6.7)

where Pα and H are respectively the phase shift and the Hadamard gate op-
erators as defined earlier. MC measurement can thus be implemented on top
of existing circuit-based QC simulators that typically only offer standard basis
measurements. The standard basis measurements are typically optimized in these
circuit-based simulators, taking advantage of the normalization condition: the
probability to collapse to a specific basis can be read off its amplitudes directly.
However, for a single-qubit measurement, all contributing probabilities still need
to be summed. Our qvm implements both strategies: the direct diagonal measure-
ment algorithm presented above and the transformation to the standard basis.
The libquantum library used optimizes the H and P operators as well as the
one-qubit standard basis measurement; the direct diagonal measurement was im-
plemented manually as in the above code fragment. As a result, little difference
is observed in practice between the performance of either.

3.6.4 Storage optimization

In the above operations, we have assumed storage of the amplitude vector as an
array, in which the amplitude of basis vector |k〉 or ak|k〉 is stored at array index
k. i.e. storing the amplitude vector by a canonical basis. Following dictionary
order, the state vector for three qubits

α000|000〉+ α001|001〉+ α010|010〉+ · · ·+ α110|110〉+ α111|111〉

is then stored in memory as
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α000 α001 α010 α011 α100 α101 α110 α111

0 1 2 3 4 5 6 7index:

It is observed in practice that many amplitudes are repeated or in some cases even
zero. This allows for optimizations aimed at storing the quantum state in a more
efficient way. Typically, saving on storage space will have the greatest effect, as
it is the storage size’s exponential explosion that brings the largest performance
penalty. The simplest and by far most common optimization is at the level of the
amplitude vector representation: using a sparse vector representation. The most
interesting space optimization technique we have found is QuIDD [196], which
uses binary decision diagrams – a technique used to great effect in classical circuit
simulation – to capture the repeating block-structure typically resulting from the
tensor product.

Our qvm implementation follows libquantum and QLisp in that it uses a
sparse vector representation as simple space optimization technique. In a sparse
vector, each element is stored together with its index such that only elements
with a different value from the agreed upon default value are stored. i.e. only
non-zero amplitudes of the quantum state vector are stored in a sparse vector,
at the cost of management and storage overhead. Visualizing the above example
and taking α001 = α011 = α110 = α100 = 0:

α000 α010 α100 α101 α111

0 2 4 5 7

The iterative operator implementations presented earlier stay essentially the
same; i.e. looping over amplitude and index pairs rather than looping over an
index and retrieving the amplitude.
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3.7 Discussion

We have presented a layered architecture for quantum programming in a top-
to-bottom manner. This layered design has been developed to enable further
evolution or extension of each layer without affecting the entire software ‘stack’.
We have already extended the application and pattern layers with distributed
semantics in [67]. Similarly, we have multiple realizations of the execution layer
that use different implementation approaches without affecting the layers above.
We now validate our approach by revisiting the desired properties set out at
the start of this chapter: completeness, integration, separability, expressivity and
hardware independence.

The application layer deals with integration and in part expressivity. We have
shown two different application layer approaches. The library approach provides
a greater degree of integration of measurement patterns with an existing pro-
gramming language. The design tool approach, while currently less powerful,
enables non-programmers to design complex patterns in a more intuitive and
expressive way through composition. The pattern layer vastly improves the ex-
pressivity of elementary measurement-based operations. We have automated the
original MC composition rules, which removes much of the associated tedium
in constructing large patterns. Beyond simple automatization, we have defined
an equivalent and more general pattern representation and composition rule. In
combination with automated execution, the pattern layer introduces multiple –
arguably more expressive – ways to define patterns. The execution layer defines
a Quantum Virtual Machine using the MC’s set of commands as instruction set;
a set of commands proven to be universal and thus satisfying the completeness
property inherited from the MC as is. This QVM sets a clear boundary, separating
the quantum from the classical world, both internally and externally. Internally,
it separates the limited required classical control to implement the MC’s oper-
ational semantics from the machinery required to realize the concrete quantum
operation. Externally, classically-realizable features such as pattern composition
are kept out of the execution layer. The realization of individual MC commands
form the hardware independent interface between the execution layer and the
tightly connected realization layer. This lowest-level layer houses the machinery
required to realize the quantum operations, be it simulated or physical. In our
virtual execution environment, this includes optimizations on operations and on
quantum state representations.

Our proposed quantum computer architecture already demonstrates its use-
fulness by enabling the interactive development of large patterns otherwise too
tedious or complex to create by hand. However, this architecture is intended as a
starting point; a flexible foundation on which to build a quantum programming
paradigm. We foresee three main ways in which to improve the usefulness and
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potential adoption of this architecture. First, upwards expansion: This can hap-
pen by mapping existing higher-level quantum programming languages (such as
QPL [166]) or tools to either the pattern layer or execution layer. The most obvi-
ous benefit to language designers is the re-use of the existing implementation and
optimization work inside our QVM, this is particularly important in the context
of further parallel optimizations discussed in Chapter 5 and Chapter 6. Another
useful upwards expansion comes from building further upon the pattern abstrac-
tion, the first step of which is the visual design tool, for which we will suggest
several new features in the future work section of our concluding chapter, such
as recursive pattern composition. The second way to expand the scope of our
architecture comes from horizontal expansions: re-using part of the layer infra-
structure to introduce new features or concepts. An example of such horizontal
expansion is our implementation of the Distributed Measurement Calculus [67].
The DMC implementation translates ‘agents’ in the design tool and pattern layer
to CSP-like communication primitives in the execution layer. The third way we
foresee this architecture evolving is by downward expansion: creating more soph-
isticated implementations of the QVM. With the current infrastructure in place,
one can directly test the effect of QVM optimizations and alternative implement-
ation approaches. For example, we can easily compare two alternative ways to
perform quantum measurement by running patterns with a large number of com-
mands, in the order of thousands or tens of thousands. Similarly, we can compare
a parallel implementation approach to the reference sequential implementation,
which is exactly what we do in the validation part of Chapter 6. The layered
architecture design was aimed from the start designed to be extensible, in order
to support the organic growth of a measurement-based Quantum Programming
Paradigm. Any ad-hoc implementation, such as in [6], would require continuous
re-implementation for each change or evolution within the paradigm. The layered
design allows each separate layer to pursue extensions and optimizations while
retaining the necessary cohesion to grow the QPP.

In the absence of actual practical quantum computers, the most pressing
technical challenges we see for the development of measurement-based quantum
programming paradigms lie with the performance of their virtual execution. Of
course, there is no fundamental way to compensate completely for the expo-
nential blowup associated with quantum simulation. Exacerbating the problem,
measurement-based computing has the tendency to use a larger number of en-
tangled qubits than the circuit model. However, this is balanced by its use of a
handful of simple operations with interesting properties. This creates headroom
to improve the absolute performance factor: bringing execution of a pattern down
from one minute to one second can greatly improve productivity. Indeed, every
efficiency improvement to the realization layer translates directly into being able
to simulate and thus develop larger patterns. We see three directions in which
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performance can be improved: keeping to smaller patterns during development
and relying for larger applications on pattern modularity, compression schemes
to reduce the quantum state storage requirements and parallel computing. A
large complex pattern can be broken down in smaller and simpler patterns that
can be developed and tested in isolation. While this doesn’t help the execution
performance of the larger pattern, pattern modularity allows for the development
and testing of smaller patterns in isolation; their faster execution speed offer a
more interactive design process. The context-free compositionality of patterns
ensures that the composed whole is correct if its constituent patterns are too. As
a side-effect, composing larger patterns from smaller ones leaves its measurement
pattern in a non-standardized state, which we have seen allows for storage optim-
izations. The second way to increase performance is a series of techniques we put
under the name compression. These techniques take advantage of two observa-
tions. First, while the quantum state vector might blow up exponentially in size
depending on the number of qubits, MC commands can be implemented with a
complexity linear in the state vector size. This is evident from their optimized
implementation as a single iterative loop over the state vector, shown earlier this
chapter. Second, during a quantum computation the state vector contains many
repeating elements. Much performance improvement can thus be obtained by
finding a more compact state vector representation. Our tangle optimization is
already an example of such compression, decreasing the total storage requirement
by pessimistically factoring the quantum state. Another common compression
technique we already use is the sparse vector representation, which only stores
non-zero values. Much more exotic compression techniques are available, the
most notable being QuIDD [196] which represents a quantum state using binary
decision diagrams, a compression technique popular in the domain of classical cir-
cuit simulation. In essence, these compression techniques exploit the regularities
inherent in a typical quantum state in QC. Finally, parallel computing multiplies
the computational resources that can be brought to bear. Similar – but differ-
ent – regularities exploited by compression techniques can also be exploited by
parallel implementations to separate state and perform parts of the computation
simultaneously. In the next chapters we present a fundamental approach to a
parallel implementation.

74



Chapter 4

Landscape of Parallel
Computing

In this chapter we give an overview of the field of parallel computing. Parallel
computing has a rich research history and is currently going through a renais-
sance, in that currently parallelism is brought into the everyday computer. We
therefore first include some historical context and sketch the forces driving such
change. In the second half of the chapter we formulate and argue the choice of
the dataflow computational model to express quantum computing simulation as
a parallel computation.
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4.1 Overview

The field of parallel computing finds itself in a rather complex and interesting
situation. Historically, it has existed as long as computing itself, but the parallel
paradigm never superseded the simpler sequential one. The phenomenal advances
of sequential processor performance in the last two decades have pushed parallel
computing further into a niche field. But, in recent years, parallel computing
has come back on the menu. This renaissance is not because of breakthroughs in
the parallel field that have made it more popular as a programming paradigm.
Rather, sequential performance has hit a plateau, forcing mainstream developers
to look into parallelism. The term performance used in this context does not
only mean execution speed, but can also mean: efficient use of computational
resources and power, responsiveness, throughput, etc.

It is currently unclear how market forces and new technology will further
shape the field of parallel computing. Mainstream processors have been incor-
porating explicit parallel technology for some years now with the introduction of
multicore processor architectures. But, this is an incremental evolution, made
by adapting existing sequential processor architectures. As we will see, this ap-
proach has some fundamental issue that will require a fundamental change across
all computer abstraction layers to overcome. In other words, current parallel
processor technology and parallel computing software are considered as stop-gap
measures. This gives us cause to look back at computing history, considering
how we got to the current mainstream processor technology and reconsider some
of the fundamentally different parallel technology suggested in the past.
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4.2 von Neumann-style Parallel Computing

4.2.1 Sequential microprocessor adoption

Microprocessors have become the stock computing hardware since their disrup-
tion of the processor market in the early 80s. Before, there was a variety of
processors on the market, using different designs for each market segment. This
processor market already showed a steady yearly performance growth of about
25% [107], attributed to both better design and technological improvements. In
the period between the mid-1980s and 2002 this growth increased sharply for mi-
croprocessors, increasing the yearly performance growth to 52%. This growth is
attributed mainly to the ability of the microprocessor design to translate Moore’s
law into performance. Microprocessors thus disrupted the existing processor
market, growing into the dominant computer architecture. During the early
to mid-1990s, even the large custom processors for supercomputers in the High-
Performance Computing domain were supplanted by networked microprocessors,
in a process dubbed The rise of the killer micro [14]. As a result, both computing
hardware and software industry consolidated even more around the same com-
putational model with the microprocessor as mainstream architecture. In other
words, disregarding niche markets such as embedded devices and special-purpose
hardware, the microprocessor supplanted all other computer architectures.

The performance gains in this microprocessor revolution has been in sequen-
tial performance. Each successive generation processor would increase both its
operation frequency and the number of instructions it could execute in a single
clock cycle. Under the hood, microprocessors incorporated a group of techniques
to work around the von Neumann bottleneck by using resources afforded by con-
tinuous miniaturization, such as memory caches and Out of Order execution.
However, the additional complexity required to implement these techniques on
the processor chip themselves carry a certain cost, a cost that has recently reached
a point of prohibitive diminishing returns.

4.2.2 The cost of complexity

This shift toward increasing parallelism is not a triumphant stride for-
ward based on breakthroughs in novel software and architectures for
parallelism; instead, this plunge into parallelism is actually a retreat
from even greater challenges that thwart efficient silicon implement-
ation of traditional uniprocessor architectures.

–The Landscape of Parallel Computing Research:
A View From Berkeley [17].
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Modern computers in essence still adhere to the von Neumann architecture. This
makes sense as it is an efficient design for sequential computers. Microprocessors
have increased their operating frequency spectacularly since their introduction.
As illustration, Intel’s 8086 processor was the first to use the currently ubiquit-
ous x86 architecture and clocked at around 5 MHz. Twenty-two years later, the
Intel Pentium 4 clocked above 3 GHz. Both processor and memory speed im-
proved exponentially, although the rate for processors was significantly higher.
This growing gap has forced chip makers to implement techniques to mitigate the
effect of the von Neumann bottleneck. Caching, for example, exploits instruction
and data locality by pre-fetching data from the main memory and putting it on
fast but expensive memory inside the processor core. However, these techniques
carry a cost; transistors spent on cache logic and memory do not directly con-
tribute to the computation, but still draw power and produce heat. In addition,
these bottleneck-avoiding techniques are not perfect; as the gap between memory
and processor speed increases, so does the average memory access time. This
phenomenon is dubbed the memory wall [203].

Transistor miniaturization technology has driven microprocessor performance.
Higher transistor density means more transistor real estate can be packed in the
same space, allowing more transistors to be reached inside the span of even shorter
clock pulses. Put simply, more features can be added on a processor that runs
faster with each generation. But, each extra transistor contributes to a higher
power consumption and heat production through dissipation. The increasingly
smaller feature sizes further add to the engineering problem of powering and cool-
ing the processor. And finally, higher operating frequencies also require higher
voltages to maintain a clear signal, thus turning a power limit into an operating
frequency limit. Performance by simple virtue of miniaturization has in this way
also reached a level of prohibitive diminishing returns. Its effect can be directly
observed in the processor’s stalling operating frequencies [107]. This is another
limiting factor in microprocessor sequential performance, dubbed the power wall.

Both the power and memory wall can be seen as technical challenges, that
may be further extended by breakthroughs in materials, production techniques
and more efficient designs. A third factor exists that is more related to software:
the Instruction Level Parallelism (ILP) wall. Parallelism is an attractive option
in light of the above two diminishing returns, as it increases performance without
increasing clock frequency or memory access time. ILP increases performance of
a single processor by exploiting the inherent parallelism in the instruction stream
of a sequential program. Using ILP-exploiting techniques, such as Out of Order
execution, sequential performance is improved without changing the interface to
the processor. These techniques were already at the basis of the rapid advances in
microprocessor performance [107]. The amount of available ILP heavily depends
on the type of computation being performed. And, even assuming a technically
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perfect processor, the amount of ILP that can be exploited has an upper limit.
Even before reaching this limit, one experiences diminishing returns.

In summary, while for decades miniaturization has continuously provided
cheaper resources; shrinking the size of transistors such that more fit the same
area. The power wall puts a physical limit to this process and conspires with
the memory and ILP walls to create prohibitive diminishing returns. As a result,
it is no longer worth the cost to increase the sequential performance of micro-
processors. Or, quoting Berkeley’s The Landscape of Parallel Computing Re-
search [17]:

Power Wall + Memory Wall + ILP Wall = Brick Wall.

4.2.3 The drive for parallelism

Computers aren’t getting faster, they’re only getting wider.

– Steve Scott (Cray, NVIDIA)

The continuous hunger for processing power has forced processor designers and
manufacturers to turn to more explicit forms of parallelism as a way to increase
performance, while the exploitation of ILP was an implicit form of parallelism.
Microprocessor designers started incorporating explicit forms of parallelism such
as Thread Level Parallelism (TLP) and Data Level Parallelism (DLP). The typ-
ical example of DLP is a vector operation, where a single operation acts on several
data elements simultaneously. TLP occurs when a single problem is described as
multiple programs; each running concurrently, but still sharing the same memory
space. In terms of the original von Neuamnn architecture, presented in the ap-
pendix, a processor exploiting DLP duplicates the arithmetic unit (CA), while
TLP-exploiting processors duplicates the entire core (C).

In Data Level Parallelism techniques, the processor’s extra arithmetic units
can only be used through specialized processor instructions, extending the basic
instruction set used to control the microprocessor. As an illustration of the
DLP that has been added over the years: the Intel Core i7 processor powering
the laptop used to write this dissertation has seven different DLP instruction
sets1. Ideally, the burden falls to the compiler to automatically and transparently
make use of these special data-parallel instructions where possible. In practice,
programmers concerned with performance have to use specific compiler extensions
explicitly or circumvent the compiler with inline assembly code to reliably make
use of DLP.

1By name and introduction date: MMX (1996), SSE (1999), SSE2 (2001), SSE3 (2004),
SSE4 (2006), SSE4.1 (2007) and SSE4.2 (2008)
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Large servers and supercomputers have been working with multiprocessing
systems for decades, i.e. systems duplicating the entire processor. The operating
system software layer already had concurrency primitives in place since the 60s
to deal with multitasking, I/O issues and timesharing. Programmers were thus
already familiar with concurrency primitives, such as threads and locks, when
processor manufacturers started facing the performance brick wall. Processor
manufacturers thus turned towards integrating multiple processor cores inside
the same chip as a way to improve performance by exploiting TLP. The years
between 2000-2005 formed a sea change in the microprocessor industry, frequently
named the multicore revolution or the end of the free lunch [178]. The first mul-
ticore processor, integrating two processor cores, was launched by AMD in 2002.
Hardware surveys2 of client desktop computers show that today the vast majority
carry dual- and quad-core processors, followed by a small fraction of single-core
processors. The adoption of both TLP and DLP set the trend for parallelism
in microprocessors. Hence, both are explicit forms of parallelism, the program-
mer has to be aware and adapt his program to utilize these hardware-afforded
performance improvements. To conclude, the new TLP-exploiting multicore pro-
cessors were brought about using repurposed concurrency primitives, rather than
born out of parallel computing research.

We would like to stress again the sentiment of our earlier quotation taken
from Asanovic et al. [17] at the start of the section: the drive for parallelism was
brought about by hardware limitations, the failure to get more sequential per-
formance economically. Multicore processors were introduced by reusing existing
low-level concurrency primitives such as threads; from a hardware point of view,
this constitutes a relatively small incremental step. But, from a software point of
view, these concurrency primitives have a big impact. The issues they introduce
are well documented [102, 180, 134], quoting Lee [134]:

[Threads] discard the most essential and appealing properties of se-
quential computation: understandability, predictability, and determ-
inism.

Multicore processors do show increased performance for applications built to
expose TLP. This works especially well for embarrassingly parallel problems, such
as image processing, which can be split into different parallel programs that share
little to no data. However, in general, a program that uses multiple threads has
no guarantee of improved performance. As we will see below, this is due to
limitations inherent to the original sequential architecture design from which the
multicore processor evolved. We therefore call the current multicore processor a
stopgap parallel architecture: a temporary and incremental change to an existing
solution, created to satisfy an immediate need for parallel performance.

2http://store.steampowered.com/hwsurvey
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We can thus state the following two points:

• Parallelism is here to stay this time around [60], and

• the current multicore architecture parallel approaches are a stopgap meas-
ure, brought about without the required fundamental rethinking.

Next, we will argue the point that:

• Truly scaling general-purpose parallel performance requires a fundamental
change in the current hardware and software approaches to parallelism.

For this, we base ourselves on the perceived limitations to multicore or von
Neumann-style parallel processors.

4.2.4 Parallelism limitations of von Neumann hardware

[. . . ] left to the multicore path, we may hit a “transistor utility eco-
nomics” wall in as few as three to five years, at which point Moore’s
Law may end, creating massive disruptions in our industry. [. . . ] It
promises to be an exciting time.

– Dark silicon and the end of multicore scaling, Esmaeilzadeh et al.
[75]

The von Neumann architecture was originally not intended for parallel processing,
actively sacrificing it for simplicity and thus sequential performance. The complex
interplay between VNA bottleneck-avoiding techniques in modern processors in-
troduces subtle but serious software errors and performance penalties, especially
under thread-level parallel execution [3, 188]. This alone does not explain the
observed lackluster scaling of the number of cores on commodity multicore pro-
cessor; currently only specifically suited applications gain anything at all from
running on more than four-core desktop processors. We make the case that the
von Neumann style of multiprocessing has fundamental issues that prevent it
from scaling effectively. Extrapolation of current multicore hardware trends cor-
roborate this [75]. Parallel computing research in the past already reported on
some issues to the VNA approach to parallel computing [16]. From a hardware
point of view, two issues have to be dealt with in the construction of any parallel
processor: tolerating latency and data sharing, issues that VNA-style multipro-
cessors have difficulties dealing with effectively.
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Ability to tolerate memory latency: Latency is the delay between the se-
lection of an instruction and its actual execution. During this delay, the data
required for the instruction’s operands are fetched from memory. As a processor
scales in size and speed, so does the potential latency. This is not only due to the
larger physical distance between parts: hardware trends show us that bandwidth
scales an order of magnitude better than latency [107, ch. 1]. In other words, a
processor architecture that can tolerate longer latency can more cost-effectively
increase it’s bandwidth. A processor can thus more economically increase its
total throughput (operations per second) by improving bandwidth, instead of
latency. This principle can be observed in the design of modern GPUs (graphics
accelerators), which trade latency for improved bandwidth; GPUs are currently
popular in scientific computing due to their relatively cheap cost compared to the
offered raw computing power. In sequential processors, latency is kept as small
as possible by prefetching data using caches. With caches hitting the complexity
brick wall, it has become an expensive way to reduce latency. Parallel processor
designs can deal more effectively with latency when they can do latency hiding :
overlapping data requests with other computations.

Ability to share data without constraining parallelism: Side effects are
commonplace in sequential programming paradigms: instructions doing a read-
modify-write cycle on the same memory location are not seen as a problem and
even considered a boon in strictly sequential processors. However, in the con-
text of a parallel VNA, such side-effects cause data hazards. For example, a
write-write hazard is caused by two instructions simultaneously performing their
read-modify-write cycle on the same memory location, where one instruction de-
pends on the write result of the other. Another example is a read-write hazard,
caused by an instruction reading a memory location that has yet to receive its
proper value. To deal with data hazard situations, instructions have to be syn-
chronized to keep their view of data in memory consistent. Such synchronization
introduces additional delay or overhead, but also limits the available instruction-
level parallelism in the program. Having to deal with hazards can be disastrous
for a modern processor’s performance, which rely on a program’s ILP for their
performance. Non-essential hazards can be avoided or become less frequent by
changing the program: reordering operations, a functional style, immutable data-
structures, non-blocking synchronization [59], using weak memory models [3], etc.
This puts another parallel performance burden on the programmer’s shoulder.

Mainstream processors have already incorporated small-scale parallel techniques
for the past two decades, chiefly by exploiting ILP and more recently TLP. This
forces these processors to deal with the above two issues. For instance, the exe-
cution core of modern processors achieves a degree of latency hiding and limiting
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hazards doing a limited form of dataflow execution: micro-instructions are dy-
namically scheduled for execution, a scheduled instruction is only executed when
their dependencies have been resolved. Only a limited execution window can be
addressed as the dataflow dependencies have to be extracted from a von Neumann
style instruction stream: the ILP wall. A multicore processor also needs to deal
with data-sharing issues related to caching. Complex cache-coherency protocols
have been devised to maintain a consistent view over a memory space shared by
multiple processor cores, each having their own cache hierarchy. Although much
progress has been made towards scalable cache coherency protocols [138], it re-
mains a complex technique that adds even more hardware complexity, comes at
a performance cost and requires software to be modified to deal with its quirks
and pitfalls. New architectures seeking better scaling avoid hardware-based co-
herency (Tilera) or implement an explicit non-shared memory architecture (Cell
B/E, GPUs, XMOS).

In conclusion, a von Neumann-style parallel processor faces some fundamental
issues which prevents it from scaling in number of processing elements. Hardware-
based techniques to avoid these issues exist, but cannot scale due to their com-
plexity and associated hardware cost. Software thus bears the burden of dealing
with complex latency and data-sharing issues.

4.2.5 Impact on software

A software developer with intimate knowledge of the underlying hardware archi-
tecture can modify his program to work on the two issues. From a software point
of view, this comes at a great cost. First, there is the software engineering cost
of modifying the program into a very fragile error-prone form [3]. Then, exist-
ing analysis tools and compilation technology often do not play well with such
optimizations. Next, more modifications are required for each new processor gen-
eration or different architectures. And finally, the programmer himself needs to
have a deep understanding not only of the complex hardware underneath, but
also of the impact of his modifications on the entire software abstraction stack.
In other words, now that processor hardware complexity and the carried cost of
optimizing for it is at its peak, the programmer is handed the performance torch.

4.2.6 Status quo

It can be concluded that the current drive for parallelism is caused by a hardware
engineering limit to the von Neumann style computational model. To overcome
these limitations in practice, computer architecture designers have moved into
parallel techniques decades ago. For market reasons, this was not paired with
any change in the computational model, programmers still assumed the tradi-
tional VNA-based model. But, as all implicit ways to increase performance by
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parallelism have been ‘mined out’ [179], so to speak, processors have been forced
to move into more explicit forms of parallelism.

The drive for parallelism especially impacts software development today; On
the one hand, software is forced to deal with complex parallel issues out of failure
for hardware-based solutions. On the other hand, software development has been
shaped by decades of a single sequential computational model. There is a vested
interest in keeping the sequential paradigm status quo. This is a powerful factor
that causes current parallel software approaches to favor small increments to the
existing sequential model. We refer to this effect, by lack of a better name, as
the von Neumann gravity well. The von Neumann gravity well means that any
significant steps away from the sequential model requires a great investment of
development and research to make the step worthwhile.

The stopgap parallel approach taken by the processor designers is a decept-
ively small step away from the sequential model: repurpose existing low-level
concurrency primitives. Deceptively, because while this is a small and cheap
change in hardware, it has an enormous impact on software development [134].
Many abstractions that keep the illusion of a sequential programming model are
being suggested on top of these concurrency primitives, abstractions such as soft-
ware transactions [102]. But, these have met limited success in practice [43].
There already exist high-level computation and coordination models that move
away from von Neumann style software; such move has been advocated in the
past and most notably by Backus [19], although parallelism was not always the
chief argument. However, programming languages, tools and frameworks have
still been shaped by the von Neumann style computing model. For instance, the
popular purely-functional programming language Haskell relies for the execution
of its semantics on an extremely imperative abstract machine [121].

All signs point towards a the need for a systemic change in the computational
model in order to scale effectively and take advantage of highly-parallel hardware.
This means there is a need for a coordinated effort across both the hardware
and software industry to develop a fundamentally different parallel computing
paradigm.

In the next section, we give a broad overview of past and present parallel
approaches. In it, the effect of the von Neumann gravity well can be observed
by the tight clustering of current parallel approaches around the same category.
But, we will also see that several fundamentally different parallel approaches in
both hardware and software that have been researched in the past, when the pull
of the von Neumann gravity well was not quite so strong. From these different
approaches we have selected the dataflow computational model, a choice we will
defend in the next section using many of the terms and arguments broached in
this past section.
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4.3 Parallel Computing

First, we put parallel research in its historical context, sketching some of the
original reasons why it was pursued and how it came to fall from grace. Then,
we provide a categorization of parallel computing approaches in order to better
place each parallel approach in context. We finish by giving a short overview of
currently state of the art.

4.3.1 Historical Context

The parallel architecture research of the 1960s and 1970s solved many
problems that are being encountered today.

-J. Dennis[60]

Rise. Prior to the microprocessor, computer processors were large, bulky and
typically composed of discrete components. Furthermore they were relatively
slow, making parallel processing a natural choice to increase computational power3.
More concretely, in the pre-microprocessor era there were generally three reas-
ons for doing highly parallel computing. First, an economic argument of scale:
producing a unit in large quantities means that its hardware complexity becomes
the main cost factor. In other words, it is easier to produce a multitude of small
and simple computational units than it is to produce large complex ones. The
performance of both being equal, the balance thus tips in favor of the multitude
of simple units, which then have to run in parallel. The second reason for par-
allelism is one of redundancy. For several decades the failure rate of computer
components was many times higher than today, enough to warrant the design
of redundancies in the system. As an example of redundancy in practice: the
earliest space shuttle flight had three computers on board performing the exact
same tasks simultaneously, comparing the results with a majority vote. The third
and most prominent reason for doing parallel computing is performance. If the
fastest available uniprocessor cannot get a certain task done in the required time
frame, one is forced to use parallelism to increase computation speed.

Fall. Parallel computing developments could not keep up during the two dec-
ades of fast-paced improvements to uniprocessors, invalidating the three reasons
to do parallelism in various ways. Hardware error rates were improved through
more reliable hardware and built-in error correction circuits. Microprocessors

3Most hardware techniques discussed in the last section were in fact first introduced in
the bulky computers of the 50’s and 60’s [13, 60]. Only decades later were these techniques
introduced in modern microprocessors.
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obtained a economics of scale in a different way, by using the same processor to
penetrate an entire range of markets that used to be populated by a multitude
of different processor architectures. The expensive initial cost of launching a new
processor product could be amortized by selling it simultaneously for personal
computers, workstations, minicomputers mainframes and even supercomputers.
The microprocessor saw a rapid technological development giving rise to phenom-
enal performance gains, leaving in its wake the remains of many parallel computer
research projects and companies that could not keep up. Parallel programming
languages and techniques slipped out of the common programmer’s mind and
curriculum. The High-Performance Computing domain became the only niche
where parallel computing research continued, in a very specialized context.

Renaissance. Today, we are seeing the start of a parallel renaissance. The
multicore revolution with its push to TLP has put parallelism back in the main-
stream. But as seen above, fundamental issues make multicore a stopgap measure.
It is increasingly obvious that to break away from the current status quo, it would
take a change in both hardware and software approaches. We see such alternat-
ive approaches in niche or special-purpose markets that could evolve independ-
ently from the uniprocessor: digital signal processing, networking or audio/video
stream domain computing. Particularly interesting are the Graphics Processing
Units (GPU) that have evolved from fixed-function accelerators to the massively
parallel general-purpose processors they are today [149]. Other processor archi-
tectures indicative of an impending change are the embedded multicore ARM
Cortex or XMOS processors, hybrid processors such as the Cell B/E processor,
the network-on-chip Tilera and the recently announced Intel Xeon Phi. Quot-
ing Herb Sutter [179], “these are not separate trends, but aspects of a single
trend.” Each requires programmers to take a different approach to writing their
software; no compiler exists that can effectively parallellize a sequential program
in the general case . Each parallel hardware or software system needs to deal
with fundamental issues to achieve scalable parallel computing. While we cannot
definitely predict the future, it is useful to investigate current trends and past
approaches in order to formulate required properties to perceived fundamental
obstacles.

4.3.2 Parallel Computational Models

The free lunch is over. Now welcome to the hardware jungle.

–Herb Sutter [179]

To give a better overview of the existing parallel approaches and computational
models, we frame them in a broader category. We give a schematic overview in
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Figure 4.1: Categorization of parallel computing systems.
Categorization of parallel computing systems in terms of two taxonomies.

Figure 4.1 of the categorization presented here. Flynn’s taxonomy [78] is the most
commonly seen categorization. It categorizes processor organization approaches
by their sharing of instruction and data streams. The two most prominent parallel
systems are either Single Instruction Multiple Data (SIMD) or Multiple Instruc-
tions Multiple Data (MIMD). Vector machines and Digital Signal Processing
(DSP) processors are typical examples of SIMD. SIMD exploits data-level paral-
lelism by having several processing elements (PE) execute the same instruction
in lockstep on separate pieces of data. In MIMD, thread-level parallelism is ex-
ploited to feed each PE a different stream of instructions. While these terms are
still often used, many computer systems have evolved to be too complex to be
meaningfully covered by Flynn’s taxonomy. Today, many processors mix both
SISD and SIMD instructions inside each core, which are organized in a MIMD
multicore fashion; it thus becomes difficult to label modern architectures as such.
The vast majority of parallel approaches are situated in the MIMD category. To
differentiate further within this category, we use Treleaven’s taxonomy [189, 10]
which provides a much richer categorization of complex parallel approaches. Tre-
leaven’s taxonomy considers the computational model’s mechanisms that drive
the execution of a program and the memory organization. The four control mech-
anism that can be observed in various approaches are:
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• Control driven; Each statement in a control-driven program determines the
next statement to be executed. The vast majority of sequential computing
hardware is control-driven, as of course are the popular imperative and pro-
cedural programming languages. Two of the most practical and prominent
parallel members of this category are MPI [79] and OpenMP [31]. Abstract
models such as PRAM [74], BSP [191] and even CSP [110] also fit within
this category.

• Pattern driven; The matching and unification of logical patterns against
a database of facts drives the computation. Parallel logic programming
systems such as Parlog [95] fit in this category. Also fitting this description
are Actor-based systems based on the original formulation [4], such as the
Erlang programming language [15].

• Demand driven; Computation is driven by the recursive substitution of ex-
pressions, also known as reduction. A given expression is simplified without
changing its meaning, triggering the reduction of a sub-expression until the
process terminates. Pure and lazy functional languages require such ex-
ecution semantics, which mimics the lambda calculus’ β-reduction. Such
a reduction strategy can exploit parallelism enabled by the Church-Rosser
theorem [48], which states that the order in which the substitutions are
performed does not matter for the final result. Two different reduction
execution strategies have been suggested and used: string reduction [72]
and the far more popular graph reduction [121]. The main example in
this category is Concurrent Haskell [120], because of the consolidation the
FP languages community around Haskell. Reduction-based processors were
planned [137], but only a few ever reached the prototype stage [10].

• Data driven; Operations execute as soon as their operands are available.
Data-driven programs thus benefit from a program representation in which
data dependencies are either explicit or trivially derived. Present-day ex-
amples of such execution models can be found in a wide variety of computer
systems: the Out of Order execution in modern processors [107, ch. 3.6],
stream processing [187, 176] or even Google’s MapReduce [58] framework.
More obviously within this category sits the family of Dataflow computa-
tional models, as originally popularized by Dennis [62], which have led after
two decades of research to multiple dataflow machine architectures [195] and
high-level programming languages [118].

Current state-of-the-art parallel systems are mainly within the control and data
driven categories. Control driven systems integrate well with the current prevail-
ing computer systems, they can re-use existing development tools and integrate
with compiler and language technology. The observed trend going from control
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to data driven is the loss of programmer control over the exact timing and order-
ing of execution. This makes sense in a parallel context where such flexibility is
necessary to do more work simultaneously, helping to deal with the latency and
sharing issues, which were covered last section. Data driven systems offer more
parallel execution flexibility, but their programming model can be more restrict-
ive to program in. Below, we sketch the landscape of recent and mainstream
parallel approaches.

To create some distinction between these approaches, we use the terms frame-
work and library approaches.
In framework approaches, the programmer divides the program in separate tasks
explicitly; but, when and where each task is executed is only defined implicitly.
Within each task, the programmer uses the host control-driven language as usual.
The parallel runtime takes care of the task execution juggling act by using an
efficient scheduler, both Intel TBB and Java F/J use a Cilk-style [30] work steal-
ing scheduler [29]. In these Cilk-style frameworks, the programmer defines con-
trol dependencies between tasks. Examples of similar approaches using data
dependencies are typically called stream [174, 103] or dataflow frameworks [113].
Dataflow framework approaches are often used for SaaS, BigData and Cloud
applications on warehouse-sized distributed computers [57, 113]. Large parallel
distributed systems4 such as warehouse-sized computers require even more flex-
ibility, resulting in mainly data-driven frameworks; Popular instances are Google
MapReduce [58] and its derivatives such as Hadoop. Dryad [113] has a more
general dataflow flavor.
Library approaches are different from frameworks in that they do not require
explicit task splitting. We define libraries as parallel approaches that use the
invariants of operations on special datastructures to expose parallelism. For in-
stance, calculating the sum of all elements in a vector can be expressed as a par-
allel computation; the user of the library only needs calls the sum functionality
on the library’s vector datastructure, which can then use this specific operation’s
mathematical properties to make assumptions on the flexibility of the computa-
tion. Other less trivial examples are the parallel prefix sum [132], the map and
the reduce (or fold) operations. Some advanced implementations combine this
library approach with dynamic compilation techniques to string together several
such operations and produce optimized results, for example Microsoft Acceler-
ator [184] and Intel Array Building Blocks [148]. In summary, frameworks exploit
the execution flexibility between tasks for parallelism, providing the familiarity of
control-driven execution within each task. In contrast, library approaches offer a
set of parallel datastructures and operations without taking general control-flow
away from the programmer.

4We mention distributed computing frameworks because of the frequent overlap with the
parallel computing domain and because they are in essence parallel models of computation.
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MPI and OpenMP are the main tools used by experts in the High Perform-
ance Computing domain. Both are very much control-driven, but offer a dif-
ferent type of memory mechanism and interface to the programmer. Both use
a library approach, implemented in or hooked into current sequential program-
ming languages. MPI offers low-level inter-process communication primitives,
whereas OpenMP offers a thin structured abstraction over threads and locks.
Both have well developed implementations, MPI gets the most performance out
of a cluster and OpenMP from individual shared-memory multicore processors;
today, both are typically combined. However, such a high-performance low-level
approach comes at a high development cost. In light of the parallel computing
resurgence, several initiatives seek to introduce new approaches to make par-
allel programming more accessible to programmers in general. Some examples
of this in the HPC domain are the High-Productivity languages Chapel [45],
X10 [143], Habanero [44] and Fortress [7]. In the spectrum between performance
and productivity, low-level libraries and higher-level languages, sit many other
approaches. At the higher end of the spectrum sit framework approaches such
as Intel’s Threading Building Blocks or Java Fork/Join; all featuring runtimes
that are relatively heavy-weight compared to low-level approaches, but efficient
relative to the current implementations of parallel languages.

It is clear that today there are a wide variety of parallel approaches. Not fully
covered above are the fruits of parallel research in the past, which are not used
or applicable in today’s microprocessor computer landscape. For example, many
reduction and pattern-driven parallel computers were investigated worldwide in
the 80’s during the Fifth Generation Project [108, 189]. Considering the size and
history of the field, we can never exhaustively eliminate each parallel approach.
We do however defend our choice of dataflow in the next section based on necessity
conditions.

Before moving to these properties we want to formulate three very general
arguments. First, the push towards higher degrees of parallelism naturally favors
models with higher degrees of asynchronicity and more localized synchroniza-
tion mechanisms. The pure dataflow model can be considered an extreme case:
synchronization only happens between individual operations when they have a
semantic data dependency. Our work presented in Chapter 5 can carry over to
other parallel models that exhibit the listed properties, but perhaps do so in a
lesser degree. Next, dataflow constitutes the most extensively researched, imple-
mented, used and promising non-von Neumann approach to parallel computing;
making it a prime choice as a vessel to escape the aforementioned von Neumann
gravity well. In other words, using dataflow forces a change in the prevalent
mindset, in which sequential is the default and parallel the special case. Lastly,
the dataflow model has a dual high-level low-level nature; being both successful
as a high-level abstract model and as a bottom-up physical machine model. Such
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a dual nature is a benefit in the current context, in which experts advocate a con-
certed effort to develop a fundamentally different model for parallel computing,
simultaneously across all levels of abstraction [18, 111, 139, 75, 41, 3].
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4.4 Dataflow for Quantum Computing Simula-
tion

4.4.1 Overview

We have chosen dataflow model of computation as foundation for our parallel
approach, which is described at the end of this section. We first defend our choice
of dataflow by using five necessary properties: fine-grainedness, asynchronicity,
analyzability, implicitness and data-orientedness. These properties come from
several angles. First, implicit and fine-grained parallel models scale better on
highly-parallel machines. Next, MC operations are very sparse and fine-grained
operations, with a natural data-oriented representation. Finally, dataflow is a
clean and simple model with a clear mathematical formulation.

The dataflow model of computations was originally formulated in the 60s
by Karp and Miller [123] as graph-theoretic model for the analysis of parallel
computations. Although Karp first formalized the model, similar program or-
ganizations could already be found in earlier publications [164]. Most influential
early on was the work by Jack Dennis [61, 63], who popularized the use of data-
flow as basis for a parallel processor architecture during the ’70s. Over the years,
many different dataflow processor architectures have been proposed [195], with a
similar array of dataflow languages and models. Dataflow has also been applied
in domains other than parallel computing, such as signal processing [135] or pro-
cess algebra [122]. Here, we will keep close to the original vision: dataflow as
computational model of a dataflow computer.

At its heart, a dataflow computer works by executing operations who’s op-
erands are ready. A dataflow program is organized as a graph, with operations
as nodes and data dependencies as directed edges. Operationally, data flows
along the edges in the form of data tokens, typically containing a datum and
destination information. An operation is selected for execution when all of its
incoming edges contains a data token. After an operation has been executed,
new data tokens containing the result are sent to their destinations. In contrast
with a stored-program computer, e.g. with a von Neumann architecture, there is
no concept of memory location nor sequence of operations. A dataflow program
may at any point in time have multiple operations that are ready for execution,
the order in which these are executed does not affect the final result of the com-
putation [123]. The parallel execution of a dataflow program is thus simply a
matter of simultaneously executing readied operations. To illustrate, we work
out a simple dataflow computation in Figure 4.2.
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Figure 4.2: Graph representation of a simple dataflow program computing
x := 2 · 4 + 3 · 5. Execution starts when the input data tokens are fed to the
dataflow computer. A data token is represented here as rectangular boxes carry-
ing a datum and destination.

For a more thorough treatment of dataflow architectures and languages we
refer to the surveys by Treleaven et al. [189], Johnston et al. [119] and Veen [195],
and the books by Sharp [169] and Almasi and Gottlieb [10].

4.4.2 Fine Grainedness

Conceptually: expose maximal parallelism. Every program has an es-
sentially sequential part: control and data dependencies that impose a certain
ordering or critical path length. These impose a minimum execution time, even
given infinite parallel resources. The parallel speedup of a program is thus limited
by the size of the sequential part of the program, as formulated by Amdahl’s law.
However, it has to be appreciated that a sequential part in a program does not
imply a sequential part in the original problem. Using a different algorithm or
even programming style has an impact on the parallel and sequential parts. In
short, a programmer should be able to expose as much parallelism inherent to the
original problem. Using a fine-grained dataflow model can expose any inherent
parallelism to the level of individual instructions, making it singularly suited as
a highly-parallel program representation.

Performance: balancing parallelism and overhead. The granularity of
a parallel program is the ratio between the number of operations it performs
in total and the number of times it has to communicate or synchronize. That
is, the coarser the granularity, the more sequential operations are performed by
each of the program’s distinct parallel tasks. Expressing the same problem as a
fine-grained or coarse-grained parallel program provides different trade-offs. The
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fine-grained version contains more overhead because of the scheduling or syn-
chronization of the more numerous parallel tasks. A coarse-grained version has
larger blocks of consecutive sequential operations that do not require to commu-
nicate with the rest of the program. But, the coarse-grained version contains
a larger sequential part than does the fine-grained version. As more tasks can
be potentially executed in parallel, the more processing units can be kept busy.
The optimal granularity is dependent on the underlying machine architecture.
For example, today’s multicore processors fare better with coarse-grained paral-
lel computations: any context switch or synchronization may stall the fast and
‘fat’ sequential execution cores. GPUs on the other hand fare better with com-
putations with an abundance of fine-grained parallelism. This is reflected in the
GPUs entire architecture design. GPUs have slower memory latency, but by re-
lying more on latency hiding through parallelism rather than caching, they can
achieve a far greater bandwidth and throughput. A trend can be observed to-
wards slower, ‘thinner’, simpler cores, but with a much larger number of cores,
compared to the few ‘fat’ cores in current multicore processors. This trend to-
wards manycore processors can be observed in parallel research [18, 32, 103], but
also today’s boundary-breaking parallel processors from companies such as the
Tilera [201, 185], Adapteva [153] and lastly Intel with their Xeon Phi [165]. In the
past, a similar trend could also be found in research in the experimental dataflow
machines built in the 80s and 90s, but also again commercial processors with the
Connection Machine [109] series and the Inmos Transputer [202]. It is thus not
unreasonable to conclude that a scalable highly-parallel architecture requires a
finer rather than coarser grained parallelism.

It need not be the case that fine granularity causes a disproportionately large
overhead. Several techniques have been developed for dataflow machines to re-
duce the fine-grained parallelism overhead [170, 133], often by coarsening com-
putations by extracting sequential code fragments [26, 163, 91]. It has been
shown that sophisticated static compiler and dynamic hardware techniques can
reduce the overhead associated with fine-grained parallelism. The SISAL [83]
language, which compiles to a dataflow intermediate representation, matched the
sequential performance of the then fastest available language: FORTRAN [42].
Its functional and dataflow nature were praised as being more conductive to
analysis, optimization and implicit parallelization. On the flip side, extracting
finer-grained computations from coarse-grained computations requires what is in
essence a general parallelizing compiler: a notoriously difficult and in general still
unsolved problem [100]. Furthermore, many of the techniques used in optimizing
and parallelizing compilers consist of dataflow analysis [9], but these still need to
extract the data-dependency graph from a sequential input program.

To conclude, a fine-grained parallel program is not fundamentally less prac-
tical than a coarse-grained one, on the contrary. The more parallel the underly-

94



ing execution hardware, the more benefit is gained from a fine-grained program
representation. Existing optimizations can reduce the overhead cost normally
associated with running a fine-grained program on comparably coarser-grained
parallel hardware.

Sparse nature of MC operators As seen in Chapter 2, the simulated ex-
ecution of MC programs can be considered on two levels. Taking each vector
state as a data element, we obtain in a natural way a coarse-grained computa-
tion. Considering a state’s individual amplitudes as data elements results in a
fine-grained computation. The parallelism at a coarse level is heavily dependent
on the number of factorizable states, achieving very low parallelism for non-
trivial MC programs. Considering the computation at the level of amplitudes
unlocks a vast amount of sparse and data-parallel computations, with a natural
fine-grained dataflow representation. In practice, applications with similar such
characteristics, such as the Fast Fourier Transform, have been successfully ex-
pressed and optimized using a fine-grained dataflow representations [186]. We
show in Chapter 5 a similar result holds for MC.

4.4.3 Asynchronicity

It is self-evident that parallel models require to some degree to be asynchron-
ous. SIMD models are relatively synchronous, all data elements being processed
in lockstep based on the single program counter. MIMD models have more
asynchronous elements, multiple tasks run independently and simultaneously.
Shared-memory MIMD systems require in practice complex cache-coherency pro-
tocols and explicit synchronization to keep the semblance of a unified memory
architecture. Private-memory MIMD systems such as MPI or Bulk Synchronous
Processing-based systems [191] run independent processes, but require commu-
nication steps to share data.

Many parallel algorithms take a synchronous approach: parallel processes per-
form their data communication during globally synchronized steps. That is, in
a synchronous approach, all parallel processes will wait for all other processes to
finish their task before communicating to each other the data required for their
next task. Some problems work well with such synchronous parallel approach, for
instance Cannon’s matrix multiplication algorithm [93]. These problems typically
have parallel tasks that perform a similar amount of work and only require lim-
ited local communication during the global synchronized communication step.
Otherwise, the communication steps quickly dominates the computation when
scaling the number of processing elements, considering the latency involved and
the amount of idle hardware during such global synchronization overhead. Asyn-
chronous parallel algorithms exist for problems that do no scale well with syn-
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chronous approaches; to reduce the amount of communication [27] or to balance
out the parallel load [23, 12].

The parallel quantum computing simulation state of the art [182, 56, 90]
mainly takes a bulk synchronous approach. In each, we observe the entire
quantum state being split and stored across all processes. A large global syn-
chronization step between the application of each quantum operation takes care of
data sharing. But, during this communication step, each process has to commu-
nicate with all other processes, causing a large communication step for relatively
few computations. In our concrete case, parallelizing the virtual execution of
the MC, it can be observed that each new amplitude after a unitary operation
does not depend on all other amplitudes. In other words, in our case, a global
synchronization is not semantically necessary. It is thus worth investigating an
asynchronous parallel approach for parallel quantum computing simulation.

Expressing quantum computing simulation as a dataflow computation allows
for a great degree of asynchronous computations. Operations on amplitudes can
overlap based on the available data, rather than having to wait for all other
operations to also have received their data. This becomes increasingly important
as the size and scale of the parallel computer increases, as the increased amount
of communication and latencies becoming the bottleneck in the computation.

4.4.4 Analyzability

In the bigger picture, there is still much scope for higher-level language
designs which encourage programmers to think in a way which natur-
ally encodes effectively on coming architectures – and even for new ar-
chitectural features corresponding to programming innovations. Can
we return to the comfort of 1985 when implementation languages and
computer architecture matched?

–Alan Mycroft [144]

Mainstream software is built on a high stack of relatively thick abstraction
layers. A productive programming language is surrounded with an entire eco-
logy of tools to help developers. These tools require an in-depth knowledge of
the programs they act on. Similarly, compilers and low-level runtimes need deep
knowledge about the program to allow certain assumptions to be made to enable
optimizations. There is already a mismatch between the simple random-access
computer model assumed by many software abstraction layers and the reality
of modern computer architectures [3, 107]. The switch to more parallel systems
fundamentally disrupts this already mismatched stack. To illustrate, consider a
programmer with a problem that can be naturally expressed as a parallel com-
putation. He can express this problem in parallel in his favorite programming
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language, for example by using a data-parallel library approach. This program is
translated to a low-level language such as C, in which the parallelism is expressed
using concurrency primitives. The C compiler in turn has no information about
the original intent of the programmer, rather it needs to build on assumptions
based on the sequential C programming model. Going even lower, the processor
translates the instruction stream produced by the C compiler into machine in-
structions and turns to assumptions it can make about the assembly computa-
tional model to perform parallel execution. Modern processors, as we have seen,
have evolved away from the initial sequential computational model. Weaker –
less deterministic – memory models are used in order to more effectively share
data over multiple cores [3]. This entire mismatched stack greatly complicates
not only the task of optimizing for parallel computation explicitly, but also the
analysis required for automatic optimization and verification tools.

Choosing a single overarching model for program representations across all
abstraction levels has the benefit of providing optimization tools with the deeper
knowledge they need about the application and programmer’s intent. Moreover,
the more parallel the underlying system, the more assumptions are required for
performance. The dataflow program representation in its various forms has simple
mathematical formulations and properties that make it highly suited for analysis.
Dataflow was originally [124] formulated as a more mathematically rigorous and
verifiable model to express parallel programs. Dataflow has shown to be highly
suitable for various static and dynamic optimizations, both in the past [163] and
more recently [187]. Today, we can still find dataflow at nearly every analysis
step on the software abstraction stack; from large frameworks [58, 148], domain-
specific tools [47, 157] to optimizing compilers [100, 8, 111, 157]. Note, these
dataflow graphs live only in the back-end or as temporary intermediate repres-
entation such as Single Static Assignment [51]. It may safely be said that dataflow
has earned its spurs as analyzable model.

The analyzability of the dataflow graph itself will help us in Chapter 6 with
the theoretical validation of our approach. Several metrics important to parallel
performance can be read off the dataflow graph directly, metrics such as crit-
ical path and average parallelism. Such quantitative analysis can be powerful
performance predictors, but also give us theoretical bounds on the amount of ex-
posed parallelism and expected parallel execution behavior. In other words, the
analyzability of the dataflow model helps us to quantify the amount of available
parallelism in the simulation of the MC execution.

4.4.5 Implicitness

Expressing a parallel program is not fundamentally harder than expressing a se-
quential one. The complexity is mainly caused by having to optimize the parallel
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program. Optimizations are unavoidable, as parallelism is mainly for increasing
performance and there promises to be a much wider variety of parallel architec-
tures than we ever saw for microprocessors. Parallel performance today means
modifying the parallel program for the underlying hardware, keeping the abstrac-
tion layer as thin as possible to remove any unnecessary overhead and tweak the
program around potential bottlenecks. Modifying a program by hand for per-
formance requires an intimate knowledge not only about the various hardware
components but also about the multitude of software abstractions between the
program code and the hardware.

Explicit parallelism means the programmer explicitly divides the original
problem space, distributes the data and orchestrates what operations have to
be executed when. This offers the most manual way of optimizing a parallel pro-
gram; an expert using explicit parallelism can with enough effort get the most
out of the parallel hardware. This approach can often be found in the HPC
application domain, which uses MPI as staple approach. The HPC domain is
characterized by having a high hardware cost, which makes it logical to allow for
a higher software development cost to use more of the costly hardware’s potential.
In other computing domains, the development cost dwarfs the hardware cost. Im-
plicit parallelism provides the programmer with a relatively familiar abstraction
and computational model: one that is not ostensibly parallel, but which can be
easily transformed and analyzed into an optimized parallel computation. The
main argument against explicit parallelism comes from the foreseen processing
hardware changes. Different parallel architectures will require rewriting a large
body of software written in an explicit parallel style. An implicit parallel style
leaves room for a wider variety of underlying parallel architectures.

The dataflow computational model has a simple and intuitive implicit formula-
tion. A more familiar approach to dataflow for the programmer would be through
functional languages, which have been shown to map well to dataflow [84, 2, 204].
A dataflow graph does not impose a specific data storage or layout, does not have
a notion of processing units or different tasks. The programmer only has to di-
vide the problem into separate operations. Note that even this operation division
does not guarantee the operations will not be grouped for optimized performance.
A fine-grained dataflow program leaves much room for automatic optimizations,
which it requires in practice for performance.

4.4.6 Data-orientedness

Communication in some form or another is the bottleneck for nearly every parallel
computer architecture, from multicore processors to clusters. In shared-memory
systems this is not always explicit, with cache-coherency hiding and automat-
ing the communication between processing elements. Even with such automatic

98



caches a programmer has to be aware of data movements in order to avoid dis-
astrous performance penalties. PGAS models [205] provide primitives for the
programmer to express locality or affinity to processing elements, providing the
runtime with some information to optimize data movement. Highly parallel pro-
cessors such as modern GPUs deal with data movement by forcing the user in
an explicit memory hierarchy and by working with many overlapping memory
requests; delaying dependent computations until data is available.

Efficient parallel execution of quantum computing simulation is mainly a prob-
lem of data-movement; because of the combination of a large number of amp-
litudes in each state, few computations per amplitude and potentially very wide
strides over memory locations that ruin traditional data-locality. The straight-
forward approach to building a parallel quantum computing simulator is by dis-
tributing the quantum state data over multiple computation nodes. Typically, a
one-qubit operation will access all of the amplitudes in a quantum state. When
a state is distributed, each node stores only a subset of all amplitudes. For each
operation, a node needs to pull individual amplitudes from other nodes [56]. As
the quantum state grows exponential in size, it is easy to see that the same hap-
pens for the amount of communication. To optimize performance, it is important
that data movements are explicit.

Dataflow requires data-dependencies to be explicit in the program. This en-
ables flexible and overlapping memory requests, optimized data movement ana-
lysis and in general removing the direct coupling of processor performance and
memory latency [16]. Other benefits result from the automated analysis made
possible by the data-dependency graph, something we mainly covered under the
‘analysis’ argument. A less obvious benefit is a human-oriented one. Having the
programmer explicitly work with data-dependencies also gives him a better view
of the cost of a computation; today it is not instructions that are expensive, but
data use [107]. It can also lead to a better understanding of the original problem.
In our case, explicit data dependencies led to the connection between qubit posi-
tions in a tensor and the stride permutation, leading to the expression of a qubit
position-changing operator in the next chapter. In other words, dataflow forces
you in a style that gives you the tools to work on data movement problems.

4.4.7 Conclusion

We thus argue that dataflow is a parallel computational model that not only
matches well to the problems faced by parallel quantum computing simulators,
but also approaches parallel computing in a more fundamental and lasting way.
Other computational models might match some of the above properties; the actor
model is also an asynchronous model and MPI can also be used to implement
an asynchronous approach. But, to our knowledge, only the dataflow model
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Landscape of Parallel Computing

combines all above properties. Its dual nature and origin as both mathematical
and machine model is seen as an advantage in our context.

We have split our parallel approach for parallelizing the QVM into two distinct
parts, first taking a conceptual approach followed by its practical implementation.
The conceptual approach, presented in Chapter 5, acts as the blueprint, decon-
structing and covering key aspects of the QVM’s virtual execution. The mathem-
atical simplicity of dataflow as a conceptual formalism allows us to present the
parallelization of the QVM to the reader by abstracting away many hardware
issues, but still staying within a dataflow model of computation. The practical
implementation covered in Chapter 6 serves as validation for the practical feas-
ibility of our approach.
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Chapter 5

Bridging QC and CC:
mapping Measurement
Calculus to Dataflow

5.1 Bridging measurement patterns and imple-
mentation using models

5.1.1 Goal

In chapter 2 we have advanced a model and language for quantum computation,
the Measurement Calculus. In chapter 4, the state of classical computing was
presented with special attention to parallel computation hardware and models. In
this chapter we bridge both domains, transforming the quantum virtual machine
presented last chapter to an efficient classical, parallel computational model.

One way to approach classical simulation of the MC is to implement it as a
computer program directly on top of linear algebra libraries. As we have seen
in Chapter 3, this has been done several times for Quantum Computing in general
and in a few cases for one-way QC and even MC specifically [6]. While ad
hoc, these implementations do provide insight into the nature and qualitative
properties of quantum computing. Trying to efficiently simulate or emulate QC
computation drives home the core elements that make it computationally hard.
This led to insights such as efficient subsets of QC [92] or non-obvious ways to
compress quantum state [197].

In this chapter we bridge the QC and classical domain not by a direct imple-
mentation, but by step-wise decomposition and analysis of computational models.
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Imagine a valley with the quantum computing domain on the left flank and the
classical computing domain on the right, we build a bridge connecting both flanks
by first planting several supporting pillars in between. Each pillar is a computa-
tional model or abstract machine that can be connected with the neighbouring
pillars by way of equivalences and transformations. On the left sits the Measure-
ment Calculus as the anchor for the Quantum Computing domain. On the right
sits a fine-grained dataflow model for parallel classical computing. The choice
for these two anchor point models has been thoroughly defended in the previous
Chapters 2 and 4. A visual overview of this bridge metaphor is presented in
Figure 5.1. All models presented in this chapter are graphs, which stems from
the practical fact that both the MC and the dataflow model have an obvious
and concise graph representation. The reasons for using computational models
come from different directions. First, they allow us to discuss and analyse the
problem at hand while abstracting over issues such as numerical accuracy and
implementation platform details. Second, using multiple models allows us to
tackle the separate individual features or issues more clearly, which would be lost
in the context of a direct implementation. Third, by spreading over abstraction
levels we ensure there is a common entry point for multiple quantum simulation
strategies. In other words, it makes parts of the bridge reusable for different types
of implementations. For example, a coarse graph could just as well represent a
stabilizer calculus [92] computation.

QC CC

MC MC
Graph

Coarse
Graph

positional
Coarse
Graph

Fine-
grained
Graph

Dataflow

Figure 5.1: Schematic overview of the ‘bridge’ spanning the quantum and classical
computing domains, using multiple intermediate models as pillars.

5.1.2 Requirements

The choice and development of the models below is guided by a set of require-
ments. These requirements arise from blending some of the practical require-
ments satisfied the MC from Chapter 2 on the one hand and those satisfied by
the dataflow model on the other.
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Executability. The model has to describe the computation with enough detail
such that it can be expressed formally in terms of operational semantics. Models
simplify, which helps to focus on important items. Models also abstract, which
help a computational model to apply to a wider range of computing contexts.
The purpose of the executability requirement is to avoid abstracting too much
details important to execution. We have shown in Chapter 2 that the MC to
satisfies this requirement by virtue of its small and simple operational semantics.
With this requirement we ensure that each consecutive model is detailed enough
to preserve this property.

State-oriented. This second requirement forces each intermediate model to
express its computation through explicit state transformations. It should be
clear and explicit in the model for each operation which data elements it uses
and how they are modified. In the current computing landscape it is the efficient
use and movement of data that forms the main performance bottleneck, both for
parallel and sequential computations. This requirement forces the model to make
the manipulation of state explicit through data-dependencies, which is essential
for analysis and efficient implementation.

Parallel. We require that when operations can be performed simultaneously,
it should be explicit or obvious from the model. In other words, we require
each model to be a parallel model of computation; or at least, a model where a
set of simultaneous operations can be extracted non-trivially. This requirement
is important because from the start it forces the computation to be expressed
as a parallel one. Parallelism depends on the nature of the original problem
and turning a sequential solution into a parallel one is non-trivial. With this
requirement we force the modeled computations to expose a maximal degree of
exploitable parallelism.

Simplicity. This final requirement seeks to reduce the general complexity of
the various models. Each operation or feature should have a single and simple
focus, upholding separation of concerns. Transforming a model to a more concrete
one should not add more complexity, unless the added concept is essential. And
finally, optimizations are introduced only if they simplify a model.

5.1.3 Overview

The structure of the rest of this chapter follows the various models from more
abstract down to the more concrete. We start in Section 5.2 from essentially a
graph representation of MC programs, which is used in the construction of the
first state-oriented graph model in Section 5.2.2. In the following coarse-grained
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model, the positional coarse graph in Section 5.2.3, the MC operations are made
more concrete by referring to qubits by their tensor position rather than name.
Finally, we present the fine-grained dataflow graph in Section 5.3, in which MC
operations are completely described as a operations on individual amplitudes.
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5.2 Coarse grained graphs

5.2.1 Measurement Calculus Graph Model

Overview

The Measurement Calculus defines its execution semantics using a set of low-
level operations for a one-way quantum computer. As we have seen in Chapter 3,
measurement patterns have a natural graph representation. In Chapter 3 we
have used a graph representation a pattern composition as a way for quantum
programmers to design and compile MC programs more easily and visually. Here
we use a graph to represent individual measurement patterns as the starting point
from which we derive other models. A measurement pattern forms a graph where
each node is an MC command and edges represent qubit and signal dependencies,
conform to the definiteness conditions. The definiteness conditions also ensure
that such a measurement graph is a directed acyclic graph (DAG). We start by
defining the graph’s structure and abstract execution, then and conclude with
a requirements check to clarify why we do not use the Measurement Calculus
Graph directly as a computational model.

Structure

The Measurement Calculus Graph (MCG) is a Directed Acyclic Graph (DAG) in
which nodes are associated with an operation and edges represent qubit or signal
dependencies. The abstract machine for the MCG model works in two phases
for each execution step: the select and application phases. The select phase
determines which operation is ready to be executed. This selection phase is
absent or at least trivial in the abstract machine for the MC, where measurement
patterns are represented as a command sequence and selection is thus simply
taking the next element of the sequence. With the MCG being a graph, this
selection phase is somewhat more involved. An operation is selected when all
its dependencies are resolved, thus it either had no incoming edges to begin
with or each of its incoming edges come from operations that have already been
applied. In the application phase, the selected nodes are fired in arbitrary order,
executing the action of the operation they are associated with, transforming the
computational state as described by the MC’s operational semantics in Chapter 2.
The order in which nodes are fired depends on the edges of the graph. There
are two types of edges, one for qubit and another for signal dependencies. An
edge (o1,o2) between two operations expresses the dependency: “o2 can only be
executed after o1”. A DAG imposes a partial order on its vertices: o1 ≤ o2 if there
is a path from o1 to o2. Properties of DAGs guarantee there is always at least one
minimum and maximum. Finding which operations in an MCG can be executed
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is a matter of taking the graph’s minimum; the nodes that do not have incoming
edges and thus no dependencies. By repeatedly taking the graph minima and
removing this set from the original graph we can decompose the graph into a
sequence of sets containing nodes that can be executed simultaneously. We refer
to this as a schedule, but is similar to the notion of flow [37] in measurement-
based quantum computing can in other formal contexts be described as greedy
decomposition into anti-chains, layers of minima or skyline [168]. This is similar
to taking the topological sort of a DAG, which gives a possible total ordering
of nodes, although several of such orderings can exist. While a topological sort
describes an execution sequence, a schedule describes the parallel execution of an
MCG; execution can be split in several rounds where in each round the machine
can execute multiple operations simultaneously. The longer the schedule the
more rounds required, the larger each operation set in the schedule, the more
operations can be performed in parallel.

Requirements

Checking the first requirement, it is clear the MCG is executable, although one
needs to resolve dependencies first by computing a topological sort of the graph
for sequential execution or a schedule for parallel execution.

The MCG is not state-oriented. The MCG execution scheme is operation-
driven; An operation can be executed only if all operations it has dependencies
on have been executed.

The abstract machine we described for executing the MCG model can execute
operations in parallel. However, this only holds on a physical measurement-based
quantum computer. In a virtual execution environment, the concrete operators
realizing the quantum operation need to operate one after the other, as they
potentially modify the entire quantum state. As we target a classical simulation
environment, the MCG does not satisfy the parallel requirement for our purpose.

Conclusion

The Measurement Calculus Graph is an intuitive way to express and compose MC
patterns, it contains all required information to compute its patterns and has de-
sirable practical and theoretical properties in a quantum computing environment.
Below we show how we transform the MCG graph to different models that bring
the expressed quantum computation closer to a representation that addresses our
requirements. The first of such transformations still results in a coarse grained
model; a node represents a complete operation on the quantum state. What does
change is the process driving the execution of such operations. State is made
explicit in the form of state nodes and the operation-driven execution of MCG is
transformed into a state-driven one.
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5.2.2 Coarse Graph Model

Overview

As we have seen above, quantum state is implicit in the MCG model. The
Coarse Graph (CG) brings the quantum state to the foreground by using state
nodes in addition to operation nodes. Naturally, the transformation from a MCG
computation into a CG representation has to preserve its semantics. Concretely,
the effect of firing an operation node in CG is still the transition q −→ q′, but
quantum states q and q′ are now explicitly represented in the graph with state
nodes. An operation node o in MCG thus becomes the chain q o q′ in
the Coarse Graph. Firing an operation node has the effect to consume the state
in its input node and produce the state in its output node. Edges in the CG
thus describe a produce/consume relationship of quantum state. Because the
MC semantics only has the one global quantum state, a graph constructed in the
above way would create a long sequential chain.

On the level of operators the most obvious parallelism is the simultaneous exe-
cution of quantum operations on separable states. Many of the parallel QC simu-
lators in literature make use of this parallelism, sometimes even exclusively [151].
If a quantum state is factorizable, e.g. a q can be expressed as q = q1 ⊗ q2,
an operation A on q1 and another operation B on q2 can be truly performed
independently and thus in parallel. That is,

(A⊗B)q = (A⊗B)(q1 ⊗ q2) = Aq1 ⊗Bq2 = q1′ ⊗ q2′ .

We already capitalized on factorizable states in Chapter 3 to reduce the storage
requirement for quantum states. There, we introduced the concept of tangles
in Section 3.5.4 in order to represent a factorizable quantum state q = q1 ⊗ q2 as
a set of states {q1,q2}. On such separate states, it follows that with

Aq1 ⊗Bq2 = q1′ ⊗ q2′ = q′ ,

we have

(A⊗B)q = Aq1 ⊗Bq2 = {Aq1, Bq2} = {q1′, q2′} = q1′ ⊗ q2′ = q′ .

Factorizable states can thus be modeled in the graph by using multiple state
nodes. Each state node contains a disjoint part of the global quantum state
space. Doing this requires keeping track of which qubits are in which factor
state. We keep track of factorizable quantum states using tangles, as already
discussed in Section 3.5.4. The amended operational semantics from Equa-
tions (3.5.3) and (3.5.4) show that the merging and shrinking of tangles can
be determined statically, looking only at the operation name and target qubit.

107



Bridging QC and CC: mapping Measurement Calculus to Dataflow

Thus, using information from the MCG, it is possible to determine how each
intermediate state can be separated in multiple tangles.

To conclude, the Coarse Graph makes the quantum state explicit. In the
MCG, this state was global and implicit, forming a graph in which nodes con-
tained only one type of object: commands. The CG adds an explicit state, which
also introduces an explicit execution order. The CG is executable and its execu-
tion is state driven. When applicable, multiple operations can be performed in
parallel. This type of parallelism exhibited by the CG is very coarse however,
relying on the nature of the computation.

Taking the example wild (non-standardized) command sequence

E24X
s3
4 M3X

s1
2 M1E34E12

and following the construction process described below in Section 5.2.2 results in
the following Coarse Graph.

{}

E1,2

{1,2}

M1

{2}

X2

{2}

{}

E3,4

{3,4}

M3

{4}

X4

{4}
E2,4

{2,4}

Construction

Definition 6. The Coarse Graph or CG is a directed bipartite graph over two
types of nodes: states S and operations O.

CG = 〈O,S,A〉 (5.2.1)

where A ⊂ (S ×O) ∪ (O × S) (5.2.2)

State nodes contain computational state (a tangle) and operation nodes con-
tain a transition function (an MC operation). An arc from a state to an operation
node defines a consume relationship and from operation to state a produce re-
lationship. By construction every state node has exactly one incoming and one
outgoing arc, operation nodes also have only one output but certain nodes can
have two inputs.

The coarse graph is constructed by transforming an MCG using an induct-
ive process. We first define some notation and auxiliary functions to simplify
presentation.
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Proposition 1. Merging two graphs unifies the sets of nodes and edges.

CG1 ∪ CG2 = 〈O1, S1, A1〉 ∪ 〈O2, S2, A2〉 (5.2.3)

= 〈O1 ∪O2, S1 ∪ S2, A1 ∪A2〉 (5.2.4)

State nodes are denoted s and operations o. A state node is a tangle, which
in turn contains a qubit set and quantum state; during construction we often
equate state nodes with qubit sets out of notational convenience, ignoring the
tangle’s quantum state component. For instance s = {i,j, . . .} denotes a state
node tangle Ti,j,... = (q, {i,j, . . .}). Similarly, s′ = s∪{k,l} is a state node whose
tangle contains the qubit sets merge of s’s tangle and {k,l}.

Initially the coarse graph is CG0 := sinput, where sinput contains the tangle
with all input qubits. The CG is constructed iteratively by walking through the
MCG operations in topological order. For single qubit operations, the graph CGi
at iteration i is given by

CGi := CGi−1 ∪ 〈{oi}, {sout}, {(sin, oi) , (oi, sout)}〉 (5.2.5)

where at each iteration sout is a newly created state node and oi is the opera-
tion node for the operation currently visited by the iteration step. Furthermore,
sin ∈ Gi−1 and sin contains the qubits used by the operation node oi. The fresh
state node sout contains the same qubit set as sin, except when the operation
node is either a measurement or qubit creation operation, as described in Equa-
tions (3.5.3) and (3.5.4). When o is an entanglement operator such as Eij, it is
possible that there is no single sin in Gi−1 such that i,j ∈ sin. In this case there
are two distinct state nodes si, sj ∈ Gi−1 where si = {i, . . .}, sj = {j, . . .} and
sout := si ∪ sj .

Abstract Machine

The abstract machine for the coarse graph works by the same process as the
MCG’s. An execution step also works using two phases: selection and application.
Selection determines which operation nodes can be executed by checking if they
have no dependencies left. In the application phase, selected operation nodes
are fired, causing their associated operation to be applied to the consumed state
and in turn producing a new state. The application of operations is according
to MC’s operational semantics, but with the amended rules from Section 3.5.4
to work on tangle states. When multiple operation nodes are selected, all these
operations can be executed simultaneously.

Conclusion

The CG is obtained by transforming the more operation-oriented model of the
MCG into a state-oriented model. CG is, as the name suggests, a coarse grained
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model of computation, exposing parallelism on the level of operator application.
This parallelism depends on the nature of the computation, it will do well if there
are large factorisable states in the computation. Like the MCG, CG still abstracts
over how the quantum state and operations are modeled, leaving open if some
underlying implementation would rather use stabilizer calculus1, density matrix
or state vector representation. Abstract models such as the CG are typically
used as intermediate representations; we use it as such during compilation in our
implementation in Chapter 6, never directly executing the coarse graph.

More parallelism is available when the model commits to a specific represent-
ation, by analysing and modeling what happens inside the individual operators.
In the next sections we commit to the state vector representation, where quantum
state is represented as a vector of complex amplitudes. A state node in the coarse
graph representing a complete quantum state is refined into a multitude of state
nodes representing individual amplitudes. Similarly, an operation node in CG
is transformed into a number of amplitude-transforming operation nodes in the
finer-grained graph.

5.2.3 Positional Coarse Graph (pCG)

Overview

The positional Coarse Graph or pCG makes a new implementation aspect ex-
plicit: taking into account the specific order in which a quantum state has been
composed and is operated on. As we will see, this has an impact on the efficiency
of the amplitude-vector implementation. For operators in particular, if an oper-
ation targets the ’last’ qubit, e.g. 2 in {1, 2}, that operation can be computed
in an embarrassingly parallel way. Moreover, by changing the state composition
prior to an operation, any operation can target that last qubit.

The purpose of the pCG is to reflect the implementation-level concern that the
same MC operation can be simulated more efficiently when the composition order
of qubits is changed. If the pCG wants to take advantage of this efficiency, it will
need to change the composition of qubit states. The pCG therefore imposes an
explicit ordering on the composition of any qubit state. More practically, tangles
in pCG impose a composition order by using an ordered qubit set or qubit list
without repetition [. . .] rather than a qubit set {. . .}. This change allows to
express more easily that for example qubit i is ’last’ position and that operation
X5 is applied to the ’last’ qubit of the ordered tangle T135 = (q,[1,3,5]), which
makes for a more efficient computation than applying the same operation on
T351. Such a positional approach is something typically not considered in QC or
MC, the pCG model therefore needs to introduce new nomenclature, naming and

1Using the correct restrictions on the MC operations.
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operations: ordered tangle, qubit position, positional operators, parallel position
and position change operation. We show these before showing how positions
affects efficiency in Section 5.2.3.

Notation

Ordered tangles are a simple derivation from tangles as used in the CG state
nodes. Only a small semantic change is necessary: the qubit set is associated
with a certain order. The tangle semantics as defined in Section 3.5.4 remain
mostly unchanged, only now the order in which qubits are added matters, for
example when merging two tangles during an entanglement operation. To make
the distinction clear between ordered and unordered tangles we use a qubit list
rather than a qubit set in both notation and semantics. When two tangles are
merged, their qubit lists are concatenated. The order in which they are merged
is now important; for example

T1 ⊗ T35 T35 ⊗ T1
= (qa,[1])⊗ (qb,[3,5]) = (qb,[3,5])⊗ (qa,[1])

= (qa ⊗ qb, [1] + [3,5]) = (qb ⊗ qa, [3,5] + [1])

= (qa ⊗ qb, [1,3,5]) = (qb ⊗ qa, [3,5,1])

= T135 = T351 .

Composing tangles implies concatenation (using +). We call the difference between
both such tangles a difference in qubit composition or ordering.

Qubits can be referred to by using their position in the qubit list. For example
the qubit 5 is said to be in a different position in tangle T135 than in T351.

Definition 7. The position of a qubit named i in a qubit list Q is denoted by

pos(i,Q) = i

where i is the index or ordinal for i’s position in the list.

For example pos(5,[3,5,1]) = 2, which we sometimes also write as 5 = 2 when
the qubit list is clear from the context. A position is thus a way to identify a
qubit by its place in a tangle.

The MC is defined on a level of abstraction where the specific ordering or
composition of the qubits does not matter, as it is handled by MC’s notational
conventions; qubits are referred to by name, and qubit subscripts are used to
disambiguate combined systems such as 1 ⊗ q3. A differently combined q3 ⊗ q1

still describes the same state; the specific order for such combined systems does
not really matter, as long as there is a consistent way to refer to qubits. The
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subscript qubit notation added to the vector state is a way to do this, another way
is to maintain an ordering on qubits in such composite systems. An MC operation
targets a qubit name rather than a qubit position, but the (implicit) state vector
implementation of this operation depends on the target qubit’s position. For
example X5 acting on T135 in the CG is implemented by the matrix operator
I ⊗ I ⊗ X. The same X5 acting on the differently composed tangle T351 is
implemented by a different matrix operation: I ⊗X ⊗ I. We therefore work in
the pCG with operations that target qubits by their position, in what we call
positional operators.

Definition 8. A positional operator Un
i is a single-qubit operation acting on the

i-th qubit of a quantum state of size n where

Un
i = I⊗i−1 ⊗ U ⊗ I⊗n−i . (5.2.6)

Definition 9. The positional operator ∧Zn
i,j is the two-qubit controlled-Z operator

defined in terms of Un
i as follows.

∧Zn
i,j = |0〉〈0|ni + |1〉〈1|ni Z

n
j (5.2.7)

In other words, a positional operator uniquely defines a matrix operator. For
example X3

2 = I ⊗ X ⊗ I and X3
3 = I ⊗ I ⊗ X. The positional entanglement

operation is derived as a combination of single-qubit positional operators starting
from

∧Z = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z

where by decomposing the tensor |1〉〈1| ⊗ Z = (|1〉〈1| ⊗ I) (I ⊗ Z) we get

|0〉〈0|21 + |1〉〈1|21Z
2
2

which generalizes to n qubits yielding Equation (5.2.7).
The relation between an MC operation and it’s positional equivalent is as

follows.

Proposition 2. Any MC operation Ui applied to an ordered tangle TQ = (|ψ〉,Q)
defines an equivalent positional operator

UiTQ = U
|Q|
i TQ (5.2.8)

where i = pos(i,Q) the position of qubit i in Q.

In other words, every MC operation maps to a positional operator; which
positional operator, depends on the position of the target qubit in the tangle.
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For example, there exist permutations of qubit list Q = [1,3,5] that map the MC
operation X5 respectively to X3

1 or X3
2 , rather than X3

3 . In what follows we
show why the latter is actually a more efficient operation than the former. Then
we introduce a way to change the ordering of a single tangle, which is used in
the pCG to change every positional operator to the efficient last-position version,
which we call the parallel position.

Parallel Position

Single-qubit unitary operations have a simple structure that makes them easier
to compute than general unitary operations on a state of the same dimensions.
In the specific case of a last position operator Un

n = I⊗n−1 ⊗ U the structure
of the operator exhibits a repeating pattern which makes it highly suitable for
parallel computation. This can be demonstrated by showing the effect of such
an operator on the amplitude vector. Taking the notational convention that
N = 2n is the number of amplitudes in a state vector of n qubits; expanding the
matrix operator on the amplitude-level shows the parallel-position operators can
be expressed as a matrix in diagonal form:

Un
n =

(
I⊗n−1 ⊗ U

)
=

U U
. . .

 = diag(U, . . . ,U) (5.2.9)

such that applying it to a state vector gives

Un
n |ψ〉 =

U U
. . .




α0

α1

α2

α3

. . .
αN−2

αN−1


=



U

[
α0

α1

]
U

[
α2

α3

]
. . .

U

[
αN−2

αN−1

]


=



α′0
α′1
α′2
α′3
. . .
α′N−2

α′N−1


. (5.2.10)

From a computing point of view an operation I⊗n ⊗ U can thus be seen as
repeating 2n times the application of U on contiguous parts of the input. The
same holds for any unitary of any size as long as it can be expressed as I⊗n⊗U .
Other positional operators can in fact also be express in a diagonal form by
considering

Un
i = I⊗i−1 ⊗ U ⊗ I⊗n−i = I⊗i−1 ⊗

(
U ⊗ I⊗n−i

)
,
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such that indeed

Un
i = diag(U ⊗ I⊗n−i, . . . , U × I⊗n−i)

= diag(Un−i
1 , . . . , Un−i

1 )
(5.2.11)

where Un−i
1 is repeated 2i−1 times. It follows that the longer the distance of

i with respect to the last position n, the fewer the applications the and the
larger matrix operation. In other words, the computation has a repeating block
structure, which is smallest for the positional operator Un

n .
In an actual implementation, it is not always straightforward to determine

which positional operator makes for a more efficient implementation than an
other. For example 212 = 4096 parallel applications of a 2× 2 U operator might
be too much parallelism for a computer with only two processing units. Many
practical efficiency factors come into play: computer architecture, memory man-
agement, parallel strategy, etc. Because of our requirement to expose as much
parallelism as possible, the pCG considers the last position Un

n to be the more
efficient parallel position. It is trivial however to change the parallel position in
the following discussion to a different qubit position depending on the context.
To reiterate, the purpose of the pCG is to take advantage of the fact that the
parallel position makes for a more efficient implementation. We now introduce
an operation that changes the qubit ordering within a single tangle, so as to allow
the pCG to express every positional operator as acting on the parallel position.

Changing Positions

Consider tangles (|ψ〉,[1,2]) and (|φ〉,[2,1]) representing the same quantum state,
but with a different qubit ordering, e.g. |01〉 + |00〉 and |10〉 + |00〉. As men-
tioned before, the difference between amplitude vectors |ψ〉 and |φ〉 is the selected
ordered basis for the vector representation. In other words, the column vector
for |ψ〉 has the same entries as |φ〉, only the positions in which they appear is
different. There is thus a permutation matrix operator P such that P |φ〉 = |ψ〉
and its effect on the level of individual amplitudes is elaborated on in more detail
in Section 5.3.4. On the level of tangles, we can thus introduce an operation

P(TQ) = P(|ψ〉,Q)

= (P |ψ〉, σQ)
(5.2.12)

that changes a tangle’s qubit order. Using the same example, there is an oper-
ation P such that P(|ψ〉,[1,2]) = (P |ψ〉, σ[1,2]) = (|φ〉,[2,1]), with σ a qubit list
permutation.

Whereas it is possible to do arbitrary reordering, there are good reasons to
limit ourselves to a very specific type of permutation. Permutations of the qubit
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list would be typically expressed as either series of transpositions or circular
shifts; swapping two elements or shifting all elements a number of places re-
spectively. Naturally, reordering the qubit list itself to put an arbitrary qubit
at a specific position is not the computationally intensive part: reshuffling the
amplitude vector is. Any change to the qubit list requires reshuffling the entire
amplitude vector using a permutation operator P , so we have to look at the in-
trinsic properties of such P for each case. The circular shift of the qubit list uses
a certain type of permutation operators that exhibits a recursive block structure
that make it highly suited to an efficient and parallel implementation [117]. We
will also see in Section 5.3.4 that this results in an elegant amplitude-level formu-
lation of the permutation operator. The type of permutation matrix operators
associated for a transposition of two qubits can also be recursively decomposed.
Although this type of permutation operator leaves half of the amplitudes in place,
it requires more parallel steps after its recursive decomposition. The two different
types of permutation operators are visually compared with a simple example in
Figure 5.2. Both permutations decompose in the same smallest possible local
permutation: swapping two neighbouring position σi,i+1. However, the operator
for a transposition permutation decomposes in more stages than the transposi-
tion. Expressing a swap of positions σi,j is composed of two ’passes’ of swaps,
from i to j and back, whereas a cyclic shift σi is composed of a single ’pass’ of
swaps. Another reason to restrict ourselves to cyclic shifts of the qubit list is the
frequent use of its type of permutation matrix operator in literature. To math-
ematicians and card-shuffling magicians2 it is known as the generalized perfect
shuffle [69] or faro shuffle. In multilinear algebra and statistics the same per-
mutation is known as the vec-permutation matrix [106] or (tensor-)commutation
matrix [136]. Engineers also call it stride permutation and use it for parallel
processing algorithms of the Fourier transform [154, 115, 117], parallel divide-
and-conquer matrix transpositions [190], or as a way to interconnect computer
components in parallel [177].

By the definition of a tangle, some TQ = (q,Q) represents q ∈ hQ. Con-
sider hK+L = hK ⊗ hL for any K and L partitions of Q. The circular shift
σ|K|Q = σ|K|(K + L) = L + K represents at the qubit level the effect of the
tensor-commuting operation P on q’s ordered basis, achieving Pq ∈ hL+K . Put
plainly, the circular shift σk describes the position changes achieved by taking the
first k-number of qubits and appending them behind the rest, such that element
originally on position k finds itself in last position. More formally, this operation
is described as follows.

Definition 10. The circular shift operation σk maps each of the n positions in

2In no way are the sets of mathematicians and magicians disjunct [68].
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[1,2,3]
σ2−→ [3,1,2]

α0 α0

α1 α2

α2 α4

α3 α6

α4 α1

α5 α3

α6 α5

α7 α7








(a)

[1,2,3]
σ1,3−→ [3,2,1]

α0

α1

α2

α3

α4

α5

α6

α7

α0

α4

α2

α6

α1

α5

α3

α7








(b)

Figure 5.2: Comparing the permutation operators for reshuffling amplitude pos-
itions in case of a cyclic shift (a) and transposition (b).

a qubit list to a new position, such that for each position i is mapped to position

σk(i) ≡ i− k (mod n) .

That is, a circular shift of all elements to the left by k places.

For example σ3 [1,3,5,7] = [7,1,3,5] puts the third qubit last by circular shift-
ing the complete list to the left by three places. Naturally, multiple circular shifts
can be composed

σkσl = σk+l (5.2.13)

and decomposed

σk = σk1 . (5.2.14)

Similarly, the inverse of a circular shift is always

σ−1
k = σn−k (5.2.15)

when applied to a qubit list of length n. In conclusion, we restrict ourselves with
good reason to qubit position changes that can be achieved for the amplitude-
vector by the tensor-commuting permutation as described in Section 5.3.4.
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Proposition 3. The position changing operation Pk changes the composition of
a tangle such that

Pk(q,Q) = (Pq,σkQ) (5.2.16)

where q′ ∈ hσkQ.

Like the circular shift, this operation is also (de-)composable

PkPl = Pk+l = P(k+l) mod n (5.2.17)

and its inverse is easily shown to be

P−1
k = Pn−k (5.2.18)

for a qubit list length n. We will often use the notation Pi, which uses the notation
i = pos(i,Q) introduced earlier. Pi denotes the position changing operation that
moves qubit i to the last position.

Targeting positional operators

The reason for changing qubit positions is to express arbitrary positional oper-
ators as parallel position ones. This serves the obvious purpose of expressing the
computation in a more efficient and parallel form on the one hand and on the
other it makes for a simpler and more uniform expression of qubit operations
in the context of the pCG. The operators for U3

1 , U3
2 and U3

3 are all different.
Similarly, all operators Un

i for a given i vary with the size n. However, the par-
allel position Un

n differs only in the number of applications of operator U . In
other words, it is simpler to build a hypothetical machine implementing only Un

n

because it simply needs to repeat U a variable number of times, while supporting
arbitrary Un

i requires implementing a large range of different operations.
Our first step in making MC operations more concrete was to turn an MC

operation Ui, an operation on a qubit with name i, into a positional operator
Un
i in Proposition 2. Such operator still performs two tasks: looking up the

qubit position and applying the appropriate positional operator. Here, we use
the positional changing operator to separate out this lookup and to exclusively
use the parallel position operator Un

n .
Given a certain tangle TQ there is always a position change operator Pi TQ =

TQ such that

pos(i, Q) = n , (5.2.19)

from which follows, using Propositions 2 and 3, that

Ui TQ = Un
n TQ (5.2.20)

= Un
n Pi TQ , (5.2.21)
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keeping the MC operations on the left hand side and their concretization on
the right. Some operations have no influence on the composition of the quantum
state, for example correction operations do not modify the qubit list. This means
the position change on the left hand side of Equation (5.2.21) can be moved to
the right hand side using its inverse.

Ui TQ = P−1
i Un

n Pi TQ by (5.2.18) (5.2.22)

= Pn−i U
n
n Pi TQ (5.2.23)

A MC operation on a qubit i can thus be replaced by a parallel position operator,
if the qubit positions are shifted such that i finds itself at the last position,
then doing the position shift to put qubit i in its original place. This yields a
useful equation between two versions of the same correction operation; the MC
operation on the left hand side and the more concrete parallel positional operator
on the right.

Proposition 4.

Ui = Pn−i U
n
n Pi (5.2.24)

for Ui ∈ {Xi, Zi}.

The measurement operation does alter the qubit list by removing a qubit.
Taking P′i to be Pi operating on a smaller qubit set Q \ [i], we can derive

Proposition 5.

Mi = P′−1
i Mn

n Pi . (5.2.25)

The case for the entanglement operator is more complex due to its two-qubit
nature. The parallel position operator for the entanglement operation is ∧Zn

n−1,n,
requiring the two target qubits to be in the last two positions. Under a cyclic
shift the relative distance between two qubit positions remains the same. For
example, take two qubits 1 and 5 that are two positions apart in Q = [1,3,5,7],
there is no σk that will put both qubits next to each other. This can be achieved
by applying the cyclic shift on only a part of the qubit list.

Proposition 6. The partial shift operation σk,l leaves the first k qubits in place
and performs a circular shift σl on the remaining qubits. Given a qubit list
Q = K + L and |K| = k and |L| = l,

σk,lQ = K + σlL (5.2.26)

where + appends both lists, preserving their ordering.
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The inverse of the partial shift is a matter of inverting the circular shift by
applying Equation (5.2.15) in the above definition, yielding

σ−1
k,l = σk,n−k−l . (5.2.27)

On the amplitude vector, the permutation matrix operator associated with the
shift σk,l is the operator (I⊗k ⊗ Pσl), where Pσl is the permutation operator as-
sociated with σl. As before, the concrete definition of the permutation operators
P are presented later in Section 5.3.4.

Proposition 7. The partial position change operation Pk,l changes the compos-
ition of a part of a tangle’s composition

Pk,l(q,Q) = ((I⊗k ⊗ Pσl−1
)q, σk,l−1Q) (5.2.28)

such that qubits originally in positions k and l are brought into position k and
k + 1.

For example, σ1,1 [1,3,5,7] = [1,5,7,3] brings 1 and 5 together by effectively
performing [1] + σ1[3,5,7].

The (de-)composition of this partial position change is somewhat more com-
plex; there is no general way to compose two partial position changes into a single
one. In specific situations the regular position change’s (de-)composition rule can
be applied, for example when the subsets align for Pk,lPk,m = Pk,l+m. From the
amplitude-vector implementation perspective this partial shift also performs a
complete reshuffling of amplitude positions. The reshuffle pattern for the partial
shift is in some ways more complex as the regular circular shift; for example two
partial shuffles do not always compose into a single partial shuffle. We therefore
use the partial shift only when it is necessary.

To formulate the MC entanglement operation Ei,j in terms of its parallel
position operator ∧Zn

n−1,n, we first need to bring the qubits i and j to adjacent
position:

Ei,j TQ = P−1
i,j ∧ Z

n
i,i+1 Pi,j TQ . (5.2.29)

Once both qubits are brought in adjacent positions, a regular cyclic shift position
change can bring them both to the last two positions. Similarly to Proposition 4,
we can derive:

Proposition 8. The entanglement operator

Ei,j TQ = P−1
i,j P−1

i+1 ∧ Z
n
n−1,n Pi+1 Pi,j TQ (5.2.30)
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In summary, each MC operation as they appear in the CG can be implemen-
ted as a series of position changing operations and parallel position operators.
These handful of operations are chosen out of consideration for implementation
efficiency. In the following we use these transformations to describe the con-
struction of the pCG, transforming a CG’s operation node into chains of efficient
position changing and parallel position operations.

Construction

The construction of the pCG can be simply described as a transformation over
each node of a CG. The structure of the graph remains similar, nodes only get
expanded into a sequence of new operation and state nodes. The semantics and
equations used for these expansions were covered in the above text. We break
down the construction process in two phases: expansion and contraction.

The first step in the expansion phase is to choose an arbitrary order for all
input state nodes, using an ordered tangle with a qubit list rather than a tangle
with a qubit set. Note, what we call a qubit list is rather an ordered set, repeti-
tion is not allowed. Input state nodes are nodes that have no incoming edge and
typically contain only one qubit. This step is to allow for arbitrary size input
states. Other state nodes inherit their order from an upstream state node during
the rest of the expansion phase. The transformation step is the second in the
expansion phase, wherein every operation node is expanded into a chain of state
and operation nodes. An operation node in the pCG contains either a paral-
lel positional operator ∈ {Xn

n , Z
n
n ,M

n
n ,∧Zn

n−1,n}, a position changing operation
∈ {Pk,Pk,l} or a state merging operation ⊗. The merge operation ⊗ was implicit
in the CG, relying on the entanglement operation to merge two tangle nodes. We
make it explicit here as part of the operation concretization effort. Each opera-
tion node in the CG contains either a correction, measurement or entanglement
MC operation. Every such CG operation node is replaced by a chain of pCG
nodes, a sequence of connected operation and state nodes. A correction opera-
tion is transformed using the rule visually represented in Figure 5.3 and makes
use of Proposition 4, wrapping position changing operations around the parallel
position operator. Note that the inverse position change can be denoted as both
P−1
i or Pn−i, we find the former to be more informative in the context of the

transformation rules. Measurement operations use a similar rule in Figure 5.4,
based on Proposition 5 and where P′−1

i = Pn−i−1.
The case for the entanglement operation is somewhat more complex. Some

entanglement operations perform a merge of two existing states, in which case
the two input qubit lists are appended in a consistent way, as demonstrated in
Section 5.2.3. The position changing operations are logically applied to the result
of this merge, requiring the pCG to perform the merge using an explicit opera-
tion node, rather than seeing the merge as an implicit part of the entanglement
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(q,Q)

Ci

(q′,Q)

w�
(q,Q)

Pi Cn
n P−1

i

(q′,Q)

Figure 5.3: Transformation rule for correction operations Ci = Xi or Zi.

(q,Q)

Mi

(q′,Q \ [i])

w�
(q,Q)

Pi Mn
n P′−1

i

(q′,Q \ [i])

Figure 5.4: Transformation rule for measurement operation Mi.

operation. A simple expansion as shown in Figure 5.5 paves the way for the en-
tanglement transformation rule in Figure 5.6, based on Proposition 8 and where
P−1
i,j = Pi,n−i−j.

Expanding all CG’s operation nodes produces a large number of position
changing operations. The second phase of construction seeks to contract these
where obvious. Using as an example the following CG

{1,3,5}

X1

{1,3,5}

Z3

{1,3,5}

which is transformed using the expansion rules into a pCG
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(qa,Qa)

(qb,Qb) Ei,j

(q′,Qa +Qb)

w�
(qa,Qa)

(qb,Qb) ⊗

(qa ⊗ qb, Qa +Qb)

Ei,j

(q′,Qa +Qb)

Figure 5.5: Introducing an explicit merge operation node for two-input entangle-
ment nodes.

Ei,jw�
Pi,j Pi+1 ∧Zn

n−1,n P−1
i+1

P−1
i,j

Figure 5.6: Transformation rule for entanglement operation Ei,j.

[1,3,5]

P1

[3,5,1]

X3
3

[3,5,1]

P2

[1,3,5]

P2

[5,1,3]

Z3
3

[5,1,3]

P1

[1,3,5]

where by composing P2P2 = P1 by Equation (5.2.17) we arrive at the following
contracted pCG.

[1,3,5]

P1

[3,5,1]

X3
3

[3,5,1]

P1

[5,1,3]

Z3
3

[5,1,3]

P1

[1,3,5]

This contraction rule is given more formally in Figure 5.7. The contraction phase
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during construction of a pCG is not strictly necessary, but it does simplify the
model and reduce the graph’s overall number of operations.

Pk Plw�
Pk+l

Figure 5.7: Transformation rule for contracting a chain of position change oper-
ations.

Conclusions

The positional Coarse Graph is a further refinement of the Coarse Graph, intro-
ducing elements that only make sense in an amplitude vector implementation.
Where the CG dealt with a systemic change, introducing explicit and factor-
ized state, the positional Coarse Graph focuses on refining what happens at the
level of individual tangles and operations. New terminology such as positional
tangles and operators gives us a vocabulary to express new concerns that stem
from an underlying amplitude vector implementation. The various propositions
introduced here expresses how to change around representations and operations
to better suit implementation constraints. In this light, the pCG model acts as
an intermediate qubit level language, between the MC and the abstract target
computing platform. Working at the qubit-level liberates us from the specific way
the underlying amplitude vector is represented and stored, but various concerns
that arise across several such implementations can still be expressed in the pCG.

To come back to our requirements, the pCG results in improvements to the
executability requirement and also greatly increases parallelism. From a rather
abstract MC operation, we go to a concrete and executable form. The pCG
reflects that MC operations are in many implementations not the same. An
abstract machine for the MCG or CG needs to ’look up’ the position of the
target qubit of some Ui, to be able to construct a position-sensitive operator.
We consider the pCG to be more executable because it does not need to make
the conversion from name-based MC operations to positional operators, rather
it makes it part of the construction process. The parallelism gains are a result
of expressing MC operations, previously a monolithic black box operation, into
a form that is known to be highly parallel. The position changing operations
introduced with the pCG may appear at first glance an increase in complexity,
a breach of the simplicity requirement. However, the explicit position changing
operations serve both to elegantly express the MC operation’s parallelism and to
capture the difference between operations with a different target qubit.
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For most purposes the pCG is already an adequate model for an efficient
QCSim, ticking all boxes we put in the requirements. Most related work we
discussed also remains at level of abstraction, barring some ad hoc optimizations.
Even some apparent amplitude-level techniques in literature can be subsumed by
the pCG. For instance, the permutation used in [56] to minimize communication,
which can be expressed at the qubit level with qubit position changes. However,
some amplitude-centric approaches at quantum simulation eschew the amplitude-
vector altogether. The space-efficient approach by Frank et al. [80, 81] computes
each amplitude by recursively recomputing its depending amplitudes. This type
of strategy, among others, cannot be described by a coarse-grained model such
as the pCG.

For a more complete analysis of quantum simulation computations, we have
to work towards an amplitude-centric model. The following section explores such
a model by further refining the pCG, creating a fine-grained graph whose state
nodes contain individual amplitudes rather than complete quantum states.
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5.3 Fine-grained graph model

5.3.1 Overview

All models presented so far used a coarse granularity: treating quantum state and
operations as black boxes. In the fine-grained model of execution we dive into a
more concrete implementation, peeling open the black box. The abstract machine
for the fine-grained model executes simple arithmetic operations of a classical
computer, where the level of granularity is at that of individual amplitudes. In
the coarse grained graphs a quantum state q = |ψ〉 is represented by a single state
node. The same quantum state in a fine-grained graph is represented by a group
of state nodes, each containing a single amplitude; this is depicted in Figure 5.8.

q

|ψ〉

=

α1

α2

. . .

αn

∑n
i=1 αi|i〉

Figure 5.8: Relation between coarse- and fine-grained representation of a
quantum state.

Large quantum states give rise to an exponential number of amplitudes and
thus amplitude-transforming operations. This enables a fine-grained graph which
exposes parallelism which is not obvious at the quantum-operator level. Put
differently, a classical implementation of a single quantum operation is a collection
of multiple amplitude operations; a fine-grained model of computation executes
a single quantum operation in parallel by executing the amplitude operations
in parallel. However, amplitude state nodes alone do not make the operations
fine-grained. Indeed, the following coarse graph

U

|ψ〉 |ψ′〉

with fine-grained amplitudes becomes
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α1

α2

. . .

αn

|ψ〉

U

α′1

α′2

. . .

α′n

|ψ′〉

in which the unitary is a single operation. We base ourselves on the MC which
only uses a small set of one-qubit and two-qubit operations. The properties
specific to correction, measurement and entanglement operators allow us to ’cut
up’ the quantum operation in many smaller ones, each ideally consuming and
producing only a single amplitude.

For the sake of clarity we first give an overview of each MC operation as
applied to single qubits. Then, to express fine-grained quantum operations we
introduce the fine-grained equivalents of the positional operators and qubit per-
mutations.

5.3.2 Single qubit states

In the case of single qubit states the expression

U |ψ〉 = |ψ′〉

expands to

U |ψ〉 =

[
u00 u01

u10 u11

] [
α0

α1

]
=

[
α′0
α′1

]
= |ψ′〉

and so

U |ψ〉 :

{
α′0 = u00α0 + u01α1

α′1 = u10α0 + u11α1 .

This computation is expressed as a graph in Figure 5.9, where operation nodes
perform simple arithmetic operations and state nodes contain single amplitudes.
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∗ ∗

α0 α1

u00 u01

+

α′0

(a)

∗ ∗

α0 α1

u10 u11

+

α′1

(b)

Figure 5.9: Two fine-grained graphs computing amplitudes α′0 (a) and α′1 (b).

Correction Operators

The Pauli-X and Pauli-Z operators, introduced in Chapter 2, have a much simpler
structure. These operators perform the computations

X|ψ〉 :

{
α′0 = 0.α0 + 1.α1 = α1

α′1 = 1.α0 + 0.α1 = α0
(5.3.1)

Z|ψ〉 :

{
α′0 = 1.α0 + 0.α1 = α0

α′1 = 0.α0 − 1.α1 = −α1
(5.3.2)

which, as shown in the following proposition, require a much simpler graph than
the general unitary operation.

Proposition 9. The Pauli-X and -Z operations, applied to a single qubit (α0|0〉+
α1|1〉), are implemented in the fine-grained graph as respectively

id id

α0 α1

α′0 α′1

X

and id −

α0 α1

α′0 α′1

Z

where the operation nodes containing id perform the identity operation.
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Measurement

As we have seen in Chapter 2, the measurement operator Mα has two peculi-
arities: it is non-deterministic and destroys the target qubit. The effect on the
quantum state is non-deterministic and in the case of the single-qubit |ψ〉 either

|ψ〉 M
α

−→ 〈+α|ψ〉 (5.3.3)

or |ψ〉 M
α

−→ 〈−α|ψ〉 (5.3.4)

where 〈+α| = 1/
√

2
(
|0〉+ e−iα|1〉

)
and 〈−α| = 1/

√
2
(
|0〉 − e−iα|1〉

)
, with prob-

abilities depending on the contents of the quantum state. In Section 3.6.3 we have
presented some of the ways used to dealing with the probabilistic measurement
outcomes in a virtual execution environment. In computing terms, calculating
the probability by way of computing the norm (see Equation (2.3.13)) is a re-
duction operation, which has an efficient parallel implementation and has been
well-researched in the parallel computing community [28, 57]. Explicit control
of the outcomes is a matter of adding control nodes or edges to the graph. For
simplicity’s sake we use the first way of dealing with measurements3, where the
operation Mα always performs 〈+α|.

The effect of measurement on a single qubit quantum state is to destroy it.
We see this in 〈+α|ψ〉 resulting in a scalar

〈+α| (α0|0〉+ α1|1〉) = α0 〈+α|0〉 + α1 〈+α|1〉 (5.3.5)

the computation of which can be represented as a fine-grained graph.

Proposition 10. The effect of the measurement operation on the amplitudes of
one qubit is implemented by the following fine-grained graph

α0 α1

∗ c0 ∗ c1

+

Mα

3By doing this, we do restrict ourselves to MC patterns that realize unitary operations.
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where c0 = 〈+α|0〉 = 1√
2

and c1 = 〈+α|1〉 = e−iα√
2

.

The computation for 〈−α| only differs in the sign of the second constant

c1 = − e
−iα
√

2
.

Entanglement

The entanglement operator ∧Z applied to a two-qubit state can be seen as simply
switching the sign of the last amplitude

∧Z = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z
= |00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|

(5.3.6)

which is straightforward to implement as a fine-grained graph.

Proposition 11. The entanglement operator applied to a two-qubit state
∑
αi|i〉4

is implemented by the following fine-grained graph

α0 α1 α2 α3

id id id −

∧Z

where operation nodes containing id perform the identity operation.

The above does not implement the complete entanglement operation however.
The coarse graph introduced the concept of tangles to model separable quantum
states, this means the entanglement operation carries an implicit operation com-
bining qubit states when necessary: the tensor product. It is easy to see that the
definition of the vector tensor product

|ψ〉 ⊗ |φ〉 = (α0|0〉+ α1|1〉) ⊗ (β0|0〉+ β1|1〉) =

α0β0 (|0〉 ⊗ |0〉) + α0β1 (|0〉 ⊗ |1〉) + α1β0 (|1〉 ⊗ |0〉) + α1β1 (|1〉 ⊗ |1〉)
(5.3.7)

is implemented by the following graph:
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α0 α1 β0 β1
|ψ〉 |φ〉

∗

α0β0

∗

α0β1

∗

α1β0

∗

α1β1

|ψ〉 ⊗ |φ〉

Hence, the entanglement operation applies the ∧Z after the tensor product if
both target qubits have not already been combined.

Proposition 12. The entanglement operator applied to a two-qubit tangle state∑
αi|i〉 ⊗

∑
βi|i〉 is implemented by the following fine-grained graph

α0 α1 β0 β1

∗

α0β0

∗

α0β1

∗

α1β0

∗

α1β1

−

where edges between state nodes imply the identity operation.

5.3.3 Notation

A word on the notation as used further in this section: because permutations only
depend on the dimension of the inputs, we add it to the notation of the vector or
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matrix as a superscript when the dimension of a vector is of importance but not
obvious from context; |v〉n denotes a vector with dimension n. A quantum state

of n qubits can thus be written as the sum of basis vectors |ψ〉 =
∑n−1
i=0 vi|i〉

n
with

n = 2n. We simplify the summation out of convenience to
∑n
i vi|i〉

n
or
∑
i vi|i〉

n
.

In a tensor product of two qubits

α0β0 (|0〉 ⊗ |0〉) + α0β1 (|0〉 ⊗ |1〉) + α1β0 (|1〉 ⊗ |0〉) + α1β1 (|1〉 ⊗ |1〉)

the last basis vector can be expressed, depending on notational convention, as
(|1〉 ⊗ |1〉), |1〉|1〉, |11〉 or even |3〉. For clarity’s sake, we feel it is necessary to
explain the origin and purpose of each notation to clearly distinguish between
each in future formulations. By notational convention, all basis states of a vector
space are identified by an index starting at 0, for a qubit this is trivially |0〉
and |1〉. The tensor product of two qubits creates a vector space with dimension
four, thus with basis states |0〉, |1〉, |2〉 and |3〉. It is common in literature
to write the tensor (|1〉 ⊗ |1〉) as |11〉 by appending the numerals of both basis
identifiers, which we refer to as the numeral tensor notation. The basis vector in
the combined vector space is identified by reading out the numeral 11 as a binary
number, thus 1 · 21 + 1 · 20 = 3 forming the tensor index notation |3〉. For our
purpose, the latter is more convenient, allowing us to express permutations on
the state vector as a function on the tensor index number.

Proposition 13. The tensor product of two basis vectors |i〉m and |j〉n with i ≤
M, j ≤ N using the tensor index notation can be written as |k〉mn with k ∈ Nmn

and k = in + j, such that

|i〉m ⊗ |j〉n = |in + j〉mn . (5.3.8)

5.3.4 Permutation Operator

The relation between different positional operators described in Section 5.2.3
proposes a position change operation Pi on tangles, which produced a cyclic
shift of the qubit list and a permutation operator P reshuffling the amplitude
vector. The reason to constrain ourselves to cyclic shift position changes in
the pCG was because the operator P is a specific kind of permutation operator
that can lead to more efficient implementations. As already mentioned then,
this permutation operator P arises from commuting the tensor product of two
matrices—or vectors— under a certain ordering.

Proposition 14. The permutation operator P commutes the tensor product of
two vectors with respective dimensions m and n, such that

Pm,n

(
|ψ〉m ⊗ |φ〉n

)
= |φ〉n ⊗ |ψ〉m (5.3.9)
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for quantum states |ψ〉 and |φ〉 with respectively m and n qubits and with m = 2m

and n = 2n.

A quantum state |ψ〉 =
∑n
i αi|i〉 cannot in general be expressed as a tensor

of two states. However, any basis vector |i〉 can be expressed as a tensor product
of two basis vectors, as shown by Equation (5.3.8). Any integer can be split into
a sum of its remainder and division; we know that for any integer i and n

i = n

⌊
i

n

⌋
+ i mod n (5.3.10)

using the integer functions as defined in L Graham et al. [131]. It thus follows
from Equations (5.3.8) and (5.3.10) that any basis vector |i〉mn can be expressed
as a tensor product

|i〉mn =
∣∣⌊ i

n

⌋〉m ⊗ ∣∣i mod n
〉n

(5.3.11)

This may appear to be a convoluted way to express a basis vector tensor product,
but it has a direct application for finding the permutation operation P .

We can find the amplitude-level expression for the permutation operator in
P |ψ〉 using Equations (5.3.9) and (5.3.11) on the basis vectors of |ψ〉.

Pm,n|i〉mn = Pm,n

(∣∣⌊ i
n

⌋〉m ⊗ |i mod n〉n
)

= |i mod n〉n ⊗
∣∣⌊ i

n

⌋〉m
=
∣∣m (i mod n) +

⌊
i
n

⌋〉mn
This results in the following definition for P as a map on basis states:

Pm,n : |i〉mn −→ |pm,n(i)〉mn (5.3.12)

in which p is the following function on a single index i ∈ Nmn

pm,n(i) = m (i mod n) +

⌊
i

n

⌋
. (5.3.13)

One of the properties of the permutation operation is that

Pn,m = P−1
m,n = PTm,n (5.3.14)

It is useful to also express the permutation in an outer product notation

Pm,n =

mn−1∑
i

|pm,n(i)〉〈i| (5.3.15)

=

mn−1∑
i

|i〉〈pn,m(i)| by (5.3.14) . (5.3.16)
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which is applied to a state vector to find an amplitude-centric definition

Pm,n|ψ〉 =

mn−1∑
i

|pm,n(i)〉〈i|
mn−1∑
j

αj |j〉

=
∑
i,j

αj |pm,n(i)〉〈i|j〉

=
∑
i

αi |pm,n(i)〉

=
∑
i

αpn,m(i)|i〉 .

(5.3.17)

The same permutation operation can be used to commute a tensor of linear
operators. Seeing that the permutation operator P is linear we can work out that

Pm,n (Am ⊗Bn)
(
|ψ〉m ⊗ |φ〉n

)
=Pm,n

(
Am|ψ〉m ⊗Bn|φ〉n

)
=
(
Bn|φ〉n ⊗Am|ψ〉m

)
= (Bn ⊗Am)

(
|φ〉n ⊗ |ψ〉m

)
= (Bn ⊗Am)Pm,n

(
|ψ〉m ⊗ |φ〉n

)
(5.3.18)

which implies that

(Bn ⊗Am)Pm,n = Pm,n (Am ⊗Bn) . (5.3.19)

Here, the notation Am denotes a square matrix of size m. Applying the inverse
permutation on the right in the above Equation (5.3.19) yields the formula for
commuting a matrix tensor product:

Bn ⊗Am = Pm,n (Am ⊗Bn)Pn,m . (5.3.20)

An intuitive way of understanding the above permutations is by using a card
game analogy. Imagine a dealer has a deck with mn cards, face down and ordered
such that the top card is labeled 1 and the bottom mn. The permutation Pm,n is
achieved by playing the following card game.

The dealer deals each of the m players one card, face up, from the top
of the deck in succession, repeating the same process until the deck is
exhausted and each player has n cards. The last player then gives the
previous player his stack of cards, who puts them on top of his own.
This second to last player repeats this process until the first player
has all the cards. Finally the first player returns this stack face-down
to the dealer.
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The property Pm,nP
−1
m,n = Pm,nPn,m = I is easily checked by running the above

game for Pm,n and then using the result to play Pn,m which returns the deck in
the original order. The play for P1,mn is trivially checked to have no effect, each
player only gets one card and stacks the deck back in the same order. Playing the
game with one player Pmn,1 also keeps the original order, so P1,mn = Pmn,1 = I.

The permutation operator is implemented directly in our fine-grained graph by
moving amplitude state node to state note. Note that such permutations in prac-
tice reality can take on several forms [117, 190],using the recursive decomposition
and properties of the permutation operation to better suit the implementation
hardware. These permutations can thus manifest themselves in different ways
depending on the underlying execution framework, we abstract away from these
underlying issues and represent the permutation directly in the fine-grained graph
with nodes and edges. The construction of a graph for Pm,n is straightforward in
view of Equations (5.3.13) and (5.3.15).

Proposition 15. Given the expression Pm,n|ψ〉 = |ψ′〉 where the amplitudes of
|ψ〉 and |ψ′〉 are indexed by i and j respectively4. Such a permutation operation
is implemented in the fine-grained graph by a set of identity operation nodes
connecting the state nodes representing αi with α′j where the indices j = pn,m(i).

For example P2,4 |ψ〉8 is implemented by the following fine-grained graph

α0 α1 α2 α3 α4 α5 α6 α7

α′0 α′1 α′2 α′3 α′4 α′5 α′6 α′7

|ψ〉

|ψ′〉

where an edge between two state nodes implies the identity operation.

5.3.5 Multiple qubit states

Earlier in Section 5.2.3 we showed how an operation targeting a qubit in parallel
position exhibits a simple execution pattern, repeating the one-qubit state version
of the operator over contiguous parts of the amplitude vector. The practical
benefit of this is that the fine-grained graph for a parallel position operator Un

n

4Indexed by refers to the subscript of the amplitudes, such that for this case |ψ〉 =
∑mn
i αi|i〉

and |ψ′〉 =
∑mn
j α′j |j〉.
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is a simple repetition of the graphs computing the single-qubit U , such as those
presented in the previous section.

Proposition 16. The fine-grained graph to compute the application of a parallel
positional operator Un

n |ψ〉 is obtained by repeating 2n−1 times the graph computing
the single-qubit operator U on each two consecutive amplitudes of |ψ〉.

α0 α1

α′0 α′1

U

α2 α3

α′2 α′3

U . . .

αn−2αn−1

α′n−2α
′
n−1

U

The above figure is somewhat schematic; the entanglement operator takes
four amplitudes and the measurement produces one amplitude rather than two.
Nevertheless, in all cases the same graph pattern is repeated a number of times
over different parts of the amplitude vector. The measurement and entanglement
operation cases will be discussed separately below. We present for each operation
found in the pCG a proposition that refines it down to a fine-grained computation
graph. These are the parallel position operators Xn

n , Zn
n , Mn

n and ∧Zn
n−1,n; the

position change operator Pi and the merge operation ⊗. The position change
operator is already covered by Proposition 15 for quantum states of arbitrary
size.

Putting everything together, above we discussed both the simple one-qubit
state Pauli-X and -Z, and the way to express positional operator in the parallel
position Un

n as a repeating pattern of the more simple operator U (= U1
1 ).

Proposition 17. The fine-grained graph implementing a correction operation of
the form Xn

n is

α0 α1 α2 α3

. . .

αn−2 αn−1

in which the dotted pattern repeats 2n−1 times and each implements the X oper-
ator on one qubit as can be seen in Proposition 9. The operation Zn

n is similarly
implemented as

135



Bridging QC and CC: mapping Measurement Calculus to Dataflow

α0 α1

−

α2 α3

− . . .

αn−2 αn−1

−

Similar to the above, the measure operation is a repetition of the single-qubit
measurement in Proposition 10.

Proposition 18. The fine-grained graph implementing the parallel position meas-
urement operation Mn

n is

∗ c0 ∗ c1

α0 α1

+

α0

∗ c0 ∗ c1

α2 α3

+

α1

. . .

∗ c0 ∗ c1

αn−2 αn−1

+

α n
2

in which the dotted pattern is repeated 2n−1 times. The constants are as in Pro-
position 10 dependent on the measurement angle α, here suppressed in notation,

such that c0 = 〈+α|0〉 = 1√
2

and c1 = 〈+α|1〉 = e−iα√
2

.

Entanglement

Two operations are involved in the entanglement operation: the merge opera-
tion ⊗ and the parallel position controlled-Z ∧Zn

n−1,n. The latter has a graph
which is again a repetition of a pattern, in this case a two-qubit one, given in
Proposition 11.

Proposition 19. The parallel position entanglement operator ∧Zn
n−1,n is com-

puted by the following fine-grained graph
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α0 α1 α2 α3

−

α4 α5 α6 α7

− . . .

αn−4αn−3αn−2αn−1

−

or in other words every amplitude αi with index i ≡ 3 (mod 4) passes through an
operation that flips its sign, all other amplitudes remain unchanged.

The merge operation node in the pCG performs the tensor product of two
input amplitude vectors |ψ〉⊗|φ〉, in this contexts also sometimes called Kronecker
product or tensor direct product. As a reminder to the notation used, we have
seen earlier in Equation (5.3.8) that such a tensor product can be expressed as
follows∑

αi|i〉 ⊗
∑

βj |j〉 =
∑∑

αiβj |i〉|j〉

=
∑∑

α′ni+j |ni+ j〉

=
∑

α′k|k〉

in which n is the number of amplitudes in |φ〉. The fine-grained computation
graph for the above thus has mn state nodes, which are connected to as many
operation nodes multiplying each amplitude of |φ〉 with each of |φ〉.

Proposition 20. The fine-grained computation graph performing the vector tensor
or Kronecker product on amplitude vectors |φ〉m and |ψ〉n is given by repeating
mn times the following pattern

. . . . . .

αi

. . . . . .

βj|ψ〉 |φ〉

∗

α′ni+j

. . . . . .

|φ〉 ⊗ |ψ〉

with each a different index pair (i,j) : i < m, j < n.
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5.3.6 Construction

The pCG already expressed all operators as positional operators, at a cost of a
permutation of the amplitudes prior to the operator application. In Section 5.3.4
above we have examined this permutation closely and expressed it as a compu-
tation graph. It thus suffices to directly expand operation nodes in the pCG, for
example

P2 X3
3

expanding each operation by its fine-grained graph produces

α0

α′0

α1

α′1

α2

α′2

α3

α′3

α4

α′4

α5

α′5

α6

α′6

α7

α′7

P2

X3
3

X

where we put the fine-grained and positional coarse graph versions of the same
computation in juxtaposition. As there are only identity operations between state
nodes in the above example, the computation graph can be contracted by ’tracing
through’ the edges, for example directly connecting α0 to α′1. Such a contraction
does not change the produced result. We will however keep to the pCG’s structure
when it is practical, as regular repeating patterns are more important for the
sake of simplicity than fewer nodes. Putting it all together, Figure 5.10 presents
a large example that combines all MC operations; when tracing through the
permutations on the left hand side, we absorb the permutation into positional
operator on the right.

5.3.7 Discussion

The fine-grained graph describes the quantum computation at the amplitude
level, using a dataflow computational graph. While we retain the broad structure
of the pCG, each operation is refined down to individual arithmetic operations
on amplitudes. The number of nodes and edges in the fine-grained graph is of
the same rough order as the number of amplitudes in all states: an exponential
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− −

∗c0 ∗c0 ∗c0 ∗c0∗c1 ∗c1 ∗c1 ∗c1

+ + + +

⊗

∧Z3
2,3

M3
2

X2
2

Figure 5.10: Fine-grained (left) and positional coarse (right) graphs of a J (α)
MC pattern acting on a two-qubit input tangle. For compactness, non-input amp-
litude and tangle nodes have been omitted and permutations have been absorbed
into the positional operator.

complexity. However, such a complexity argument is moot. First, we define the
fine-grained graph in the context of the pCG and retain its graph structure. As
such only the insides of the operations have to be described in a fine-grained way.
Second, the fine-grained graph is meant to describe the QCSim computation
down to the finest level, not to be executed literally. It is at this finest level
that one can see the repeating structures and optimization opportunities, but
optimization mainly depends on the target computing platform. Such amplitude-
centric definitions of all operations are also important in implementations that
do not directly use an off the shelf programming library for linear algebra, as
is the case for our implementation presented in the next chapter. For example
in a demand-driven dataflow evaluation environment, one has to describe the
dependent computations for each amplitude, which is trivial when a fine-grained
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graph description is at hand.
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5.4 Conclusion

We presented a set of intermediate models and transformations that bridge the
gap between the Measurement Calculus and the dataflow models. Starting from
a graph form of a MC program, state is introduced explicitly by following the
amended operational semantics for the MC as presented earlier in Section 3.5.4.
Using the original MC semantics would result in a strictly linear graph, due to
the single global quantum state. The amended operational semantics factor the
quantum state where possible into multiple tangle state nodes, which gives us a
first degree of parallelism in the resulting Coarse Graph (CG) model. Committing
to a column-vector representation for the quantum state forces us to deal with
qubit positions within the quantum state. We therefore introduced the Positional
Coarse Graph (pCG) model which turns each MC operation into a more concrete
positional operator : a positional operator uniquely defines a matrix operator.
Operations on the last qubit position exhibit a more natural parallel form. Each
MC operation can be turned into such parallel position operator by introducing
position-changing operators. The pCG model thus refines the MC operation
nodes from the CG into several position changing operators and parallel position
operators. In the final model, the fine-grained dataflow graph, each quantum
state node in the pCG graph becomes a group of amplitude state nodes. By
realizing the individual MC operations as simple amplitude-level dataflow graphs,
we can repeat these graph structures to construct a fine-grained graph for multi-
qubit parallel-position operators. This fine-grained model is a pure dataflow
graph, in which each state node is a single amplitude data element and each
operation node an elementary arithmetic operation.

Our fine-grained model is a pure dataflow model, execution of this graph
will require an additional transformation to a hardware-specific form. For true
dataflow machines, this translation can be straight forward. Steam-based or
vector-based parallel machines would require more extensive transformations re-
volving around the parallel decomposition of the permutation operator [117]. In
the next chapter we present a implementation artifact, which performs the above
model transformations as multiple compiler stages, including an additional step
to encode the fine-grained graph into the chosen parallel technology.
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Chapter 6

Execution, Implementation
and Validation

This chapter is split in three major parts. In the first section we offer an analyt-
ical validation that uses conceptual tools to show that the fine-grained graph does
indeed expose a vast amount of parallelism, independent of the actual implement-
ation. The second section goes over our implementation artifact: its structure,
technology and target parallel platform. In the empirical validation section we
demonstrate real-world parallel performance.
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Execution, Implementation and Validation

6.1 Analytical Validation

Our thesis contains the claim that expressing the Measurement Calculus as a
dataflow computation exposes a large amount of parallelism. Supporting this
claim solely on an empirical study is hard; real-world performance is very sensitive
to specific implementation and machine architecture details, making it difficult
to draw conclusions about the parallel approach itself. Therefore, we supple-
ment the empirical results of our implementation with an analytical study of
our fine-grained dataflow approach to quantum computing simulation. First, we
use a formal definition of more parallel to sketch a theoretical proof. Second,
we use a quantitative metric: average parallelism [98, 88]. Average parallelism
is a machine-independent metric, observable from the program description itself
and has in practice shown a high correlation with parallel speedup. In the first
theoretical part of our analysis, we use a qualitative argument to show that our
approach does indeed expose more of the inherent parallelism. In the second
part, we provide a quantitative measure of parallelism exposed by our parallel
programs. Both parts of this analysis support our claim in a way that is inde-
pendent of implementation or parallel machine choices.

6.1.1 Theoretical Parallelism

The formal tools we use here are based on the work on parallel schemata, which
has been used since the 60s by theoretical computer scientists to analyze parallel
algorithms [124, 126]. A program is defined in Keller [126] as a way to achieve
a computation and consists of a set of operations. Considering our specific case
we name operations by α1, . . . , αn, roughly corresponding to operations on amp-
litudes of a quantum state. Two different parallel program schemata can both
implement the same computation, meaning they both produce the same result in
the end. Any valid linear arrangement of these operations for a parallel program
we call a schedule. Any two operations in a program can have dependency con-
straints, imposing that one operation appears before the other in any schedule.
For example,

the program schema: α3

α1

α2

has two schedules (α1,α2,α3), (α2,α1,α3).

The number of different schedules of a program is used as a measure of parallel-
ism, which we can use to show that one program is more parallel than the other.
For instance, taking
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A : α1 α2 α3 and B : α3

α1

α2

as programs implementing the same computation. B is more parallel than A,
because sch(A) ⊆ sch(B) and there exists the schedule (α2,α1,α3) of B that is
not a schedule of A. That is, sch(A) ⊂ sch(B).

Definition 11. With two parallel programs A and B, both implementing the same
computation, parallel program B is more parallel or exposes more parallelism than
program A if sch(A) ⊂ sch(B). That is, if all possible schedules of A are also
schedules of B (sch(A) ⊆ sch(B)), and ∃s ∈ sch(B) : s /∈ sch(A).

We prove that our dataflow approach exhibits more parallelism than exist-
ing approaches by constructing program schemata representing both in prin-
ciple. As we already observed in Chapter 4, current parallel quantum simu-
lators [182, 99, 56] use MPI to implement a communication step between each
quantum operation. This communication step acts as global synchronization
between quantum operations; a second quantum operation can start being com-
puted only if the computation of the previous quantum operation has been com-
pleted. Our fine-grained dataflow model introduced in Chapter 5 does not exhibit
such global synchronization. We take A and B as two different programs imple-
menting the same computation. As part of this computation, both programs
realize the successive application of the two quantum operations U and U ′. We
take the idealized case that all operations involved in computing U (α1, . . . ,αn)
can operate in parallel. The same holds for U ′ (α′1, . . . ,α

′
n). Program A stands

in for the approaches with global synchronization between quantum operations,
which adds constraints such that no operation for U ′ may start before all opera-
tions of U have finished. Program B stands in for the approaches without global
synchronization, each sub-operation for U ′ only depends on the part of U that
is required for the computation; i.e. the operations computing U ′ can already
start while U operations are still underway. We use A to represent related work
approaches with global communication steps in between quantum operations, B
represents a fine-grained dataflow approach. Note that for both programs, we
still assume idealized parallel realization of U and U ′. Schematically:
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α1

α2

α3

...

αn

α′1

α′2

α′3

...

α′n

A

α1

α2

α3

...

αn

α′1

α′2

α′3

...

α′n

B

More formally, in all schedules of A holds ∀αj ,α′i : αj < α′i, while all schedules
of B holds only ∀αi,α′i : αi < α′i. To conclude the proof, all schedules of A also
appear in B such that sch(A) ⊆ sch(B). But, there exists schedules (. . . α′iαj . . .)
in B that are not in A. According to Definition 11, B is more parallel than A.

What we have shown above is that our dataflow parallel program can exploit
not only available data parallelism, but also a form of pipeline parallelism. There
are no reasons why an MPI-implementation could not implement program B as
well, exploiting the extra parallelism. We do argue that doing so would require
structuring and implementing a program that would in essence be an ad hoc and
limited form of dataflow execution. We do not prove here that our fine-grained
dataflow is maximally parallel, and thus exposing all of quantum computing sim-
ulation’s naturally available parallelism. But, we can make this assumption, as
long as it cannot be shown that another program implementing the same compu-
tation is more parallel by the same definition.

6.1.2 Average Parallelism

[. . . ] This seems to indicate that this crude approximation to the
overall average parallelism of a code is all that is necessary for an
accurate prediction of its speedup curve.

–Gurd et al. [98]

Average parallelism is used as a metric to quantify the amount of parallelism
exposed by a parallel program. It is a property or characteristic of a specific
parallel program and can be calculated independently of underlying execution.
To our knowledge, no other machine-independent measure combines simplicity
with the strong predictive power for parallel performance that average parallelism
has shown in practice [98, 30]. Indeed, one of the popularizing factors of the
Cilk [30] approach is the predictable parallel performance based on this observable
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parallelism metric. Average parallelism helps programmers during the design and
implementation of parallel programs by giving them a measure of progress and
expected performance.

Average parallelism is defined as the ratio between the total work in the
program and the length of its critical path:

πav =
S1

S∞
(6.1.1)

The total work S1 of a program is the time it takes for a single processing element
to execute the program. The critical path S∞ is the time to execute the program
with an unbounded number of processing elements. Take the A and B programs
used in the proof above. Their work is respectively 2n+ 1 and 2n, their critical
paths are 3 and 2. The resulting average parallelism for A and B programs is
thus

πav(A) =
2n+ 1

3
πav(B) =

2n

2
,

in which we indeed observe a higher average parallelism for B, with a better
scaling behaviour for an increasing n.

In parallel programs structured using DAGs, the S1 and S∞ properties are
directly observable from the program graph. We proceed by first making the
assumption that each elementary operation takes one time unit to execute. S1 is
then obtained by counting the number of operation nodes in the program graph.
The critical path is obtained by counting the operations in the longest path from
input to output node in the program graph.

Next, we use the fact that the fine-grained graph follows the structure of the
coarse-grained graph, which only has a small set of distinct operations. The S1

of an individual coarse operation can be obtained as a function of the tangle size
and of its fine-grained graph. For example, the number of elementary operations
and thus S1 in the fine-grained graph of Zn

n given in Proposition 17, is n
2 . The

critical path of the same operation is simply 1: the longest path only contains
one operation node. Examining each coarse operation’s fine-grained graph, as
defined in Section 5.3, results thus in the following Table 6.1.

In this analysis, we use the simplification that permutations such as Xn
n or the

stride permutation do not constitute work. In practice, this heavily depends on
the parallel architecture and various compiler and runtime optimizations. Moving
a single data element over a network is slow, but some compile-time or runtime
optimizations can in practice remove some of the work associated of local per-
mutations. We make abstraction of this issue by working under the assumption
that a sufficiently high amount of parallelism is available, such that the latency
involved in moving or accessing data elements can be completely hidden.
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∧Zn
i,j Mn

i Zn
i ⊗

S1
n
4 n n

2 nm

S∞ 1 2 1 1

Table 6.1: An exhaustive list of the total work (S1) and critical path (S∞) of each
coarse-grained graph operation; the Xn

n and position operations are considered
to contribute no work.
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Figure 6.1: Average parallelism data points for different program sizes, indicating
the exponential increase of work goes together with an exponential increase in
exploitable parallel performance.
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The S1 of an entire MC program can then be calculated by taking the sum
of all its coarse operations’ S1. The S∞ of an MC program is calculated by
taking the critical path in the coarse graph, then summing the S∞ of the coarse
operations in that critical path. Rather than doing this by hand, we have auto-
mated this algorithm by integrating it in our parallel compiler (presented below
in Section 6.2). The resulting metrics for a few interesting quantum programs are
listed in Table 6.2 and plotted in Figure 6.1. The Quantum Fourier Transform
(QFT) is interesting as indicator because of its practical relevance in QC, but
also because it allows the step-wise incrementing of program length and qubit
state width. We use QFT (n) to refer to the n-qubit QFT program. The number
of MC operations (#ops) metric is included to compare program sizes. The πav
of the Quantum Fourier Transform can be observed to roughly double for each
additional qubit, following the same increase in the ‘width’ of the quantum state.
This is a predictable result, considering the wild pattern for QFT sequentially
applies a long series of phase gates. The standardized pattern to create a W3

state [71, 66] has only 40 MC operations rather than QFT (16)’s 3288, but af-
fords a comparable measure of parallelism. The critical path length in every case
reflects the number of MC operations, it is not significantly higher because of
two reasons. First, the coarse graph enables the parallel execution of some MC
operations. And second, the X operation is not counted as work.

QFT (2) QFT (3) QFT (4) QFT (8) QFT (16) W3

#ops 33 90 174 780 3,288 39

S1 165 779 2,595 114,699 67,862,667 920,682

S∞ 30 82 158 702 2,942 42

πav 5 9 16 163 23,066 21,921

Table 6.2: Work, critical path and average parallelism metrics of various MC
programs from Section 6.2 benchmarks.

From the analysis of the average parallelism, as measure for parallelism, we
can conclude that there is indeed evidence of a vast amount of exploitable paral-
lelism. The average parallelism for larger quantum programs shows that there is
indeed the potential parallelism to counteract the exponential increase in compu-
tational work with an exponential increase in computational resources. However,
it is also the case that for computations like QFT there is also the effect of increas-
ing critical path length, which is essentially a reflection of the highly entangled
nature of such computations.
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6.2 Implementation

The implementation artifact serves three goals; Validating our approach by em-
pirically demonstrating good speedup on a parallel platform. Maintaining full
QVM compatibility to ensure co-development and support for the measurement-
based Quantum Programming Paradigm. And finally, provide a platform and
a non-trivial case for further dataflow research, implementation and optimiza-
tion. Both the structure and technology choices for the implementation artifact
explained below are a result of balancing these three goals. The implementation
artifact is structured as a stratified compiler, following the multiple model trans-
formations in Chapter 5; staying as close as possible to the research we are valid-
ating (first and second goals) while providing enough hooks in the implementation
for optimizations and alternatives (second and third goals). The parallel plat-
form needs to be highly-parallel and follow dataflow execution semantics, staying
close to our proposed parallel approach for the first goal: validation. But, the
second and third goal also requires this platform to run on and cooperate with
common development tools. Our choice of the Intel Concurrent Collection (CnC)
framework [128] as parallel implementation platform reflects this trade-off.

This section first presents the general structure of the implementation artifact
in Section 6.2.1, providing a frame of reference for the detailed discussions on
technology and implementation in Section 6.2.2. Finally, with the implementation
technology covered, we can treat the key technology-specific compilation phases
in Section 6.2.3 that form the final executable program. These programs are then
used for the empirical validation in Section 6.3.

6.2.1 Structure

The artifact we describe here acts as an alternative execution layer for the
quantum programming paradigm proposed in Chapter 3. Before, we used and
described a simple MC interpreter which uses a straightforward implementation
that sequentially executes each instruction in turn. The implementation elab-
orated in this chapter provides an alternative execution platform for the QVM,
effectively taking the same program input but executing the quantum simulation
in parallel. Much of the analysis and transformations from Chapter 5 requires
information on the complete quantum program. We have therefore opted to
structure the implementation as a compiler. In the rest of this text we will refer
to this artifact as mcc: Measurement Calculus Compiler.

The mcc is structured as an incremental compiler; using a progression of mul-
tiple compilation phases that roughly follow the structure of Chapter 5. An over-
view of its structure can be found in Figure 6.2. The input language for mcc is a
QVM instruction sequence. The ultimate output of mcc is C++ code, which relies
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Figure 6.2: Measurement Calculus Compiler (mcc) structure overview.

on the Intel R©CnC framework as parallel programming platform. Detailed discus-
sion on CnC and other technology platform choices will follow in Section 6.2.2.
As already mentioned, the intermediate representations within the mcc roughly
follow the progression of abstract models from the previous chapter. Although,
out of practical considerations, some models and features were combined. For
example, the CG-equivalent representation in mcc uses ordered tangles from the
start. The mcc has three internal representations; MC-sequence, coarse MC-graph
and CnC-graph. There are thus four compilation phases, including the trans-
formations to and from the two external representations: the QVM instruction
sequence input and C++ source code output. The first two phases are relatively
straightforward. The more interesting and implementation-dependent phases are
the specific compilation and code generation steps. The many technology-specific
choices and trade-offs of these last two phases are discussed after the technology
section below.

Parse As the input to mcc is a textual or symbolic representation, a simple parse
step is needed to transform it into an internal representation. The parse step
retains the sequence structure of the QVM language, thus producing a sequence
of abstract grammar objects. For example, the simple J (π2 )-pattern as QVM
instruction sequence is

(E 1 2) (M 1 pi/2) (X 2 (s 1))
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is compiled into a sequence of three objects

(E M X)

where each program object contains the necessary information such as target
qubit names, signals and measurement angle when applicable. For example the
object M is a record containing:

{ qubit: 1 ; angle: 1.57 ;

s-signal: {...} ; t-signal: {...} }

in which s-signal and t-signal are again records. These parsed operation ob-
jects are used as the abstract grammar of an MC program. In principle, this
parse phase into an abstract grammar also happens within the sequential inter-
preter of the qvm, but on a per command basis. The mcc parses the complete
command sequence before handing the abstract grammar objects as input to the
next phase: coarse compilation.

Coarse compilation Recall that in Chapter 5, the construction of the coarse
graph is described as a transformation of the MCG: a graph representation of an
MC program. For the sake of explanation, it makes more sense in the theoret-
ical work of Chapter 5 to start from the MCG as MC program representation.
However, the coarse compilation step takes a sequential program MC program as
input from the parser; the mcc is designed to fit in the proposed layered architec-
ture of Chapter 3 as execution and realization layer, taking the same command
sequence representation as input. Both graph and sequence representations of
an MC program encode the same information and it is relatively trivial to move
from one to the other. Generating an MCG from this serial MC representa-
tion would be superfluous, considering the equivalence or dual nature of both
representations.

The coarse compilation step thus implements the construction of the abstract
CG as discussed in Section 5.2.2, but with the trivial difference of the construc-
tion process walking through an MC sequence encoding a topological sort, rather
than walking through an MC graph in topological order. A fresh node is created
for each operation and connected with newly or previously created tangle nodes,
as described by the semantics laid down in Section 5.2.2. The tangle nodes con-
tain an abstract tangle object that contains static information about the tangle:
qubit list and size. Note that a qubit list is constructed as in the positional
Coarse Graph, rather than an unordered qubit set as in the CG; another prac-
tical difference in which the implementation diverges from the theoretical CG.
Taking the example’s sequence of abstract grammar objects:

(E M X)
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is transformed by the coarse compilation step into the coarse graph shown in
Figure 6.3. A more complex example for the Deutsch-Jozsa algorithm [65], for
which the MC sequence can be found in Listing 6.1, is given in Figure 6.4. These
coarse graphs were automatically generated by the implementation, the signal
nodes are not discussed here and may be ignored.

Tangle { 2 1 }

Entangle (2, 1)

Tangle { 2 1 }

Measure 1

Signals-1038

Tangle { 2 } Signals-1041

X 2

Tangle { 2 }

Figure 6.3: Coarse graph resulting from coarse-compilation of the input MC
sequence: ((E 1 2) (M 1 pi/2) (X 2 (s 1))).

.

Specific compilation This compilation step maps the coarse graph represent-
ation onto an abstract CnC program graph, the program representation of the
chosen parallel platform: Intel Concurrent Collection (CnC). In the terminology
introduced in Section 4.3.2, CnC is a hybrid framework approach in which intra-
task execution is control-driven and inter-task execution is data-driven. For now,
we keep to a structural overview of the specific compilation phase, without going
into CnC-specific details.
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Figure 6.4: Automatically generated
coarse graph for the two-qubit Deutsch-
Jozsa MC pattern in Listing 6.1, show-
ing some coarse level of parallelism.

Measure 5

Tangle { 6 }Signals-1134

Signals-1124

X 7

Tangle { 6 5 }

Tangle { 7 }

Tangle { 7 }

Entangle (7, 4)

Tangle { 7 4 }

Tangle { 7 4 }

Tangle { 7 }

Kronecker Product

Tangle { 4 }

Measure 3

Tangle { 4 }Signals-1114

Signals-1104

X 3

Tangle { 4 3 }

Tangle { 3 }

Tangle { 3 }

Entangle (3, 2)

Tangle { 3 2 }

Tangle { 3 2 }

Tangle { 5 1 }

Entangle (5, 1)

Tangle { 5 1 }

Measure 1

Signals-1093

Tangle { 5 }Signals-1096

X 5

Tangle { 5 }

Measure 2

Kronecker Product

Tangle { 4 3 }

Tangle { 4 }

Entangle (4, 3)

X 4

Measure 4

Kronecker Product

Tangle { 6 5 }

Tangle { 6 }

Entangle (6, 5)

X 6

Tangle { 6 }
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( (E 1 5) (M 1 0) (X 5 ( q 1) )
(E 2 3) (M 2 0) (X 3 ( q 2) )
(E 3 4) (M 3 −pi ) (X 4 ( q 3) )
(E 4 7) (M 4 0) (X 7 ( q 4) )
(E 5 6) (M 5 0) (X 6 ( q 5 ) ) )

Listing 6.1: The MC sequence for a wild pattern implementing a two-qubit
Deutsch-Josza algorithm, for the function f : {0 → 1},{1 → 1} realized with
I ⊗X.

155



Execution, Implementation and Validation

CnC works with a vision in which a domain expert creates a CnC graph
that captures the rough structure of the computation. Based on this graph,
the CnC compiler then generates skeletal program code. A tuning expert fills
in the details and optimizes the program for performance. We emulate this
design organization in mcc; the specific compilation phase first creates a CnC
graph, then the code generation phase generates platform-specific program code.
However, not all necessary information about the CG can be encoded within
the canonical CnC model. The code generation step requires information such
as the type of MC operation, tangles sizes, stride permutation parameters and
so on. The specific compilation phase therefore produces a mcc-specific CnC
program graph, in which each CnC node hold records with additional information
extracted from the CG. In other words, the specific compilation phase acts as the
domain expert: transforming the coarse program graph into a domain-specific
CnC program graph. This internal representation is still generic enough to be
applicable to different CnC implementations and hardware platforms. But, it
does holds all information required by the code-generation phase to produce
efficient platform-specific program code.

Code generation The current code generation phase in the mcc produces C++
code that uses the Intel CnC++ implementation. The normal CnC++ use-case
for programmers is to manually modify the code generated by running the ca-
nonical CnC graph through the CnC++ compiler. As we automate the entire
code generation process, we bypass the provided compiler and use the CnC++
API directly. The CnC++ API, without going into too much detail, is based
around a ‘context’ object that encodes the CnC graph. The program code for
each node inside this context object is generated by making heavy use of templat-
ing techniques: program code with ‘holes’ for required constants. For example,
a CnC node implementing the X16

8 operation uses the template for X, filling
in the constants 8 and 16 to generate the correct code. The mcc compiler thus
contains at least one template for each operation in the coarse graph. The code
generation also produces code to handle the interface between the external en-
vironment and the CnC context object. This means feeding it input, starting
the parallel execution and finally extracting the output. The final result of the
code generation phase is C++ code that can be compiled into an executable for
a variety of platforms. The code generation phase also adds code to interact with
this executable after compilation, for example, to control the number of execution
threads, which is used during the empirical validation in Section 6.3.
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6.2.2 Technology

We make three main technology choices, cutting a slice from the large poten-
tial design space. Choosing the infrastructural platform: the implementation
environment for the compiler itself. Choosing the parallel software platform: the
framework, library or language used to implement the parallel program. And
finally the choice of parallel hardware execution platform: the target parallel
processor architecture.

The infrastructure of the Measurement Calculus Compiler or mcc is written
in the general-purpose programming language Common Lisp, making generous
use of its powerful object and macro system. The output of mcc’s code generator
phase, as seen above, is C++ source code that can be compiled to a native binary
on a large variety of computer platforms. C++ is used mainly because it is the
host language of our target parallel software platform: Concurrent Collections or
CnC. Other CnC implementations exist, but CnC++ has demonstrated better
performance and is currently the most available, stable and practical implement-
ation [46].

We choose Concurrent collections as parallel software platform owing to two
theoretical and three practical characteristics. First, CnC uses dataflow execu-
tion semantics; it is the availability of data that will cause individual tasks to be
scheduled for execution. The second theoretical characteristic is that CnC allows
a more fine-grained parallel approach. In contrast, other dataflow frameworks are
often focused on coarse-grained tasks [113]. The practical reasons for choosing
CnC are performance, broad applicability and currency. CnC++ has demon-
strable performance that matches the state of the art [46]. This gives us known
performance bounds and a baseline for comparison. CnC is broadly applicable,
by which we mean it is general purpose, can be applied across many problem
domains and can be integrated well with existing programming techniques and
tool-chains. Being current means that CnC has a reliable implementation, active
developers and is still being used in research and industry settings. However,
CnC remains a compromise. It is a hybrid dataflow framework in which many
optimizations observed in pure dataflow systems are not automatically performed
by CnC itself. Instead, this task is left to the user by way of CnC’s tuners and
various other manual optimizations. Still, to our knowledge no other current
framework, language or runtime provides this combination of theoretical and
practical characteristics.

The choice of parallel hardware platform is a balance between the fine-grained
parallel model we seek to validate and real-world parallel performance. The ideal
solution would be to run our program directly on a dataflow machine, using a
dataflow language rather than the hybrid CnC. However, this is no option con-
sidering the current lack of such pure dataflow architectures. This leaves us with
the set of parallel hardware available today. For the purpose of this discussion,
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we cut up the current parallel hardware landscape as presented in Chapter 4 in
three broad categories: stock, fringe and specialist hardware.

• Stock hardware is the mainstream processors in commodity computers:
multicore processors with a uniform memory configuration.

• Fringe hardware are today’s non-multicore parallel processors, which are
typically oriented towards a different computing market niche: GPUs, Tilera,
Cell B/E, FPGAs, Xeon Phi, etc.

• Specialist hardware is the amalgam of parallel hardware used in the High
Performance Computing domain: cluster configurations, hybrid processor/co-
processor nodes, Non Uniform Memory Archictecture (NUMA) multipro-
cessor configurations, etc.

We choose stock hardware because of a combination of factors.

• Stock hardware is more readily available, making it more accessible and
helping the integration goal.

• For the validation goal of our implementation, stock hardware offers bet-
ter empirical comparison and a more straight-forward implementation ap-
proach.

• Although specialist and fringe hardware offer a larger amount of parallelism,
this comes at a greater implementation cost, with substantial architecture-
specific modification of the parallel program.

For a fairer empirical comparison, stock hardware offers generally the same archi-
tecture. A stock CPU implementation will have comparable performance char-
acteristics across brands and processor generations. Fringe and specialist hard-
ware performance varies widely depending on the nature of the workload. Stock
hardware also makes it possible to compare the best sequential with the paral-
lel implementation on the same processor. The main factor, however, in favor
of stock hardware is the choice of the CnC software platform. The most mature
CnC implementation supports stock multicore processors, and only a preliminary
MPI implementation for clusters.

A word on GPUs. Arguably, GPUs could be considered stock hardware, seeing
as such programmable graphics functionality are integrated in the vast majority
of today’s computers. A similar argument can be made to consider GPUs in the
specialist hardware category. Indeed, GPUs are an increasingly common sight
in HPC compute clusters, in an accelerator co-processor role. However, GPU
hardware is still mainly designed to do graphics processing. This naturally shapes
their architecture, programming model and preferred workload. Algorithms that
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do well on GPUs are those that can be performed as simple stream computations
with high computational density and unit-stride memory access patterns [141,
107]. We therefore put GPUs in the fringe hardware category, considering their
clear affinity to specific computing problems. Even without considering the issues
of implementation cost and comparison, we have reason to avoid committing to
a GPU hardware target for our proof of concept implementation: in our case it
is not certain that our simulated MC execution computation maps well to GPUs.
For one, MC operations have a relatively low computational density, only few
operations are performed for each data element. Its data access pattern, which
we capture using the stride permutation operator, can be problematic for the
banked memory accesses and small caches sizes of GPUs. Currently, it is unclear
if stride permutations can be efficiently performed on modern GPUs, making it
an interesting topic for future work.

Concurrent Collections

Concurrent Collections [128, 40, 39] is a parallel programming model that aims
to be simple yet powerful. It is part of an ongoing effort that was in a pre-
vious life known as TStreams [129] from HP Cambridge, later implemented as
CnC++ at Intel on top of their Threading Building Blocks (TBB) [156] work-
stealing back-end in C++. A Habanero-Java implementation of CnC is also used
as a research platform at Rice university [40]. The Concurrent Collections pro-
gramming model is implicitly parallel, but with explicit task partitioning. CnC
separates the design issues of expressing the computation in separate tasks from
the implementation issues of distribution, scheduling and parallel execution. We
use a running example to clarify the CnC programming model and execution
semantics, it should be familiar enough to the reader due to its similarity – at a
conceptual level – to the abstract dataflow models we have been using so far.

The CnC graph has three type of nodes; item collections encapsulate data,
step collections encapsulate computation and tag collections are used to control
the execution of steps. Conceptually, a CnC node or collection can contain a
large number of element instances. In practice, these elements are not always
present. Indeed, it is the availability of tag elements that will instantiate new
step function instances which will each perform some computation that consumes
and produces items. There are thus produce and consume relations between step
and item collection nodes. Each step collection needs to be associated with
exactly one tag collection in a prescribe relation.

One such CnC graph is given in Figure 6.5 for the vector tensor product
example: |a〉 ⊗ |b〉 = |c〉. The square is the graphic of an item collection, circle
for a step and trapezium for a tag collection. Produce and consume relationships
between nodes are represented by full arcs. Produce and consume relations with
the external environment are represented using meandering edges. The contents
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⊗

a

(αi,i)

b

(βj,j)

c

(αiβj, (i,j))

(i,j)

item collection

tag collection

step

consume/produce

prescribe

environment
input/output

legend

Figure 6.5: CnC graph for the vector tensor product. Annotations in gray com-
ment on the content of each node, in which i, j are indices and αi, βj amplitudes.

of both item collections a and b come from the outside environment, one can
conceptually imagine a separate process continuously feeding vector elements into
both collections in arbitrary order. The step labeled ⊗ multiplies an element
from a with one from b and thus needs to be invoked once for every possible
combination of both. A straightforward solution is thus to prescribe the step
collection with a tag collection of all (i,j) tuples, where i and j are indices used
as tags for respectively a and b. The step function itself is defined in the host
programming language as a native function that takes a CnC context object and
a tag. The context object conceptually contains the entire CnC graph and is
used within the function body to interact with other CnC nodes. Typically, the
context object is used for getting items from and putting them into collections.
A tag is a user-defined datum that is used to differentiate between the multiple
invocations of the step function; in our example the ⊗ step function is called once
for every different (i,j) tuple. Putting this all together, the pseudocode for the
⊗ step function is given in the following listing.

function kronecker product ( context , [ i , j ] )
s i z e b : : s i z e o f vec to r b
f a c t o r 1 := get i from context . a
f a c t o r 2 := get j from context . b
put ( f a c t o r 1 ∗ f a c t o r 2 ) tagged ( s i z e b ∗ i + j )

into context . c

Execution CnC’s execution semantics is conceptually simple and guarantees
certain properties, such as determinism. For a more formal treatment of CnC’s
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execution semantics we refer to Budimĺı et al. [40]. During execution, each tag
or item can be in an available or unavailable state. When an item or tag is
put in a collection, it receives the available attribute. Additionally, when such
a tag is made available in a tag collection that prescribes a step collection, a
step is instantiated with the tag and marked as prescribed. A prescribed step
instance with consume relationships will check the availability of its dependent
items. When all consume dependencies are satisfied, the step instance is marked
as enabled and scheduled for execution. The step function retrieves (consumes)
the necessary items itself and sends out (produces) the new items. To clarify, we
go over two different execution scenarios for the same tensor product example in
Figure 6.5.

In the first scenario, the external environment initially puts all items in collec-
tions a and b simultaneously. All elements of both collections are thus marked as
available, this does not trigger any further actions. As a next step the external en-
vironment puts the tuple (7,2) in the tag collection, the trapezium in the schema.
This triggers a cascade of actions. The tag (7,2) is marked as available in the
tag collection. Then, because of the prescribe relation between the tag and step
collection, a new step instance for ⊗ is created. This new step instance, invoked
with tag (7,2), is not executed right away because it has consume dependencies
that need to be checked. The data dependency of this instance is known to be the
item tagged by 7 in a and the item tagged 2 in b. Both items are available, thus
the step instance is enabled. A scheduler, running in a continuous loop, detects ⊗
for tag (7,2) as enabled and sends it to an idle processing element for execution.
During execution, the step function retrieves the respective amplitudes from a

and b, multiplies them and puts the result in the item collection c using a fresh
tag, which marks the item as available. The environment, waiting for an item
of c to be come available, retrieves it from the collection and terminates. Note
that if the external environment adds each tag after waiting for the previous res-
ult, then the computation is strictly sequential. However, if all tags are added
simultaneously, then all steps can potentially be executed in parallel.

The second scenario follows the somewhat more common case, in which input
items are not always available. For example, the data is still getting computed or
is still being read from a disk or network. Unlike the above scenario, a prescribed
step instance will not immediately transition into the enabled state. A pool
of prescribed steps will be waiting for their consume dependencies to become
available, before they can be considered for execution. The environment retrieves
items from the output item collection c as they become available.

Implementation Multiple implementations of CnC exist, using multiple im-
plementation approaches to the above execution semantics. Our artifact is im-
plemented using CnC++, which uses the C++ programming language as a host
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and Intel’s work-stealing scheduler in TBB as underlying execution platform. A
complete CnC program consists of three elements; the CnC graph, step code
and environment code. In C++, one defines the CnC graph as a context object
that contains the necessary nodes and edges. This definition can be automatic-
ally generated, using a compiler and code generator bundled with CnC++. This
compiler generates the context object and step function stubs based on a de-
clarative textual notation for CnC graphs. The step code is defined as a typical
C++ function, taking a tag as argument. Such a step function can use get()

and put() methods on the context object to interact with item collections. The
environment is a regular C++ program which creates the context object, adds
all necessary input to it, starts the CnC execution process, waits for it to finish
and finally retrieves the results.

The CnC++ implementation deviates from the regular CnC execution scen-
ario in one important way: by default, steps are enabled the moment they are
prescribed. A step can thus execute while the items it retrieves are not yet
available. In this case the step will deschedule itself, waiting for the event that
the required items become available to try again. In other words, CnC++ has
a more optimistic scheduler. However, recent versions for CnC++ have added
tuning primitives. Inside a tuner, a programmer can explicitly declare data de-
pendencies and thus prevent the automatic enabling of step instances. We will
explore the different effects of tuning as part of our validation section below.

6.2.3 Compiling for CnC

We revisit the mcc specific compilation and code generation phases. The topic
can now be treated in more detail after having introduced CnC. We structure
our discussion first on the coarse elements: the CnC graph with collections as
nodes; produce, consume and prescribe relations as edges. Then we move to
the fine-grained elements: the description of the step functions and the tuning
primitives.

Coarse structure: CnC graph

The Coarse Graph model maps naturally upon the CnC graph structure. A
tangle maps to an item collection and an operation to a step. Each amplitude
in a tangle thus becomes an item in an item collection. The tag for each amp-
litude item is its index or vector position. A step consumes the item collection
associated with the input tangle. And, a step produces the output tangle’s item
collection. The combination of both creates a pipeline of successive producer/-
consumer nodes. This still leaves open the required prescribe relation between
step and tag collections. A naive approach would be to include a prescribing tag
collection for each step, and enable all tags from the external environment. This

162



however would cause a vast number of idle step instances to be created. A more
sensible approach is to have steps themselves insert the tag for each item they
produce. A step consuming such an item is thus prescribed at that moment. This
creates a rippling execution front in which new amplitude items and their index
tags continuously percolate through the pipeline. The CnC graph in Figure 6.6 is
a simple example of such a pipeline organization. The coarse graph of non-trivial

M X

M X

CG

CnC graph

Figure 6.6: CnC producer/consumer pipeline organization example. Each step
produces the tag to prescribe the next step in the pipeline.

QVM programs is typically not a straight sequence of nodes. Rather, the CG is
structured as a tree with branches merging by way of the entanglement opera-
tion as the computation progresses. This structure can be observed for instance
in Figure 6.4. The tensor product CnC graph from Figure 6.5, used as a running
example earlier, uses a tuple of indices as prescribing tags for the ⊗ step. In
the pipeline structure, a step has to prescribe the tags for the next step in the
pipeline. With two steps producing items for respectively a and b, it becomes
hard to prescribe using tuple tags (i,j). Conceptually, the ⊗ step needs to be
prescribed by joining both a’s i tag collection and b’s j tag collections. CnC cur-
rently cannot gracefully express such joined tag dependencies, but the developers
plan to add the required functionality. Our practical solution to this is shown
in Figure 6.7: each item collection a and b still has its separate tag collection,
but the ⊗ step is prescribed by only a’s tags. Each step instance, triggered by
the availability of a single item αi of a, thus needs to compute all αiβj for all
j. The ⊗ step in this case then consumes a single element of one collection and
consumes all elements of the other. This stop-gap solution does sacrifice some of
the available fine-grained parallelism in the implementation. We can only spec-
ulate about its impact, but as we will see below, the coarser parallelism likely
improves the real-world performance in the current implementation.

Fine-grained structure: step functions

Having covered the coarse structure of the CnC graph, we now examine the
fine-grained part of the computation: the step functions themselves. The hybrid

163



Execution, Implementation and Validation

⊗

a

(αi,i)

b

(βj,j)

c

(αiβj, (i,j))

i

...
...

...

...
...

function kronecker_product( context, i )

a_i := get i from context.a

for j from 0 to size_b - 1

b_j := get j from context.b

put (a_i * b_j) tagged (size_b * i + j)

into context.c

Figure 6.7: The CnC graph for the pipelined vector tensor product, also known
as the Kronecker product. Each step instantiated by an i produces αiβj for all
βj ∈ b.

nature of CnC requires that the execution inside the step functions is a sequential
control-driven computation. The CnC graph structure leaves open if each step
is fine- or coarse-grained. In order to more accurately demonstrate and validate
the fine-grained dataflow approach, we would prefer to encode the fine-grained
dataflow graph as presented in Section 5.3. But, for better efficiency on stock
processors it is preferred to have coarser step functions. A coarse step function
consumes and produces a range of amplitudes, rather than individual amplitudes,
reducing CnC runtime overhead and better matching the coarse-grained parallel
preference of stock multicore processors. We reconcile both roles for the empirical
validation below. First, we express all steps as fine-grained, taking advantage
where possible of all exposed parallelism. Afterwards, we introduce a coarse-
grained step that is functionally compatible with the other steps. By ‘plugging
in’ modular optimized step in the pipeline, we can compare the effect of the
optimization. This is the corner stone of a quantitative approach to optimization
and will be further explored in the empirical validation section below.

Single-qubit For the sake of clarity, we first present the single-qubit operation
version of each step. The fine-grained graph of each operation was defined in
Section 5.3 by Propositions 9, 10, 11 and 12. From these propositions, it can be
observed that the operations X, Z and ∧Z can be implemented as one or more
monadic operations: taking a single amplitude and directly producing a new
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one. The M and ⊗ operations are diadic in nature, requiring both dependent
amplitudes to be available before producing a new amplitude. This distinction is
important; the pipeline structure ensures that when a step is prescribed with a
tag i, the amplitude αi is available in the consumed item collection. The diadic
operation step needs a CnC step tuner to guarantee the same. A fine-grained
graph can be encoded as a control-driven step by branching the computation
based on the incoming tag. For instance, the X and Z cases can be defined in
pseudocode as follows.

X

(α0,0) (α1,1)

(α1,0) (α0,1)

s tep X( i )
a := consume i
i f i even

produce a tagged i+1
else

produce a tagged i−1

Z

(α0,0) (α1,1)

(α0,0) (−α1,1)

s tep Z( i )
a := consume i
i f i even

produce a tagged i
else

produce −a tagged i

The step for ∧Z is again similar to Z. The implementation for the dyadic oper-
ations ⊗ and M are less trivial, as we have already seen for the ⊗ case above.
Take n the number of amplitudes in M ’s input tangle. In the pipeline, the step
M will be prescribed n times, although it should be only n/2 times where it con-
sumes two items each time. As with ⊗, this type of joint dependency cannot be
elegantly expressed in CnC. A simple solution is to do nothing on the ‘odd’ tags
and perform the M computation on the ‘even’ tags, thus only producing a new
item in the latter case. We put the fine-grained graph next to the M step pseudo
code in the following:
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(α0,0) (α1,1)

∗ c0 ∗ c1

+

(α′,0)

Mθ s tep M( i )

c0 : : 1√
2

c1 : : e−iθ√
2

i f i even
a0 := consume i
a1 := consume i+1
produce ( a0∗ c0 + a1∗ c1 )

tagged
⌊
i
2

⌋

Multi-qubit A central element in the M step above is the differentiating con-
dition: the if condition in the above pseudocode. For one-qubit operations,
checking for bit 0 or 1 is sufficient. Multi-qubit parallel position operations,
such as Zn

n , requires to check for even or odd tags, as in the pseudocode above.
Previous chapter we introduced the stride permutation operator to realize any
positional operation as a combination of parallel position and permutation opera-
tions. The same can be achieved in the CnC program, requiring the introduction
of a monadic permutation function that consumes an item tagged i and produces
the same item with the tag pm,n(i) = m (i mod n) +

⌊
i
n

⌋
, using Equation (5.3.13).

A fine-grained dataflow implementation does not require such an explicit per-
mutation stage, we achieve the same effect in a different way. In practice, we
realize the generalized position operation version of monadic steps by applying
the pmn function to the tag of the consumed item. For instance, the step operator
Zsiz
pos becomes:

s tep Z( i )
a := consume i
p i := p( i , pos , s i z )
i f p i even

produce a tagged i
else

produce −a tagged i

In other words, qubit position or size only has an impact on the differentiating
condition of each step. From the point of view of a dataflow computational
model, the permutation stage does not describe any operation, it describes a
static property of the graph: how certain input/output edges are connected. In
other words, true fine-grained dataflow execution performs the same operations
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for instance for Z3
2 as it does for Z3

3 . In dataflow, there is no data stored in
fixed addresses that need to be reshuffled. Data tokens conceptually just flow to
a different destination. The differentiating condition is the way we encode this
fine-grained dataflow into a control-driven execution.

Coarse-grained and completely control-driven implementations of the same
operations require a separate stride permutation operation step, either as part
of the communication or access pattern [56] or as a way to improve data-locality
in memory storage by using the stride permutation’s recursive properties [142,
158, 157]. The latter can often be observed in the context of the parallel Fast
Fourier Transform algorithms [130], for which Pease [154] has demonstrated a
stride-permutation formulation as early as the 60s.

Bit-pattern shortcuts A certain combination of features enables an altern-
ative expression of index-manipulation operations such as the even/odd differen-
tiating condition and stride permutation operations. The following elements are
necessary for such a shortcut:

• integers as tags,

• a qubit quantum state representation,

• canonical vector ordering and

• an implementation environment with bit-level operations.

In Section 5.3.3 we made explicit the relation between a basis vector in numeral
tensor notation, e.g. |5〉, and tensor index notation |101〉. The relation between
both is naturally that the latter is the binary representation of the former. The
tensor index notation is often used as it encodes the amplitude indices of the
original qubits in the qubit tensor. We already encountered this in the realization
layer in Section 3.6. Changing the position of the qubits has the effect of changing
the indices of the amplitudes. Indeed, by using bit-level operations it becomes
unnecessary to use the permutation operation directly. For example, the effect of
the step X on its tag can completely and more efficiently be realized using the bit-
wise not and bit-shift operations1. The equivalence with the earlier defined step
is illustrated in Figure 6.8. All other steps have a similar bit-pattern realization
of their differentiating condition. This bit-pattern shortcut is to be seen as an
optimization, not a starting point.

Coarse-grained optimization: the EMX step The coarseness of a parallel
program was defined earlier as the amount of work performed between success-
ive communication or synchronization. The fine-grained steps presented above

1Respectively, these are ^ and << in the C programming language.
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0001 1011 0011 1010

1011 0011 1010 0011
i^(1<<4)

p(i)

i^1

p−1(i)

Figure 6.8: Fast Bit-level realization of the X step’s differentiating condition and
index manipulation. Showing the equivalence with the permutation approach on
a 8-qubit state example, targeting qubit position 4.

indeed only execute a handful of elementary operations for each amplitude, re-
flecting the sparse nature of the MC operators. Regarding the fine-grained steps
as atomic parallel tasks, a coarsened step then logically bundles several of these
step invocations. Such coarsening can happen in two directions: vertically and
horizontally [11]. Vertical coarsening bundles multiple steps that depend on each
other along the produce/consume pipeline. Horizontal coarsening bundles mul-
tiple invocations of the same step, consuming and producing multiple data ele-
ments. Vertical coarsening reduces overhead by increasing the amount of work
that is performed for each produced item, but sacrifices pipeline parallelism. Hori-
zontal coarsening trades-off data-level parallelism for overhead. We implemented
a vertically coarsened step, for use in empirical performance analysis below and
to demonstrate domain-specific optimization. The latter is made possible by the
stratified compilation approach of the mcc. To our knowledge, only horizontal
coarse computations have been used in parallel quantum computing simulation
related work.

In the MC, the J -pattern is a basic building block for creating larger pat-
terns. Indeed, examining the Coarse Graph of non-trivial wild patterns reveals
an often repeated produce/consume sequence: a tensor product with a fresh one-
qubit tangle, followed by entanglement, measurement and lastly an X-correction
operation, or in short: EMX. The mcc is used to detect the sequence during the
specific compilation phase and replace all CnC nodes involved by the coarser EMX
step collection. We have worked out a visualization in Figure 6.9 of the effect of
this coarsening optimization on both a coarse and fine-grained graph example.
The EMX step takes the same outward consume, produce and prescribe depend-
encies as the pipeline of steps it replaces. Each item prescribing the ⊗ step at
the front of the sequence will thus, after coarsening, prescribe the EMX step. The
coarse step encodes the fine-grained graph of the entire sequence, producing at
the end a single item. Both the tensor and measurement steps are dyadic, which
would mean the coarse step encoding would require to consume four items. But,
one of the two consumed item collections for the ⊗ step is a fresh tangle that is
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also included in the sequence. This reduces the number of consumed items to
two because of the M step. Logically, any coarsening optimization decreases the
exploitable parallelism. When the ratio between average parallelism and num-
ber of processing elements is still high enough after the coarsening, the parallel
performance should remain unaffected.
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Figure 6.9: Visualization of the coarsening optimization that merges several coarse
operations into one. Above: fine-grained (left) and coarse-grained (right) graphs of a J -
pattern acting on a two-qubit input tangle. Below: the same graph after the coarsening
optimization. The highlighted nodes and edges follow the dataflow of a single output
node; all nodes in such a single ‘trace’ are implemented by the coarsened emx CnC step.
For compactness, non-input amplitude and tangle nodes have been omitted.



6.3 Experimental Validation

6.3.1 Goals

The implementation artifact serves three main purposes.

• Demonstrate the feasibility of the parallel approach.

• Substantiate the results of the theoretical analysis with empirical analysis.

• And, provide a test bed for practical and theoretical developments.

Our implementation is a proof of concept, demonstrating by construction that
indeed the MC can be realized as a fine-grained dataflow computation. This
is not self-evident, the theoretical analysis from Chapter 5 can be used for a
more traditional purely data-parallel implementation, as in parallel QC related
work. Indeed, a traditional approach would likely perform better on today’s
stock processors. However, the goal of this implementation is not to get optimal
performance on current stock hardware, but rather validate that our fine-grained
dataflow approach is indeed feasible and exposes the promised parallelism. There-
fore, our implementation approach follows the fine-grained dataflow semantics as
closely as is practical. We do this to demonstrate the feasibility of our dataflow
approach not just as a theoretical analysis tool but also as execution platform.

The theoretical analysis earlier this chapter reveals a vast amount of available
parallelism, enough in theory to allow the simulation of additional qubits by an
exponential increase in hardware resources. This abundant parallelism should be
visible in a real world implementation in the form of parallel speedup, even in a
high-overhead naive implementation. We show that our parallel MC implement-
ation exposes and exploits inherent parallelism by using speedup as empirical
quantitative measurement. Speedup is used as a relative performance measure,
comparing different instances of the same program to measure parallelism. For
a fair performance analysis, a parallel implementation should also be compared
to a representative sequential algorithm. Our sequential implementation qvm was
implemented for this purpose, using the low-level programming language C and
libquantum to offer a fast sequential implementation as baseline comparison. As
an aside, we show that having a fine-grained dataflow description of the computa-
tion exposes information that can be used for tuning optimizations. Furthermore
do we demonstrate by introducing a coarsening optimization that that overhead
is the dominant factor in the naive proof of concept implementation.

The mcc implementation artifact is designed to be an execution platform for
the measurement-based Quantum Programming Paradigm. However, the goal
is not simply to implement a QVM, but also to support experimentation with
parallel computing. Developing practical parallel implementations requires a fair
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quantitative performance analysis, measuring the effects of various optimizations
and alternative approaches. The QVM offers a fixed implementation target: it
described the functionality that needs to be implemented and enables multiple
implementations to share the same input program, which is invaluable for com-
paring performance. This already allowed us to compare the sequential qvm

implementation with the parallel mcc, but also to test variations on the mcc

implementation and try alternative approaches and optimizations. Indeed, this
proof of concept implementation artifact is to be seen as the starting point for
developing a high-performance parallel QVM. Quantum computing simulation is
an interesting case study from the parallel computing point of view, it contains a
vast amount of parallelism, but its computational state cannot be trivially par-
titioned. We envision further research using the mcc as parallel computing case,
which we further elaborate in the next section under future work.

For the demonstrator and test-bed goals above, the implementation itself
forms the experiment and validation. The second goal, substantiating the theor-
etical analysis, still needs to be shown through empirical analysis.

6.3.2 Approach

We use experimental results to support two broader statements: our proof of
concept implementation automatically exposes and exploits parallelism, and the
current implementation has plenty of optimization headroom. We split these into
several more concrete indicators supporting these statements. Indicators that can
be verified experimentally.

• Statement 1: We automatically expose and exploit parallelism, with our
proof of concept implementation already demonstrating good parallel per-
formance.

– Indicator 1.1: Parallel speedup scales positively with the number of
processing elements.

• Statement 2: The current proof of concept implementation is wasteful,
but contains a lot of optimization headroom. Given enough engineering
effort, this can be exploited to increase absolute real-world performance.

– Indicator 2.1: The execution runtime grows proportional with memory
use.

– Indicator 2.2: The naive implementation is careless with memory.

– Indicator 2.3: Small tweaks that reduce the overhead of CnC steps
offer a small parallel performance improvement.

– Indicator 2.4: Increasing parallel task granularity has the largest
impact on absolute performance.
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The first statement is tied to the theoretical analysis above, which already
shows that we expose a vast amount of average parallelism that can in practice
lead to good parallel performance. By construction, our proof of concept does so
automatically; the mcc takes the same program input as qvm and automatically
produces parallel program code. We still need to show with experimental results
that parallelism is exploited in practice. This is achieved with Indicator 1.1, by
measuring the parallel speedup metric as an indicator for parallel performance.
Speedup is the most commonly used parallel performance metric, it compares the
execution time on a single processing element T1 with the execution time on an
n-number of processing elements Tn:

Sn :=
T1

Tn
. (6.3.1)

Parallel speedup is typically graphed by scaling the number of processing ele-
ments n. From this graph, the scaling behavior of the parallel algorithm can be
observed. An ideal parallel implementation has Sn = n for any n, called linear
speedup2. In practice however, each processing element adds more overhead to
the computation, leading to cannon ball trajectory graphs. In other words, the
closer the speedup graph is to the diagonal, the better. As we will show below,
our implementation already shows good speedup scaling.

Statement 2 uncovers why the ideal speedup is not obtained: overhead and
other implementation factors. Recall from the discussion in Section 4.4.2 that
the extreme fine-grained approach used in the current proof of concept imple-
mentation is expected to carry a very large overhead in various areas. However,
we also mentioned that various optimizations exist that remove this overhead.
With Indicators 2.1 and 2.2 we show that the maximum memory use metric is
substantially higher in the parallel case compared to that of the sequential qvm
implementation. Indicator 2.3 and 2.4 demonstrate that optimizations can indeed
have a large impact, indicating that engineering effort can make the fine-grained
approach competitive even on current stock hardware.

Experimental setup

Our proof of concept implementation is programmed to run on current multicore
processors, today’s stock hardware. The test-bed computer system we have used
in the experiments uses two 2.26 Ghz Quad-Core Intel Xeon multicore processors,
allowing us to scale up to eight effective hardware threads. These two processors

2Superlinear speedup can happen in reality [105], although rarely. Superlinear speedup ef-
fectively means that the total amount of work decreases when adding more processing elements.
This happens in roughly three cases; most often because of an implementation mistake, in search
algorithms such as random walk or backtracking, and because of the increased collective memory
and cache size.
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share the same main memory and are thus connected in a Uniform Memory
Architecture (UMA) fashion. i.e. each processor can access any memory address
within an equivalent time frame. The total system memory size is 8GB of RAM,
with per processor cache sizes of 256KB (L2) and 8MB (L3).

As benchmark program, we use the QFT (n) measurement pattern. The
Quantum Fourier Transform is the basis of existing quantum computing al-
gorithms, which means it often appears as a benchmark application. The main
benefit of the QFT (n) for our experiments is that QFT (n) can be used for
both strong and weak scaling performance measurements. Weak scaling scales
the problem size while keeping the number of processing elements fixed. Strong
scaling scales the number of processing elements while keeping the problem size
fixed. For strong scaling we use QFT (16), it constitutes a high enough workload
in both sequential (qvm) and parallel (mcc) cases, with runtimes in the order of
seconds. In weak scaling experiments, we can increase the workload by scaling
the QFT (n) from n = 2 to n = 16.

6.3.3 Experiments

Parallel speedup

• Indicator 1.1: Parallel speedup scales positively with the number of pro-
cessing elements.

Parallel speedup, as already mentioned, is calculated by dividing the wallclock
execution time of the program with one processing element by that of n processing
elements. In practice, the execution time of the same program can vary between
multiple runs, due to a wide range of factors. Each execution run can have small
variations in thread scheduling, processor instruction scheduling, virtual memory
use, etc. We therefore run each experiment a number of times in order to offer
more statistically valid performance measurements [87]. We have experimentally
established that twenty execution runs result in a high enough confidence interval
(> 90%) for all benchmarks presented here. The twenty wallclock runtimes of
each experiment are presented using a violin plot, a variation of the boxplot that
simultaneously visualizes the usual quartiles (black rectangle), mean (white dot)
and probability density (violin shape). The results in Figure 6.10 were obtained
from compiling the QFT (16) pattern in our parallelizing compiler mcc, producing
an executable that was run repeatedly. Each wallclock time Tn is measured at the
operating system level with microsecond accuracy. The parallel speedup value
Sn = T1

Tn
for each run is calculated with T1 being the average of all n = 1 runs,

producing Figure 6.10.
It can be observed from the increasing parallel speedup in the figure that

each additional processing element or thread does indeed improve performance.
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Figure 6.10: Parallel Speedup Sn values of multiple execution runs for the
QFT (16) measurement pattern, using the un-optimized fine-grained parallel im-
plementation. The diagonal line represents ideal linear speedup.

But, as was expected, this increase tapers off. The factors contributing to this
behavior of the speedup scaling graph can be varied and complex. Even for a proof
of concept implementation, it is useful to analyze the underlying factors leading
to the observed behavior. First, there is the task coarseness; each fine-grained
task performs only a small amount of computation compared to the scheduling
and task switching overhead. The effect of changing coarseness is measured
below. Second, each processor has computing power and memory bandwidth
limitations. Even under ideal circumstances, performance measures will grow
close to some horizontal line as they come under the influence of a computing or
memory bottleneck. We know from last section that the amount of computation
per amplitude is relatively low, which means that memory bandwidth is the likely
bottleneck. We measure the effect of memory use next.
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Memory use

• Indicator 2.1: The execution runtime grows proportional with memory
use.

• Indicator 2.2: The naive implementation is wasteful with memory.

Our sequential implementation qvm can explicitly manages the memory used to
store the amplitude vector. This is a benefit of working with an imperative
language where programmers can manually manage memory. Moving away from
manual memory management means relying on the underlying implementation to
manage storage effectively. For instance, saving memory by avoiding duplication
and recycling memory that is no longer used. For the purpose of this discussion,
we consider the memory use of the qvm to be the lower limit. Conceptually,
parallel execution will use more memory on the whole, as it often needs duplic-
ation to perform simultaneous computations. The majority of the memory in
our parallel implementation is used in CnC’s item collections and step instanti-
ating. The memory used locally by step instances is effectively recycled by CnC,
it knows when a step instance finished executing. Item collections however retain
the stored amplitudes even after they have been consumed. In other words, CnC
holds the history of all intermediate states in memory in our unoptimized mcc

implementation.
While memory use is not a direct measure of performance, it can be an in-

dicator when comparing two different implementations. We compare absolute
runtime measures with maximum memory usage of several workloads, both for
the parallel version produced by the unoptimized mcc and the sequential qvm.
Both wallclock runtime and maximum memory use measurements are taken at
the operating system level. We graph both in Figure 6.11 on a linear scale, high-
lighting the order of magnitude difference. For Indicator 2.1 we indeed see the
parallel runtime following memory use closely enough to be virtually overlapping.
The gap of at least an order of magnitude between the sequential and parallel
versions strongly demonstrate Indicator 2.2.

Effect of optimizations

• Indicator 2.3: Small tweaks that reduce the overhead of CnC steps offer
a small parallel performance improvement.

• Indicator 2.4: Increasing parallel task granularity has the largest impact
on absolute performance.

Having identified coarseness and memory use as two potential bottlenecks, we test
this assumption by measuring the effect of optimizations for both bottlenecks.
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Figure 6.11: Maximum memory use compared to runtime for different QFT (n) of
both the sequential qvm and unoptimized parallel mcc implementation. Runtime
is figured on the left axis and memory use on the right.

Optimizing for memory is hard to do directly in our implementation, as the Intel
CnC and TBB libraries abstract away their memory management. CnC does offer
tuning functionality, in which the programmer supplies additional information to
the CnC runtime. We have added step and item tuners to the code generated by
the mcc. A CnC step tuner, as mentioned earlier, declares the data dependency
of each step instance to the scheduler. This information can be used by the
scheduler to start executing a step instance when all its dependencies are ready,
avoiding the situation in which a steps are suspended while waiting for their
inputs. An item tuner on an item collection can declare how many times its items
get consumed, in order to manage better the allocated memory. However, we
notice in practice that no item collections currently get deallocated or downsized,
which brings little benefit to our current use case. Any reported benefit of tuning
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is chiefly due to step tuners. To demonstrate Indicator 2.3 we add both step
and item tuner optimizations to the computation of QFT (16). In Figure 6.12
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Figure 6.12: Effect of introducing CnC tuner optimizations, reducing the over-
head of individual parallel step instances.

we superimpose the earlier reported speedup characteristics of the naive parallel
implementation with the tuned version. We observe that tuners improve the
speedup scaling behavior, as expected. Step tuners decrease the overhead of
individual step instantiations, thus decrease the total parallel overhead. However,
the parallel overhead is evidently not the main bottleneck; we observe a small but
not radical shift of the parallel scaling graph towards linear speedup. This is likely
an indicator that parallel overhead is dominated by the number of scheduled step
instances, rather than the amount of overhead for each individual one. This is
tested in the following by introducing a coarsening optimization, which reduces
the overall number of step instances.

The coarsened step optimization was introduced at the end of the last sec-
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tion. This coarsened step replaces several consecutive steps, effectively reducing
the total amount of parallel step instances. Coarsening decreases the amount of
parallel work and increases the amount of sequential work. Conceptually, the
total amount of work remains the same, but in practice extra work is added in
the form of parallel overhead. We thus get an indication of the amount of par-
allel overhead of our implementation by comparing the execution runtime of the
unoptimized version with the coarsened versions. This is reported in Figure 6.13,
in which we added the average sequential runtime speed of the sequential qvm
implementation as reference point. This graphic clearly shows a large absolute
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Figure 6.13: Comparing the absolute runtime speeds of the original unoptimized
parallel implementation with the tuned and coarsened optimized version. Both
execute the same QFT (16).

performance win from introducing a small coarsening optimization. As we have
discussed, this indicates parallel overhead from the fine-grained granularity to be
the dominant performance factor in our proof of concept implementation. This
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overhead is an issue of CnC, which is designed around coarser steps, but mainly
it is an issue of the multicore execution platform.
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6.4 Conclusion

We have approached the validation of the theoretical work from Chapter 5 on
three fronts. First, we provided a theoretical analysis showing that the charac-
teristics of the parallel program resulting from the fine-grained graph do indeed
expose abundant parallelism. Next, we have built an implementation artifact, a
parallelizing compiler mcc that implements a QVM: taking a command sequence
and producing program code that executes in parallel. Last, we measure some
common performance metrics. Although we can show good parallel performance,
it cannot beat our best sequential implementation in absolute runtime perform-
ance. We want to stress again that this does not invalidate our approach. Behind
the qvm implementation sits an entire set of optimized libraries, compilers and
processors tuned to its type of workload. The mcc by comparison, sorely lacks in
back-end optimization. We took a conceptual approach for the mcc; expressing
the computation in a vastly different way to expose a maximum of parallelism,
then worrying about optimization later. Essentially, we simulated a dataflow
machine. As the shift towards more parallel software and hardware continues
and compiler and framework technology matures, it will become more important
to express as much parallelism as possible, rather than start from a sequential
point of view and identify what parts can be parallellized. Indeed, the related
work presented in Chapter 4 teaches us that many of the optimizations required
to make parallel computation fast, such as our tuning and coarsening, achieve
better results when left to a computer.

Some domain-specific parallelization projects such as StreaMIT [186], FORM-
LESS [103] and SPIRAL [157] are good examples of that. The SPIRAL frame-
work is especially close to our work considering the related mathematics of their
application domain (DSP) and their approach. A Digital Signal Processing prob-
lem, such as FFT, is expressed in SPIRAL using constructs in a high-level math-
ematical model. This model captures transformations rules similar to what we
have used in the previous chapter: tensor product decomposition, commuting
using stride permutation and parallel-position operators. These transformation
rules are used to optimize the dataflow patterns of algorithms. The mathematical
constructs are then code-generated into a Single Static Assignment (SSA) form
to allow for and simplify common code-optimization algorithms. Although SSA
is used as a medium that more easily exposes dataflow information, this inform-
ation is only used to enable local and sequential optimizations. SPIRAL does
not focus on parallel computing, but does take a first step in that direction by
translating some constructs into a parallel loops. In contrast, we transform the
same high-level mathematical constructs into an explicit dataflow graph. This
graph is not used as a convenient intermediate representation, but as the final
program representation. In other words, much like SPIRAL and FORMLESS,
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we transform high-level mathematical constructs into a dataflow form to expose
the parallelism in the program. However, we directly exploit this parallelism by
way of executing the dataflow graph, whereas the related work uses the implicit
dataflow information to produce more efficient sequential programs.

The mcc is to be seen as a starting point and proof of concept; built from
the ground up to produce highly scalable and massively parallel programs that,
while not competing with the best sequential implementations today, can with
enough development effort take maximal advantage of highly parallel hardware.
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Chapter 7

Conclusions and Future
Work

In this dissertation, we have brought together two fascinating and rapidly de-
veloping research domains: quantum computing and parallel computing. By
bridging these domains, we were able to make a number of contributions. In
this concluding chapter, we give an overview of our work by domain in respect-
ively Sections 7.1 and 7.2, highlighting our various contributions in Section 7.3.
Much of the work presented here is a first step, providing proof of concept and
laying down a foundation to support further research. We consequently propose
in Section 7.4 further research based on the work presented here.
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7.1 Quantum Programming

In this work, we proposed and deployed a quantum programming framework,
based on the formal Measurement Calculus. Rather than directly implementing
MC’s semantics, we proposed a layered architecture. The purpose of designing
around multiple abstraction layers is to make the framework more robust to fu-
ture changes. This was already helpful during the development of our practical1

Framework, allowing us to experiment with different approaches and implementa-
tions. As presented in the future work section below, we wish to integrate various
conceptual tools developed around the Measurement Calculus, with the ultimate
goal of supporting the analysis interactive and development of new quantum
computing applications.

As part of the development of our practical quantum programming frame-
work, we made several contributions. At the application layer abstraction level,
we used the insight that pattern composition has a natural graph representa-
tion to build a pattern editor graphical user interface. Using this application,
large patterns can be intuitively and automatically combined, taking full advant-
age of the pattern abstraction’s modularity and compositionality. Automated
pattern composition is not performed by the application itself, but rather by a
separate pattern abstraction layer. We devised a declarative pattern composition
structure and an automated composition process that subsumes the two original
composition rules of the formal Measurement Calculus. Low-level operations of
the Measurement Calculus form a natural ‘assembly language’. We put this into
practice by building a separate Quantum Virtual Machine (QVM) layer that uses
machine-readable expressions of MC operations as instructions. An optimized se-
quential implementation of this virtual machine in a standard programming lan-
guage forms our reference implementation of the QVM. We introduced a number
of common but effective optimizations, such as sparse matrices, bit-pattern func-
tions and the representation of the quantum state as a set of separate factor
states, which we call tangles. We observed that MC patterns in their standard-
ized form, in which all entanglement operations are performed first, fail to take
advantage of this crucial optimization.

1Practical, as opposed to formal.
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7.2 Parallel Execution

We have formulated the execution of the QVM as a parallel computation, to
improve its efficiency on highly-parallel computing hardware that lays ahead.
Our approach was to start from a relatively coarse parallel data-driven model and
refine it through a series of model transformations into a fine-grained dataflow
model of computation.

The operational semantics of the formal MC model is essentially sequential:
its state transition rules operate on a single global quantum state. However,
this global state can be split into several local states by representing a tensor-
factorizable quantum state as a set of its factor states. As operations on factor
states can act independently from each other, the MC transition rules can – with
slight modification – simultaneously be applied to different factor states. Our
coarse-grained parallel graph model is formed by building a graph of these state
transitions.

In order to parallellize the action of MC operations on a quantum state, we
first had to make them more concrete. In a concrete linear algebra approach, the
positions of qubits matter more than their qubit name. To capture this sensitivity
to position, we introduced the notion of a positional operator. An MC opera-
tion is turned into a positional operator by simply looking up the position of its
target qubit. A positional operator acting on the ‘last’ qubit position, which we
call the parallel position, has a simple concrete representation in which the qubit
operator is continuously repeated. In other words, the action of such a parallel
position operator on the entire quantum state vector can be described as a series
of actions on smaller parts of the state vector. Closer inspection of positional
operators reveals that different target positions result in the same quantum state
vector, albeit with the elements in a different order. A particular class of recurs-
ively decomposable permutations captures this difference, such that by applying
the correct permutation changes the target position. By introducing a permuta-
tion operator, we can formulate all MC operations as concrete parallel position
operators. We obtain the fine-grained dataflow graph of a parallel positional op-
erator by expressing the single-qubit version of the operator as a dataflow graph,
with arithmetic operations on amplitudes as nodes, and by concatenating mul-
tiple instances of this graph. Combining this dataflow graph with the graph for
the correct permutation achieves any other positional variant of the operation. A
complete MC computation can be described as a fine-grained dataflow graph by
connecting the various positional operators’ graphs following the coarse-grained
graph structure.

We implemented the various transformation steps described by building a
compiler. However, lacking a true dataflow execution platform, we turned to emu-
lating the parallel execution of the fine-grained dataflow graph using a modern
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parallel computing library: Intel Concurrent Collections (CnC) [128]. Because
of CnC’s dataflow-like programming model, we were able to achieve true fine-
grained dataflow execution semantics with only few compromises. The compiler
artifact takes a quantum virtual machine instruction sequence and ultimately
produces CnC-using C++ source code, which can then be compiled into an pro-
gram executable on a multicore processor. This approach to parallel execution
is a compromise, balancing at one end the need to demonstrate the conceptual
fine-grained approach, and at the other end the notorious practical difficulties
and hard to predict performance characteristics of parallel programming with
respect to parallel hardware. Concretely, we avoided the risks associated with ad
hoc parallel implementations and specialized parallel hardware architectures by
choosing a parallel software framework that: encapsulates this complexity, offers
us correctness guarantees and offers sufficient freedom in determining the parallel
execution strategy. However, this limits the amount of parallel processing power,
making purely experimental validation difficult.

As validation of our parallel approach, we performed both a theoretical and
an experimental analysis of the fine-grained dataflow graph. Theoretical analysis
of the average parallelism metric shows that the dataflow graph indeed exposes
a vast amount of exploitable parallelism. We saw that for the Quantum Fourier
Transform case, an exponential increase in total work is matched by an exponen-
tial increase of exposed parallelism. In the experimental analysis, we measured
the real-world performance of executing large Quantum Fourier Transform com-
putations. Analysis of the results show good parallel speedup. Although, as a
consequence of our compromise in the parallel execution approach, the speedup
is not ideal and the absolute performance falls short of the optimized sequential
implementation. We show that this difference in absolute performance is indeed
due to inefficiencies: experiments that introduce simple optimizations demon-
strate dramatic performance improvements.
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7.3 Contributions

For the sake of convenience, we summarize our main contributions in the follow-
ing, separating the conceptual contributions from their concrete realization.

Conceptual contributions

• The formulation of Measurement Calculus’ virtual execution as a fine-
grained dataflow graph.

The mapping of the MC operations to a fine-grained dataflow graph exposes the
vast parallel potential inherent in the classical execution of the MC’s quantum
operations.

• The formulation of the Measurement Calculus execution semantics into a
coarse-grained parallel execution.

By representing quantum state as a set of factor states, the execution semantics of
the MC can be modified to allow the simultaneous execution of certain operations.

• A layered architecture design for an MC-based quantum programming frame-
work.

The organization of the MC as a stack of abstraction layers leads to a software
organization more robust to implementation changes. Each abstraction layer is
formulated such that it is independent and straightforward to automate.

• The formulation of a virtual machine for a measurement-based quantum
computer.

The operational semantics of the MC is used to formulate the instruction set of
a Quantum Virtual Machine.

Practical contributions

• The fine-grained and data-driven parallel execution of Measurement Cal-
culus programs.

In this idealized parallel execution approach, arithmetic operations on individual
amplitudes can be executed simultaneously. We demonstrated parallel speedup
by profiling such parallel execution of a large MC program.

• A parallelizing multi-stage compiler framework for MC programs.
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The parallelizing compiler artifact parses an MC program and transforms it over
multiple increasingly-concrete intermediate representations. Ultimately, the com-
piler generates standard programming language source code which will execute
the MC program as a parallel computation.

• A hand-crafted and optimized Quantum Virtual Machine implementation.

To represent the best available sequential execution of the Measurement Calculus,
we produced a fast sequential implementation of the Quantum Virtual Machine.

• A programming framework for the Measurement Calculus; including a
graphical pattern editor application, automated pattern composition and
virtual execution through the Quantum Virtual Machine.

This framework is a concrete software realization of the layered architecture.
The graphical pattern editor application acts as the framework’s front-end. This
application allows users to express complex pattern compositions by visually
linking input and output qubits.

• The analytical and experimental profiling of a fine-grained highly-parallel
formulation of the Measurement Calculus, indicating a large parallel per-
formance potential.

We integrated analytical tools into the parallelizing compiler framework to collect
parallel performance metrics: total work, critical path and average parallelism.
These indicate that for large quantum algorithms, the exponential increase in
work is matched by an exponential increase in exploitable parallelism.

188



7.4 Future Work

7.4.1 Highly-parallel performance challenge

The work we have presented here still has one open challenge, the question: Does
the parallel performance of our fine-grained dataflow approach scale for massively
parallel computers of the future? We have presented only indications that this
is indeed the case: dataflow approaches have scaled well in the past [98] and
a theoretical analysis that shows that the fine-grained dataflow graph indeed
exposes a vast amount of parallelism. Our experimental validation however is
mainly demonstrative in nature and runs on a parallel machine of modest scale.
This was, as discussed earlier, a compromise in order to deal with several critical
difficulties. Our next research step is thus to fully experimentally validate our
fine-grained dataflow approach by demonstrating good scaling on a more highly-
parallel and advanced parallel computer architecture. Using the existing artifact
as a blueprint, we can more accurately plan new software implementations and
adapt it for target highly-parallel architectures. This work can be seen as a
large case-study, investigating a parallel approach off the beaten track. We are
in contact with parallel computing peers and see interest in the dissemination
of several facets of this work. In summary, having demonstrated the viability of
a dataflow approach, we can take the next step and focus on achieving scalable
parallel performance on cutting edge large-scale parallel system.

7.4.2 Expanding the quantum programming framework

With this work, we have sought to address the shortage of pragmatic quantum
programming frameworks. Because of our pragmatic approach, we have left open
important opportunities to further improve the usefulness of this framework. To
goal of the following improvements is to aid in the dissemination of this quantum
programming framework, by making it of practical use for researchers using the
measurement-based quantum computing model.

The pattern abstraction layer currently automates the pattern composition
and the pattern compilation to Quantum Virtual Machine instructions. However,
other useful transformations and analyses tools at the level of measurement pat-
terns exist. Most evidently, the Measurement Calculus’ standardization process.
Several other conceptual analysis and transformation tools have been suggested:
flow analysis [55] and depth complexity [36]. These techniques can be included in
the pattern layer abstraction to automate the optimization and analysis of newly
created patterns.

The MC’s standardization process was not included in the pattern layer out
of practical considerations: a measurement pattern in standard form is harder to
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execute in a simulated environment. We plan on developing a pattern transform-
ation process with the goal of maximizing the potential for simulated execution.
Rather than bringing all entanglement operations to the front, as in the standard
form, this process will move each entanglement operation as close to the meas-
urement operation that will destroy its qubits. This anti-standardization process
will thus seek to minimize the quantum state size during execution.

At the application layer, we wish to improve the power of the visual language
used to compose patterns. As we have seen in Chapter 3, some patterns have
a repeating or even recursive structure. The library application approach can
capture this recursion using the functionality of the host programming language,
whereas the editor can only express an instance of such higher-order patterns.
We expect that iterative or even recursive pattern compositions can be added
as visual metaphors; for instance, by using special edges that loop backwards,
creating a controlled violation of the acyclic graph rule.

7.4.3 Dissemination

Our contributions relating to quantum programming were in large part already
presented to the relevant research community in [67]. The experimental and
unorthodox nature of parallel computing contributions required a certain imple-
mentation and engineering maturity of our research artifacts (parallel compiler,
runtime, etc.) in order to sufficiently demonstrate satisfactory results. We have
now come to a point where we feel our contributions to the parallel computing
domain can be disseminated. Indeed, we see interest in our the current parallel
work as both an investigation of high-performance parallel quantum comput-
ing, and as an unconventional approach to parallel computing using fine-grained
dataflow.
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Appendix A

Linear Algebra formulation
of Quantum Computing

This appendix serves to give readers unfamiliar with the topic a brief overview of
the mathematical formulation and notational conventions as used in the Quantum
Computing domain. We adhere to the notation as introduced in the textbooks
by Nielsen & Chuang [150] and Gruska [97]. For a more detailed treatment of
the subject, we refer to these standard works.

Quantum mechanics is typically formulated using linear algebra. The pos-
tulates of quantum mechanics, established over decades of experimentation, de-
scribe the behavior of elementary particles such as atoms, electrons, etc. For the
purpose of quantum computing, it is sufficient to use a discrete formulation of
these postulates. That is, we can use a simple operator formulation instead of
more complex time-dependent functions.

The first postulate of quantum mechanics tell us that the state a quantum
system is in can be completely described by a vector in a vector space. More
concretely a quantum state is a unit vector in a complex vector space that has an
inner-product. All possible states of a quantum system form a complex Hilbert
space. Why this is the case, is outside the scope of this discussion, but we
can impart a rough intuition on why these conditions are necessary. The complex
coefficients are required to elegantly describe the quantum state and its evolution.
The inner-product requirement provides, roughly speaking, a unit of distance or
angle between vectors. The unit vector requirement isn’t strictly necessary, but
restricting state with this normalization condition to vectors of unit length or
norm simplifies certain calculations.

The simplest non-trivial quantum state that can be represented is the qubit.
It is used as the basic unit of information, much as 0 and 1 are used in classical
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computers. Any qubit state can be described as a linear combination of two
orthogonal vectors or basis. Typically, the computational basis (|0〉,|1〉) is used.
Throughout this dissertation, we use the Dirac notation for vectors, using |ψ〉 to
denote a column vector named ψ. The vectors of the computational basis are
in the familiar column vector notation |0〉 = [ 0

1 ] and |1〉 = [ 1
0 ]. Formally, any

arbitrary qubit ψ can be written as the linear combination:

|ψ〉 = α|0〉+ β|1〉 (A.0.1)

with the amplitudes α,β ∈ C. We will use the Dirac and column vector notations
interchangeably, for example expressing the above |ψ〉 vector as [ αβ ]. The Dirac
notation 〈v|w〉 denotes the inner product of both vectors (|v〉,|w〉). The notation
〈ψ| represents the complex conjugate and of the vector |ψ〉:

〈ψ| =
[
α∗ β∗

]
=

[
α∗

β∗

]T
=
(
|ψ〉∗

)T
,

where ∗ stands for the complex conjugate. The normalization condition constrains
the norm of any qubit such that

‖|ψ〉‖ =

√
|a|2 + |b|2 = 1 . (A.0.2)

A quantum state is actually associated with a ray in a Hilbert space, rather than a
single vector, meaning that quantum states are equal up to a global phase. We use
this occasionally to produce a more compact notation, for instance 1√

2
(|0〉+ |1〉)

is essentially the same quantum state as |0〉+ |1〉.
The second postulate formulates the evolution over time of a closed and isol-

ated quantum state as a unitary transformation. A quantum state |ψ〉 that
evolves over a discrete time step into |ψ′〉 can thus be described by

|ψ′〉= U |ψ〉

where U is a unitary matrix operation. The most common unitary operations we
use in this work are the Pauli-X and Pauli-Z unitary operations, which operate
on a single qubit:

Z =

[
1 0
0 −1

]
(A.0.3)

X =

[
0 1
1 0

]
. (A.0.4)
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The X operation will flip a |0〉 state into |1〉 and vise versa and is therefore often
called the quantum-not operation.

The third postulate deals with measurement of a quantum state. There is no
classical analogue for such measurement operation, it is thus difficult to impart
an intuitive understanding of the measurement process besides its mathematical
description. A measurement always happens with respect to a certain orthonor-
mal basis, for example (|0〉,|1〉) called the standard basis or (|0〉 + |1〉,|0〉 − |1〉)
the diagonal basis. A state measured against such basis collapses to either basis
state, non-deterministically. After measurement in the standard basis, the meas-
ured qubit finds itself in either the |0〉 or |1〉 state. The probability for either
measurement outcome depends on the amplitudes of the quantum state.

The fourth and last postulate presented here deals with the composition of
quantum systems. When two quantum systems interact, i.e. they are no longer
completely isolated systems, their associated vector state space has be combined
in some way. Given the vectors |ψ〉 = α0|0〉 + α1|1〉 and |φ〉 = β0|0〉 + β1|1〉 de-
scribing the state of two distinct quantum systems, then the state of the combined
quantum systems is given by the tensor product of both vectors:

|ψ〉⊗|φ〉 = α0β0(|0〉⊗|0〉)+α0β1(|0〉⊗|1〉)+α1β0(|1〉⊗|0〉)+α1β1(|1〉⊗|1〉) ,

(A.0.5)

for which the notational convention (|0〉 ⊗ |1〉) = |0〉|1〉 = |01〉 is used for com-
pactness, such that

|ψ〉 ⊗ |φ〉 = α0β0|00〉+ α0β1|01〉+ α1β0|10〉+ α1β1|11〉 . (A.0.6)

The quantum state of two combined quantum systems is said to be entangled
when this state cannot be represented as a combination of two states of the
distinct systems. To illustrate this, take the above two-qubit state example and
apply the controlled-Z or ∧Z unitary operator

∧Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


such that

∧Z (|ψ〉 ⊗ |φ〉) = α0β0|00〉+ α0β1|01〉+ α1β0|10〉 − α1β1|11〉 = |χ〉 .

The resulting state |χ〉 can now no longer be described in general as a tensor
product of two states, |χ〉 is thus said to be entangled.
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Appendix B

The von Neumann
Architecture

It is hard to talk about parallel computing development without giving a brief
account of the sequential processor design that has shaped the development of
software and hardware over the years. Indeed, the von Neumann Architecture
and the associated Random Access Machine (RAM) model of computation has
dominated computer science. In the minds of many programmers scientists, the
RAM model is how a computer is supposed to work.

The origin of today’s most common computer designs date back to a series of
papers published by J. von Neumann in 1945 [198], describing the requirements
for building a stored-program computer that implements the abstract Turing Ma-
chine. This was dubbed the von Neumann architecture (VNA) and describes a
machine in distinct subdivisions; using the original terminology these were central
control (CC), central arithmetic (CA), memory (M) and Input/Output(I,O). The
design sought simplicity and maximal utilization of each individual part; hard-
ware for processing and memory were expensive and thus very precious. Parallel
arithmetic operations were deliberately avoided to save on equipment and to
simplify planning. The CC had the task to fetch the instruction to be executed
and control the operation performed by the CA. There were instructions to load
values from M into CA or conversely. A large breakthrough was the following,
paraphrased from the original design document [198]:

The orders which are received by CC come from M, i.e. from the
same place where the numerical material is stored.

A program was seen as a sequential feed of instructions residing in M, alongside
with regular program data, without being able to distinguish one from the other.
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Special instructions could change the source in M where CC would fetch its next
instruction. The typical organization of a VNA machine is shown in Figure B.1.

Control (CC) Arithmetics (CA)

Memory (M)

C

Figure B.1: The von Neumann architecture for a general purpose sequential
computer, omitting Input/Output.

The benefit of such a design was a high utilisation of simple parts, efficiently
implementing a sequential programmable stored-program computer. Its Achilles
heel was already identified by its designer:

[The memory use estimate] shows in a most striking way where the
real difficulty, the main bottleneck, of an automatic very high speed
computing device lies: At the memory. [. . . ] Clearly the practicality
of a device as is contemplated here depends most critically on the
possibility of building such an M, and on the question of how simple
such an M can be made to be.

The feed between the central unit C and M is dubbed the von Neumann bottleneck
(VNA) [19]; C can only run as fast as it can be fed from M. Another potential set
of problems originates from side effects: instructions writing in already occupied
memory locations. Both issues were avoided for a long while; Issues arising from
undesirable side effects can be avoided when keeping to sequential execution.
Memory speed and size grew tremendously, enjoying continuous technological
advances. However, the faster the execution cores became, the more the von
Neumann bottleneck became a source of diminishing returns. As parallel execu-
tion started being introduced in VNA processors to take up the slack, unwanted
side effects have started to become a serious issue [3].

196



Appendix C

Controlled-Phase gate
decomposition

The lemmas from Danos et al. [52], state that any single-qubit unitary operator
U can be decomposed into a sequence of J-unitaries:

U = eiαJ(0)J(β)J(γ)J(δ) .

The ∧U or controlled-unitary version of this operator can then be obtained, which
can also be decomposed as a sequence of J-unitaries:

∧U12 = J1(0) J1(α+
β + γ + δ

2
) J2(0) J2(β + π) J2(−γ

2
) J2(−π

2
) J2(0) ∧ Z12

J2(
π

2
) J2(

γ

2
) J2(

−π − δ − β
2

) J2(0) ∧ Z12 J2(−β + δ − π)

.

(C.0.1)

The phase-gate

P (α) =

[
1 0
0 eiα

]
can be J-decomposed into

P (θ) = J(0)J(θ)
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Controlled-Phase gate decomposition

with α = β = γ = 0 and δ = θ. This yields the following J-decomposition of the
controlled-phase gate using Equation (C.0.1):

∧P12(θ) = J1(0) J1(
θ

2
) J2(0) J2(π) J2(0) J2(−π

2
) J2(0) ∧ Z12

J2(
π

2
) J2(0) J

−π−θ
2

2 J2(0) ∧ Z12 J2(−θ − π)

= J1(0) J1(
θ

2
) J2(0) J2(

π

2
) J2(0) ∧ Z12 J2(−θ

2
) J2(

θ − π
2

)

, (C.0.2)

where the underlined expressions are simplified using the

J(α)J(0)J(β) = J(α+ β)

equality.
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